人教版九年级数学上册第22章一元二次方程学案(全章共10个)
九年级数学上册第22章一元二次方程教学案(五份)
九年级数学上册第22章一元二次方程教学案(五份)初三数学第23章一元二次方程复习讲义一、一元二次方程的定义方程中只含有一个未知数,•并且未知数的最高次数是2,•这样的整式的方程叫做一元二次方程,通常可写成如下的一般形式:ax2+bx+c=0其中二次项系数是a,一次项系数是b,常数项是c.例1.求方程x2+3=2x-4的二次项系数,一次项系数及常数项的积.例2.若关于x的方程+x+5=0是一元二次方程,试求的值,•并计算这个方程的各项系数之和.例3.若关于x的方程x2+x+5=0是一元二次方程,求的取值范围.例4.若α是方程x2-5x+1=0的一个根,求α2+的值..关于的一元二次方程的一个根为1,则实数的值是A.B.或c.D..一个三角形的两边长为3和6,第三边的边长是方程的根,则这个三角形的周长是A.11B.11或13C.13D.11和13.如图,在宽为20,长为32的矩形地面上修筑同样宽的道路,余下的部分种上草坪.要使草坪的面积为,求道路的宽.二、一元二次方程的一般解法基本方法有:配方法;公式法;因式分解法。
联系:①降次,即它的解题的基本思想是:将二次方程化为一次方程,即降次.②公式法是由配方法推导而得到.③配方法、公式法适用于所有一元二次方程,因式分解法适用于某些一元二次方程.区别:①配方法要先配方,再开方求根.②公式法直接利用公式求根.③因式分解法要使方程一边为两个一次因式相乘,另一边为0,•再分别使各一次因式等于0.例1、用三种方法解下列一元二次方程x2+8x+12=02、3x2-x-6=0用适当的方法解一元二次方程x2-2x-2=02、2x2+1=2xx=4、4x2-4x+1=x2+6x+92-2=0注意:选择解方程的方法时,应先考虑直接开平方法和因式分解法;再考虑用配方法,最后考虑用公式法三、判定一元二次方程的根的情况?一元二次方程ax2+bx+c=0的根的判别式是△=b2-4ac,.△=b2-4ac>0一元二次方程有两个不相等的实根;.△=b2-4ac=0一元二次方程有两个相等的实数;.△=b2-4ac0B.0的解集是________.0.已知关于x的方程x2+3x+2=0的一个根是-1,则=_______.1.若x=2-,则x2-4x+8=________..若+2x-1=0是关于x的一元二次方程,则的值是________.3.若a+b+c=0,且a≠0,则一元二次方程ax2+bx+c=0必有一个定根,它是_______..若矩形的长是6c,宽为3c,一个正方形的面积等于该矩形的面积,则正方形的边长是_______..若两个连续偶数的积是224,则这两个数的和是__________.三、计算题.按要求解方程:x2-3x-1=0;5x2-x-6=0.用适当的方法解方程:-7=3;=5;-3+2=0..若方程x2-2x+=0的两根是a和b,方程x-4=0的正根是c,试判断以a、b、c为边的三角形是否存在.若存在,求出它的面积;若不存在,说明理由..已知关于x的方程x2+2bx-=0的两根之和为-1,两根之差为1,•其中a,b,c是△ABc的三边长.求方程的根;试判断△ABc的形状.0.某服装厂生产一批西服,原来每件的成本价是500元,销售价为625元,经市场预测,该产品销售价个月将降低20%,第二个月比个月提高6%,为了使两个月后的销售利润达到原来水平,该产品的成本价平均每月应降低百分之几?1.李先生乘出租车去某公司办事,下午时,打出的电子收费单为“里程11•公里,应收29.10元”.出租车司机说:“请付29.10元.”该城市的出租车收费标准按下表计算,请求出起步价N是多少元.里程06价格N【中考真题】2.方程的根是ABcD3.某种商品零售价经过两次降价后的价格为降价前的,则平均每次降价A.B.c.D.关于x的一元二次方程的根的情况是A.有两个不相等的实数根B.有两个相等的实数根c.没有实数根D.无法确定.已知a、b、c分别是三角形的三边,则方程x2+2cx+=0的根的情况是A.没有实数根B.可能有且只有一个实数根c.有两个相等的实数根D.有两个不相等的实数根.关于的一元二次方程的一个根为1,则方程的另一根为.小华在解一元二次方程x2-4x=0时.只得出一个根是x=4,则被他漏掉的一个根是x=_____..在长为10c,宽为8c的矩形的四个角上截去四个全等的小正方形,使得留下的图形面积是原矩形面积的80%,求所截去小正方形的边长。
【九年级】新课标人教版初中数学九年级上册第二十二章一元二次方程复习学案
【关键字】九年级新课标人教版初中数学九年级上册第二十二章《一元二次方程》复习学案一、 知识回顾1、在方程:①x1+x 2=0② 2x 2-5xy+y 2=0 ③ x 2=16 ④7x 2-2=0中,一元二次方程的是() A ①② B ②③ C ③④ D ①③<知识提要1>:判断一个方程是不是一元二次方程,必须把方程化为一般形式后,看是否满足:(1)_______(2)_______(3)________2、关于方程x的一元二次方程(a-1)x 2+x+a2-1=0的一个根是0,则a为() A1 B-1 C1或-1 D21 <知识提要2>:一元二次方程的一般形式是__________3、下列方程中没有实数根的是()Ax 2-x-1=0Bx 2-6x+5=0Cx 2-23x+3=0D2x 2+x=-1<知识提要3>判断一元二次方程有无实数根,必须先把方程整理成一般形式后,确定a、b、c的值,计算出b2-4ac的值。
当b2-4ac>0时,__________当b2-4ac=0时,_________当b2-4ac<0时,_________,反之也成立。
4、用适当的方法解下列方程:(1)x 2-4x-3=0 (2)(x -3)2+2x(x+3)=0(3)2x 2+3x=2 (4)3(x -2)2=27<知识提要4>一元二次方程的解法有:_____________________二、 综合运用1、(长沙中考)关于x的一元二次方程mx 2-(3m-1)x+2m-1=0,其根的判别式的值为1,求m的值及该方程的根。
2、(威海中考)若关于x的一元二次方程x 2+(k+3)x+k=0的一个根是-2,求k及方程的另一个根。
三、 矫正补偿1、方程mx 2+3x-4=5x 2是关于x的一元二次方程,则m的取值范围是____ 2、已知关于x的一元二次方程ax 2-6x+9=0有两个实数根,则a的取值范围是__ 3、(潍坊中考)关于x的一元二次方程x 2-mx+(m-2)=0的根的情况是( ) A有两个不相等的实数根 B有两个相等的实数根 C无实数根 D无法确定4、(江苏中考)解一元二次方程(2x-1)2=(3-x)2四、完善整合谈谈本节课你有哪些收获?此文档是由网络收集并进行重新排版整理.word可编辑版本!。
人教版九年级数学22.1一元二次方程(教案)
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《一元二次方程》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要解决面积、速度等问题的情况?”(如花园的面积、小球落地的时间等)。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索一元二次方程的奥秘。
人教版九年级数学22.1一元二次方程(教案)
一、教学内容
人教版九年级数学22.1一元二次方程(教案):
1.了解一元二次方程的定义,能识别标准形式的一元二次方程;
a. ax^2 + bx程的求解方法:
a.因式分解法
b.配方法
c.公式法(韦达定理)
3.能够运用以上方法解决实际问题,如面积、速度等相关问题。
此外,在实践活动和小组讨论环节,学生们积极参与,热烈讨论。我注意到,他们在解决实际问题时能够运用所学知识,但在将问题转化为数学模型方面还有待提高。在小组讨论中,我尽量引导学生发现问题、分析问题,鼓励他们提出自己的观点,这有助于培养他们的逻辑思维和团队协作能力。
然而,我也发现了一些不足之处。在讲解过程中,可能由于时间紧张,我没有足够关注到每一个学生的学习情况,导致部分学生可能在理解上存在盲点。为了解决这个问题,我计划在接下来的课程中,加强对学生的个别辅导,关注他们的学习进度,确保每个人都能跟上教学节奏。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
九年级数学上册 第二十二章一元二次方程学案 人教新课标版
第二十二章一元二次方程一、教材内容一元二次方程概念;解一元二次方程的方法;一元二次方程应用题.二、课标要求1、以分析实际问题中的等量关系并求解其中的未知数为背景,认识一元二次方程及其有关概念.2、根据化归思想,抓住降次这一策略,掌握配方法,公式法和因式分解法等一元二次方程的基本解法.3、经历分析和解决实际问题的过程,体会一元二次方程的数学模型作用,进一步提高在实际问题中运用这种重要数学工具的基本能力.三、教学目标1.知识与技能了解一元二次方程及有关概念;掌握通过配方法、公式法、因式分解法降次──解一元二次方程;掌握依据实际问题建立一元二次方程的数学模型的方法;应用熟练掌握以上知识解决问题.2.过程与方法(1)通过丰富的实例,让学生合作探讨,老师点评分析,建立数学模型. 根据数学模型恰如其分地给出一元二次方程的概念.(2)结合八册上整式中的有关概念介绍一元二次方程的派生概念,如二次项等.(3)通过掌握缺一次项的一元二次方程的解法──直接开方法, 导入用配方法解一元二次方程,又通过大量的练习巩固配方法解一元二次方程.(4)通过用已学的配方法解ax2+bx+c=0(a≠0)导出解一元二次方程的求根公式,接着讨论求根公式的条件:b2-4ac>0,b2-4ac=0,b2-4ac<0.(5)通过复习八年级上册《整式》的第5节因式分解进行知识迁移,解决用因式分解法解一元二次方程,并用练习巩固它.(6)提出、分析问题,建立一元二次方程数学模型,并用解决实际问题.3.情感、态度与价值观经历由事实问题中抽象出一元二次方程等有关概念的过程,体会到通过一元二次方程也是刻画现实世界中的数量关系的一个有效数学模型;经历用配方法、公式法、分解因式法解一元一次方程的过程,使同学们体会到转化等数学思想;经历设置丰富的问题情景,使学生体会到建立数学模型解决实际问题的过程,从而更好地理解方程的意义和作用,激发学生的学习兴趣.四、教学重点与难点教学重点:1. 一元二次方程及其它有关的概念.2.用配方法、公式法、因式分解法降次──解一元二次方程.3.利用实际问题建立一元二次方程的数学模型,并解决这个问题.教学难点:1.一元二次方程配方法解题.2.用公式法解一元二次方程时的讨论.3.建立一元二次方程实际问题的数学模型;方程解与实际问题解的区别.五、课时划分本单元教学时间约需13课时,具体分配如下:22.1 一元二次方程 2课时22.2 降次──解一元二次方程 5课时22.3 实际问题与一元二次方程 3课时教学活动、习题课、小结 3课时22.1.1 《一元二次方程(1)》学案课型:上课时间:课时:学习目标:进一步体会方程是刻画现实世界中数量关系的一个有效数学模型;2、正确理解一元二次方程的概念,掌握一元二次方程的一般形式,并能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。
人教版九年级上数学第22章一元二次方程全章导学案
第2章 一元二次方程2.1一元二次方程(1)学习目标:1. 通过设置问题,建立数学模型,模仿一元一次方程的概念给一元二次方程下定义; 2. 一元二次方程的一般形式及其有关概念;3. 使学生理解并能够掌握一元二次方程的一般表达式以及各种特殊形式; 4. 通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情。
学习重点:一元二次方程的概念及其一般形式和用一元二次方程的有关概念解决问题 学习难点:建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念。
一. 学前准备:1.____________________________________________叫方程;_____________________________________________叫一元一次方程。
2.我们知道了利用一元一次方程可以解决生活中的一些实际问题,利用一元一次方程解决实际问题的步骤是:二. 探究活动(一) 独立思考·解决问题1. 剪一块面积为1502cm 的长方形铁片,师它的长比宽多5cm ,这块铁皮该怎么剪呢?如果铁皮的宽为x (cm ),那么铁皮的长为_________cm. 根据题意,可得方程是:______________________2.6,求这两个数。
设其中较小的一个数位x ,请列出满足题意的方程__________________. 3.正方形的面积是22cm ,求它的边长?_______________________________________________.3. 矩形花圃一面靠墙,另外三面所围得栅栏的总长度是19m ,如果花圃的面积是242m ,求花圃的长和宽。
__________________________________________________________. (二) 师生探究·合作交流议一议:1.上面的方程有哪些共同的特点呢?你知道什么是一元二次方程了吗?2.结合上面的方程的特点你能够用一个式子表示一元二次方程的一般形式吗?3.20(0)ax bx c a ++=≠其中______叫做二次项,a 叫做______,bx 叫做_______,b 叫做_______.c 是常数项。
第22章 一元二次方程教案全章
教学时间: 教学课题:22.1 一元二次方程 教学课型:新授课 教学目标1.理解一元二次方程概念是以未知数的个数和次数为标准的.2.掌握一元二次方程的一般形式以及三种特殊形式,能将一个一元二次方程化为一般形式3.理解二次根式的根的概念,会判断一个数是否是一个一元二次方程的根4.通过根据实际问题列方程,向学生渗透知识来源于生活.5通过观察,思考,交流,获得一元二次方程的概念及其一般形式和其它三种特殊形式. 教学重点:一元二次方程的一般形式和一元二次方程的根的概念 教学难点:通过提出问题,建立一元二次方程的数学模型 教学过程 一、复习引入小学学习过简易方程,上初中后学习了一元一次方程,二元一次方程组,可化为一元一次方程的分式方程,运用方程方法可以解决众多代数问题和几何求值问题,是非常常见的一种数学方法。
从这节课开始学习一元二次方程知识.先来学习一元二次方程的有关概念. 二、探究新知 (一)探究课本问题2 分析:1.参赛的每两个队之间都要比赛一场是什么意思?2.全部比赛场数是多少?若设应邀请x 个队参赛,如何用含x 的代数式表示全部比赛场数? 整理所列方程后观察:1.方程中未知数的个数和次数各是多少?2.下列方程中和上题的方程有共同特点的方程有哪些?4x+3=0;0422=-+x x ;042=-+y x ;0350752=+-x x ;0621=-+x x(二)概念归纳: 1.一元二次方程定义:首先它是整式方程,然后未知数的个数是1,最高次数是2. 2.一元二次方程的一般形式: ①为什么规定a ≠0?②方程左边各项之间的运算关系是什么?关于x 的一元二次方程()002≠=--a c bx ax 的各项分别是什么?各项系数是什么?3.特殊形式:()002≠=+a bx ax ;()002≠=+a c ax ;()002≠=a ax (三)课本例题类比一元一次方程的去括号,移项,合并同类项,进行同解变形,化为一般形式后再写出各项系数,注意方程一般形式中的“-”是性质符号负号,不是运算符号减号. (四)一元二次方程的根的概念1.类比一元一次方程的根的概念获得一元二次方程的根的概念2.下面哪些数是方程x 2+5x+6=0的根?-4,-3,-2,-1,0,1,2,3,4. 3.你能用以前所学的知识求出下列方程的根吗?(1)x 2-64=0(2)x 2+1=0 (3)x 2-3x=0 (4)0122=++x x 4.思考:一元一次方程一定有一个根,一元二次方程呢?5.排球邀请赛问题中,所列方程562=-x x 的根是8和-7,但是答案只能有一个,应该是哪个? 归纳:①一元二次方程的根的情况 ②一元二次方程的解要满足实际问题 三、课堂训练 1.课本练习 2补充:1).在下列方程中①3x 2+7=0 ②ax 2+bx+c=0 ③(x-2)(x+5)=x 2-1 ④3x 2-5x=0,一元二次方程的个数是( )A .1个B .2个C .3个D .4个2).关于x 的方程(a-1)x 2+3x=0是一元二次方程,则a 范围________. 3).已知方程5x 2+mx-6=0的一个根是x=3,则m 的值为________ 4).关于x 的方程(2m 2+m )x m+1+3x=6可能是一元二次方程吗? 四、小结归纳1.一元二次方程的概念及其一般形式,能将一个一元二次方程化为一般形式,并正确指出其各项系数.2.一元二次方程的根的概念,能判断一个数是否是一个一元二次方程的根. 五、作业设计 必做:P28:1-7 选做:.P29:8、9教学时间:教学课题:22.2.1配方法(1) 教学课型:新授课教学目标1.理解一元二次方程“降次”的转化思想.2.根据平方根的意义解形如x2=p(p≥0)的一元二次方程,然后迁移到解(mx+n)2=p(p≥0)型的一元二次方程.3.把一般形式的一元二次方程(二次项系数是1,一次项系数是偶数)与左边是含有未知数的完全平方式右边是非负常数的一元二次方程对比,引入配方法,并掌握.4.通过根据实际问题列方程,向学生渗透知识来源于生活.5.通过观察,思考,对比获得一元二次方程的解法-----直接开平方法,配方法教学重点:1.运用开平方法解形如(mx+n)2=p(p≥0)的方程;领会降次──转化的数学思想.2用配方法解二次项是1,一次项系数是偶数的一元二次方程教学难点:降次思想,配方法教学过程一、复习引入已经学习了一元二次方程的概念,本节课开始学习其解法,首先学习直接开平方法,配方法.二、探究新知(一)探究课本问题11.用列方程方法解题的等量关系是什么?2.解方程的依据是什么?3.方程的解是什么?问题的答案是什么?4.该方程的结构是怎样的?归纳:可根据数的开方的知识解形如x2=p(p≥0)的一元二次方程,方程有两个根,但是不一定都是实际问题的解.(二)解决课本思考1如何理解降次?2本题中的一元二次方程是通过什么方法降次的?3能化为(x+m)2=n(n≥0)的形式的方程需要具备什么特点?归纳:1运用平方根知识将形如x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程降次,转化为两个一元一次方程,解一元一次方程即可;2左边是含有未知数的完全平方式,右边是非负常数的一元二次方程可化为(x+m)2=n(n≥0).(三)探究课本问题21.根据题意列方程并整理成一般形式.2.将方程x2+6x-16=0和x2+6x+9=2对比,怎样将方程x2+6x-16=0化为像x2+6x+9=2一样,左边是含有未知数的完全平方式,右边是非负常数的方程?①完成填空:x2+6x+ =(x+ )2②方程移项之后,两边应加什么数,可将左边配成完全平方式?归纳:用配方法解二次项系数是1且一次项系数是偶数的一元二次方程的一般步骤及注意事项:先将常数项移到方程右边,然后给方程两边都加上一次项系数的一半的平方,使左边配成完全平方式的三项式形式,再将左边写成平方形式,右边完成有理数加法运算,到此,方程变形为(x+m)2=n(n≥0)的形式.三、课堂训练课本练习: P31页练习,P34页练习1,2(1)四、小结归纳1.根据平方根的意义,用直接开平方法解形如(mx+n)2=p(p≥0)的一元二次方程.2.用配方法解二次项系数是1,一次项系数是偶数的一元二次方程,特别地,移项后方程两边同加一次项系数的一半的平方.3.在用方程解决实际问题时,方程的根一定全实际是问题的解,但是实际问题的解一定是方程的根.五、作业设计必做:P42:1、2、3(1)(2)选做:下面补充作业补充作业:1.若8x2-16=0,则x的值是_________.2.如果方程2(x-3)2=72,那么,这个一元二次方程的两根是________.3.若x2-4x+p=(x+q)2,那么p、q的值分别是().A.p=4,q=2 B.p=4,q=-2 C.p=-4,q=2 D.p=-4,q=-24.方程3x2+9=0的根为().A.3 B.-3 C.±3 D.无实数根5.已知x2-8x+15=0,左边化成含有x的完全平方形式,其中正确的是().A.x2-8x+(-4)2=31 B.x2-8x+(-4)2=1 C.x2+8x+42=1 D.x2-4x+4=-116.某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长25m),•另三边用木栏围成,木栏长40m.(1)鸡场的面积能达到180m2吗?能达到200m吗?(2)鸡场的面积能达到210m2吗?教学时间: 教学课题:22.2.1配方法(2) 教学课型:新授课 教学目标:1.进一步理解配方法和配方的目的.2.掌握运用配方法解一元二次方程的步骤.3.会利用配方法熟练灵活地解二次项系数不是1的一元二次方程.4.通过对比用配方法解二次项系数是1的一元二次方程,解二次项系数不是1的一元二次方程,经历从简单到复杂的过程,对配方法全面认识 教学重点:用配方法解一元二次方程 教学难点:用配方法解二次项系数不是1的一元二次方程,首先方程两边都除以二次项系数,将方程化为二次项系数是1的类型 教学过程 一、复习引入我们在上节课,已经学习了用直接开平方法解形如x 2=p (p≥0)或(mx+n )2=p (p≥0)的一元二次方程,以及用配方法解二次项系数是1,一次项系数是偶数的一元二次方程,这节课继续学习配方法解一元二次方程. 二、探究新知 1.填空: ①()22________8+=++x x x②()22________-=+-x x x③()22____4___+=++x x ④()22____49___-=+-x x 2.填空: ①a x x++82是完全平方式,a=②92++mx x是完全平方式,m =3.解下列方程:①x 2-8x+7=0 ②2x 2+8x-2=0 ③2x 2+1=3x ④3x 2-6x+4=0 分析:(1)解方程①,复习用配方法解二次项系数为1的一元二次方程步骤;(2)对比○1的解法得到方程○2的解法,总结出用配方法解二次项系数不为1的一元二次方程的一般步骤: ①.把常数项移到方程右边;②.方程两边同除以二次项系数,化二次项系数为1; ③.方程两边都加上一次项系数一半的平方; ④.原方程变形为(x+m )2=n 的形式;⑤.如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解.(3)运用总结的配方法步骤解方程○3,先观察将其变形,即将一次项移到方程的左边,常数项移到方程的右边;解方程○4配方后右边是负数,确定原方程无解. (4) 不写出完整的解方程过程,到哪一步就可以确定方程的解得情况? 三、课堂训练1.方程()的形式,正确的是化为b a x x x =+=+-2202344( )A.()4532=-x B.()4532-=-x C.41232=⎪⎪⎭⎫ ⎝⎛-x D.3232=⎪⎪⎭⎫⎝⎛-x 2.配方法解方程2x 2-43x-2=0应把它先变形为( ). A .(x-13)2=89 B .(x-23)2=0 C .(x-13)2=89 D .(x-13)2=1093.下列方程中,一定有实数解的是( ).A .x 2+1=0B .(2x+1)2=0C .(2x+1)2+3=0D .(12x-a )2=a4.解决课本练习2(2)到(6)5.已知x 2+y 2+z 2-2x+4y-6z+14=0,则x+y+z 的值是( ). A .1 B .2 C .-1 D .-26. a ,b ,c 是ABC ∆的三条边①当bc c ab a 2222+=+时,试判断ABC ∆的形状. ②证明02222<-+-ac c b a四、小结归纳:用配方法解一元二次方程的步骤 1.把原方程化为()002≠=++a c bx ax 的形式, 2.把常数项移到方程右边;3.方程两边同除以二次项系数,化二次项系数为1;4.方程两边都加上一次项系数一半的平方;5.原方程变形为(x+m )2=n 的形式;6.如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解.不写出完整的解方程过程,原方程变形为(x+m )2=n 的形式后,若n 为0,原方程有两个相等的实数根;若n 为正数,原方程有两个不相等的实数根;若n 为负数,则原方程无实数根. 五、作业设计必做:P42:3(3)(4) 选做:P43:8、9教学时间: 教学课题:22.2.2公式法 教学课型:新授课 教学目标1.理解一元二次方程求根公式的推导过程.2.掌握公式结构,知道使用公式前先将方程化为一般形式,通过判别式判断根的情况.3.会利用求根公式解简单数字系数的一元二次方程.4.经历从用配方法解数字系数的一元二次方程到解字母系数的一元二次方程,探索求根公式,发展学生合情合理的推理能力,并认识到配方法是理解公式的基础.;5.通过对公式的推导,认识到一元二次方程的求根公式适用于所有的一元二次方程,操作简单. 教学重点:求根公式的推导,公式的正确使用 教学难点:求根公式的推导 教学过程 一、复习引入我们学习了用配方法解数字系数的一元二次方程,能否用配方法解一般形式的一元二次方程()002≠=++a c bx ax二、探究新知活动1.学生观察下面两个方程思考它们有何异同?①6x 2-7x+1=0 ②()002≠=++a c bx ax 活动2.按配方法一般步骤同时对两个方程求解: 1.移项得到6x 2-7x=-1,c bx ax -=+22.二次项系数化为1得到ac x a b x x x -=+-=-22,6167 3.配方得到 x 2-76x+(712)2=-16+(712)2 x 2+b a x+(2b a )2=-c a+(2ba )24.写成(x+m )2=n 形式得到(x-712)2=25144,(x+2b a)2=2244b ac a - 5.直接开平方得到x-712=±512,注意:(x+2ba)2=2244b ac a -是否可以直接开平方? 活动3.对(x+2b a)2=2244b ac a -观察,分析,在0≠a 时对2244b ac a -的值与0的关系进行讨论活动4.归纳出一元二次方程的根的判别式和求根公式,公式法. 活动5.初步使用公式解方程6x 2-7x+1=0.活动6.总结使用公式法的一般步骤:①把方程整理成一般形式,确定a,b,c 的值,注意符号②求出ac b 42-的值,方程()002≠=++a c bx ax ,当Δ>0时,有两个不等实根;Δ=0时有两个相等实根;Δ<0时无实根.③在ac b 42-≥0的前提下把a ,b ,c 的值带入公式.三、课堂训练1.利用一元二次方程的根的判别式判断下列方程的根的情况 (1)2x 2-4x-1=0 (2)5x+2=3x 2 (3)(x-2)(3x-5)=0 (4)4x 2-3x+1=02.课本例2 四、小结归纳1.用根的判别式判断一个一元二次方程是否有实数根2.用求根公式求一元二次方程的根3. 一元二次方程求根公式适用于任意一个一元二次方程. 五、作业设计 必做:P42:4、5 选做:P43:11、12某电厂规定:该厂家属区的每户居民一个月用电量不超过A 千瓦时,•那么这户居民这个月只交10元电费,如果超过A 千瓦时,那么这个月除了交10•元用电费外超过部分还要按每千瓦时100A 元收费.(1)若某户2月份用电90千瓦时,超过规定A 千瓦时,则超过部分电费为多少元?(•用A 表示) (2)下表是这户居民3月、4月的用电情况和交费情况根据上表数据,求电厂规定的A 值为多少?教学时间: 教学课题:22.2.3因式分解法 教学课型:新授课 教学目标1.了解因式分解法的概念.2.会用提公因式法和运用乘法公式将整理成一般形式的方程左边因式分解,根据两个因式的积等于0,必有因式为0,从而降次解方程.3.经历探索因式分解法解一元二次方程的过程,发展学生合情合理的推理能力.4.体验解决问题方法的多样性,灵活选择解方程的方法.教学重点:会用提公因式法和运用乘法公式将整理成一般形式的方程左边因式分解,从而降次解方程 教学难点:将整理成一般形式的方程左边因式分解 教学过程 一、复习引入我们学习了用配方法和公式法解一元二次方程,这节课我们来学习一种新的方法. 二、探究新知 1.因式分解x 2-5x ;; 2x(x-3)-5(x-3); 25y 2-16; x 2+12x+36;4x 2+4x+1 2.若ab=0,则可以得到什么结论? 3.试求下列方程的根 :x(x-5)=0; (x-1)(x+1)=0;(2x-1)(2x+1)=0;(x+1)2 =0; (2x-3)2=0.分析:解左边是两个一次式的积,右边是0的一元二次方程,初步体会因式分解法解方程实现降次的方法特点,只要令每个因式分别为0,得到两个一元一次方程,解这两个一元一次方程,它们的解就都是原方程的解. 4. 试求下列方程的根①、4x 2-11x =0 x(x-2)+ (x-2)=0 (x-2)2 -(2x-4)=0 ②、25y 2-16=0 (3x+1)2 -(2x-1)2 =0 (2x-1)2 =(2-x)2 ③、x 2+10x+25=0 9x 2-24x+16=0; ④、5x 2-2x-41= x 2-2x+432x 2+12x+18=0; 分析:观察①②③三组方程的结构特点,在方程右边为0的前提下,对左边灵活选用合适的方法因式分解,并体会整体思想.总结用因式分解法解一元二次方程的一般步骤:首先使方程右边为0,其次将方程的左边分解成两个一次因式的积,再令两个一次因式分别为0,从而实现降次,得到两个一元一次方程,最后解这两个一元一次方程,它们的解就都能是原方程的解.这种解法叫做因式分解法. ④中的方程结构较复杂,需要先整理.5.选用合适方法解方程x2+x+41=0 x2+x-2=0 (x-2)2 =2-x 2x2-3=0.分析:四个方程最适合的解法依次是:利用完全平方公式,求根公式法,提公因式法,直接开平方法或利用平方差公式.归纳:配方法要先配方,再降次;公式法直接利用求根公式;因式分解法要先使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.配方法、公式法适用于所有一元二次方程,因式分解法用于某些一元二次方程. 解一元二次方程的基本思路:化二元为一元,即降次.三、课堂训练1.完成课本练习2.补充练习:①已知(x+y)2 –x-y=0,求x+y的值.②下面一元二次方程解法中,正确的是().A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=25,x2=35C.(x+2)2+4x=0,∴x1=2,x2=-2D.x2=x 两边同除以x,得x=1③今年初,湖北武穴市发生禽流感,某养鸡专业户在禽流感后,打算改建养鸡场,建一个面积为150m2的长方形养鸡场.为了节约材料,鸡场的一边靠着原有的一条墙,墙长am,另三边用竹篱围成,如果篱笆的长为35m,问鸡场长与宽各为多少?(其中a≥20m)四、小结归纳本节课应掌握:1.用因式分解法解一元二次方程2.归纳一元二次方程三种解法,比较它们的异同,能根据方程特点选择合适的方法解方程五、作业设计必做:P43:6、10选做:P43:13、14教学时间:教学课题:22.2.4一元二次方程的根与系数关系教学课型:新授课教学目标:1.熟练掌握一元二次方程的根与系数关系.2.灵活运用一元二次方程的根与系数关系解决实际问题.3.提高学生综合运用基础知识分析解决较复杂问题的能力.4.学生经历探索,尝试发现韦达定理,感受不完全归纳验证以及演绎证明教学重点:一元二次方程的根与系数关系教学难点:对根与系数关系的理解和推导教学过程一、复习引入一元二次方程的根与系数有着密切的关系,早在16世纪法国的杰出数学家韦达发现了这一关系,你能发现吗?二、探究新知1.课本思考分析:将(x- x1)(x-x2)=0化为一般形式x2-( x1 +x2)x+ x1 x2=0与x2+px+ q=0对比,易知p=-( x1 +x2),q= x1 x2. 即二次项系数是1的一元二次方程如果有实数根,则一次项系数等于两根和的相反数,常数项等于两根之积.2.跟踪练习求下列方程的两根x1、x2. 的和与积.x2+3x+2=0;x2+2x-3=0; x2-6x+5=0; x2-6x-15=03. 方程2x2-3x+1=0的两根的和、积与系数之间有类似的关系吗?分析:这个方程的二次项系数等于2,与上面情形有所不同,求出方程两根,再通过计算两根的和、积,检验上面的结论是否成立,若不成立,新的结论是什么?4.一般的一元二次方程ax2+bx+c=0(a≠0)中的a不一定是1,它的两根的和、积与系数之间有第3题中的关系吗?分析:利用求根公式,求出方程两根,再通过计算两根的和、积,得到方程的两个根x1、x2和系数a,b,c的关系,即韦达定理,也就是任何一个一元二次方程的根与系数的关系为:两根的和等于一次项系数与二次项系数的比的相反数,两根之积等于常数项与二次项系数的比. 求根公式是在一般形式下推导得到,根与系数的关系由求根公式得到,因此,任何一个一元二次方程化为一般形式后根与系数之间都有这一关系.5.跟踪练习求下列方程的两根x1、x2. 的和与积.①3x2+7x+2=0;3x2+7x-2=0; 3x2-7x+2=0;3x2-7x-2=0;②5x-1=4x2;5x2-1=4x2+x6.拓展练习①已知一元二次方程2x 2+bx+c=0的两个根是-1,3,则b= ,c= .②已知关于x 的方程x 2+kx-2=0的一个根是1,则另一个根是 ,k 的值是 .③若关于x 的一元二次方程x 2+px+q=0的两个根互为相反数,则p= ; 若两个根互为倒数,则q= . 分析:方程中含有一个字母系数时利用方程一根的值可求得另一根和这个字母系数;方程中含有两个字母系数时利用方程的两根的值可求得这两个字母系数.二次项系数是1时,若方程的两根互为相反数或互为倒数,利用根与系数的关系可求得方程的一次项系数和常数项.④两个根均为负数的一元二次方程是( )A.4x 2+21x+5=0B.6x 2-13x-5=0C.7x 2-12x+5=0D.2x 2+15x-8=0⑤.两根异号,且正根的绝对值较大的方程是( )A.4x 2-3=0B.-3x 2+5x-4=0C.0.5x 2-4x-3=0D.2x 2+53x-6=0⑥.若关于x 的一元二次方程2x 2-3x+m=0,当m 时方程有两个正根;当m 时方程有两个负根;当m 时方程有一个正根一个负根,且正根的绝对值较大.三、课堂训练1.完成课本练习2.补充练习:x 1 ,x 2是方程3x 2-2x-4=0的两根,利用根与系数的关系求下列各式的值:①2111x x +; ②221212x x x x + ③2221x x +; ④()221x x -;⑤2112x x x x + 四、小结归纳本节课应掌握:1. 韦达定理二次项系数不是1的方程根与系数的关系2. 运用韦达定理时,注意隐含条件:二次项系数不为0,△≥0;3.韦达定理的应用常见题型:①不解方程,判断两个数是否是某一个一元二次方程的两根;②已知方程和方程的一根,求另一个根和字母系数的值;③由给出的两根满足的条件,确定字母系数的值;④判断两个根的符号;○5不解方程求含有方程的两根的式子的值. 五、作业设 计必做:P43:7选做:补充作业:已知一元二次方程x 2+3x+1=0的两个根是βα、,求αββα+的值.教学时间:教学课题:22.3实际问题与一元二次方程(1)教学课型:新授课教学目标:1.使学生会列出一元二次方程解应用题,初步掌握利用一元二次方程解决生活中的实际问题.2.培养学生的阅读能力.3.通过根据实际问题列方程,向学生渗透知识来源于生活.4.通过观察,思考,交流,进一步提高逻辑思维和分析问题解决问题能力.5.经历观察,归纳列一元二次方程的一般步骤教学重点:建立数学模型,找等量关系,列方程教学难点:找等量关系,列方程教学过程一、复习引入同一元一次方程,二元一次方程(组)等一样,一元二次方程和实际问题,也有紧密的联系,本节课就来讨论如何利用一元二次方程来解决实际问题.二、探究新知●探究课本30页问题1分析:设正方体的棱长是xdm,则一个正方体的表面积是多少?10个呢?等量关系是什么?●探究课本38页问题分析:设物体经过xs落回地面,这时它离地面的高度是多少?●某人将2000元人民币按一年定期存入银行,到期后支取1000元用于购物,剩下的1000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1320元,求这种存款方式的年利率.(利息税为利息的20%)分析:设这种存款方式的年利率为x,第一次存2000元取1000元,剩下的本金和利息是1000+2000x·80%;第二次存,本金就变为1000+2000x·80%,其它依此类推●课本46页探究2分析:设甲种药品的成本年平均下降率为x,则一年后甲种药品成本是多少?两年后甲种药品成本是多少?相关的等量关系是什么?类似的乙甲种药品成本的年平均下降率是多少?相关的等量关系是什么?方程的解都是该问题的解吗?如果不是,如何选择?为什么?如何回答课本46页思考?归纳:通过解决以上问题,列一元二次方程解实际问题的基本步骤是什么?与以前学过的列方程解实际问题的步骤有何异同?●某工厂第一季度的一月份生产电视机是1万台,第一季度生产电视机的总台数是3.31万台,求二月份、三月份生产电视机平均增长的百分率是多少?分析:设平均增长率是x ,则二月份生产电视机的台数是多少?三月份生产电视机的台数是多少?第一季度生产电视机的总台数还可以怎样表示?等量关系是什么?归纳:以上这几道题与我们以前所学的一元一次、二元一次方程(组)、分式方程等为背景建立数学模型是一样的,而我们借助的是一元二次方程为背景建立数学模型来分析实际问题和解决问题的类型.三、课堂训练补充练习:①.一台电视机成本价为a 元,销售价比成本价增加25%,因库存积压,•所以就按销售价的70%出售,那么每台售价为( ).A .(1+25%)(1+70%)a 元B .70%(1+25%)a 元C .(1+25%)(1-70%)a 元D .(1+25%+70%)a 元②.某商场的标价比成本高p%,当该商品降价出售时,为了不亏损成本,•售价的折扣(即降低的百分数)不得超过d%,则d 可用p 表示为( ).A .100p p +B .pC .1001000p p -D .100100p p+ ③. 2009年一月份越南发生禽流感的养鸡场100家,后来二、•三月份新发生禽流感的养鸡场共250家,设二、三月份平均每月禽流感的感染率为x ,依题意列出的方程是( ).A .100(1+x )2=250B .100(1+x )+100(1+x )2=250C .100(1-x )2=250D .100(1+x )2四、小结归纳1.列一元二次方程解应用题的一般步骤2.利用一元二次方程解决实际生活中的百分率问题五、作业设计必做:P48:1、2、3选做:P49:9补充作业:上海甲商场七月份利润为100万元,九月份的利率为121万元,乙商场七月份利率为200万元,九月份的利润为288万元,那么哪个商场利润的年平均上升率较大?教学时间:教学课题:22.3实际问题与一元二次方程(2)教学课型:新授课教学目标:1.能根据○1以流感为问题背景,按一定传播速度逐步传播的问题;○2以封面设计为问题背景,边衬的宽度问题中的数量关系列出一元二次方程,体会方程刻画现实世界的模型作用.2.培养学生的阅读能力与分析能力.3.能根据具体问题的实际意义,检验结果是否合理.4.通过自主探究,独立思考与合作交流,使学生弄清实际问题的背景,挖掘隐藏的数量关系,把有关数量关系分析透彻,找出可以作为列方程依据的主要相等关系,正确的建立一元二次方程教学重点:建立数学模型,找等量关系,列方程教学难点;找等量关系,列方程教学过程:一、复习引入通过上节课的学习,谈谈列一元二次方程解决实际问题的一般步骤及应注意的问题.二、探究新知●课本45页探究1分析:①设每轮传染中平均一个人传染x了个人.这里的一轮指一个传染周期.②第一轮的传染源有几个人?第一轮后有几个人被传染了流感?包括传染源在内,共有几个人患着流感?③第二轮的传染源有几个人?第二轮后有几个人被传染了流感?包括第二轮的传染源在内,共有几个人患着流感?④本题用来列方程的相等关系是什么?列出方程.拓展:课本思考.四轮呢?归纳:本题一流感为问题背景,讨论按一定传播速度逐步传播的问题,,特别需要注意的是,在第二轮传染中,在实际生活中,类似原型很多,比如细胞分裂,信息传播,传染病扩散,害虫繁殖等,一般就考虑两轮传播,这些问题有通性,在解题时有规律可循.●课本47页探究3分析:①正中央的长方形与整个封面的长宽比例相同,是什么含义?②上下边衬与左右边衬的宽度相等吗?如果不相等,应该有什么关系?③若设正中央的长方形的长和宽分别为9a㎝,7a㎝,尝试表示边衬的长度,并探究上下边衬与左右边衬的宽度的数量关系?④“应如何设计四周边衬的宽度?”是要求四周边衬的宽度,除了根据上下边衬与左右边衬的宽度比为,设上下边衬宽为与左右边衬宽为.还可以根据正中央的长方形长与宽的比为9:7,设正中央的长方形的长为。
九年级数学上册第二十二章一元二次方程复习教案新人教版【教案】
九年级数学上册第二十二章一元二次方程复习教课设计新人教版【教课设计】
第 22 章一元二次方程小结与复习
教课内容
本节课主假如对一元二次方程进行系统复习,稳固所学知识,提高应用能力.
教课目的
知识技术
灵巧运用直接开平方法、配方法、公式法、因式分解法解一元二次方程,运用一元二次方程解决简单的实质问题.
数学思虑
经历运用知识、技术解决问题的过程,发展学生的独立思虑能力和创新精神.解决问题
认识数学解题中的方程思想、转变思想、分类议论思想和整体思想.
感情态度
培育学生对数学的好奇心与求知欲,养成怀疑和独立思虑的学习习惯.
重难点、要点
要点:运用知识、技术解决问题
难点:解题剖析能力的提高.
要点:指引学生参加解题的议论与沟通
教课准备
教师准备:制作课件,优选习题
学生准备:写一份本单元知识构造图.
教课过程
一、回首沟通
【教课方略】
将学生疏成四人小组,?沟通各自书写的“单元知识构造图”进行归纳总结.知识网络图表
专心爱心专心
1 / 1。
第22章《一元二次方程》教案(人教新课标初三上)doc初中数学
第22章《一元二次方程》教案(人教新课标初三上)doc 初中数学一、知识扫描1.只含有一个未知数,同时未知数的最高次数是2的整式方程叫做一元二次方程.因此,由一元二次方程的定义可知,即一元二次方程必须满足满足以下三个条件:①方程的两边差不多上关于未知数的整式;②只含有一个未知数;③未知数的最高次数是2。
如此的方程才是一元二次方程,不满足其中任何一个条件的方程都不是一元二次方程。
例如:535,53,02,3422222+===-+-x x x x x x x 差不多上一元二次方程。
而03132=-+x x 不是一元二次方程,缘故是x1是分式。
2.任何关于x 的一元二次方程的都可整理成)0(02≠=++a c bx ax 的形式.这种形式叫做一元二次方程的一样形式,它的特点是方程左边是一个关于未知数的二次三项式,方程右边是零,其中2ax 叫二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。
注意b 、c 能够是任何实数,但a 绝对不能为零,否那么,就不是一元二次方程了。
化一元二次方程为一样形式的手段是去分母、去括号、移项、合并同类项,整理后的方程最好按降幂排列,二次项系数化为正数。
注意任何一个一元二次方程不可缺少二次项,担可缺少一次项和常数项,即b 、c 均能够为零。
如方程013x 023x 02222=-=-=、、x x 差不多上一元二次方程。
3.一元二次方程的解. 使一元二次方程左、右两边相等的未知数的值,叫一元二次方程的解,又叫一元二次方程的根。
如x=1时,022=-+x x 成立,故x=1叫022=-+x x的解。
4.一元二次方程的解法解一元二次方程的差不多思想是通过降次转化为一元一次方程,本节共介绍了四种解法。
〔1〕直截了当开平方法:方程)0(2≥=a a x 的解为a x ±=,这种解一元二次方程的方法叫直截了当开平方法。
它是利用了平方根的定义直截了当开平方,只要形式能化成()a =2的一元二次方程都能够采纳直截了当开平方法来解。
第22章一元二次方程导学案[人教版初三九年级]
第二十二章一元二次方程1、一元二次方程(1)学习目标:1、会根据具体问题列出一元二次方程,体会方程的模型思想,提高归纳、分析的能力。
2、理解一元二次方程的概念;知道一元二次方程的一般形式;会把一个一元二次方程化为一般形式;会判断一元二次方程的二次项系数、一次项系数和常数项。
重点:由实际问题列出一元二次方程和一元二次方程的概念。
难点:由实际问题列出一元二次方程。
准确认识一元二次方程的二次项和系数以及一次项和系数还有常数项。
导学流程:自学课本导图,走进一元二次方程分析:现设雕像下部高x米,则度可列方程去括号得①你知道这是一个什么方程吗?你能求出它的解吗?想一想你以前学过什么方程,它的特点是什么?探究新知自学课本25页问题1、问题2(列方程、整理后与课本对照),并完成下列各题:问题1可列方程整理得②问题2可列方程整理得③1、一个正方形的面积的2倍等于50,这个正方形的边长是多少?2、一个数比另一个数大3,且这两个数之积为这个数,求这个数。
3、一块面积是150cm2长方形铁片,它的长比宽多5cm,则铁片的长是多少?观察上述三个方程以及①②两个方程的结构特征,类比一元一次方程的定义,自己试着归纳出一元二次方程的定义。
展示反馈【挑战自我】判断下列方程是否为一元二次方程。
其中为一元二次方程的是:【我学会了】1、只含有个未知数,并且未知数的最高次数是,这样的方程,叫做一元二次方程。
2、一元二次方程的一般形式: ,其中 二次项, 是一次项, 是常数项, 二次项系数 , 一次项系数。
自主探究:自主学习P26页例题,完成下列练习:将下列一元二次方程化为一般形式,并分别指出它们的二次项、一次项和常数项及它们的系数。
(1)8142=x (2))2(5)1(3+=-x x x 【巩固练习】教材第27页练习 归纳小结1、本节课我们学习了哪些知识?2、学习过程中用了哪些数学方法?3、确定一元二次方程的项及系数时要注意什么? 作业(A )1、判断下列方程是否是一元二次方程; (1)0233122=--x x ( )(2)0522=+-y x ( ) (3) 02=++c bx ax ( ) (4)07142=+-xx ( ) 2、将下列方程化为一元二次方程的一般形式,并分别指出它们的二次项系数、一次项系数和常数项:(1)3x 2-x =2; (2)7x -3=2x 2;(3)(2x -1)-3x (x -2)=0 (4)2x (x -1)=3(x +5)-4. 3、判断下列方程后面所给出的数,那些是方程的解; (1))()(1412+=+x x x ±1 ±2;(2)0822=-+x x ±2, ±4(B )1、把方程p q nx mx nx mx -=++-22()0≠+n m 化成一元二次方程的一般形式,再写出它的二次项系数、一次项系数及常数项。
第22章《一元二次方程》整章教案(人教新课标九年级上)-22.2.3因式分解法doc
(1)方程有两个不相等的实数根;
(2)方程有两个相等的实数根,并求出这两个等根;
(3)方程没有实数根.
「活动4」
归纳总结、布置作业.
归纳总结:利用因式分解法可以方便快捷地解一些一元二次方程.
作业:习题22.2第5~8题.
师生活动设计:
学生经过独立思考,分析问题、解决问题,教师在学生解决问题的过程中鼓励学生运用多种方法解方程,然后让学生体会不同方法间的区别,找到解方程的最佳方法,体会因式分解法的简洁性.
在学生解决问题的基础上,对比配方法、公式法、因式分解法引导学生作以下归纳:
(1)配方法要先配方,再降次;通过配方法可以推出求根公式,公式法直接利用求根公式;因式分解法要先使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.配方法、公式法适用于所有的一元二次方程,因式分解法用于某些一元二次方程.
创设问题情境,激发学生兴趣,引出本节内容.
问题与情境
师生行为
设计意图
「活动2」
通过解下列方程,你能发现在解一元二次方程的过程中需要注意什么?
(1) ;
(2) ;
(3) ;
(4) .
学生活动设计:
四个学生进行板演,其余的同学独立解决,然后针对板演的情况让学生讨论、分析可能出现的问题.
对于方程(1),若把(x-2)看作一个整体,方程可变形为(x-2)(x+1)=0;
22.2.3因式分解法
教学任务分析
教学目标
知识技能
1.应用分解因式法解一些一元二次方程.
2.能根据具体一元二次方程的特征,灵活选择方程的解法.
数学思考
体会“降次”化归的思想.
解决问题
新人教版九年级数学第22章一元二次方程教案导学案(全章)
第22章一元二次方程教材内容1.本单元教学的主要内容.一元二次方程概念;解一元二次方程的方法;一元二次方程应用题.2.本单元在教材中的地位与作用.一元二次方程是在学习《一元一次方程》、《二元一次方程》、分式方程等基础之上学习的,它也是一种数学建模的方法.学好一元二次方程是学好二次函数不可或缺的,是学好高中数学的奠基工程.应该说,一元二次方程是本书的重点内容.教学目标1.知识与技能了解一元二次方程及有关概念;掌握通过配方法、公式法、因式分解法降次──解一元二次方程;掌握依据实际问题建立一元二次方程的数学模型的方法;应用熟练掌握以上知识解决问题.2.过程与方法(1)通过丰富的实例,让学生合作探讨,老师点评分析,建立数学模型.•根据数学模型恰如其分地给出一元二次方程的概念.(2)结合八册上整式中的有关概念介绍一元二次方程的派生概念,如二次项等.(3)通过掌握缺一次项的一元二次方程的解法──直接开方法,•导入用配方法解一元二次方程,又通过大量的练习巩固配方法解一元二次方程.(4)通过用已学的配方法解ax2+bx+c=0(a≠0)导出解一元二次方程的求根公式,接着讨论求根公式的条件:b2-4ac>0,b2-4ac=0,b2-4ac<0.(5)通过复习八年级上册《整式》的第5节因式分解进行知识迁移,解决用因式分解法解一元二次方程,并用练习巩固它.(6)提出问题、分析问题,建立一元二次方程的数学模型,•并用该模型解决实际问题.3.情感、态度与价值观经历由事实问题中抽象出一元二次方程等有关概念的过程,使同学们体会到通过一元二次方程也是刻画现实世界中的数量关系的一个有效数学模型;经历用配方法、公式法、分解因式法解一元一次方程的过程,使同学们体会到转化等数学思想;经历设置丰富的问题情景,使学生体会到建立数学模型解决实际问题的过程,从而更好地理解方程的意义和作用,激发学生的学习兴趣.教学重点1.一元二次方程及其它有关的概念.2.用配方法、公式法、因式分解法降次──解一元二次方程.3.利用实际问题建立一元二次方程的数学模型,并解决这个问题.教学难点1.一元二次方程配方法解题.2.用公式法解一元二次方程时的讨论.3.建立一元二次方程实际问题的数学模型;方程解与实际问题解的区别.教学关键1.分析实际问题如何建立一元二次方程的数学模型.2.用配方法解一元二次方程的步骤.3.解一元二次方程公式法的推导.课时划分本单元教学时间约需15课时,具体分配如下:22.1 一元二次方程2课时22.2 降次──解一元二次方程8课时22.3 实际问题与一元二次方程3课时《一元二次方程》小结与复习2课时第1课时一元二次方程(1)第2课时一元二次方程(2)第3课时解一元二次方程——配方法(1)第4课时解一元二次方程——配方法(2)第5课时解一元二次方程——配方法(3)第6课时解一元二次方程——公式法(1)第7课时解一元二次方程——公式法(2)第8课时解一元二次方程—因式分解法第9课时一元二次方程的根与系数的关系(1)第10课时一元二次方程的根与系数的关系(2)原式=第11课时实际问题与一元二次方程(1)第12课时实际问题与一元二次方程(2)第13课时实际问题与一元二次方程(3)第14-15课时《一元二次方程》小结与复习。
人教版九年级数学上册22.2 一元二次方程 学案
22.2一元二次方程学习案学习目标:1.了解一元二次方程概念、一般形式及有关概念;2.知道什么是一元二次方程的根;会判定一个数是否是方程的;3.初步尝试根据实际问题列一元二次方程。
一.预习内容:带着学习目标预习课本P24-P27,标记你认为重点的内容,然后解答下列问题:1.列方程解应用题的基本五步是___,_____,______,_____,____.2. 做一做:问题(1) 绿苑小区住宅设计,准备在每两幢楼房之间,开辟面积为900平方米的一块长方形绿地,并且长比宽多10米,那么绿地的长和宽各为多少?分析:设绿地的宽为x米,则绿地的长为_________米,根据绿地面积为900平方米,列方程得_________________,化简方程得____________________①问题(2) 要组织一场篮球联赛, 每两队之间都赛1场,计划安排45场比赛,应邀请多少个球队参加比赛?分析:设应邀请x个队参赛,每个队要与其他________个队各赛1场, 根据安排45场比赛, 列方程得_________________,化简方程得____________________②问题(3) 4个完全相同的正方形的面积和是25,求一个正方形的边长。
分析:设正方形的边长为x,列方程得______________③方程①、②、③的共同点是_______________________________________.3.什么叫一元二次方程?一元二次方程必须满足哪几个条件?4.在下列方程中,一元二次方程的个数是().①3x2+7=0 ②x3-x+x2=x3-1 ③(a2+1)x2=9 ④3x2-5x=05.一元二次方程的一般形式是___________________________,其中,二次项和二次项系数分别是_____、____;一次项和一次项系数分别是_____、____;常数项是____。
6.一元二次方程ax2+bx+c=0中,为什么要限制a≠0,b、c可以为零吗?若a=0,b≠0,则它是你学过的哪一类方程?7.当k________时,关于x的方程(k+3)x2-kx+1=0是一元二次方程。
人教版九年级数学上册第二十二章一元二次方程学案
22.1 一元二次方程课 型 ____________ 上 课 时 间 ____________ 第 1 课时教学内容一元二次方程概念及一元二次方程一般式及有关概念。
教学目标了解一元二次方程的概念;一般式)0(02≠=++a c bx ax 及其产生的概念;•应用一元二次方程概念解决一些简单题目。
1、通过设置问题,建立数学模型,•模仿一元一次方程概念给一元二次方程下定义。
2、一元二次方程的一般形式及其有关概念。
3、解决一些概念性的题目。
4、通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情。
教学重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.教学难点及关键:通过提出问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念。
教学过程 一、复习引入 (学生活动)列方程:问题(1)、古算趣题“执竿进屋”:笨人执竿要进屋,无奈门框拦住竹,横多四尺竖多二,没法急得放声哭。
有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足。
借问竿长多少数,谁人算出我佩服。
如果假设门的高为x 尺,•那么,•这个门的宽为____•尺,长为____•尺,•根据题意,•得:________。
整理、化简,得:__________。
问题(2)如图,如果AC CBAB AC=,那么点C 叫做线段AB 的黄金分割点. 如果假设AB=1,AC=x ,那么BC=________,根据题意,得:_______。
整理得:_________。
问题(3):有一面积为54m 2的长方形,将它的一边剪短5m ,另一边剪短2m ,恰好变成一个正方形,那么这个正方形的边长是多少?如果假设剪后的正方形边长为x 米,那么原来长方形长是____,宽是_____,根据题意,得:_______ 整理,得:_______。
老师点评并分析如何建立一元二次方程的数学模型,并整理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x22.1 一元二次方程(1)重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.难点(关键):通过提出问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念.学一学(阅读教材第25至26页,并完成预习内容。
)问题1 要设计一座2m 高的人体雕像,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,雕像的下部应设计为多高?分析:设雕像下部高x m ,则上部高________,得方程_____________________________整理得_____________________________ ①问题2 如图,有一块长方形铁皮,长100cm ,宽50cm ,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒。
如果要制作的无盖方盒的底面积为3600c ㎡,那么铁皮各角应切去多大的正方形? 分析:设切去的正方形的边长为x cm ,则盒底的长为________________,宽为_____________.得方程_____________________________整理得_____________________________ ② 问题3 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场。
根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?分析:全部比赛的场数为___________设应邀请x 个队参赛,每个队要与其他_________个队各赛1场,所以全部比赛共_________________场。
列方程____________________________化简整理得 ____________________________ ③请口答下面问题:(1)方程①②③中未知数的个数各是多少?___________(2)它们最高次数分别是几次?___________方程①②③的共同特点是: 这些方程的两边都是_________,只含有_______未知数(一元),并且未知数的最高次数是_____的方程.1、只含有 个未知数,并且未知数的最高次数是 ,这样的 方程,叫做一元二次方程。
2、一元二次方程的一般形式: ,其中 是 二次项,是一次项, 是常数项, 是二次项系数 , 是一次项系数。
一般地,任何一个关于x 的一元二次方程,•经过整理,•都能化成如下形式ax 2+bx+c=0(a ≠0).这种形式叫做一元二次方程的一般形式.其中ax 2是____________,_____是二次项系数;bx 是__________,_____是一次项系数;_____是常数项。
(注意:二次项系数、一次项系数、常数项都要包含它前面的符号。
二次项系数0a ≠是一个重要条件,不能漏掉。
)3. 例 将方程(8-2x )(5-2x )=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.练一练1:判断下列方程是否为一元二次方程,为什么?22222(1)10(3)23x 10x x (5)(3)(3)x x -==+=-22 x (2)2(x -1)=3y 12 x-- (4)-=0 (6)9x =5-4x2将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数、及常数项:⑴ 5x2-1=4x ⑵ 4x2=81 ⑶ 4x(x+2)=25 ⑷ (3x-2)(x+1)=8x-3试一试2.根据下列问题,列出关于x的方程,并将其化成一元二次方程的一般形式:⑴4个完全相同的正方形的面积之和是25,求正方形的边长x;⑵一个长方形的长比宽多2,面积是100,求长方形的长x;⑶把长为1的木条分成两段,使较短一段的长与全长的积,等于较长一段的长的平方,求较短一段的长x。
3.px2-3x+p2-q=0是关于x的一元二次方程,则().A.p=1 B.p>0 C.p≠0 D.p为任意实数4.方程3x2-3=2x+1的二次项系数为_______,一次项系数为 ______,常数项为_________.8.关于x的方程(m2-m)x m+1+3x=6可能是一元二次方程吗?为什么?22.1 一元二次方程(2)【课前预习】(阅读教材P27 — 28 , 完成课前预习)1:知识准备一元二次方程的一般形式:____________________________2:探究问题:一个面积为120m2的矩形苗圃,它的长比宽多2m,•苗圃的长和宽各是多少?分析:设苗圃的宽为xm,则长为_______m.根据题意,得___________________.整理,得________________________.1)下面哪些数是上述方程的根?0,1,2,3,4, 5, 6, 7, 8, 9, 102)一元二次方程的解也叫做一元二次方程的_____,即使一元二次方程等号左右两边相等的_______________的值。
3)将x=-12代入上面的方程,x=-12是此方程的根吗?4)虽然上面的方程有两个根(______和______)但是苗圃的宽只有一个答案,即宽为_______.因此,由实际问题列出方程并解得的根,并不一定是实际问题的根,还要考虑这些根是否确实是实际问题的解.练习:1.你能想出下列方程的根吗?(1) x2 -36 = 0 (2) 4x2-9 = 02.下面哪些数是方程x2+x-12=0的根? -4, -3, -2, -1, 0, 1, 2, 3, 4。
例1.下面哪些数是方程x2-x-6=0的根?-4, -3, -2, -1, 0, 1, 2, 3, 4。
例2.你能用以前所学的知识求出下列方程的根吗?(1)2250x-= (2) 231x= (3) 29160x-=随堂训练1.写出下列方程的根:(1)9x2 = 1 (2)25x2-4 = 0 (3)4x2 = 22. 下列各未知数的值是方程2320x x+-=的解的是()A.x=1B.x=-1C.x=2D. x=-23.根据表格确定方程287.5x x-+=0的解的范围____________4.已知方程2390x x m-+=的一个根是1,则m的值是______5.试写出方程x2-x=0的根,你能写出几个?活动4:归纳小结1.使一元二次方程成立的____________的值,叫做一元二次方程的解,也叫做一元二次方程的________。
2.由实际问题列出方程并得出解后,还要考虑这些解______________【课后巩固】1.如果x2-81=0,那么x2-81=0的两个根分别是x1=________,x2=__________.2.一元二次方程2x x=的根是__________;方程x(x-1)=2的两根为________3.写出一个以2x=为根的一元二次方程,且使一元二次方程的二次项系数为1:_________________。
4.已知方程5x2+mx-6=0的一个根是x=3,则m的值为________.5. 若关于X的一元二次方程22(1)10a x x a-++-=的一个根是0,a的值是几?你能得出这个方程的其他根吗?6. 若222x x-=,则2243x x-+=_____________。
已知m是方程260x x--=的一个根,则代数式2m m-=________。
7. 如果x=1是方程ax2+bx+3=0的一个根,求(a-b)2+4ab的值.8. 方程(x+1)2x(x+1)=0,那么方程的根x1=______;x2=________.9.把22(1)2x x x x-=++化成一般形式是______________,二次项是____一次项系数是_______,常数项是_______。
10.已知x=-1是方程ax2+bx+c=0的根(b≠0().A.1 B.-1 C.0 D.211.方程x(x-1)=2的两根为().A.x1=0,x2=1 B.x1=0,x2=-1 C.x1=1,x2=2 D.x1=-1,x2=2 12.方程ax(x-b)+(b-x)=0的根是().A.x1=b,x2=a B.x1=b,x2=1aC.x1=a,x2=1aD.x1=a2,x2=b213. 请用以前所学的知识求出下列方程的根。
⑴(x-2)=1 ⑵9(x-2) 2=1 ⑶x2+2x+1=4 ⑷x2-6x+9=0拓广探索:14.如果2是方程x2-c=0的一个根,那么常数c是几?你能得出这个方程的其他根吗?15.如果关于x的一元二次方程ax2+bx+c=0(a≠0)中的二次项系数与常数项之和等于一次项系数,求证:-1必是该方程的一个根.22.2.1 直接开平方法解一元二次方程【课前预习】导学过程阅读教材第30页至第31页的部分,完成以下问题一桶某种油漆可刷的面积为1500dm2,李林用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部表面,你能算出盒子的棱长吗?我们知道x2=25,根据平方根的意义,直接开平方得x=±5,如果x换元为2t+1,即(2t+1)2=8,能否也用直接开平方的方法求解呢?用直接开平方法解下列方程:(1)x2=8 (2)(2x-1)2=5 (3)x2+6x+9=2(4)4m2-9=0 (5)3(x-1)2-9=108解一元二次方程的实质是: 把一个一元二次方程“降次”,转化为两个一元一次方程.•我们把这种思想称为“降次转化思想”.归纳:如果方程能化成的形式,那么可得【课堂活动】例1用直接开平方法解下列方程:(1)(3x+1)2=7 (2)y2+2y+1=24 (3)9n2-24n+16=11练习:(1)2x2-8=0 (2)9x2-5=3 (3)(x+6)2-9=0【课堂练习】:知识运用1、用直接开平方法解下列方程:(1)3(x-1)2-6=0 (2)x2-4x+4=5 (3)9x2+6x+1=4(4)36x2-1=0 (5)4x2=81 (6)(x+5)2=25归纳小结应用直接开平方法解形如,那么可得达到降次转化之目的.【课后巩固】一、选择题1.若x2-4x+p=(x+q)2,那么p、q的值分别是().A.p=4,q=2 B.p=4,q=-2 C.p=-4,q=2 D.p=-4,q=-2 2.方程3x2+9=0的根为().A.3 B.-3 C.±3 D.无实数根3.用配方法解方程x2-23x+1=0正确的解法是().A.(x-13)2=89,x=13B.(x-13)2=-89,原方程无解C.(x-23)2=59,x1=23+3x2=23D.(x-23)2=1,x1=53,x2=-13二、填空题1.若8x2-16=0,则x的值是_________.2.如果方程2(x-3)2=72,那么,这个一元二次方程的两根是________.3.如果a、b2-12b+36=0,那么ab的值是_______.4.用直接开平方法解下列方程:(1)(2-x)2=4 (2)(2-x)2-81=05.解关于x的方程(x+m)2=n.6、某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长25m),•另三边用木栏围成,木栏长40m.(1)鸡场的面积能达到180m2吗?能达到200m吗?(2)鸡场的面积能达到210m2吗?7.在一次手工制作中,某同学准备了一根长4米的铁丝,由于需要,现在要制成一个矩形方框,并且要使面积尽可能大,你能帮助这名同学制成方框,•并说明你制作的理由吗?22.2.2配方法解一元二次方程(1)重点:讲清“直接降次有困难”,如x2+6x-16=0的一元二次方程的解题步骤.难点:不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.【课前预习】导学过程阅读教材第31页至第34页的部分,完成以下问题解下列方程(1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9填空:(1)x2+6x+______=(x+______)2;(2)x2-x+_____=(x-_____)2(3)4x2+4x+_____=(2x+______)2.(4)x2-x+_____=(x-_____)2问题:要使一块长方形场地的长比宽多6cm,并且面积为16cm2,场地的长和宽应各是多少?思考?1、以上解法中,为什么在方程x2+6x=16两边加9?加其他数行吗?2、什么叫配方法?3、配方法的目的是什么?这也是配方法的基本4、配方法的关键是什么?用配方法解下列关于x的方程(1)x2-4x+2=0 (2)2x2-4x-8=0总结:用配方法解一元二次方程的步骤:【课堂活动】例1用配方法解下列关于x的方程:(1)x2-8x+1=0 (2)2x2+1=3x (3)3x2-6x+4=0练习:(1)x2+10x+9=0 (3)3x2+6x-4=0(3)4x 2-6x-3=0 (4)x(x+4)=8x+12【课堂练习】:1. 填空:(1)x 2+10x+______=(x+______)2;(2)x 2-12x+_____=(x-_____)2(3)x 2+5x+_____=(x+______)2.(4)x 2-32x+_____=(x-_____)22.用配方法解下列关于x 的方程(1) x 2-36x+70=0. (2)2x 2-4x-1=0 (3)x 2x归纳小结:用配方法解一元二次方程的步骤:【课后巩固】一、选择题1.将二次三项式x 2-4x+1配方后得( ).A .(x-2)2+3B .(x-2)2-3C .(x+2)2+3D .(x+2)2-32.已知x 2-8x+15=0,左边化成含有x 的完全平方形式,其中正确的是( ).A .x 2-8x+(-4)2=31B .x 2-8x+(-4)2=1C .x 2+8x+42=1D .x 2-4x+4=-113.如果mx 2+2(3-2m )x+3m-2=0(m ≠0)的左边是一个关于x 的完全平方式,则m 等于().A .1B .-1C .1或9D .-1或9二、填空题1.(1)x 2-8x+______=(x-______)2;(2)9x 2+12x+_____=(3x+_____)2(3)x 2+px+_____=(x+______)2.2、方程x 2+4x-5=0的解是________.三、解方程:(1)x 2+10x+16=0 (2)3x 2+6x-5=0 (3)4x 2-x-9=0四、综合提高题1.已知三角形两边长分别为2和4,第三边是方程x 2-4x+3=0的解,求这个三角形的周长.2.如果x 2-4x+y 2,求(xy )z 的值.22.2.3用公式法解一元二次方程重点:求根公式的推导和公式法的应用.难点:一元二次方程求根公式法的推导.【课前预习】阅读教材第34页至第37页的部分,完成以下问题1、用配方法解下列方程 (1)6x 2-7x+1=0 (2)4x 2-3x=52总结用配方法解一元二次方程的步骤:2、如果这个一元二次方程是一般形式ax 2+bx+c=0(a ≠0),你能否用上面配方法的步骤求出它们的两根?问题:已知ax 2+bx+c=0(a ≠0)试推导它的两个根x 1 x 2 分析:因为前面具体数字已做得很多,我们现在不妨把a 、b 、c•也当成一个具体数字,根据上面的解题步骤就可以一直推下去.解:移项,得: ,二次项系数化为1,得配方,得: 即∵a ≠0,∴4a 2>0,式子b 2-4ac 的值有以下三种情况:(1) b 2-4ac >0,则2244b ac a ->0直接开平方,得: 即x=2b a-± ∴x 1= ,x 2=(2) b 2-4ac=0,则2244b ac a -=0此时方程的根为 即一元二次程 ax 2+bx+c=0(a ≠0)有两个 的实根。