求函数值域的十种常用方法
求值域的方法大全及习题
求值域的方法大全及习题求值域方法常用求值域方法(1)、直接观察法:利用已有的基本函数的值域观察直接得出所求函数的值域对于一些比较简单的函数,如正比例,反比例,一次函数,指数函数,对数函数,等等, 其值域可通过观察直接得到。
例1、求函数1,[1,2]y x x=∈的值域。
例2、 求函数x 3y -=的值域。
【同步练习1】函数221xy +=的值域.(2)、配方法:二次函数或可转化为形如cx bf x f a x F ++=)()]([)(2类的函数的值域问题,均可用配方法,而后一情况要注意)(x f 的范围;配方法是求二次函数值域最基本的方法之一。
例1、求函数225,y x x x R=-+∈的值域。
例2、求函数]2,1[x ,5x 2x y 2-∈+-=的值域。
例3、求()()22log 26log 62log222222-+=++=x x x y 。
(配方法、换元法) 例4、设02x ≤≤,求函数1()4321xx f x +=-+g 的值域.例5、求函数13432-+-=x x y 的值域。
(配方法、换元法)例6、求函数xx y 422+--=的值域。
(配方法)1、求二次函数242y x x =-+-([]1,4x ∈)的值域.2、求函数342-+-=x x e y 的值域.3、求函数421,[3,2]x xy x --=-+∈-的最大值与最小值.4、求函数])8,1[(4log 2log 22∈⋅=x xx y 的最大值和最小值. 5、已知[]0,2x ∈,求函数12()4325x xf x -=-⋅+的值域. 6、若,42=+y x 0,0>>y x ,试求y x lg lg +的最大值。
(3)、换元法:(三角换元法)有时候为了沟通已知与未知的联系,我们常常引进一个(几个)新的量来代替原来的量,实行这种“变量代换”往往可以暴露已知与未知之间被表面形式掩盖着的实质,发现解题方向,这就是换元法.在求值域时,我们可以通过换元将所给函数化成值域容易确定的另一函数,从而求得原函数的值域. 例1、求()f x x =【同步练习3】求函数xx y 21--=的值域。
求值域的方法大全及习题
求值域方法常用求值域方法(1)、直接观察法:利用已有的基本函数的值域观察直接得出所求函数的值域对于一些比较简单的函数,如正比例,反比例,一次函数,指数函数,对数函数,等等, 其值域可通过观察直接得到。
例1、求函数1,[1,2]y x x =∈的值域。
例2、 求函数x 3y -=的值域。
【同步练习1】函数221xy +=的值域.(2)、配方法:二次函数或可转化为形如c x bf x f a x F ++=)()]([)(2类的函数的值域问题,均可用配方法,而后一情况要注意)(x f 的范围;配方法是求二次函数值域最基本的方法之一。
例1、求函数225,y x x x R =-+∈的值域。
例2、求函数]2,1[x ,5x 2x y 2-∈+-=的值域。
例3、求()()22log 26log 62log 222222-+=++=x x x y 。
(配方法、换元法)例4、设02x ≤≤,求函数1()4321x x f x +=-+g的值域.例5、求函数13432-+-=x x y 的值域。
(配方法、换元法)例6、求函数x x y 422+--=的值域。
(配方法) 【同步练习2】1、求二次函数242y x x =-+-([]1,4x ∈)的值域.2、求函数342-+-=x x e y 的值域.3、求函数421,[3,2]xx y x --=-+∈-的最大值与最小值.4、求函数])8,1[(4log 2log 22∈⋅=x xx y 的最大值和最小值. 5、已知[]0,2x ∈,求函数12()4325x x f x -=-⋅+的值域.6、若,42=+y x 0,0>>y x ,试求y x lg lg +的最大值。
(3)、换元法:(三角换元法)有时候为了沟通已知与未知的联系,我们常常引进一个(几个)新的量来代替原来的量,实行这种“变量代换”往往可以暴露已知与未知之间被表面形式掩盖着的实质,发现解题方向,这就是换元法.在求值域时,我们可以通过换元将所给函数化成值域容易确定的另一函数,从而求得原函数的值域.例1、求()f x x =+【同步练习3】求函数x x y 21--=的值域。
函数值域的十种求法
函数值域的十种求法函数值域是一种数学概念,它描述了一个函数的结果范围,是数学研究的基础。
求函数值域的方法有多种,每种方法都有不同的优劣。
本文介绍了求函数值域的十种方法,及其优势和劣势,以供参考。
一、定义法定义法是求取函数值域最为简单的方法,只要将函数的定义式扩大至所有可能被求出的范围即可。
定义法最大的优势在于可以精确求出函数值域,大大减少误差,使得函数值域的求解更有可靠性。
但是,定义法也有其缺点,即求解过程会很繁琐,在有多个参数的函数中,会消耗大量的计算时间。
二、图像法图像法是一种简单易行的求函数值域的方法,它只需要将函数的图像表示出来,然后从图像中观察出函数值域的范围即可。
图像法的优势在于求解速度快,只需要对函数的图像做一次有限次的绘制,就可以直观了解函数的值域,而无需进行耗时的计算。
但是,图像法本身并不能精确求出函数值域,无法判断一些细微的函数特征,从而可能导致求得的函数值域不够准确。
三、五行式五行式是一种常见的求函数值域的方法,它将参数组合为五个不同的行,分别代表不同的极限情况,然后从五行式中求取函数值域。
五行式的最大优势就在于可以根据函数本身的特征,从而排除掉一些不必要的计算,减少运算量,大大提高求解的效率。
但是,五行式也存在一定的局限性,它无法正确处理复杂的函数,也不能处理参数过多的函数。
四、三角形法三角形法是一种求函数值域的经典方法,它将参数抽象出来,将参数空间细分为多个三角形,并将每个三角形中的值域分别求取出来。
三角形法的最大优势在于可以将参数空间剖分为有结构的模块,并在不同模块之间建立联系,从而大大减少计算量。
但是,三角形法也有其不足,即它只能处理二元函数的值域求解,而且在一些复杂函数的情况下,其求解精度也无法保证。
五、基于函数本质的求法基于函数本质的求法是一种综合的求值域的方法,它的原理是从函数的定义本质出发,抽象出函数的特征,并对参数和函数值域之间的联系进行分析,最后求解出函数值域。
高考数学复习函数值域的13种求法
函数值域十三种求法1. 直接观察法利用已有的基本函数的值域观察直接得出所求函数的值域,对于一些比较简单的函数,如正比例,反比例,一次函数,指数函数,对数函数,等等,其值域可通过观察直接得到。
例1. 求函数x 1y =的值域解:∵0x ≠ ∴0x 1≠ 显然函数的值域是:),0()0,(+∞-∞例2. 求函数x 3y -=的值域 解:∵0x ≥3x 3,0x ≤-≤-∴故函数的值域是:]3,[-∞2. 配方法二次函数或可转化为形如c x bf x f a x F ++=)()]([)(2类的函数的值域问题,均可用配方法,而后一情况要注意)(x f 的范围;配方法是求二次函数值域最基本的方法之一。
例3. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域 解:将函数配方得:4)1x (y 2+-=∵]2,1[x -∈由二次函数的性质可知:当x=1时,4y min =,当1x -=时,8y max =故函数的值域是:[4,8]评注:配方法往往需结合函数图象求值域.3. 判别式法(只有定义域为整个实数集R 时才可直接用) 对于形如21112222a xb xc y a x b x c ++=++(1a ,2a 不同时为0)的函数常采用此法,就是把函数转化成关于x 的一元二次方程(二次项系数不为0时),通过方程有实数根,从而根的判别式大于等于零,求得原函数的值域.对二次函数或者分式函数(分子或分母中有一个是二次)都可通用,但这类题型有时也可以用其他方法进行化简如:.112..22222222b a y 型:直接用不等式性质k+xbx b. y 型,先化简,再用均值不等式x mx nx 1 例:y 1+x x+xx m x n c y 型 通常用判别式x mx nx mx n d. y 型 x n法一:用判别式 法二:用换元法,把分母替换掉x x 1(x+1)(x+1)+1 1 例:y (x+1)1211x 1x 1x 1==++==≤''++=++++=+++-===+-≥-=+++例4. 求函数22x 1x x 1y +++=的值域 解:原函数化为关于x 的一元二次方程0x )1y (x )1y (2=-+-(1)当1y ≠时,R x ∈0)1y )(1y (4)1(2≥----=∆ 解得:23y 21≤≤ (2)当y=1时,0x =,而⎥⎦⎤⎢⎣⎡∈23,211 故函数的值域为⎥⎦⎤⎢⎣⎡23,21例5. 求函数)x 2(x x y -+=的值域解:两边平方整理得:0y x )1y (2x 222=++-(1) ∵R x ∈∴0y 8)1y (42≥-+=∆ 解得:21y 21+≤≤-但此时的函数的定义域由0)x 2(x ≥-,得2x 0≤≤由0≥∆,仅保证关于x 的方程:0y x )1y (2x 222=++-在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由 0≥∆求出的范围可能比y 的实际范围大,故不能确定此函数的值域为⎥⎦⎤⎢⎣⎡23,21。
求函数最值的12种方法
求函数值域的12种方法一、常用函数的值域,这是求其他复杂函数值域的基础。
1.函数),0(R x k b kx y ∈≠+=的值域为R;2.二次函数),0(2R x a c bx ax y ∈≠++=当0>a 时值域是[ab ac 442-,+)∞,当0<a 时值域是(,-∞ab ac 442-];3.反比例函数)0,0(≠≠=x k xky的值域为}0|{≠y y ;4.指数函数),1,0(R x a a a y x ∈≠>=且的值域为+R ;5.对数函数x y a log =)0,1,0(>≠>x a a 且的值域为R;6.函数)( cos ,sin R x x y x y ∈==的值域为[-1,1];函数 ),2k (x tan Z k x y ∈+≠=ππ,cot xy =),(Z k k x ∈≠π的值域为R;7.对勾函数)0,0(≠>+=x a xa x y 的值域为),2[]2,(+∞⋃--∞a a ;8.形如)0,0(≠>-=x a xa x y 的值域为}0|{≠y y ;渐近线为y=x二、求值域的方法1.直接法(观察法)通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域例1求函数3422+-=x x y (x ∈[30,])的最值解:∵1)1(22+-=x y ,∴当3x =时,max y 1x 9==,时,min y =1.例2求函数323y x =+-的值域。
解:由算术平方根的性质,知23x -≥0,故323y x =+-≥3.∴函数的值域为)∞+,3[.2.反函数法求值域对于形如)0(≠++=a bax dcx y 的值域,用函数和它的反函数定义域和值域关系,通过求反函数的定义域从而得到原函数的值域。
例3求函数12x y x +=+的值域。
解:显然函数12x y x +=+的反函数为:121y x y -=-,其定义域为y≠1的实数,故函数y 的值域为{y ∣y≠1,y∈R}。
高中函数求值域的九种方法和例题讲解
高中函数值域和定义域的大小,是常考的一个知识点,本文介绍了函数求值域最常用的九种方法和例题讲解.一.观察法通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。
例1求函数y=3+√(2-3x)的值域。
点拨:根据算术平方根的性质,先求出√(2-3x)的值域。
解:由算术平方根的性质,知√(2-3x)≥0,故3+√(2-3x)≥3。
∴函数的知域为.点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。
本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。
练习:求函数y=[x](0≤x≤5)的值域。
(答案:值域为:{0,1,2,3,4,5})二.反函数法当函数的反函数存在时,则其反函数的定义域就是原函数的值域。
例2求函数y=(x+1)/(x+2)的值域。
点拨:先求出原函数的反函数,再求出其定义域。
解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。
点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。
这种方法体现逆向思维的思想,是数学解题的重要方法之一。
练习:求函数y=(10x+10-x)/(10x-10-x)的值域。
(答案:函数的值域为{y∣y<-1或y>1})三.配方法当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域例3:求函数y=√(-x2+x+2)的值域。
点拨:将被开方数配方成完全平方数,利用二次函数的最值求。
解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。
此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4]∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2]点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。
配方法是数学的一种重要的思想方法。
【高中数学讲义】函数求值域的十种方法
前言:总有人求助如何学好数学,这个问题很宽泛,并非寥寥数语能够厘清。
有一点很明确,学好数学的必要条件是了解数学。
高中数学可以归结为两个“三位一体”:教学体系的三位一体和知识结构的三位一体。
知识结构的三位一体:数学思想,数学方法,典型习题。
三要素之间的关系:典型习题归纳数学思想,数学思想指导数学方法,数学方法解决典型习题。
数学思想举例:数形结合的思想等。
数学方法举例:配方法、反证法、倍差法等。
典型习题举例:恒成立问题、是否存在问题等。
教学体系的三位一体:教、学、练。
老师教什么:数学思想和数学方法。
熟练掌握各种方法的是优秀学生,深入理解各种思想的是顶尖学生。
学生怎么学:课堂紧跟老师,课下善于提问。
如何做练习:01,选题:中学数学最大的误区就是题海战术,有的老师不学无术只会告诉你多做题。
多做题没用,多做类型才有用。
典型习题,做一顶百。
02,做题:一题多解。
对于选定的习题,运用尽量多的方法去解决,然后比较各个方法的优劣,归纳出某类型题对应的最佳方法。
03,总结:针对错题。
大量统计表明,我们在考试中所犯的错误大多是重复性的。
通过总结,避免两次踏入同一条水沟。
由上可知,我讲数学的特点是方法论、重总结。
工欲善其事,必先利其器:各种数学方法就是我们解决难题的利器。
总喊看题就没思路的童鞋,回忆一下高中阶段你能说出多少种方法。
说不出?有思路才怪!言归正传,今天我们就来总结一下“函数求值域的十种方法”(高中数学最重要就是函数,函数之于高中数学好比力学之于高中物理。
高中数学函数的要点无非:三要素,四变换,五常见,六性质。
三要素中的求值域就是本讲的主题)方法一:配方法用于解决二次函数值域问题,考试中几乎不会单独考察配方法(太简单),但常与其他方法综合使用。
y=ax2+bx+c(a≠0)经过配方得到 y=a(x-m)2 +n 的形式,可直接观察出值域。
方法二:函数性质法高中阶段函数六性:奇偶性,单调性,周期性,对称性,凸凹性,有界性(前三为重点)。
函数值域的求法大全
函数值域的求法大全值域为R(注意判别式);对数函数y=logax(a>0,a≠1)的定义域为R+,值域为R;指数函数y=ax(a>0,a≠1)的定义域为R,值域为(0,+∞);三角函数y=sin x,y=cos x的值域均为[-1,1];反三角函数y=arcsin x的定义域为[-1,1],值域为[-π/2,π/2];y=arccos x的定义域为[-1,1],值域为[0,π];y=arctan x的定义域为R,值域为(-π/2,π/2)。
利用函数的单调性来求值域对于单调递增函数f(x),其值域为[f(a),f(b)];对于单调递减函数f(x),其值域为[f(b),f(a)]。
利用反函数来求值域设函数f(x)的反函数为g(x),则f(x)的值域等于g(x)的定义域,即f(x)的值域为{x|g(x)∈R}。
利用配方法来求值域对于形如y=f(x)=ax2+bx+c(a>0)的二次函数,可通过配方法将其化为y=a(x+p)2+q的形式,其中a>0,(p,q)为顶点坐标,此时,y的值域为[q,+∞)或(−∞,q]。
利用不等式来求值域对于形如y=f(x)=ax2+bx+c(a>0)的二次函数,可通过求解不等式ax2+bx+c≥0来确定其值域。
以上是常见的求值域的方法,不同的函数类型可能需要不同的方法来求值域。
在解题过程中,要根据具体情况选择合适的方法,结合图像、单调性、反函数等性质进行分析,才能得出正确的结果。
剔除下面文章的格式错误,删除明显有问题的段落,然后再小幅度的改写每段话。
求函数值域是数学中常见的问题。
下面介绍两种常用的方法:单调性法和换元法。
单调性法是指利用函数的单调性来确定函数的值域。
具体来说,可以先找到函数在给定区间内的单调区间,然后比较区间两端点的函数值,从而确定函数的最大值或最小值。
当顶点横坐标是字母时,需要根据其对应区间特别是区间两端点的位置关系进行讨论。
函数值域的求法
函数值域的求法求函数值域的方法有:直接法、单调性法、配方法、“∆判别式”法、部分分式法、换元法、数形结合法、有界性法、均值不等式法、最值法等.1.直接法:对于求基本函数(一次函数、二次函数、指数函数、对数函数、三角函数)的值域,可根据其性质直接求出值域.例如:二次函数2()(0)f x ax bx c a =++≠在闭区间[]q p ,上的值域(或最值). 当a >0时,二次函数()(0)f x ax bx c a =++≠图象的对称轴与闭区间[]q p ,的位置关系如下:图1 图2图3 图4分别观察上述4个图象,可得二次函数()(0)f x ax bx c a =++≠在区间[]q p ,上的单调性,由区间[]q p ,上的单调性可求得二次函数()(0)f x ax bx c a =++≠在闭区间[]q p ,上的最值(或值域). 因此,二次函数()(0)f x ax bx c a =++≠在闭区间[]q p ,上的最值问题有如下结论: (1) 当a >0时,若[]q p a bx ,2∈-=,则{}min max max ()(),()(),()2b f x f f x f p f q a =-=; 若[]q p abx ,2∉-=,则{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =. (2)当a <0时,若[]q p a bx ,2∈-=,则)()(max a b f x f -=,{}min ()min (),()f x f p f q =; 若[]q p abx ,2∉-=,则{}m a x ()m a x (),()f x f p f q =,{}min ()min (),()f x f p f q =. 例1、求14)(2-+=x x x f 在闭区间[]0,5-上的值域.解:∵)(x f 的图像是开口向上,对称轴为2-=x 的抛物线,∴5)2()(min -=-=f x f ,4)5()}0(),5(max{)(max =-=-=f f f x f因此,)(x f 在闭区间[]0,5-上的值域为 [-5,4] 2.单调性法:根据函数的定义域及单调性求函数值域.例如:求函数x k x x f +=)( )0(>k 的值域,就可用xkx x f +=)( )0(>k 的单调性:在k -[,)0,0(,]k 单调递减;在-∞(,]k -,k [,)∞+单调递增.下面用导数法证明xkx x f +=)(的单调性: ∵22))((1)(x k x k x x k x f -+=-=', ∴0))((0)(2>-+⇔>'x k x k x x f ,解得:∈x -∞(,)k -∪k (,)∞+;0))((0)(2<-+⇔<'x k x k x x f ,解得:∈x k -(,)0∪0(,)k .则)(x f 单调递减区间是k -[,)0,0(,]k ;单调递增区间是-∞(,]k -,k [,)∞+.例2、求1)(2+=x x x f 在闭区间[]3,5--上的值域解:∵211)1(11111)1()(2-+++=++-=++-=x x x x x x x f 设1+=x t ,由∈x []3,5--得∈t []2,4-- 则tt y 1+=在区间[]2,4--上递增. ∴∈y ⎥⎦⎤⎢⎣⎡--25,417. 因此,1)(2+=x x x f 在闭区间[]3,5--上的值域是⎥⎦⎤⎢⎣⎡--29,425.3.部分分式法:把分式函数化成只有分母中含有自变量的分式型函数,只要求出分母的取值范围,就可求得函数的值域.求y =b ax dcx ++(a 0≠)型函数的值域常用此法. 例3、求函数y =123+-x x (0>x )的值域解:12127211227)12(21123+∙-=+-+=+-=x x x x x y ,∵ 0>x ,∴ 112>+x , 得11210<+<x ,∴ 213<<-y . 则所求函数的值域是{y|213<<-y }.4.配方法:求可转化为二次型函数的值域问题常用此方法.像函数c x bf x af x F ++=)()()(2 (0≠a )的值域问题可用此法 例4、求4sin 3sin 2+-=x x y 的值域 解 ∵47)23(sin 2+-=x y , 又∵1sin 1≤≤-x , ∴21)23(sin 25-≤-≤-x ⇒425)23(sin 412≤-≤x ⇒82≤≤y .∴所求函数的值域是[2,8]5.“∆判别式”法:把函数式转化为关于x 的二次方程0),(=y x F ,通过方程有实根,判别式∆0≥,从而求得原函数的值域. 求y =fex dx cbx ax ++++22(a 、d 不同时为零)型函数的值域常用此法.例5、求122+--=x x xx y 的值域.解:由122+--=x x xx y ,得 0)1()1(2=+-+-y x y x y .① 当1=y 时,方程无解, ∴1≠y .② 当1≠y 时,∵R x ∈,∴ 必须 △0)1(4)1(2≥---=y y y ,解得 131≤≤-y . 又∵1≠y ,∴所求函数的值域是{y|131<≤-y } 6.换元法:通过换元,把求复杂函数值域的问题转化为求基本函数值域的问题.例6、函数12+-=x x y 的值域 解:令012≥+=x t ,则)1(212-=t x ;∴1)1(21)1(2122--=--=t t t y , ∵ 0≥t ,∴ 1-≥y .则所求函数的值域是{y|1-≥y }.7.数形结合法:利用函数所表示的几何意义,借助于几何方法来求函数的值域.例7、求函数y =xx cos 2sin +的值域解:∵ y =x x cos 2sin +的值可理解为动点A(cos x ,sin x )与定点P(-2,0)连线的斜率.而动点A 的轨迹为单位圆O ,∴当PA 与⊙O 相切时,y 有最值。
求函数值域的12种方法
求函数值域的12种方法函数是中学数学的重要的基本概念之一,它与代数式、方程、不等式、三角函数、微积分等内容有着密切的联系,应用十分广泛。
函数的基础性强、概念多,其中函数的定义域、值域、奇偶性等是难点之一,是高考的常见的题型。
下面就函数的值域的求法,举例说如下。
一.观察法通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。
例1求函数y=3+√(2-3x)的值域。
点拨:根据算术平方根的性质,先求出√(2-3x)的值域。
解:由算术平方根的性质,知√(2-3x)≥0,故3+√(2-3x)≥3。
∴函数的知域为.点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。
本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。
练习:求函数y=[x](0≤x≤5)的值域。
(答案:值域为:{0,1,2,3,4,5})二.反函数法当函数的反函数存在时,则其反函数的定义域就是原函数的值域。
例2求函数y=(x+1)/(x+2)的值域。
点拨:先求出原函数的反函数,再求出其定义域。
解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。
点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。
这种方法体现逆向思维的思想,是数学解题的重要方法之一。
练习:求函数y=(10x+10-x)/(10x-10-x)的值域。
(答案:函数的值域为{y∣y<-1或y>1})三.配方法当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域例3:求函数y=√(-x2+x+2)的值域。
点拨:将被开方数配方成完全平方数,利用二次函数的最值求。
解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。
此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4]∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2]点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。
求值域的十种方法
求函数值域的十种方法一.直接法(观察法):对于一些比较简单的函数,其值域可通过观察得到。
例 1 .求函数的值域。
【解析】∵ ,∴ ,∴函数的值域为。
【练习】1 .求下列函数的值域:① ;② ;③ ;,。
【参考答案】① ;② ;③ ;。
二.配方法:适用于二次函数及能通过换元法等转化为二次函数的题型。
形如的函数的值域问题,均可使用配方法。
例 2 .求函数()的值域。
【解析】。
∵ ,∴ ,∴ ,∴ ,∴ 。
∴函数()的值域为。
例 3 .求函数的值域。
【解析】本题中含有二次函数可利用配方法求解,为便于计算不妨设:配方得:利用二次函数的相关知识得,从而得出:。
说明:在求解值域 ( 最值 ) 时,遇到分式、根式、对数式等类型时要注意函数本身定义域的限制,本题为:。
例 4 .若,试求的最大值。
【分析与解】本题可看成第一象限内动点在直线上滑动时函数的最大值。
利用两点,确定一条直线,作出图象易得:, y=1 时,取最大值。
【练习】2 .求下列函数的最大值、最小值与值域:① ;② ;③ ;④ ;,;。
【参考答案】① ;② ;③ ;④ ;;三.反函数法:反函数的定义域就是原函数的值域,利用反函数与原函数的关系,求原函数的值域。
适用类型:分子、分母只含有一次项的函数 ( 即有理分式一次型 ) ,也可用于其它易反解出自变量的函数类型。
例 5 .求函数的值域。
分析与解:由于本题中分子、分母均只含有自变量的一次型,易反解出,从而便于求出反函数。
反解得,故函数的值域为。
【练习】1 .求函数的值域。
2 .求函数,的值域。
【参考答案】 1 .;。
四.分离变量法:适用类型 1 :分子、分母是一次函数的有理函数,可用分离常数法,此类问题一般也可以利用反函数法。
例 6 :求函数的值域。
解:∵ ,∵ ,∴ ,∴函数的值域为。
适用类型 2 :分式且分子、分母中有相似的项,通过该方法可将原函数转化为为( 常数 ) 的形式。
例 7 :求函数的值域。
高中数学:求函数值域的方法十三种
高中数学:求函数值域的十三种方法一、观察法(☆ ) 二、配方法(☆) 三、分离常数法(☆) 四、反函数法(☆) 五、判别式法(☆) 六、换元法(☆☆☆) 七、函数有界性八、函数单调性法(☆)九、图像法(数型结合法)(☆) 十、基本不等式法 十一、利用向量不等式 十二、一一映射法 十三、 多种方法综合运用一、观察法:从自变量x 的范围出发,推出()y f x =的取值范围。
【例1】求函数1y x =+的值域。
【解析】∵0x ≥,∴11x +≥, ∴函数1y x =+的值域为[1,)+∞。
【例2】求函数x 1y =的值域。
【解析】∵0x ≠ ∴0x 1≠ 显然函数的值域是:),0()0,(+∞-∞ 【例3】已知函数()112--=x y ,{}2,1,0,1-∈x ,求函数的值域。
【解析】因为{}2,1,0,1-∈x ,而()()331==-f f ,()()020==f f ,()11-=f 所以:{}3,0,1-∈y 注意:求函数的值域时,不能忽视定义域,如果该题的定义域为R x ∈,则函数的值域为{}1|-≥y y 。
二. 配方法:配方法式求“二次函数类”值域的基本方法。
形如2()()()F x af x bf x c =++的函数的值域问题,均可使用配方法。
【例1】 求函数225,[1,2]y x x x =-+∈-的值域。
【解析】将函数配方得:∵由二次函数的性质可知:当x=1 ∈[-1,2]时,,当时, 故函数的值域是:[4,8]【变式】已知,求函数的最值。
【解析】由已知,可得,即函数是定义在区间上的二次函数。
将二次函数配方得,其对称轴方程,顶点坐标,且图象开口向上。
显然其顶点横坐标不在区间内,如图2所示。
函数的最小值为,最大值为。
图2【例2】 若函数2()22,[,1]f x x x x t t =-+∈+当时的最小值为()g t ,(1)求函数()g t(2)当∈t [-3,-2]时,求g(t)的最值。
高中数学:求函数值域的10种常见方法
求函数的值域(常用)一、用非负数的性质例1:求下列函数的值域:(1)y=-3x 2+2;(2)≥-1).练1:函数2()1f x x x =+-的最小值是_________________.练2:求函数y =练3:求函数的值域。
练4:(1)232+-=x x y (2)]8,5[,452∈+-=x x x y(3)2234x x y -+-=]2,1[x ,5x 2x y 2-∈+-=二、分离常数法对某些分式函数,可通过分离常数法,化成部分分式来求值域.例1:求下列函数的值域:(1)y=21x x ++(2)y=2211x x -+.练1:求下列函数的值域:(1)13222++=x x y (2)3214222++++=x x x x y三、利用函数单调性已知函数在某区间上具有单调性,那么利用单调性求值域是一种简单的方法. 例1:求函数y=3x+x 3的值域.练1:求函数122+-=xx y ()0>x 的值域.练2:求函数x x y 213--=的值域.四、利用判别式特殊地,对于可以化为关于x 的二次方程a(y)x 2+b(y)x+c(y)=0的函数y=f(x),可利用0()0,a y y x ∆≥≠且求出的最值后,要检验这个最值在定义域是否具有相应的值. 例1:求函数y =234x x +的最值.练1:利用判别式方法求函数222231x x y x x -+=-+的值域.五、利用换元法求值域有时直接求函数值域有困难,我们可通过换元法转化为容易求值域的问题考虑. 例1:求函数的值域。
练1:求()6log 62log 2222++=x x y 的值域.1x x y -+=练2:设02x ≤≤,求函数1()4321x x f x +=-+的值域.练3:求函数的值域.练4:求函数x x y 213--=的值域.六:判别式法例1:求函数的值域。
七、利用数形结合数形结合是解数学问题的重要思想方法之一,求函数值域时其运用也不例外. 例1:若62--=x x y ,求y 的最大、最小值.练1:求函数342+-=x x y 的值域.22x 1x x 1y +++=练2:求函数186122+-++=x x x y 的值域.练3:若(求x-y 的最大、最小值.八、利用已知函数的有界性. 例1:求函数y=25243x x -+的值域.练1:求函数的值域。
求值域的方法大全
例析求函数值域的方法求函数的值域常和求函数的最值问题紧密相关,是高中数学的重点和难点,虽然没有固定的方法和模式,但常用的方法有:1、直接法:从自变量x 的范围出发,推出()y f x =的取值范围。
例1:求函数1y =的值域。
解:∵011≥, ∴函数1y =的值域为[1,)+∞。
例2. 求函数x 1y =的值域。
解:∵0x ≠∴0x 1≠显然函数的值域是:),0()0,(+∞-∞例3.已知函数()112--=x y ,{}2,1,0,1-∈x ,求函数的值域。
解:因为{}2,1,0,1-∈x ,而()()331==-f f ,()()020==f f ,()11-=f 所以:{}3,0,1-∈y ,注意:求函数的值域时,不能忽视定义域,如果该例的定义域为R x ∈,则函数的值域为{}1|-≥y y 。
2、配方法:配方法式求“二次函数类”值域的基本方法。
形如2()()()F x af x bf x c =++的函数的值域问题,均可使用配方法。
配方法是求二次函数值域最基本的方法之一。
例3. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域。
解:将函数配方得:4)1x (y 2+-=∵]2,1[x -∈由二次函数的性质可知:当x=1时,4y m in =,当1x -=时,8y m ax = 故函数的值域是:[4,8]例2:求函数242y x x =-++([1,1]x ∈-)的值域。
解:2242(2)6y x x x =-++=--+,∵[1,1]x ∈-,∴2[3,1]x -∈--,∴21(2)9x ≤-≤ ∴23(2)65x -≤--+≤,∴35y -≤≤∴函数242y x x =-++([1,1]x ∈-)的值域为[3,5]-。
例3.求函数322+--=x x y 的值域。
分析与解答:因为0322≥+--x x ,即13≤≤-x ,4)1(2++-=x y ,于是:44)1(02≤++-≤x ,20≤≤y 。
函数值域求法十五种
函数值域求法十五种在函数的三要素中,定义域和值域起决定作用,而值域是由定义域和对应法则共同确定。
研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。
确定函数的值域是研究函数不可缺少的重要一环。
对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。
本文就函数值域求法归纳如下,供参考。
基本知识1.定义:因变量y的取值范围叫做函数的值域(或函数值的集合)。
2.函数值域常见的求解思路:⑴划归为几类常见函数,利用这些函数的图象和性质求解。
⑵反解函数,将自变量x用函数y的代数式形式表示出来,利用定义域建立函数y的不等式,解不等式即可获解。
⑶可以从方程的角度理解函数的值域,从方程的角度讲,函数的值域即为使关于x的方程y=f(x)在定义域内有解的y得取值范围。
特别地,若函数可看成关于x的一元二次方程,则可通过一元二次方程在函数定义域内有解的条件,利用判别式求出函数的值域。
⑷可以用函数的单调性求值域。
⑸其他。
1. 直接观察法对于一些比较简单的函数,通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域例1. 求函数的值域。
解:∵∴显然函数的值域是:2. 配方法配方法是求二次函数值域最基本的方法之一。
例2. 求函数的值域。
解:将函数配方得:∵由二次函数的性质可知:当x=1时,,当x=-1时,故函数的值域是:[4,8]3. 判别式法例3. 求函数的值域。
解:两边平方整理得:(1)∵∴解得:但此时的函数的定义域由,得由,仅保证关于x的方程:在实数集R有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由求出的范围可能比y的实际范围大,故不能确定此函数的值域为。
可以采取如下方法进一步确定原函数的值域。
∵∴∴代入方程(1)解得:即当时,原函数的值域为:注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。
高中数学求值域的10种方法
求函数值域的十种方法一.直接法(观察法):对于一些比较简单的函数,其值域可通过观察得到。
例1.求函数1y =的值域。
【解析】0≥11≥,∴函数1y =的值域为[1,)+∞。
【练习】1.求下列函数的值域:①32(11)y x x =+-≤≤; ②x x f -+=42)(;③1+=x xy ;○4()112--=x y ,{}2,1,0,1-∈x 。
【参考答案】①[1,5]-;②[2,)+∞;③(,1)(1,)-∞+∞;○4{1,0,3}-。
二.配方法:适用于二次函数及能通过换元法等转化为二次函数的题型。
形如2()()()F x af x bf x c =++的函数的值域问题,均可使用配方法。
例2.求函数242y x x =-++([1,1]x ∈-)的值域。
【解析】2242(2)6y x x x =-++=--+。
∵11x -≤≤,∴321x -≤-≤-,∴21(2)9x ≤-≤,∴23(2)65x -≤--+≤,∴35y -≤≤。
∴函数242y x x =-++([1,1]x ∈-)的值域为[3,5]-。
例3.求函数][)4,0(422∈+--=x x x y 的值域。
【解析】本题中含有二次函数可利用配方法求解,为便于计算不妨设:)0)((4)(2≥+-=x f x x x f 配方得:][)4,0(4)2()(2∈+--=x x x f 利用二次函数的相关知识得][4,0)(∈x f ,从而得出:]0,2y ⎡∈⎣。
说明:在求解值域(最值)时,遇到分式、根式、对数式等类型时要注意函数本身定义域的限制,本题为:0)(≥x f 。
例4.若,42=+y x 0,0>>y x ,试求y x lg lg +的最大值。
【分析与解】本题可看成第一象限内动点(,)P x y 在直线42=+y x 上滑动时函数xy y x lg lg lg =+的最大值。
利用两点(4,0),(0,2)确定一条直线,作出图象易得:2(0,4),(0,2),lg lg lg lg[(42)]lg[2(1)2]x y x y xy y y y ∈∈+==-=--+而,y=1时,y x lg lg +取最大值2lg 。
求函数值域的方法
函数值域求法基本初等函数的值域:1、一次函数y=kx+b (k ≠0)的值域为R ;2、二次函数y=ax 2+bx+c (a ≠0)的值域:当a >0时,值域为[ab ac 442-,﹢∞);当a <0时,值域为(-∞,ab ac 442-]。
3、反比列函数y=xk(k ≠0,x ≠0)的值域为:{y|y ≠0,y ∈R} 4、指数函数y=a x(a >0且a ≠1)的值域为:R +5、对数函数y=㏒a x (a >0,且a ≠1)的值域R6、正、余弦函数的值域为:[-1,+1],正、余切函数的值域为R函数值域求法观察法对于一些比较简单的函数,其值域可结合不等式的性质、图象通过观察得到。
如利用|x|≥0,2x ≥0,x ≥0等,直接得出它的值域.例1、 求下列函数的值域⑴ y =1x . ⑵ y =25x +. 解:⑴ 由x ∈R ,且x ≠0,易知y ∈R 且x ≠0.所以函数的值域为{ y|y ∈R 且y ≠0}.⑵ ∵ x2≥0,∴25x +≥5.∴ 函数的值域为{ y| y ≥5}.例2、求函数x3y -=的值域。
解:∵x≥0 ∴- x ≤0 3—x ≤3。
故函数的值域是:( —∞,3 ]例3、求函数[]2,1,211∈-=x xy 的值域。
解:由21≤≤x 得1213-≤-≤-x ,312111-≤-≤-x ,故函数的值域是⎥⎦⎤⎢⎣⎡--31,1.例4、求函数111y x =++的值域。
分析:首先由1x +≥0,得1x ++1≥1,然后在求其倒数即得答案。
解:1x +≥0∴1x ++1≥1,∴0<111x ++≤1,∴函数的值域为(0,1].例5、求242-+-=x y 的值域。
由绝对值函数知识及二次函数值域的求法易得:)[)[∞+-∈∞+∈-+-=,2,,024)(2y x x g 所以 例6、求函数y =211x +的值域 解:Θ 22111,011x x +≥∴<≤+ 显然函数的值域是:(]0,1配方法当所给函数是二次函数或可化为二次函数的复合函数时,可利用配方法求值域 例1、求下列函数的值域:⑴ y =-2x -4x +1,x ∈[-3,3];⑵y =4x +41x -1.解:⑴配方,得y =-(x +2)2+5,又x ∈[-3,3],结合图象,知 函数的值域是{ y │-20≤y <5}⑵ ∵y =4x +41x -1=2221x x ⎛⎫- ⎪⎝⎭+1≥1, 当且仅当221x x -=0,即x =±1时取等号,∴ 函数y =x4+41x -1的值域为[1,+∞).例2、求函数y=2x —2x+5,x ∈[-1,2]的值域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•
7、最具挑战性的挑战莫过于提升自我 。。20 20年12 月下午 3时12 分20.12. 1215:1 2December 12, 2020
•
8、业余生活要有意义,不要越轨。20 20年12 月12日 星期六 3时12 分31秒1 5:12:31 12 December 2020
•
9、一个人即使已登上顶峰,也仍要自 强不息 。下午 3时12 分31秒 下午3时 12分15 :12:312 0.12.12
logo
求函数值域的十 种常用方法
一:定义域法
二:函数单调性法
三:反函数法
四:换元法
五:分离常数法
六:判别式法
七:三角换元法
九:数形结合法
十导数法:
•
1、有时候读书是一种巧妙地避开思考 的方法 。20.1 2.1220. 12.12Sa turday, Dec者明。胜人者有力 ,自胜 者强。 20.12.1 220.12. 1215:1 2:3115: 12:31D ecembe r 12, 2020
•
6、意志坚强的人能把世界放在手中像 泥块一 样任意 揉捏。 2020年 12月12 日星期 六下午 3时12 分31秒1 5:12:31 20.12.1 2
•
2、阅读一切好书如同和过去最杰出的 人谈话 。15:1 2:3115: 12:3115 :1212/ 12/2020 3:12:31 PM
•
3、越是没有本领的就越加自命不凡。 20.12.1 215:12: 3115:1 2Dec-20 12-Dec-20
•
4、越是无能的人,越喜欢挑剔别人的 错儿。 15:12:3 115:12: 3115:1 2Saturday, December 12, 2020
• 10、你要做多大的事情,就该承受多大的压力。12/12/
2020 3:12:31 PM15:12:312020/12/12
• 11、自己要先看得起自己,别人才会看得起你。12/12/
谢 谢 大 家 2020 3:12 PM12/12/2020 3:12 PM20.12.1220.12.12
• 12、这一秒不放弃,下一秒就会有希望。12-Dec-2012 December 202020.12.12
• 13、无论才能知识多么卓著,如果缺乏热情,则无异 纸上画饼充饥,无补于事。Saturday, December 12, 2020
12-Dec-2020.12.12
• 14、我只是自己不放过自己而已,现在我不会再逼自 己眷恋了。20.12.1215:12:3112 December 202015:12