THE INFLAMMATORY RESPONSE IN STROKE
多器官功能损害热射病31例临床分析
多器官功能损害热射病31例临床分析【摘要】目的:了解热射病多器官功能损害的临床特点,方法:对我院2003—2012年热射病患者进行回顾性分析。
结果:热射病患者以高热,意识障碍为主要表现,常常伴随多器官功能衰竭,弥漫性血管内凝血(dic)。
死亡率19.3%。
结论:早期认识及治疗有助于降低患者死亡率。
【关键词】热射病;多器官功能损害热射病(heat st r oke,hs)是中暑最严重的一种类型,是一种致命性急症。
表现为高热(直肠温度>41℃)和神志障碍[1],部分以癫痫发作为首发症状。
现将我院2003—2013年热射病患者进行回顾性分析,结果如下:1 临床资料一般资料:本组31例患者中本组男20例,女11例。
年龄4o~62岁,平均年龄51.3岁。
均符合中华人民共和国卫生部. 职业性中暑诊断标准[2].合并慢性疾病:冠心病4例(12.9%),高血压17例(54.8%)。
在外界高温环境下发病16例(51.6%),在室内密闭环境发病15例(48.4%)临床表现:本组均有高热(41℃以上)及不同程度的神志障碍(持续时间5~72h)。
其中癫痫25例(80.6% ),眼瞳孔对称缩小25例(80.6% ),早期头昏痛共济障碍19例(61.2%),谵妄17例(54.8% ),肺部闻及罗音1 7例(54.8% ),低血压13例(41.9% ),呼吸性衰竭10例(32.2%,上消化道出血8例(25.8% ),dic6人(19.3%)实验室检查:本组血白细胞总数增高28例;血气分析31例,其中呼吸性碱中毒15例(48.3% ),代谢性酸中毒9例(29.0%);全部行电解质测定,其中低钠血症26例(83.8% ),低钾13例(41.9% ),高血钾4例(12.9% );血生化检查31例;ast、alt、cdh、肌酐、尿素氮均增高分别在1~ 8倍;脑ct31例,腔隙性脑梗塞8例(25.8%)。
d--2聚体阳性5例(16.1%),出凝血时间延长12例(38.7%)治疗:本组患者均采取冰帽,冰毯物理降温,肌注冬眠灵,非拉根药物降温,静推20%甘露醇125mlq8h,速尿20mgbid降低颅内压,静滴盐酸纳诺酮促醒及纠正电解质紊乱,维持酸碱平衡及抗癫痫,抗感染等对症治疗。
急性缺血性卒中的神经元损伤研究进展
急性缺血性卒中的神经元损伤研究进展摘要:急性缺血性卒中(acute ischaemic stroke,AIS) 是残疾和认知缺陷的主要原因,占全球所有死亡率的5.2%。
脑血管短暂或永久性闭塞导致缺血性卒中占卒中的大部分。
缺血性卒中发作后的梗死大小和神经系统严重程度取决于发生后的时间段、缺血的严重程度、全身血压、静脉系统和梗死的位置等。
缺血性脑卒中是一种复杂的疾病,缺血性卒中后的神经元损伤一直是目前研究的重点。
本综述将提供缺血性卒中基本病理。
此外,还总结了缺血性脑卒中和神经元损伤的主要机制和应用于缺血性卒中的最新治疗方法。
关键词:脑梗塞;缺血性脑卒中;神经元损伤机制;临床管理中图分类号: J0 文献标志码: A急性缺血性卒中(acute ischaemic stroke,AIS)的基本病理原因是血管内血栓形成,可导致脑组织坏死和局灶性神经元缺陷。
缺血性脑卒中有三个已知的主要原因:50%由脑血管的动脉硬化斑块和动脉硬化斑块的破裂引起,20%由心源性栓塞引起,25%由小血管病变引起的腔隙性梗死引起[1]。
此外,其余5%是由于其他特殊原因,如血管炎和颅外动脉夹层[2]。
急性缺血性卒中可在缺血发作后很短的时间内引起严重的脑和神经元损伤[3]。
缺血性脑卒中会引起不同程度和类型的脑损伤,包括脑组织病变和结构损伤,以及神经元死亡和缺陷等。
根据大量研究缺血性脑卒中的机制和临床管理的结果,缺血性卒中的神经元损伤有三种主要机制。
首先,缺血和梗塞引起的神经元丢失是神经元损伤的最直接原因之一[4]。
关于这种机制,研究人员一直专注于神经保护和再生的过程,以及相关的生物标志物和分子途径[4]。
其次,缺血引起的血管阻塞过度产生活性氧(ROS),并且已经表明氧化应激会加剧神经元损伤并导致严重的功能缺陷[5]。
对氧化应激作出反应和缓解氧化应激的途径被广泛研究,以帮助减少神经元损伤。
缺血引起的炎症是导致中风后神经元进一步损伤的另一个因素[6]。
大鼠局灶性脑缺血再灌注芯片数据挖掘及生物信息学分析
大鼠局灶性脑缺血再灌注芯片数据挖掘及生物信息学分析2广西医科大学基础医学院生理学教研室广西南宁 530021)摘要:目的运用生物信息学方法分析局灶性脑卒中大鼠正常对照组和模型组的差异表达基因及涉及信号通路,为研究缺血性脑卒中的病理生理机制提供生物信息学的依据。
方法选用CEO数据库中编号为GSE61616的基因芯片数据,经过整理,假手术组和模型组各5个样本,分别进行基因筛选、差异表达基因分析及功能富集、相关信号通路分析。
结果与假手术组比较,模型组22个基因表达明显改变。
GO分析表明这些基因在生物学功能方面主要涉及氧化应激、炎症反应、细胞代谢、细胞凋亡等几个方面。
蛋白质互作网络分析进一步证实在炎症反应和细胞凋亡两个方面出现基因差异性表达显著。
通路涉及PI3K-Akt、EGF-ERBB2-RAS-ERK等。
结论脑缺血再灌注损伤后涉及多种蛋白和基因发生显著改变,通过控制炎症反应,减少细胞凋亡以及阻断氧化应激通路等干预是临床治疗局灶性脑卒中的有效策略。
关键词:缺血性脑卒中,生物信息学,基因芯片Bioinformatics Analysis of Chip Data of Focal Cerebral Ischemia-Reperfusion in RatsXU Ke-bei1,Wanxiang Hu21Department of neurosurgery,the People’s Hospital of Guangxi Zhuang Autonomous Region,2Department of Physiology,School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, ChinaAbstract:Objective To bioinformatics analyze the differentially expressed genes and related pathway between control group and modelgroup in focal cerebral ischemia-reperfusion rat animal model, and provide bioinformatics basis for the study of the pathophysiological mechanism of ischemic stroke. Methods The gene chip data of GSE61616 was downloaded from Gene Expression Omnibus(GEO) database. After rearranging the data, each 5 samples from the sham and model group were used for gene screening, differential gene analysis, pathway enrichment analysis. Results Compared with the sham group, the expression of 22 genes in the model group was significantly changed. GO analysis showed that these genes mainly involved in oxidative stress, inflammatory response, cell metabolism, and apoptosis in biological functions. Furthermore, Protein interaction network analysis confirmed that differentially expressed genes wassignificantly both in inflammation and apoptosis, which involves several pathways such as PI3K-Akt, EGF-ERBB2-RAS-ERK and so on. Conclusions Many proteins and genes changed significantly after cerebral ischemia-reperfusion injury. Applying different intervention methods in controlling inflammation, reducing apoptosis or blocking oxidative stress pathway will provide effective therapeutic strategies for ischemic stroke.Keywords:ischemia stroke, bioinformatics, gene chip1.前言缺血性脑卒中,俗称“脑梗死”,是指脑部血供突然中断而引起不同程度脑损伤的一类疾病,其致死率和致残率居高不下[1],严重威胁人类生命健康,为家庭、社会造成严重的经济负担。
依达拉奉右莰醇在缺血性脑卒中的研究进展
Advances in Clinical Medicine 临床医学进展, 2023, 13(6), 9947-9951 Published Online June 2023 in Hans. https:///journal/acm https:///10.12677/acm.2023.1361390依达拉奉右莰醇在缺血性脑卒中的研究进展 周 文1,赵秀丽2*1青海大学研究生院,青海 西宁 2青海大学附属医院神经内科,青海 西宁收稿日期:2023年5月21日;录用日期:2023年6月14日;发布日期:2023年6月25日摘要 缺血性脑卒中(Ischemic Stroke, IS)是我国成年人致残、致死的首位疾病,其损伤机制复杂。
目前,静脉溶栓、动脉取栓是缺血性脑卒中脑血管再通的重要方法,但由于治疗时间窗的限制,只有不到5%的患者能够接受脑血管再通治疗。
我国自主研发的1类新药依达拉奉右莰醇(edaravone-dexborneol)是由依达拉奉和右莰醇以4:1的比例组成的神经保护剂,用于改善缺血性脑卒中所致的神经功能障碍。
本文将概述依达拉奉右莰醇在缺血性脑卒中的作用机制,为其治疗缺血性脑卒中的治疗提供理论依据。
关键词依达拉奉右坎醇,缺氧性脑卒中,作用机制Research Progress of Edaravone and Dextranol in Ischemic StrokeWen Zhou 1, Xiuli Zhao 2*1Graduate School of Qinghai University, Xining Qinghai 2Department of Neurology, Qinghai University Affiliated Hospital, Xining QinghaiReceived: May 21st , 2023; accepted: Jun. 14th , 2023; published: Jun. 25th , 2023AbstractIschemic stroke (IS) is the leading cause of adult disability and death in our country. At present, intravenous thrombolysis and arterial thrombectomy are important methods for cerebral vascu-lar recanalization in ischemic stroke. However, less than 5% of patients with ischemic stroke can be treated with recanalization because of the treatment time window (<4.5 hours). Edara-*通讯作者。
脑卒中患者非胰源性高淀粉酶血症的临床意义
脑卒中患者非胰源性高淀粉酶血症的临床意义[摘要]目的研究脑卒中患者非胰源性血清淀粉酶升高的临床意义及其与预后的关系。
方法回顾性总结367例脑卒中患者,根据血清淀粉酶水平分为血清淀粉酶升高组和正常组,比较两组SIRS发生率等指标,并发症如肺部感染、肾功能损害及病死率的变化。
结果367例脑卒中患者中,28例血清淀粉酶升高组肺部感染、肾功能损害及病死率等明显高于血清淀粉酶正常组。
结论在脑卒中患者,非胰源性血清淀粉酶升高往往提示病情危重、预后不佳。
[关键词]血清淀粉酶;脑卒中;全身炎症反应综合征(SIRS);多器官功能障碍征(MODS);乌司他丁近年来的研究表明,危重患者往往出现高淀粉酶血症,而高淀粉酶血症不仅预示器官功能障碍的存在,又会加重重要器官功能的损伤,使病情更趋严重。
脑卒中危重患者非胰源性淀粉酶升高在临床上比较少见,往往关注不够。
本文回顾分析了本院367例脑卒中患者的临床资料,探讨脑卒中病人非胰源性血清淀粉酶升高的临床意义。
1 资料与方法1.1 一般资料:收集2006年至2009年6月入住我院住院的脑卒中患者,其中脑梗死249例,脑出血118例;367例患者中,男195例,女172例,年龄45~93岁,平均(67.5±7.2)岁。
所有患者均经头颅CT、MRI明确诊断。
除外:(1)半年内有手术、外伤及脑卒中史者;(2 )近期(14d内)有感染情况者;(3)合并有明显的心、肝、肾、肺等主要脏器疾病、恶性肿瘤、免疫系统疾病及近期应用影响免疫功能的药物,尤其是皮质类固醇者;(4)发病后24h内死亡的病例。
1.2 全身炎症反应综合征(SIRS)诊断标准:依据1991年美国胸科医师学会和危重病学会制定的诊断标准至少符合以下二项指标:(1)体温>38℃或90次/分;(3)呼吸>20次/分或PaCO2≤4.3kPa;(4)白细胞计数>12×109/L或130U /L,B组)。
小胶质细胞表面TREM2受体对缺血性脑卒中的免疫调节机制
吴娟,刘冲,张艳;免疫调节R743.3A1004-0188(2021)03-0257-03doi:10.3969/j.issn.1004-0188.2021.03.022小胶质细胞是中枢神经系统的主要免疫细胞,在神经发育中扮演着重要的角色,而且在机体稳态、损伤或病理状态下也发挥着重要的作用。
小胶质细胞表面的髓样细胞触发受体2(triggering receptor expressed on myeloid cells2,TREM2)是免疫球蛋白超家族的成员之一,是一种跨膜细胞免疫调节受体,它参与了小胶质细胞的增殖、存活、迁移、吞噬及炎症调节等功能。
对TREM2的研究多集中在神经退行性疾病[1],包括阿尔兹海默病(AD),Nasu-Hakola病(NHD),肌萎缩侧索硬化症(ALS)等,最近发现TREM2在缺血性脑卒中中也发挥着重要的作用。
TREM2的表达增加可以减轻脑缺血再灌注损伤,有助于神经功能的恢复[2-3],这可能和TREM2可以调节缺血后的炎症反应,介导小胶质细胞向髓鞘碎片和凋亡细胞的迁移和吞噬有关。
因此,深入研究TREM2的免疫调节机制,可能对改善缺血性脑卒中的预后有着重要的意义。
小胶质细胞是大脑内固有的免疫细胞,是中枢神经系统防御损伤的第一道防线,在大脑免疫反应中起着至关重要的作用。
小胶质细胞与其他髓样细胞一样,它们能够转化为吞噬细胞,因此被称为“脑巨噬细胞”。
迄今为止,许多研究已经阐明了小胶质细胞在缺血性脑卒中的病理机制中的作用。
它既具有趋化性,又可分泌促炎性和抗炎性细胞因子、生长因子、趋化因子、蛋白酶和神经营养蛋白[4-5]。
目前,对小胶质细胞的调控已作为缺血性脑卒中一种新的治疗靶点。
随着对Nasu-Hakola病(多囊性脂膜性骨增生伴硬化性白质脑病)的研究,人们开始认识到TREM2在小胶质细胞功能中的重要性。
TREM2是一种分子量为26kDa的单程跨膜受体,由细胞外V型免疫球蛋白(Ig)结构域、赖氨酸残基的跨膜区以及无任何转导活化信号作用的短细胞质尾巴3部分构成,在脑组织中,仅表达于小胶质细胞。
药学英语,课后翻译
药学英语Unit 1Inflammatory reaction induced by local ischemic injury is one of the important pathophysiological characteristics after ischemic stroke, so anti-inflammatory therapy may be an effective strategy for acute ischemic stroke. Enlimomab, an anti-ICAM-1 murine monoclonal antibody, can inhibit the recruitment and activity of polymorphonuclear leukocytes, reduce their adhesion and decrease cerebral infarct size in experimental stroke models. However, a much larger efficacy trial including 625 acute ischemic stroke patients has shown that enlimomab was ineffective on ischemic stroke patients even with a worsening outcome. The therapeutic time window of rt-PA is within 3 hours of ischemic onset. Administration of the drug after more than 3 hours of ischemic onset has no significant therapeutic implications and may even end up with an increased hemorrhagic risk. A study using the animal ischemic model indicated that combination of anti-inflammatory therapy and rt-PA could significantly and might as well extend the therapeutic time window of thrombolysis.局部脑缺血损伤引起的炎症反应是缺血性脑卒中发生后的重要病理生理特征,因此,抗炎治疗策略可能是治疗急性缺血性脑卒中的一种有效方法。
c反应蛋白流程步骤
c反应蛋白流程步骤C-reactive protein (CRP) is an important biomarker in the human body that plays a crucial role in the body's immune response. It is produced by the liver in response to inflammation, infection, or injury. When there is an increase in the levels of CRP in the blood, it indicates that there is inflammation occurring somewhere in the body. This makes CRP a valuable tool for diagnosing and monitoring various medical conditions.C-反应蛋白(CRP)是人体中一个重要的生物标记物,起着身体免疫应答中至关重要的作用。
它是由肝脏在炎症、感染或损伤发生时产生的。
当血液中CRP水平升高时,表明身体某处发生了炎症。
这使得CRP成为诊断和监测各种疾病的有价值工具。
The process of CRP production starts with the activation of the inflammatory response in the body. This can be triggered by various factors such as infections, autoimmune diseases, or tissue damage. Once the inflammation is detected, the liver responds by producing CRP at an accelerated rate. This rapid increase in CRP levels helps the body to combat the underlying cause of the inflammation.CRP产生的过程始于身体炎症反应的激活。
基于网络药理学和分子对接技术探讨血府逐瘀汤“异病同治”治疗冠心病和缺血性脑卒中的作用机制
㊃数据挖掘㊃基金项目:湖南省教育厅科学研究重点项目(21A0253);湖南中医药大学2022年度学科建设 揭榜挂帅”项目(22JBZ005);湖南中医药大学中药粉体与创新药物省部共建国家重点实验室培育基地开放基金项目(21PTKF1012);湖南中医药大学2022年研究生创新项目(2022CX04);湖南中医药大学2023年 一方”研究生创新项目拟立项项目(2023YF07)作者单位:410208 长沙,湖南中医药大学[匡慧芳(硕士研究生)㊁李静(博士研究生)㊁郭志华㊁刘祎(博士研究生)㊁王明韵(硕士研究生)㊁张秋雁]作者简介:匡慧芳(1999-),2021级在读硕士研究生㊂研究方向:心血管疾病的中医药防治研究㊂E⁃mail:1987117101@通信作者:张秋雁(1971-),博士,教授,博士生导师㊂研究方向:心血管疾病的中医药防治研究㊂E⁃mail:1746821852@基于网络药理学和分子对接技术探讨血府逐瘀汤 异病同治”治疗冠心病和缺血性脑卒中的作用机制匡慧芳 李静 郭志华 刘祎 王明韵 张秋雁【摘要】 目的 通过网络药理学方法结合分子对接技术探讨血府逐瘀汤 异病同治”治疗冠心病和缺血性脑卒中的作用机制㊂方法 在TCMSP 数据库检索并结合文献筛选血府逐瘀汤11味中药的活性成分和作用靶点,通过Uniprot 数据库匹配靶点官方名称㊂从OMIM㊁DrugBank㊁DisGNET㊁TTD㊁GeneCards 数据库获取冠心病和缺血性脑卒中相关疾病靶点,取交集靶点,构建 单味药 共有靶点 疾病”网络㊂建立蛋白间相互作用网络,利用Centiscape 插件筛选关键靶点,利用MetaScape数据库进行GO 功能分析和KEGG 通路富集分析㊂通过AutoDockTools-1.5.6进行分子对接预测㊂结果 筛选后得到血府逐瘀汤活性成分192个,作用靶点394个;与冠心病和缺血性脑卒中相关且排序靠前的通路有脂质和动脉粥样硬化㊁缺氧诱导因子⁃1㊁松弛素㊁核因子⁃κB 信号通路等,主要与脂质代谢㊁炎症反应㊁氧化应激㊁血管生成和细胞凋亡等生物学过程相关㊂本方中主要活性成分木犀草素㊁山柰酚㊁柚皮素与靶点蛋白蛋白激酶1㊁白蛋白㊁胰岛素结合较好㊂结论 基于网络药理学的方法发现血府逐瘀汤通过多靶点㊁多途径治疗冠心病和缺血性脑卒中,且多个成分表现出良好的活性;可能通过抗氧化㊁抗炎㊁抑制细胞凋亡㊁调节激素水平㊁促进血管生成等作用,改善局部缺血缺氧状态,发挥 异病同治”作用㊂【关键词】 血府逐瘀汤; 冠心病; 缺血性脑卒中; 异病同治; 网络药理学【中图分类号】 R259 【文献标识码】 A doi:10.3969/j.issn.1674⁃1749.2024.04.004Exploration of themechanism of Xuefu Zhuyu Decoction in treating coronary heart disease and ischemic stroke with the concept of Different Diseases with the Same Treatment ’based on network pharmacology and molecular docking technologyKUANG Huifang ,LI Jing ,GUO Zhihua ,LIU Yi ,WANG Mingyun ,ZHANG Qiuyan Hunan University of Chinese Medicine ,Changsha 410208,China Corresponding author :ZHANG Qiuyan ,E⁃mail :1746821852@【Abstract 】 Objective To explore the mechanism of treating coronary heart disease (CHD)andischemic stroke (IS)in Xuefu Zhuyu Decoction by network pharmacology combined with molecular docking technology.Methods The active ingredients and target of 11herbs of Xuefu Zhuyu Decoction weresearched in TCMSP database,and the official name of the target was matched through Uniprot database.CHD and IS⁃related disease targets were obtained from OMIM,DrugBank,DisGNET,TTD and GeneCards databases,and intersection targets were selected to construct a single drug common target disease’network.Centiscape plug⁃in was used to screen key targets,and MetaScape database was used for GO functional analysis and KEGG pathway enrichment analysis.Molecular docking prediction was performed by AutoDockTools⁃1.5.6.Results 192active ingredients and394targets of Xuefu Zhuyu Decoction were obtained after screening.The pathways related to CHD and IS are lipid and atherosclerosis,HIF⁃1,relain and NF⁃κB signaling pathways,which are mainly related to biological processes such as lipid metabolism, inflammatory response,oxidative stress,angiogenesis and apoptosis.Luteolin,kaempferol and naringenin were well combined with target proteins AKT1,ALB and INS.Conclusion Based on the method of network pharmacology,Xuefu Zhuyu Decoction was found to treat coronary heart disease and ischemic stroke through multi⁃target and multi⁃pathway,and several components showed good activity.It may improve the state of ischemia and hypoxia by anti⁃oxidation,anti⁃inflammation,inhibiting apoptosis,regulating hormone level,promoting angiogenesis and so on,and play the role of treating different diseases together’.【Key words】 Xuefu Zhuyu Decoction; coronary heart disease; ischemic stroke; different diseases should be treated together; network pharmacology 心脑血管疾病为中国城乡居民的首要死亡原因,其患病率和死亡率仍居高不下[1]㊂研究表明冠心病(coronary heart disease,CHD)发展程度与缺血性脑卒中(ischemic stroke,IS)有密切关系,二者相互促进病情发展,给临床用药造成了困扰㊂且患病后遗留不同程度的功能障碍,影响患者的生活质量[2]㊂CHD和IS具有相似的致病因素,均与血压水平㊁吸烟等常见危险因素有关,古代医家认为二者发病与外邪㊁痰饮㊁气血亏虚㊁阳气不足而致病理因素瘀滞血脉关系密切[3]㊂血府逐瘀汤是活血化瘀经典名方,出自清代王清任‘医林改错“,由桃仁㊁红花㊁当归㊁川芎㊁枳壳㊁柴胡等11味中药组成,临床上用于治疗心脑血管等疾病,疗效确切[4⁃7]㊂越来越多的证据支持神经系统与心血管系统的生理㊁病理之间存在密切联系,称之为脑 心轴㊂现代研究显示脑卒中所致心脏损伤(stroke induced heart injury,SIHI)其病理生理机制分为全身系统性和心脏局部性[8⁃10],同时二者在多个病理变化上十分相似,如动脉粥样硬化的形成㊁血流动力学异常和炎症反应等过程㊂而血府逐瘀汤在保护血管内皮㊁改善血液流变学特征㊁抗炎和抗氧化应激等方面疗效确切[11]㊂基于中药成分数据库㊁潜在靶标预测技术㊁网络分析平台的网络药理学研究方法与中药及其复方所发挥的药效作用相符,有助于血府逐瘀汤 异病同治”治疗CHD和IS的科学内涵和分子机制的阐释[12]㊂本研究探索血府逐瘀汤治疗CHD和IS 的活性成分㊁作用靶点及其参与的生物过程和信号通路,进而构建关联网络,为阐释血府逐瘀汤 异病同治”效果的科学内涵和效应机制提供了新思路和新方法,为血府逐瘀汤的临床新应用提供理论依据㊂1 资料与方法1.1 血府逐瘀汤药物活性成分筛选与靶点获取在TCMSP数据库(TCMSP,https://old.tcmsp⁃/tcmsp.php)中检索本方药物组成,筛选血府逐瘀汤各药物的活性成分(OB≥30%,DL≥0.18为条件)[13⁃14],基于上述候选成分获取相应靶标㊂此外,对于未收录的中药结合相关文献[15],对其中有明确生物活性及药理作用的成分予以纳入㊂经Uniprot蛋白质数据库(https://)校正靶标名称㊂1.2 疾病靶点的获取以 Coronary heart disease”和 Ischemic stroke”为关键词分别在OMIM(https://)㊁GeneCards(https:///)㊁DisGeNET (https:///)㊁TTD(http:// /gp)和DrugBank(https://go. )数据库中获取CHD和IS的疾病相关靶点㊂汇总并去重以上数据库疾病靶点,即为治疗CHD和IS两种疾病的潜在靶点㊂通过靶点可构建疾病与活性成分关联进而建立与各药材的关系㊂1.3 复方网络图及PPI网络构建及分析在Cytoscape3.7.1软件中上传血府逐瘀汤的中药㊁有效成分及相应靶点,构建 中药 成分 靶点”复方网络图㊂将有效成分相应靶点与疾病靶点的交集靶点导入STRING11.5数据库(https://cn. string⁃/),限定物种为 homo sapiens”,蛋白间相互作用(protein⁃protein interaction,PPI)≥0.4,下载PPI数据,可得到关键靶点信息,并通过Cytoscape3.7.1进行可视化㊂1.4 基因本体功能和基因组通路富集分析采用Metascape()基因富集分析库对 1.2”项交集靶点实现基因本体(Gene Ontology,GO)分析和京都基因与基因组百科全书(Kyoto Encyclopedia of Genes and Genomes,KEGG)通路富集分析㊂设置物种为 H.sapiens”,最小交叠值为3,P<0.01,GO分析分别采用生物过程(biological process,BP)㊁细胞组成(cellular component,CC)㊁分子功能(molecular function,MF)结果的前10位,KEGG分析根据校正后P值大小对结果进行排序,结果通过微生信网站(www. )绘制BP㊁CC㊁MF三合一柱状图和KEGG气泡图㊂1.5 分子对接分别通过Pubchem数据库(https://pubchem. /)和PDB数据库(https://www. /)获取活性成分的2D结构的mol2格式文件及靶标3D结构的pdb格式文件,运用AutoDockTools⁃1.5.6软件进行分子对接,通过比较结合能的大小分析化合物和靶点间的亲和力,对接结果经Pymol软件可视化呈现㊂2 结果2.1 血府逐瘀汤 中药 成分 靶点”网络图通过TCMSP数据库筛选并检索对应靶蛋白,去除重复的活性成分后共获得189种,包括桃仁23种㊁红花22种㊁当归2种㊁牛膝4种㊁川芎7种㊁桔梗7种㊁赤芍29种㊁枳壳5种㊁柴胡17种㊁甘草92种,共有成分有11种,并结合文献补充生地黄3个活性成分㊂通过Uniprot数据库查找对应靶蛋白名称,去除重复和无效靶点后得到394个靶点蛋白㊂将血府逐瘀汤的组分㊁有效成分和预测靶标导入Cytoscape3.7.1软件进行可视化展示,构建 中药 成分 靶点”网络图,该网络包括556节点,2533条边,见图1㊂2.2 血府逐瘀汤治疗CHD和IS的共同靶点检索OMIM㊁DrugBank㊁DisGNET㊁TTD㊁GeneCards数据库,获得CHD相关疾病靶点2719个㊁IS相关靶点2220个㊂将血府逐瘀汤中所预测的靶点和2种疾病的靶点分别输入在线网站Venny 2.1.0(b.csic.es/tools/venny/),得到135个交集靶点(图2),导入Cytoscape3.7.1构建血府逐瘀汤治疗CHD和IS的 单味药 共有靶点 疾病”网络(图3)㊂通过对网络进行拓扑分析,Degree值大小说明该成分在网络中的调控作用的强弱㊂将数据按Degree值降序排列并下载文件,结果表明,槲皮素㊁木犀草素㊁山柰酚等化合物可能是血府逐瘀汤治疗CHD和IS的核心成分,具体信息见表1㊂图2 血府逐瘀汤治疗CHD和IS的靶点交集韦恩图表1 血府逐瘀汤治疗CHD和IS的成分中度值前10的活性化合物的相关信息编号MOL ID化学成分度值OB(%)DL药物C1MOL000098Quercetin8346.430.28红花㊁牛膝㊁甘草㊁柴胡D1MOL000006Luteolin3036.160.25红花㊁桔梗G1MOL000422Kaempferol2941.880.24红花㊁甘草㊁柴胡J1MOL004328Naringenin2059.290.21枳壳㊁甘草K1MOL000354Isorhamnetin2049.600.31甘草㊁柴胡ZQ2MOL005828Nobiletin2061.670.52枳壳DH2MOL000388Gamma⁃aminobutyric acid1824.090.01生地GC12MOL0038967⁃Methoxy⁃2⁃methyl isoflavone1842.560.20甘草GC3MOL000392Formononetin1869.670.21甘草HH10MOL002773Beta⁃carotene1737.180.58红花图1 血府逐瘀汤 中药 成分 靶点”网络图注:绿色代表两种疾病;红色部分:TR桃仁;HH红花;DG当归;DH生地黄;NX牛膝;CX川芎;JG桔梗;CS赤芍;ZQ枳壳;GC甘草;CH柴胡;蓝色部分:疾病和药物的相交靶点㊂图3 血府逐瘀汤 单味药 共有靶点 疾病”网络图2.3 构建共有靶点PPI 网络利用STRING11.5构建PPI 网络,见图4㊁5㊂该网络含135个节点,2971条边㊂节点代表靶点,连线代表它们的交互作用,颜色深浅代表靶点度值大小㊂根据表2中网络节点的度值㊁介数中心性和中心接近度参数综合筛选排名靠前的核心靶点,其中白蛋白(albumin,ALB)㊁白细胞介素(interleukin,IL)⁃6㊁肿瘤坏死因子(tumor necrosis factor,TNF)㊁RAC⁃丝氨酸/苏氨酸⁃蛋白激酶(RAC⁃alpha serine /threonine⁃protein kinase,Akt1)㊁胰岛素(insulin,INS)㊁白细胞介素⁃1β(interleukin⁃1,IL⁃1β)的度值最突出,提示以上靶点可能是血府逐瘀汤治疗CHD 和IS 的核心靶点㊂图4 潜在靶点PPI网络图图5 关键靶点PPI 网络图表2 血府逐瘀汤治疗CHD 和IS 的相同靶点PPI 拓扑分析表靶点名称介数中心性(Betweenness Centrality)中心接近度(Closeness Centrality)度值(Degree)ALB 0.074399430.86451613113IL⁃60.038939140.853********TNF 0.036011970.84810127110Akt10.034398540.81212121105INS 0.028527870.80722892102IL⁃1β0.024251740.79761905101VEGFA 0.015566550.7613636493TP530.012842340.7403314989CASP30.013302710.7322404487PPARG 0.015315470.7362637486JUN0.011450320.7282608786MAPK30.011252480.7243243285PTGS20.009588170.7243243285MMP90.008714680.7204301184CCL20.009493510.7127659682CXCL80.009305870.7127659682HIF1A 0.007064630.7015706879NOS30.018498960.7052631678STAT30.006263870.6979166778CTNNB10.008917350.6943005277EGF 0.008105770.6943005277IL⁃100.006576050.6943005277ESR10.020097530.6907216576CAT 0.016304630.6871794974FOS0.012905570.6767676872HMOX10.008223380.6666666770PTEN0.008473440.6600985266SERPINE10.00739060.6568627566CRP 0.005599050.6504854463CAV10.010006710.6442307761PPARA0.006545460.6442307760GPT 0.012012780.6291079856APP 0.005612850.6203703754NOS20.005666120.59555556462.4 GO 功能和KEGG 通路富集分析设置P <0.01,GO 分析获得BP1851条㊁CC90条㊁MF148条㊂根据P 值降序排列,分别选取排前10位条目见图6㊂血府逐瘀汤治疗CHD 和IS 所涉及的生物过程主要参与激素的反应㊁对营养水平的反应㊁炎症应答等;主要分布于膜筏㊁内质网腔囊泡腔㊁细胞外基质等部位;与RNA 聚合酶II 特异性DNA 结合转录因子结合㊁信号受体调节剂的活性㊁蛋白酶结合等分子功能关联性较大㊂KEGG 分析共富集199条信号通路(P <0.01),选取P 值前20位通路见图6㊂排除与本研究不相关通路(如癌症通路㊁前列腺癌㊁阿米巴病等),血府逐瘀治疗CHD 和IS 主要作用于脂质和动脉粥样硬化㊁低氧诱导因子⁃1(hypoxia inducible factor⁃1,HIF⁃1)㊁松弛素㊁核因子κB(nuclear factor kappa⁃B,NF⁃κB)信号通路等㊂2.5 分子对接结果将从血府逐瘀汤中筛选出的7个质量标志物与5个靶点蛋白进行分子对接,ALB㊁IL6㊁TNF㊁Akt1㊁INS 作为受体,槲皮素㊁木犀草素㊁山柰酚㊁异鼠李素㊁柚皮素㊁川陈皮素㊁7-methoxy⁃2⁃methyl⁃3⁃pheny⁃lchromen⁃4⁃one 作为配体,分子对接结果见表3㊁图7㊂结合性较好的前五个分子对接结果见图8㊂结合能<0,表明受体与配体能自发结合;结合能越小表明二者结合性越好,结合能<-5.0kcal /mol,表明其结合良好[16]㊂注:横轴为药物核心成分,纵轴为预测核心靶点㊂颜色从蓝到红,表示结合能的数值大小由高到低㊂图7 活性成分关键蛋白分子对接热点图注:A KEGG 通路富集;B BP 生物过程㊁CC 细胞组分㊁MF 分子功能㊂图6 血府逐瘀汤与CHD 和IS 相关靶点的GO 和KEGG 分析表3 活性成分 核心靶点对接结果结合能化合物结合自由能(kcal /mol)ALBIL⁃6TNFAKT1INSquercetin(槲皮素)-5.61-4.68-0.76-4.13-5.37luteolin(木犀草素)-6.16-4.31-5.92-6.49-5.73kaempferol(山柰酚)-6.35-4.09-6.18-5.6-6.16isorhamnetin(异鼠李素)-5.8-4.13-6.6-4.81-5.71naringenin(柚皮素)-5.79-5.68-5.66-6.04-5.42nobiletin(川陈皮素)-5.22-4.57-4.46-4.35-6.417⁃methoxy⁃2⁃methyl⁃3⁃phenylchromen⁃4⁃one-6.25-4.61-5.85-6.88-5.17图8 血府逐瘀汤主要成分与核心靶点的分子对接图3摇讨论血府逐瘀汤是临床活血化瘀经典名方,现代临床研究表明,该方可治疗多种神经精神疾病和心血管疾病如血管性头痛㊁脑梗死后轻度认知障碍㊁CHD㊁慢性心力衰竭等㊂脑卒中属于中医 中风”范畴,而 瘀”尤在缺血性中风病的发生发展中发挥关键作用[17]㊂血瘀是多种疾病发展过程的关键环节,王清任提出 治病之要诀,在明白气血”,血府逐瘀汤重在调和气血,体现其临床重要价值㊂中医对于心与脑”的认识,如‘医学衷中参西录“记载 人之神明,原在心与脑两处,神明之功用,原心与脑相辅相成” 神明之体藏于脑,神明之用发于心”,体现心脑相通”,这与现代医学中 心脑轴”观念不谋而合㊂心脑血管疾病在多个病理变化上近似,如动脉粥样硬化的形成㊁血流动力学异常和炎症反应等过程㊂基于以上理论,本团队推测血府逐瘀汤能够阐释中医理论 异病同治”的科学内涵发挥对CHD和IS具有一定的治疗作用㊂同时也运用网络药理学和分子对接技术验证中药复方治疗疾病多靶点特色㊂本研究发现血府逐瘀汤的不同药味存在相同的活性成分,不同成分又存在与同一靶点产生联系,充分展示了中药复方具有整体观念,具有 多成分㊁多靶点㊁多途径和多效应”的优势,体现了在中医 异病同治”理论的指导下,可以提高疗效的同时减少患者的用药频次㊂本研究中血府逐瘀汤共有192种活性成分,发现Degree值较高的核心成分中,槲皮素是黄酮类化合物中具有强大的清除活性氧簇的能力,可以通过血脑屏障,其心血管保护作用与抗氧化功能密切相关㊂在炎症早期,槲皮素不仅能下调中性粒细胞IL⁃6的表达,调控NF⁃κB信号通路抑制凋亡和乙酰胆碱酯酶,减轻新生大鼠缺氧缺血性脑损伤和顺铂对H9C2细胞的细胞毒作用,还能诱导神经保护发挥保护血管内皮功能的作用和抗炎作用[18⁃21]㊂木犀草素是一种天然多酚,在抗炎㊁抗氧化㊁抗癌㊁细胞保护和巨噬细胞极化等方面具有生物活性㊂对IS模型大鼠的研究发现木犀草素不仅能通过抑制小胶质细胞和星形胶质细胞的激活,还能抑制HIF⁃1α/NLRP3信号通路,从减轻神经细胞凋亡㊁炎症和氧化应激程度等方面减轻认知障碍[22⁃23]㊂山柰酚不仅能调控NF⁃κB经典促炎信号通路促进抗凋亡蛋白的表达,抑制缺血性脑神经元死亡和神经胶质细胞活化,降低大鼠外周血和大脑中中性粒细胞的激活和数量,还能正常化卵巢切除术+高脂饮食诱导的载脂蛋白E(APOE)-/-模型小鼠的血管形态和脂质水平,并显著抑制氧化应激㊁炎症和凋亡水平,从而减轻动脉粥样硬化[24⁃25]㊂CHD和IS的发病与动脉粥样硬化有关,其发生发展伴随着脂质堆积㊁血管内皮损伤㊁氧化应激㊁炎症反应㊁细胞凋亡等病理过程[26⁃27],通过研究该方主要活性成分的现代药理作用,可知血府逐瘀汤可以通过炎症因子的释放㊁调节细胞凋亡㊁减轻氧化应激㊁保护血管内皮功能㊁降低脂质水平等方式,从而实现相应的治疗作用,与CHD和IS的发病机制相符㊂分析核心靶点和血府逐瘀汤主要活性成分的对接结果,在所有的关键靶点蛋白中,Akt1与潜在活性成分7⁃methoxy⁃2⁃methyl⁃3⁃phenylchromen⁃4⁃one 之间的结合能力最强,其结合能为-6.88kcal/mol㊂分子虚拟对接的结果表明血府逐瘀汤潜在活性成分与关键靶点之间的结合性均较好,可以通过相互作用而发挥血府逐瘀汤异病同治CHD和IS的功效㊂推测本方活性成分可能通过调控炎症应答㊁细胞对脂质的反应㊁对氧水平的反应㊁对细胞群增殖的负调控作用等过程抑制细胞炎症㊁调节脂质水平㊁抑制细胞凋亡㊂通过构建PPI网络图可知血府逐瘀汤治疗CHD和IS主要作用于ALB㊁IL⁃6㊁TNF㊁Akt1㊁INS等靶点,提示为关键性靶蛋白,它们大多与炎症因子相关,与二者的共同病理过程中炎症因子释放相吻合㊂ALB作为本方Degree值最高的潜在靶点在许多生物过程中起着重要作用㊂ALB属于脂代谢途径相关的蛋白质与改善血液流变性有关,研究发现低蛋白血症㊁炎症及内皮损伤和动脉粥样硬化性疾病密切相关,并观察包括ALB在内的蛋白质的特异性变化,能提高对不同类型动脉粥样硬化患者的诊断准确性[28⁃30]㊂对一项多中心㊁随机㊁盲法对照的临床研究发现IS发病5小时内给予患者静脉注射25%人白蛋白(ALB)2g/kg,存在良好地改善临床疗效的趋势[31]㊂KEGG通路富集发现血府逐瘀汤异病同治CHD和IS相关通路有脂质和动脉粥样硬化㊁HIF⁃1㊁松弛素㊁NF⁃κB和胰岛素抵抗等信号通路㊂脂质和动脉粥样硬化是二者共同的病理基础,在此不作赘述㊂HIF⁃1是一种敏感的氧稳态调节因子,在缺氧/缺血情况下会迅速表达㊂HIF⁃1信号通路与冠状动脉易损斑块的不稳定性有关,具有保护缺血缺氧的心肌细胞㊁抗氧化应激损伤㊁调节细胞凋亡㊁线粒体功能和血管内皮生长因子(vascular endothelial growth factor,VEGF)表达影响血管新生的作用;还能调节神经炎症㊁血管生成㊁糖代谢和血脑屏障干预脑卒中的病理变化[32⁃33]㊂松弛素信号通路在心脑血管疾病的生理病理起着关键作用,研究证明松弛素促进血管舒张及血管生成,改善缺血/再灌注引起的心脏损伤心脏肥大和并逆转心肌梗死后的纤维化[34⁃36];临床研究表明脑缺血后6小时给予人类基因⁃2(H2)⁃松弛素具有抗炎和抗细胞凋亡作用[37]㊂当机体发生胰岛素抵抗时,游离脂肪酸水平升高促进活性氧簇升高引起氧化应激和内质网应激,进而刺激脂肪组织合成和分泌大量促炎细胞因子㊁急性期反应物㊁血管紧张素Ⅱ等生物活性物质;脂肪组织会激活典型的促炎性NF⁃κB通路[38⁃39]㊂发生脑缺血再灌注时,NF⁃κB信号通路被激活并释放大量TNF⁃α等炎性因子造成脑神经元损伤和神经炎症反应,经中药干预能减轻病灶炎症发挥对脑组织的保护作用[40⁃41]㊂以上机制都有助于内皮功能障碍㊁动脉粥样硬化和血栓形成,参与心脑血管疾病的形成㊂综上所述,本研究通过网络药理学结合分子对接技术,探索血府逐瘀汤 异病同治”治疗CHD和IS多途径㊁多成分㊁多靶点发挥药效的特点㊂证实了血府逐瘀汤活性物质与CHD和IS的核心治疗靶点具有较强的结合力,其中槲皮素㊁木犀草素㊁山柰酚等为主要活性成分,通过ALB㊁IL⁃6㊁TNF㊁Akt1㊁INS等关键靶点,干预脂质和动脉粥样硬化㊁HIF⁃1㊁松弛素㊁NF⁃κB和胰岛素抵抗信号通路等关键生物过程,实现对机体的炎症反应㊁氧化应激及血管新生和血管功能障碍㊁细胞的凋亡和脂质代谢等产生影响,调节细胞炎症反应的进展,改善局部血液流变学,以实现对CHD和IS治疗效果㊂结合上面的分析结果,下一步可围绕血府逐瘀汤对于HIF⁃1㊁松弛素㊁NF⁃κB及胰岛素抵抗等信号通路的作用及本方对脂质代谢和胰岛素抵抗等病理机制展开进一步研究㊂本研究为血府逐瘀汤的新的临床应用提供理论依据,在治疗CHD和IS的新药研制方面提供新思路和新方法㊂但本研究的结果和结论受到数据库信息不全㊁疾病靶点尚未得到彻底研究等方面的限制,筛选和预测的结果均存在一定的偏倚,仍需要通过进一步的临床和实验研究加以验证㊂参考文献[1] 中国心血管健康与疾病报告编写组.中国心血管健康与疾病报告2021概要[J].中国循环杂志,2022,37(6):553⁃578.[2] 杨天虹.针刺治疗脑梗死合并稳定型心绞痛的临床疗效观察[D].天津:天津中医药大学,2020.[3] 史海蛟,丁莉莉,周宇石,等.冠状动脉粥样硬化性心脏病合并脑卒中的中医病机认识及临床研究进展[J].中华中医药学刊,2022,40(12):146⁃149.[4] 邢小燕,翟向伟,范辉,等.血府逐瘀汤联合西药治疗心血瘀阻型冠心病心绞痛疗效观察[J].陕西中医,2017,38(10):1368⁃1369.[5] 林晓伟,顾勇,王能,等.加味血府逐瘀汤对脑梗死溶栓(气虚血瘀型)患者MMP⁃9㊁VEGF及缺血再灌注损伤的影响[J].时珍国医国药,2021,32(8):1940⁃1942.[6] 邓秀娟.血府逐瘀片治疗冠心病心绞痛疗效临床观察[J].中国现代医学杂志,2012,22(16):82⁃83.[7] 高虹,党丽丽,李建军.血府逐瘀汤治疗急性缺血性脑卒中的疗效及其对患者血清超敏C反应蛋白和血液流变学的影响[J].海南医学,2017,28(22):3639⁃3641.[8] Sposato L A,Hilz M J,Aspberg S,et al.Post⁃strokecardiovascular complications and neurogenic cardiac injury:JACC state⁃of⁃the⁃art review[J].J Am Coll Cardiol,2020,76(23):2768⁃2785.[9] Balint B,Jarenek V,Thorburn V,et al.Left atrial microvascularendothelial dysfunction,myocardial inflammation and fibrosisafter selective insular cortex ischemic stroke[J].Int J Cardiol,2019,292:148⁃155.[10] Meloux A,Rigal E,Rochette L,et al.Ischemic stroke increasesheart vulnerability to ischemia⁃reperfusion and alters myocardialcardioprotective pathways[J].Stroke,2018,49(11):2752⁃2760.[11] 刘甜甜,姚魁武,段锦龙.血府逐瘀汤治疗心血管病的药理机制研究进展[J].吉林中医药,2019,39(10):1397⁃1400. [12] 卫拂晓,刘欢乐,范毓慧,等.基于网络药理学探讨逍遥散 异病同治”抑郁症㊁乳腺增生和功能性消化不良的作用机制[J].中国中药杂志,2021,46(16):4230⁃4237. [13] XU X,ZHANG W,HUANG C,et al.A novel chemometricmethod for the prediction of human oral bioavailability[J].Int JMol Sci,2012,13(6):6964⁃6982.[14] TAO W,XU X,WANG X,et work pharmacology⁃basedprediction of the active ingredients and potential targets ofChinese herbal Radix Curcumae formula for application to cardio⁃vascular disease[J].J Ethnopharmacol,2013,145(1):1⁃10.[15] 李俊辰.基于多组学联合分析中医药治疗银屑病白癜风共病的关键靶点研究[D].天津:天津中医药大学,2022. [16] 徐文华,郑景辉,赵阳,等.基于网络药理学和生物信息学的丹参酮Ⅱ_A治疗冠心病的分子生物学机制分析[J].中草药,2019,50(5):1131⁃1140.[17] 常富业,王永炎.中风病发病学研究述评[J].辽宁中医杂志,2004,32(2):102⁃103.[18] WANG S H,TSAI K L,CHOU W C,et al.Quercetin mitigatescisplatin⁃induced oxidative damage and apoptosis incardiomyocytes through Nrf2/HO⁃1signaling pathway[J].Am JChin Med,2022,50(5):1281⁃1298.[19] WU M,LIU F,GUO Q.Quercetin attenuates hypoxia⁃ischemiainduced brain injury in neonatal rats by inhibiting TLR4/NF⁃κBsignaling pathway[J].Int Immunopharmacol,2019,74:105704.[20] Rishitha N,Muthuraman A.Therapeutic evaluation of solid lipidnanoparticle of quercetin in pentylenetetrazole induced cognitiveimpairment of zebrafish[J].Life Sci,2018,199:80⁃87. [21] Karimipour M,Rahbargazi R,Tayefi H,et al.Quercetin promoteslearning and memory performance concomitantly with neuralstem/progenitor cell proliferation and neurogenesis in the adult ratdentate gyrus[J].Int J Dev Neurosci,2019,74:18⁃26. [22] Kempuraj D,Thangavel R,Kempueaj D D,et al.Neuroprotectiveeffects of flavone luteolin in neuroinflammation and neurotrauma[J].Biofactors,2021,47(2):190⁃197.[23] 郭彦芳,董秀芳,王瑜龙,等.木犀草素抑制HIF⁃1α/NLRP3信号通路对脑卒中大鼠认知障碍和神经细胞凋亡的影响[J].热带医学杂志,2022,22(9):1196⁃1202,1325. [24] ZHANG S S,LIU M,LIU D N,et work pharmacologyanalysis and experimental validation of kaempferol in thetreatment of ischemic stroke by inhibiting apoptosis and regulatingneuroinflammation involving neutrophils[J].Int J Mol Sci,2022,23(20):12694.[25] FENG Z,WANG C,JIN Y,et al.Kaempferol⁃induced GPER up⁃regulation attenuates atherosclerosis via the PI3K/AKT/Nrf2pathway[J].Pharm Biol,2021,59(1):1106⁃1116. [26] Walsh M,Judd M.Long term immobility and self care:The Oremnursing approach[J].Nurs Stand,1989,3(41):34⁃36. [27] MAO R,ZONG N,HU Y,et al.Neuronal death mechanisms andtherapeutic strategy in ischemic stroke[J].Neurosci Bull,2022,38(10):1229⁃1247.[28] ZHU L,ZHAO J,LI Q.Clinical study on prescription used for in⁃vigorating spleen,reinforcing kidney and warming yang combinedwith calcium dobesilate in treatment of senile diabeticnephropathy[J].Biotechnol Genet Eng Rev,2023:1⁃11. [29] MENG H,RUAN J,CHEN Y,et al.Investigation of SpecificProteins Related to Different Types of Coronary Atherosclerosis[J].Front Cardiovasc Med,2021,8:758035.[30] YU Z,TAN B K,Dainty S,et al.Hypoalbuminaemia,systemicalbumin leak and endothelial dysfunction in peritoneal dialysispatients[J].Nephrol Dial Transplant,2012,27(12):4437⁃4445.[31] Ganguly A,Chiou S,Davis J S.Intracellular mediators ofpotassium⁃induced aldosterone secretion[J].Life Sci,1990,46(3):173⁃180.[32] 武琦,唐淑华.血清巨噬细胞集落刺激因子㊁缺氧诱导因子⁃1α与冠状动脉易损斑块的关系[J].中国老年学杂志,2017,37(4):865⁃867.[33] HE Q,MA Y,LIU J,et al.Biological functions and regulatorymechanisms of hypoxia⁃inducible factor⁃1αin ischemic stroke[J].Front Immunol,2021,12:801985.[34] Valle R J,Mauro A G,Devarakonda T,et al.Reperfusion therapywith recombinant human relaxin⁃2(Serelaxin)attenuatesmyocardial infarct size and NLRP3inflammasome followingischemia/reperfusion injury via eNOS⁃dependent mechanism[J].Cardiovasc Res,2017,113(6):609⁃619.[35] Henry B L,Gabris B,LI Q,et al.Relaxin suppresses atrialfibrillation in aged rats by reversing fibrosis and upregulating Na+channels[J].Heart Rhythm,2016,13(4):983⁃991. [36] Beiert T,Tiyerili V,Knappe V,et al.Relaxin reducessusceptibility to post⁃infarct atrial fibrillation in mice due to anti⁃fibrotic and anti⁃inflammatory properties[J].Biochem BiophysRes Commun,2017,490(3):643⁃649.[37] Truong S,Bonnici B,Rupasinghe S,et al.Post⁃strokeadministration of H2relaxin reduces functional deficits,neuronalapoptosis and immune cell infiltration into the mouse brain[J].Pharmacol Res,2023,187:106611.[38] Syed I S I,Zaman H H,Vethakkan S R,et al.Potentialbiomarkers of insulin resistance and atherosclerosis in type2diabetes mellitus patients with coronary artery disease[J].Int JEndocrinol,2013,2013:698567.[39] WEI C Y,WANG Y M,HAN L,et al.Nitrate esters alleviatedcoronary atherosclerosis through inhibition of NF⁃κB⁃regulatedmacrophage polarization shift in epicardial adipose tissue[J].JCardiovasc Pharmacol,2020,75(5):475⁃482. [40] 江宗霞,周建伟,张开贵,等.桂陈宣化汤联合针刺对气虚血瘀证脑卒中患者的临床疗效[J].中成药,2023,45(4):1137⁃1141.[41] 黄小平,卢金冬,丁煌,等.黄芪和三七的主要有效成分配伍对脑缺血/再灌注小鼠NF⁃κB信号通路及炎性因子表达的影响[J].中国药理学通报,2015,31(1):141⁃146.(收稿日期:2023⁃08⁃12)(本文编辑:张楠)。
美国亚瑟安德鲁医学公司关于服用极酶后血压不稳定的通告
美国极酶调节血压的显著作用美国亚瑟安德鲁医学公司通告neprinol是持续扩张血管,降低血压,降低血粘度,但是刚开始服用时会有短时间的调整期。
一般有脑梗塞/中风的病人,体内也大多有血栓、瘢痕组织、纤维蛋白和其他毒素。
他们开始服用neprinol时,这些原本不在血液中的毒素被分解,从原来的位置瓦解而进入血液,这就表现为血容量一过性的提高及血流加快,出现一过性的血压升高,肢体温热感觉。
这些都是药物的好转反应,出现这种好转反应不用担心,患者需要注意休息,适当平躺,心情舒畅一般2-3周就会正常。
While Neprinol is intended to lower overall blood pressure on a more consistent level, there can be an adjustment period that the body goes through when introducing enzymes to it. Many of those people who have had a cerebral infarction/stroke, also most likely have a significant amount of scar tissue, fibrin and other toxicities in various parts of the body.When they take Neprinol, these inflammatory proteins that are not currently in the blood, are displaced from their current location and actually may begin to enter the blood as the body is breaking them down and attempting to excrete them from the body.When this happens, it is possible for blood pressure to rise for a short period of time. This is temporary and should actually be an indicator that the product is working very well.Also, to put their mind at ease, Neprinol is helping with blood viscosity at such a great level, that they are essentially preventing issues like strokes from occurring.I recall speaking to you a little bit before about enzymatic detoxification. This situation has similar properties, only that it may cause blood pressure to rise for a short period of time.We do hear of this within the US as well. There are many people taking it here for cardiovascular support, and also those who have had various types of strokes.I encourage you to let me know if there are any other technical questions that come up consistently as you receive them! Thank you!。
脑缺血再灌注的英语
脑缺血再灌注的英语Cerebral Ischemia-Reperfusion InjuryCerebral ischemia-reperfusion injury refers to the damage caused to brain cells when blood flow to the brain is temporarily disrupted and subsequently restored. This condition can occur in various clinical scenarios, such as stroke, cardiac arrest, and neurosurgery. The understanding and study of ischemia-reperfusion injury have led to the identification of potential therapeutic strategies to mitigate brain damage and improve patient outcomes.1. IntroductionCerebral ischemia-reperfusion injury is a complex process involving a cascade of events that occur at both the cellular and molecular levels. Understanding the underlying mechanisms is crucial for the development of effective treatment strategies. This article aims to provide a comprehensive overview of this condition, emphasizing its relevance in the field of medicine.2. PathophysiologyDuring the ischemic phase, reduced blood flow to the brain deprives brain cells of oxygen and essential nutrients, leading to energy depletion and the accumulation of toxic metabolites. Reperfusion, the restoration of blood flow, initiates a series of pathological processes, including inflammation, oxidative stress, and excitotoxicity. These processes exacerbate the initial injury and contribute to tissue damage.3. Inflammatory ResponseIschemia-reperfusion injury triggers an inflammatory response mediated by immune cells and various inflammatory factors. Infiltration of neutrophils and release of pro-inflammatory cytokines lead to the activation of endothelial cells, disruption of the blood-brain barrier, and further brain injury. Targeting these inflammatory processes has shown promise in reducing the extent of ischemia-reperfusion injury.4. Oxidative StressThe reperfusion phase generates reactive oxygen species, which overwhelm the endogenous antioxidant defense mechanisms. The excessive oxidative stress results in damage to cell membranes, proteins, and DNA. Antioxidant therapies have demonstrated potential in alleviating oxidative stress and protecting brain tissue from further harm.5. ExcitotoxicityExcessive release of excitatory neurotransmitters, primarily glutamate, during ischemia-reperfusion injury can trigger a series of events leading to neuronal cell death. The influx of calcium ions and the activation of downstream signaling pathways contribute to mitochondrial dysfunction and apoptosis. Pharmacological modulation of excitatory neurotransmission has emerged as a potential therapeutic strategy.6. Therapeutic ApproachesThe management of cerebral ischemia-reperfusion injury involves a multi-faceted approach. Strategies targeting inflammation, oxidative stress, and excitotoxicity have shown promise in preclinical studies and earlyclinical trials. Pharmacological interventions, hypothermia, and neuroprotective agents are among the potential treatment options being explored.7. ConclusionCerebral ischemia-reperfusion injury is a complex condition associated with significant morbidity and mortality. Understanding the underlying mechanisms and exploring potential therapeutic strategies are crucial for improving patient outcomes. The development of effective treatments to mitigate the damage caused by ischemia-reperfusion injury remains an active area of research and holds great promise for the future.In summary, cerebral ischemia-reperfusion injury is a multifaceted condition that requires a comprehensive understanding of its pathophysiology. Through targeting the inflammatory response, oxidative stress, and excitotoxicity, researchers aim to develop effective therapeutic strategies to minimize brain damage and improve patient prognosis. Continued efforts in this field are essential to advance our knowledge and ultimately provide better clinical outcomes for individuals affected by cerebral ischemia-reperfusion injury.。
MicroRNA-210在缺血性脑卒中中的作用研究进展
专题·脑卒中专家简介:陈照立,教授,博士研究生导师,军事科学院军事医学研究院环境医学与作业医学研究所研究员;中华医学会高原医学分会委员,全军高原医学与寒区医学专业委员会常务委员,全军军事环境医学重点实验室常务副主任;主要从事高原高寒等特殊环境因素损伤分子机制与防控技术研究;承担有国家重点研发计划项目、国家自然科学基金项目、军队后勤科研重点项目等多项重大课题;获天津市科技进步奖一等奖1项,发表SCI收录期刊论文30余篇、核心期刊论文86篇;获得国家发明专利29项,参编专著2部。
Email:zhaolichen@126.com作者简介:张岭,主治医师,Email:469529368@qq.com通信作者:陈照立,教授,博士研究生导师,Email:zhaolichen@126.comMicroRNA 210在缺血性脑卒中中的作用研究进展张岭1,厉彦超2,赵笑颜3,于岩4,周津4,陈照立11.军事科学院军事医学研究院环境医学与作业医学研究所,天津300050;2.中国人民解放军32397部队;3.中国人民解放军总医院医学创新研究部;4.联勤保障部队第983医院[摘要] 缺血性脑卒中是我国成年人致残和死亡的主要原因之一,可导致脑细胞和组织缺血缺氧性损害,引发机体神经功能障碍。
其病因复杂,发病率高,预后差,一直是临床医学研究的重点。
然而,目前脑卒中治疗方法仍然有限,机制尚且不明。
MicroRNA 210是一种短核苷酸链,以转录后的方式调节蛋白质表达,具有治疗缺血性脑卒中的潜力。
在神经细胞中,MicroRNA 210参与缺血性脑卒中的抗炎症反应、抗凋亡作用、抑制氧化应激、促进神经元可塑性和血管生成,发挥神经保护作用,这将为缺血性脑卒中的治疗提供有效靶点和干预策略。
[关键词] 卒中;微RNAs;缺氧诱导因子1,α亚基;缺氧缺血,脑;综述DOI:10.3969/J.issn.1672 6790.2023.02.003ResearchprogressontheroleofMicroRNA 210inischemicstrokeZhangLing ,LiYanchao,ZhaoXiaoyan,YuYan,ZhouJin,ChenZhaoliTianjinInstituteofEnvironmentalandOperationalMedicine,Tianjin300050,ChinaCorrespondingauthor:ChenZhaoli,Email:zhaolichen@126.com[Abstract] IschemicstrokeisoneofthemaincausesofdisabilityanddeathinadultsinChina,whichcanleadtoischemicandhypoxicdamageofbraincellsandtissues,andcauseneurologicaldysfunction.Itscomplexetiology,highincidenceandpoorprognosishavealwaysbeenthefocusofclinicalmedicalresearch.However,thetreatmentofstrokeisstilllimited,andtheresearchmechanismisstillunknown.MicroRNA 210isashortnucleotidechainthatregulatespro teinexpressioninapost transcriptionalmannerandhasthepotentialtotreatischemicstroke.Inneurocytes,MicroRNA 210isinvolvedintheanti inflammatoryresponse,anti apoptoticeffect,inhibitionofoxidativestress,promotionofneuro nalplasticityandangiogenesisinischemicstroke,andexertsneuroprotectiveeffects,whichwillprovideeffectivetargetsandinterventionstrategiesforthetreatmentofischemicstroke.[Keywords] Stroke;MicroRNAs;Hypoxia induciblefactor1,alphasubunit;Hypoxia ischemia,brain;Review中国临床保健杂志 2023年4月第26卷第2期 ChinJClinHealthc,April2023,Vol.26,No.2Copyright ©博看网. All Rights Reserved.1 脑缺血病理生理学基础脑卒中是一种由多种原因导致脑血管受损,引起局灶性或整体脑细胞和组织缺血缺氧性损害,进而引发神经功能障碍甚至死亡的疾病。
IL-1β在缺血性脑卒中发病中的作用机制研究进展
IL-1β在缺血性脑卒中发病中的作用机制研究进展李丹丹;马茜;王辛;蒋立;王爱红【摘要】IL-1β是一类多效性的肽类活性分子,其基因多态性可作为一个影响脑卒中的独立因素。
在缺血性脑卒中(IS)中,IL-1β可启动IL-1受体介导的信号转导通路,激活NF-κB、JNK/AP-1、p38MAPK等信号通路,从而调控相关基因的转录,产生IL-6、IL-8等促炎细胞因子,促进神经炎症反应;并通过损伤血脑屏障,加重脑水肿,严重者可导致脑疝;启动相关凋亡机制如谷氨酸介导的兴奋性毒性、JNK/AP-1通路,造成脑组织神经元损伤。
IL-1β基因多态性和分泌水平可作为判断IS易感人群及疾病严重程度的有效指标,近年来IL-1β作为研发神经保护药物的新靶点已成为热门研究之一。
【期刊名称】《山东医药》【年(卷),期】2015(000)035【总页数】3页(P91-93)【关键词】白介素1β;缺血性脑卒中;白细胞介素1受体【作者】李丹丹;马茜;王辛;蒋立;王爱红【作者单位】南京中医药大学护理学院,南京210023;南京中医药大学护理学院,南京210023;南京中医药大学护理学院,南京210023;南京中医药大学护理学院,南京210023;南京中医药大学护理学院,南京210023【正文语种】中文【中图分类】R743.3脑卒中是世界上主要的致死性和致残性疾病,我国脑卒中发病率呈逐年增高趋势,其中缺血性脑卒中(IS)占85%[1]。
炎症损伤在IS中发挥重要作用,IL-1β作为主要促炎细胞因子,可以通过复杂信号级联放大效应诱导其他伤害性分子的释放,加重卒中损伤,具有强大的脑破坏效应。
本文就IL-1β 在IS的作用机制作一综述。
1.1 IL-1β及其受体IL-1β主要由单核/巨噬细胞产生,其他细胞如内皮细胞、淋巴细胞、树突状细胞、上皮细胞都可分泌。
脑缺血早期大部分由小胶质细胞释放,后期主要由巨噬细胞分泌。
IL-1β基因定位于2号染色体长臂,基因大小为7.5 kb,由7个外显子和6个内含子组成,mRNA长度为1.4~1.8 kb,编码IL-1β氨基酸数目为153,分子结构是β片层折叠组成的四面体样结构。
医学专题指非外伤性脑实质内出血
第二十一页,共六十页。
Clinical features lobar hemorrhage
Etiology:AVM、Moyamoya disease、cerebral amyloid angiopathy、tumor
Hypertensive hemorrhages also occur in subcortical white matter underlying the frontal,parietal, temporal, and
少见,仅见脑膜刺激征
第十七页,共六十页。Fra bibliotekClinical features pontine hemorrhage
With bleeding into the pons(figure 3), coma occurs within seconds to minutes and usually leads to death within 48 hours.
第十五页,共六十页。
Clinical features basal ganglion hemorrhage
Aphasia may occur if hemorrhage at either site exerts pressure on the cortical language areas.
Large hemorrhages may lead to consciousness disturbance, while minor hemorrhages lead to lacunar syndrome.
Ocular findings typically include pinpoint pupils. Horizontal eyes movements are absent or impaired, but vertical eye movements may be preserved. In some patients, there may be ocular bobbing.
中国缺血性脑卒中和短暂性脑缺血发作二级预防指南
中国缺血性脑卒中和短暂性脑缺血发作二级预防指南2010_中华医学会神经病学分会脑血管病学组缺血性脑卒中二级预防指南撰写组_|中华医学会神经病学分会脑血管病学组缺血性脑卒中二级预防指南撰写组|中华医学会神经病学分会脑血管病学组缺血性脑卒中二级预防指南撰写组|_脑血管网心脑血管站点群:大中小文章号:W056326关键字:缺血性脑卒中短暂性脑缺血指南目前脑血管病已成为我国城市和农村人口的第一位致残和死亡原因,且发病有逐年增多的趋势。
流行病学研究表明,中国每年有150万~200万新发脑卒中的病例,校正年龄后的年脑卒中发病率为(116~219)/10万人口,年脑卒中死亡率为(58~142)/10万人口。
目前我国现存脑血管病患者700余万人,其中约70%为缺血性脑卒中,有相当的比例伴有多种危险因素,是复发性脑卒中的高危个体。
随着人口老龄化和经济水平的快速发展及生活方式的变化,缺血性脑卒中发病率明显上升,提示以动脉粥样硬化为基础的缺血性脑血管病[包括短暂性脑缺血发作(TIA)]发病率正在增长。
近10年来随着大量的有关脑血管病二级预防的随机对照试验(RCT)研究结果的公布,脑血管病的治疗有了充分的证据,许多国家都出台了相应的治疗指南。
尽管国外大量的研究资料为我们提供了具有重要参考价值的信息,但考虑到西方人群与中国人群在种族、身体条件、用药习惯、价值取向、文化背景、法律法规、社会福利体系等诸多方面还存在着很多的差异,出台适合中国国情的有中国特色的指南十分必要,也十分迫切。
由此而制订的指南更应切合我国的实际情况而不是盲目套用其他国家的指南。
为此,2008年7月成立了中国缺血性脑血管病二级预防指南撰写专家组,汇集了神经内科、心内科、内分泌科、重症监护病房、呼吸科、介入科、流行病学等多个学科的专家编写此指南。
在写作过程中,强调在循证医学原则指导下,参考国际规范,结合中国国情和临床可操作性制定,在有充分可靠证据时使用证据,无可依靠的证据时,则采用当前最好证据或经验达成的共识。
乌司他丁热毒宁注射液对暑厥证型热射病患者凝血功能与炎症反应的影响
miR-141.TSGF水平,与本研究结果一致。
手术后联合组腹泻、切口感染、肺部感染、肠梗阻等不良反应发生率略高于对照组,但差异无统计学意义(/>>0.05),表明术前短程辅助化疗安全性较高。
张福杰等问在研究中发现术前辅助化疗可有效提高近期疗效,且不会增加不良反应发生率,化疗后可行正常根治手术,与本研究结果相似。
综上所述,短程辅助化疗联合根治手术治疗结肠癌临床疗效好,可有效降低患者miR-141、TSGF水平,且安全性较高,值得推广。
参考文献[1]文飞,吕真冰.3D与2D腹腔镜结肠癌完整结肠系膜切除术的临床对比[JJ.四川医学,2019,40(2):109-112.[2]李红平,苏薇,狄连君,等.2127例大肠癌临床发病特点的回顾性分析[J].肿瘤防治研究,2017,44(12):836-839.[3]李振,吕甲林,丁锡金,等•腹腔镜手术治疗结肠癌合并肠梗阻疗效观察[JJ.海南医学,2020,31(12):1552-1555.[4]中华人民共和国卫生和计划生育委员会医政医管局,中华医学会肿瘤学分会.中国结直肠癌诊疗规范(2017年版川]•中华外科杂志,2018,56(4):241.[5]王艳成.术前新辅助化疗对结肠癌组织中恶性分子表达及根治手术所致创伤程度的影响[J]■海南医学院学报,2017,23(17):2416-241& 2422.[6]辛现彬•不同手术方式治疗结肠癌合并肠梗阻的效果分析[J/CD].临床医药文献电子杂志,2020,7(47):47,5&[7]刘阳,刘文,刘念,等.新辅助化疗联合腹腔镜手术对结肠癌cT^NoMo 及cT(显口“。
患者临床疗效及血清miR-141、TSGF水平的影响[J].结直肠肛门外科,2017,23(5):651-655.[8]张福杰,张文俊,于登峰,等•术前短程辅助化疗联合根治性手术治疗结肠癌的临床效果及对患者CDX2JNG4表达的影响[J].河北医科大学学报,2018,39(1):54-57.(收稿日期:2020-10-17)乌司他丁热毒宁注射液对暑厥证型热射病患者凝血功能与炎症反应的影响朱亚君I石剑锋I高良东2(I九江学院附属医院,江西九江332000)(2九江市第六人民医院,江西九江332000)【摘要】目的探究乌司他丁、热毒宁注射液治疗暑厥证型热射病患者的效果。
中性粒细胞在急性缺血性卒中病程中的作用及研究进展
组织的能力,可通过蛋白酶的蛋白水解产物产生直 接神经毒性作用,也可通过中性粒细胞在血管内积 聚,产生毛细血管血流阻塞的间接作用,因而一直受 到研究者的关注[]。直接神经毒性作用具体表现为 中性粒细胞聚集并产生活性氧,释放基质金属蛋白 酶(MMP)等因子,导致血-脑屏障损伤并加剧炎性 反应,刺激脂质过氧化,释放蛋白水解酶直接损伤 内皮细胞,使血-脑屏障通透性增加,引起脑组织水 肿,加重血管阻塞程度叫有研究表明 ,中性粒细
关键词:急性缺血性卒中被性粒细胞参述 doi :10.3969/j.issn.1672-5921.2021.06.010
Role and research progress of neutrophils in the course of acute ischemic stroke Fang Shaoyan, Zhang Shu/en, Fang Meilin, Tian Li. Department of Gerontology, Sheng/ing Hospital of China Medical 〃ni©ersity, Shenyang 110004, China
VLA-4是一种关键的细胞表面受体,可以在多 种细胞(除中性粒细胞)表面表达,其通过多种细 胞—细胞和细胞—基质间相互作用来介导细胞黏附
累脑区及其周围,并在卒中后48〜72h达到高峰,有
效启动先天免疫,而防御过度则会对脑组织及血管
O 造成损伤[]
1中性粒细胞的双向作用 神经免疫系统在缺血性卒中病程中发挥必不可
少的作用[],其中的中性粒细胞具有较强的破坏脑
-424 -
中国脑血血病杂志 2021 年 6 月 18 日第 18 卷第 6 期 Chin J Cerebrovasc Dis, Jun. 18 ,2021, Vol. 18 , No. 6
“中风120”科普宣教对减少急性缺血性脑卒中患者院前延误的影响
径面向社会广泛宣传“中风 120”,旨在提高卒中认
普宣教组,统计并比较 2 组就医决策时间、到院时
知,以减少院前延误。本文通过问卷调查的手段研
间、院前延误时间,院前识别率、时间窗内到达医
究“中风 120”科普宣教对减少 AIS 患者院前延误的
院比例、时间窗内行再灌注治疗比例、发病第 90 天
影响,结果报道如下。
湖北 天门 431799
内到达医院比例、时间窗内行再灌注治疗比例、发病第 90 天改良 Rankin 量表(modified Rankin Scale,mRS)
收稿日期
评分 0~2 分(预后良好)比例的差异。结果:科普宣教组的就医决策时间、到院时间、院前延误时间均显著
2023-10-07
短于非科普宣教组(均 P<0.01);院前识别率、时间窗内到院比例、时间窗内行再灌注治疗比例均显著高于
组别
158(92.94)
89(52.35)
84(94.38)
125(73.53)
χ2 值
43.99
28.57
14.94
7.44
P值
0.00
0.00
0.00
0.01
816
Neural Injury And Functional Reconstruction, December 2023, Vol.18, No.12
取栓是再灌注治疗的有效方法,但均受严格的时间
48 h 内进行问卷调查,部分有言语障碍或意识障碍
窗限制 。AIS 发病后能否在时间窗内实施再灌注
的 AIS 患者由其家属代为答卷。通过面对面问卷调
治疗是获得最佳救治效果的关键。而影响实施再
查的方式,当场填写调查表格并将数据录入 Excel
线粒体自噬参与NLRP3介导的炎症反应在脑卒中康复中的作用
文章编号:1003 2754(2022)08 0689 05 doi:10.19845/j.cnki.zfysjjbzz.2022.0174线粒体自噬参与NLRP3介导的炎症反应在脑卒中康复中的作用王 维1,2, 李振东1,3, 张诚诚1,3, 张月娟1,3收稿日期:2022 04 09;修订日期:2022 05 30基金项目:湖南省卫生健康委科研项目(20190124)作者单位:(1.湖南中医药大学研究生院,湖南长沙410000;2.湖南省职业病防治院,湖南长沙410000;3.湖南中医药大学第一附属医院,湖南长沙410000)通讯作者:张月娟,E mail:lkrlkr7865@163.com 摘 要: 目的 分析线粒体自噬和NLRP3介导的炎症反应在脑卒中康复中的作用。
方法 雄性SD大鼠随机分为6组:假手术组(Sham)、Sham+雷帕霉素(RAPA)组、再灌注后6h组(I/R6h)、I/R6h+RAPA组、再灌注后24h(I/R24h)和I/R24h+RAPA组。
建立短暂性大脑中动脉闭塞模型,以刺激大鼠的缺血/再灌注(I/R)损伤。
分析缺血核心皮质区域不同类型神经细胞中caspase 1阳性细胞表达情况。
以BV2细胞为研究对象,在缺氧 葡萄糖剥夺/复氧(OGD/R)条件下检测NLRP3表达,并测定线粒体膜电位。
结果 I/R损伤后6h,切割的caspase 1主要在小胶质细胞中表达[(88.4±1.1)%],而在24h时主要在神经元[(63.4±2.2)%]中表达。
在OGD/R后,BV2细胞中LC3 Ⅰ向LC3 Ⅱ转化随着时间的推移而减少。
暴露于OGD/R后24h,BV2细胞表现出低膜电位的百分比。
与OGD/R组相比,RAPA能够挽救线粒体的损伤(P<0.05),并且RAPA可抑制OGD/R诱导的BV2细胞中NLRP3、切割的caspase 1和切割的IL 1β表达水平上调(P<0.05)。
缺血性脑卒中患者急性期外周血中NKT细胞比例变化的意义
缺血性脑卒中患者急性期外周血中NKT细胞比例变化的意义张慧颖;许盼;郝俊巍;金薇娜;薛蓉;施福东;吴伟【摘要】目的探讨在缺血性脑卒中患者急性期外周血中NKT细胞占淋巴细胞比例的动态变化趋势,在卒中后免疫抑制过程、感染并发症方面的作用.方法选择40例缺血性脑卒中急性期患者,其中感染组6例,非感染组34例,另外选择无缺血性脑卒中健康查体者20人(对照组).采用流式细胞术检测外周血中NKT细胞在发病后第1天、第3天、第7天占淋巴细胞比例(后均简称比例)的动态变化趋势.结果与对照组比较,卒中组的NKT细胞比例在发病第1天、第3天、第7天显著降低,差异有统计学意义(P<0.01).与对照组比较,感染组的NKT细胞比例在发病第1天、第3天、第7天显著下降,差异有统计学意义(P<0.05).结论缺血性脑卒中发病后第1天出现外周血中NKT细胞比例的降低,这种变化持续1周,其细胞比例在发病后1周内动态改变不明显.外周血中的这两种细胞比例与卒中后感染的发生无明显相关性.【期刊名称】《继续医学教育》【年(卷),期】2017(031)011【总页数】3页(P91-93)【关键词】缺血性脑卒中;NKT细胞;免疫抑制;感染【作者】张慧颖;许盼;郝俊巍;金薇娜;薛蓉;施福东;吴伟【作者单位】天津市环湖医院内科,天津 300350;天津医科大学总医院神经内科,天津 300070;天津医科大学总医院神经内科,天津 300070;天津医科大学总医院神经内科,天津 300070;天津医科大学总医院神经内科,天津 300070;天津医科大学总医院神经内科,天津 300070;天津医科大学总医院神经内科,天津 300070【正文语种】中文【中图分类】R743在我国,缺血性脑卒中是老年人致死和致残的第三大疾病[1-3]。
炎性反应在缺血性卒中的病理过程中发挥主要作用,随着疾病的进展循环中的免疫细胞被招募到损伤部位[2,4]。
NKT细胞是一群兼有T细胞和NK细胞特性的一组数量极少的T细胞亚群,它既能增强免疫反应又可对免疫反应起到抑制作用,从而在抗肿瘤、抗感染、抑制自身免疫性疾病及移植耐受中发挥重要的作用[5-8]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
secondary ischemic brain damage by permitting serum elements and blood to enter the brain(Rosenberg, 1999; Siesjo and Siesjo, 1996). Secondary damage develops as a consequence ofbrain edema, post-ischemic microvascular stasis and vasomotor/hemodynamic deficits leadingto hypoperfusion and post-ischemic inflammation, thus involving activation of microglia andbrain infiltration of peripheral inflammatory cells (Dirnagl et al., 1999; Siesjo and Siesjo,1996). This type of migration of peripheral circulating leukocytes into the brain could producean amplification of inflammatory signal cascades, which will enhance the damage. Theseprocesses are especially pronounced during reperfusion when previously occluded vessels areopened and lead to massive influx of ROS and leukocytes into injured brain. Blocking variousaspects of the inflammatory cascade has shown to ameliorate injury from experimental stroke(Han and Yenari, 2003), although this has yet to be demonstrated at the clinical level (Beckeret al., 2001).During the past few years, progress has been made towards identifying the roles of importantinflammatory signaling molecules, cells and proteins in the process of initiation anddevelopment of post-ischemic inflammation. This review focuses on current findings andprovides an update on the understanding of post-ischemic inflammation.2. Cellular response to ischemic stroke Inflammation is characterized by the accumulation of inflammatory cells and mediators in the ischemic brain. After ischemia onset, inflammatory cells such as blood-derived leukocytes and microglia are activated and accumulate within the brain tissue subsequently leading to inflammatory injury. Increasing evidence shows that astrocytes may also act as inflammatory cells responding to ischemic stroke.2.1. Leukocytes 4–6 h hours after ischemia onset, circulating leukocytes adhere to vessel walls, leading tomigration and accumulation into ischemic brain tissue with subsequent release ofproinflammatory mediators. These mediators lead to secondary injury of potentiallysalvageable tissue within the penumbra surrounding the infarct core. Neutrophils are generallythe first leukocyte subtype recruited to the ischemic brain, and may potentiate injury by directlysecreting deleterious substances or other inflammatory mediators (Hallenbeck, 1996). Intransient ischemia, several studies have shown that infarct volume is significantly reducedwhen neutrophil infiltration is inhibited (Bowes et al., 1995; Chopp et al., 1996; Clark et al.,1995; Connolly et al., 1996; Garau et al., 2005; Yenari et al., 1998). Some mediators, whilenot directly cytotoxic, may be involved in the destruction of necrotic and neighboring viabletissue. Evidence that neutrophils potentiate ischemic injury include numerous studiesdocumenting improved neurological outcome following neutrophil depletion and inhibition ofadhesion molecules which facilitate neutrophil entry into injured brain (see reviews (Hartl etal., 1996; Zheng and Yenari, 2004). The roles of lymphocytes are generally intended to playa negative role in ischemic brain pathogenesis even though there is also conflicting data.Following permanent middle cerebral artery occlusion (MCAO) in rats, lymphocytes wereelevated in the ischemic lesion after neutrophils (Li et al., 2005; Stevens et al., 2002).Preventing lymphocyte trafficking into ischemic brain ameliorated injury, suggesting that likeneutrophils, lymphocytes also play a deleterious role (Becker et al., 2001). Clinical studies alsoshow that lymphocytes have a strong pro-inflammatory and tissue-damaging properties, andthe upregulation of circulating lymphocytes are correlated to an increased risk of strokerecurrence and death (Nadareishvili et al., 2004). However, in a study of cultured primaryneurons, isolated neutrophils, but not lymphocytes potentiated neuronal injury due toexcitotoxin exposure (Dinkel et al., 2004).NIH-PA Author ManuscriptNIH-PA Author ManuscriptNIH-PA Author Manuscript2.2. Microglia/MacrophagesMicroglia, the resident macrophages of the brain, play a critical role as residentimmunocompetent and phagocytic cells in the CNS (Kreutzberg, 1996), and serve as scavengercells in the event of infection, inflammation, trauma, ischemia, and neurodegeneration (ElKhoury et al., 1998; Thomas, 1992). Once activated, microglia can undergo morphologictransformation into phagocytes, making them virtually indistinguishable from circulatingmacrophages.Microglial activation may be induced by cerebral ischemia, causing a release of a variety ofsubstances many of which are cytotoxic and/or cytoprotective (Wood, 1995). Via CD14,microglia are activated, followed by stimulation of toll-like receptor 4 (TLR4) (Guha andMackman, 2001; Saito et al., 2000). How microglia are activated following ischemia is notcompletely clear, but CD14 receptors have been documented in monocytes and activatedmicroglia in brains of stroke patients (Beschorner et al., 2002). Furthermore, work in neonatalmice indicated that TLR4 was necessary for microglial activation following hypoxia/ischemia(Lehnardt et al., 2003).Whether microglia/macrophages are necessarily damaging following brain ischemia is unclear,but a few lines of evidence suggest that activated microglia may contribute to injury.Edaravone, a novel free radical scavenger, significantly reduced the infarct volume andimproved the neurological deficit scores for ischemic mice by reducing microglial activation(Zhang et al., 2005a). In spontaneously hypertensive rats with permanent MCAO, Gunther etal. (Gunther et al., 2005) found that repetitive hyperbaric oxygen (HBO) treatment obviouslyreduced the infarct volume by suppressing microglia activation. In transient MCAO,phagocytic microglial were documented in the cerebral cortex of the ischemic hemisphere(Yu et al., 2005; Zhang et al., 1997). Minocycline, a tetracycline family antibiotic, was shownto provide significant protection against brain ischemia by inhibiting of microglial activationand proliferation (Yrjanheikki et al., 1998; Yrjanheikki et al., 1999). Direct evidencesupporting a damaging role following ischemic insults were demonstrated when microglia/macrophages were applied to neuron or oligodendrocyte cultures. Injury from variousischemia-like insults was increased in the presence of microglia/macrophages (Giulian et al.,1993; Lehnardt et al., 2003; Zhang et al., 1997). However, some studies indicate that microglia/macrophages or their secreted factors may actually protect cells (Watanabe et al., 2000). Noeffect on infarct size was seen after depleting peripheral macrophages using liposome-encapsulated clodronate (Schroeter et al., 1997). However, this latter study did not depletebrain macrophages and may suggest that brain, rather than circulating macrophages areimportant in ischemic pathogenesis.2.3. AstrocytesAside from traditional inflammatory cells, astrocytes are known to express different kinds ofinflammatory mediators (Benveniste, 1998; Che et al., 2001). Following ischemia, brainastrocytes are activated resulting in increased glial fibrillary acidic protein (GFAP) expressionand a so-called “reactive gliosis,” characterized by specific structural and functional changes(Pekny and Nilsson, 2005). Astrocytes also participate in brain inflammation by expressingmajor histocompatibility complex (MHC) and costimulatory molecules, developing Th2 (anti-inflammatory) immune responses and suppressing interleukin-12 (IL-12) expression, thoughthis has yet to be demonstrated in ischemia models (reviewed by(Dong and Benveniste,2001). Astrocytes are also capable of secreting inflammatory factors such as cytokines,chemokines and inducible nitric oxide synthase (iNOS) (Dong and Benveniste, 2001).Following 10 minutes of transient global ischemia, iNOS expression was found in reactiveastrocytes of hippocampus but not in uninjured hippocampal astrocytes (Endoh et al., 1994).Furthermore, inducible nitric oxide synthase (iNOS) in astrocytes has been shown to potentiate NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscriptischemia-like injury to neurons (Hewett et al., 1996). Recently studied protein, tumor necrosisfactor-like weak inducer of apoptosis (TWEAK), a member of the tumor necrosis factorsuperfamily, is thought to be produced by neurons, astrocytes and endothelial cells (Donohueet al., 2003; Yepes et al., 2005), and can stimulate proinflammatory molecule production byinteraction with its Fn14 receptor found on astrocytes(Saas et al., 2000). Expression of TWEAKand Fn14 has been documented in a murine model of stroke, and a soluble decoy to Fn14markedly reduced infarct volume (Yepes et al., 2005). These data may suggest that whileastrocytes normally play important roles in neuron maintenance and function, activatedastrocytes have the potential to pose harm to ischemic brain.3. ADHESION MOLECULES Adhesion molecules play a pivotal role in the infiltration of leukocytes into the brain parenchyma after stroke and may represent important therapeutic targets (see recent review by (Sughrue et al., 2004). Three major steps, rolling and adhesion and transendothelial migration of leukocytes, are involved in the access of leukocytes to the brain through the endothelial wall.Activated leukocytes, especially neutrophils, result in further damage of ischemic lesions through reperfusion or secondary injury mechanisms (Guha and Mackman, 2001). The interaction between leukocytes and the vascular endothelium is mediated by three main groups of cell adhesion molecules: selectins (P-selectin, E-selectin, and L-selectin), the immunoglobulin superfamily (intercellular adhesion molecules, e.g. ICAM-1, 2 and vascular cell adhesion molecule-1, or VCAM-1) and integrins (CD11a–c) (DeGraba, 1998; Emsley and Tyrrell, 2002). Several reports have shown that inhibiting leukocyte adhesion by targeting various adhesion molecules, thus preventing leukocytes from entering ischemic brain, results in reduced neurologic injury (Clark et al., 1995; Clark et al., 1997). Furthermore, animals deficient in adhesion molecules have reduced infarct volume after transient focal cerebral ischemia (Connolly et al., 1997; Kitagawa et al., 1998; Soriano et al., 1999). Although several adhesion molecules have been documented in both permanent and transient MCAO, (Haringet al., 1996; Suzuki et al., 1998; Zhang et al., 1996), inhibiting these targets only appears to beeffective when reperfusion occurs (Clark et al., 1997; Prestigiacomo et al., 1999; Zhang et al.,1995a).3.1. SelectinsSelectins mediate cell-cell adhesion, and rolling of leukocytes on the endothelium ofpostcapillary venules. Three kinds of selectins have been identified: E-selectin, P-selectin andL-selectin (Carlos and Harlan, 1994; Hallenbeck, 1996; Kim, 1996). They are expressed onthe outer cell membrane immediately upon cell activation by stimulants such s thrombin orhistamine. While E- and P-selectin are involved in leukocyte rolling and recruitment duringthe early stages of activation, L-selectin acts as a guide for unstimulated leukocytes (Bargatzeet al., 1994).The expression of P- and E-selectins have been documented in different experimental strokemodels and their upregulation appears to be involved in promoting ischemic inflammatoryresponses and increases injury due to ischemic stroke (Huang et al., 2000b; Huang et al.,1999). In animal studies, mice overexpressing P-selectin had exacerbation of infarcts, whereastreatment with antibodies or inhibitors against P- and E-selectin was associated with improvedneurological outcome (Huang et al., 2000b; Mocco et al., 2002). The effects of P-selectin inischemic stroke appear different in focal and global ischemia. In focal cerebral ischemia,neutrophils accumulated in the ischemic cortex of wildtype mice more abundantly than in P-selectin knockout mice (Connolly et al., 1997). Moreover, P-selectin deficient micedemonstrated smaller infarct volumes and improved survival compared with wildtype mice.Functional blockade of P-selectin in using a monoclonal antibody also improved early reflowand stroke outcome, with reduced cerebral infarction even when the blocking antibody wasNIH-PA Author ManuscriptNIH-PA Author ManuscriptNIH-PA Author Manuscriptadministered after ischemia onset. However, P-selectin may play a different role in globalcerebral ischemia. Antibody blockade of P-selectin, while reducing leukocyte rolling,paradoxically reduced survival (Lehmberg et al., 2006). The reasons for these contrastingoutcomes remain unclear, but suggests that the inflammatory response and its significance afterfocal and global ischemia may be quite different.The role of L-selectin in brain ischemia is less clear. Although L-selectin mediates leukocytetransmigration, does not appear to significantly influence stroke outcome. Treating rabbitsexposed to transient focal brain ischemia with an L-selectin antibody did not affect strokeoutcome (Yenari et al., 2001). However, fucoidin, an inhibitor of both P- and L-selectin,significantly reduced infarct size and improved neurological function in experimental strokein rats, but these observations could have been due to inhibition of P-selectin rather than L-selectin (Ruehl et al., 2002).Recent work has also shown that exposing animals to E-selectin intranasally can induceimmune tolerance to brain antigens, and consequently reduce the extent of injury (Chen et al.,2003b) and even prevent their occurrence (Takeda et al., 2002). Since E-selectin is exclusivelyupregulated in stimulated endothelium, tolerance to E-selectin could lead to suppression ofimmune responses and prevent peripheral leukocyte trafficking into the brain. Thus, it isconceivable that intranasal E-selectin might lead to the development of a vaccine against stroke.3.2. Immunoglobulin superfamilyMembers of the immunoglobulin superfamily include 5 molecules: ICAM-1 and ICAM-2,VCAM-1, platelet-endothelial cell adhesion molecule-1 (PECAM-1), and the mucosal vascularaddressin cell adhesion molecule 1 (MAdCAM-1). ICAM-1 (also referred to as CD54) isconstitutively present in low levels on cell membranes of endothelial cells, leukocytes,epithelial cells, and fibroblasts. Its expression increases upon stimulation by cytokines.ICAM-2 (CD102) is an endothelial cell membrane receptor that does not increase afterstimulation, whereas VCAM-1 (CD106) is induced by TNF-α and IL-1. PECAM-1 (CD31) isinvolved in the attachment of endothelial cells to each other, and leukocyte transmigrationacross the endothelium. MAdCAM-1, acting as an endothelial cell ligand for leukocyte homingreceptors L-selectin and alpha4beta7 integrin, is an adhesion protein expressed on endotheliumin mucosal tissues that has been shown to play an important role in the selective homing oflymphocytes to intestinal mucosa and associated lymphoid tissue.Among all of the 5 immunoglobulin members, ICAM-1 and VCAM-1 have been the mostextensively investigated in cerebral ischemia. Prior work has shown increased expression ofICAM-1 in ischemic brain within hours after stroke onset, peaking at about 12–24 h, andprecedes leukocyte infiltration (Wang and Feuerstein, 1995; Wang et al., 1994; Zhang et al.,1995b). Several studies have now shown that blocking ICAM-1 with antibodies (Bowes et al.,1993; Chopp et al., 1996; Kanemoto et al., 2002) or inhibiting ICAM-1 mRNA with antisenseoligonucleotides (Vemuganti et al., 2004) improves outcome from experimental stroke.Similarly, mice deficient in ICAM-1 had smaller infarcts compared to wildtype mice (Connollyet al., 1996; Kitagawa et al., 1998). Not only inhibitors of ICAM-1 but also nitric oxide donorsprevented the ischemia/reperfusion (I/R)-induced increase in ICAM-1 mRNA after ischemia/reperfusion and also led to neuroprotection (Khan et al., 2006). In diabetic rats, ICAM-1expression was higher after ischemia compared to non-diabetic rats, suggesting that ICAM-1may, in part, explain why stroke is exacerbated under conditions of hyperglycemia (Ding etal., 2005).The role of VCAM-1 in stroke is less clear. While increases in VCAM-1 mRNA after cerebralischemia have been observed (Blann et al., 1999), others have failed to observe such significantchanges (Vemuganti et al., 2004). In a study of global cerebral ischemia in rats, ONO-1078, aNIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscriptpotent leukotriene receptor antagonist, improved neurological deficits and reduced neurondeath by inhibiting the ischemia-induced upregulation of VCAM-1 in the hippocampus ofischemic rats (Zhang and Wei, 2003). One study showed that unfractionated heparin led toreduced infarct size in experimental stroke, and was associated with a reduced inflammatoryresponse including decreased VCAM-1 expression (Cervera et al., 2004). However, anotherstudy showed that treatment with anti-VCAM-1 antibodies did not have any effect on strokeoutcome suggesting that VCAM-1 may not play a significant role in ischemic brain injury(Justicia et al., 2006).At the clinical level, increased sICAM-1 and sVCAM-1 have been documented in the plasmaand cerebral spinal fluid of subjects with recent cerebral ischemic patients, and correlated tostroke severity (Ehrensperger et al., 2005; Selakovic et al., 2003; Simundic et al., 2004).VCAM-1 expression has been observed in autopsied brains of stroke victims within cerebralvessels and astrocytes (Blann et al., 1999). However, a phase III clinical trial of anti-ICAMtherapy for stroke, indicated that anti-ICAM therapy with enlimomab was not an effectivetreatment for ischemic stroke. In fact, treatment significantly worsened outcome(Enlimomab,2001). However, the interpretation of this study may have been confounded by the use of amurine antibody in humans, with subsequent neutrophil and complement activation (Vuorteet al., 1999).3.3. IntegrinsAs a family of adhesion molecules, integrins consist of a common β subunit and a variable αsubunit (Albelda, 1991). There are three subfamilies for the β subunits, denoted β1–3. Membersof the β1 subfamily bind collagen, laminin and fibronectin and are involved in the structure ofthe extracellular matrix, whereas β2 integrins (CD18) are involved in leukocyte cell adhesion.β3 integrins, also known as the cytoadhesins, include the platelet glycoprotein IIb/IIIa (αIIb/β3) and the vitronectin receptor (αv/β3), factors involved in clot generation and stabilization.Leukocyte integrins, the transmembrane cell surface proteins, are activated by chemokines,cytokines, and other chemoattractants. In order for leukocytes to bind to activated endothelium,integrins must be expressed on the cell surface so as to recognize endothelial cell adhesionmolecules (Smith, 1993). Binding to receptors of the immunoglobulin gene superfamily, β2integrins contain a common β2 chain with one of 3 distinct α chains (CD11a, CD11b, orCD11c). The CD11a/CD18 integrin is referred as LFA-1, whereas CD11b/CD18 is also calledMac-1. Of the α chains, CD11b has been the most studied in stroke models. Leukocytes andmonocytes also express the α4β1 (very late antigen-4, VLA-4, CD49d) integrin, which bindsto VCAM-1 and ligands of the subendothelial matrix (Frijns and Kappelle, 2002).In an in vitro study, hypoxia caused an increase of neutrophil CD11b expression compared tonormoxia, and this injury was protected by aprotinin by reducing the upregulation of neutrophilCD11b (Harmon et al., 2004). Treatment with 3-aminobenzamide (3-AB), a PARP inhibitor,appeared to protect by reducing expression of CD11b and other pro-inflammatory molecules(Koh et al., 2004).Blocking CD11b (Chen et al., 1994) as well as CD18 (Bowes et al., 1995) or both (Jiang et al.,1995; Yenari et al., 1998) reduces injury from experimental stroke and is associated withdecreased neutrophil infiltration. Similarly, mice lacking CD18 exhibited reduced leukocyteadhesion to endothelial cell monolayers, and improved cerebral blood flow and lessneurological injury and neutrophil accumulation when subjected to experimental stroke(Prestigiacomo et al., 1999). Blocking integrins essential for lymphocyte and monocytetrafficking may also limit damage due to reperfusion injury. Antibodies against VLA-4 given2 h after a3 h period of temporary MCAO followed by reperfusion decreased infarct size(Becker et al., 2001).NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author ManuscriptTo date, few clinical studies examined the potential of anti-integrin therapies in acute strokepatients. In one study, a humanized CD11/CD18 antibody (LeukArrest) was given to patientswithin 12 h symptom onset (Becker, 2002). Another trial was a phase IIb dose escalation studyof a non-antibody peptide, recombinant neutrophil inhibiting factor (rNIF) in stroke patients(Acute Stroke Therapy by Inhibition of Neutrophils or ASTIN) administered within 6 h ofsymptom onset (Krams et al., 2003). Both studies were terminated prematurely due to a lackof effect on predetermined endpoints. Although both compounds appeared to be effective inrodent stroke models (Jiang et al., 1995; Yenari et al., 1998), lack of an obvious effect in humanscould be due to study design not in line with laboratory data (such as late treatment or lack ofdocumented reperfusion in humans) or the inherent heterogeneity of clinical stroke. Anotherpossibility is that changes in neutrophil integrins are different in acute ischemic stroke patientscompared to rodents. For example, CD11b is actually decreased in human stroke (Caimi et al.,2001), but increased after experimental stroke in rats (Campanella et al., 2002). Therefore,some anti-adhesion approaches may not be appropriate in humans. Regardless, it is clear thatmore work and possibly improved trial design are needed.4. INFLAMMATORY MEDIATORS 4.1. Cytokines Cytokines are upregulated in the brain after a variety of insults including stroke, and are expressed not only in cells of the immune system, but production by resident brain cells,including glia and neurons, have been observed (Liu et al., 1994; Sairanen et al., 2001). The most studied cytokines related to inflammation in stroke are interleukin-1 (IL-1), TNF-α,interleukin-6 (IL-6), interleukin-10 (IL-10) and transforming growth factor-β (TGF-β) (Han and Yenari, 2003). Among those cytokines, IL-1 and TNF-α appear to exacerbate cerebral injury; however, IL-6, IL-10 and TGF-β may be neuroprotective (Allan and Rothwell, 2001).IL-1—IL-1’s two isoforms, IL-1α and IL-1β and its endogenous inhibitor, IL-1 receptorantagonist (IL-1ra) have been the most studied in experimental stroke. IL-1beta mRNAelevations have been documented within 15–30 min after ischemia (Buttini et al., 1994) withincreased protein a few hours later (Davies et al., 1999). Follwoing 20 min transient globalcerebral ischemia in rats followed, IL-1beta mRNA and protein expression were increased notonly during early reperfusion (1 h), but also at later times (6–24 h) indicating biphasicexpression (Haqqani et al., 2005). Consistent with a potential damaging effect, increased braindamage occurred when IL-1beta was administered to rats (Yamasaki et al., 1995), and micedeficient in IL-1 had smaller infarcts compared to wildtype. Overexpression or treatment withIL-1ra reduced infarct size (Mulcahy et al., 2003; Yang et al., 1997), while IL-1ra deficientmice exhibited a dramatic increase in ischemic damage (Pinteaux et al., 2006). Moreover, basaland NMDA- or AMPA-induced cells death was significantly higher in glial-neuronal co-cultures from IL-1ra KO than from WT mice, strongly suggesting that endogenous IL-1raproduced by microglia is neuroprotective in cerebral ischemia. IL-1 has two receptors, IL-1R1and IL-1R2, but only the former is involved in signal transduction (Rothwell and Luheshi,2000). Inactivating or knocking out the IL-1R1 decreased the extent of damage caused by ahypoxic-ischemic (H/I) insult and preservea neurological function (Basu et al., 2005).TNF-α—TNF-α is also upregulated in the brain after ischemia with similar expression patternsas IL-1beta. Initial increases are seen 1–3 h after ischemia onset (Liu et al., 1994), and, likeIL-1beta, has a biphasic pattern of expression with a second peak at 24–36 h (Murakami et al.,2005; Offner et al., 2006). TNF-α expression was initially observed in neurons (Liu et al.,1994), then later in microglia and some astrocytes (Uno et al., 1997) as well as in the peripheralimmune system (Offner et al., 2006). TNF-α appears to have pleiotropic functions in theischemic brain (Hallenbeck, 2002). Inhibition of TNF-α reduces ischemic brain injury (YangNIH-PA Author ManuscriptNIH-PA Author ManuscriptNIH-PA Author Manuscriptet al., 1998), while administration of recombinant TNF-α protein after stroke onset worsens ischemic brain damage (Barone et al., 1997). However, TNF-α may also protect the brain under certain circumstances. TNF-α appears to be involved in the phenomenon of ischemic tolerance (Ginis et al., 2002), and mice deficient in TNF receptors have larger infarcts ((Bruce et al.,1996). The reasons for this disparity might be due to different pathways through which TNF-α signals. There are at least two TNF-α receptors: TNF receptor 1 (TNFR1) and TNF receptor 2 (TNFR2). Most effects induced by TNF-α are mediated by TNFR1, which contains a death domain (DD) that interacts directly with TNFR1 and may act as a bifurcation point for signaling related to cell death or cell survival. Ischemic preconditioning caused upregulation of neuronal TNFR1, and intracerebral administration of TNFR1 antisense oligodeoxynucleotide, which caused a reduction in TNFR1 expression, inhibited the ischemic preconditioning-induced protective effect, suggesting that TNFR1 upregulation is implicated in ischemic tolerance (Pradillo et al., 2005). Increased expression of TNFR1 mRNA in the ipsilateral cortex was noted slightly during ischemia and was significantly increased at 12 h after reperfusion in tMCAO (Yin et al., 2004). A clinical study also showed that TNFR1 concentration increased in patients with acute ischemic stroke (Fassbender et al., 1997). By signaling through the Fas-associated death domain (FADD) and caspase-8, TNF- α may lead to apoptosis, whereas reacting with TNF-receptor associating factor 2 and receptor-interacting protein may lead to anti-inflammatory and anti-apoptotic functions (reviewed by (Hallenbeck, 2002). Whether and how this applies in brain ischemia has yet to be clearly elucidated.Other inflammation related cytokines—IL-6 is largely thought of as a pro-inflammatory cytokine, but whether it plays a significant role in ischemic stroke is far from clear. IL-6deficient mice have similar sized infarcts compared to wildtype suggesting that it does not participate in ischemic pathogenesis (Clark et al., 2000). However, other studies suggest either a beneficial (Herrmann et al., 2003) or detrimental role (Smith et al., 2004). Clinical studies in stroke patients showed that serum concentrations of IL-6 had the strongest independent predictive value for in-hospital mortality (Rallidis et al., 2005). In a double blind clinical trialon patients with acute stroke, IL-6 concentration was much lower in rhIL-1ra, a neuroprotectivedrug, treated patients, who showed a better outcome compared with placebo treated group(Emsley et al., 2005).IL-10, an anti-inflammatory cytokine, acts by inhibiting IL-1 and TNF-α and also bysuppressing cytokine receptor expression and receptor activation. It is synthesized in the centralnervous system (CNS) and is upregulated in experimental stroke (Strle et al., 2001). Bothexogenous administration (Spera et al., 1998) and gene transfer of IL-10 (Ooboshi et al.,2005) in cerebral ischemia models appear to have beneficial effects. Patients with acuteischemic stroke have an elevated numbers of peripheral blood mononuclear cells secretingIL-10 (Pelidou et al., 1999) and elevated concentrations in cerebrospinal fluid (Tarkowski etal., 1997). Furthermore, subjects with low IL-10 levels have an increased risk of stroke (vanExel et al., 2002).Expression of TGF-β1 has been reported in microglia and astrocytes, with low levels in neurons(Flanders et al., 1998). Overexpression of TGF-β1 using an adenoviral vector protected mousebrains from ischemic stroke and reduced the accompanying inflammatory response (Pang etal., 2001). A recent study showed that cultured neurons may be protected from ischemia-likeinsults by microglia-secreted TGF-β1 (Lu et al., 2005). Because TGF-β exhibits prominentlyin the recovery phase of some CNS diseases, it is proposed that TGF-β may contribute to therecovery of ischemic stroke (Benveniste, 1998).NIH-PA Author ManuscriptNIH-PA Author ManuscriptNIH-PA Author Manuscript。