新课标高一数学同步测试—第一单元(函数的基本性质)
新课标高一数学函数的基本性质试题及答案
新课标高一数学函数的基本性质试题及答案 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】新课标高一数学同步测试(4)—第一单元(函数的基本性质)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分)。
1.下面说法正确的选项()A.函数的单调区间可以是函数的定义域B.函数的多个单调增区间的并集也是其单调增区间C.具有奇偶性的函数的定义域定关于原点对称D.关于原点对称的图象一定是奇函数的图象2.在区间上为增函数的是()A.B.C.D.3.函数是单调函数时,的取值范围()A.B. C .D.4.如果偶函数在具有最大值,那么该函数在有()A.最大值 B.最小值 C .没有最大值 D.没有最小值5.函数,是()A.偶函数 B.奇函数 C.不具有奇偶函数 D.与有关6.函数在和都是增函数,若,且那么()A. B.C.D.无法确定7.函数在区间是增函数,则的递增区间是()A.B. C.D.8.函数在实数集上是增函数,则()A.B. C. D.9.定义在R上的偶函数,满足,且在区间上为递增,则()A. B.C. D.10.已知在实数集上是减函数,若,则下列正确的是()A. B.C. D.二、填空题:请把答案填在题中横线上(每小题6分,共24分).11.函数在R上为奇函数,且,则当,.12.函数,单调递减区间为,最大值和最小值的情况为.13.定义在R上的函数(已知)可用的=和来表示,且为奇函数,为偶函数,则=.14.构造一个满足下面三个条件的函数实例,①函数在上递减;②函数具有奇偶性;③函数有最小值为;.三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分).15.(12分)已知,求函数得单调递减区间. 16.(12分)判断下列函数的奇偶性①;②;③;④。
17.(12分)已知,,求.18.(12分))函数在区间上都有意义,且在此区间上①为增函数,;②为减函数,.判断在的单调性,并给出证明.19.(14分)在经济学中,函数的边际函数为,定义为,某公司每月最多生产100台报警系统装置。
高一数学函数的基本性质试题答案及解析
高一数学函数的基本性质试题答案及解析1.下列幂函数中过点(0,0),(1,1)的偶函数是()A.B.C.D.【答案】B【解析】A中函数的定义域是,不关于原点对称,不具有奇偶性;B中函数经验证过这两个点,又定义域为,且;C中函数不过(0,0);D中函数,∵,∴是奇函数,故选B.【考点】幂函数的性质与函数的奇偶性.2.已知函数的定义域为,为奇函数,当时,,则当时,的递减区间是.【答案】【解析】因为为奇函数,所以的图象关于对称,当时,,所以当时,函数的单调递减区间为,因为图象关于对称,所以当时,的递减区间是.【考点】本小题主要考查函数图象和性质的应用,考查学生数形结合思想的应用和推理能力.点评:解决本小题的关键是分析出函数的图象关于对称,在关于对称的两个区间上单调性相同.3.设函数,若,则实数=()A.-4或-2B.-4或2C.-2或4D.-2或2【答案】B【解析】当时,;当时,.【考点】本小题主要考查分段函数的求值,考查学生的运算求解能力.点评:分段函数求值,分别代入求解即可.4.函数的单调增区间是_______.【答案】【解析】由,所以此函数的定义域为,根据复合函数的单调性,所以此函数的单调增区间为.5.(本小题满分12分)已知函数 (为常数)在上的最小值为,试将用表示出来,并求出的最大值.【答案】【解析】(1)因为抛物线y=x2-2ax+1的对称轴方程是,本题属于轴动区间定的问题,然后分轴在区间左侧,在区间内,在区间右侧三种情况分别得到其最小值,得到最小值h(a),然后再求出h(a)的最大值.∵y=(x-a)2+1-a2,∴抛物线y=x2-2ax+1的对称轴方程是.(1)当时,,当时,该函数取最小值;(2) 当时, , 当时,该函数取最小值;(3) 当a>1时, , 当时,该函数取最小值综上,函数的最小值为6.证明:函数是偶函数,且在上是减少的。
(本小题满分12分)【答案】见解析。
【解析】本试题主要是考查了函数的奇偶性的定义以及单调性的性质。
新课程基础训练题必修1第一章(下)函数的基本性质提高训练C组及答案
(数学1必修)第一章(下) 函数的基本性质[提高训练C 组] 一、选择题1. 已知函数()()0f x x a x a a =+--≠,()()()2200x x x h x x x x ⎧-+>⎪=⎨+≤⎪⎩,则()(),f x h x 的奇偶性依次为( )A . 偶函数,奇函数B . 奇函数,偶函数C . 偶函数,偶函数D . 奇函数,奇函数2. 若)(x f 是偶函数,其定义域为()+∞∞-,,且在[)+∞,0上是减函数,则)252()23(2++-a a f f 与的大小关系是( )A . )23(-f >)252(2++a a fB . )23(-f <)252(2++a a fC . )23(-f ≥)252(2++a a fD . )23(-f ≤)252(2++a a f3. 已知5)2(22+-+=x a x y 在区间(4,)+∞上是增函数,则a 的范围是( )A . 2a ≤-B . 2a ≥-C . 6-≥aD . 6-≤a 4. 设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=, 则()0x f x ⋅<的解集是( )A . {}|303x x x -<<>或B . {}|303x x x <-<<或C . {}|33x x x <->或D . {}|3003x x x -<<<<或5. 已知3()4f x ax bx =+-其中,a b 为常数,若(2)2f -=,则(2)f 的值等于( )A . 2-B . 4-C . 6-D . 10-6. 函数33()11f x x x =++-,则下列坐标表示的点一定在函数f (x )图象上的是( )A . (,())a f a --B . (,())a f a -C . (,())a f a -D . (,())a f a ---二、填空题1. 设()f x 是R 上的奇函数,且当[)0,x ∈+∞时,()(1f x x =+,则当(,0)x ∈-∞时()f x =_____________________.2. 若函数()2f x a x b =-+在[)0,x ∈+∞上为增函数,则实数,a b 的取值范围是 .3. 已知221)(x x x f +=,那么)41()4()31()3()21()2()1(f f f f f f f ++++++=_____. 4. 若1()2ax f x x +=+在区间(2,)-+∞上是增函数,则a 的取值范围是 . 5. 函数4()([3,6])2f x x x =∈-的值域为____________.三、解答题1. 已知函数()f x 的定义域是),0(+∞,且满足()()()f xy f x f y =+,1()12f =,如果对于0x y <<,都有()()f x f y >,(1)求(1)f ;(2)解不等式2)3()(-≥-+-x f x f .2. 当]1,0[∈x 时,求函数223)62()(a x a x x f +-+=的最小值.3. 已知22()444f x x ax a a =-+--在区间[]0,1内有一最大值5-,求a 的值.4. 已知函数223)(x ax x f -=的最大值不大于61,又当111[,],()428x f x ∈≥时,求a 的值.(数学1必修)第一章(下) [提高训练C 组]参考答案一、选择题1. D ()()f x x a x a x a x a f x -=-+---=--+=-, 画出()h x 的图象可观察到它关于原点对称或当0x >时,0x -<,则22()()();h x x x x x h x -=-=--+=- 当0x ≤时,0x -≥,则22()()();h x x x x x h x -=--=-+=-()()h x h x ∴-=-2. C 225332(1)222a a a ++=++≥,2335()()(2)222f f f a a -=≥++ 3. B 对称轴2,24,2x a a a =--≤≥-4. D 由()0x f x ⋅<得0()0x f x <⎧⎨>⎩或0()0x f x >⎧⎨<⎩而(3)0,(3)0f f -==即0()(3)x f x f <⎧⎨>-⎩或0()(3)x f x f >⎧⎨<⎩5. D 令3()()4F x f x ax bx =+=+,则3()F x ax bx =+为奇函数 (2)(2)46,(2)(2)46,(2)10F f F f f -=-+==+=-=-6. B 3333()1111()f x x x x x f x -=-++--=-++=为偶函数 (,())a f a 一定在图象上,而()()f a f a =-,∴(,())a f a -一定在图象上 二、填空题1. (1x 设0x <,则0x ->,()(1(1f x x x -=-+=-∵()()f x f x -=-∴()(1f x x -=-2. 0a >且0b ≤ 画出图象,考虑开口向上向下和左右平移3. 72 221)(x x x f +=,2111(),()()11f f x f x x x=+=+1111(1),(2)()1,(3)()1,(4)()12234f f f f f f f =+=+=+=4. 1(,)2+∞ 设122,x x >>-则12()()f x f x >,而12()()f x f x -121221121212121122()(21)022(2)(2)(2)(2)ax ax ax x ax x x x a x x x x x x +++----=-==>++++++,则210a -> 5. []1,4 区间[3,6]是函数4()2f x x =-的递减区间,把3,6分别代入得最大、小值三、解答题1. 解:(1)令1x y ==,则(1)(1)(1),(1)0f f f f =+=(2)1()(3)2()2f x f x f -+-≥-11()()(3)()0(1)22f x f f x f f -++-+≥=3()()(1)22x x f f f --+≥,3()(1)22x x f f --⋅≥则0230,1023122x x x x x ⎧->⎪⎪-⎪>-≤<⎨⎪-⎪-⋅≤⎪⎩.2. 解:对称轴31,x a =-当310a -<,即13a <时,[]0,1是()f x 的递增区间,2min ()(0)3f x f a ==; 当311a ->,即23a >时,[]0,1是()f x 的递减区间,2min ()(1)363f x f a a ==-+;当0311a ≤-≤,即1233a ≤≤时,2min ()(31)661f x f a a a =-=-+-.3. 解:对称轴2a x =,当0,2a<即0a <时,[]0,1是()f x 的递减区间,则2max ()(0)45f x f a a ==--=-,得1a =或5a =-,而0a <,即5a =-;当1,2a>即2a >时,[]0,1是()f x 的递增区间,则2max ()(1)45f x f a ==--=-,得1a =或1a =-,而2a >,即a 不存在;当01,2a≤≤即02a ≤≤时, 则max 5()()45,24a f x f a a ==-=-=,即54a =;∴5a =-或 54.4. 解:2223111()(),(),1123666a f x x a f x a a =--+=≤-≤≤得,对称轴3a x =,当314a -≤<时,11,42⎡⎤⎢⎥⎣⎦是()f x 的递减区间,而1()8f x ≥, 即min 131()(),12288a f x f a ==-≥≥与314a -≤<矛盾,即不存在; 当314a ≤≤时,对称轴3a x =,而11433a ≤≤,且111342328+<= 即min 131()(),12288a f x f a ==-≥≥,而314a ≤≤,即1a =∴1a =希望对大家有所帮助,多谢您的浏览!。
高一数学函数的基本性质试题答案及解析
高一数学函数的基本性质试题答案及解析1.(本小题12分)已知函数,(1)判断函数在区间上的单调性;(2)求函数在区间是区间[2,6]上的最大值和最小值.【答案】(1)函数是区间上的减函数;(2),【解析】(1)设是区间上的任意两个实数,且,则-==.由得,,于是,即.所以函数是区间上的减函数. ……6分(2)由(1)知函数函数在区间的两个端点上分别取得最大值与最小值,即当时,;当时,. ……12分【考点】本小题主要考查利用定义判断函数的单调性和利用函数的单调性求函数的最值,考查学生对定义的掌握和利用能力以及数形结合思想的应用.点评:利用单调性的定义判断或证明函数的单调性时,要把结果划到最简,尽量不要用已知函数的单调性判断未知函数的单调性.2.设函数,若,则实数=()A.-4或-2B.-4或2C.-2或4D.-2或2【答案】B【解析】当时,;当时,.【考点】本小题主要考查分段函数的求值,考查学生的运算求解能力.点评:分段函数求值,分别代入求解即可.3.函数,则的取值范围是()A.B.C.D.【答案】A【解析】因为f(x)的对称轴为,所以,所以.4.若奇函数在[1,3]上为增函数,且有最小值7,则它在[-3,-1]上( )A.是减函数,有最小值-7B.是增函数,有最小值-7C.是减函数,有最大值-7D.是增函数,有最大值-7【答案】D【解析】解:由奇函数的性质,∵奇函数f(x)在[1,3]上为增函数∴奇函数f(x)在[-3,-1]上为增函数,又奇函数f(x)在[1,3]上有最小值7,∴奇函数f(x)在[-3,-1]上有最大值-7,故选D5.(12分)求证:函数在R上为奇函数且为增函数.【答案】见解析【解析】解:显然,奇函数;令,则,其中,显然,=,由于,,且不能同时为0,否则,故.从而. 所以该函数为增函数.6.下列f(x)=(1+a x)2是()A.奇函数B.偶函数C.非奇非偶函数D.既奇且偶函数【答案】B【解析】函数定义域为R.故选B7.设a是实数,试证明对于任意a,为增函数【答案】见解析【解析】证明:设∈R,且则由于指数函数 y=在R上是增函数,且,所以即<0,又由>0得+1>0, +1>0所以<0即因为此结论与a取值无关,所以对于a取任意实数,为增函数8.函数y=x+ ()A.有最小值,无最大值B.有最大值,无最小值C.有最小值,最大值2D.无最大值,也无最小值【答案】A【解析】∵y=x+在定义域[,+∞)上是增函数,∴y≥f()=,即函数最小值为,无最大值,选A.9.(05福建卷)是定义在R上的以3为周期的偶函数,且,则方程=0在区间(0,6)内解的个数的最小值是()A.5B.4C.3D.2【答案】B【解析】因为是定义在R上以3为周期的偶函数,且,所以故选B10.定义在上的函数是减函数,且是奇函数,若,求实数的范围。
高一数学1.3函数的基本性质单元素质测试题新人教版
新课标高一(上)数学单元素质测试题——1.3函数的基本性质(训练时间45分钟,满分100分) 姓名__________评价__________一、选择题(本大题共6小题,每小题6分,共36分. 以下给出的四个备选答案中,只有一个正确) 1.(08辽宁)若函数(1)()y x x a =+-为偶函数,则a =( ) A .2-B .1-C .1D .22.(11辽宁)若函数))(12()(a x x xx f -+=为奇函数,则a =( )A .21 B .32 C .43 D .13. (08全国Ⅱ)函数1()f x x x=-的图像关于( )A .y 轴对称B . 直线x y -=对称C . 坐标原点对称D . 直线x y =对称4.(08湖北)已知()f x 在R 上是奇函数,且满足(4)(),f x f x += 当(0,2)x ∈时, 2()2f x x =,则 (7)f =( )A.2-B.2C. 98-D.985.(09陕西)定义在R 上的偶函数()f x 满足:对任意的1212,[0,)()x x x x ∈+∞≠,有2121()()0f x f x x x -<-.则 ( )A.(3)(2)(1)f f f <-<B.(1)(2)(3)f f f <-<C.(2)(1)(3)f f f -<<D.(3)(1)(2)f f f <<- 6.(08全国Ⅰ)设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( ) A .(10)(1)-+∞,, B .(1)(01)-∞-,, C .(1)(1)-∞-+∞,,D .(10)(01)-,,二、填空题(本大题共3小题,每小题6分,共18分.把答案填在答题卡中对应题号后的横线上)7.(11安徽)设()f x 是定义在R 上的奇函数,当0≤x 时,()f x =22x x -,则(1)f = .8.(08上海)若函数()()(2)f x x a b x a =++(常数,a b R ∈)是偶函数,且它的值域为(,4]-∞,则该函数的解析()f x = .9.(08浙江)已知t 为常数,函数t x x y --=22在区间[0,3]上的最大值为2,则t =________. 三、解答题(本大题共3小题,共46分. 解答应写出文字说明,证明过程或演算步骤) 10. (本题满分14分) 已知函数12)(+-=x x x f .(Ⅰ)求函数)(x f 的值域; (Ⅱ)用定义证明函数)(x f 在),1(+∞-上是增函数.11. (本题满分16分) 已知)(x f 是偶函数,)(x g 是奇函数,且1)()(-=+x x x g x f .(Ⅰ)求)()(x g x f 、的解析式; (Ⅱ)求)()(x g x f 、的值域.12. (本题满分16分) 已知函数)(x f 对于一切R y x ∈、,都有)()()(y f x f y x f +=+. (Ⅰ)求证:)(x f 在R 上是奇函数;(Ⅱ)若0<x 时,0)(>x f ,求证)(x f 在R 上是减函数; (Ⅲ)若2)1(=-f ,求)(x f 在区间[]42,-上的最大值和最小值.新课标高一(上)数学单元素质测试题——1.3函数的基本性质 (参考答案)一、选择题答题卡:二、填空题7.3-. 8.422+-x . 9. 1 . 三、解答题10. 12)(+-=I x x x f )解:(分分41312131⋯⋯⋯⋯⋯⋯⋯⋯+-=⋯⋯⋯⋯⋯⋯⋯⋯+-+=x x x.1013≠∴≠+y x ,……………………6分所以函数)(x f 的值域为}.1|{≠y y ……………7分(Ⅱ)设21,x x 是),1(+∞-上的任意两个实数,且1x <2x ,则………………8分)131()131()()(2121+--+-=-x x x f x f ……………………………………9分分11)1)(1()(3)1)(1()1(3)1(313132121212112⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯++-=+++-+=+-+=x x x x x x x x x x因为1-<1x <2x ,所以11+x >0,12+x >0,21x x -<0.………………12分 所以)()(21x f x f -<0,即)(1x f <)(2x f .…………………………………………………………13分 故函数)(x f 在),(∞+-1上是增函数.……………………………………14分 11. 解:(Ⅰ))(x f 是偶函数,)(x g 是奇函数,).()()()(x g x g x f x f -=-=-,…………2分,1)()(-=+x x x g x f ……………………………………………………① ,1)()(---=-+-∴x xx g x f 即.1)()(+=-x x x g x f ……………………②…………………4分由①、②解得)1(1)(22±≠-=x xx x f ,)1(1)(2±≠-=x xx x g .……………………………8分(Ⅱ)(1)设)(x f y =,则122-=xx y .………………………………………………………9分解得12-=y y x .…………………………………………………………………………………10分由02≥x 得1≥-y y,解之得10>≤y y ,或.……………………………………………11分(2)设)(x g t =,则12-=xx t .………………………………………………………………12分整理得02=--t x tx .当0=t 时,0=x ,符合题意. ………………………………………………………………13分 当0≠t 时,由R x x ∈±≠且1知,关于x 的一元二次方程02=--t x tx 有实数根, 所以0412>+=∆t ,解得R t ∈.……………………………………………………………15分 所以函数)(x f 的值域为(]),1(0,+∞∞- ;函数)(x g 的值域为R. ………………………16分12. 证明:(Ⅰ))()()(y f x f y x f +=+ , 令0==y x ,得)0()0()0(f f f +=,.0)0(=∴f ……………………………………………………2分令x y -=,得)()()0(x f x f f -+=,……………………3分0)()(=-+∴x f x f .即)()(x f x f -=-.……………………………………………………5分 故)(x f 在R 上是奇函数.……………………………………………6分 (Ⅱ)设21,x x 是R 上的任意两个实数,且1x <2x ,则…………7分21x x -<0,)(21x x f ->0.…………………………………………8分由(Ⅰ)知,)()()()(2121x f x f x f x f -+=-0)(21>-=x x f .……………………10分所以)()(21x f x f ->0,即)(1x f >)(2x f .…………………………………………………11分 故函数)(x f 在R 上是减函数.……………………………………12分(Ⅲ)由(Ⅱ)可知,当2-=x 时,)2()(max -=f x f ;当4=x 时,)4()(min f x f =.……13分2)1(=-f ,)()()(y f x f y x f +=+,4)1()1()2(=-+-=-∴f f f .…………………14分 )(x f 是奇函数,.4)2(,4)2(-==-∴f f从而8)2()2()4(-=+=f f f ,…………………………………………………………………15分 故)(x f 在区间[]4,2-上的最大值和最小值分别为4和8-.……………………………………16分。
新课标高中数学(必修1)第一章:函数的基本性质(基础训练)答案
科 目:数学适用年级: 高一第一章函数的基本性质(基础训练)测试题——答案一、选择题1. B 奇次项系数为0,20,2m m -==2. D 3(2)(2),212f f =--<-<- 3. A 奇函数关于原点对称,左右两边有相同的单调性4. A ()()()()F x f x f x F x -=--=-5. A 3y x =-在R 上递减,1y x=在(0,)+∞上递减, 24y x =-+在(0,)+∞上递减,6. A ()(11)(11)()f x x x x x x x f x -=----+=+--=-为奇函数,而222,12,01(),2,102,1x x x x f x x x x x -≥⎧⎪-≤<⎪=⎨-≤<⎪⎪<-⎩为减函数。
二、填空题1. (](2,0)2,5-奇函数关于原点对称,补足左边的图象2.[2,)-+∞1,x y ≥-是x 的增函数,当1x =-时,min 2y =-3.该函数为增函数,自变量最小时,函数值最小; 自变量最大时,函数值最大4. [)0,+∞210,1,()3k k f x x -===-+ 5.1 (1)21x x ≥≤且,不存在;(2)函数是特殊的映射;(3)该图象是由离散的点组成的;(4)两个不同的抛物线的两部分组成的,不是抛物线。
三、解答题1.解:当0k >,y kx b =+在R 是增函数,当0k <,y kx b =+在R 是减函数;当0k >,k y x=在(,0),(0,)-∞+∞是减函数, 当0k <,k y x=在(,0),(0,)-∞+∞是增函数; 当0a >,2y ax bx c =++在(,]2b a -∞-是减函数,在[,)2b a-+∞是增函数, 当0a <,2y ax bx c =++在(,]2b a -∞-是增函数,在[,)2b a-+∞是减函数。
高一数学函数的基本性质试题+答案
新课标高一数学同步测试(4)—第一单元(函数的基本性质)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分)。
1.下面说法正确的选项()A.函数的单调区间可以是函数的定义域B.函数的多个单调增区间的并集也是其单调增区间C.具有奇偶性的函数的定义域定关于原点对称D.关于原点对称的图象一定是奇函数的图象2.在区间上为增函数的是()A. B.C. D.3.函数是单调函数时,的取值范围()A. B.C . D.4.如果偶函数在具有最大值,那么该函数在有()A.最大值 B.最小值 C .没有最大值 D.没有最小值5.函数,是()A.偶函数 B.奇函数 C.不具有奇偶函数 D.与有关6.函数在和都是增函数,若,且那么()A. B.C. D.无法确定7.函数在区间是增函数,则的递增区间是()A. B.C. D.8.函数在实数集上是增函数,则()A.B. C. D.9.定义在R上的偶函数,满足,且在区间上为递增,则()A. B.C. D.10.已知在实数集上是减函数,若,则下列正确的是()A. B.C. D.二、填空题:请把答案填在题中横线上(每小题6分,共24分).11.函数在R上为奇函数,且,则当,.12.函数,单调递减区间为,最大值和最小值的情况为 .13.定义在R上的函数(已知)可用的=和来表示,且为奇函数,为偶函数,则= .14.构造一个满足下面三个条件的函数实例,①函数在上递减;②函数具有奇偶性;③函数有最小值为; .三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分).15.(12分)已知,求函数得单调递减区间. 16.(12分)判断下列函数的奇偶性①;②;③;④。
17.(12分)已知,,求.18.(12分))函数在区间上都有意义,且在此区间上①为增函数,;②为减函数,.判断在的单调性,并给出证明.19.(14分)在经济学中,函数的边际函数为,定义为,某公司每月最多生产100台报警系统装置。
高一数学函数的性质单元测试题课标 必修一 试题
卜人入州八九几市潮王学校高一数学函数的性质单元测试题.1.知f(x)是实数集上的偶函数,且在区间[0,+)∞上是增函数,那么f(-2),f(-),f(3)π的大小关系是〔〕 A.f(-)>f(-2)>f(3)πB.f(3)>f(-)>f(-2)πC.f(-2)>f(3)>f(-)πD.f(-)>f(3)>f(-2)π 2.定义在区间〔-∞,+∞〕上的奇函数f〔x〕为增函数,偶函数g〔x〕在[0,+∞)上图象与f(x)的图象重合.设a>b>0,给出以下不等式,其中成立的是()①f〔b〕-f〔-a〕>g〔a〕-g〔-b〕②f〔b〕-f〔-a〕<g〔a〕-g〔-b〕③f〔a〕-f〔-b〕>g〔b〕-g〔-a〕④f〔a〕-f〔-b〕<g〔b〕-g〔-a〕A.①④B.②③C.①③D.②④3.函数f(x)=x 2-2ax-3在区间[1,2]上是单调函数的条件是〔〕 A.(,1]a ∈-∞ B.[2,)a ∈+∞ C.[1,2]a ∈ D.(,1][2,)a ∈-∞⋃+∞4.假设函数是奇函数,当x<0时,f(x)的解析式是f(x)=x(1-x),那么当x>0时,f(x)的解析式是〔〕.A.-x(1-x)B.x(1-x)C.-x(1+x)D.x(1+x)5.定义在〔-1,1〕上的函数f〔x〕是奇函数,并且在〔-1,1〕上f〔x〕是减函数,求满足条件f〔1-a〕+f〔1-a2〕<0的a取值范围.〔〕 A.〔0,1〕B.〔-2,1〕C.[0,1]D.[-2,1]6.函数f〔x)是定义在区间[-2,2]上的偶函数,当x∈[0,2]时,f(x)是减函数,假设不等式f〔1-m〕<f〔m〕成立,务实数m的取值范围.〔〕 A.1[1,)2-B.[1,2]C.[-1,0]D.〔11,2-〕.7.假设f〔x〕是偶函数,其定义域为R,且在[0,+)∞上是减函数,那么f〔2a 2+a+1〕<f(3a 2-2a+1)的a 的取值集合为________________.8.f(x)是奇函数,定义域为{x|x ∈R 且x ≠0},又f(x)在〔0,+∞〕上是增函数,且f(-1)=0,那么满足f(x)>0的x 取值范围是________.9.假设f(x)是定义在R 上的偶函数,且当x ≥0时为增函数,那么使f(π)<f(a)的实数a 的取值范围是_______.10.(),()x g x ϕ都是奇函数,f(x)=()()a x bg x ϕ++2在〔0,+∞〕上有最大值5,那么f(x)在〔-∞,0〕上有最_______值________..11.设函数f〔x〕在〔-∞,0〕∪〔0,+∞〕上是奇函数,又f〔x〕在〔0,+∞〕上是减函数,并且f〔x〕<0,指出F(x〕=)(1x f 在〔-∞,0〕上的增减性并证明. 12.设f(x)是定义在〔0,+∞〕上的单调递增函数,且对定义域内任意x,y,都有f(xy)=f(x)+f(y),f(2)=1,求使不等式f(x)+f(x-3)≤2成立的取值范围.[参考答案]一.1.D2.C3.D.4.D5.A6.A二.7.〔0,3〕 8.(-1,0)(1,+∞) 9.a π>或者a π<-10.小,-1.三.11.证明:F 〔x 〕在〔-∞,0〕上是增函数.证明过程如下: 设121212122112120,0,11()()()()()(),()()()0()()()x x x x F x F x f x f x f x f x f x f x f x f x f x f x <<->->-=--=+∞∴-<-在(,)上是减函数,又是奇函数,∴F 〔x 〕在〔-∞,0〕上是增函数.12.(]3,4.。
新课标高一数学同步测试第一单元函数的基本性质
2005-2006学年度上学期高中学生学科素质训练新课标高一数学同步测试(4)—第一单元(函数的基本性质)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分)。
1.下面说法正确的选项 ( )A .函数的单调区间可以是函数的定义域B .函数的多个单调增区间的并集也是其单调增区间C .具有奇偶性的函数的定义域定关于原点对称D .关于原点对称的图象一定是奇函数的图象 2.在区间)0,(-∞上为增函数的是 ( ) A .1=yB .21+-=xxyC .122---=x x yD .21x y +=3.函数c bx x y ++=2))1,((-∞∈x 是单调函数时,b 的取值范围( )A .2-≥bB .2-≤bC .2->bD . 2-<b 4.如果偶函数在],[b a 具有最大值,那么该函数在],[a b --有 ( ) A .最大值 B .最小值 C .没有最大值 D . 没有最小值 5.函数px x x y +=||,R x ∈是 ( ) A .偶函数 B .奇函数 C .不具有奇偶函数 D .与p 有关 6.函数)(x f 在),(b a 和),(d c 都是增函数,若),(),,(21d c x b a x ∈∈,且21x x <那么( ) A .)()(21x f x f < B .)()(21x f x f > C .)()(21x f x f =D .无法确定7.函数)(x f 在区间]3,2[-是增函数,则)5(+=x f y 的递增区间是( )A .]8,3[B . ]2,7[--C .]5,0[D .]3,2[- 8.函数b x k y ++=)12(在实数集上是增函数,则( )A .21->k B .21-<k C .0>b D .0>b 9.定义在R 上的偶函数)(x f ,满足)()1(x f x f -=+,且在区间]0,1[-上为递增,则( )A .)2()2()3(f f f <<B .)2()3()2(f f f <<C .)2()2()3(f f f <<D .)3()2()2(f f f <<10.已知)(x f 在实数集上是减函数,若0≤+b a ,则下列正确的是( )A .)]()([)()(b f a f b f a f +-≤+B . )()()()(b f a f b f a f -+-≤+C .)]()([)()(b f a f b f a f +-≥+D .)()()()(b f a f b f a f -+-≥+ 二、填空题:请把答案填在题中横线上(每小题6分,共24分). 11.函数)(x f 在R 上为奇函数,且0,1)(>+=x x x f ,则当0<x ,=)(x f .12.函数||2x x y +-=,单调递减区间为 ,最大值和最小值的情况为 . 13.定义在R 上的函数)(x s (已知)可用)(),(x g x f 的=和来表示,且)(x f 为奇函数,)(x g为偶函数,则)(x f = . 14.构造一个满足下面三个条件的函数实例,①函数在)1,(--∞上递减;②函数具有奇偶性;③函数有最小值为; . 三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分).15.(12分)已知]3,1[,)2()(2-∈-=x x x f ,求函数)1(+x f 得单调递减区间. 16.(12分)判断下列函数的奇偶性 ①xx y 13+=; ②x x y 2112-+-=; ③x x y +=4; ④⎪⎩⎪⎨⎧<--=>+=)0(2)0(0)0(222x x x x x y 。
高一数学《函数的基本性质》单元测试题
高一数学《函数的基本性质》单元测试题 班次 学号 姓名一、选择题:1.下列函数中,在区间),0(+∞上是增函数的是 ( )A.42+-=x yB.x y -=3C.x y 1=D.x y = 2.若函数)()(3R x x x f ∈=,则函数)(x f y -=在其定义域上是 ( )A.单调递减的偶函数B.单调递减的奇函数C.单调递增的偶函数D.单调递增的奇函数3.函数x x x f +=2)(的奇偶性为 ( )A.奇函数B.偶函数C.既是奇函数又是偶函数D.既不是奇函数有不是偶函数4.若)(x f y =在[)+∞∈,0x 上的表达式为)1()(x x x f -=,且)(x f 为奇函数,则(]0,∞-∈x 时)(x f 等于 ( )A.)1(x x --B. )1(x x +C. )1(x x +-D. )1(-x x5.已知定义在R 上的奇函数)(x f 满足)()2(x f x f -=+,则)6(f 的值为 ( )A.1-B.0C.1D.26.已知函数()()0f x x a x a a =+--≠,()()()2200x x x h x x x x ⎧-+>⎪=⎨+≤⎪⎩, 则()(),f x h x 的奇偶性依次为 ( )A .偶函数,奇函数B .奇函数,偶函数C .偶函数,偶函数D .奇函数,奇函数7.已知3()4f x ax bx =+-其中,a b 为常数,若(2)2f -=,则(2)f 的值等于 ( )A .2-B .4-C .6-D .10-8.下列判断正确的是 ( ) A .函数22)(2--=x x x x f 是奇函数 B.函数()(1f x x =- C.函数()f x x = D .函数1)(=x f 既是奇函数又是偶函数9.若函数2()48f x x kx =--在[5,8]上是单调函数,则k 的取值范围是 ( )A .(],40-∞B .[40,64]C .(][),4064,-∞+∞UD .[)64,+∞10.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是( )A .3a ≤-B .3a ≥-C .5a ≤D .3a ≥11.若)(x f 是偶函数,其定义域为()+∞∞-,,且在[)+∞,0上是减函数,则)252()23(2++-a a f f 与的大小关系是 ( ) A .)23(-f >)252(2++a a f B .)23(-f <)252(2++a a f C .)23(-f ≥)252(2++a a f D .)23(-f ≤)252(2++a a f 12.设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ⋅<的解集是( )A .{}|303x x x -<<>或 B .{}|303x x x <-<<或 C .{}|33x x x <->或 D .{}|3003x x x -<<<<或二、填空题:13.设函数)(x f y =是奇函数,若3)2()1(3)1()2(++=--+-f f f f ,则=+)2()1(f f ____________________;14.已知定义在R 上的奇函数()f x ,当0x >时,1||)(2-+=x x x f ,那么0x <时,()f x = ;15.若函数2()(32)f x k k x b =-++在R 上是减函数,则k 的取值范围为__________;16.若函数2()(2)(1)3f x k x k x =-+-+是偶函数,则)(x f 的递减区间是 .三、解答题:17.判断并证明下列函数的奇偶性:(1)21)(x x x f +=;(2)x x x f 2)(2+=;(3)x x x f 1)(+=;(4)()f x =18.已知3)1()2()(2+-+-=x k x k x f 是偶函数,求)(x f 的递减区间。
新课标高一数学同步测试(3)—第一单元(函数及其表示).doc
2005-2006学年度上学期高中学生学科素质训练新课标高一数学同步测试(3)—第一单元(函数及其表示)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分). 1.下列四种说法正确的一个是 ( ) A .)(x f 表示的是含有x 的代数式 B .函数的值域也就是其定义中的数集BC .函数是一种特殊的映射D .映射是一种特殊的函数 2.已知f 满足f (ab )=f (a )+ f (b),且f (2)=p ,q f =)3(那么)72(f 等于 ( ) A .q p + B .q p 23+ C .q p 32+ D .23q p + 3.下列各组函数中,表示同一函数的是( )A .xxy y ==,1 B .1,112-=+⨯-=x y x x yC .33,x y x y ==D . 2)(|,|x y x y ==4.已知函数23212---=x x xy 的定义域为( )A .]1,(-∞B .]2,(-∞C .]1,21()21,(-⋂--∞ D . ]1,21()21,(-⋃--∞ 5.设⎪⎩⎪⎨⎧<=>+=)0(,0)0(,)0(,1)(x x x x x f π,则=-)]}1([{f f f( ) A .1+π B .0 C .π D .1-6.下列图中,画在同一坐标系中,函数bx ax y +=2与)0,0(≠≠+=b a b ax y 函数的图象只可能是 ( ) 7.设函数x xf =+)1( ( )A .xx-+11 B .11-+x xC .xx+-11 D .12+x x8.已知二次函数)0()(2>++=a a x x x f ,若0)(<m f ,则)1(+m f 的值为 ( ) A .正数 B .负数 C .0 D .符号与a 有关9.已知在x 克%a 的盐水中,加入y 克%b 的盐水,浓度变为%c ,将y 表示成x 的函数关系式 ( )A .x b c a c y --=B .x c b a c y --=C .x ac bc y --=D .x ac cb y --= 10.已知)(x f 的定义域为)2,1[-,则|)(|x f 的定义域为( )A .)2,1[-B .]1,1[-C .)2,2(-D .)2,2[-二、填空题:请把答案填在题中横线上(每小题6分,共24分).11.已知x x x f 2)12(2-=+,则)3(f = . 12.若记号“*”表示的是2*ba b a +=,则用两边含有“*”和“+”的运算对于任意三个实数“a ,b ,c ”成立一个恒等式 .13.集合A 中含有2个元素,集合A 到集合A 可构成 个不同的映射.14.从盛满20升纯酒精的容器里倒出1升,然后用水加满,再倒出1升混合溶液,再用水加满. 这样继续下去,建立所倒次数x 和酒精残留量y 之间的函数关系式 . 三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分). 15.(12分)①.求函数|1||1|13-++-=x x x y 的定义域;②求函数x x y 21-+=的值域;③求函数132222+-+-=x x x x y 的值域.16.(12分)在同一坐标系中绘制函数x x y 22+=,||22x x y +=得图象.17.(12分)已知函数x x f x x f x =+-+-)()11()1(,其中1≠x ,求函数解析式.18.(12分)设)(x f 是抛物线,并且当点),(y x 在抛物线图象上时,点)1,(2+y x 在函数)]([)(x f f x g =的图象上,求)(x g 的解析式.19.(14分)动点P 从边长为1的正方形ABCD 的顶点出发顺次经过B 、C 、D 再回到A ;设x 表示P 点的行程,y 表示PA 的长,求y 关于x 的函数解析式.20.(14分)已知函数)(x f ,)(x g 同时满足:)()()()()(y f x f y g x g y x g +=-;1)1(-=-f ,0)0(=f ,1)1(=f ,求)2(),1(),0(g g g 的值.参考答案(3)一、CBCDA BCABC二、11.-1; 12.c b a c b a *+=+)()*(; 13.4; 14.*,)2019(20N x y x ∈⨯= ;三、15. 解:①.因为|1||1|-++x x 的函数值一定大于0,且1-x 无论取什么数三次方根一定有意义,故其值域为R ; ②.令t x =-21,0≥t,)1(212t x -=,原式等于1)1(21)1(2122+--=+-t t t ,故1≤y 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新课标高一数学同步测试—第一单元(函数的基本性质)
一、选择题
1、已知)(x f 在实数集上是减函数,若0≤+b a ,则下列正确的是 ( )
A .)]()([)()(b f a f b f a f +-≤+
B . )()()()(b f a f b f a f -+-≤+
C .)]()([)()(b f a f b f a f +-≥+
D .)()()()(b f a f b f a f -+-≥+
2、在区间)0,(-∞上为增函数的是 ( )
A .1=y
B .21+-=x x
y
C .122---=x x y
D .21x y +=
3、函数c bx x y ++=2))1,((-∞∈x 是单调函数时,b 的取值范围 ( )
A .2-≥b
B .2-≤b
C .2->b
D . 2-<b
4、如果偶函数在],[b a 具有最大值,那么该函数在],[a b --有 ( )
A .最大值
B .最小值
C .没有最大值
D . 没有最小值
5、函数px x x y +=||,R x ∈是 ( )
A .偶函数
B .奇函数
C .不具有奇偶函数
D .与p 有关
6、函数)(x f 在),(b a 和),(d c 都是增函数,若),(),,(21d c x b a x ∈∈,且21x x <那么(
)
A .)()(21x f x f <
B .)()(21x f x f >
C .)()(21x f x f =
D .无法确定
7、函数)(x f 在区间]3,2[-是增函数,则)5(+=x f y 的递增区间是 ( )
A .]8,3[
B . ]2,7[--
C .]5,0[
D .]3,2[-
8、函数b x k y ++=)12(在实数集上是增函数,则 ( )
A .21
->k B .21
-<k C .0>b D .0>b
9、下面说法正确的选项 ( )
A .函数的单调区间可以是函数的定义域
B .函数的多个单调增区间的并集也是其单调增区间
C .具有奇偶性的函数的定义域定关于原点对称
10、定义在R 上的偶函数)(x f ,满足)()1(x f x f -=+,且在区间]0,1[-上为递增,则( )
A .)2()2()3(f f f <<
B .)2()3()2(f f f <<
C .)2()2()3(f f f <<
D .)3()2()2(f f f <<
二、填空题
11、函数||2x x y +-=,单调递减区间为 ,最大值和最小值的情况为 .
12、定义在R 上的函数)(x s (已知)可用)(),(x g x f 的=和来表示,且)(x f 为奇函数,)(x g 为
偶函数,则)(x f = .
13、构造一个满足下面三个条件的函数实例,
①函数在)1,(--∞上递减;②函数具有奇偶性;③函数有最小值为; .
14、函数)(x f 在R 上为奇函数,且0,1)(>+=x x x f ,则当0<x ,=)(x f .
三、解答题
15、已知函数1)(2+=x x f ,且)]([)(x f f x g =,)()()(x f x g x G λ-=,试问,是否存在实数λ,使
得)(x G 在]1,(--∞上为减函数,并且在)0,1(-上为增函数.
16、已知]3,1[,)2()(2-∈-=x x x f ,求函数)1(+x f 得单调递减区间.
17、判断下列函数的奇偶性 ①x
x y 13+=; ②x x y 2112-+-=;
③x x y +=4; ④⎪⎩
⎪⎨⎧<--=>+=)0(2)0(0)0(222x x x x x y 。
18、已知8)(32005--
+=x
b ax x x f ,10)2(=-f ,求)2(f .
19、函数)(),(x g x f 在区间],[b a 上都有意义,且在此区间上
①)(x f 为增函数,0)(>x f ;
②)(x g 为减函数,0)(<x g .
判断)()(x g x f 在],[b a 的单调性,并给出证明.
20、在经济学中,函数)(x f 的边际函数为)(x Mf ,定义为)()1()(x f x f x Mf -+=,某公司每月最多
生产100台报警系统装置。
生产x 台的收入函数为2203000)(x x x R -=(单位元),其成本函数为
4000500)(+=x x C (单位元)
,利润的等于收入与成本之差. ①求出利润函数)(x p 及其边际利润函数)(x Mp ;
②求出的利润函数)(x p 及其边际利润函数)(x Mp 是否具有相同的最大值;
③你认为本题中边际利润函数)(x Mp 最大值的实际意义.
以下是答案
一、选择题
1、D
2、B
3、A
4、A
5、B
6、D
7、B
8、A
9、C
10、A
二、填空题
11、]0,2
1[-和),21[+∞,41
12、2
)()(x s x s --
13、R x x y ∈=,2 ;
14、1---=x y
三、解答题
15、221)1()1()]([)(24222++=++=+==x x x x f x f f x g .
)()()(x f x g x G λ-=λλ--++=22422x x x )2()2(24λλ-+-+=x x )()(21x G x G -)]2()2([2141λλ-+-+=x x )]2()2([2
242λλ-+-+-x x
)]2()[)((22212121λ-++-+=x x x x x x
有题设
当121-<<x x 时, 0))((2121>-+x x x x
λλλ-=-++>-++4211)2(2
2x x ,
则4,04≤≥-λλ 当0121<<<-x x 时,
0))((2121>-+x x x x
λλλ-=-++<-++4211)2(2
221x x ,
则4,04≥≥-λλ 故4=λ.
16、函数
12)1(]2)1[()1(222+-=-=-+=+x x x x x f
]2,2[-∈x ,
故函数的单调递减区间为]1,2[-.
17、①定义域),0()0,(+∞⋃-∞关于原点对称,且)()(x f x f -=-,奇函数. ②定义域为}2
1{不关于原点对称。
该函数不具有奇偶性.
③定义域为R ,关于原点对称,且x x x x x f +≠-=-44)(,)()(44x x x x x f +-≠-=-,故其不具有奇偶性.
④定义域为R ,关于原点对称,
当0>x 时,)()2(2)()(22x f x x x f -=+-=---=-;
当0<x 时,)()2(2)()(22x f x x x f -=---=+-=-;
当0=x 时,0)0(=f ;故该函数为奇函数.
18、已知)(x f 中x b ax x -+32005为奇函数,即)(x g =x b ax x -+32005中)()(x g x g -=-,也即)2()2(g g -=- 108)2(8)2()2(=--=--=-g g f
得18)2(-=g ,268)2()2(-=-=g f .
19、减函数令b x x a ≤<≤21 ,则有0)()(21<-x f x f ,即可得)()(021x f x f <<
;
同理有0)()(21>-x g x g ,即可得0)()(12<<x f x f ;
)()()()()()()()(22212111x g x f x g x f x g x f x g x f -+-=
)())()(())()()((221211x g x f x f x g x g x f -+-=*
显然0))()()((211>-x g x g x f ,0)())()((221>-x g x f x f 从而*式0*>, 故函数)()(x g x f 为减函数.
20、N x x x x x C x R x p ∈∈-+-=-=],100,1[,4000250020)()()(2.
)(x Mp )()1(x p x p -+=
),4000250020(]4000)1(2500)1(20[22-+---+++-=x x x x
x 402480-=
N x x ∈∈],100,1[
N x x x x p ∈∈+--=],100,1[,74125)2
125(20)(2
故当=x 62或63时,=max )(x p 74120(元)。
因为)(x Mp x 402480-=为减函数,当1=x 时有最大值2440。
故不具有相等的最大值. 边际利润函数区最大值时,说明生产第二台机器与生产第一台的利润差最大.。