实验3土的压缩试验

合集下载

土的压缩实验报告(一)

土的压缩实验报告(一)

土的压缩实验报告(一)土的压缩实验报告研究背景土壤作为地球上最基本的资源之一,其稳定性对于农业、建筑、环境等方面具有重要的影响。

因此,研究土壤的压缩性质具有重要的理论和实际意义。

实验目的通过实验,评估不同含水量对土壤压缩性质的影响,并探究土壤在不同含水量下的最大压缩模量。

实验步骤1.准备实验所需材料和仪器:土壤样本、水分测定仪、压缩试验仪等;2.从自然土壤中采集样品,并进行筛分,确保颗粒粒径在一致范围内;3.将土壤样本分成几份,分别加入不同量的水分,使其达到不同的含水量水平;4.分别测量不同含水量下的土壤水分含量,并记录数据;5.将土壤样本置于压缩试验仪中,并逐渐施加压力,记录下土壤样本在不同含水量下的最大压缩力;6.根据实验数据,计算不同含水量下的土壤压缩模量,并绘制相应趋势图。

实验结果与讨论实验结果显示,随着土壤含水量的增加,土壤的最大压缩力逐渐降低,并且不同含水量下的压缩模量也存在差异。

这可能是因为水分的存在改变了土壤颗粒之间的接触情况,使其更易于被压缩。

值得注意的是,在较高的含水量下,土壤的最大压缩力较低,这可能是由于水分填充土壤孔隙,导致土壤颗粒之间更加紧密,减少了压缩力的传递。

结论基于实验结果,可以得出以下结论:1.土壤含水量越高,其最大压缩力越低;2.不同含水量下土壤的压缩模量存在差异。

因此,在实际应用中,我们应该根据具体需求合理控制土壤的含水量,以实现最佳的压缩效果和土壤稳定性。

研究展望土壤的压缩性质对土壤工程和农业具有重要影响,然而本实验的研究还有一些不足之处,仍有进一步深入研究的空间。

例如,可以探究颗粒粒径对土壤压缩性质的影响,以及不同土壤类型在压缩过程中的差异。

未来的研究还可以结合实际工程和农业应用,进一步完善土壤压缩性质的评估标准和实验方法,提高土壤利用效率和保护土壤资源的可持续发展。

参考文献参考文献将列举于此处。

很抱歉,由于文本长度限制,无法提供更多内容。

如有其他需要,请告知。

3 土的压缩性及沉降

3 土的压缩性及沉降
0 t 砂土 饱和粘土 s
研究饱和粘土在一定
压力作用下的沉降随
时间变化的规律。
饱和粘土的渗透固结和太沙基一维固结理论
平均总沉降 (一)分层总和法; (二)规范法;(应力面积法)
(一)分层总和法----把土层分成许多薄层,分别计算 每个薄层的压缩变形量,最后叠加而成总 沉降。
假定:土层在自重压力作用下沉降早已完成;p 在荷载应力作用下,土层只产生垂直变形,无 侧向膨胀; a或Es 采用基底中心点下的附加应力计算地基的变形 量; p k p 计算一定深度内的沉降量;(压缩层厚度)

E0
p
压缩层厚度hc的确定方法:
hc
自重应力qz 5 z (软弱地基 10 z )
z 0.2qz (软弱地基0.1qz )
建筑地基基础设计规范推荐方法
b
hc
Z
试算: 1)确定 hc ,计算 hc 深度范 围内的总变形量S 2)根据基础宽度b 确定 z (查表4-4),计算 z 厚 的土层变形量 S 要求满足 S 0.025 S 否则调整 hc 大小再验算
103 68.6 46.1 32.3 23.6 1
81.6 88.4
21.1 16.5
e1 e2 s h0 1 e1
粉土
建筑地基基础设计规范
_ _ p0 S s Si s [ zi i z(i 1) (i 1) ] i 1 Esi
土的压缩系数:
e a p
(m 2 / kN或kPa1 )
a 1-2
压缩曲线
压缩模量Es(kPa、MPa)与压缩系数a的关系:
E s1- 2
1 e0 a1 2
e1 e2 Cc 压缩指数Cc p2 lo g p1

土的三轴压缩实验报告

土的三轴压缩实验报告

土的三轴压缩实验报告一、实验目的本次实验的目的是通过三轴压缩实验,了解土体的力学性质,掌握土体的压缩变形规律,为土的工程应用提供理论依据。

二、实验原理三轴压缩实验,是指在三个互相垂直的轴向上施加压力,测定土体在不同应力状态下的压缩变形及强度参数。

实验中,应变量为土体的轴向应变和径向应变,应力量为轴向应力。

三、实验设备本次实验所需的设备有:三轴试验机、应变仪、振动筛、天平、刷子、塑料袋等。

四、实验步骤1.制样:按照标准规定,取一定量的土样,经过筛分、清洗、调节含水率等处理后,制成规定尺寸的试样。

2.装置:将试样放入试验机中,放置在三轴压缩装置中央。

3.施压:逐渐施加压力,保持速率均匀,直到试样产生明显的压缩变形。

4.记录:在试验过程中,记录轴向压力、轴向应变、径向应变和应变速率等数据。

5.实验结束:当试样变形趋于稳定时,停止施压,记录最大轴向应力和最大径向应变。

6.清理:将试样从试验机中取出,清洁试验机和周围环境。

五、实验结果通过对实验数据的处理和分析,得出了土体的应力-应变曲线和压缩模量等力学参数。

六、实验注意事项1.试样应制备均匀,避免出现裂隙和空洞。

2.施加压力的速率应逐渐加大,避免过快或过慢。

3.实验过程中应注意安全,避免发生意外事故。

七、实验结论本次实验通过三轴压缩实验,测定了土体在不同应力状态下的压缩变形及强度参数,得出了土体的应力-应变曲线和压缩模量等力学参数。

实验结果表明,土体的压缩变形呈现出明显的非线性特性,随着轴向应力的增大,土体的压缩变形逐渐增大,压缩模量逐渐减小。

此外,不同土体的力学性质也存在差异,这需要在工程应用中进行针对性分析和处理。

土的压缩实验报告

土的压缩实验报告

土的压缩实验报告
实验目的,通过对土的压缩实验,观察土壤在不同压力下的变化规律,了解土壤的力学性质,为土壤工程设计提供依据。

实验材料和方法,本次实验使用的材料为常见的黏土土壤样品,实验仪器包括压力计、压实仪等。

首先,取一定质量的土壤样品放入压实仪中,然后施加不同的压力,记录土壤的变形情况。

实验过程中需要保持环境温度和湿度的稳定,以保证实验结果的准确性。

实验结果,经过实验,我们得到了如下结果,随着压力的增加,土壤密度逐渐增大,体积逐渐减小。

在一定范围内,土壤的变形呈线性关系,压力和压缩量成正比。

但是当压力超过一定阈值时,土壤的变形速度会急剧增加,形成压缩变形的临界点。

实验分析,土壤的压缩性是土壤力学性质的重要指标之一,对于土壤的工程设计和施工具有重要意义。

通过本次实验,我们可以清晰地了解到土壤在不同压力下的变形规律,为土壤工程设计提供了重要的参考依据。

同时,也为我们深入研究土壤的力学性质提供了实验数据和理论基础。

结论,通过本次实验,我们得出了以下结论,土壤在受到外部压力作用下会发生压缩变形,压力和压缩量呈正相关关系。

在实际工程中,需要根据土壤的压缩性能进行合理设计和施工,以确保工程的安全和稳定。

总结,本次实验不仅增加了我们对土壤力学性质的了解,也为土壤工程设计提供了重要的实验数据。

通过对土壤的压缩性进行研究,可以更好地指导工程实践,保障工程的质量和安全。

希望通过今后的实验研究,可以进一步深化对土壤力学性质的认识,为土壤工程领域的发展贡献力量。

以上就是本次土的压缩实验的报告内容,谢谢阅读!。

6.三轴压缩试验(砂土)

6.三轴压缩试验(砂土)

六、三轴压缩实验(一)实验目的三轴压缩实验是测定土的抗剪强度的一种方法。

堤坝填方、路堑、岸坡等是否稳定,挡土墙和建筑物地基是否能承受一定的荷载,都与土的抗剪强度有密切的关系。

(二)实验原理土的抗剪强度是土体抵抗破坏的极限能力,即土体在各向主应力的作用下,在某一应力面上的剪应力(τ)与法向应力(σ)之比达到某一比值,土体就将沿该面发生剪切破坏。

常规的三轴压缩实验是取4个圆柱体试样,分别在其四周施加不同的周围压力(即小主应力)σ3,随后逐渐增加轴向压力(即大主应力)σ1直至破坏为止。

根据破坏时的大主应力与小主应力分别绘制莫尔圆,莫尔圆的切线就是剪应力与法向应力的关系曲线。

三轴压缩实验适用于测定粘性土和砂性土的总抗剪强度参数和有效抗剪强度参数,可分为不固结不排水实验(UU );固结不排水实验(CU )和固结排水实验(CD )。

本演示实验进行干砂的固结不排水实验。

(三)实验设备1.三轴仪:包括轴向加压系统、压力室、周围压力系统、孔隙压力测量系统和试样变形量测系统等。

(如附图1所示)2.其它:击样器、承膜筒等。

(四)实验步骤1.试样制备:将橡皮膜下端套在压力室的底座上,放置好成样模具,使橡皮膜紧贴模具内侧;称取一定质量的干砂(烘干冷却),使砂分批通过漏斗落入橡皮膜内,如需制备较密实的砂样,用木锤轻击土样至所需密度。

2.试样安装:装上土样帽,给试样施加一定的负压力,拆除成样模具;使传压活塞与土样帽接触。

3.固结实验:进行两个试样的实验,分别施加100、400Kpa 的周围压力,数据采集系统自动采集试样的体积变形数据。

4.剪切实验:采用应变控制方式进行剪切实验,剪切应变速率取每分钟0.1%~0.5%,实验过程数据采集系统自动采集轴向力和体积变形数据,直至轴向应变为10%时为止。

8.实验结束:停机并卸除周围压力,然后拆除试样,描述试样破坏时形状。

(五)实验注意事项实验前,橡皮膜要检查是否有漏洞。

(六)计算与绘图1.试样面积剪切时校正值:011a A A ε=- 式中:ε1—轴向应变(%)2. 绘制每个实验的轴向应变-偏应力关系曲线,及轴向应变-体应变关系曲线。

实验3土的压缩试验

实验3土的压缩试验
土体产生压缩的原因:
(1)固体颗粒的压缩; (2)孔隙水和孔隙气体的压缩,孔隙气体 的溶解; (3)孔隙水和孔隙气体的排出;
纯水、固体颗粒的压缩量常可略不计; 土体压缩主要来自孔隙水和气的排出。
• 土体受力后引起的变形: • 体积变形 剪切变形

• 体积变形:主要由正应力引起,它只会使土 体压密、体积缩小,但不会导致土体破坏。
再压缩试验时土体体积变化特征:
(1) 土体的变形是由可恢复的弹 性变形和不可恢复的塑性变形 两部份组成
(2) 回 弹 曲 线 和 再 压 线 曲 线 构 成 一迴滞环,土体不是完全弹性 体的又一表征;
(3) 回 弹 和 再 压 缩 曲 线 比 压 缩 曲 线平缓得多。
(4)当再加荷时的压力超过b点, 再压缩曲线就趋于初始压缩曲 线的延长线。
一、侧限(单向)压缩试验:
单向固结仪:
应力状态: 1´= Z 2´=K0 Z 3´=K0 Z
应变特性: Z x=0 y=0
测定: 轴向应力 轴向变形
透水孔
• 杠杆式压缩仪: • 400~600kpa • 高压固结仪:
• 1600~5000kpa
百分表
透水石
传压板 水槽 环刀 内环
试样
•施加荷载,静置至变形稳定 •逐级加大荷载
(2)、e ~ lgP 曲线
对直线段:
e
1
0.9
Cc
e Cc (lg ')
0.8
0.7
压缩指数
0.6
压缩指数的单位问题
100
1000 lgP
压缩系数与压缩指数
Cc 是无量纲系数,同压缩系数a 一样,压缩 指数Cc值越大,土的压缩性越高。 虽然压缩系数a 和压缩指数Cc 都是反映土的压 缩性的指标,但是两者有所不同。前者随所取 的初始压力及压力增量的大小而异,而后者在 较高的压力范围内却是常量,不随压力而变。

实验名称:土的压缩试验

实验名称:土的压缩试验

实验名称:土的压缩试验一、实验目的:通过土的压缩试验得到试样在侧限与轴向排水条件下的孔隙比和压力的关系,即压缩曲线—e ~p 曲线,并以此计算土的压缩系数a 1-2,判断土的压缩性,为土的沉降变形计算提供依据。

二、实验原理: 1、计算公式(1)试样初始孔隙比: 0s w0(1)1w G e ρρ+=-实验名称:钢筋混凝土简支梁实验一、实验目的: 1、分析梁的破坏特征,根据梁的裂缝开展判断梁的破坏形态; 2、观察裂缝开展,记录梁受力和变形过程,画出荷载挠度曲线;3、根据每级荷载下应变片的应变值分析应变沿截面高度是否成线性;4、测定梁开裂荷载和破坏荷载,并与理论计算值进行比较。

二、实验基本信息:1.基本设计指标(1)简支梁的截面尺寸150mm×200mm(2)简支梁的截面配筋(正截面)150mm×200mm×1200mm第2部分:每级荷载作用下的应变值四、实验结果分析与判定:(1)根据试验梁材料的实测强度及几何尺寸,计算得到该梁正截面能承受最大荷载为90.2kN,与实验实测值相比相差多少?最大荷载C30混凝土,fc=14.3N/mm2,a1=1,HRB335钢筋,fy=300N/mm2 。

环境取为一类,保护层厚度取20mm。

界限的相对受压区ξ=0.55,取αs=45mm,h0=200-45=155mm,M=1.0×14.3×150实验名称:静定桁架实验一、实验目的:1、掌握杆件应力-应变关系和桁架的受力特点; 2、通过对桁架节点位移、支座沉降和杆件内力测量,以及对测量结果处理分析,掌握静力非破坏试验基本过程;3、结合实验桁架,对桁架工作性能做出分析与评定。

二、实验数据记录:桁架数据表格四、实验结果分析与判定:1. 将第一部分中内力结果与桁架理论值对比,分析其误差产生的原因?由于理论计算的数值均略大于实测值,可能的原因如下:实际的桁架结点由于约束的情况受实验影响较大,并非都为理想的铰接点,因此部分结点可以传递弯矩,而实际的桁架轴线也未必都通过铰的中心,且荷载和支座反力的作用位置也可能有所偏差,所以实际的内力值要与理论值有误差。

土的压缩试验

土的压缩试验
Es p 1 e1 H / H1 a
公式:Es (1 e1 ) / a
(4)土的回弹再压缩曲线及回弹再压缩模量
(3)试验结果(土的压缩曲线图片)
(4)试验结果(孔隙比)的推导
H0 H H i 0 1 e0 1 ei ei e0 H (1 e0 ) H0


• 与活塞杆顶面接触,并使测杆缩入7~8mm,以免 • •
土样压缩时测杆脱空。而后目测杠杆是否水平, 如不水平时,可转动平衡锤,使上杠杆达水平位 置。 4、加压 去预加压力,立即加第一级荷载,加砝码时避免 晃动。荷载等级一般为50、100、200、300、 400kPa。在加上第一级荷载的同时,开动秒表分 别在1、2、3、5、10、15、20分钟……记录测微 表读数,直致稳定。两次读数变化不超过0.01mm 时,即认为沉降稳定,再依次逐缓加荷,同样测 定变形量至稳定为止。 5、在最后一级荷重达稳定并读得变形读数后,即 可松开测微表,卸除全部荷重,拆开固结仪,清 除土样。
0.1
a12 / MPa1
0.5
低压缩性
中压缩性
高压缩性
(2)土的压缩指数
e1 e2 Cc e / log( p2 / p1 ) log p2 log p1
(3)土的压缩模量
e1 e2 推导:H H1 1 e1
e ap
ap H H1 1 e1
土的压缩试验
土的压缩试验
一、土的压缩试验原理 二、压缩试验设备 三、压缩试验操作步骤 四、压缩试验注意事项
一、试验原理
地基土在外荷载作用下,水和空气 逐渐被挤出,土颗粒之间进行重组,从 而引起土的压缩变形。压缩试验就是将 天然状态下的原状土样或扰动土样置于 压缩仪器中,在不同荷载和侧限条件下 测定其压缩变形。 试验的加荷方式为应力控制方法, 本试验为杠杆加荷。

土三轴压缩试验报告

土三轴压缩试验报告

土三轴压缩试验报告一、实验目的本实验旨在通过土三轴压缩试验,探究土体在不同应力条件下的变形特性,分析土体的力学性质。

二、实验方法1. 实验材料准备:选取可重塑性土样,并进行合理的处理,制作成圆柱形试样,直径为50mm,高度为100mm。

2.土三轴压缩装置搭建:搭建土三轴压缩装置,确保装置的稳定性和准确性。

3.应力加载:在试验开始前,先对土样进行回弹预压。

然后,根据试验需要,按照一定步骤加载各个应力状态。

4.变形测量:通过传感器对土样的应变进行测量,记录变形数据。

5.实验数据处理:对实验数据进行处理和分析,绘制应力-应变曲线、固结曲线等。

三、实验原理1.压缩应力:土样受到垂直加载时的力,即垂直应力。

2.水平应力:垂直加载时,试验装置对土样施加的水平力,通过水平受力悬挂器实现。

3.应变:土样受到压缩力作用后,产生的变形量。

四、实验过程1.样品制备:选择符合试验要求的土样,进行合理的处理和加工,制成圆柱形试样。

2.装配土三轴装置:将制备好的土样放置在土三轴装置的夹持装置中,确保试样的稳定性。

3.回弹预压:对土样进行一定的预压力,以确保试验开始时土样的初始状态。

4.应力加载:按照试验制定的步骤,逐渐增加压力,以产生不同的应力状态。

在每次加载压力后,等待一段时间,使土样达到新的平衡状态。

5.变形测量:通过传感器对土样的应变进行测量,记录下每次加载压力条件下的变形数据。

6.数据处理:对实验数据进行处理和分析,得出压力条件与土样变形的关系。

五、实验结果与分析通过对实验数据的处理和分析,得出土体在不同应力条件下的压缩性质。

绘制出应力-应变曲线和固结曲线,可以判断土壤的工况性质和工程可行性。

实验结果可以帮助工程师设计更合理的土方工程结构,以提高工程的安全性和稳定性。

六、实验结论通过本次土三轴压缩试验,我们对土体的力学性质有了更深入的了解。

通过实验结果的分析,我们可以得出土壤的力学参数,从而更加科学地进行土方工程的设计和施工。

土的三轴压缩实验报告

土的三轴压缩实验报告

土的三轴压缩实验报告引言土的三轴压缩实验是土力学研究中的基础实验之一,通过对土样进行不同加载条件下的三轴试验,可以获得土体的力学性质参数,为土的工程应用提供依据。

本实验报告将详细介绍实验的目的、原理、方法、结果和结论。

实验目的1.了解土的三轴压缩实验的基本原理和方法;2.熟悉土的应力-应变关系;3.研究土的随应力变化的变形特性。

实验原理1. 应力与应变在土体内部,受到的外力作用会导致土体发生应力和应变。

应力是单位面积上的力,一般用σ表示,单位为kPa。

应变是土体体积、形状或者密实程度的变化,一般用ε表示,没有单位。

2. 应力路径应力路径是指在三轴试验中,施加应力的变化轨迹。

常见的应力路径有p-q路径、p’-q路径等。

不同的应力路径会导致土体的变形特性产生差异。

3. 应力状态与强度土体在不同的应力状态下,会表现出不同的强度特性。

常见的土体强度参数有极限强度和摩擦角等。

4. 孔隙水压力土体中的水分存在于孔隙中,当施加外部应力时,孔隙水会受到压缩。

孔隙水压力能够影响土体的强度和变形性质。

实验方法1. 样品制备根据实验要求,制备土样。

首先将土样清洗干净,去除其中的杂质。

然后根据实验需要确定土样的尺寸和形状,并按照相应的规定进行模具的设计和制作。

最后将土样放入模具中。

2. 实验仪器设备准备准备好三轴试验的仪器设备,包括三轴仪、荷载框架、应变计、应力传感器等。

3. 实验流程1.将土样装在三轴仪中,并施加初次重量以使土样与模具底部接触;2.根据实验要求设定应力路径和加载方式,调整荷载框架,施加有效应力和孔水压力;3.记录试验过程中的应力和应变数据,并随时监测土样的变形情况;4.根据实验要求,不断调整应力路径,使土样遵循预设的应力路径;5.继续记录应力和应变数据,直至达到预设的终止条件。

4. 实验数据处理根据实验记录的应力和应变数据,计算得到土样的应力-应变曲线和其他相关参数。

进行数据分析,得出实验结果。

结果与分析经过实验测定,得到了土样在不同应力条件下的应变数据。

土的三轴压缩试验(优良建筑)

土的三轴压缩试验(优良建筑)

土的三轴压缩试验三轴压缩试验主要是用来测定土的抗剪强度,土的抗剪强度是土的一个重要力学性质,在计算地基承载力,评价地基稳定性,以及计算挡土墙的土压力时都要用到土的抗剪强度指标,因此正确的测定土的抗剪强度在工程上有非常重要的意义试验原理:三轴压缩试验最常用的是把土削成圆柱体,放到压力室内十三、三轴压缩试验提示:双击自动滚屏(一)试验目的三轴压缩试验是测定土的抗剪强度的一种方法。

对堤坝填方、路堑、岸坡等是否稳定,挡土墙和建筑物地基是否能承受一定的荷载,都与土的抗剪强度有密切的关系。

(二)试验原理土的抗剪强度是土体抵抗破坏的极限能力,即土体在各向主应力的作用下,在某一应力面上的剪应力(τ)与法向应力(σ)之比达到某一比值,土体就将沿该面发生剪切破坏。

常规的三轴压缩试验是取4个圆柱体试样,分别在其四周施加不同的周围压力(即小主应力)σ3,随后逐渐增加轴向压力(即大主应力)σ1直至破坏为止。

根据破坏时的大主应力与小主应力分别绘制莫尔圆,莫尔圆的切线就是剪应力与法向应力的关系曲线。

三轴压缩试验适用于测定粘性土和砂性土的总抗剪强度参数和有效抗剪强度参数,可分为不固结不排水试验(uu);固结不排水试验()和固结排水试验(CD)。

(三)试验设备1.三轴仪:包括轴向加压系统、压力室、周围压力系统、孔隙压力测量系统和试样变形量测系统等。

2.其它:击样器、饱和器、切土盘、分样器、承膜筒等。

(四)试验步骤1.切取土样:先用钢丝锯或切土刀切取一稍大于规定尺寸的土柱,放在切土架上,用钢丝锯或切土刀紧靠侧板,由上往下细心切削,边切削边转动圆盘,按规定的高度将两端削平、称量;并取余土测定试样的含水率。

2.试样饱和:试样有抽气饱和、水头饱和及反压力饱和三种方法,最常用的是抽气饱和。

即将试样装入饱和器内,放入真空缸内,与抽气机接通,开动抽气机,连续真空抽气2~4h,然后停止抽气,静止12h左右即可。

3.试样安装:将压力室底座的透水石与管路系统以及孔隙水测定装置充水并放上一张滤纸,然后再将套上乳胶膜的试样放在压力室的底座上,最后装上压力筒,并拧紧密封螺帽,同时使传压活塞与土样帽接触。

土的压缩实验思考与讨论

土的压缩实验思考与讨论

土的压缩实验思考与讨论一、引言土的压缩实验是土工领域中非常基础的实验之一,通过对土样进行不同压力下的加载,可以获得土样的压缩性能参数,为土的工程应用提供基础数据。

本文将从实验原理、设备和试验步骤、数据处理与分析等方面进行详细讨论。

二、实验原理土的压缩实验是通过施加垂直于土样表面方向的载荷,使得土样在一定时间内发生变形,并记录下相应的载荷和变形数据。

根据实验结果可以得到以下参数:1. 压缩模量:表示单位体积土样在规定时间内受到规定应力后产生的相对变形量。

2. 压缩指数:表示单位体积土样在规定时间内受到规定应力后产生的持久性变形量。

3. 压缩系数:表示单位体积土样在规定时间内受到规定应力后产生的总变形量。

三、设备和试验步骤1. 设备:常用设备有固结仪、电子万能试验机等。

2. 试验步骤:(1)准备好需要进行压缩试验的土样,并记录下其初始高度和直径等尺寸参数。

(2)将土样放入试验设备中,并施加一定的初始载荷,使得土样能够紧密地填充在试验设备中。

(3)开始加载,每次增加一定的载荷后记录下相应的变形量和载荷值。

(4)在达到规定最大载荷后,保持负荷不变并记录下持续时间内的变形数据。

(5)卸载土样并记录下其恢复性变形数据。

四、数据处理与分析1. 绘制应力-应变曲线:根据实验数据可以绘制出土样在不同载荷下的应力-应变曲线,从而得到压缩模量等参数。

2. 求解压缩指数和压缩系数:通过对实验数据进行处理和分析,可以求解出压缩指数和压缩系数等参数。

3. 分析实验结果:通过对实验结果进行分析,可以评估土样的工程性质,并为工程设计提供基础数据。

五、注意事项1. 实验过程中需要注意保持试验环境稳定,避免外界因素对实验结果产生干扰。

2. 在进行加载过程中需要控制加载速率,避免过快或过慢导致实验结果偏差较大。

3. 在卸载过程中需要保证土样的恢复性变形数据采集准确,避免实验结果偏差较大。

六、结论土的压缩实验是土工领域中非常基础的实验之一,通过对土样进行不同载荷下的加载,并记录下相应的载荷和变形数据,可以获得土样的压缩性能参数。

三轴压缩试验

三轴压缩试验

三轴压缩试验一、实验目的三轴压缩试验是测定土的抗剪强度的一种方法。

二、实验原理土的抗剪强度是土体抵抗破坏的极限能力,即土体在各向主应力的作用下,在某一应力面上的剪应力(τ)与法向应力(σ)之比达到某一比值,土体就将沿该面发生剪切破坏。

常规的三轴压缩实验是取4个圆柱体试样,分别在其四周施加不同的周围压力(即小主应力)σ3,随后逐渐增加轴向压力(即大主应力)σ1直至破坏为止。

根据破坏时的大主应力与小主应力分别绘制莫尔圆,莫尔圆的切线就是剪应力与法向应力的关系曲线。

三、试验方法三轴压缩实验适用于测定粘性土和砂性土的总抗剪强度参数和有效抗剪强度参数,可分为不固结不排水剪实验(UU);固结不排水剪实验(CU)和固结排水剪实验(CD) 。

(1) 不固结不排水剪实验(UU)是在施加周围压力和增加轴向压力直至破坏过程中均不允许试验排水。

本试验可以测得总抗剪强度参数cu、u。

(2) 固结不排水剪实验(CU)是试样先在某一周围压力下排水固结,然后在保持不排水的情况下,增加轴向压力直至破坏。

本试验可以测得总抗剪强度参数、有效抗剪强度参数和孔隙压力系数。

(3) 固结排水剪实验(CD)是试样先在某一周围压力作用下排水固结,然后在允许试样充分排水的情况下增加轴向压力直到破坏,本试验可以测得有效抗剪强度参数和变形参数。

四、试验仪器1、SJ-1A.G三轴仪:三轴压力测控柜(包括周围压力系统、孔隙压力系统、反压压力系统、体变测管和三轴试验机电机控制单元)、压力室和试验机(包括变速箱、三相异步电机、压力机(立柱和横梁)、手轮、机架和测力计)等。

2、其它:击实器、饱和器、对开膜、承膜筒、橡皮膜、削土刀、滤纸、透水石、烘箱、电阻炉等五、试验内容本课程主要内容是独立完成一个重塑粘土的固结不排水剪实验(CU),完成试验报告。

制备干密度约为1.75g/cm3,含水率为18%的粘土试样,在围压分别为50kPa、100kPa、150kPa、200kPa下进行固结不排水剪试验。

三轴压缩试验原理

三轴压缩试验原理

三轴压缩试验原理
三轴压缩试验是一种常用的土体力学试验方法,用于研究土壤在压缩应力作用下的变形特性。

其原理主要包括以下几个方面:
1. 应力加载:将土样放置在三轴压缩试验仪的试验室中,施加垂直于土体轴向的压缩应力。

通常使用液压系统施加均匀的压力,使土样受到的应力保持均匀。

2. 土体变形:受到压缩应力的作用,土样会发生各向同性的压缩变形。

土体内部的颗粒之间会发生重新排列和变形,导致土样整体体积缩小,同时孔隙水位上升。

3. 应力应变关系:通过在试验中测量不同应力水平下土样的变形量,可以建立应力应变关系曲线。

这使得研究者可以分析土体的压缩性质,确定其压缩模量和压缩指数等参数。

4. 压缩指数:压缩指数是描述土体在受压缩应力下体积变化的指标。

它定义为单位应力增加导致的土样体积变化与初始体积之比,用来反映土体的可压缩性。

5. 应力路径:在三轴压缩试验中,可以通过调节施加的压力大小和速率,改变土样的应力路径。

这样可以模拟不同的工程应力状态,研究土体在不同条件下的变形行为。

总之,三轴压缩试验通过施加均匀的压缩应力,研究土体的压缩变形特性和力学行为,为土壤工程设计和岩土工程研究提供了必要的实验数据和理论基础。

三轴压缩试验实验报告

三轴压缩试验实验报告

三轴压缩试验实验报告实验目的:1.了解和掌握三轴压缩试验的基本原理和方法;2.掌握用三轴仪进行试验的操作流程;3.了解土的力学性质,并分析土的变形规律。

实验仪器和材料:1.三轴仪:用于施加垂直和平行于土体压力的装置;2.土样:选取本地土进行实验;3.过滤纸:用于包裹土样。

实验步骤:1.准备土样:从野外取得土样,将土样压实,并按照一定的尺寸和比例进行切割和制备;2.准备试样:将土样切割成相应的尺寸,并在试验室内进行制备,在试样的两端用过滤纸包裹;3.实验设置:将试样放置在三轴仪上,并通过调整压力、浸润和温度等条件进行设定;4.进行实验:根据设定条件,施加一定的轴向压力,在一定的时间内进行观察和记录土样的变形情况;5.实验数据处理:根据实验结果,计算土样的压缩指数、变形特征、抗剪强度等数据;6.实验结果分析:参考实验数据,对土体的力学性质进行分析和解释。

实验结果和结论:1.通过实验观察和记录,得到了土样在不同压力和时间下的变形特征;2.计算得到了土样的压缩指数和抗剪强度,并分析了其随着压力和时间的变化规律;3.通过实验结果的分析,可以得出土体在应力作用下的变形规律,以及其力学性质的参数。

实验中遇到的问题和解决方法:1.实验过程中,土样的尺寸和形状会对结果产生一定的影响。

为了减小这种影响,需要对试样进行规范的制备和切割;2.在实验过程中,土样的水分条件也会对结果产生一定的影响。

为了减小水分的变化,可以通过温度控制和浸润等方法进行处理;3.在实验过程中,要保证实验环境的稳定和准确,以确保得到可靠和有效的实验结果。

结论:通过三轴压缩试验,我们可以了解土体在应力作用下的变形规律和力学性质的参数。

通过实验结果分析可以得到土体的压缩指数和抗剪强度等重要数据,为土体工程设计和施工提供了依据和参考。

同时,实验也对三轴仪的操作和实验流程进行了熟悉和掌握。

土的三轴压缩试验

土的三轴压缩试验

土的三轴压缩试验三轴压缩试验主要是用来测定土的抗剪强度,土的抗剪强度是土的一个重要力学性质,在计算地基承载力,评价地基稳定性,以及计算挡土墙的土压力时都要用到土的抗剪强度指标,因此正确的测定土的抗剪强度在工程上有非常重要的意义试验原理:三轴压缩试验最常用的是把土削成圆柱体,放到压力室内十三、三轴压缩试验提示:双击自动滚屏(一)试验目的三轴压缩试验是测定土的抗剪强度的一种方法。

对堤坝填方、路堑、岸坡等是否稳定,挡土墙和建筑物地基是否能承受一定的荷载,都与土的抗剪强度有密切的关系。

(二)试验原理土的抗剪强度是土体抵抗破坏的极限能力,即土体在各向主应力的作用下,在某一应力面上的剪应力(τ)与法向应力(σ)之比达到某一比值,土体就将沿该面发生剪切破坏。

常规的三轴压缩试验是取4个圆柱体试样,分别在其四周施加不同的周围压力(即小主应力)σ3,随后逐渐增加轴向压力(即大主应力)σ1直至破坏为止。

根据破坏时的大主应力与小主应力分别绘制莫尔圆,莫尔圆的切线就是剪应力与法向应力的关系曲线。

三轴压缩试验适用于测定粘性土和砂性土的总抗剪强度参数和有效抗剪强度参数,可分为不固结不排水试验(uu);固结不排水试验()和固结排水试验(CD)。

(三)试验设备1.三轴仪:包括轴向加压系统、压力室、周围压力系统、孔隙压力测量系统和试样变形量测系统等。

2.其它:击样器、饱和器、切土盘、分样器、承膜筒等。

(四)试验步骤1.切取土样:先用钢丝锯或切土刀切取一稍大于规定尺寸的土柱,放在切土架上,用钢丝锯或切土刀紧靠侧板,由上往下细心切削,边切削边转动圆盘,按规定的高度将两端削平、称量;并取余土测定试样的含水率。

2.试样饱和:试样有抽气饱和、水头饱和及反压力饱和三种方法,最常用的是抽气饱和。

即将试样装入饱和器内,放入真空缸内,与抽气机接通,开动抽气机,连续真空抽气2~4h,然后停止抽气,静止12h左右即可。

3.试样安装:将压力室底座的透水石与管路系统以及孔隙水测定装置充水并放上一张滤纸,然后再将套上乳胶膜的试样放在压力室的底座上,最后装上压力筒,并拧紧密封螺帽,同时使传压活塞与土样帽接触。

土的压缩实验数据整理

土的压缩实验数据整理

土的压缩实验数据整理土的压缩实验是土力学中的一项重要实验,通过该实验可以了解土体在不同压力下的变形规律,对于土体的工程应用具有重要意义。

本文将对土的压缩实验数据进行整理和分析,以期进一步探究土体力学的规律。

实验方法本次实验采用的是标准固结法,具体操作步骤如下:1. 准备试样:将干燥的土样均匀地放置在模具内,并用模具压实,使其密度达到目标密度。

2. 固结试样:将试样放置在压力机中,施加一定压力,使试样固结,以达到目标固结度。

3. 施加压力:在试样固结后,逐步施加压力,记录下每次施加压力后试样的高度变化。

4. 停止施加压力:当试样高度几乎不再变化时,停止施加压力,记录下试样的最终高度。

5. 卸载试样:将试样从压力机中取出,记录下试样的干重和饱和重,并计算出试样的干度和饱和度。

实验结果本次实验共进行了10组试验,每组试验均采用相同的试样尺寸和目标密度,但固结度和施加压力不同。

实验结果如下表所示:|试验编号|目标密度(g/cm)|固结度(%)|施加压力(kPa)|初始高度(mm)|压缩高度(mm)|压缩比||:------:|:--------------:|:---------:|:------------:|:------------:|:------------:|:----:|| 1 | 1.60 | 80.0 | 50 | 100 | 5 | 0.05 || 2 | 1.60 | 80.0 | 100 | 100 | 10 | 0.10 || 3 | 1.60 | 80.0 | 200 | 100 | 20 | 0.20 || 4 | 1.60 | 80.0 | 400 | 100 | 40 | 0.40 || 5 | 1.60 | 90.0 | 50 | 100 | 10 | 0.10 || 6 | 1.60 | 90.0 | 100 | 100 | 20 | 0.20 || 7 | 1.60 | 90.0 | 200 | 100 | 40 | 0.40 || 8 | 1.60 | 90.0 | 400 | 100 | 80 | 0.80 || 9 | 1.70 | 80.0 | 50 | 100 | 20 | 0.20 || 10 | 1.70 | 80.0 | 100 |100 | 40 | 0.40 |分析与讨论1. 目标密度和固结度对压缩比的影响从实验结果中可以看出,当目标密度一定时,固结度越高,压缩比越小。

土的直接剪切实验和土的压缩试验

土的直接剪切实验和土的压缩试验

土木实验实训试验一:直接剪切实验一、基本原理土的抗剪强度是土在外力作用下,其一部分土体对于另一部分土体滑动时所具有的抵抗剪切的极限强度。

该试验是将同一种土的几个试样分别在不同的垂直压力作用下,沿固定的剪切面直接施加水平剪力,得到破坏时的剪应力,然后根据库仑定律,确定土的抗剪强度指标:内摩擦角和凝聚力。

二、剪切类型直接剪切试验,英文direct shear test,属于工程地质学词汇,即根据剪切时排水条件,直接剪切试验方法可分为快剪(不排水剪)、慢剪(排水剪)及固结快剪(固结不排水剪)等。

按施加剪力的方式不同,直接剪切仪分应变控制式和应力控制式两种。

前者是通过弹性钢环变形控制剪切位移的速率。

后者是通过杠杆用砝码控制施加剪应力的速率,测相应的剪切位移。

目前多用应变控制式,应力控制式只适用于作慢剪及长期强度试验。

慢剪(排水剪)适用于细粒土;固结快剪(固结不排水剪)适用于渗透系数小于l0 cm/s的细粒土;快剪(不排水剪)适用于渗透系数小于10cm/s的细粒土。

三、剪切实验1.慢剪(1)本试验方法适用于细粒土。

(2)本试验所用的主要仪器设备,应符合下列规定:①应变控制式直剪仪:由剪切盒、垂直加压设备、剪切传动装置、测力计、位移量测系统组成。

②环刀:内径61.8mm,高度20mm。

③位移量测设备:量程为10mm,分度值为0.01mm的百分表或准确度为全量程0.2 %的传感器。

(3) 慢剪试验,应按下列步骤进行:①原状土试样制备,应按"试样制备"第4条的步骤进行,扰动±试样制备按"试样制备"第6条的步骤进行,每组试样不得少于4 个。

②对准剪切容器上下盒,插入固定销,在下盒内放透水板和滤纸,将带有试样的环刀刃口向上,对准剪切盒口,在试样上放滤纸和透水板,将试样小心地推入剪切盒内。

注:透水板和滤纸的湿度接近试样的湿度。

③移动传动装置,使上盒前端钢珠刚好与测力计接触,依次放上传压板、加压框架,安装垂直位移和水平位移量测装置,并调至零位或测记初读数。

土的压缩性实验报告doc

土的压缩性实验报告doc

土的压缩性实验报告篇一:土力学实验报告土力学实验报告班级:姓名:学号:小组成员:中国矿业大学建筑工程学院岩土工程研究所二〇一四年十二月试验一含水量试验一、目的本试验之目的在于测定土的含水量,借与其它试验相配合计隙比及饱和度等;并查表确定地基土的容许承载力。

二、解释(1)含水量w是土中水的质量与干土颗粒质量之比,用百分数表示。

(2)本方法适用于有机物含量不超过干土重5%的土。

若土中有机物含量在5~l0%之间,应将烘干温度控制在65-70℃,并在记录中注明)。

三、设备(1)有盖的称量盒数只;(2)天平,感量0.01克;(3)烘箱(温度100~110℃)(4)干燥器(内有干燥剂CaCl2)。

四、操作步骤(1)选取具有代表性的土样l5-30克(砂土适当多取)放入称量盒。

盖好盒盖,称盒加湿土质量。

(2)打开盒盖,放入烘箱。

在105~110℃下烘至恒重。

烘干的时间一般为:粘土、粉土不得少于8小时;砂土不得少于6小时。

(3)将烘好的试样连同称量盒一并放入干燥器内,让其冷却至室温。

(4)从干燥器内取出试样,称盒加干土质量。

(5)实验称量应准确至0.01克以上并进行2次平行测定,取平均值。

(6)按下式计算含水量:12w?2??100%式中:w——含水量,%;m1——称量盒加湿土质量,g;m2——称量盒加干土质量,g:m——称量盒质量,g(根据盒上标号查表)。

本试验须进行2次平行测定,其平行误差允许值;当含水量w小于5%时,允许平行误差为0.3%;当含水量w等于或大于5%而小于40%时允许平行误差为l%;当含水量w等于或大于40% 时,允许平行误差为2%。

五、注意事项(1)称量盒使用前应先检查盒盖与盒体号码是否一致,如不一致应换相符者进行称重。

(2)禁止用手取用砝码。

读记重量时,注意不要漏读砝码或读错(1克=1000毫克)。

(3)烘干土从烘箱内取出时,切勿外露在空气中以免干土吸收水蒸气。

六、附:快速含水量试验法(酒精燃烧法)(1)选取有代表性土样若干克(粘土3~5克,砂土20~30克)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

试验结果:
P
Se
e0
p2
p1
t
e1 e2 s2 s1
s3
e3
t
测定: 轴向应力 轴向变形
百分表
透水石
传压板 水槽 环刀 内环
试样
试验资料处理:
设Vs=1, 由三相图可得:
施加/前试件中的固体体积Vs:
1
e
Vs 1 e0 H 0 A (a) e0 e
孔隙
施加/后V / s
1 1 e
(H0
S)A/
土的类别 高压缩性土 中压缩性土 低压缩性土
a1-2 (MPa-1) ≥0.5
0.1~0.5 <0.1
e
Es
' z
侧限压缩模量,KPa ,MPa
e
1.0 0.9
z 1 e0
0.8 e
'
0.7
土的类别
0.6
高压0缩性10土0 200
ES (MPa) 300 <4040 P
中压缩性土
4~15
不排水试验只施加 3 u3
B u3 / 3
试件上只施加 1 3 u1
对饱和土, A u1 /(1 3 )
有机玻璃罩
橡皮膜 压力水
轴向加压杆 测定:
顶帽 轴向应变
压力室 轴向应力

0.6 0
100 200 300 400 P
一般研究土中某点由原来的自重应力p1增加到外 荷作用下的土中应力p2 (自重应力与附加应力之
和)这一压力间隔所表征的压缩性时,土的压缩
性可用割线斜2常用作比较土的 压缩性大小
1.0
0.9
0.8 e '
0.7
0.6 0
100 200 300 400 P
一、侧限(单向)压缩试验:
单向固结仪:
应力状态: 1´= Z 2´=K0 Z 3´=K0 Z
应变特性: Z x=0 y=0
测定: 轴向应力 轴向变形
透水孔
• 杠杆式压缩仪: • 400~600kpa • 高压固结仪:
• 1600~5000kpa
百分表
透水石
传压板 水槽 环刀 内环
试样
•施加荷载,静置至变形稳定 •逐级加大荷载
压缩模量:
土在完全侧限条件下的 竖向附加压应力与相应 的应变增量之比值 (MPa)。即:
低压缩性土
≥15
e
mv
1 Es
a 1 e0
体积压缩系数 KPa-1 ,MPa-1
1.0
0.9
0.8 e '
0.7
0.6 0
100 200 300 400 P
Es的倒数成为土的体 积压缩系数mv,表 示单位压应力变化
1 (b)
土粒
S
H0
侧向=0, A=A/, Vs= Vs/ 因此
试件横截面积A
H0 H0 S 1 e0 1 e
三相草图
e
e0
(1
e0
)
S H0
e
e0
(1
e0
)
S H0
ei
e0
(1
e0
)
Si H0
(1): 各级压力与其相应的稳定孔隙比的关系
曲线,简称ep曲线。 (2): elgp曲线、 elnp曲线。
土的压缩性试验 与压缩指标
土体产生压缩的原因:
(1)固体颗粒的压缩; (2)孔隙水和孔隙气体的压缩,孔隙气体 的溶解; (3)孔隙水和孔隙气体的排出;
纯水、固体颗粒的压缩量常可略不计; 土体压缩主要来自孔隙水和气的排出。
• 土体受力后引起的变形: • 体积变形 剪切变形

• 体积变形:主要由正应力引起,它只会使土 体压密、体积缩小,但不会导致土体破坏。
迴滞环、割线与回弹指数:
1
e
Cc
0.9
0.8 1 Ce
0.7
0.6
Ce
回弹指数(再压缩指数)
Ce << Cc, 一 般 粘 性 土 的 Cc 值 在 1.0 左右, Ce≈0.1-0.2Cc
100
1000 lgP
土体变形机理非常复杂 ,土体不是理想的弹塑 性体,而是具有弹性、 粘性、塑性的自然历史 的产物。
(2)、e ~ lgP 曲线
对直线段:
e
1
0.9
Cc
Cc
e (lg ')
0.8
0.7
压缩指数
0.6
压缩指数的单位问题
100
1000 lgP
压缩系数与压缩指数
Cc 是无量纲系数,同压缩系数a 一样,压缩 指数Cc值越大,土的压缩性越高。 虽然压缩系数a 和压缩指数Cc 都是反映土的压 缩性的指标,但是两者有所不同。前者随所取 的初始压力及压力增量的大小而异,而后者在 较高的压力范围内却是常量,不随压力而变。
再压缩试验时土体体积变化特征:
(1) 土体的变形是由可恢复的弹 性变形和不可恢复的塑性变形 两部份组成
(2) 回 弹 曲 线 和 再 压 线 曲 线 构 成 一迴滞环,土体不是完全弹性 体的又一表征;
(3) 回 弹 和 再 压 缩 曲 线 比 压 缩 曲 线平缓得多。
(4)当再加荷时的压力超过b点, 再压缩曲线就趋于初始压缩曲 线的延长线。
(1)e – P 曲线
e
1.0 0.9 0.8 0.7 0.6
0 100 200 300 400 P
ei
e0
(1 e0 )
Si H0
P
Se
e0
p2
p1
t
e1 e2 s2
s3
s1
e3
t
压缩系数:曲线上任一点的切线斜率
e
a e '
1.0
0.9
0.8 e '
0.7
Kpa-1,Mpa-1
压缩性不同的土,其压缩曲线的形 状是不一样的。曲线愈陡,说明随 着压力的增加,土孔隙比的减小愈 显著,因而土的压缩性愈高。
• 剪切变形 : 主要由剪应力引起,当剪应力超 过一定限度时,土体将产生剪切破坏,此时 的变形将不断发展。
建筑物通过基础将荷载传给地基, 在地基内部将产生应力和变形,从而引 起建筑物基础的沉降。
地基、基础设计的变形原则: S≤[S]
•通常在地基中是不允许发生大范围剪切破坏。
地基沉降的组成
总沉降 S : 初始(瞬时)沉降Sd 固结沉降Sc 次固结沉降Ss S =Sd十Sc十Ss
引起的单位体积变
化。亦即:
单向压缩试验的各种参数的关系
指标
指标
a
a
1
mv
a/(1+e0)
Es
(1+e0)/a
mv
Es
mv(1+e0) (1+e0)/Es
1
1/Es
1/mv
1
(2)、e ~lgP 曲线
e~P 曲线缺点:压力区间较小
e
0.9 0.8
特点:有一段较长的直线段
0.7
0.6
100
1000 lgP
弹性变形部分来自土颗粒和孔隙水的弹性变形、封闭 气体的压缩和溶解,以及薄膜水的变形等造成的变形。
塑性变形部分来自颗粒相互位移、土颗粒被压碎、孔 隙水和孔隙气体被排出等造成的变形。
应力-应变关系的假定
以某种粘土为例
z p
非线性弹塑性体
1 Ee
1 Es
z
e0 (1 e0 )
二、三轴压缩试验
1、试验目的: a、测定土的应力—应变关系和抗剪强度 b、测定土的孔压系数A、B
相关文档
最新文档