刚体力学基础 习题 解答
《大学物理》刚体力学练习题及答案解析
《大学物理》刚体力学练习题及答案解析一、选择题1.刚体对轴的转动惯量,与哪个因素无关 [ C ](A)刚体的质量(B)刚体质量的空间分布(C)刚体的转动速度(D)刚体转轴的位置2.有两个力作用在一个有固定轴的刚体上. [ B ](1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)这两个力的合力为零时,它们对轴的合力矩也一定是零;(4)当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中,(A)只有(1)是正确的;(B) (1)、(2) 正确, (3)、(4)错误;(C) (1)、(2)、(3)都正确, (4)错误;(D) (1)、(2)、(3)、(4)都正确.3.均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,今使棒从水平位置由静止开始自由下落,在棒摆动到竖立位置的过程中,下述说法哪一种是正确的[ A ](A) 角速度从小到大,角加速度从大到小;(B) 角速度从小到大,角加速度从小到大;(C) 角速度从大到小,角加速度从大到小;(D) 角速度从大到小,角加速度从小到大.4.如图所示,圆锥摆的小球在水平面内作匀速率圆周运动,小球和地球所组成的系统,下列哪些物理量守恒( C )(A)动量守恒,角动量守恒(B)动量和机械能守恒(C)角动量和机械能守恒(D)动量,角动量,机械能守恒5.一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计,如图射来两个质量相同,速度大小相同、方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,在子弹射入后的瞬间,对于圆盘和子弹系统的角动量L以及圆盘的角速度ω则有( B )(A)L不变,ω增大(B)L不变,ω减小(C)L变大,ω不变(D)两者均不变6.一花样滑冰者,开始自转时,其动能为20021ωJ E =。
然后他将手臂收回,转动惯量减少为原来的1/3,此时他的角速度变为ω,动能变为E ,则下列关系正确的是( D ) (A )00,3E E ==ωω (B )003,31E E ==ωω (C )00,3E E ==ωω (D )003,3E E ==ωω1C 2.B ,3.A ,4.C ,5.B ,6.D二、填空1.当刚体受到的合外力的力矩为零时,刚体具有将保持静止的状态或_____________状态,把刚体的这一性质叫刚体___________。
第05章刚体力学基础学习知识补充
第五章 刚体力学基础一、选择题1 甲乙两人造卫星质量相同,分别沿着各自的圆形轨道绕地球运行,甲的轨道半径较小,则与乙相比,甲的:(A)动能较大,势能较小,总能量较大; (B)动能较小,势能较大,总能量较大; (C)动能较大,势能较小,总能量较小;(D)动能较小,势能较小,总能量较小;[ C ]难度:易2 一滑冰者,以某一角速度开始转动,当他向内收缩双臂时,则: (A)角速度增大,动能减小; (B)角速度增大,动能增大; (C)角速度增大,但动能不变;(D)角速度减小,动能减小。
[ B ]难度:易3 两人各持一均匀直棒的一端,棒重W ,一人突然放手,在此瞬间,另一个人感到手上承受的力变为:(A)3w ; (B) 2w (C) 43w; (D) 4w 。
[ D ]难度:难4 长为L 、质量为M 的匀质细杆OA 如图悬挂.O 为水平光滑固定转轴,平衡时杆竖直下垂,一质量为m 的子弹以水平速度0v 击中杆的A 端并嵌入其内。
那么碰撞后A 端的速度大小:(A)M m mv +12120; (B) Mm mv +330;(C) Mm mv +0; (D) M m mv +330。
[ B ]难度:中L5 一根质量为m 、长为l 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动.抬起另一端使棒竖直地立起,如让它掉下来,则棒将以角速度ω撞击地板。
如图将同样的棒截成长为2l的一段,初始条件不变,则它撞击地板时的角速度最接近于:(A)ω2; (B)ω2; (C) ω; (D) 2ω。
[ A ]难度:难6 如图:A 与B 是两个质量相同的小球,A 球用一根不能伸长的绳子拴着,B 球用橡皮拴着,把它们拉到水平位置,放手后两小球到达竖直位置时绳长相等,则此时两球的线速度:(A)B A v v = (B) B A v v < (C) B A v v > (D)无法判断。
[ C ]难度:中7 水平圆转台上距转轴R 处有一质量为m 的物体随转台作匀速圆周运动。
刚体力学基础 习题 解答
衡水学院 理工科专业 《大学物理B 》 刚体力学基础 习题命题教师:郑永春 试题审核人:张郡亮一、填空题(每空1分)1、三个质量均为m 的质点,位于边长为a 的等边三角形的三个顶点上。
此系统对通过三角形中心并垂直于三角形平面的轴的转动惯量J 0=__ ma 2 _,对通过三角形中心且平行于其一边的轴的转动惯量为J A =__12ma 2_,对通过三角形中心和一个顶点的轴的转动惯量为J B =__21ma 2 。
2、两个质量分布均匀的圆盘A 和B 的密度分别为ρA 和ρ B (ρA >ρB ),且两圆盘的总质量和厚度均相同。
设两圆盘对通过盘心且垂直于盘面的轴的转动惯量分别为J A 和J B ,则有J A < J B 。
3、 一作定轴转动的物体,对转轴的转动惯量J =3.0 kg ·m 2,角速度ω0=6.0 rad/s .现对物体加一恒定的制动力矩M =-12 N ·m ,当物体的角速度减慢到ω=2.0 rad/s 时,物体已转过了角度∆θ =__4.0rad4、两个滑冰运动员的质量各为70 kg ,均以6.5 m/s 的速率沿相反的方向滑行,滑行路线间的垂直距离为10 m ,当彼此交错时,各抓住一10 m 长的绳索的一端,然后相对旋转,则抓住绳索之后各自对绳中心的角动量L =__2275 kg·m 2·s 1 _;它们各自收拢绳索,到绳长为5 m 时,各自的速率υ =__13 m·s 1_。
5、有一质量均匀的细棒,可绕垂直于棒的一端的水平轴转动。
如将此棒放在水平位置,然后任其下落,则在下落过程中的角速度大小将 变大 ,角加速度大小将 变小 。
二、单项选择题(每小题2分)( A )1、有两个力作用在一个有固定转轴的刚体上,下列说法正确的是:A.这两个力都平行于轴作用时,它们对轴的合力矩一定是零;B.这两个力都垂直于轴作用时,它们对轴的合力矩一定是零;C.当这两个力的合力为零时,它们对轴的合力矩也一定是零;D.当这两个力对轴的合力矩为零时,它们的合力也一定是零。
第03章(刚体力学)习题答案
轮子的角速度由w =0 增大到w =10 rad/s,求摩擦力矩 Mr. [5.0 N·m]
解:摩擦力矩与外力矩均为恒力矩,所以刚体作匀角加速转动。其角加速度为:
b = w - w0 = 10 - 0 = 1rad / s2
Dt
10
合外力矩为: M合 = Jb = 15 ´1 = 15(N × m) = M - M r Þ M r = 5.0(N × m)
所以机械能也不守恒。
3-3 一圆盘绕过盘心且与盘面垂直的光滑固定轴 O 以角速度w按图示方向转动.若如图
所示的情况那样,将两个大小相等方向相反但不在同一条直线的力
F 沿盘面同时作用到圆盘上,则圆盘的角速度w 如何变化?
w
答:左边力的力矩比右边的大,所以刚体会被加速,其角加速
F
F
度增大。 3-4 刚体角动量守恒的充分而必要的条件是什么? 答:刚体所受的合外力矩为零。
解:此过程角动量守恒
Jw0
=
1 3
Jw
Þ
w
=
3w0
3-10 一轴承光滑的定滑轮,质量为 M=2.00 kg,半径为 R=0.100 m,
一根不能伸长的轻绳,一端固定在定滑轮上,另一端系有一质量为 m=5.00
kg 的物体,如图所示.已知定滑轮的转动惯量为 J= 1 MR 2 ,其初角速 2
w 0
R M
度w0 =10.0 rad/s,方向垂直纸面向里.求:
(1) 定滑轮的角加速度的大小和方向; (2) 定滑轮的角速度变化到w=0 时,物体上升的高度;
m
习题 310 图
(3) 当物体回到原来位置时,定滑轮的角速度的大小和方向.
[ 81.7 rad/s2 ,垂直纸面向外; 6.12×10-2 m; w = 10.0 rad/s,垂直纸面向外]
刚体力学参考答案
mg —sin f A l sin三个独立方程有四个未知数,不能唯一确定。
【提示】:把三者看作同一系统时,系统所受合外力矩为零,系统角动量守恒。
设L 为每一子弹相对与 O 点的角动量大小,3为子弹射入前圆盘的角速度,3为子弹射入第五章刚体力学参考答案(2014)—、选择题[C ]1、【基础训练2】一轻绳跨过一具有水平光滑轴、质量为 M 的定滑轮,绳的两端分别 悬有质量为 m 和m 的物体(m v m ),如图5-7所示•绳与轮之间无相对滑动•若某时刻滑轮 沿逆时针方向转动,则绳中的张力 (A)处处相等. (B) 左边大于右边. (C)右边大于左边. (D) 哪边大无法判断. 【提示】:逆时针转动时角速度方向垂直于纸面向外 ,由于m v m ,实际上滑轮在作减 速转动,角加速度方向垂直纸面向内 ,设滑轮半径为 R,受右端绳子向下拉 力为T 2,左端绳子向下拉力为 T i ,对滑轮由转动定律得:(T 2-T I )R=J [D ]2、【基础训练3】如图5-8所示,一质量为 m 的匀质细杆AB 壁上,B 端置于粗糙水平地面上而静止•杆身与竖直方向成 角,则 1 1(A)为 mg pos . (B) 为 mg g4 2 (C) 为 m®n m2m 1图5-7 A 端靠在粗糙的竖直墙 A 端对墙壁的压力大 .(D) 不能唯一确定 图5-8■:::;SKB 【提示】: 因为细杆处于平衡状态,它所受的合外力为零,以 B 为参考点,外力矩也是平衡的,则有:NAfBAN B mgN A lcon[C]3、基础训练(7) 一圆盘正绕垂直于盘面的水平光滑固定轴 两个质量相同,速度大小相同,方向相反并在一条直线上的子弹, 内,则子弹射入后的瞬间,圆盘的角速度 (A) 增大. (C)减小. (B) (D)不变. 不能确定. O 转动,如图5-11射来子弹射入圆盘并且留在盘m<J 为圆盘的转动惯量,J 子弹为子弹转动惯量,据角动量守恒[C ]4、【自测提高4】光滑的水平桌面上,有一长为 2L 、质量为m 的匀质细杆,可绕过其 中点且垂直于杆的竖直光滑固定轴 0自由转动,其转动惯量为 [mL ,起初杆静止•桌面上3有两个质量均为 m 的小球,各自在垂直于杆的方向上, 正对着杆的一端, 以相同速率v 相向运动,如图5-19所示•当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在 一起转动,则这一系统碰撞后的转动角速度应为…、 2v4v 6v 8v 12v (A)(B)• (C)• (D)(E)•3L5L7L9L7Lv y$ vO俯视图图 5-19【提示】:视两小球与细杆为一系统, 碰撞过程中系统所受合外力矩为零, 满足角动量守恒条件, 所以2 21 2lmv lmv [ml ml m(2l)]12可得答案(C )[A ] 5、【自测提高7】质量为m 的小孩站在半径为 R 的水平平台边缘上•平台可以绕通过 其中心的竖直光滑固定轴自由转动,转动惯量为 J .平台和小孩开始时均静止•当小孩突然 以相对于地面为 v 的速率在台边缘沿逆时针转向走动时, 旋转方向分别为【提示】:视小孩与平台为一个系统,该系统所受的外力矩为零,系统角动量守恒:一 ,口 Rmv mR 2,v 、0 Rmv J 可得 ---------------- ------ (一)。
大学物理第三章刚体力学基础习题答案
方向竖直向下
3-15 由角动量守恒得
mul J mvl 1 1 2 1 2 2 mu m v J 因弹性碰撞,系统机械能守恒: 2 2 2 1 1 2 2 又: J M 2l Ml 12 3 6mu M 3m u 联立可得: v M 3m l M 3m
2 2 2 1 mv l [m( l ) M l 2 ] 3 3 3
o
2 l 3
6mv (4m 3M ) l
v
m
A
3-9 电风扇在开启电源后,经过t1时间到达了额定 转速,此时相应的角速度为 0。当关闭电源后,经 过t2时间风扇停转。已知风扇转子的转动惯量为 J, 并假定摩擦力矩和电机的电磁力矩均为常量,试根据 已知量推算电机的电磁力矩。 解: 设电机的电磁力矩为M,摩擦力矩为Mf
1
0
t1
3-9 (1)
mg T ma
T mg sin 30 ma
g 2 a m/s 4
方向竖直向下
T2 N 2
mg
(2)
mg T1 ma
T2 mg sin 300 ma
T1r T2r J
a r
T1
1
mg
J k m r2
g 联立求解得: a 22 k
质点运动 m 质 量 力 F 刚体定轴转动 2 J r 转动惯量 m dm 力矩 M Fr sin
dp dL F m a F 第二定律 转动定律 M J M dt dt p mv 动 量 角动量 L J t t2 动量定理 t Fdt mv2 mv1 角动量定理 t Mdt J 2 J1 1 动量守恒 F 0, mv 恒矢量 角动量守恒 M 0, J 恒矢量 力矩的功 W Md 力 的 功 W F dr
第05章--刚体力学基础补充
第五章 刚体力学基础一、选择题1 甲乙两人造卫星质量相同,分别沿着各自的圆形轨道绕地球运行,甲的轨道半径较小,则与乙相比,甲的:(A)动能较大,势能较小,总能量较大; (B)动能较小,势能较大,总能量较大; (C)动能较大,势能较小,总能量较小;(D)动能较小,势能较小,总能量较小;[ C ]难度:易2 一滑冰者,以某一角速度开始转动,当他向内收缩双臂时,则: (A)角速度增大,动能减小; (B)角速度增大,动能增大; (C)角速度增大,但动能不变;(D)角速度减小,动能减小。
[ B ]难度:易3 两人各持一均匀直棒的一端,棒重W ,一人突然放手,在此瞬间,另一个人感到手上承受的力变为:(A)3w ; (B) 2w (C) 43w ; (D) 4w 。
[ D ]难度:难4 长为L 、质量为M 的匀质细杆OA 如图悬挂.O 为水平光滑固定转轴,平衡时杆竖直下垂,一质量为m 的子弹以水平速度0v 击中杆的A端并嵌入其内。
那么碰撞后A 端的速度大小: (A)M m mv +12120; (B) Mm mv +330;(C) M m mv +0; (D) Mm mv +330。
[ B ]难度:中5 一根质量为m 、长为l 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动.抬起另一端使棒竖直地立起,如让它掉下来,则棒将以角速度ω撞击地板。
如图将同样的棒截成长为2l的一段,初始条件不变,则它撞击地板时的角速度最接近于:(A)ω2; (B)ω2; (C) ω; (D) 2ω。
[ A ]难度:难6 如图:A 与B 是两个质量相同的小球,A 球用一根不能伸长的绳子拴着,B 球用橡皮拴着,把它们拉到水平位置,放手后两小球到达竖直位置时绳长相等,则此时两球L的线速度:(A)B A v v = (B) B A v v <(C) B A v v > (D)无法判断。
[ C ]难度:中7 水平圆转台上距转轴R 处有一质量为m 的物体随转台作匀速圆周运动。
刚体习题和答案
作业5 刚体力学♫刚体:在力的作用下不发生形变的物体⎰=-⇒=210t t dt dtd ωθθθω角速度⎰=-⇒=210t t dt dtd βωωωβ角加速度1、根底训练〔8〕绕定轴转动的飞轮均匀地减速,t =0时角速度为05rad s ω=,t =20s 时角速度为00.8ωω=,那么飞轮的角加速度β= -0.05 rad/s 2 ,t =0到 t =100 s 时间飞轮所转过的角度θ= 250rad . 【解答】飞轮作匀变速转动,据0t ωωβ=+,可得出:200.05rad s tωωβ-==-据2012t t θωβ=+可得结果。
♫定轴转动的转动定律:定轴转动的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比.βJ M =质点运动与刚体定轴转动对照[C ]1、根底训练〔2〕一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如下图.绳与轮之间无相对滑动.假设某时刻滑轮沿逆时针方向转动,那么绳中的力 (A) 处处相等. (B) 左边大于右边. (C) 右边大于左边. (D) 哪边大无法判断. 【解答】逆时针转动时角速度方向垂直于纸面向外, 由于(m 1<m 2),实际上滑轮在作减速转动,角加速m 2m 1 O度方向垂直纸面向,所以,由转动定律21()T T R J β-=可得:21T T >[C ] 2、自测提高〔2〕将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m 的重物,飞轮的角加速度为.如果以拉力2mg 代替重物拉绳时,飞轮的角加速度将(A) 小于. (B) 大于,小于2. (C) 大于2. (D) 等于2. 【解答】设飞轮的半径为R ,质量为m ,根据刚体定轴转动定律M J β=,当挂质量为m 的重物是:mg T maTR J a R ββ-=== 所以2mgRJ mRβ=+,当以2F mg =的拉力代替重物拉绳时,有: '2mgR J β=,2'mgRJβ=,比拟二者可得出结论。
大学物理刚体力学基础习题思考题与答案
习题55-1.如图,一轻绳跨过两个质量为m、半径为r的均匀圆盘状定滑轮,绳的两端分别挂着质量为2m和m的重物,绳与滑轮间无相对滑动,滑轮轴光滑,两个定2滑轮的转动惯量均为m r/2,将由两个定滑轮以及质量为2m和m的重物组成的系统从静止释放,求重物的加速度和两滑轮之间绳内的张力。
解:受力分析如图,可建立方程:2mgT22ma┄①T1┄②mgmaT(TT)rJ┄③2(TT)1rJ┄④a,r2Jmr┄⑤/2 1联立,解得:ag411,Tmg8。
5-2.如图所示,一均匀细杆长为l,质量为m,平放在摩擦系数为的水平桌面上,设开始时杆以角速度0绕过中心O且垂直与桌面的轴转动,试求:(1)作用于杆的摩擦力矩;(2)经过多长时间杆才会停止转动。
解:(1)设杆的线密度为:ml,在杆上取一小质元dmdx,有微元摩擦力:dfdmggdx,微元摩擦力矩:dMgxdx,考虑对称性,有摩擦力矩:l1M2gxdxmgl;24(2)根据转动定律MJJ ddt,有:tMdtJd,112mgltml,∴0 412 t30lg。
或利用:MtJJ,考虑到0,12 Jml,12有:0t3 l g 。
5-3.如图所示,一个质量为m的物体与绕在定滑轮上的绳子相联,绳子的质量可以忽略,它与定滑轮之间无滑动。
假设定滑轮质量为M、半径为2R,其转动惯量为M R/2,试求该物体由静止开始下落的过程中,下落速度与时间的关系。
解:受力分析如图,可建立方程:mgTma┄①TR┄②JaR,12 JmR┄③22mgMmg联立,解得:aT,,M2m M2m考虑到a dvdt,∴vt2mgdvdt00M2m,有:v2m gtM2m。
5-4.轻绳绕过一定滑轮,滑轮轴光滑,滑轮的质量为M/4,均匀分布在其边缘上,绳子A端有一质量为M的人抓住了绳端,而在绳的另一端B系了一质量为M/4的重物,如图。
已知滑轮对O2轴的转动惯量J/4,设人从静止开始以相对绳匀速向上爬MR时,绳与滑轮间无相对滑动,求B端重物上升的加速度?解一:分别对人、滑轮与重物列出动力学方程Mg T1人MaAMMT2ga物B44T1RTRJ滑轮22由约束方程:aaRJ,解上述方程组A和MR/4B得到g a. 2解二:选人、滑轮与重物为系统,设u为人相对绳的速度,v为重du物上升的速度,注意到u 为匀速,0dt,系统对轴的角动量为:1M32LMvRM(uv)R(R)MvRMu 442R(B 物体)(人)(A 物体)而力矩为: M13 MgRMgRMgR , 44根据角动量定理dL3d3 M 有:MgR(MvRMuR),∴dt4dt2 g a 。
参考解答01 刚体力学 (1)(1)
=
r被 r主
被
=
0.40 0.20
8π=16π
s1
主 =
主
t
=4π
s2
= 1 t 2 =32π rad
2
n= 32π 16 2π
J2 J1 J3 从大到小
大学物理习题参考解答
从小到大,
大学物理习题参考解答
提示
W
1 J2
2
1 2
mr
2
(22
12 )
对O轴的角动量 对该轴的合外力矩为零
机械能
大学物理习题参考解答
1
提示 J11 J22
2
平衡杠杆
速度杠杆
省力杠杆
9.0103 m3 K p V0 ΔV
大学物理习题参考解答
大学物理习题参考解答
大学物理习题参考解答
大学物理习题参考解答
大学物理习题参考解答
大学物理习题参考解答
大学物理习题参考解答
大学物理习题参考解答
解:(1) 角动量守恒
O v
O'
大学物理习题参考解答
C
提示 卫星受地球引力,动量不守恒; 卫星对地球为轴的力矩为零, 角动量守恒.
大学物理习题参考解答
D
大学物理习题参考解答
C
大学物理习题参考解答
B
二.ห้องสมุดไป่ตู้空题 直线
曲线
大学物理习题参考解答
M J
匀加速转动
大学物理习题参考解答
提示
v主 =v被 r主主 =r被被
主
0 (J盘 J人) 盘地J盘 - 人地J人 - 人地 -人盘 盘地 0 (J盘 J人) 盘地J盘 - 人盘J人 盘地J人
第七章 刚体力学习题及解答
第七章刚体力学习题及解答7。
1.1 设地球绕日作圆周运动.求地球自转和公转的角速度为多少rad/s?估算地球赤道上一点因地球自转具有的线速度和向心加速度。
估算地心因公转而具有的线速度和向心加速度(自己搜集所需数据)。
解:7.1.2 汽车发动机的转速在12s内由1200rev/min增加到3000rev/min。
(1)假设转动是匀加速转动,求角加速度.(2)在此时间内,发动机转了多少转?解:( 1)( 2)所以转数 =7.1.3 某发动机飞轮在时间间隔t内的角位移为球 t时刻的角速度和角加速度.解:7.1.4 半径为0。
1m的圆盘在铅直平面内转动,在圆盘平面内建立坐标系,原点在轴上。
x和y轴沿水平和铅直向上的方向.边缘上一点A当t=0时恰好在x轴上,该点的角坐标满足求(1)t=0时,(2)自t=0开始转时,(3)转过时,A点的速度和加速度在x和y轴上的投影。
解:( 1)( 2) 时,由( 3)当时,由7。
1。
5 钢制炉门由两个各长1.5m的平行臂AB和CD支承,以角速度逆时针转动,求臂与铅直时门中心G的速度和加速度.解:因炉门在铅直面内作平动,门中心 G的速度、加速度与B或D点相同.所以:7。
1.6 收割机拔禾轮上面通常装4到6个压板。
拔禾轮一边旋转,一边随收割机前进。
压板转到下方才发挥作用,一方面把农作物压向切割器,另一方面把切割下来的作物铺放在收割台上,因此要求压板运动到下方时相对于作物的速度与收割机前进方向相反.已知收割机前进速率为 1。
2m/s,拔禾轮直径1.5m,转速22rev/min,求压板运动到最低点挤压作物的速度.解:取地面为基本参考系,收割机为运动参考系。
取收割机前进的方向为坐标系正方向7。
1.7 飞机沿水平方向飞行,螺旋桨尖端所在半径为150cm,发动机转速2000rev/min。
(1)桨尖相对于飞机的线速率等于多少?(2)若飞机以250km/h的速率飞行,计算桨尖相对于地面速度的大小,并定性说明桨尖的轨迹。
刚体习题及答案
1 2 mvl mv l ml 3
③弹性碰撞,故动能也守恒,有:
1 1 1 1 mv 2 mv 2 ( ml 2 ) 2 2 2 2 3
④碰后杆上升过程,杆与地球系统的机械能守恒: 1 1 2 2 1 ( ml ) mgl (1 cos ) 2 3 2 3 arccos2 3 联立求解,得:
人: Mg T 2 Ma
1 1 物 : T1 - Mg = Ma 2 2
B
T2
o
T1
2 a g 7
A
Mg
B
a
轮: (T2 T1 ) R J
1 Mg 2
a R
例2.两个匀质圆盘,一大一小,同轴地粘结在一起,构成一个 组合轮。小圆盘的半径为r,质量为m;大圆盘的半径r’=2r, 质量为m’=2m。组合轮可绕通过其中心且垂直于盘面的光滑水 平固定轴O转动,对O轴的转动惯量J=9mr2/2。两圆盘边缘上 分别绕有轻质细绳,细绳下端各悬挂质量为m的物体A和B,如 图所示。这一系统从静止开始运动,绳与盘无相对滑动,绳的 长度不变。已知r = 10 cm.求: (1) 组合轮的角加速度; (2) 当物体A上升h=40 cm时,组合轮的角速度ω。
r r
2.对薄平板刚体的正交轴定理 z J
yi xi x 典型应用:
z
mi ri
刚体力学答案
练习一 刚体的转动定律一、填空题1.25π,-π,625π22.刚体转动中惯性大小的量度,⎰=dm r J 2 ,刚体的形状、质量分布、转轴的位置 3.50ml 24.157 N ·m 5.1.5g 6.0.5kg ·m 2二、计算题1.解:由于 β=–kw即 d k dt ωω=-分离变量 kdtd -=ωω积分td kdtωωωω=-⎰⎰有lnkt ωω=-t 时飞轮角速度为 0kte ωω-=2.解:设绳中张力为T对于重物由牛顿第二定律∑=dt v m d F )( 得: m 2g –T =m 2a (1)对于滑轮按转动定律M =J β有β⋅=221mr Tr (2) 由角量线量关系有 a =r β (3)联立以上三式解得 21222m m gm a +=3.解:由转动定律M =J β得 -μNR=mR 2(ω-ω0)/ΔtN=-m R 2 (ω-ω0)/ μR Δt=250π又有 0.5N -(0.5+0.75)F=0F=100π=314(N)4.解:各物体受力情况如图.F -T =maT '=ma(T T '-)R =β221mR a =R β由上述方程组解得: β=2F / (5mR)=10 rad·s -2 T =3F / 5=6.0 N T '=2F / 5=4.0 N练习二 刚体的角动量及守恒定律一、填空题a a T ’1.定轴转动刚体所受外力对轴的冲量矩等于转动刚体对轴的角动量的量,0)(d 21ωωJ J t M t t z -=⎰,刚体所受对轴的合外力矩等于零2.4×1043.F r M⨯=,变角速度,角动量 4.杆和子弹,角动量 5.6π,3∶16.02ωm M M + ,02222ωmrMR MR + 二、计算题1.解:球体的自动收缩可视为只由球的内力所引起,因而在收缩前后球体的角动量守恒.设J 0和ω 0、J 和ω分别为收缩前后球体的转动惯量和角速度 则有 J 0ω 0 = J ω ① 由已知条件知:J 0 = 2mR 2 / 5,J = 2m(R / 2)2 / 5 代入①式得 ω = 4ω 0 即收缩后球体转快了 其周期 442200T T =π=π=ωω周期减小为原来的1 / 4.2.解:(1) 选择A 、B 两轮为系统,啮合过程中只有内力矩作用故系统角动量守恒J A ωA +J B ωB = (J A +J B )ω又ωB =0得 ω ≈ J A ωA / (J A +J B ) = 20.9 rad / s 转速 ≈n 200 rev/min(2) A 轮受的冲量矩⎰t M A d = = -4.19×10 2N ·m ·s负号表示与A ω方向相反. B 轮受的冲量矩⎰t MBd = J B (ω - 0) = 4.19×102 N ·m ·s方向与A ω相同.3.解:(1) 以子弹和圆盘为系统,在子弹击中圆盘过程中,对轴O 的角动量守恒.m v 0R =(21MR 2+mR 2)ω R m M m ⎪⎭⎫ ⎝⎛+=210v ω(2) 设σ表示圆盘单位面积的质量求出圆盘所受水平面的摩擦力矩的大小为 ⎰π⋅=Rf r rg r M 0d 2σμ=(2 / 3)πμσgR 3=(2 / 3)μMgR设经过∆t 时间圆盘停止转动,则按角动量定理有-M f ∆t =0-J ω=-(21MR 2+mR 2)ω=- m v 0R ∴ ()Mg m MgR R m M R m t fμμ2v 33/2v v 000===∆4.解:由人和转台系统的角动量守恒J 1ω1 + J 2ω2 = 0其中 J 1=300 kg ·m 2,ω1=v /r =0.5 rad / s ,J 2=3000 kg ∙m 2 ∴ ω2=-J 1ω1/J 2=-0.05 rad/s 人相对于转台的角速度 ωr =ω1-ω2=0.55 rad/s ∴ t =2π /r ω=11.4 s5.解:(1)小碎块飞出时与轮同步以角速度ω旋转 ∴ v 20=R ω 由机械能守恒定律得m g h mv =22021 gR h 22g v 22220ω==(2)据题意,系统角动量守恒 J 0ω0=J 1ω1+J 2ω2ωωω21222)(2M mR R m M R +-= 即余下部分的角速度、角动量、转动动能为 ωωmM mM --=21ωωω21211)2(2)(R m MR m M J -=-=222212211)(4)2(2)(2121ωωωR m M m M R m M J --=-=刚体自测题一、选择题BBDADCD 二、填空题 1.4s ,-15m/s 2.(1)(2)(4)3.5.0 N ·m 4.mgl 21,2g / (3l)5.()lm M /3460+v6.()212m RJ m r J ++ω7.20m R J m R J +-vω8. 8 rad ·s -1 .三、计算题1.解:体系所做的运动是匀速→匀加速→匀减速定轴转动.其中ω1是匀加速阶段的末角速度,也是匀减速阶段的初角速度, 由此可得 t =8 s 时 ω1=ω0+9=27 rad /s 当ω=0时,得 t =(ω1+24)/ 3=17s 所以,体系在17s 时角速度为零.2.解:人受力如图(1)由牛顿第二定律得 mgsin37°-T m =ma (1)由转动定律得 rT m -rT k =Jβ=Ja/r (2) 由胡克定律得 T k =kx (3) 有 dxdv v dt dx dx dv dt dv a =⋅==(4) 联立求解得 mgsin37°-kx=(m+ J /r 2)vdv/dxvdv r J m dx kx mg xv v ⎰⎰==+=-︒020)/()37sin (x=2mgsin37°/k=1.176(m)3.解:(1) ∵ mg -T =ma TR =J βa =R β∴ β = mgR / (mR 2+J)()R M m mgMR mR mgR +=+=222122 =81.7 rad/s 2方向垂直纸面向外.(2) ∵βθωω2202-=当ω=0 时, rad 612.022==βωθ物体上升的高度h = R θ = 6.12×10-2 m(3)==βθω210.0 rad/s方向垂直纸面向外.4.解:(1) 设当人以速率v 沿相对圆盘转动相反的方向走动时,圆盘对地的绕轴角速度为ω,则人对与地固联的转轴的角速度为R R v v221-=-='ωωω ① 人与盘视为系统,所受对转轴合外力矩为零,系统的角动量守恒.设盘的质量为M ,则人的质量为M / 10,有:ωωω'⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+22022211021211021R M MR R M MR ② 将①式代入②式得:R2120v+=ωω ③ (2) 欲使盘对地静止,则式③必为零.即 ω0 +2v / (21R)=0得: v =-21R ω0 / 2式中负号表示人的走动方向与上一问中人走动的方向相反,即与盘的初始转动方向一致.5.解:在子弹通过杆的过程中,子弹与杆系统因外力矩为零,故角动量守恒.则有m 2v 0 l / 4 = m 2v l / 4 +J ω()()lm m J l m 1020234v v v v -=-=ω =11.3rad/s6.解:碰撞前瞬时,杆对O 点的角动量为Lm L x x x x L L 0202/002/30021d d v v v v ==-⎰⎰ρρρ式中 为杆的线密度.碰撞后瞬时,杆对O 点的角动量为ωωω2221272141234331mL L m L m J =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=因碰撞前后角动量守恒,所以L m mL 022112/7v =ω∴ = 6v 0 / (7L)。
大学物理-刚体力学习题解答
1大学物理-刚体力学习题解答一、选择题1、 B,r v⨯=ω 2、 C, 3 、B, 4 、C, 5、 B, 平轴的力矩和为零,θθsin 2cos lmgNl =,所以2)tan (θmg N =。
6 、B, 7、 A, 32202mgR rdr R mrgrgdm M Rf μππμμ===⎰⎰ 8、 B ,在碰撞过程中,小球和摆对O 轴的角动量守恒,所以有1011sin 100mlv l v m=θ,220v v = 二、填空题1.t 108-==θω ,10-==θβ ,所以s rad s t 62.0==ω;22.010s rad s t -==β; s m R v m R s t 35.0,2.0====ω;()25.0,2.05s m R a m R s t -====βτ;()225.0,2.018s m R a m R s t n ====ω 2s m 18-⋅。
2.刚体对转轴转动惯性大小的量度;2I r dm =⎰;质量、质量分布、转轴的位置。
3.mLv 。
4.()()k t mgv j gt v i v j gt t v i t v v r L αααααcos 21sin cos 21sin cos 200020000-=-+⨯⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+=⨯=;k t mgv dt L d αcos 00-=;k t mgv dtL d Mαcos 00-==。
5.角动量;04ω 。
6.同时到达。
7.32g。
8.20012I ω。
三、计算题,1、设1m 向下运动,2m 向上运动,对两物体应用牛顿定律列方程有:1111m g T m a -=,2222T m g m a -=,对鼓轮应用转动定律有:11220T r T r -= ,(因为鼓轮的质量忽略不计) 设鼓轮的角加速度为β,则有:11a r β= ,22a r β= 。
联立求解以上各式得:21122221122m r m r g m r m r β-=+ ;若1m 向上运动,2m 向下运动,则 2211221122m r m r g m r m r β-=+ 。
刚体力学基础习题解答
命题教师:郑永春试题审核人:张郡亮1、三个质量均为m 的质点,位于边长为a 的等边三角形的三个顶点上。
此系统对通过三角形中心并垂直于三角形平面的轴的转动惯量J 0=__ ma _,对通过三角形中心且平行于其一边的轴的转动惯量为J A = _丄口£_,对通过三角形— --- =—2—"中心和一个顶点的轴的转动惯量为匾(C ) 5、一圆盘正绕垂直于盘面的水平光滑固定轴 0转动,如图1射来两个质量 相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,衡水学院理工科专业 《大学物理B 》刚体力学基础习题2、两个质量分布均匀的圆盘 A 和B 的密度分别为设两圆盘对通过盘心且垂直于盘面的轴的转动惯量分别为3、一作定轴转动的物体,对转轴的转动惯量J =力矩M 12 N • m 当物体的角速度减慢到 =rad/s 时,物体已转过了角度P A 和P B ( P A > P B ),且两圆盘的总质量和厚度均相同。
J A 和 J B ,则有 J A < J B 。
4、 两个滑冰运动员的质量各为70 kg ,均以m/s 的速率沿相反的方向滑行,滑行路线间的垂直距离为10 m 当彼此交错时,各抓住一 10 m 长的绳索的一端,然后相对旋转,则抓住绳索之后各自对绳中心的角动量 L =__2275 kg -m 2-s 1 ;它们各自收拢绳索,到绳长为 5 m 时,各自的速率 =13 m-s 1。
5、 有一质量均匀的细棒,可绕垂直于棒的一端的水平轴转动。
如将此棒放在水平位置,然后任其下落,则在下落过程中的角速度大小将变大,角加速度大小将 变小。
、单项选择题(每小题2分)1、有两个力作用在一个有固定转轴的刚体上,下列说法正确的是: B. A.这两个力都平行于轴作用时,它们对轴的合力矩一定是零; 这两个力都垂直于轴作用时,它们对轴的合力矩一定是零; C. D.当这两个力的合力为零时,它们对轴的合力矩也一定是零; 当这两个力对轴的合力矩为零时,它们的合力也一定是2、 一轻绳绕在有水平轴的定滑轮上,滑轮的转动惯量为 J ,绳下端挂一物体。
《理论力学》第六章 刚体的基本运动习题全解
第六章 刚体的基本运动 习题全解[习题6-1] 物体绕定轴转动的运动方程为334t t -=ϕ(ϕ以rad 计,t 以s 计)。
试求物体内与转动轴相距m r 5.0=的一点,在00=t 与s t 11=时的速度和加速度的大小,并问物体在什么时刻改变它的转向? 解:角速度: 2394)34(t t t dt ddt d -=-==ϕω 角加速度:t t dtddt d 18)94(2-=-==ωα速度: )94(2t r r v -==ω)/(2)094(5.0|20s m r v t =⨯-⨯===ω)/(5.2)194(5.0|21s m v t -=⨯-⨯==切向加速度:rt t r a t 18)18(-=-==ρα法向加速度:22222)94()]94([t r rt r v a n -=-==ρ 加速度: 422222222)94(324])94([)18(t t r t r rt n a a n t -+=-+-=+=)/(8165.0)094(0324|24220s m r a t =⨯=⨯-+⨯== )/(405.1581.305.0)194(1324|24221s m r a t =⨯=⨯-+⨯== 物体改变方向时,速度等于零。
即:0)94(2=-=t r v )(667.0)(32s s t ==[习题6-2] 飞轮边缘上一点M,以匀速v=10m/s运动。
后因刹车,该点以)/(1.02s m t a t =作减速运动。
设轮半径R=0.4m,求M点在减速运动过程中的运动方程及t=2s时的速度、切向加速度与法向加速度。
解:t dtd a t 1.04.022-===ϕρα (作减速运动,角加速度为负)t dt d 25.022-=ϕ12125.0C t dtd +-=ϕ2130417.0C t C t ++-=ϕ12124.005.0)125.0(4.0C t C t dtd R v +-=+-⨯==ϕ104.0005.0|120=+⨯-==C v t图题46-251=C0000417.0|2130=+⨯+⨯-==C C t ϕ 02=C ,故运动方程为: t t 250417.03+=ϕt t t t R s 100167.0)250417.0(4.033+-=+-==ϕ速度方程:1005.02+-=t v)/(8.910205.0|22s m v t =+⨯-== 切向加速度:)/(2.021.01.0|22s m t a t t -=⨯-=-== 法向加速度:222)25125.0(4.0+-⨯==t a n ρω)/(1.240)252125.0(4.0|2222s m a t n =+⨯-⨯==[习题6-3] 当起动陀螺罗盘时,其转子的角加速度从零开始与时间成正比地增大。
第五章 刚体力学基础 动量矩参考答案
第五章 刚体力学基础 动量矩班级______________学号____________姓名________________一、选择题1、力kNj i F )53(+=,其作用点的矢径为m j i r )34(-=,则该力对坐标原点的力矩大小为 ( B )(A)m kN ⋅-3; (B )m kN ⋅29; (C)m kN ⋅19; (D)m kN ⋅3。
2、圆柱体以80rad /s 的角速度绕其轴线转动,它对该轴的转动惯量为24m kg ⋅。
由于恒力矩的作用,在10s 内它的角速度降为40rad /s 。
圆柱体损失的动能和所受力矩的大小为( D ) (A)80J ,80m N ⋅;(B)800J ,40m N ⋅;(C)4000J ,32m N ⋅;(D)9600J ,16m N ⋅。
3、 一匀质圆盘状飞轮质量为20kg ,半径为30cm ,当它以每分钟60转的速率旋转时,其动能为 ( D )(A)22.16π J ; (B)21.8πJ ;(C )1.8J ; (D )28.1πJ 。
4、如图所示,一轻绳跨过两个质量均为m 、半径均为R 的匀质圆盘状定滑轮。
绳的两端分别系着质量分别为m 和2m 的重物,不计滑轮转轴的摩擦。
将系统由静止释放,且绳与两滑轮间均无相对滑动,则两滑轮之间绳的张力。
( D )(A)mg ; (B)3mg /2; (C)2mg ; (D)11mg /8。
5、一根质量为m 、长度为L 的匀质细直棒,平放在水平桌面上。
若它与桌面间的滑动摩擦系数为μ,在t =0时,使该棒绕过其一端的竖直轴在水平桌面上旋转,其初始角速度为0ω,则棒停止转动所需时间为 (A )(A)μωg L 3/20; (B) μωg L 3/0; (C) μωg L 3/40; (D) μωg L 6/0。
6、关于力矩有以下几种说法,其中正确的是 ( B )(A )内力矩会改变刚体对某个定轴的角动量(动量矩); (B )作用力和反作用力对同一轴的力矩之和必为零;(C )角速度的方向一定与外力矩的方向相同;(D )质量相等、形状和大小不同的两个刚体,在相同力矩的作用下,它们的角加速度一定相等。
刚体力学习题解重点
六、刚体力学一、选择题1、均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一个是正确的?(A)角速度从小到大,角加速度从大到小(B)角速度从小到大,角加速度从小到大(C)角速度从大到小,角加速度从大到小(D)角速度从大到小,角加速度从小到大2、将细绳绕在一个具有水平光滑轴的飞轮边缘上,如果在绳端挂一质量为m的重物,飞轮的角加速度为,如果以拉力2mg代替重物拉绳时,飞轮的角加速度将(A)小于(B)大于,小于2(C)大于2(D)等于23、一个物体正在绕固定光滑轴自由转动,(A)它受热膨胀或遇冷受缩时,角速度不变(B)它受热时角速度变大,遇冷时角速度变小(C)它受热或遇冷时,角速度变大(D)它受热时角速度变小,遇冷受缩时角速度变大4、一圆盘正绕垂直于盘面的水平光滑固定轴O转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并留在盘内,则子弹射入后的瞬间,圆盘的角速度(A)增大(B)不变(C)减小(D)不能确定5、光滑的水平桌面上,有一长为2L、质量为m的匀质细杆,可绕过其中点且垂直于杆的竖直光滑固定轴O自由转动,其转动惯量为,起初杆静止,桌面上有两个质量均为m的小球,各自在杆的垂直方向正对着杆的一端以相同的速率v 相向运动,(如图所示),当两小球同时与杆的两端点发生完全非弹性碰撞后,就与杆粘在一起运动,则这一系统碰撞后的转动角速度为(A)(B)(C)(D)6、一圆盘绕过盘心且与盘面垂直的轴O以角速度按图示方向转动,若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F沿盘面同时作用在圆盘上,则圆盘的角速度(A)必然增大(B)必然减小(C)不会改变(D)如何变化不能确定7、刚体角动量守恒的充分而必要的条件是(A)刚体不受外力矩的作用(B)刚体所受合外力矩为零(C)刚体所受合外力和合外力矩为零(D)刚体的转动惯量和角速度均保持不变8、有一半径为R的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J,开始时转台以匀角速度转动,此时有一质量为m的人站在转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为(A)(B)(C)(D)9、一力矩M作用在飞轮上,飞轮的角加速度为,如撤去这一力矩,飞轮的角加速度为,则该飞轮的转动惯量为(A)(B)(C)(D)10、如图所示,一静止的均匀细棒,长为L,质量为M,可绕通过棒的端点且垂直于棒长的光滑固定轴O在水平面内转动,转动惯量为。
大学物理第3章-刚体力学习题解答
第3章 刚体力学习题解答3.13 某发动机飞轮在时间间隔t 内的角位移为):,:(43s t rad ct bt at θθ-+=。
求t 时刻的角速度和角加速度。
解:23212643ct bt ct bt a dt d dtd -==-+==ωθβω3.14桑塔纳汽车时速为166km/h ,车轮滚动半径为0.26m ,发动机转速与驱动轮转速比为0.909, 问发动机转速为每分多少转?解:设车轮半径为R=0.26m ,发动机转速为n 1, 驱动轮转速为n 2, 汽车速度为v=166km/h 。
显然,汽车前进的速度就是驱动轮边缘的线速度,909.0/2212Rn Rn v ππ==,所以:min/1054.1/1024.93426.014.3210166909.02909.013rev h rev n R v ⨯=⨯===⨯⨯⨯⨯π3.15 如题3-15图所示,质量为m 的空心圆柱体,质量均匀分布,其内外半径为r 1和r 2,求对通过其中心轴的转动惯量。
解:设圆柱体长为h ,则半径为r ,厚为dr 的薄圆筒的质量dm 为:2..dm h r dr ρπ=对其轴线的转动惯量dI z 为232..z dI r dm h r dr ρπ==212222112..()2r z r I h r r dr m r r ρπ==-⎰ 3.17 如题3-17图所示,一半圆形细杆,半径为 ,质量为 ,求对过细杆二端轴的转动惯量。
解:如图所示,圆形细杆对过O 轴且垂直于圆形细杆所在平面的轴的转动惯量为mR 2,根据垂直轴定理z x y I I I =+和问题的对称性知:圆形细杆对过轴的转动惯量为12mR 2,由转动惯量的可加性可求得:半圆形细杆对过细杆二端轴的转动惯量为:214AA I mR '=3.18 在质量为M ,半径为R 的匀质圆盘上挖出半径为r 的两个圆孔,圆孔中心在半径R 的中点,求剩余部分对过大圆盘中心且与盘面垂直的轴线的转动惯量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
衡水学院 理工科专业 《大学物理B 》 刚体力学基础 习题命题教师:郑永春 试题审核人:张郡亮一、填空题(每空1分)1、三个质量均为m 的质点,位于边长为a 的等边三角形的三个顶点上。
此系统对通过三角形中心并垂直于三角形平面的轴的转动惯量J 0=__ ma 2 _,对通过三角形中心且平行于其一边的轴的转动惯量为J A =__12ma 2_,对通过三角形中心与一个顶点的轴的转动惯量为J B =__21ma 2。
2、两个质量分布均匀的圆盘A 与B 的密度分别为ρA 与ρB (ρA >ρB ),且两圆盘的总质量与厚度均相同。
设两圆盘对通过盘心且垂直于盘面的轴的转动惯量分别为J A 与J B ,则有J A < J B 。
3、 一作定轴转动的物体,对转轴的转动惯量J =3、0 kg ·m 2,角速度ω0=6、0 rad/s.现对物体加一恒定的制动力矩M =-12 N ·m,当物体的角速度减慢到ω=2、0 rad/s 时,物体已转过了角度∆θ=__4、0rad4、两个滑冰运动员的质量各为70 kg,均以6、5 m/s 的速率沿相反的方向滑行,滑行路线间的垂直距离为10 m,当彼此交错时,各抓住一10 m 长的绳索的一端,然后相对旋转,则抓住绳索之后各自对绳中心的角动量L =__2275 kg·m 2·s1_;它们各自收拢绳索,到绳长为5 m 时,各自的速率υ =__13 m·s 1_。
5、有一质量均匀的细棒,可绕垂直于棒的一端的水平轴转动。
如将此棒放在水平位置,然后任其下落,则在下落过程中的角速度大小将 变大 ,角加速度大小将 变小 。
二、单项选择题(每小题2分)( A )1、有两个力作用在一个有固定转轴的刚体上,下列说法正确的就是:A 、这两个力都平行于轴作用时,它们对轴的合力矩一定就是零;B 、这两个力都垂直于轴作用时,它们对轴的合力矩一定就是零;C 、当这两个力的合力为零时,它们对轴的合力矩也一定就是零;D 、当这两个力对轴的合力矩为零时,它们的合力也一定就是零。
( C )2、一轻绳绕在有水平轴的定滑轮上,滑轮的转动惯量为J ,绳下端挂一物体。
物体所受重力为P ,滑轮的角加速度为α.若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度α将A 、不变;B 、变小;C 、变大;D 、如何变化无法判断。
( C )3、关于刚体的转动惯量,下列说法中正确的就是A 、只取决于刚体的质量,与质量的空间分布与轴的位置无关;B 、取决于刚体的质量与质量的空间分布,与轴的位置无关;C 、取决于刚体的质量、质量的空间分布与轴的位置;D 、只取决于转轴的位置,与刚体的质量与质量的空间分布无关。
( C )4、一人造地球卫星到地球中心O 的最大距离与最小距离分别就是R A 与R B .设卫星对应的角动量分别就是L A 、L B ,动能分别就是E KA 、E KB ,则应有A 、LB > L A ,E KA = E KB ; B 、L B < L A ,E KA = E KB ;C 、L B = L A ,E KA < E KB ;D 、L B = L A ,E KA > E KB . ( C )5、一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图1射来两个质量 相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内, 则子弹射入后的瞬间,圆盘的角速度ωOMmm图2A 、增大;B 、不变;C 、减小;D 、不能确定。
三、判断题(每小题1分)( √ )1、刚体平动过程中,可用刚体上任意一点的运动来描述平动刚体的整体运动情况。
( √ )2、刚体定轴转动时,刚体上所有质元都在垂直于转轴的平面上作圆周运动。
( × )3、刚体的转动惯量J 就是矢量,不但有大小还有方向。
( √ )4、刚体的转动惯量相当于质点平动时的质量,它就是物体在转动中惯性大小的量度。
( × )5、定轴转动刚体的角动量守恒的条件就是刚体所受外力之与为零。
四、简答题1、(6分)如图2所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O 转动,今有一子弹沿着与水平面成一角度的方向击中木球而嵌于其中,之后棒与球升高。
试分析击中与升高两过程中,系统的守恒情况及相应的原因。
答:击中过程角动量守恒(1分),原因就是木球与细棒系统受到的重力与来自转轴的力对O 点转轴都不产生力矩。
(2分)升高过程机械能守恒(1分),原因就是木球、细棒与地球组成的系统只有重力做功,使动能变为势能。
(2分) 2、(4分)花样滑冰运动员想高速旋转时,她先把一条腿与两臂伸开,并用脚蹬冰使自己转起来,然后她再收拢腿与臂,她的转速就明显地加快了,说明她速度加快的道理?答:忽略她收拢腿与臂时用脚蹬冰过程中的摩擦力矩,合外力矩为零,因而她对中心轴线的的角动量守恒(2分)。
运动员收拢腿与臂时的转动惯J 2显然小于一条腿与两臂伸开时转动惯量J 1,因此运动员收拢腿与臂时的转动惯ω2显然大于一条腿与两臂伸开时转动惯量ω1 (2分)。
五、计算题1、(10分)飞轮的质量m =60kg,半径R =0、25m,绕其水平中心轴O 转动,转速为900转/分。
利用一制动的闸杆,在闸杆的一端加一竖直方向的制动力F ,可使飞轮减速。
已知闸杆的尺寸如图3所示,闸瓦与飞轮之间的摩擦系数μ=0、4,飞轮的转动惯量可按212J mR =计算。
试求F =100 N,可使飞轮在多长时间内停止转动? 解:图中N 、N '就是正压力,r F 、r F '就是摩擦力,x F 与y F 就是杆在A 点转轴处所受支承力,R 就是轮的重力,P 就是轮在O 轴处所受支承力.杆处于静止状态,所以对A 点的合力矩应为零,设闸瓦厚度不计,则有F l l l N l N l l F 1211210)(+='='-+ (2分) 对飞轮,根据转动定律M J α=,有J R F r /-=α (2分)121r l l F N N F l μμμ+'=== (2分) 21212()20.40(0.500.75)40=100rad s 600.250.503r F R l l F J mRl μα-+⨯⨯+=-=--⨯=-⋅⨯⨯(2分) 自施加制动闸开始到飞轮停止转动的时间为000900239==2.25=7.06s 60404t ωωωπππαα--⨯⨯===⨯ (2分) 图32、(10分)如图4所示,一个质量为m 的物体与绕在定滑轮上的绳子相联,绳子质量可以忽略,它与定滑轮之间无滑动。
假设定滑轮质量为M 、半径为R ,其转动惯量为221MR ,滑轮轴光滑。
试求该物体由静止开始下落的过程中,下落速度与时间的关系式。
解:以物体m 为研究对象,进行受力分析得: mg T ma -= (1) (2分) 以定滑轮为研究对象,应用转动定律M J α=得212TR MR α= (2) (3分) 由线量与角量之间的关系与(1)、(2)式得: 22mga R M mα==+ (3分)物体下落做匀变速直线运动: 02+2mgtv v at M m==+ (2分)3、(10分)如图5所示,一匀质细杆质量为m ,长为l ,可绕过一端O 的水平轴自由转动,杆于水平位置由静止开始摆下,求:(1)初始时刻的角加速度;(2)杆转过θ角时的角速度。
解: (1)由转动定律M J α= (2分)得:21123mg l ml α= (2分)lg23=α (1分)(2)取杆水平开始摆下时重力势能为零,由机械能守恒定律得:2211()sin 0232lml mg ωθ-= (3分)lg θωsin 3=(2分) 4、(10分)如图6所示,一长为l=1m 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动。
抬起另一端使棒向上与水平面成600,然后无初转速地将棒释放。
已知棒对轴的转动惯量为231ml ,其中m 与l 分别为棒的质量与长度,求:(1) 放手时棒的角加速度; (2) 棒转到水平位置时的角加速度。
解:(1)当棒与水平面成60°角并开始下落时,根据转动定律 M J α= (2分)得:211cos6023mgl ml α=o (2分)237.35 rad/s 4M gJ lα=== (2分) (2)当棒转动到水平位置时,力矩12M mgl =(2分)根据转动定律得: 2314.7 rad/s 2M g J lα=== (2分) 5、(10分)有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心,人与转台对中心的角动量各就是多少?随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为多少?mM R 图4图5l O60°m g ϖ图6解:(1)根据角动量的定义得:0L rmv ==人; (2分) 0L J ω=转台 (2分)(2)把转台与人作为一系统,人沿半径向外跑去过程中,重力与转轴的力对中心轴的力矩为零,所以系统对轴的角动量守恒。
(2分)ωω)(20mR J J += (3分)所以当人到达转台边缘时,转台的角速度为02ωωmRJ J+=(1分)。