42 离散无记忆信源RD的计算万方通信
《信息论与编码》课件1第2章
如果消息ai已发生,则该消息发生所含有的自信息定 义为
1
1
I (ai ) log P(ai ) log pi
(2.4)
第2章 离散无记忆信源与信息熵
可以很容易地证明, 自信息的定义满足上面提出的四个
(1) 此自信息的定义是根据消息发生的概率建立的一个 工程定义,而不是根据这个消息对人的实际意义而建立的 定义。这一纯粹技术性的定义仅仅抓住了“信息”一词在
(2) 自信息I(ai) 在消息ai发生之前,自信息I(ai)表示ai发生的不确定性; 在消息ai发生以后,自信息I(ai)表示ai所含有的(或提
第2章 离散无记忆信源与信息熵
(3) 在式(2.4)中关于对数的底未作明确规定。这是 因为对数的底仅仅影响到度量的单位,实际中可根据
如果取对数的底为2,则所得信息量的单位为比特 (bit, binary unit),此时logx用lbx
第2章 离散无记忆信源与信息熵
第2章 离散无记忆信源与信息熵
2.1 离散无记忆信源 2.2 自信息和熵 2.3 熵函数的性质 2.4 联合事件的熵及其关系 2.5 连续信源的信息测度 习题2
第2章 离散无记忆信源与信息熵
信息理论的研究对象是以各类信息的获取、表示、 传输和处理为目的的信息系统。图2-1给出了一个典型 的通信系统物理模型。在这样的通信系统中,一个贯 穿始终的、最基本的问题便是信息,即信源输出的是 信息,在系统中传输的是信息,接收者获得的也是信 息。可见,在信息理论的学习和研究中,首先需要对
信息论与编码(曹雪虹 张宗橙)第二、三章答案
2-1.解:该一阶马尔可夫信源,由转移概率构成的转移矩阵为:对应的状态图如右图所示。
设各符号稳定概率为:1p ,2p ,3p 则可得方程组: 1p =211p +312p +313p 2p =211p +323p3p =322p1p +2p +3p =1解得各符号稳态概率为:1p =2510,2p =259,3p =256 2-2.解:该马尔可夫信源的符号条件概率矩阵为:状态转移概率矩阵为:对应的状态图如右图所示。
设各状态的稳态分布概率为1W ,2W ,3W ,4W ,则可得方程组为:1W =0.81W +0.53W 2W =0.21W +0.53W 3W =0.52W +0.24W4W =0.52W +0.84W1W +2W +3W +4W =1解得稳定分布的概率为:1W =145,2W =142,3W =142,4W =145 2-3.解:(1)“3和5同时出现”事件的概率为: p(3,5)=181故其自信息量为: I(3,5)=-㏒2181=4.17bit (2)“两个1同时出现”事件的概率为:p(1,1)=361故其自信息量为: I(1,1)=- ㏒2361=5.17bit (3)两个点数的各种组合构成的信源,其概率空间为:则该信源熵为: H(x 1)=6×361lb36+15×181lb18=4.337bit/事件(4)两个点数之和构成的信源,其概率空间为:则该信源的熵为: H(x 2)=2×361lb36+2×181lb18+2×121lb12+2×91lb9+2×365lb 536+61lb6=3.274bit/事件(5)两个点数中至少有一个是1的概率为: p(1)=3611 故其自信息量为:I(1)= -㏒23611=1.7105bit 2-7.解:(1)离散无记忆信源的每个符号的自信息量为I(x 1)= -㏒283=1.415bit I(x 2)= -㏒241=2bitI(x 3)= -㏒241=2bitI(x 4)= -㏒281=3bit(2)由于信源发出消息符号序列有12个2,14个0,13个1,6个3,故该消息符号序列的自信息量为: I(x)= -㏒2(83)14 (41)25 (81)6=87.81bit平均每个符号携带的信息量为: L H (x)=45)(x I =1.95bit/符号 2-10解:用1x 表示第一次摸出的球为黑色,用2x 表示第一次摸出的球为白色,用1y 表示第二次摸出的球为黑色,用2y 表示第二次摸出的球为白色,则(1)一次实验包含的不确定度为:H(X)=-p(1x )lbp(1x )-p(2x )lbp(2x )=-13lb 13-23lb 23=0.92 bit (2)第一次实验X 摸出的球是黑色,第二次实验Y 给出的不确定度: H(Y|1x )=-p(1y |1x )lb p(1y |1x )-p(2y |1x )lb p(2y |1x )= -27lb 27-57lb 57= 0.86 bit(3)第一次实验X 摸出的球是白色,第二次实验Y 给出的不确定度:H(Y|2x )=-p(1y |2x )lb p(1y |2x )-p(2y |2x )lb p(2y |2x )= -514lb 514-914lb 914= 0.94 bit(4)第二次Y 包含的不确定度:H (Y|X )= -(,)(|)i j j i ijp x y lbp y x å= p(1x ) H(Y|1x )+p(2x )H(Y|2x ) =0.91 bit 2-11 解:(1)仅对颜色感兴趣的不确定度: H(colour)=H (238,1838,1838)= -238lb 238- 2´1838lb 1838=1.24 bit (2) 对颜色和数字都感兴趣的平均不确定度: H(clour,number)=H(number)= -18´118lb 118= 5.25 bit (3)颜色已知的条件熵:H (number|colour )=H (colour,number )- H(colour)=(5.25-1.24) bit=4.01 bit 2-12 解:(1)实验X和Y的平均信息量: H(X,Y)= - (,)i j ijp x y ålb (,)i j p x y = -(,)i j ijr x y ålb (,)i j r x y=H(724,124,0,124,14,0,124,724) =2.3 bit/符号(2)由联合概率,可得p(1y )=11(,)p x y +21(,)p x y +31(,)p x y=11(,)r x y +21(,)r x y +31(,)r x y=724+124+0 =13同理可得P(2y )=p(3y )=13,则实验Y 的平均信息量:H(Y)=H(13,13,13)=1.58 bit/符号(3)在已知实验Y结果的条件下,实验X的平均信息量:H(X|Y)=H(X,Y)-H(Y)=(2.3-1.58) bit/符号=0.72 bit/符号2-13解:由X和Y的联合概率,可得P(x=0)=p(x=0,y=0)+p(x=0,y=1)= 18+38=12同理,p(x=1)= 12, p(y=0)=p(y=1)=12由于Z=XY,由X和Y的联合概率,可得P(z=0)= P(x=0,y=0)+P(x=1,y=0)+P(x=0,y=1)= 7 8P(z=1)=p(x=1,y=1)= 1 8P(x=0,z=0)= P(x=0,y=0)+ P(x=0,y=1)= 12, P(x=0,z=1)=0P(x=0,y=0)P(x=0,y=0) P(x=0,y=0) P(x=0,y=0)P(x=1,z=0)= P(x=1,y=0)= 38, P(x=1,z=1) =P(x=1,y=1)=18P(y=0,z=0)= 12P(y=0,z=1)=0 P(y=1,z=0)=38P(y=1,z=1)=18P(x=0,y=0,z=0)= 18P(x=0,y=0,z=1)=0 P(x=0,y=1,z=0)=38P(x=0,y=1,z=1)=0 P(x=1,y=0,z=0)= 38P(x=1,y=1,z=0)=0P(x=0,y=0,z=1)=0 P(x=0,y=1,z=1)=0 P(x=1,y=1,z=1)= 18,则:(1) H(X)=H(12,12)=1 bitH(Y)=H(12,12)=1 bitH(Z) =H(18,78)= 0.54 bitH(X,Z)=H(12,0,38,18)=1.41 bitH(Y,Z) =H(12,0,38,18)=1.41 bitH(X,Y,Z) =H(18,0,38,0,38,0,0,18)=1.8 bit(2) H(X,Y)=H(18,38,18, 38)=1.81 bitH(X|Y)= H(X,Y) – H(Y)=0.81 bit H(Y |X)= H(X,Y) – H(X)=0.81 bit H(X|Z)= H(X,Z) – H(Z)=0.87 bit H(Z|X)= H(X,Z) – H(X)=0.41 bit H(Y|Z)= H(Y ,Z) – H(Z)=0.87 bit H(Z|Y)=H(Y ,Z)-H(Y)=0.41bitH(X|Y ,Z)=H(X,Y ,Z)-H(Y ,Z)=0.4bit H(Y|X,Z)=H(X,Y ,Z)-H(X,Z)=0.4bit H(Z|X,Y)=H(X,Y ,Z)-H(X,Y)=0(3) I(X;Y)=H(X)-H(X|Y)=0.19bit I(X;Z)=H(X)-H(X|Z)=0.13bit I(Y;Z)=H(X)-H(Y|Z)=0.13bitI(X;Y|Z)=H(X|Z)-H(X|Y,Z)=0.47bit I(Y;Z|X)=H(Y|X)-H(Y|X,Z)=0.41bit I(X;Z|Y)=H(X|Y)-H(X|Y ,Z)=0.41bit 2-14 解:依题意,可得信道传输概率p(y=0|x=0)=1-p(y=1|x=0)=3/4, p(y=1|x=1)=1-p(y=0|x=1)=7/8 联合概率:p(x=0,y=0)=p(y=0|x=0)p(x=0)=3/8同理:p(x=0,y=1)=1/8,p(x=1,y=0)=1/16,p(x=1,y=1)=7/16 概率:p(y=0)=p(x=0,y=0)+p(x=1,y=0)=7/16 p(y=1)=p(x=0,y=1)+p(x=1,y=1)=9/16后验概率:p(x=0|y=0)=p(x=0,y=0)/p(y=0)=(3/8)/(7/16)=6/7 同理:p(x=1|y=0)=1/7,p(x=0|y=1)=2/9,p(x=1|y=1)=7/9,则(1) I (x;y=0)=(|0)(|0)log()i i ii p x y p x y p x ==å)22(0|0)(1|0)(0|0)log (1|0)log (0)(1)p x y p x y p x y p x y p x p x =======+====616177(log log )/0.41/117722bit bit =+=符号符号22222(|)()(|)log ()(0|0)(1|0)(0)(0|0)log (0)(1|0)log (0)(1)(0|1)(1|1)(0)(0|1)log (1)(1|1)log (0)(1)76(l 167i j j i j iji p x y p y p x y p x p x y p x y p y p x y p y p x y p x p x p x y p x y p y p x y p y p x y p x p x ========+=========+===+======å(2)I(X;Y)=222261277192977799og log log log )/111116716916922220.31/bit bit +++=符号符号21211111211212211212)(|)()(|)()(|)()112121722343412a P x a x a P x a P x a x a P x a P x a x a P x a =====+===+====???2-29 解:由已知起始概率和转移概率,可得:P(x 2223122211222122213255P(),()2424111111)(log log log ) 1.5224444111111H(|)(log log log ) 1.52244442211H(|)log 0log )0.9183333221H(|)log 333x a P x a bit bit x a bit bitx a bit bitx a =====---==---==-+-==--同理可得:由起始概率,可得:H(x 另外:21log 0)0.9183bit bit+=2111211222132332213122321333H(|)()(|)()(|)()(|)111( 1.50.9180.918) 1.209244H(|)()(|)()(|)()(|)755( 1.50.9180.918) 1.257122424x x P x a H x a P x a H x a P x a H x a bit bit x x P x a H x a P x a H x a P x a H x a bit bit H ==+=+==???==+=+==???12,31213121213212,3(,)H()H(|)H(|)H()H(|)H(|)(1.5 1.209 1.257) 3.996(,) 3.996()/331.322/L x x x x x x x x x x x x x x bit bitH x x x H x bit bit =++=++=++====符号符号12312311321231231231122332)w w w 122w w 23311w w 4311w w 43w w w 1833w ,w ,w ,141414()w (|)(|)(|)833( 1.50.9180.918) 1.251141414r r r w w w w H x H x a w H x a w H x a bit bit¥++=+=+=++=====++=???,(设各稳定时的概率为,,则解得:该链的极限平均符号熵为000111220(3)log 3 1.58/ 1.2511(/)10.211.417883333(log log log ) 1.4137/1414141414141.251()10.1151.4171.251/H bit r y H H H bit bit H r y H H H bit r ¥¥¥====-=-=-==---==-=-=-===符号符号符号2-30解:依题意,状态转移图如下图所示,其状态转移概率矩阵为P=213310⎛⎫⎪ ⎪ ⎪⎝⎭设状态稳定概率为1W 、2W ,则:231W +2W =1W 131W =2W 解得:1W =34 ;2W =141W +2W =1则:H(X |1S )=-232log 23-132log 13=0.918bit H(X |2S )=0信源熵为:H (X )=1W H(X |1S )+2W H(X |2S )=(34*0.918+14*0)bit=0.688bit2-32解:(1)由状态图,可得状态转移概率矩阵为:P=122122122p p p p p p p p p ⎛⎫- ⎪ ⎪ ⎪- ⎪ ⎪ ⎪- ⎪⎝⎭设状态稳定概率为1W ,2W ,3W ,则: (1-p )1W +2p 2W +2p3W =1W2p1W + (1-p) 2W +2p3W =2W 解得:1W =2W =3W =13,2p1W +2p2W +(1-p) 3W =3W 即p(0)=p(1)=p(2)= 131W +2W +3W =1(2) H(X|0)=H(X|1)=H(X|2)= - (1-p) 2log (1-p) -2p 2log 2p -2p 2log 2p= - (1-p) 2log (1-p) - p 2log 2pH ∞(X)=p(0)H(X|0)+p(1)H(X|1)+p(2)H(X|2)= - (1-p) 2log (1-p) - p 2log 2p bit (3) H(X)= 2log 3=1.58bit(4) 令()0dH X dp ∞=,得lnln(1)1120ln 2(1)ln 2ln 2ln 2pp p p --+---=- 解得p=23,则: 当p=23时,H ∞(X)= (- 132log 13-232log 13)bit =1.58 bit当p=0 时, H(X)=0当p=1时,H(X)=13-1 解(1)由输入概率分布和概率转移,可得: 00(,)p x y =00(|)p y x 0()p x =23*34=12同理,可得:01(,)p x y =14; 10(,)p x y =112; 11(,)p x y =16,则:0()p y =00(,)p x y +10(,)p x y =12+112=7121()p y =01(,)p x y +11(,)p x y =14+16=512因此,H(X)=( - 342log 34- 142log 14) bit =0.811 bit H(X ,Y)=( - 122log 12- 142log 14 - 1122log 112-162log 16)bit=1.73bit H(Y)=( -7122log 712 - 5122log 512)bit=0.98bit H(Y|X)=H(X ,Y)-H(X)=(1.73-0.811)bit=0.919 bitH(X|Y )= H(X ,Y)-H(X)=(1.73-0.98)bit=0.75bit I(X ;Y)=H(X)-H(X|Y)=(0.811-0.75)bit=0.061bit (2)该信道是对称DMC 信道,信道容量为 C= 2log m -1log mijij j pp =∑= 2log 2 +23 2log 23+ 13 2log 13=0.082bit 达到信道容量时输入概率分布为:0()p x = 1()p x =123-2 解:(1)由信源的概率分布和转移概率,可得11(,)p x y =11(|)p y x 1()p x =12α 同理可得:12(,)p x y =12α,13(,)p x y =0 ,21(,)p x y =12(1-α), 22(,)p x y =14(1-α),23(,)p x y =14(1-α),则:1()p y =11(,)p x y +21(,)p x y =12α+12(1-α)=12,同理可得: 2()p y =14α+14;3()p y =14(1-α)因此,接收端的平均不确定度为:2222211111111log ()log ()(1)log (1)22444444311log (1)log (1)()244bit -??--??+??=-+?-?(2)由于噪声产生的不确定度为:22222111111111(|X )=l o g l o g 0l o g l o g l o g 22222244443()22H Y bit ????--?---¶=-由于互信息为:223113I X;Y)=H(Y)-(Y|X)=[-log (1)log (1)]24422+?抖+?-?-(()令(;)0dI X Y d =¶,可得:35?,则:(3(;)()0.161bit 5max i p a C I X Y C ==?=)3-6 解:该信道的概率转移矩阵为 110022110022P=11002211022骣÷ç÷ç÷ç÷ç÷ç÷ç÷ç÷÷ç÷ç÷ç÷ç÷ç÷ç÷ç÷÷ç÷ç÷ç÷ç÷ç÷ç÷ç÷÷ç桫 可见,该信道为对称DMC 信道,因此,该信道的信道容量为: 42222211111C log m log log 4log ()log ()12222ij ij j p p bit ==+=++=å3-7解:(1)由发送符号的概率分布和转移概率,可得: 1111111(,)(|)()0.536p x y p y x p x ==? 同理可得:12132122233132331121(,),(,),(,),(,)10151510113(,),(,),(,),(,)0103010p x y p x y p x y p x y p x y p x y p x y p x y ========11121311211()(,)(,)(,)615303p y p x y p x y p x y =++=++= 同理可得:2311(),()26p y p y ==;111111(,)16(|)1()23p x y p x y p y ===同理可得:21311222321323331221(|)(|)(|)(|)5555313(|)(|)(|)(|)05105p x y p x y p x y p x y p x y p x y p x y p x y ========,,,,,,因此,222222112233H Y)=p(y )log p(y )-p(y )log p(y )-p(y )log p(y )111111log log log 1.459332266bit=---=((2)H Y|X)=(;)log (|i j j i ijp x y p y x -å()222221113112213log log log log log 6210101551551010=----- 222131139log log log 101030101010--- 1.175bit =(3)当接收为2 y ,发出为2x 是正确,发出的是1x 和3x 为错误,由于各自概率为:122232113(|),(|),(|)555p x y p x y p x y === 因此,接收端收到一个符号2y 的错误概率为:123213(|)(|)0.855i p p x y p x y =+=+= (4)从接收端看的平均错误概率为:1213111232213233[(|)(|)]()[(|)(|)]()[(|)(|)]()e P p x y p x y p y p x y p x y p y p x y p x y p y =+++++ 213112321323(,)(,)(,)(,)(,)(,)p x y p x y p x y p x y p x y p x y =+++++ 211311153010101510=+++++0.733= (5)同理可得,从发送端看的平均错误概率为:__210.733e e p p == (6)从转移矩阵来看,正确发送的概率11x y -的概率为0.5,有一半失真;22x y -的概率为0.3,产生失真;33x y -的概率为0,完全失真。
信息论汇总马尔科夫信源
• Wj :马尔可夫链一个平稳分布,
• Wj [或p(sj)]就是系统此时处于状态sj概率。
信息论汇总马尔科夫信源
18
18/32
例4
Wi pij W j
i
0.6W0 0.4W0
0.3W1 0.7W1
0.2W2 0.8W2
W0 W1
W2
W0 W1 W2 1
W0 0.3571, W1 0.1429, W2 0.5
信息论汇总马尔科夫信源
0/0.4
1/0.6
so
1/0.2
s1
0/0.3 1/0.7
s2
0/0.8
0.6 0.4 0 p(s j | si ) 0.3 0 0.7
0.2 0 0.8
19
19/32
• 例5:有一个二元二阶马尔可夫信源,其信源符
号集为{0,1},已知符号条件概率:
p(0|00) = 1/2 p(1|00)=1/2 p(0|01) = 1/3 p(1|01)=2/3 p(0|10) = 1/4 p(1|10)=3/4 p(0|11) = 1/5 p(1|11)=4/5
(0)0.3
s1
•
抵达状态s1和s2 : 若处于s1 ,以0.3和0.7概率发
(0)0.5
s0
出0和1抵达s3和s4
(1)0.5
(1)0.7 (0)0.4
• 若处于s2,以0.4和0.6概率发 出0和1抵达s5和s6
s2 (1)0.6
00 s3
01 s4 10 s5 11 s6
25
信息论汇总马尔科夫信源
p(s1 | s1) p(s4 | s4) 0.8,
p(s3 | s2) p(s1 | s3) p(s4 | s2) p(s4 | s2) p(s2 | s3) 0.5;
《信息论与编码》部分课后习题参考答案
答:信源 P(M1)= P(M2)= P(M3)= P(M4)=1/4, 信道为二元对称无记忆信道,消息 Mi 与码字一一 对应,所以设 M i = ( xi1 xi2 ) 设接收序列为 Y=(y1y2) 接收到第一个数字为 0,即 y1=0。那么,接收到第一个数字 0 与 M1 之间的互信息为
I ( M 1 ; y1 = 0) = log
所以 I ( M 1; y1 y2 = 00) = log
p2 = 2(1 + lbp ) 比特 1 4
得附加互信息为 I ( M 1; y2 = 0 | y1 = 0) = 1 + lbp 比特 2.6 证明如果随机变量空间 X、Y、Z 构成马尔科夫链,即 X-Y-Z,则有 Z-Y-X。 答:证明:因为(X,Y, Z)是马氏链,有 P(z|xy)=P(z|y),对所有 x ∈ X , y ∈ Y , z ∈ Z 成立,而 P(x|yz)=P(xyz)/P(yz) = P(z|xy) P(xy)/ P(y) P(z|y) = P(z|xy) P(y) P(x|y)/ P(y) P(z|y) 对所有 x ∈ X , y ∈ Y , z ∈ Z 成立
1.4 从香农信息论的角度看来,分别播送半小时新闻联播和半小时的轻音乐,听众接受到的 信息是否相同,为什么? 答:新闻联播是语言,频率为 300~3400Hz ,而轻音乐的频率为 20~20000Hz 。同样的时间内 轻音乐的采样编码的数据要比语音的数据量大,按码元熵值,音乐的信息量要比新闻大。但 是在信宿端,按信息的不确定度,信息量就应分别对待,对于新闻与音乐的信息量大小在广 义上说,因人而异。
1 3 1 p = × × 8 8 4
14
25
6
此消息的信息量是: I = − log p = 87.811 bit (2) 此消息中平均每符号携带的信息量是: I / n = 87.811/ 45 = 1.951 bit 2.8 一个信源发出二重符号序列消息(m, n) ,其中第一个符号 m 可以是 A、B、C 中任一个, 第二个符号 n 可以是 D、E、F、G 中的任一个。各信源符号概率及条件概率如题表 2.1 所示。 试求这个信源的联合熵 H(MN)。
信息论与编码陈运主编答案完整版
p x( i3 / xi1) 1 0 时等式等等当 − = p x( i3 / x xi1 2i )
⇒ p x( i3 / xi1) = p x( i3 / x xi1 2i ) ⇒ p x x( i1 2i ) (p xi3 / xi1) = p x( i3 / x xi1 2i ) (p x xi1 2i ) ⇒ p x( i1) (p xi2 / xi1) (p xi3 / xi1) = p x x x( i1 2 3i i ) ⇒ p x( i2 / xi1) (p xi3 / xi1) = p x x( i2 3i / xi1) ∴等式等等的等等是 X1, X2, X3 是马氏链_
0.25
0.75
设随机变量 Y 代表女孩子身高
Y
y1(身高>160cm)
P(Y)
0.5
ห้องสมุดไป่ตู้
y2(身高<160cm) 0.5
已知:在女大学生中有 75%是身高 160 厘米以上的
即: p y( 1 / x1) = 0.75 bit
求:身高 160 厘米以上的某女孩是大学生的信息量
p x p y( 1) ( 1 / x1 ) log 0.25×0.75 =1.415 bit 即:I
∑∑∑ =
i1 i2
i3 p x x x( i1 i2 i3 )log p x( i3 / x xi1 i2 )
∑∑∑ ≤
i1 i2
⎛ p x( i3 / xi1) 1⎞⎟⎟log2 e i3 p x x x( i1 i2 i3 )⎜⎜⎝ p x( i3 / x xi1 i2 ) − ⎠
∑∑∑ ∑∑∑ = ⎜⎛
⇒ H X( 2 ) ≥ H X( 2
/ X1 ) I X( 3;X X1 2 ) ≥ 0
信息论与编码(陈运)习题答案
· 1 ·2.1 试问四进制、八进制脉冲所含信息量是二进制脉冲的多少倍?解:四进制脉冲可以表示4个不同的消息,例如:{0, 1, 2, 3}八进制脉冲可以表示8个不同的消息,例如:{0, 1, 2, 3, 4, 5, 6, 7} 二进制脉冲可以表示2个不同的消息,例如:{0, 1} 假设每个消息的发出都是等概率的,则:四进制脉冲的平均信息量symbol bit n X H / 24log log )(1=== 八进制脉冲的平均信息量symbol bit n X H / 38log log )(2=== 二进制脉冲的平均信息量symbol bit n X H / 12log log )(0=== 所以:四进制、八进制脉冲所含信息量分别是二进制脉冲信息量的2倍和3倍。
2.2 居住某地区的女孩子有25%是大学生,在女大学生中有75%是身高160厘米以上的,而女孩子中身高160厘米以上的占总数的一半。
假如我们得知“身高160厘米以上的某女孩是大学生”的消息,问获得多少信息量?解:设随机变量X 代表女孩子学历X x 1(是大学生) x 2(不是大学生) P(X) 0.25 0.75设随机变量Y 代表女孩子身高Y y 1(身高>160cm ) y 2(身高<160cm ) P(Y) 0.5 0.5已知:在女大学生中有75%是身高160厘米以上的 即:bit x y p 75.0)/(11=求:身高160厘米以上的某女孩是大学生的信息量 即:bit y p x y p x p y x p y x I 415.15.075.025.0log )()/()(log )/(log )/(11111111=⨯-=-=-=2.3 一副充分洗乱了的牌(含52张牌),试问(1) 任一特定排列所给出的信息量是多少?(2) 若从中抽取13张牌,所给出的点数都不相同能得到多少信息量?解:(1) 52张牌共有52!种排列方式,假设每种排列方式出现是等概率的则所给出的信息量是:!521)(=i x p bit x p x I i i 581.225!52log )(log )(==-=(2) 52张牌共有4种花色、13种点数,抽取13张点数不同的牌的概率如下:· 2 ·bit C x p x I C x p i i i 208.134log)(log )(4)(135213135213=-=-==2.4 设离散无记忆信源⎭⎬⎫⎩⎨⎧=====⎥⎦⎤⎢⎣⎡8/14/1324/18/310)(4321x x x x X P X ,其发出的信息为(202120130213001203210110321010021032011223210),求 (1) 此消息的自信息量是多少?(2) 此消息中平均每符号携带的信息量是多少?解:(1) 此消息总共有14个0、13个1、12个2、6个3,因此此消息发出的概率是:62514814183⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛=p此消息的信息量是:bit p I 811.87log =-=(2) 此消息中平均每符号携带的信息量是:bit n I 951.145/811.87/==2.5 从大量统计资料知道,男性中红绿色盲的发病率为7%,女性发病率为0.5%,如果你问一位男士:“你是否是色盲?”他的回答可能是“是”,可能是“否”,问这两个回答中各含多少信息量,平均每个回答中含有多少信息量?如果问一位女士,则答案中含有的平均自信息量是多少?解: 男士:symbolbit x p x p X H bitx p x I x p bit x p x I x p i i i N N N Y Y Y / 366.0)93.0log 93.007.0log 07.0()(log )()( 105.093.0log )(log )(%93)( 837.307.0log )(log )(%7)(2=+-=-==-=-===-=-==∑女士:symbol bit x p x p X H ii i / 045.0)995.0log 995.0005.0log 005.0()(log )()(2=+-=-=∑2.6 设信源⎭⎬⎫⎩⎨⎧=⎥⎦⎤⎢⎣⎡17.016.017.018.019.02.0)(654321x x x x x x X P X ,求这个信源的熵,并解释为什么H(X) > log6不满足信源熵的极值性。
信息论与编码第五章习题参考答案
5.1某离散无记忆信源的概率空间为采用香农码和费诺码对该信源进行二进制变长编码,写出编码输出码字,并且求出平均码长和编码效率。
解:计算相应的自信息量1)()(11=-=a lbp a I 比特 2)()(22=-=a lbp a I 比特 3)()(313=-=a lbp a I 比特 4)()(44=-=a lbp a I 比特 5)()(55=-=a lbp a I 比特 6)()(66=-=a lbp a I 比特 7)()(77=-=a lbp a I 比特 7)()(77=-=a lbp a I 比特根据香农码编码方法确定码长1)()(+<≤i i i a I l a I平均码长984375.164/6317128/17128/1664/1532/1416/138/124/112/1L 1=+=⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=由于每个符号的码长等于自信息量,所以编码效率为1。
费罗马编码过程5.2某离散无记忆信源的概率空间为使用费罗码对该信源的扩展信源进行二进制变长编码,(1) 扩展信源长度,写出编码码字,计算平均码长和编码效率。
(2) 扩展信源长度,写出编码码字,计算平均码长和编码效率。
(3) 扩展信源长度,写出编码码字,计算平均码长和编码效率,并且与(1)的结果进行比较。
解:信息熵811.025.025.075.075.0)(=--=lb lb X H 比特/符号 (1)平均码长11=L 比特/符号编码效率为%1.81X)(H 11==L η(2)平均码长为84375.0)3161316321631169(212=⨯+⨯+⨯+⨯=L 比特/符号 编码效率%9684375.0811.0X)(H 22===L η(3)当N=4时,序列码长309.3725617256362563352569442569242562732562732256814=⨯+⨯+⨯⨯+⨯⨯+⨯⨯+⨯+⨯⨯+⨯=L平均码长827.04309.34==L %1.98827.0811.0X)(H 43===L η可见,随着信源扩展长度的增加,平均码长逐渐逼近熵,编码效率也逐渐提高。
通信原理习题(有关的题弄懂肯定及格)
通信原理练习题绪论填空题1.为便于对通信系统进行分析,常采用广义信道,对模拟通信从研究(调制和解调)角度出发,定义为(调制)信道;对数字通信,从研究(编码和译码)角度出发,定义为(编码)信道。
2.在通信传输过程中,基带传输是指(由信源发出的未经调制的基带信号直接在信道中传输),频带传输是指(通过调制将基带信号变为更适合在信道传输的形式)。
3.在数字通信系统中,信源编码是为了(提高系统的有效性),信道编码是为了(提高系统的可靠性)。
4.模拟调制系统的抗噪声性能主要用(输出信噪比)来衡量,数字调制系统的抗噪声性能主要用(误码率或误信率)来衡量。
5.在通信理论中,信息是对(消息)的(统计)特性的一种定理描述;信息采用的最广泛的单位是(比特)。
6.通信系统的主要性能指标通常用(有效性)和(可靠性)来衡量,FSK系统指标具体用(传码率)和(误码率)来衡量,而FM系统指标具体用(有效传输带宽)和(输出信噪比)来衡量。
7.一离散信源输出二进制符号,在(等概)条件下,每个二进制符号携带1比特信息量;在(不等概)条件下,每个二进制符号携带的信息量小于1比特。
8.设每秒传送N个M进制的码元,则信息传输速率为(Nlog2M)比特/秒。
9.在数字通信中,传码率是指(系统每秒传送码元的数目)。
10.在数字通信中,误码率是指(在传输中出现错误码元的概率)。
11.数字通信系统的主要性能指标是(传输速率)和(差错率)。
码元速率R B的定义是(每秒钟传送码元的数目),单位是(Baud),信息速率R b的定义是(每秒钟传递的信息量),单位是(bit/s)。
二、计算填空题1.若传输四进制数字序列,每传输一个码元需时间T i=250×10-6s,其传信率为(8kb/s),码元速率为(4kB)。
2.某通信系统采用八进制数字序列传输方式,其码元速率为9600B,其传信率为(28800b/s),若传输5s,检测到48个码元误码,其误码率为(10-3)。
信息论基础——信道容量的计算
p p1 p 1
将p=3/5代入(2),得到信道容为:C=0.32bit/sym.
20
信道容量的计算
2 达到信道容量输入分布的充要条件
令
I (xi ;Y )
s j 1
p( y j
|
xi ) log
p( y j | xi ) p( yj )
def
D(Q( y |
x) ||
p( y))
定理4.2.2 一般离散信道的互信息I(X;Y)达到极大值
1 信道容量的计算原理
C是选择不同的输入概率分布p(x),在满足
∑p(x)=1条件下,求互信息的极大值:
I(X ;Y )
r i 1
s j 1
p(xi ) p( y j | xi ) log
p( y j | xi ) p(yj )
Lagrange乘子
法
17
信道容量的计算
例1、设某二进制数字传输系统接收判决器
6
数据可靠传输和信道编码
4.1 离散无记忆信道和信道容量 4.2 信道容量的计算
4.3 信道编码理论 4.4 带反馈的信道模型 4.5 联合信源-信道编码定理 4.6 线性分组码 习题四
7
8
接入信道容量的分析与寻呼信道不一样,寻呼信道用于前 向链路,容量的分析主要在于对寻呼信道占用率的计算, 而接入信道用于反向链路,对 CDMA 系统来说,反向链 路容量主要用于干扰的分析。即使采用时隙化的随机接入 协议,接入信道也可能有较高的通过量,大量的接入业务 会在反向链路中产生无法接受的干扰。如前所述,第一个 接入试探失败后,下一个接入试探将增加一定量的功率, 最终的结果将导致小区接收功率的增加以及反向链路容量 的减少。
4.2 离散无记忆信源R(D)的计算_万方通信
2019/1/14
7
例:求d(x,y)=(y-x)2的Dmax和信息率失真 函数R(D)。 min[ p( x)d ( x, y)dx] 解:连续信源的Dmax, D
max y
y
而 (x )p( x)dx ,即 x p( x)dx
2 2 2
2
D
Dmax min[ 2 2 2 y y 2 ]
y
2
2019/1/14
10
结论:
若失真函数为均方失真,即d(x,y)=(x-y)2时,连续 1 D 信源的信息率失真函数 R( D) ln( max ) ,且
第4章 信息率失真函数
2019/1/14
1
4.1 基本概念
4.2 离散无记忆信源R(D)的计算 4.3 连续无记忆信源R(D)的计算 4.4 信道容量和信息率失真函数的比较
2019/1/14
2
4.2 离散无记忆信源R(D)的计算
参量表达式法求R(D)及P(Y/X),具体推导略, 见p111页。
X x1 x2 0 1 ,其中 p ,失真矩阵为 D , 输出Y 0,1 P( X ) p 1 p 2 0
Dj 解:(1) Dmax min j 0 min p 1 p j 0 min(1 p ) , p
依据:平均互信息I是信源概率分布p(xi)的严格上 凸函数。
(2)信息率失真函数:求选择某一试验信道(转 移概率分布)的情况下,依据保真度准则,求平均 互信息的极小值。
信息论与编码第4章习题解答
《信息论与编码》第四章习题解答4.1 计算如下所示离散无记忆信道的容量: 习题4.1图[解] (a )信道概率转移矩阵为−−−−=δεδεεδδε11P , 信道是准对称信道,因此在输入为等概分布时达到信道容量,即5.0)1()0(====X P X P 时达到信道容量。
这时δ5.05.0)0(−==Y P δ==)1(Y Pδ5.05.0)2(−==Y P相应的信道容量为);1();0(Y X I Y X I C ====∑==2)()0|(log)0|(j j p j p j p 0111-ε1-δε δ 00 121-ε-δ εδδ 1-ε-δ1ε0 221 0.5 δ 110.250.25 0.50.50 2 21-ε ε ε 1-ε1ε 11-ε 0 0 223/41/4 111/3 1/31/3 1/43/40 2 311/3 211/31/3 1/31/31/3 1/3 1/31/3 (c)(a)(b) (e)(f)(d)δεεδδδδδεδε5.05.0log log 5.05.01log)1(−++−−−−−=)5.05.0log()1(log )1log()1(δδεεδεδε−−−+−−−−= (b )信道概率转移矩阵为=5.05.0025.025.05.0001P当5.0)2()0(====X P X P ,0)(=X P 时,5.0)0(==Y P ,25.0)1(==Y P ,25.0)2(==Y P1)()0|(log )0|();0(2===∑=j j p j p j p Y X I bit∑===2)()2|(log)2|();2(j j p j p j p Y X I 125.05.0log 5.025.05.0log 5.0=+= bit10);1(≤==Y X I ; 所以满足定理4.2.2条件,由达到信道容量充要条件可知,信道容量C =1 bit/次(c )信道转移概率矩阵为−−−=εεεεεε101001P ,信道是对称信道,当输入为均匀分布时,即31)2()1()0(======X P X P X P 时,达到信道容量。
信息论基础离散无记忆信道信道容量
存储的最大信息量,即信息无差错传输的最大 速
率 ,就是信道容量问题.
12
第13页/共23页
信道容量
带宽 :信道可以不失真地传输信号的频率范围。为不同应用而设 计的
传输媒体所支持的带宽有所不同;在现代网络技术中, “带宽” 表示
信道的数据传输速率.
信道容量:信道在单位时间内可以传输的最大信号量,表示信道 的传
p
[P]=
1
p
1-p
p称为交叉 概率误差!
0
1-p 0
p
p
1
1-p
1
19
第20页/共23页
离散无记忆信道和信道容量
如果信道的输入概率分布X={w,1-w},则
I (X ;Y ) H ( p p) H ( p)
由此可得
20
第21页/共23页
离散无记忆信道和信道容量
平均互信息对 即当
有极大值
I (X ;Y )
p(x, y) log p(x, y)
xX yY
p(x) p(y)
p(x) Q( y | x) log
xX
yY
Q(y | x) p(x)Q( y | x)
xX
15
第16页/共23页
离散无记忆信道和信道容量
通常,P(xi)称为信道的入口分布 P(yi)称为信道的出口分布 i(x;y)=logP(x,y)/P(x)P(y)为入口与
(1)有记忆信道
(2)无记忆信道
(任一时刻输出符号只统计依赖于对应时刻输入符 号的
信道)
7
第8页/共23页
离散无记忆信道
根据输入输出信号的特点,可分为
(1)离散信道
数字信道以数字 脉冲形式(离散 信号)传输数据
信息论习提答案
1、 熵 是香农信息论最基本最重要的概念。
2、 单符号离散信源一般用随机变量描述,而多符号离散信源一般用 随机矢量 描述。
3、 两个相互独立的随机变量的联合自信息量等于 两个自信息量之和 。
4、 离散平稳无记忆信源X 的N 次扩展信源的熵等于离散信源X 的熵的 N 倍 。
5、 对于n 元m 阶马尔可夫信源,其状态空间共有 n m 个不同的状态。
6、 若一离散无记忆信源的信源熵H (X )等于4.2,对信源进行等长的无失真二进制编码,则编码长度至少为 5 。
7、 同时掷两个正常的骰子,各面呈现的概率都为1/6,则“3和6同时出现”这件事的自信息量是 log 218或(1+2 log 23)。
8、 一副充分洗乱的扑克牌(52张),从中任意抽取1张,然后放回,若把这一过程看作离散无记忆信源,则其信源熵为 52log 2 。
9、 具有一一对应关系的无噪信道的信道容量C= log 2n 。
10、 信道编码定理是一个理想编码的存在性定理,即:信道无失真传递信息的条件是 信息率小于信道容量 。
11、 信源的消息通过信道传输后的误差或失真越大,信宿收到消息后对信源存在的不确定性就 越大 ,获得的信息量就越小12、 平均失真度的下限取0的条件是失真矩阵的 每一行至少有一个零元素 。
13、 率失真函数对允许的平均失真度是 单调递减和连续的 。
14、 对于离散无记忆信源的率失真函数的最大值是 log 2n 。
15、 信源编码的目的是: 提高通信的有效性 。
16、 对具有8个消息的单符号离散无记忆信源进行4进制哈夫曼编码时,为使平均码长最短,应增加 2 个概率为0的消息。
17、 对于香农编码、费诺编码和哈夫曼编码,编码方法惟一的是 香农编码 。
18、 游程序列的熵 等于 原二元序列的熵。
19、 n 位重复码的编码效率是 1/n 。
20、 若纠错码的最小距离为d min ,则可以纠正任意小于等于t= ⎥⎦⎥⎢⎣⎢-21min d 个差错。
信息论和编码陈运主编答案解析(完整版)
⇒ H X( 2 )
≥ H X( 2 / X1 ) I X( 3;X X1 2 ) ≥ 0
⇒ H X( 3 ) ≥ H X( 3 / X X1 2 )
... I X( N;X X1 2...Xn−1) ≥ 0
⇒ H X( N ) ≥ H X( N / X X1 2...Xn−1)
WORD 完美格式
专业整理
不满足极值性的原因是
。
i
2.7 证明:H(X3/X1X2) ≤ H(X3/X1),并说明当 X1, X2, X3 是马氏链时等式成立。证明:
H X(3 / X X12 ) − H X(3 / X1)
∑∑∑ ∑∑ = −
p x x x( i1 i2i3 )log p x( i3 / x xi1 i2 ) +
⎢p e( 1 ) = p e( 2 ) = p e( 3 ) ⎢
⎢p e( 1 ) + p e( 2 ) + p e( 3 ) =1
⎢p e( 1 ) =1/3 ⎢ ⎢p e( 2 )
⎢
=1/3 ⎢p e( 3 ) =1/3
⎢p x( 1 ) = p e( 1 ) (p x1 /e1 ) + p e( 2 ) (p x1 /e2 ) = p p e⋅( 1 ) + p p e⋅ ( 2 ) = (p + p)/3 =1/3 ⎢⎢ ⎢p x( 2 ) = p e( 2 ) (p x2 /e2 ) + p e( 3 ) (p x2 /e3 ) =p p e⋅( 2 ) + p p e⋅ ( 3 ) = (p + p)/3 =1/3
解: (1)
这个信源是平稳无记忆信源。因为有这些词语:“它在任意时间....而且不论以前发生过什么符 号...........……”
信息论与编码习题答案
1. 在无失真的信源中,信源输出由 H (X ) 来度量;在有失真的信源中,信源输出由 R (D ) 来度量。
2. 要使通信系统做到传输信息有效、可靠和保密,必须首先 信源 编码, 然后_____加密____编码,再______信道_____编码,最后送入信道。
3. 带限AWGN 波形信道在平均功率受限条件下信道容量的基本公式,也就是有名的香农公式是log(1)C W SNR =+;当归一化信道容量C/W 趋近于零时,也即信道完全丧失了通信能力,此时E b /N 0为 dB ,我们将它称作香农限,是一切编码方式所能达到的理论极限。
4. 保密系统的密钥量越小,密钥熵H (K )就越 小 ,其密文中含有的关于明文的信息量I (M ;C )就越 大 。
5. 已知n =7的循环码42()1g x x x x =+++,则信息位长度k 为 3 ,校验多项式 h(x)= 31x x ++ 。
6. 设输入符号表为X ={0,1},输出符号表为Y ={0,1}。
输入信号的概率分布为p =(1/2,1/2),失真函数为d (0,0) = d (1,1) = 0,d (0,1) =2,d (1,0) = 1,则D min = 0 ,R (D min )= 1bit/symbol ,相应的编码器转移概率矩阵[p(y/x )]=1001⎡⎤⎢⎥⎣⎦;D max = ,R (D max )= 0 ,相应的编码器转移概率矩阵[p(y/x )]=1010⎡⎤⎢⎥⎣⎦。
7. 已知用户A 的RSA 公开密钥(e,n )=(3,55),5,11p q ==,则()φn = 40 ,他的秘密密钥(d,n )=(27,55) 。
若用户B 向用户A 发送m =2的加密消息,则该加密后的消息为 8 。
二、判断题1. 可以用克劳夫特不等式作为唯一可译码存在的判据。
(√ )2. 线性码一定包含全零码。
(√ )3. 算术编码是一种无失真的分组信源编码,其基本思想是将一定精度数值作为序列的 编码,是以另外一种形式实现的最佳统计匹配编码。
第5讲离散无记忆信源
尤为重要的是:
一类重要的符号序列有记忆离散信源----马尔可夫 信源: 某一个符号出现的概率只与前面一个或有限个 符号有关,而不依赖更前面的那些符号。
2.2 离散无记忆扩展信源
1. 单个符号的离散信源----每次只发出一个符号代表一 个消息,且消息数量有限。
a1 X P p ( a1 ) a2 p ( a2 ) p ( ar ) ar
设XN为X的N次扩展信源,概率空间如下:
X i1 X i2 X iN XN Xi N P( X ) p( X i1 X i2 X iN ) i 1 P( X i ) i 1
H ( X N ) p( X i ) log p( X i )
i 1 rN
rN
rN
P( X i ) 0 ,
P( X ) 1
i i 1
rN
i1 , ,iN r
p( X i1 X i2
i1
X iN ) log p( X i1 X i2
X iN )
( 无记忆、平稳性)
i1 1 i2 1
r
r
iN 1
p( X
X iN )[log p( X i1 )
rN
X iN X iN ) i 1
rN
P( X
i 1
rN
i
) 1
则称该信源为离散N 扩展信源.
定义:若对上述信源X 满足: p( X i1 X i2 X iN ) p( X i1 ) p( X i2 )
p ( X iN )
则称该信源为离散无记忆N 次扩展信源,为方便 记忆,一般情况下,记该信源为:X N .
信息论 基础理论与应用课后答案 全
B 表示女孩身高 1.6 米以上, P(B | A) = 0.75,P(B) = 0.5 “身高 1.6 米以上的某女孩是大学生”的发生概率为 P(A| B) = P(AB) = P(A)P(B | A) = 0.25× 0.75 = 0.375 P(B) P(B) 已知该事件所能获得的信息量为 I X 【2.5】设离散无记忆信源 4 P(x) a1 = 0 a2 =1 = 3/8 1/41/8 比特 a3 = 2 a4 = 3 1/ ,其发出的消息为 0.5
45 个符号共携带 87.81 比特的信息量,平均每个符号携带的信息量为 I= =1.95 比特/符号
注意:消息中平均每个符号携带的信息量有别于离散平均无记忆信源平均每个符号携带的 信息量,后者是信息熵,可计算得 H(X) = −∑P(x)log P(x) =1.91 比特/符号 【2.6】如有 6 行 8 列的棋型方格,若有二个质点 A 和 B,分别以等概率落入任一方格 内,且它们的坐标分别为(XA,YA)和(XB,YB) ,但 A 和 B 不能落入同一方格内。 (1) 若仅有质点 A,求 A 落入任一个格的平均自信息量是多少? (2) 若已知 A 已落入,求 B 落入的平均自信息量。 (3) 若 A、B 是可分辨的,求 A、B 同都落入的平均自信息量。 解: (1)求质点 A 落入任一格的平均自信息量,即求信息熵,首先得出质点 A 落入任 一格的概率空间为:
H(B | A) = −∑∑48 47 P(ai )P(bj | ai )log P(bj | ai ) = log47 = 5.55 比特/符号
i=1 j=1
(3)质点 A 和 B 同时落入的平均自信息量为 H(AB) = H(A) + H(B | A) =11.13 比特/符号 【2.7】从大量统计资料知道,男性中红绿色盲的发病率为 7%,女性发病率为 0.5%,如 果你问一位男同志:“你是否是红绿色盲?”,他的回答可能是“是”,也可能是 “否”,问这两个回答中各含有多少信息量?平均每个回答中含有多少信息量?如果你问 一位女同志,则答案中含有的平均自信息量是多少?解:
信息论与编码理论习题答案全解
信息论与编码理论习题答案全解第二章 信息量和熵2.2 八元编码系统,码长为3,第一个符号用于同步,每秒1000个码字,求它的信息速率。
解:同步信息均相同,不含信息,因此 每个码字的信息量为 2⨯8log =2⨯3=6 bit因此,信息速率为 6⨯1000=6000 bit/s2.3 掷一对无偏骰子,告诉你得到的总的点数为:(a) 7; (b) 12。
问各得到多少信息量。
解:(1) 可能的组合为 {1,6},{2,5},{3,4},{4,3},{5,2},{6,1})(a p =366=61得到的信息量 =)(1loga p =6log =2.585 bit (2) 可能的唯一,为 {6,6})(b p =361得到的信息量=)(1logb p =36log =5.17 bit2.4 经过充分洗牌后的一副扑克(52张),问:(a) 任何一种特定的排列所给出的信息量是多少?(b) 若从中抽取13张牌,所给出的点数都不相同时得到多少信息量?解:(a) )(a p =!521信息量=)(1loga p =!52log =225.58 bit (b) ⎩⎨⎧⋯⋯⋯⋯花色任选种点数任意排列13413!13)(b p =1352134!13A ⨯=1352134C 信息量=1313524log log -C =13.208 bit即)0;(1u I ,)00;(1u I ,)000;(1u I ,)0000;(1u I)0(p =4)1(81⨯-p +481⨯p =21)0;(1u I =)0()|0(log1p u p =211log p-=1+)1log(p - bit)00(p =]2)1(4)1(2[8122p p p p +-+-=41)00;(1u I =)00()|00(log 1p u p =4/1)1(log 2p -=)]1log(1[2p -+ bit)000(p =])1(3)1(3)1[(813223p p p p p p +-+-+-=81)000;(1u I =3[1+)1log(p -] bit)0000(p =])1(6)1[(814224p p p p +-+- )0000;(1u I =42244)1(6)1()1(8logp p p p p +-+-- bit2.12 计算习题2.9中);(Z Y I 、);(Z X I 、);,(Z Y X I 、)|;(X Z Y I 、)|;(Y Z X I 。
信源熵理解练习知识题
信源熵理解练习知识题第一章绪论练习题一、填空题1. 信息是事物运动状态或存在方式的所有可能取值的描述,不确定性可以用概率来表达,因而可以用概率论与随机过程来描述信源输出的消息。
单符号信源用概率空间来描述,即信源符号的所有可能取值及其对应的概率。
信源的某一种取值概率大,则其不确定性(度)小;相反,某一种取值概率小,则其不确定性(度)大。
2. 信源发出消息,传输信息的过程是:发出消息之前,信源即将发出什么消息存在不确定性(度),不确定性(度)的大小由消息的概率决定;发出某个具体消息后,就消除了对应大小的不确定性(度)。
在这一过程中,从未知到已知,传递了信息,信息的大小就是消除的不确定性(度)的大小。
3. 一个随机事件发生某一结果后所带来的信息量称为自信息量,简称自信息,其定义为事件发生概率对数的负值,即 ()()2log i i I x p x =- ,自信息量的单位与所用的对数的底有关。
这就是香农信息的度量规则。
联合自信息是联合事件发生时所带来的信息量;条件自信息量是带有条件是事件发生时所带来的信息量。
4. 离散单符号信源熵是信源中各个消息符号(随机变量各个取值)不确定度(或者自信息量)的数学期望,代表了信息源的平均不确定度,记作H(X),用数学式子表达为()H X = ()()()1log qi i i i E I x p x p x ==-∑ 。
5. 离散信源熵有最大值,其取得最大值的条件是离散信源各个消息符号为等概率分布;离散信源熵一定有最大值的原因是熵函数是严格上。
例如,包含n 个不同离散消息的信源X 的熵()H X 2log n (选填<、>≥、≤或者=),当满足X 中各个消息出现的率全相等(或者表达出等概率的意思的文字)条件时,上式取得等号。
6. 联合熵是联合离散符号集合XY 上,联合消息i j x y 的联合自信息量的数学期望(或者概率统计/加权平均),在数学上表达为()1111()()()log ()n m n mi j i j i j i j i j i j H XY p x y I x y p x y p x y ======-∑∑∑∑ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
此时下式成立:
Dm a x
(1
1 )
n
D
D/
D
D
R(D) ln(n) ln
(1 ) ln(1 )
(n 1)
可直接当结论来应用
2020/3/8
6
4.1 基本概念 4.2 离散无记忆信源R(D)的计算 4.3 连续无记忆信源R(D)的计算 4.4 信道容量和信息率失真函数的比较
2020/3/8
8
例:设某连续信源X服从高斯分布,均值μ=0, 方差σ2,失真函数为均方失真即d(x,y)=(y-x)2
求它的信息率失真函数R(D)和Dmax。
解: 是均方失真
R(D) 1 ln( Dmax ) 2D
因此,需求Dmax:服从(0, 2 )的高斯分布的概率密度函数为:
2020/3/8
14
4.4 信道容量和信息率失真函数的比较
3、
(1)信道容量是通过信道编码增加信息冗余度 来提高通信的可靠性,是信息传输的理论基础。
(2)信息率失真函数是通过信源编码减少信息 冗余度来提高通信有效性,是信源压缩的理论基 础。
2020/3/8
15
保真度准则下的信源编码定理
第4章 信息率失真函数
2020/3/8
1
4.1 基本概念 4.2 离散无记忆信源R(D)的计算 4.3 连续无记忆信源R(D)的计算 4.4 信道容量和信息率失真函数的比较
2020/3/8
2
4.2 离散无记忆信源R(D)的计算
参量表达式法求R(D)及P(Y/X),具体推导略, 见p111页。
2020/3/8
13
4.4 信道容量和信息率失真函数的比较
2、
(1)信道容量C一旦求出来,则与信源分布无关(只是 证明存在这样的满足信道容量的信源分布),只和信道 转移概率分布p(yj/xi)有关。即信道容量和信源特性无关, 反映信道特性。
(2)信息率失真函数R(D)一旦求出来,则与信道转移 概率分布无关(只是证明存在达到最小信息率的试验信 道),只和信源概率分布p(xi)有关。即信息率失真函数 和信道特性无关,反映信源特性。
2020/3/8
7
例:求d(x,y)=(y-x)2的Dmax和信息率失 真函数R(D)。
解:连续信源的Dmax,
Dmax
min [ y
p(x)d (x, y)dx]
因为离散信源:
Dm ax
min Y
X
p( xi )dij
均方失真的连续信源的R(D)
R(D) 1 ln( Dmax ) 可直接当结论来应用 2D
p
1
x2
p,其中p
1 2
,失真矩阵为D
0
0
,
输出Y
0,1
解:(1)
Dm a x
min j
D
j
minp
j
1 p0
0
min(1 p) , p j
(1 p) ,当p
p ,当p
1时 2
不同点:
1、
(1)信道容量:选择某一信源分布的情况下,求 平均互信息的极大值。
依据:平均互信息I是信源概率分布p(xi)的严格上凸 函数。
(2)信息率失真函数:求选择某一试验信道(转 移概率分布)的情况下,依据保真度准则,求平均 互信息的极小值。
依据:平均互信息I是信道转移概率分布p(yj/xi)的严 格下凸函数。
y2
]
2
代入得
R(D)
1
ln(
2
)
2D
ln
D
2020/3/8
10
结论:
若失真函数为均方失真,即d(x,y)=(x-y)2时,连续 信源的信息率失真函数 R(D) 1 ln(,Dm且ax)
2D
Dmax
min y
[
p(x)d (x, y)dx]
同理:当失真函数为绝对失真即d(x,y)=|x-y|时, 指数分布的连续信源,当概率密度函数为
min[ 2 0 y2 ] y
2
2020/3/8
9
上题的扩展:若连续信源服从(μ,σ2)的高斯 分布,则再求上题。
解:先求Dmax:
服从(0, 2 )的高斯分布的概率密度函数为:
p(x)
1
e
(
x) 2 2
2
2
Dm a x
min[ y
p(x)d (x, y)dx]
min[ p(x)(x y)2 dx] y
myin[ x2 p(x)dx 2 y xp(x)dx y2 p(x)dx]
而(x )2 p(x)dx 2,即 x2 p(x)dx 2 2
Dm a x
min[ y
2
2
2 y
p(x)
1
e
x2 2 2
2
代入得
1 2 R(D) ln( )
2D ln
D
Dmax
min[ y
p(x)d(x, y)dx]
min[ p(x)(x y)2 dx] y
myin[ x2 p(x)dx 2 y xp(x)dx y2 p(x)dx]
设有某一信源的信息率失真函数为R(D),选择有 限的失真函数d,对于任意允许的平均失真度D, 当压缩后的信息率 R>R(D)
例:已知离散无记忆信源
X P( X
)
x1
p
1
x2
p,其中p
1 ,失真矩阵为D 2
0
Dmax,率失真函数R(D)。
0
,
输出Y
0,1,求
2020/3/8
3
4.2 离散无记忆信源R(D)的计算
X P( X
)
x1
1时
2
(2) R(D) H ( p) H ( 化曲线
H(p) Dmax=αp
2020/3/8
5
结论:
对于n元等概信源,有 p(xi ) 函数为对称失真时,
1 n
, 其中i
1,
n,当失真
即
0,i j时
dij ,i j
p(x)
2
e|x|时,R(D)
ln
1
D
,
Dm a x
1
2020/3/8
11
4.1 基本概念 4.2 离散无记忆信源R(D)的计算 4.3 连续无记忆信源R(D)的计算 4.4信道容量和信息率失真函数的比较
2020/3/8
12
4.4 信道容量和信息率失真函数的比较
相同点:二者都是求平均互信息的极值