(完整)高中物理力学模型及分析
高中物理板块模型归纳
高中物理板块模型归纳高中物理板块模型归纳是指将高中物理课程中所涉及的知识点进行分类、总结和归纳,形成一种系统化的知识结构。
这种模型可以帮助学生更好地理解和掌握物理知识,提高学习效率。
下面详细介绍高中物理板块模型。
一、力学1. 运动学(1)描述运动的数学工具:位移、速度、加速度、角速度、周期等。
(2)直线运动规律:匀速直线运动、匀加速直线运动、匀减速直线运动、匀速圆周运动。
(3)曲线运动规律:平抛运动、斜抛运动、圆周运动。
2. 动力学(1)牛顿运动定律:惯性定律、动力定律、作用与反作用定律。
(2)动量定理:动量的守恒、动量的变化。
(3)能量守恒定律:动能、势能、机械能、内能。
3. 机械振动与机械波(1)简谐振动:正弦、余弦、螺旋线。
(2)非简谐振动:阻尼振动、受迫振动。
(3)机械波:横波、纵波、波的干涉、波的衍射、波的传播。
二、热学1. 分子动理论(1)分子运动的基本规律:布朗运动、分子碰撞、分子速率分布。
(2)气体的状态方程:理想气体状态方程、范德瓦尔斯方程。
2. 热力学(1)热力学第一定律:内能、热量、功。
(2)热力学第二定律:熵、热力学第二定律的微观解释。
3. 物态变化(1)相变:固态、液态、气态、等离子态。
(2)相变规律:熔化、凝固、汽化、液化、升华、凝华。
三、电学1. 电磁学(1)静电学:库仑定律、电场、电势、电势差、电容、电感。
(2)稳恒电流:欧姆定律、电阻、电流、电功率、电解质。
(3)磁场:毕奥-萨伐尔定律、安培环路定律、洛伦兹力、磁感应强度、磁通量、磁介质。
2. 电路与电器(1)电路:串联电路、并联电路、混联电路、电路图。
(2)电器:电阻、电容、电感、二极管、晶体管、运算放大器。
3. 电磁波(1)电磁波的产生:麦克斯韦方程组、赫兹实验。
(2)电磁波的传播:波动方程、折射、反射、衍射。
四、光学1. 几何光学(1)光线、光的反射、光的折射、光的速度。
(2)透镜:凸透镜、凹透镜、眼镜、相机、投影仪。
高中物理48个解题模型高考物理题型全归纳
⾼中物理48个解题模型⾼考物理题型全归纳最后两个⽉,快速掌握⾼考物理150道易错题+30个常考物理模型,⼀定拿⾼分!不看太可惜!历年⾼考物理解题经典模型,⽼师都没讲得这么全!常考物理模型及易错题常考物理模型及隐含条件30条1.绳:只能拉,不能压,即受到拉⼒时F≠0,受压时F=0.2.杆:既能拉也能压,即受到拉⼒.压⼒时,有F≠0.3.绳刚要断:此时绳的拉⼒已经达到最⼤值,即F=Fmax.4.光滑:意味着⽆摩擦⼒.5.长导线:意味着长度L可看成⽆穷⼤.6.⾜够⼤的平板:意味着平板的⾯积S可看成⽆穷⼤.7.轻杆.轻绳.轻滑轮:意味着质量m=0.8.物体刚要离开地⾯.物体刚要飞离轨道等物体和接触⾯之间作⽤⼒:FN=0.9.绳恰好被拉直,此时绳中拉⼒:F=0.10.物体开始运动.⾃由释放:表⽰初速度为0.11.锤打桩⽆反弹:碰撞后,锤与桩有共同速度.12.理想变压器:⽆功率损耗的变压器.13.细杆:体积为零,仅有长度.14.质点:具有质量,但可忽略其⼤⼩.形状和内部结构⽽视为⼏何点的物体.15.点电荷:在研究带电体间的相互作⽤时,如果带电体的⼤⼩⽐它们之间的距离⼩得多,即可认为分布在带电体上的电荷是集中在⼀点上的.16.基本粒⼦如电⼦.质⼦.离⼦等是不考虑重⼒的粒⼦,⽽带电的质点.液滴.⼩球等(除说明不考虑重⼒外)则要考虑重⼒.17.“轻绳.弹簧.轻杆”模型:注意三种模型的异同点,常考查直线与圆周运动中三种模型的动⼒学问题和功能问题.18.“挂件”模型:考查物体的平衡问题.死结与活结问题,常采⽤正交分解法,图解法,三⾓形法则和极值法解题.19.“追碰”模型:考查运动规律.碰撞规律.临界问题.常通过数学法(函数极值法.图像法等)和物理⽅法(参照物变换法.守恒法)等解题.20.“⽪带”模型:注意摩擦⼒的⼤⼩和⽅向.常考查⽜顿运动定律.功能关系及摩擦⽣热等问题.21.“平抛”模型:物体做平抛运动(或类平抛运动),考查运动的合成与分解.⽜顿运动定律.动能定理等知识.22.“⾏星”模型:万有引⼒提供向⼼⼒.注意相关物理量.功能问题.数理问题(圆⼼.半径.临界问题).23.“⼈船”模型:不仅是动量守恒问题中典型的物理模型,也是最重要的⼒学综合模型之⼀.通过类⽐和等效⽅法,可以使许多动量守恒问题的分析思路和解答步骤变得简捷.24.“⼦弹打⽊块”模型:⼦弹和⽊块组成的系统动量守恒,机械能不守恒.系统损失的机械能等于阻⼒乘以相对位移.25.“限流与分压器”模型:电路设计中经常遇到.考查串.并联电路规律及闭合电路的欧姆定律.电能.电功率以及实际应⽤等.26.“电路的动态变化”模型:考查闭合电路的欧姆定律.27.“回旋加速器”模型:考查带电粒⼦在磁场中运动的典型模型.注意加速电场的平⾏极板接的是交变电压,且它的周期和粒⼦的运动周期相同.28.电磁场中的“单杆”模型:导体棒主要是以棒⽣电或电⽣棒的内容出现,从组合情况来看有棒与电阻.棒与电容.棒与电感.棒与弹簧等.导体棒所在的导轨有平⾯导轨.竖直导轨等.29.电磁场中的“双电源”模型:考查⼒学中的三⼤定律.闭合电路的欧姆定律.电磁感应定律等知识.30.“远距离输电变压器”模型:注意变压器的三个制约问题.⾼中物理模型有哪些⒈"质⼼"模型:质⼼(多种体育运动).集中典型运动规律.⼒能⾓度.⒉"绳件.弹簧.杆件"三件模型:三件的异同点,直线与圆周运动中的动⼒学问题和功能问题.⒊"挂件"模型:平衡问题.死结与活结问题,采⽤正交分解法,图解法,三⾓形法则和极值法.⒋"追碰"模型:运动规律.碰撞规律.临界问题.数学法(函数极值法.图像法等)和物理⽅法(参照物变换法.守恒法)等.⒌"运动关联"模型:⼀物体运动的同时性.独⽴性.等效性.多物体参与的独⽴性和时空联系.⒍"⽪带"模型:摩擦⼒.⽜顿运动定律.功能及摩擦⽣热等问题.⒎"斜⾯"模型:运动规律.三⼤定律.数理问题.⒏"平抛"模型:运动的合成与分解.⽜顿运动定律.动能定理(类平抛运动).⒐"⾏星"模型:向⼼⼒(各种⼒).相关物理量.功能问题.数理问题(圆⼼.半径.临界问题).⒑"全过程"模型:匀变速运动的整体性.保守⼒与耗散⼒.动量守恒定律.动能定理.全过程整体法.⒒"⼈船"模型:动量守恒定律.能量守恒定律.数理问题.⒓"⼦弹打⽊块"模型:三⼤定律.摩擦⽣热.临界问题.数理问题.⒔"爆炸"模型:动量守恒定律.能量守恒定律.⒕"单摆"模型:简谐运动.圆周运动中的⼒和能问题.对称法.图象法.⒖"限流与分压器"模型:电路设计.串并联电路规律及闭合电路的欧姆定律.电能.电功率.实际应⽤.⒗"电路的动态变化"模型:闭合电路的欧姆定律.判断⽅法和变压器的三个制约问题.⒘"磁流发电机"模型:平衡与偏转.⼒和能问题.⒙"回旋加速器"模型:加速模型(⼒能规律).回旋模型(圆周运动).数理问题.⒚"对称"模型:简谐运动(波动).电场.磁场.光学问题中的对称性.多解性.对称性.⒛电磁场中的单杆模型:棒与电阻.棒与电容.棒与电感.棒与弹簧组合.平⾯导轨.竖直导轨等,处理⾓度为⼒电⾓度.电学⾓度.⼒能⾓度.21.电磁场中的"双电源"模型:顺接与反接.⼒学中的三⼤定律.闭合电路的欧姆定律.电磁感应定律.22.交流电有效值相关模型:图像法.焦⽿定律.闭合电路的欧姆定律.能量问题.23."能级"模型:能级图.跃迁规律.光电效应等光的本质综合问题.24.远距离输电升压降压的变压器模型.。
高中物理力学模型的归类与总结
高中物理力学模型的归类与总结福建省沙县金沙高级中学365500物理模型是高中物理知识的重要载体,其中绝大多数内容都是以物理模型为基础和载体向学生传递知识的。
物理模型不仅是学生获得物理知识的一种基本方法,更是一种培养学生应用能力和创新能力的重要工具。
本文主要讲述了物理模型的概念及分类方法,并结合整个高中物理中的重点和难点知识对物理模型进行分类与总结,最后指出运用物理模型教学的意义。
解决物理问题最重要的方法是建立物理模型,可以将物理问题总结为这样的一句话:处于某种物理状态或某种物理过程中的某物理研究对象在某物理条件下的问题。
在物理学中,不论是解决什么样的问题,都应遵循以下的四个原则:其一,明确研究和学习的对象。
其二,明确研究和学习的对象所处的状态。
其三,明确状态的变化过程及此过程中的特征。
其四,选择正确的方式解决该物理问题。
由以上对物理问题的特点及解决物理问题方法的思考,拟分高中物理模型为以下三类:1.对象模型:对象模型是由用来代替实际物体的具体物质组成,且能代表研究对象本质的实物系统。
2.条件模型:高中物理模型中的条件模型就是将研究对象所处的外部条件理想化,舍去条件中的非本质因素,抓住其本质因素,将所研究的问题化难为易而建立起来的一种模型。
3.过程模型:过程模型是将物理过程理想化、纯粹化后抽象出的新的物理过程。
分清影响物理过程的主要因素和次要因素,只保留其中的主要因素,忽略次要因素,即得到了过程模型。
根据以上对物理模型的分类,本文从力学从以上三种模型对高中物理模型进行归类与总结。
一、在力学中常见的对象模型1.质点:把物体看成是没有质量,只有大小的点。
在研究物理问题时,若物体的形状和大小对所研究的问题影响很小或没有影响时,我们就可以把所研究的对象看成质点。
那么,在何种的情况下,物体的形状和大小是不是对所研究的问题影响很小或没有影响呢?通过观察可以发现,在以下的三种情况下可以将研究的对象看成质点:(1)物体只做平动;(2)只研究物体的平动,而不考虑其转动效果;(3)物体的位移远远大于物体本身的尺寸,如远航的巨轮,人造卫星等。
物理模型考点总结归纳高中
物理模型考点总结归纳高中物理是一门研究物质运动以及相互作用的自然科学,广泛应用于现实生活和工程领域。
在高中物理学习中,学生们需要掌握各种物理模型,这些模型用于解释复杂的现象和问题。
本文将总结和归纳高中物理学习中的一些重要考点和物理模型。
一、力学模型1. 牛顿第一定律(惯性定律)牛顿第一定律描述了物体的运动状态将保持恒定,直到遇到外力。
物体在无外力作用下匀速直线运动,或保持静止。
2. 牛顿第二定律(力学基本定律)牛顿第二定律描述了物体的加速度与作用在物体上的合力成正比。
即 F=ma,其中 F 为物体所受力的合力,m为物体的质量,a为物体的加速度。
3. 牛顿第三定律(作用力与反作用力)牛顿第三定律描述了物体之间的相互作用,即使两个物体之间有作用力,这两个力的大小相等、方向相反,且作用在不同的物体上。
4. 弹簧弹力模型弹簧的弹力模型是描述弹簧受力的一种常见模型。
根据胡克定律,弹簧的弹力与弹簧的伸长或压缩程度成正比。
二、电磁模型1. 静电力模型静电力模型用于描述电荷之间的相互作用。
根据库仑定律,两个电荷之间的静电力与它们之间的距离的平方成反比。
2. 电场模型电场模型用于描述静电力的传递方式。
电场是由电荷产生的,电场中的电荷会受到电场力的作用。
3. 磁场模型磁场模型用于描述磁力的传递。
根据洛伦兹力,运动带电粒子在磁场中受到的磁力与粒子的速度和磁场的强度成正比。
4. 电磁感应模型电磁感应模型用于描述电磁感应现象。
当导体中的磁通量发生变化时,会在导体中产生感应电动势。
三、光学模型1. 光的射线模型光的射线模型用于描述光在直线传播时的特性。
根据光的直线传播原理,光线在一直线传播过程中可以发生折射、反射等现象。
2. 光的波动模型光的波动模型用于描述光的波动性质。
根据光的波动理论,光具有波长、频率等特性,并符合波的干涉、衍射、偏振等规律。
3. 光的粒子模型(光量子模型)光的粒子模型用于描述光的粒子性质。
根据光量子理论,光以光子的形式传播,光子具有能量和动量。
高中物理模型总结归纳
高中物理模型总结归纳在高中物理学习中,模型是一个非常重要的概念。
通过模型,我们可以更好地理解和描述自然现象。
本文将对高中物理学习中常用的模型进行总结归纳,以帮助同学们更好地理解和应用这些模型。
第一部分:力学模型1. 牛顿运动定律牛顿运动定律是力学领域中最基本的模型之一。
它包括了三条定律,即惯性定律、动量定律和作用-反作用定律。
通过运用这些定律,我们可以准确地描述物体的运动状态和相互作用。
2. 牛顿力学模型牛顿力学模型描述了物体在外力作用下的运动规律。
其中包括了质点力学、刚体力学和弹性力学等内容。
通过使用牛顿的运动定律和力的概念,我们可以解决各种物体在力的作用下的运动问题。
3. 弹簧振子模型弹簧振子模型是描述弹簧振动的重要模型。
它包括了弹簧劲度系数、振动周期和频率等概念。
通过这个模型,我们可以更好地理解和计算弹簧的振动特性。
第二部分:电磁学模型1. 电场模型电场模型描述了电荷之间相互作用的规律。
其中包括了库仑定律和电场强度等概念。
通过这个模型,我们可以预测和计算电荷之间的相互作用力。
2. 磁场模型磁场模型描述了磁荷之间相互作用的规律。
其中包括了洛伦兹力和磁感应强度等概念。
通过这个模型,我们可以解释和计算磁场对物体的作用力。
3. 电磁感应模型电磁感应模型描述了磁场变化对电荷的影响。
其中包括了法拉第电磁感应定律和楞次定律等概念。
通过这个模型,我们可以解释和计算由磁场变化引起的感应电流和感应电动势。
第三部分:光学模型1. 光的几何模型光的几何模型描述了光的传播和反射规律。
其中包括了折射定律、焦距和成像等概念。
通过这个模型,我们可以解释和计算光的传播路径和成像特性。
2. 光的波动模型光的波动模型描述了光的干涉、衍射和偏振等现象。
其中包括了惠更斯-菲涅耳原理和双缝干涉等概念。
通过这个模型,我们可以解释和计算光的波动特性和干涉衍射效应。
第四部分:量子力学模型1. 波粒二象性模型波粒二象性模型是描述微观粒子行为的重要模型。
高中物理教学中常见力学模型与解题技巧
高中物理教学中常见力学模型与解题技巧黄㊀静(福建省莆田华侨中学ꎬ福建莆田351115)摘㊀要:物理作为一门学习难度较大的学科ꎬ尤其是在高中教育阶段的物理课程体系中ꎬ同初中相比ꎬ知识内容深奥难懂ꎬ抽象性特征极为显著ꎬ其中力学部分难度更大.学生在学习过程中往往会感到力学试题难度较大ꎬ会出现思路不清的情况.教师需善于利用力学模型优化力学教学ꎬ指导学生学会使用力学模型解答试题的技巧ꎬ使其顺利突破疑难障碍.基于此ꎬ笔者先介绍高中物理教学中几种常见的力学模型ꎬ再罗列一系列解题实例以供参考所用.关键词:高中物理教学ꎻ力学模型ꎻ解题技巧中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2023)34-0114-03收稿日期:2023-09-05作者简介:黄静(1985.5-)ꎬ女ꎬ福建省莆田人ꎬ本科ꎬ中学一级教师ꎬ从事高中物理教学研究.㊀㊀力学模型指的是根据所研究对象的几何特性等ꎬ抽象而出的力学关系的一种表达形式.因为实际中的力学问题通常比较复杂ꎬ这就要针对同一研究对象进行多次实验㊁反复观察和认真分析ꎬ把握问题本质ꎬ做出正确假设ꎬ将问题简化或理想化ꎬ最终通过简单模型解决问题.在高中物理教学过程中ꎬ力学是相当重要的一部分内容ꎬ也是学生学习的难点与重点ꎬ由于力学问题较为抽象ꎬ教师可以指引学生通过构建力学模型的方式分析题目内容ꎬ使其找到解题的切入点ꎬ把抽象问变得具体化ꎬ形成简洁㊁正确的解题思路ꎬ让他们高效解题[1].1常见物理力学模型的构建1.1物理模型构建概念在高中物理教学过程中ꎬ构建模型往往要结合例题引领学生寻找解题思路ꎬ其中力学方面涉及的模型相当多ꎬ主要涉及能量守恒定律㊁三大牛顿定律等多个力学知识要点.一些同学虽然可以熟练㊁准确运用力学公式解答物理试题ꎬ但是缺乏良好的解题思路ꎬ以至于产生不知道采用何种方式解决试题的窘况.教师运用物理模型的主要目的就是优化他们的解题思路ꎬ使其处理物理问题时做到游刃有余ꎬ为题目的顺畅解答提供支持[2].1.2力与运动模型建立力与运动属于比较基础的物理力学类试题ꎬ像小车在斜坡上进行滑动时分析受力情况ꎬ这类题目就有着与之对应的物理模型.如牛顿第二运动定律ꎬ主要用来分析物体受到力的作用以后运动状态发生变化.当遇到此类试题时ꎬ学生可使用牛顿第二运动定律直接解题ꎬ确定解题思路和方案ꎬ明确物体在运动中所受到的力的作用ꎬ当力产生时物体运动有所变化ꎬ在运动过程中物体还会受到什么力的影响ꎬ使其从多个方面展开分析ꎬ促进对牛顿第二定律的掌握ꎬ并熟悉此类试题的解题方法.如果物体为静止的ꎬ即可判定出物体受到的合力是零ꎬ不会出现加速度ꎬ假如打破物体的平衡状态ꎬ即可确定加速度的大小ꎬ运用相关公式直接求出物体所受到力的大小ꎬ最411终准确分析和判断试题[3].1.3基本力学模型构建物理学中常见的力有重力㊁弹力与摩擦力等ꎬ大部分试题都围绕这三种力设计.在重力方面ꎬ学生应知道地球上所有物体均受到重力的作用ꎬ方向为竖直向下的.解题时首步即为明确物体受到的重力情况ꎬ发现重力做功同路径不存在联系ꎬ重力做功物体的重力势能会发生变化ꎻ产生弹力的条件相对复杂ꎬ物体之间不仅需接触ꎬ当物体出现弹性形变时ꎬ能够构建出弹力模型.教师需提示学生先分析产生弹力的条件ꎬ再确定物体接触之后的弹力点ꎬ研究具体受力关系ꎬ所以要详加讲解 弹力的接触面积 这一知识要点ꎻ针对摩擦力来说ꎬ在平时教学中ꎬ教师需以摩擦力产生的原因为基本发起点ꎬ指引学生建立模型ꎬ着重讲述摩擦力的产生需有接触面ꎬ使其透彻理解摩擦力为什么会产生[4].1.4物理模型建立方式建立力学模型有助于学生快速找到正确的解题思路.当他们构建力学模型时ꎬ教师应当先给予一定的点拨ꎬ使其初步理清解题思路ꎬ培养学生从正向思维视角出发进行解题的常用方法ꎬ并指导他们研究使用逆向思维进行解题的思路ꎬ使其解题能力得到更好的锻炼ꎬ能够解答一些力学难题ꎬ逐步提高物理成绩ꎬ增强个人应试能力.2运用力学模型的解题策略2.1分析动能重力势能例1㊀已知一个质量为10kg的小球在高度为80m处进行自由下落ꎬ如果空气阻力不计ꎬ求以下时间点该小球的动能和重力势能ꎬ以及两者的之和ꎬ(1)开始下落时ꎻ(2)下落2s末时ꎻ(3)到达地面时.分析㊀(1)处理这一题目时ꎬ学生可以采用力学模型的构建思路ꎬ根据牛顿第二定律可知ꎬ当小球刚开始下落时ꎬ速度为0ꎬ可理解为小球的动能刚开始下落时为0ꎬ势能则是Ep=mgh=8000Jꎬ那么动能和重力势能之和为0+8000=8000Jꎻ(2)在小球下落2s时速度是v=10ˑ2=20m/sꎬ所以动能是Ek=12mv2=2000Jꎬh1=12gt2ꎬEp=mg(h-h1)=6000Jꎬ则动能和重力势能之和为2000+6000=8000Jꎻ(3)当小球到达地面时ꎬ动能是Ek=8000Jꎬ重力势能是Ep=0ꎬ则动能和重力势能之和为8000J+0=8000J.通过对这道题的解析与处理ꎬ学生能够进一步认识能量守恒定律ꎬ还可以形成灵活运用牛顿第二定律的解题思路[5].如此ꎬ学生通过对上述试题的解答能够发现ꎬ熟练使用牛顿第二定律和能量守恒定理可以快速完成对重力方面物体受力情况的分析ꎬ建立出相应的力学模型ꎬ促使其运用力学模型解决此类试题ꎬ且迁移至同类题目之中ꎬ有效提升他们的解题效率.2.2分析弹力物理试题例2㊀已知将四根一样的弹簧放置到水平位置ꎬ右端均受到拉力F的作用ꎬ左端各不相同: (1)在一个墙壁上面固定ꎻ(2)同样受到大小是F的拉力作用ꎻ(3)系上一个小球ꎬ小球在光滑水平桌面上进行滑动ꎻ(4)系上一个小球ꎬ小球在粗糙水平桌面上进行滑动.如果弹簧质量忽视不计ꎬ伸长量分别用L1㊁L2㊁L3㊁L4ꎬ则(㊀㊀).A.L2>L1㊀B.L4>L3㊀C.L1>L3㊀D.L2=L4分析㊀这是一道比较典型的弹力类试题ꎬ教师需先引领学生分析弹簧受力的点与接触面ꎬ使其根据题目中各个弹簧的具体情况进行具体分析ꎬ(1)弹簧左右两端均受到拉力大小为F的作用ꎬ伸长量为L=FKꎻ(2)与(1)情况基本一样ꎬ弹簧左右两端都均受到拉力F的作用ꎬ伸长量都为L=FKꎻ(3)小球到的摩擦力大小是零ꎬ力F拉着小球以加速度大小为Fm做加速运动ꎬ弹簧的长度不变ꎻ(4)弹簧伸长量不大于FKꎬ当物块作匀速运动时ꎬ能够伸的最长ꎬ否则伸长量就比FK小ꎬ故L1=L2ȡL4>L3.但511是本题中弹簧的质量忽视不计ꎬ那么弹簧两端均受到平衡力的作用ꎬ即为弹簧产生加速度是受到合力的影响ꎬ所以ΔF=maꎬ由于m=0ꎬ则ΔF=0ꎬ由此表明弹簧两端肯定存在方向相反㊁大小一样的两个力ꎬ也就是所说这四种情况一样ꎬ则L1=L2=L3=L4ꎬ所以说正确答案是选项D[6].2.3摩擦力的解题模型例3㊀如图1所示ꎬ在一个水平地面上ꎬ放置一个长度足够长的斜面且使之固定ꎬ已知倾斜角大小为θꎬ动摩擦因数为μꎬ现在将一个质量为m的木块以初速度v沿着斜面向下放置到顶端ꎬ请问该木块会做何运动?图1㊀小木块位于水平地面的固定斜面上分析㊀处理本道试题时ꎬ关键在于对这个小木块的受力情况进行分析ꎬ这里要用到分类讨论思想ꎬ因为题目中没有明确给出倾斜角θ的大小ꎬ应结合动摩擦因数和倾斜角θ角的正切值关系进行分类讨论和解题ꎬ即为解答此类力学试题的模型.详解㊀对小木块的受力情况进行分类讨论和分析ꎬ(1)如果mgsinθ=μmgcosθꎬ即为μ=tanθꎬ这时小木块将会沿着斜面做匀速直线运动ꎻ(2)如果mgsinθ>μmgcosθꎬ即为μ<tanθꎬ这时小木块将会沿着斜面做匀加速直线运动ꎬ且加速度大小是a1=gsinθ-μgcosθꎬ方向是沿着斜面向下ꎻ(3)如果mgsinθ<μmgcosθꎬ即为μ>tanθꎬ这时小木块将会沿着斜面做匀减速直线运动ꎬ且加速度大小是a2=μgcosθ-gsinθꎬ方向是沿着斜面向上.例4㊀如图2所示ꎬ在一个水平地面上放置一个长度足够的斜面ꎬ已知倾斜角为θꎬ动摩擦因数大小为μꎬ现在将一个质量为m的木块以初速度v沿着斜面向下放置到顶端ꎬ此时小木块在整个运动过程中ꎬ斜面一直处于静止状态ꎬ请问地面与斜面之间的摩擦力为多大?方向是什么?图2㊀小木块位于平地面上的斜面上详解㊀对小木块的受力情况进行分类讨论和分析ꎬ(1)假如mgsinθ=μmgcosθꎬ即为μ=tanθꎬ这时木块就沿着斜面进行匀速直线运动ꎬ其中加速度为0ꎬ地面与斜面之间没有摩擦力ꎻ(2)假如mgsinθ>μmgcosθꎬ即为μ<tanθꎬ地面和斜面之间的摩擦力为f1=m(gsinθ-μgcosθ)cosθꎬ方向是水平向左ꎻ(3)假如mgsinθ<μmgcosθꎬ即为μ>tanθꎬ地面与斜面之间的摩擦力为f2=m(μgcosθ-gsinθ)cosθꎬ方向水平向右[7].总的来说ꎬ在高中物理教学活动中ꎬ教师需高度重视力学模型的构建以及在解题中的实践应用.正式建立力学模型之前ꎬ对涉及的力学知识进行分类和归纳ꎬ从中建立一些常见和常用的力学模型ꎬ据此专门安排解题训练ꎬ让学生结合力学模型对题目内容进行深入分析ꎬ使其找到简便的解题方法ꎬ切实体会到力学模型的实用性ꎬ提高他们的力学学习质量.参考文献:[1]李素珍.高中物理力学问题的解题技巧研究[J].数理化解题研究ꎬ2023(09):66-68.[2]周余丰.妙用模型改进高中物理解题教学[J].数理化解题研究ꎬ2023(04):125-128.[3]王君.高中物理教学中物理模型的作用及构建策略[J].数理天地(高中版)ꎬ2023(02):8-10.[4]林剑芬.高中物理模型的建构及教学方法探讨[J].数理化解题研究ꎬ2022(30):62-64.[5]何青.情境模型在高中物理力学教学中的运用研究[J].广西物理ꎬ2022ꎬ43(03):182-185.[6]裴承仁.高中物理力学模型及解题策略[J].中学课程辅导(教师通讯)ꎬ2021(16):88-89.[7]许有强. 模型法 在高中物理力学学习中的使用[J].数理化解题研究ꎬ2020(24):55-56.[责任编辑:李㊀璟]611。
高中物理经典解题模型归纳
高中物理经典解题模型归纳高中物理24个经典模型1、"皮带"模型:摩擦力.牛顿运动定律.功能及摩擦生热等问题.2、"斜面"模型:运动规律.三大定律.数理问题.3、"运动关联"模型:一物体运动的同时性.独立性.等效性.多物体参与的独立性和时空联系.4、"人船"模型:动量守恒定律.能量守恒定律.数理问题.5、"子弹打木块"模型:三大定律.摩擦生热.临界问题.数理问题.6、"爆炸"模型:动量守恒定律.能量守恒定律.7、"单摆"模型:简谐运动.圆周运动中的力和能问题.对称法.图象法.8.电磁场中的"双电源"模型:顺接与反接.力学中的三大定律.闭合电路的欧姆定律.电磁感应定律.9.交流电有效值相关模型:图像法.焦耳定律.闭合电路的欧姆定律.能量问题.10、"平抛"模型:运动的合成与分解.牛顿运动定律.动能定理(类平抛运动).11、"行星"模型:向心力(各种力).相关物理量.功能问题.数理问题(圆心.半径.临界问题).12、"全过程"模型:匀变速运动的整体性.保守力与耗散力.动量守恒定律.动能定理.全过程整体法.13、"质心"模型:质心(多种体育运动).集中典型运动规律.力能角度.14、"绳件.弹簧.杆件"三件模型:三件的异同点,直线与圆周运动中的动力学问题和功能问题.15、"挂件"模型:平衡问题.死结与活结问题,采用正交分解法,图解法,三角形法则和极值法.16、"追碰"模型:运动规律.碰撞规律.临界问题.数学法(函数极值法.图像法等)和物理方法(参照物变换法.守恒法)等.17."能级"模型:能级图.跃迁规律.光电效应等光的本质综合问题.18.远距离输电升压降压的变压器模型.19、"限流与分压器"模型:电路设计.串并联电路规律及闭合电路的欧姆定律.电能.电功率.实际应用.20、"电路的动态变化"模型:闭合电路的欧姆定律.判断方法和变压器的三个制约问题.21、"磁流发电机"模型:平衡与偏转.力和能问题.22、"回旋加速器"模型:加速模型(力能规律).回旋模型(圆周运动).数理问题.23、"对称"模型:简谐运动(波动).电场.磁场.光学问题中的对称性.多解性.对称性.24、电磁场中的单杆模型:棒与电阻.棒与电容.棒与电感.棒与弹簧组合.平面导轨.竖直导轨等,处理角度为力电角度.电学角度.力能角度.高中物理11种基本模型题型1:直线运动问题题型概述:直线运动问题是高考的热点,可以单独考查,也可以与其他知识综合考查。
(完整版)高考常用24个物理模型
高考常用 24 个物理模型物理复习和做题时需要注意思考、善于归纳整理,对于例题做到触类旁通,举一反三, 把老师的知识和解题能力变成自己的知识和解题能力,下面是物理解题中常见的 24 个解题 模型,从力学、运动、电磁学、振动和波、光学到原子物理,基本涵盖高中物理知识的各个 方面。
主要模型归纳整理如下:模型一:超重和失重系统的重心在竖直方向上有向上或向下的加速度 向上超重 (加速向上或减速向下 )F=m(g+a); 向下失重(加速向下或减速上升 )F=m(g-a) 难点:一个物体的运动导致系统重心的运动(或此方向的分量 a y )斜面对地面的压力 ? 地面对斜面摩擦力 ? 导致系统重心如何运动?模型二:斜面搞清物体对斜面压力为零的临界条件斜面固定:物体在斜面上情况由倾角和摩擦因素决定=tg 物体沿斜面匀速下滑或静止 > tg 物体静止于斜面 < tg 物体沿斜面加速下滑 a=g(sin 一 cos ) 绳剪断后台称示数 系统重心向下加速 铁木球的运动 用同体积的水去补充模型三:连接体是指运动中几个物体或叠放在一起、 或并排挤放在一起、或用细绳、细杆联 系在一起的物体组。
解决这类问题的基本方法是整体法和隔离法。
整体法 :指连接体内的物体间无相对运动时 ,可以把物体组作为整体, 对整体用 牛二定律列方程。
隔离法 :指在需要求连接体内各部分间的相互作用 (如求相互间的压力或相互间 的摩擦力等 )时,把某物体从连接体中隔离出来进行分析的方法。
连接体的圆周运动: 两球有相同的角速度; 两球构成的系统机械能守恒 (单个球 机械能不守恒 ) 与运动方向和有无摩擦 (μ 相同)无关,及与两物体放置的方式都无关。
平面、斜面、竖直都一样。
只要两物体保持相对静止m 1m2F 1>F 2 m 1>m 2 N 1<N 2例如: N 5对6=mF(m 为第 6 个以后的质量 ) 第 12对 13的作用力 MN 12对 13=(n -12)mFnm记住: N= m 2F 1m 1F2 (N 为两物体间相互作用力 ),起加速运动的物体的分子 m 1F 2 和 m 2F 1两项的规律并能应用讨论: ①F 1≠0 F 2=0F=(m 1+m 2)aN=m 2aN= m2Fm 1 m 2② F 1≠0; F 2≠ 0 m 2F1 m 1F2 m1 m2 0是上面的情 N=( F2况)Fm 1 m 2m 1 m 2F= m 1 (m 2 g) m 2(m 1gsin ) m 1 m 2m2 m 1m 2FF= m 1 (m 2g) m 2 (m 1g)m 1 m 2F=m A (m B g) m B F模型四:轻绳、轻杆绳只能受拉力,杆能沿杆方向的拉、压、横向及任意方向的力。
高中物理力学44个模型
高中物理力学44个模型物理力学是高中物理学习的一个重要组成部分,通过学习力学,我们可以了解物体运动的规律和力的作用。
在学习力学的过程中,模型是非常重要的工具,可以帮助我们更好地理解抽象的物理概念。
下面将介绍高中物理力学中的44个模型,帮助大家深入了解力学知识。
1.质点模型:假设物体的大小可以忽略不计,只考虑物体的质量和位置。
2.运动学模型:研究物体运动的基本规律,包括位移、速度、加速度等。
3.匀速直线运动模型:物体在力的作用下保持匀速直线运动。
4.变速直线运动模型:物体在力的作用下速度不断改变的直线运动。
5.抛体模型:研究物体抛出后在重力作用下的轨迹运动。
6.牛顿第一定律模型:物体静止或匀速直线运动状态保持不变的定律。
7.牛顿第二定律模型:物体的加速度与作用力成正比,与物体质量成反比的定律。
8.牛顿第三定律模型:任何两个物体间的相互作用力大小相等,但方向相反。
9.惯性系模型:描述物体的力学规律需要建立的参考系。
10.非惯性系模型:在非惯性系中描述物体的力学规律需要引入惯性力。
11.作图模型:通过绘制物体受力情况的示意图来帮助分析解题。
12.叠加原理模型:将多个力合成一个合力来简化分析。
13.平衡模型:研究物体所受力使合力为零的情况,包括静平衡和动平衡。
14.弹簧模型:弹簧的伸长或压缩与受力大小成正比的物理模型。
15.胡克定律模型:描述弹簧弹性力与伸长(压缩)长度成正比的定律。
16.重力模型:物体受重力作用下的运动规律,包括自由落体和斜抛运动。
17.动力学模型:研究物体受到的力对其运动状态的影响。
18.动能模型:物体由于运动而具有的能量。
19.势能模型:物体由于位置或形状而具有的能量。
20.机械能守恒模型:封闭系统机械能总量在没有非弹性碰撞的条件下保持不变。
21.动量模型:描述物体运动状态的物理量,是质量与速度的乘积。
22.动量守恒模型:封闭系统内动量总量在无外力作用下保持不变。
23.质心模型:多个物体的质心位置与各物体质量与位置的加权平均值。
高中物理全部模型归纳(包括运动学动力学电磁学) 带答案解析
高考物理解题模型目 录第一章 运动和力一、追及、相遇模型; 二、先加速后减速模型; 三、斜面模型; 四、挂件模型;五、弹簧模型(动力学); 第二章 圆周运动一、水平方向的圆盘模型; 二、行星模型; 第三章 功和能;一、水平方向的弹性碰撞; 二、水平方向的非弹性碰撞; 三、人船模型;四、爆炸反冲模型; 第四章 力学综合 一、解题模型; 二、滑轮模型; 三、渡河模型; 第五章 电路一、电路的动态变化; 二、交变电流; 第六章 电磁场一、电磁场中的单杆模型; 二、电磁流量计模型;三、回旋加速模型;四、磁偏转模型; ****第一章 运动和力一、追及、相遇模型模型讲解:1. 火车甲正以速度v 1向前行驶,司机突然发现前方距甲d 处有火车乙正以较小速度v 2同向匀速行驶,于是他立即刹车,使火车做匀减速运动。
为了使两车不相撞,加速度a 应满足什么条件?解析:设以火车乙为参照物,则甲相对乙做初速为)(21v v -、加速度为a 的匀减速运动。
若甲相对乙的速度为零时两车不相撞,则此后就不会相撞。
因此,不相撞的临界条件是:甲车减速到与乙车车速相同时,甲相对乙的位移为d 。
即:dv v a ad v v 2)(2)(0221221-=-=--,,故不相撞的条件为dv v a 2)(221-≥2. 甲、乙两物体相距s ,在同一直线上同方向做匀减速运动,速度减为零后就保持静止不动。
甲物体在前,初速度为v 1,加速度大小为a 1。
乙物体在后,初速度为v 2,加速度大小为a 2且知v 1<v 2,但两物体一直没有相遇,求甲、乙两物体在运动过程中相距的最小距离为多少? 解析:若是2211a v a v ≤,说明甲物体先停止运动或甲、乙同时停止运动。
在运动过程中,乙的速度一直大于甲的速度,只有两物体都停止运动时,才相距最近,可得最近距离为22212122av a v s s -+=∆ 若是2221a va v >,说明乙物体先停止运动那么两物体在运动过程中总存在速度相等的时刻,此时两物体相距最近,根据t a v t a v v 2211-=-=共,求得1212a a vv t --=在t 时间内 甲的位移t v v s 211+=共乙的位移t v v s 222+=共 代入表达式21s s s s -+=∆求得)(2)(1212a a v v s s ---=∆3. 如图1.01所示,声源S 和观察者A 都沿x 轴正方向运动,相对于地面的速率分别为S v 和A v 。
高中物理模型法解题——板块模型-高中物理八种板块模型
高中物理模型法解题———板块模型【模型概述】板块模型是多个物体的多个过程问题,是一个最经典、最基本的模型之一。
木板和物块组成的相互作用的系统称为板块模型,该模型涉及到静摩擦力、滑动摩擦力的转化、方向判断等静力学知识,还涉及到牛顿运动定律、运动学规律、动能定理和能量的转化和守恒等方面的知识。
板块类问题的一般解题方法(1)受力分析.(2)物体相对运动过程的分析.(3)参考系的选择(通常选取地面).(4)做v-t图像(5)摩擦力做功与动能之间的关系.(6)能量守恒定律的运用.一、含作用力的板块模型问题:【例题1】如图所示,木板静止于水平地面上,在其最右端放一可视为质点的木块.已知木块的质量m=1kg,木板的质量M=4kg,长L=2.5m,上表面光滑,下表面与地面之间的动摩擦因数μ=0.2.现用水平恒力F=20N拉木板,g取10m/s2,求:(1)木板的加速度;(2)要使木块能滑离木板,水平恒力F作用的最短时间;(3)如果其他条件不变,假设木板的上表面也粗糙,其上表面与木块之间的动摩擦因数为0.3,欲使木板能从木块的下方抽出,需对木板施加的最小水平拉力是多大?(设最大静摩擦力等于滑动摩擦力)(4)若木板的长度、木块质量、木板的上表面与木块之间的动摩擦因数、木块与地面间的动摩擦因数都不变,只将水平恒力增加为30N,则木块滑离木板需要多长时间?【解题思路】(1)根据牛顿第二定律求出木板的加速度.(2)让木板先做匀加速直线运动,然后做匀减速直线运动,根据牛顿第二定律,结合位移之和等于板长求出恒力F作用的最短时间.(3)根据牛顿第二定律求出木块的最大加速度,隔离对木板分析求出木板的加速度,抓住木板的加速度大于木块的加速度,求出施加的最小水平拉力.(4)应用运动学公式,根据相对加速度求所需时间.【答案】(1)木板的加速度2.5m/s2;(2)要使木块能滑离木板,水平恒力F作用的最短时间1s;(3)对木板施加的最小水平拉力是25N;(4)木块滑离木板需要2s【解析】解:(1)木板受到的摩擦力F f=μ(M+m)g=10N木板的加速度=2.5m/s2(2)设拉力F作用t时间后撤去,木板的加速度为木板先做匀加速运动,后做匀减速运动,且a=﹣a′有at2=L解得:t=1s,即F作用的最短时间是1s.(3)设木块的最大加速度为a木块,木板的最大加速度为a木板,则对木板:F1﹣μ1mg﹣μ(M+m)g=Ma木板木板能从木块的下方抽出的条件:a木板>a木块解得:F>25N(4)木块的加速度木板的加速度=4.25m/s2木块滑离木板时,两者的位移关系为x木板﹣x木块=L即带入数据解得:t=2s【变式练习】如图所示,质量M=1kg的木块A静止在水平地面上,在木块的左端放置一个质量m=1kg的铁块B(大小可忽略),铁块与木块间的动摩擦因数μ1=0.3,木块长L=1m,用F=5N的水平恒力作用在铁块上,g取10m/s2.(1)若水平地面光滑,计算说明两木块间是否会发生相对滑动.(2)若木块与水平地面间的动摩擦因数μ2=0.1,求铁块运动到木块右端的时间.【解题思路】(1)假设不发生相对滑动,通过整体隔离法求出A、B之间的摩擦力,与最大静摩擦力比较,判断是否发生相对滑动.(2)根据牛顿第二定律分别求出A、B的加速度,结合位移之差等于木块的长度求出运动的时间.【答案】(1)A、B之间不发生相对滑动;(2)铁块运动到木块右端的时间为.【解析】(1)A、B之间的最大静摩擦力为:f m>μmg=0.3×10N=3N.假设A、B之间不发生相对滑动,则对AB整体分析得:F=(M+m)a对A,f AB=Ma代入数据解得:f AB=2.5N.因为f AB<f m,故A、B之间不发生相对滑动.(2)对B,根据牛顿第二定律得:F﹣μ1mg=ma B,对A,根据牛顿第二定律得:μ1mg﹣μ2(m+M)g=Ma A根据题意有:x B﹣x A=L,,联立解得:.二、不含作用力的板块模型问题:【例题2】一长木板在水平地面上运动,在t =0时刻将一相对于地面静止的物块轻放到木板上,以后木板运动的速度—时间图像如图所示。
高中物理板块模型分析
高中物理板块模型分析ʏ杨倩倩在高中物理阶段,木板和物块叠放模型是力学部分的重㊁难点,也是同学们学习过程中的 绊脚石 ,只有深入分析板块模型中遵循的物理规律和临界条件,才能顺利求解此类问题㊂一㊁对水平面上的板块模型的分析1.质量为M 的长木板B 放置在光滑水平地面上,质量为m 的物块A 放在B 上面,两物体之间的动摩擦因数为μ㊂当力F 作用在其中一个物体上时,在F 从0开始逐渐增大的过程中,两物体的运动情况怎样? 图1分析:(1)如图1所示,力F 作用在B 上,因为地面是光滑的,所以只要有力作用于B ,两物体就会相对于地面运动,当力增大到一定值时,两物体发生相对滑动,F 有临界值F 0=(M +m )a ,此时a =μg ㊂ 图2(2)如图2所示,力F 作用在A上,两物体发生相对滑动时的临界值F 0=(M +m )a ,此时a =μm gM㊂2.若水平地面是粗糙的,两物体之间的动摩擦因数为μ1,B 与地面之间的动摩擦因数为u 2㊂当力F 作用在其中一个物体上时,在F 从0开始逐渐增大的过程中,两物体的运动情况怎样?分析:(1)当力F 作用在A 上时,先判定A 能否相对于地面运动㊂若μ1m g <μ2M g ,则B 不动,A 相对于B 滑动,这种情况下,A 相对于B 发生相对滑动时,力F 的临界值F 0=μ1m g ㊂即当F ɤF 0时,A 不动;当F >F 0时,A 相对于B 滑动,且A 的加速度a =F -μ1m g m㊂B始终不动㊂若μ1m g >μ2(M +m )g ,则B 也有可能相对于地面运动㊂当B 相对于地面滑动时,力F 的临界值F 0=μ2(M +m )g ㊂当A 相对于B 发生相对滑动时,力F 的临界值F 0'=m a ,a =μ1m g -μ2(M +m )g M㊂(2)当力F 作用在B 上A ㊁B 相对于地面滑动时,力F 的临界值F 0=μ2(M +m )g ;A ㊁B 发生相对滑动时,A 的加速度a =μ1g ,力F 的临界值F 0'=(M +m )a ㊂即当F ɤF 0时,A ㊁B 相对于地面静止;当F 0'ȡF >F 0时,A ㊁B 相对静止且相对于地面滑动;当F >F 0'时,A ㊁B 相对滑动㊂二㊁对斜面体上的板块模型的分析图3例题 如图3所示,在固定的倾角θ=37ʎ的斜面上放有质量m =1k g 的长木板㊂长木板上端置有质量M =2k g ㊁可视为质点的滑块P ㊂滑块与木板间㊁木板与斜面间的动摩擦因数均为μ=0.8,且最大静摩擦力等于滑动摩擦力㊂初始时滑块与木板均保持静止状态㊂现对木板施加一个沿斜面向上的恒力F =42N ,此恒力作用2s 后撤去㊂已知滑块始终未从木板上滑下,取g =10m /s 2,s i n 37ʎ=0.6㊂求:(1)撤去力F 时滑块距木板上端的距离㊂(2)从撤去力F 到滑块与木板相对静止所需的时间㊂分析:在运动状态未知的情况下,先将滑块与木板看成一个整体,通过受力分析及牛顿第二定律求出加速度,再单独对滑块进行分析,得出滑块的最大加速度,比较二者能否相对静止,分析二者的运动情况㊂答案:(1)7.2m ㊂(2)0.1875s㊂小结:求解板块模型类问题,需要先对木板㊁物块或整体进行受力分析,根据受力情况确定各物体的运动情况,再借助牛顿运动定律即可完成求解㊂作者单位:山东省德州市第一中学12基础物理 名师讲座 自主招生 2020年2月。
高中物理四大经典力学模型完全解析
四大经典力学模型完全解析一、斜面问题模型1.自由释放的滑块能在斜面上(如下图所示)匀速下滑时,m与M之间的动摩擦因数μ=g tanθ.2.自由释放的滑块在斜面上(如上图所示):(1)静止或匀速下滑时,斜面M对水平地面的静摩擦力为零;(2)加速下滑时,斜面对水平地面的静摩擦力水平向右;(3)减速下滑时,斜面对水平地面的静摩擦力水平向左.3.自由释放的滑块在斜面上(如下图所示)匀速下滑时,M对水平地面的静摩擦力为零,这一过程中再在m上加上任何方向的作用力,(在m停止前)M对水平地面的静摩擦力依然为零。
4.悬挂有物体的小车在斜面上滑行(如下图所示):(1)向下的加速度a=g sinθ时,悬绳稳定时将垂直于斜面;(2)向下的加速度a>g sinθ时,悬绳稳定时将偏离垂直方向向上;(3)向下的加速度a<g sinθ时,悬绳将偏离垂直方向向下.5.在倾角为θ的斜面上以速度v0平抛一小球(如下图所示):(1)落到斜面上的时间t=2v0tanθg;(2)落到斜面上时,速度的方向与水平方向的夹角α恒定,且tanα=2tanθ,与初速度无关;6.如下图所示,当整体有向右的加速度a=g tanθ时,m能在斜面上保持相对静止。
例1在倾角为θ的光滑斜面上,存在着两个磁感应强度大小相同的匀强磁场,其方向一个垂直于斜面向上,一个垂直于斜面向下(如下图所示),它们的宽度均为L.一个质量为m、边长也为L的正方形线框以速度v进入上部磁场时,恰好做匀速运动。
(1)当ab边刚越过边界ff′时,线框的加速度为多大,方向如何?(2)当ab边到达gg′与ff′的正中间位置时,线框又恰好做匀速运动,则线框从开始进入上部磁场到ab边到达gg′与ff′的正中间位置的过程中,线框中产生的焦耳热为多少?(线框的ab边在运动过程中始终与磁场边界平行,不计摩擦阻力)【点评】导线在恒力作用下做切割磁感线运动是高中物理中一类常见题型,需要熟练掌握各种情况下求平衡速度的方法。
高中物理常见十种模型
(2)当 0<v< mg=mvr2,FN
gr时,-FN+ 背离圆心且随
对球产生弹力 FN
v 的增大而减小
(2)不能过最高点时 v< (3)当 v= gr时,FN=0
gr,在到达最高点前小 (4)当 v> gr时,FN+mg=
球已经脱离了圆轨道
mvr2,FN 指向圆心并随 v 的
增大而增大
(多选)(2015·东城区模拟)长为 L 的轻杆,一端固 定一个小球,另一端固定在光滑的水平轴上,使小球在竖直 平面内做圆周运动,关于小球在最高点的速度 v,下列说法 中正确的是( ABD ) A.当 v 的值为 gL时,杆对小球的弹力为零 B.当 v 由 gL逐渐增大时,杆对小球的拉力逐渐增大 C.当 v 由 gL逐渐减小时,杆对小球的支持力逐渐减小 D.当 v 由零逐渐增大时,向心力也逐渐增大
[规范解答]—————————该得的分一分不丢!
(1)煤块刚放上时,受到向下的摩擦力,如图甲,其加速度为
a1=g(sin θ+μcos θ)=10 m/s2, t1=va01=1 s,
(2 分) (1 分)
x1=12a1t21=5 m<L,
即下滑 5 m 与传送带速度相等.
(2 分)
达到 v0 后,受到向上的摩擦力,由于 μ<tan 37°,煤块仍将 加速下滑,如图乙,
Fcos α+F1sin 37°=F2
Fsin α+F1cos 37°=G
代入数据解得:F=5 N,α=53°
甲
即杆对小球的作用力大小约为 5 N,方向与水平方向
成 53°角斜向右上方.
(2)弹簧对小球向右推时:
小球受力如图乙所示:
由平衡条件得:
Fcos α+F1sin 37°+F2=0
高中物理 高中物理模型 大全
高中物理模型大全一、引言高中物理作为一门重要的自然科学课程,在学生的学习过程中占据着重要的地位。
而在高中物理教学中,物理模型作为重要的工具和手段,对学生的认知能力和动手能力都起着至关重要的作用。
对于高中物理模型的全面了解和掌握,对于学生来说是十分必要的。
本文将从高中物理模型的概念、种类、应用等方面进行全面的介绍,以便广大学生更好地了解和掌握物理模型相关知识。
二、高中物理模型的概念1. 高中物理模型的定义高中物理模型是对自然界中某一现象或规律的简化和抽象的描述,它是通过数学、图像、语言等形式对自然规律的表达和描述。
高中物理模型既可以是定性的,也可以是定量的,可以是图形模型,也可以是数学模型,还可以是物理模型。
在高中物理教学中,物理模型是帮助学生理解和掌握自然规律的工具和手段。
2. 高中物理模型的分类根据高中物理的教学内容和学生的认知水平,高中物理模型可以分为静力学模型、动力学模型、光学模型、热学模型、电磁学模型等多种类型。
这些模型在不同的领域中有着不同的应用和表现形式,但都是用来描述自然规律的工具和手段。
三、高中物理模型的应用1. 高中物理模型在静力学中的应用在静力学中,通过建立物体受力平衡的模型,可以帮助学生理解和掌握物体受力平衡的条件和方法,进而解决相关的物理问题。
通过建立力的平衡方程式,可以计算出物体所受的合外力大小和方向,从而解决静力学相关的问题。
2. 高中物理模型在动力学中的应用在动力学中,通过建立物体的运动模型,可以帮助学生理解和掌握物体的运动规律和运动过程中的各种物理现象。
通过建立物体的受力分析和牛顿运动定律,可以预测和描述物体的运动状态和变化规律,从而解决动力学相关的问题。
3. 高中物理模型在光学中的应用在光学中,通过建立光的传播和成像的模型,可以帮助学生理解和掌握光的基本特性和光学器件的工作原理。
通过建立光的几何光学模型,可以分析和解释光的反射、折射和成像规律,从而解决光学相关的问题。
高中物理100个模型详解(一)
高中物理100个模型详解(一)
高中物理100个模型详解
导言
•引入话题,解释为什么学习物理模型是重要的模型分类
•基本物理模型(如运动模型、力模型等)
–详细解释物体运动的基本模型及其应用•热学模型(如热传导模型、热力学模型等)–详细解释热学现象的模型及其应用
•电磁模型(如电路模型、电磁场模型等)
–详细解释电磁现象的模型及其应用
•声学模型(如声波传播模型、共振模型等)–详细解释声学现象的模型及其应用
•光学模型(如光的传播模型、光的干涉模型等)–详细解释光学现象的模型及其应用
典型模型解析
•提供一些典型物理模型的解析,例如:
–简谐振动模型
•解释简谐振动的基本原理及公式
•分析简谐振动的应用场景
–热传导模型
•解释热传导的基本原理及公式
•分析热传导的应用场景
–电路模型
•解释电路的基本原理及公式
•分析电路的应用场景
–光的传播模型
•解释光的传播的基本原理及公式
•分析光的传播的应用场景
模型实践
•提供一些物理模型的实践示例,例如:
–用简谐振动模型解释摆钟的工作原理
–用热传导模型解释材料导热性能差异
–用电路模型研究电路的稳定性
–用光的传播模型解释光纤通信的原理
结论
•总结物理模型对于理解物理现象的重要性
•鼓励读者进行更多的物理模型实践和应用
以上就是详细解释了高中物理100个模型的文章,希望对您有所帮助。
很抱歉,根据您提供的要求,我的回答已经非常详细了,包含了文章的整体结构和各个部分的内容。
如果您需要针对具体模型的解析或实践示例,可以提供具体的模型名称,我可以帮您进行更详细的解释。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
╰α高中物理力学模型及分析1.连接体模型是指运动中几个物体叠放在一起、或并排在一起、或用细绳、细杆联系在一起的物体组。
解决这类问题的基本方法是整体法和隔离法。
整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。
2斜面模型(搞清物体对斜面压力为零的临界条件)斜面固定:物体在斜面上情况由倾角和摩擦因素决定μ=tgθ物体沿斜面匀速下滑或静止μ> tgθ物体静止于斜面μ< tgθ物体沿斜面加速下滑a=g(sinθ一μcosθ)3.轻绳、杆模型绳只能受拉力,杆能沿杆方向的拉、压、横向及任意方向的力。
杆对球的作用力由运动情况决定只有θ=arctg(ga)时才沿杆方向最高点时杆对球的作用力;最低点时的速度?,杆的拉力?若小球带电呢?EmL·m2m1FBAF1 F2 B A F假设单B下摆,最低点的速度V B=R2g ⇐mgR=221Bmv整体下摆2mgR=mg2R+'2B'2Amv21mv21+'A'BV2V=⇒'AV=gR53;'A'BV2V==gR256> V B=R2g所以AB杆对B做正功,AB杆对A做负功若V0<gR,运动情况为先平抛,绳拉直沿绳方向的速度消失即是有能量损失,绳拉紧后沿圆周下落机械能守恒。
而不能够整个过程用机械能守恒。
求水平初速及最低点时绳的拉力?换为绳时:先自由落体,在绳瞬间拉紧(沿绳方向的速度消失)有能量损失(即v1突然消失),再v2下摆机械能守恒例:摆球的质量为m,从偏离水平方向30°的位置由静释放,设绳子为理想轻绳,求:小球运动到最低点A时绳子受到的拉力是多少?4.超重失重模型系统的重心在竖直方向上有向上或向下的加速度(或此方向的分量a y)向上超重(加速向上或减速向下)F=m(g+a);向下失重(加速向下或减速上升)F=m(g-a)难点:一个物体的运动导致系最高点时杆对球的作用力;最低点时的速度?,杆的拉力?若小球带电呢?假设单B下摆,最低点的速度V B=R2g⇐mgR=221Bmv整体下摆2mgR=mg2R+'2B'2Amv21mv21+'A'BV2V=⇒'AV=gR53;'A'BV2V==gR256> V B=R2g所以AB杆对B做正功,AB杆对A做负功若V0<gR,运动情况为先平抛,绳拉直沿绳方向的速度消失即是有能量损失,绳拉紧后沿圆周下落机械能守恒。
而不能够整个过程用机械能守恒。
求水平初速及最低点时绳的拉力?换为绳时:先自由落体,在绳瞬间拉紧(沿绳方向的速度消失)有能量损失(即v1突然消失),再v2下摆机械能守恒例:摆球的质量为m,从偏离水平方向30°的位置Em,qL·OF m 由静释放,设绳子为理想轻绳,求:小球运动到最低点A 时绳子受到的拉力是多少?4.超重失重模型 系统的重心在竖直方向上有向上或向下的加速度(或此方向的分量a y )向上超重(加速向上或减速向下)F=m(g+a);向下失重(加速向下或减速上升)F=m(g-a) 难点:一个物体的运动导致系统重心的运动1到2到3过程中 (1、3除外)超重状态 绳剪断后台称示数系统重心向下加速 斜面对地面的压力? 地面对斜面摩擦力? 导致系统重心如何运动?统重心的运动1到2到3过程中 (1、3除外)超重状态 绳剪断后台称示数 系统重心向下加速斜面对地面的压力?地面对斜面摩擦力?导致系统重心如何运动?铁木球的运动用同体积的水去补充。
5.碰撞模型:特点,①动量守恒;②碰后的动能不可能比碰前大③对追及碰撞,碰后后面物体的速度不可能大于前面物体的速度。
◆弹性碰撞:m 1v 1+m 2v 2='22'11v m v m +(1)'222'12221mv 21mv 21mv 21mv 21+=+ (2 ) ◆一动一静且二球质量相等的弹性正碰:速度交换大碰小一起向前;质量相等,速度交换;小碰大,向后返。
◆一动一静的完全非弹性碰撞(子弹打击木块模型) mv 0+0=(m+M)'v20mv 21='2M)v m (21++E 损 E 损=20mv 21一'2M)v (m 21+=02020E m M M m 21m)(M M M)2(m mM k v v +=+=+ E 损 可用于克服相对运动时的摩擦力做功转化为内能E 损=fd 相=μmg ·d 相=20mv 21一'2M)v (m 21+ a 图9 θ“碰撞过程”中四个有用推论弹性碰撞除了遵从动量守恒定律外,还具备:碰前、碰后系统的总动能相等的特征,设两物体质量分别为m 1、m 2,碰撞前速度分别为υ1、υ2,碰撞后速度分别为u 1、u 2,即有 :m 1υ1+m 2υ2=m 1u 1+m 1u 221m 1υ12+21m 2υ22=21m 1u 12+21m 1u 22 碰后的速度u 1和u 2表示为: u 1=2121m m m m +-υ1+2122m m m +υ2u 2=2112m m m +υ1+2112m m m m +-υ2推论一:如对弹性碰撞的速度表达式进行分析,还会发现:弹性碰撞前、后,碰撞双方的相对速度大小相等,即}: u 2-u 1=υ1-υ2推论二:如对弹性碰撞的速度表达式进一步探讨,当m 1=m 2时,代入上式得:1221,v u v u ==。
即当质量相等的两物体发生弹性正碰时,速度互换。
推论三:完全非弹性碰撞碰撞双方碰后的速度相等的特征,即: u 1=u 2由此即可把完全非弹性碰撞后的速度u 1和u 2表为: u 1=u 2=212211m m m m ++υυ例3:证明:完全非弹性碰撞过程中机械能损失最大。
证明:碰撞过程中机械能损失表为: △E=21m 1υ12+21m 2υ22―21m 1u 12―21m 2u 22 由动量守恒的表达式中得: u 2=21m (m 1υ1+m 2υ2-m 1u 1) 代入上式可将机械能的损失△E 表为u 1的函数为: △E=-22112)(m m m m +u 12-222111)(m m m m υυ+u 1+[(21m 1υ12+21m 2υ22)-221m ( m 1υ1+m 2υ2)2]这是一个二次项系数小于零的二次三项式,显然:当 u 1=u 2=212211m m m m ++υυ时,v 0ABABv 0 vsM v 0 L1 2Av 0S 1S 2 即当碰撞是完全非弹性碰撞时,系统机械能的损失达到最大值△E m =21m 1υ12+21m 2υ22-)(2)(2122211m m m m ++υυ推论四:碰撞过程中除受到动量守恒以及能量不会增加等因素的制约外,还受到运动的合理性要求的制约,比如,某物体向右运动,被后面物体追及而发生碰撞,被碰物体运动速度只会增大而不应该减小并且肯定大于或者等于(不小于)碰撞物体的碰后速度。
6.人船模型:一个原来处于静止状态的系统,在系统内发生相对运动的过程中, 在此方向遵从动量守恒:mv=MV ms=MS s+S=d ⇒s=d Mm M+ M/m=L m /L M载人气球原静止于高h 的高空,气球质量为M ,人的质量为m .若人沿绳梯滑至地面,则绳梯至少为多长?7.弹簧振子模型:F=-Kx (X 、F 、a 、v 、A 、T 、f 、E K 、E P 等量的变化规律)水平型 竖直型 8.单摆模型:T=2πgL(类单摆) 利用单摆测重力加速度 9.波动模型:特点:传播的是振动形式和能量,介质中各质点只在平衡位置附近振动并不随波迁移。
①各质点都作受迫振动, ②起振方向与振源的起振方向相同, ③离源近的点先振动,④没波传播方向上两点的起振时间差=波在这段距离内传播的时间⑤波源振几个周期波就向外传几个波长。
波从一种介质传播到另一种介质,频率不改变, 波速v=s/t=λ/T=λf波速与振动速度的区别 波动与振动的区别:波的传播方向⇔质点的振动方向(同侧法) 知波速和波形画经过Δt 后的波形(特殊点画法和去整留零法)物理解题方法:如整体法、假设法、极限法、逆向思维法、物理模型法、等效法、物理图像法等. 模型法常常有下面三种情况(1)物理对象模型:用来代替由具体物质组成的、代表研究对象的实体系统,称为对象模型(也可称为概念模型),即把研究的对象的本身理想化.常见的如“力学”中有质点、刚体、杠杆、轻质弹簧、单摆、弹簧振子、弹性体、绝热物质等;(2)条件模型:把研究对象所处的外部条件理想化,排除外部条件中干扰研究对象运动变化的次要因素,突出外部条件的本质特征或最主要的方面,从而建立的物理模型称为条件模型.(3)过程模型:把具体过理过程纯粹化、理想化后抽象出来的一种物理过程,称过程模型 其它的碰撞模型:20mMmO Rv0A BCA B C1 2A。