Hesitant Fuzzy Linguistic VIKOR Method and Its Application in Qualitative MCDM

合集下载

基于I-TOPSIS的可比较语言多属性决策方法

基于I-TOPSIS的可比较语言多属性决策方法

基于I-TOPSIS的可比较语言多属性决策方法韩冰;李东【摘要】针对属性值是可比较语言的多属性决策问题,提出了一种新的多属性决策方法———I-TOPSIS法;传统的TOPSIS方法的综合评价值只能反映各评价对象内部的相对接近度,为了体现各方案与理想的最优方案的接近程度,引进I-TOPSIS法,通过定义正负理想点找到最优的参照方案,根据备选方案与最优参照方案之间的距离对备选方案进行排序和择优;最后,通过实例分析说明了方法的有效性和合理性。

%For the multiple-attribute decision making problem with attribute value expressed as comparative linguistic expression, a new multiple-attribute decision making method named improved TOPSIS method is advanced.The evaluation value of the traditional TOPSIS method only reflects the relative proximity of each evaluation object inside.In order to embody the degree of closeness to the ideal solution,I-TOPSIS method is developed by introducing the ranking index based on the concept that the chosen alternative should be as close as possible to the ideal solution.Finally,an example is given to illustrate the proposed method,in which the effectiveness and feasibility are guaranteed.【期刊名称】《重庆工商大学学报(自然科学版)》【年(卷),期】2017(034)001【总页数】4页(P94-97)【关键词】多属性决策;可比较语言;I-TOPSIS方法;最优参照方案【作者】韩冰;李东【作者单位】安徽大学数学科学学院,合肥230601;安徽大学数学科学学院,合肥230601【正文语种】中文【中图分类】O142ZADEH L A在1965年首次提出了模糊集的理论[1],与传统精确数的理论相比,模糊集的理论能更好地处理不确定性的决策问题。

大学英语教学中模糊限制语的语用功能一、引言模糊限制语(Hedges)是...

大学英语教学中模糊限制语的语用功能一、引言模糊限制语(Hedges)是...

大学英语教学中模糊限制语的语用功能一、引言模糊限制语(Hedges)是模糊语言的重要组成部分,在英语交际中恰当使用模糊限制语不仅不会影响我们对话语的理解,反而能增强语言表达的灵活性,提高语言的表达效果,使交际顺利进行,实现交际目的。

因此,对大学英语教学中出现的模糊限制语进行研究,分析模糊限制语在英语教学中的语用功能,颇有意义。

二、模糊限制语及其功能1972年美国语言学家拉科夫(GeorgeLakoff)在《语义标准和概念逻辑的研究》(AstudyinMeaningCriteriaandtheLogicofFuzzyConcepts)中提出了模糊限制语的概念,将模糊限制语定义为一些“把事情弄得模模糊糊的词语”。

我国最早的模糊限制语研究要追溯到20世纪70年代末,1979年伍铁平在《模糊限制语初探》中简单介绍了模糊限制语及其分类和语用功能,之后其他学者也认识到了世界中存在的各种模糊现象。

在某种程度上,模糊限制语表面上的模糊却显示了语言的客观性和严谨性,从而提高语言的可信度。

模糊限制语具有丰富的语用功能,在人们的日常交际中,为了使语言表达更委婉礼貌、客观得体、灵活有效,人们并不总是直接表述,而是通过言外之意来达到此效果。

这与语用学中的会话含义理论、合作原则、礼貌原则等有着密切的联系。

美国哲学家Grice总结指出,人们在言语交际中为保证交际顺利进行,达到成功的交际目的,交际双方之间存在着一种默契,共(二)营造轻松课堂同遵守一些原则,这即是合作原则。

在言语交际中,人们有时会使英语教学涉及人际间的互动,也就是师生之间的互动。

在教用模糊限制语,表面上看似乎没有遵守这些准则,实际上,说话人学中,恰当使用模糊限制语,改善师生间的语言表达,有利于活跃违背了其中的一个准则恰恰是为了更好地遵守另一个准则。

课堂气氛和英语教学的成功。

在教学过程中,为了避免武断或争锋礼貌原则是英国学者利奇(Leech),在格赖斯(Grice)提出相对的情绪,模糊限制语的使用就可以使得话语缓和、得体,考虑的合作原则的基础之上提出来的,并将这一原则划为六条准则:策到受话人的情绪和感受,其效果会大不相同。

英语哲学思想解读50题

英语哲学思想解读50题

英语哲学思想解读50题1. The statement "All is flux" was proposed by _____.A. PlatoB. AristotleC. HeraclitusD. Socrates答案:C。

本题考查古希腊哲学思想家的观点。

赫拉克利特提出了“万物皆流”的观点。

选项A 柏拉图强调理念论;选项B 亚里士多德注重实体和形式;选项D 苏格拉底主张通过对话和反思来寻求真理。

2. "Know thyself" is a famous saying from _____.A. ThalesB. PythagorasC. DemocritusD. Socrates答案:D。

此题考查古希腊哲学家的名言。

“认识你自己”是苏格拉底的名言。

选项A 泰勒斯主要研究自然哲学;选项B 毕达哥拉斯以数学和神秘主义著称;选项C 德谟克利特提出了原子论。

3. Which philosopher believed that the world is composed of water?A. AnaximenesB. AnaximanderC. ThalesD. Heraclitus答案:C。

本题考查古希腊哲学家对世界构成的看法。

泰勒斯认为世界是由水组成的。

选项A 阿那克西美尼认为是气;选项B 阿那克西曼德认为是无定;选项D 赫拉克利特提出万物皆流。

4. The idea of the "Forms" was put forward by _____.A. PlatoB. AristotleC. EpicurusD. Stoics答案:A。

这道题考查古希腊哲学中的概念。

柏拉图提出了“理念论”,即“形式”。

选项B 亚里士多德对其进行了批判和发展;选项C 伊壁鸠鲁主张快乐主义;选项D 斯多葛学派强调道德和命运。

5. Who claimed that "The unexamined life is not worth living"?A. PlatoB. AristotleC. SocratesD. Epicurus答案:C。

基于Retinex的夜间低照度图像自适应增强算法

基于Retinex的夜间低照度图像自适应增强算法

2020年第04期信息通信2020(总第208期)INFORMATION&COMMUNICATIONS(Sum.No208)基于Retinex的夜间低照度图像自适应增强算法尚月(南京工业大学计雾机科学与技术学院,江苏南京211816)摘要:在夜间采集到的图像存在整体亮度偏低、对比度低、细节信息不可见等问题。

Retinex理论是基于人类视觉系统所建立的一种图像增强方法,有效解决了图像信息丢失、光照不均匀等问题。

基于此,文章结合传统的Retinex理论进一步提出了低照度图像自适应算法,计算过程中使用了全局的对数平均值,对于夜间图像有着非常明显的调节作用。

实验结果表明,文章所提出的算法在主观评价以及客观评价方面祢优于其他对比恢复算法。

关键词:Retinex;低照度;全局自适应;夜间图像增强中图分类号:TP391文献标识码:A文章编号:1673-1131(2020)04-0036-03Adaptive Enhancement Algorithm of Low illumination Image at Night Based on RetinexShang Yue(School of Computer Science and Technology Nanjing Tech University,Nanjing211816,China) Abstract:The images collected at night have some problems,such as low brightness,low contrast and invisible details.Retinex theory is an image enhancement method based on human vision system,which effectively solves the problems of image infor­mation loss and uneven illumination.Based on this,combining with the traditional Retinex theory this paper further proposes a low illumination image adaptive algorithm,which uses the global logarithm average value in the calculation process,and has a very obvious regulating effect on night images.Experimental results show that the algorithm proposed in this paper is superior to other algorithms in subjective evaluation and objective evaluation.Key words:Retinex;low illumination;global adaption;night image enhance通常在夜间拍摄出来的图像都会存在退化的现象,这主要是因为夜间的光线暗,导致图像的对比度较差,颜色也会与真实的有较大出入,并且细节也会模糊不清,在很多情况下,无法对这类图像进行较好的辨识,使得这类图像的使用价值受到严重的限制。

测量粗糙集中模糊性的一种新方法_英文_

测量粗糙集中模糊性的一种新方法_英文_

NEW METHOD FOR MEASURING Foundation items :Suppo rted by t he N at ional N atural Science Fo undatio n of China (60234010);A ero naut ical Science F oundatio n o f China(02E52025). Received date :2003-09-10;revision received date :2003-10-25FUZZINESS IN ROUGH SETSH E Ya -qun 1,2,H U Shou -song 1,W E I Chong -hui2(1.Colleg e of A uto matio n Eng ineering,NU AA ,29Yudao Str eet,N anjing,210016,P.R.China ;2.T hird Depart ment ,A ir Fo rce L og istics College,Xuzho u,221002,P.R.China)Abstract :A met ho d w ith the fuzzy entr opy fo r measuring fuzziness t o fuzzy pr oblem in r ough sets is pr o po sed.A new so rt of the fuzzy entro py is g iv en.T he calculating for mula and the equivalent ex pressio n metho d with the fuzzy entro py in ro ug h sets based on equiv alence r elat ion ar e pro vided ,and the pro perties of the fuzzy entro py a re pro ved .T he fuzzy entro py based o n equiva lent r elat ion is ex tended to g eneralize the fuzzy ent ro py based o n general binary r elat ion ,and t he calculat ing fo r mula and the equiv alent expr essio n of the g eneralized fuzzy entr opy a re also g iv en.F inally ,an ex ample illustrat es the w ay fo r get ting the fuzzy entr opy.Results show that the fuzzy entro py can conv enient ly measur e the fuzziness in ro ugh sets.Key words :r o ug h set s ;fuzziness ;fuzzyentr o py ;g eneralized fuzzy entr opyCLC number :T P 18 Document code :AArticle ID :1005-1120(2004)01-0031-05INTRODUCTIONThe rough sets theory proposed by Z.Paw lak [1],a new mathematical tool dealing w ith the incomplete and imprecise info rmation [2],is getting g eneral attention by scho lars all over thew orld[3,4].The ro ug h set is defined through a pair o f upper and low er appr oxim ates.Due to theexistence of the boundary reg ion ,the rough set has the uncertainty and the fuzziness.T he gr eater the uncertainty and the fuzziness,the rougher the kno wledge.It is more hard to g etthe certain rules [5].T he measurment of the uncertainty and the fuzziness becom es one of the basic pr oblem s in r ough sets.About the fuzziness of the ro ug h sets,Ref.[6]presented a metho d for m easuring the fuzziness through the distance of the fuzzy m em bership function.In fact,by the ro ug h m em bership function ,the fuzziness in rough sets can be ex pressed with a fuzzy set [6].As is know n ,the fuzzy entropy is the best method form easuring fuzziness in fuzzy sets[7,8],and ther efore the fuzzy entropy can better measure the fuzziness in roug h sets .In this paper ,a new fuzzy entropy is given and the fuzziness in ro ug h sets can be v ery w ell m easur ed.1 BASIC CONCEPT OF FUZZYENTROPYLet U ={x 1,x 2,…,x n }be an o bject set.F (U )is the class of all fuzzy sets on U ,the m em bership function o f A F (U )is A (x i )(x i ∈U )and(U )the class of all cr isp sets on U .Definition 1[7,9] For function E :F →[0,+∞),E is r eg arded as the fuzzy entr opy on F if E satisfies the follow ing pro perties:(1)E (D )=0, D ∈ (U );(2)E (x i )=max A (x i )=12, x i ∈U ;(3) A ,B ∈F ,if B (x )≥ A (x )≥12andB(x)≤ A(x)≤12,then E(A)≥E(B);(4) A∈F,E(A C)=E(A)w here A C is the complement of A.Definition2 Fo r U={x1,x2,…,x n},we defineE(A)=1-1n∑ni=1A(x i)- A C(x i) (1)Comparing w ith Definition1,w e g et that E(A) is the fuzzy entropy on F.The fuzzy entropy can measure the fuzziness in the fuzzy sets.2 MEASURING FUZZINESS IN ROUGH SETS BASED ONEQUIVALENT RELATION2.1 Fuzzy entropy in rough setsIn ro ug h sets,let(U,R)be an approx imatio n space,U be finite non-empty object set,and R be the equivalent relatio n on U.U nder the equiv alent relation R,[x]R denotes the equiv alence class o f x∈U.Let X U,then the low er and upper approx imatio ns of X are as fo llow sR(X)={x∈U [x]R X},R(X)=x∈U [x]R∩X≠ In the rough set R(X)=(R(X),R(X)),ifR(X)≠R(X),the fuzziness in ro ug h sets exists.Here the r ough m em bership functiondegr ee o f x∈U on X is X∩[x]RR.Obviously0≤X∩[x]R[x]R ≤1(2)Then w e get a fuzzy set F R(X)on UF R(X)=x, F R(X)(x) x∈U, F R(X)(x)=X∩[x]R[x]R (3) By using the fuzzy entropy defined by Eq.(1),w e get the fuzzy entropy E(F R(X))of the fuzzy sets F R(X),w hich is the fuzzy measurement of the rough sets R(X).Definition3 Let X U, x i∈U,and then the fuzzy entropy of the rough sets in the equivalent relatio n isE(F R(X))=1-1n∑ni=1FR(X)(x i)-F CR(X)(x i) (4) w her e F C R(X)is the complement of fuzzy sets F R(X).T he fuzzy entro py can be used to measure the fuzziness in roug h sets.The bigg er the fuzzy entro py,the big ger the fuzziness in r oug h sets.Theorem1 The fuzzy entropy in rough sets defined by Eq.(4)is equivalent to the fuzzy entro py in r oug h sets defined by the follow ing form ulaE(F R(X))= 1-1n∑ni=1FR(X)(x i)- F R(X C)(x i) (5) w her e X C denotes the co mplem ent of X.Proof For X U, x∈UFR(X)(x)+ FR(XC)(x)=[x]R∩X+[x]R∩X C[x]R =[x]R[x]R =1 then F C R(X)=F R(X C),so the Theorem ex ists. 2.2 Properties of fuzzy entropy in rough setsProperty1 X U,0≤E(F R(X))≤1Proof We can dir ectly get it from the definition of the fuzzy entropy in r oug h sets.Property2 The fuzzy entro py of the crisp sets in the approx im ate space is zeroProof Since the cr isp set has no t ro ug hness,i.e.R(X)=R(X),then x∈X, w e g etFR(X)(x)=X∩[x]R[x]R =[x]R[x]R =1m oreover, x∈X C,[x]R∩X C=,hence FR(XC) (x)=0therefore the fuzzy entropy E(F R(X))=0Property3 T he rough sets hav e the sam e fuzziness w ith its com plementProof Let X U,X C is the complement of X, x i∈U,thenFR(X)(x i)+ FR(XC)(x i)=[x i]R∩X+[x i]R∩X Ci R=1Namely: FR(X)(x i)=1- FR(XC)(x i),then∑ni =1F R (X )(x i )- F C R (X )(x i ) = ∑ni =1F C R (X )(x i )- F R(X )(x i ) therefo re E (F R (X ))=E (F R (X C))Property 4 x i ∈U (i =1,2,…,n ),w hen [x i ]R ={x i },the fuzzy entro py E (F R (X ))is minimum and E (F R (X ))=0Proof x i ∈U (i =1,2,…,n ),w hen [x i ]R={x i },then F R (X )(x i )=X ∩[x i ]R[x i ]R=10 x i ∈X x i ∈X C By the definition o f the fuzzy entropy,the fuzzy entropy is minimum ,i .e .E (F R (X ))=0.Pro perty 4sho ws that if the equivalent relatio n can distinguish any objects on U ,there is no fuzzy inform ation ,and the fuzzy entropy is zero .Property 5 Let X Y U , x ∈U ,we hav eE (F R (X ))≤E (F R (Y ))w hen F R (X )(x )≤ F R(Y )(x )≤12E (F R (X ))≥E (F R (Y ))w hen 12≤ F R (X )(x )≤ F R (Y )(x )E (F R (X ))=E (F R (Y ))w hen F R (X )(x )= F R(Y )(x )=12(6) Proof ∵X Y U ,∴ F R (X )(x )=[x ]R ∩X R ≤[x ]R ∩YR = F R (Y )(x ),and thenEq .(6)can be obtained fr om the definition of the fuzzy entropy.3 MEASURING FUZZINESS INROUGH SETS BASED ON GENERAL BINARY RE -LATIONLet U be the finite no n-empty set and R ′ U ×U be a g eneral binary relation,then (U ,R ′)is generalized as an appr ox im ate space [10]. x i ∈U ,w e define a R ′neig hbor ho od region of x i asS R ′(x i )={y (x i ,x j )∈R ′,x j ∈U }(7) Under the equivalent relation R , x i ∈U ,[x i ]R may be reg arded as R neighborhood reg ion of x i ,and then [x i ]R is the object numbers in the neighbo rhood region of x i ,and is also the times that x i appear in the neig hbor ho od regions of all objects.Sim ilarly,under the gener al binaryrelatio nR ′,w e candefine aR ′neig hborhoo d region of x i and the o bject num bersin the R ′neighbo rhood region .T he object num bers in the neighborhood r eg io n of x i is also the tim es that x i appear in the neighbo rhood regio ns of all objects.Therefore,the object num bers in the R ′neig hborhoo d r eg ion of x i are S R ′(x i ) = {S R ′(x j ) x i ∈S R ′(x j ),1≤j ≤ U } (8)w her e U is the cardinality of U .Definition 4 x i ∈U ,let X U ,the g eneralized fuzzy entropy for the r oug h sets based on the general binary relatio n R ′is defined byE (F R ′(X ))= 1-1n ∑ni =1F R ′(X )(x i )- F C R ′(X )(x i ) (9)w her e F R ′(X )=x , F R ′(X )(x ) x ∈U , F R ′(X )(x )=X ∩S R ′(x ) S R ′(x )is a fuzzy set and F C R ′(X )the complement of the fuzzy set F R ′(X ).Similar to T heorem 1,w e g et the equivalent form ula o f the generalized fuzzy entro py for thero ug h sets as follow sE (F R ′(X ))= 1-1n ∑ni =1F R ′(X )(x i )- F R ′(X C )(x i ) (10) Theorem 2 If the binary relatio n R ′is the equivalent relation on U ,thenE (F R ′(X ))=E (F R (X )) Proof x ∈U ,if the binar y relationdeg enerates to the equivalent relation on U ,then S R ′(x )=[x ]R in the R ′neighborhood reg io n of x .Hence,w e can obtain E (F R ′(X ))=E (F R (X ))fr om the definition of the fuzzyentro py.N o 33.1HE Y a-qun,et al.N ew M ethod for M easur ing F uzziness in Roug h Set sTheorem2denotes that the fuzzy entropy o f rough sets based on the equivalent r elation is an special case of the fuzzy entro py in ro ug h sets based o n the g eneral binar y r elation.4 EXAMPLESuppo se that a decision system,U={1,2,…,10},co ndition attribute Q={q1,q2,q3},the attribute values are presented in Table1.Table1 Attribute valuesO bjectAt tribute v alueq1q2q311212321333042105121623073218111921010230Considering that the subsets of object X= {1,2,4,5,7,8,10},under equivalent relation R, w e hav e[1]R=[5]R={1,5},[2]R=[7]R={2,7},[3]R= {3},[4]R=[9]R={4,9},[6]R=[10]R={6,10}, [8]R={8}then R(X)={1,2,5,7,8},R(X)={1,2,4, 5,6,7,8,9,10}FR(X)(1)= F R(X)(2)= F R(X)(5)= F R(X)(7)= FR(X)(8)=1,FR(X)(3)=0, F R(X)(4)= F R(X)(6)= F R(X)(9)= FR(X)(10)=0.5The fuzzy entr opy for ro ug h sets based on the equivalent relation R is E(F R(X))=0.4.5 CONCLUSIONSAs w e have know n,the rough set is an effectiv e mathem atical too l for dealing w ith the uncertainty and fuzzy information,and any ro ug h set is related to som e fuzziness.A new fuzzy entropy metho d for m easuring the fuzziness in ro ug h sets and the calculation for mulas of the fuzzy entropy in r ough sets based o n equivalent and general binary relatio ns are pro posed and the properties of the fuzzy entropy are prov ed.An exam ple sho ws the way fo r g etting the fuzzy entro py in rough sets.Fr om the ex ample,it is know n that the fuzzy entropy can m easure the fuzziness in rough sets conveniently and effectively.References:[1] P aw lak Z.Roug h sets[J].Inter nat ional of Info r-m atio n and Computer Science.1982,11(5):341~356.[2] Felix R,U shio T.Rule inductio n fr om inco nsist enta nd incomplete dat a using r oug h set s[A].P ro ceeding s of the IEEE Inter natio nal Co nfer enceo n Sy stems,M an and Cy ber netics[C].1999,5(10):154~158.[3] Gr eco S,M atar azzo B,Slow inski R.Roug h setst heo r y for multicriter ia decisio n analy sis[J].Eur opean Journal of Operat ional Resear ch,2001,129(1):1~47.[4] Sr inivasan P,R uiz M E,K r aft D H,et al.V ocab-ulary mining for info rmation r etrieval:r o ug h setsa nd fuzzy sets[J].Info rmat ion Pr ocessing andM anagement,2001,37(1):15~38.[5] Beaubouef T,Petr y F E,Ar or a rmat ion-t heo r etic measur es o f uncer taint y for r ough sets andr o ug h r elational databases[J].Jo ur nal ofI nfo rm atio n Sciences,1998,109:185~195.[6] Chakrabar ty K,Biswas R,N anda S.F uzziness inr o ug h sets[J].F uzzy Sets and Sy stems,2000,110:247~251.[7] L iu X uecheng.Entr opy,dista nce measur e and simi-lar ity measure of fuzzy sets and their r elations[J].F uzzy Sets and Systems,1992,52:305~318.[8] Zho u Y uming,Xu Baow en.I mpr ov ed accur acy andr o ug hness measur es fo r r ough sets[J].Jour nal ofElectr onics,2002,19(3):320~323.[9] Wang W enjune,Chiu Chihiu.Entr opy a nd info r-m atio n energ y for fuzzy sets[J].F uzzy Sets andSy stems,1999,108:333~339.[10] Y ao Y Y,L in T Y.Gener aliza tio n of r ough setsusing modal log ic[J].I nt ellig ent A uto matio n andSoft Co mputing,1996,2:103~120.34T r ansa ct ions of N anjing U niv ersit y o f Aer onautics&Astr onautics V ol.21测量粗糙集中模糊性的一种新方法何亚群1,2,胡寿松1,魏崇辉2(1.南京航空航天大学自动化学院,南京,210016;2.空军后勤学院三系,徐州,221002)摘要:针对粗糙集中存在的模糊性问题,提出了一种利用模糊熵测量其模糊性的方法。

On a natural fuzzification of Boolean logic

On a natural fuzzification of Boolean logic
sefulness r−x
1
truthfulness rx
1
0
0
-1
-1 1/-1
r−x
0
-1/1
rx
Figure 1: Split Truth/Falseness Semantics Let (x, rx ) ∈ E L be an L-expression: µ(x, rx ) = (x, rx ) if rx ≥ r¬x , (¬x, r¬x ) otherwise. (4)
The unary contradiction operator ¬ has a higher precedence in the interpretation of a formula, but we generally use brackets to control the application range of a given operator and thus to make all formulas have unambiguous semantics. We suppose in the sequel that all other operators such as implication, equivalence, xor etc are derived with the help of these three basic operators: contradiction, conjunction and disjunction. With these well formulated propositional expressions we associate a rational credibility evaluation r : E → [−1, 1] where ∀x, y ∈ E , rx = 1 means x is certainly true, rx = −1 means that x is certainly false and rx > ry (resp. rx < ry ) means that propositional expression x is more (resp. less) credible than propositional expression y . Such a credibility domain is called L, and we denote E L = {(x, rx ) | x ∈ E, rx ∈ [−1, 1]} a given set of such more or less credible propositional expressions, also called for short L-expressions. 1

用户需求导向的产品设计方案质量评价模型

用户需求导向的产品设计方案质量评价模型

小型微型计算机系统Journal of Chinese Computer Systems 2021年1月第1期 Vol.42 No. 12021用户需求导向的产品设计方案质量评价模型彭定洪w,黄子航彭勃3、昆明理工大学管理与经济学院,昆明650093)2 (昆明理工大学质量发展研究院管理,昆明650093)3(南昌大学管理学院,南昌330031)E-mail :************************摘要:针对企业产品设计方案质量评价问题,提出一种以满足用户期望为核心的产品设计方案质量评估方法.首先,利用模 糊K A N O模型对收集的指标进行分析归类,建立用户导向的评价指标体系.其次,基于产品设计方案评价模型及指标体系的前 期研究成果,构建一套适用于以用户期望为主导的产品设计方案评价模型.由于用户期望具有一定的模糊性以及难以全部达成 的特点,将以几何均解做为参考解的多属性边界逼近区域比较法拓展到犹豫模糊领域,并进一步优化了适用于该方法的标准化 技术,系统的阐述了产品设计方案的评价流程.最后,通过算例对该评价模型进行了验证,通过对比分析证明该模型具有一定的 优越性和适应性.关键词:产品设计方案质量;综合评价;模糊K A N O模型;多属性边界逼近区域比较法(M A B A C);犹豫模糊集(HFS)中图分类号:TB115 文献标识码:A 文章编号:1000-1220(2021)014218>07User Demand-oriented Product Design Quality Evaluation ModelPENG Ding-hong1,2,HUANG Zi-hang1*2,PENG Bo31( School of Management and Economics, Kunming University of Science and Technology .Kunming 650093, China)2 (Institute of Quality Development,Kunming University of Science and Technology,Kunming 650093 .China)3 ( School of Management,Nanchang University,Nanchang 330031 .China)A b s t r a c t: Aiming at the problem of quality evaluation of enterprise product design schemes,this paper proposes a quality evaluation method of product design schemes that meets user expectations. Firstly,the fuzzy KANO model is used to analyze and classify the col­lected indicators, establishing a user-oriented evaluation index system. Secondly, based on the previous research results of the product design plan evaluation model and index system, a set of product design plan evaluation models suitable for user expectations is the key. Because users expect a certain degree of ambiguity and it is difficult to achieve all of them,the multi-attribute boundary approxi­mation area comparison method using the geometric mean solution as the reference solution is extended to the hesitant fuzzy field, and the standardization technology applicable to this method is further optimized. The evaluation prcx:ess of the product design scheme is expatiated systematically. Finally,the evaluation mcxlel is verified by an example,and the comparative analysis proves that the mcxlel has certain advantages and adaptability.Key w o r d s:prcxluct design scheme quality ;comprehensive evaluation ;fuzzy KANO model ;M A BA C; hesitation fuzzy set ( HFS)i引言随着全球化进程的稳步推进与技术水平的快速提升,我 国企业所处的竞争环境将日益严峻,企业必须迅速通过产品 创新这一方式取得竞争优势,以响应日益多元化的用户及市 场需求m.因此,新产品的研发与创新设计为企业在复杂多面的竞争环境中提供了重要机遇.在创新产品投入生产前,对 其设计方案进行事前评估是产品生产过程中一个重要阶段,它有助于评估设计方案对设计目标的总体效用|2].且设计方 案的不良选择在设计过程后期很难进行弥补,很可能导致高 昂的二次设计成本.但由于国内企业的起步较晚且存在多方 面经验欠缺不足的问题,致使其缺乏相应的设计管理制度,更缺乏产品设计方案质量评价的意识及方法.因此,为弥补我国 企业在创新产品设计评估上的不足,本文拟构建一种适用于 产品设计方案质量的评价模型,以提升企业创新产品质量及 完善设计方案评估制度.另一方面,全球消费市场正逐渐由企业主导型向顾客主导 型转变,而企业在复杂的竞争环境中,不断的对产品进行创新 设计,也同样是为了获得顾客青睐进而提升顾客满意度.如何 更好地满足顾客多样化的需求,成为了产品设计方案质量评估 过程中关键的出发点.针对顾客需求分析以及需求与满意度间 的相互关系,日本学者狩野纪昭提出了对影响顾客满意度因 素进行划分的_〇模型,并且随着_〇模型的不断完善 与推广,目前该模型被广泛应用在以满足客户需求为核心的诸收稿H期:202(M)2^05收修改稿日期:2〇2(H)3-30基金项目:国家自然科学基金项目(71861018,71761027,61364016)资助;云南省哲学社 会科学规划项目(Y B2019067)资助.作者简介:彭定洪(通讯作者),男,1982年生,博士,教授,研究方向为系统工程、模糊决策;黄子航,女,1994年生,硕士研究生,研究方向为质量评价、多准则决策;彭勃,男,1982年生.博士,副教授,研究方向为决策理论与方法研究.彭定洪等:用户需求导向的产品设计方案质量评价模型219期多领域.耿秀丽[4]针对传统质量功能展开中考虑功能需求间自 相关关系不足的问题,采用模糊K A N O问卷进行分析并建立 了产品功能需求优化模型;唐中君[5]根据_〇模型的内涵,提出一种可以对用户个性化需求进行获取的方法,有效的解决 了用户满意期望与产品成本之间存在的冲突性;孟庆良W构建 了能够对分析型K A N O模型进行设计的方法,解决了 KANO 模型在分类准则时可能出现的主观局限性问题,实现质量因素 的客观化分类;采用卡诺二维质量模型,通过卡诺调査问 卷分析消费者对不同服务质量要素的满意度,确定其中必不可 少的质量要素.通过上述研究成果可知,KAN〇模型在分析以 用户需求为中心的评价问题时,是一种较为准确高效的研究工 具,但大部分学者都利用K A N O模型进行简单的用户调查、需 求分析或指标分类等研究,却没能就取得的分析结果进行深入 的研究利用.因而,本文受的思想启发,通过K A N O模型 固有的五种分类标准,对目前在产品设计方案质量评估领域 内,被广泛选用的指标进行筛选、分类、整合,进而构建以用户 需求为主导,质量保证为目的的评估指标体系_为对产品设计方案质量进行客观评价,除了需要合理的指 标体系外,同样需要严谨的评价方法.李付星[8]以工业设计作 为产品设计评价的出发点,将开发过程中涉及到的评价方法进 行了分析和汇总;王海伟[9]引人信息熵对指标权重的不确定性 进行描述,并根据极大熵原理建立设计方案评价模型;刘征 宏[1°]使用TOPSIS法对备选方案与用户需求的各感性维度匹 配度进行分析;V a r u n[l l]通过改进以区间数为数据基础的VIKOR方法,开发了用于设计方案评估的M R-VIKOR评价模 型.对文献进行分析发现,目前针对于产品设计方案的评价方 法大都集中在几种典型的多准则评价方法上.然而,上述方法 在解决以用户需求为核心的产品设计评价问题上虽有一定的 适用性,但也同样存在以下两点问题:l)TOPSIS与VIKOR均 为以极端解作为参考解多准则决策方法,虽然可以选择出无限 靠近最理想解的备选方案,但对于以用户需求为核心的产品设 计方案质量评估,是以期找到在成本可接受范围内,最能满足 用户偏好与期望的方案.而如果选择用户期望做为决策目标,那就势必存在用户主观的最理想期望会由于现实条件制约而 无法达到的问题;2)在产品设计过程中,不仅涉及到技术、材料 及成本,而且在进行评价的过程中还要考虑用户的摇摆不定. 这些因素不但多而且很难量化,实际上是一个模糊概念•再加 上“评价”自身就是带有较强主观性的判断活动,这样评价结 果自然会带有较大的模糊性[12].为解决上述存在的问题,本文 拟拓展一种以犹豫模糊集为数据基础的多属性边界逼近区域 比较法(HF-M AB AC),并对其必要的标准化一步进行改进,增 强其适用性.一则,_A C是一种以均解作为参考解的评价 方法,可以弥补上述方法中最优解无法达到的缺陷;二则,采用 犹豫模糊集作为数据基础,可以涵盖评价过程中专家给出的带 有犹豫不定性的数据,在充分体现数据模糊性的基础上给出具 有代表性的决策信息.2以用户需求为导向的评价指标体系2.1 KANO模型自20世纪80年代提出以来,K A N O二维模型已成为各行业管理从业者和研究人员中最受欢迎的质量模型之一,其 旨在说明和确定研究目标的质量属性._〇模型放弃了产 品对客户满意度影响的严格线性视图,允许分类可能影响客 户满意度的特定属性,且认识到客户需求履行与客户满意度 之间的关系是非线性的.其对用户关于产品的需求类型划分 以下几种:1)魅力质量(A: Attractive):若产品中存在充足的 此类要素,用户满意度则会因为该要素的存在而会得到较大 幅度的提升;如果缺失或者此类要素不足时,用户也不会因此 而产生对产品的不满;2) —维质量(0:One-dimensional):此 类质量要素的充足或缺失都会影响用户对产品的满意度,作 为必备的质量要素,其充足程度的增加,能够使得顾客满意度 也得到增长,反之将导致顾客满意度呈线形下降的状态;3) 必备质量(M:M U S t-b e):此类质量要素是顾客认为产品中必 须具有的关键要素,若该类要素不能充足的体现在产品中,顾 客满意度会因为必备性能的缺失而急速下降.相反,无论该类 要素的充足性进行怎样的提升,对用户满意度产生的影响都 相对较小;4)无差异质量(IJndifferent):用户满意度并不会 针对此类要素的变化而发生改变,换言之此类要素对用户而 言并不重要;5)逆向质量(^R e v e r s e):若此类型质量要素表 现充足时将导致用户满意度的下降,不充足时将导致用户满 意度的上升[13],客户对产品或服务的特定质量的满意度可能 会因其对质量属性的偏好而异,函数变化关系见图1.满意图1K A N O质量因素关系图F i g.1KANO q u a l i t y f a c t o r r e l a t i o n s h i p d i a g r a m2.2构建产品设计方案质置评价指标体系通过文献回顾可知,K A N O模型在用户导向的质量评价 领域应用较为广泛,本节所提出的指标体系构建方法主要有 以下部分组成:产品设计方案质量评价的相关指标收集、引人 模糊K A N O问卷进行准则要素调查分析、筛选准则指标并进 行类型划分最后构建指标体系.首先,收集整理近年来关于产品设计方案质量的准则指 标,其中原思聪[将灰关联分析方法应用到机械设计综合评 价体系各模块,构建了机械产品设计的评价指标体系;Qi u:l5]根据不断变化的业务策略,在不同生命周期阶段对复杂产品 分别构建了指标体系;杨东[16]应用Q F D和案例推理的思想,利用通过Q F D方法形成的质量特性及其权重来构建指标体 系,整理后的指标见表1.其次,引入Ch en[〜8]等学者提出的兼顾不确定思想的模 糊K A N O模型(F K M),使用更灵活的方式允许用户使用个性化标准来回答问题,用户还可以用更详细的数据表示来表220小型微型计算机系统2021 年达用户的真实想法.目前应用较为广泛的模糊K A N O问卷的主要形式如表2所示,相关问卷问题的表达形式如表3所示.表1分析整理后的准则指标T a b l e 1A n a l y s i s o f t h e r e v i s e d i n d i c a t o r i n d i c a t o r s~评价准则总产品质量产品效率产品尺寸可靠性—方案修改成本目保障性使用寿命疲劳寿命材料生产工艺标加工繁杂程度制造成本使用成本维修成本回收利用率复杂性 操作性结构 市场需求盈利率表2模糊K A N O问卷T a b l e2 F u z z y KANO q u e s t i o n n a i r e功能需求能够实现不能实现________________模糊K A N O问卷/%_________________比较满意不可缺少^~~能够忍受相对不满表3模糊K A N O问卷的问题形式(以产品质量为例)T a b l e 3 P r o b l e m f o r m o f t h e f u z z y KANO q u e s t i o n n a i r e (t a k i n g p r o d u c t q u a l i t y a s a n e x a m p l e)问题:所购买产品质量优良满足必须这样 中立 可以忍受不满远项(%)()() () ()()3基于用户期望的产品设计方案质量评价方法以K A N O质量因素划分为框架的指标体系,是产品设计 方案质量评价的基本蓝图,而构建既能适应其指标体系又能 满足其以用户需求为决策目标的评价方法,是完善综合评价 体系至关重要的一步.通过对各类研究成果的深入分析发现,产品设计方案质量评价的多目标、多准则特性决定该问题为 典型的多准则决策问题;再者,用户期望的模糊性与决策专家 的局限性也同样为其奠定了不定性的准则基调.为解决上述 问题,本文拓展了一种对该问题具有适应性的HF-MABAC 评价模型.3.1 犹豫模糊集(H e s i t a n t f u z z y s e t,HFS)自1965年,著名管理学家Z a d e h[l9]先生提出了模糊集的 概念以来,其为在不确定环境下进行研究的众多学者,提供了 模糊决策这一全新的研究方向.但伴随着日益繁杂的科学研 究,简单的模糊集已不足以支撑各种复杂多维的决策模型.为 此,一批杰出的学者提出了模糊集的多种拓展形式,其中包 括:犹豫模糊集[2〇]、2-17156型模糊集、区间模糊集[~以及直觉 模糊集等.通过对上述多种拓展形式的研究,笔者发现犹豫模 糊集对于企业软质量的评价问题上,具有相对较大的优势,主 要有以下几点原因:1)用户期望本身就是一种无法进行精确 度量的概念,且将其作为决策目标则更会增加其选择的难度.因此与传统的精确数值相比,犹豫模糊集既可以表达出更为最后,通过收回的调査问卷,整理出用户期望的准则指标 分类,剔除不在用户期望内的指标,形成以用户期望为导向的 产品设计方案质量评估指标体系(见表4).由于用户对待不 同类型质量因素的态度及重视程度的不同,本文根据KANO 模型中质量因素划分类型确定准则权重与指标权重.但不同 产品的产品特性不同,因此不能给出统一的标准,应根据实际 产品及消费者态度进行调整.不确定的目标内涵,又能够表达决策者主观的犹豫模糊性,更 具备实际应用的价值;2)与模糊集的其他形式相较,犹豫模 糊集既不需要如t y p e-2模糊集般归纳隶属函数,又不似直觉 模糊集与区间模糊集受到元素个数的限制,可以更加全面自 由的表达出用户对产品多方面的期望.下面给出犹豫模糊集 的定义及运算法则.定义1[20]•令X为一给定的集合,M= ,…,《…丨为表4产品设计方案质量评价指标体系T a b l e4 P r o d u c t d e s i g n s c h e m e q u a l i t y e v a l u a t i o n i n d e x s y s t e mK A N O需求类型指标指标描述效率产品设计方案是否能够高效的投人生产魅力质量因素方案修改成本产品设计方案的二次修改创新成本保障性产品设计方案能否保证实施使用寿命产品设计方案是否能保持长时间的创新性材料产品设计方案所需的材料是否易得—维质量因素复杂性产品设计方案是否简单易行操作性按照方案设计出的产品时候易于操作质量按照设计方案生产的产品是否有较高的质量必备质量因素可靠性按照设计方案生产的产品是否有较强的可靠性使用成本产品设计方案的实施成本是否合理工艺按照设计方案生产的产品是否有精良的工艺无差异质量因素结构产品设计方案的结构是否合理回收利用率按照设计方案生产的产品是否有回收利用的价值逆向质量因素维修成本按照设计方案生产的产品是否维修成本过高给定集合的W个隶属函数,则有关隶属函数w的犹豫模糊 集,即定义为:H/n = { <x,hM(x)> I jce X} (1)其中,心U) = 是值域位于[0,1]上的一个集合,表示集合中X的元素;c属于集合的若干种可能隶属度为表述方便,把有限论域X上的全体犹豫模糊集记为,称为A的犹豫模糊元,简写为定义2[20].对于任意的3个犹豫模糊元和\,它们的运算法则如下(其中0为一个常数>:1)*, n/i2=W|min('yl ,y2) ly, e A, ,y2 e A j | ;彭定洪等:用户需求导向的产品设计方案质量评价模型221 1期2) /i,\J h2 =//|max(y, ,y2)l y,e/i,,y2e/i21 ;3) 6>/z= //|l -(1 ,(9>0;A)he = H\y e \ y E.h\,0>〇;5) hc =H\ \ -y\y &h \;=//|(y i +y2U2)丨7丨e/i丨,y2;l)h x®h2=H\y x y2\yx g/i, ,y2g/i21.定义3[22].设乂 ,/i,是任意两个犹豫模糊元,则犹豫模糊 元圮,心之间的距离公式计算为:伙a)=i -73^^) +其中#<表示犹豫模糊元中元素的数量圮,#&表示犹豫模糊元中元素的数量圮.定义4[23].定义函数©:[0,丨广—[0,1],在参考集合中 犹豫模糊集X由i V个犹豫模糊元组成(W= |,/«2,…,乂丨是在集合X上的一个犹豫模糊集),在集合中的一个扩展函数 0在犹豫模糊集W中对每一个;c都有:^h(x) = U y e|A j(X)x...x a^j c)! {^(y)} (3)定义5[M].设A U)为犹豫模糊元,则称八/!(;〇) =为的得分函数,其中m u)表示中包含的元素个数.给定两个犹豫模糊元圮和\,如果4圮)>4/>4),则 >圮;如果5(0 =■*(&),则 *« =*»•3.2改进的犹豫模糊M A B A C评价法在如TOPSIS[23]及VIKOTR这一类以参考解为导向的多 准则决策方法中,大都以极端的正负理想解作为参考的期望 标准.但诸如此类的期望解却无法适应用户导向的方案质量 评价问题,这就需要构建一种既可以保留用户期望为核心的 标准,又要做到不违背多准则评价的方向的方法.因而,本文 以PamU6a r[261于2015年提出的多属性边界逼近区域比较(M A B A C)法作为评价框架,该方法不仅是一种满足多准则 决策要求的评价方法,而且其作为参考的期望解是体现平均 思想的几何均解.多属性边界逼近区域比较法以全部可行解 作为评价选择区域,以均解作为基本衡量期望,但也同样包含 超出满意度的区域范围以契合K A N O质量模型中的魅力质 量因素;而低于用户期望的区域则体现了必备质量因素的思 想.再者,以均解作为衡量标准,一方面可以避免极端的用户 期望无法实现的问题;另一方面也能够借M A B A C法区域划 分的优势体现多种方案的不同特性.该方法自提出以来得到 了众多学者的广泛研究,Sun[27]利用B o n f e r r o n i均值对其进 行改进,减少标准之间固有的相互依赖性的影响,并应用在中 国医患研究的领域内;L i a n g[28]提出了一种与TFNs相对应的 扩展多属性边界区域比较法,对岩爆风险进行评估;彭定 洪[29]利用拓展情景模糊M A B A C法对我国可能再生能源进 行了选择.上述研究虽然都对该方法进行了研究,但一则没能 提出一种适用于犹豫模糊领域的拓展形式,二则针对于该模 型中的标准化形式,也没能改进出可以避免极端数值影响的 形式.接下来就本文所构建的方法进行介绍:首先,建立初始决策矩阵X.设有备选项人.〇_= 1,2,…,m),评价指标q+(y_= 1,2,…,n).\是第;个备选项的第j个 指标值,其中,\ = 丨,关于备选项的初始决策矩阵即为:C\C2C n4又丨1X12•••a2x =X2l X22i2nL…x mn_C,C2c…'U r.inly|u T6i|2lrt…u T6ilJ r l'u r Ei2i Irl u T ti22l y l…u r“J y丨-U r…其中,m是指备选项总数,《是指评价指标总数.第2步进行标准化处理,传统的标准化方法是通过与最 大值最小值的差距而进行的归一化计算,但是其也同样存在 极端值产生的误差影响,且M A B A C模型自身也未能发展出 完善的犹豫模糊形式.受KU mar[30]中优劣测度的启发,所提 出的标准化方式是利用均值与标准差进行计算以消除极端值 的影响,具体形式为:其中,《=i!,w[i!(w]T该算法与均值进行衡量避免了极端值的影响,与标准差 相比确保了归一化的稳定.为发展出一种适合于犹豫模糊元 的优劣测度标准化形式,现对其进行拓展改进:—⑶其中,^表示评价值^中的中值,使用中值替代均值既 能保留样本平均性,又能避免极端值对均值的影响.为简便犹 豫模糊元的标准差算法,选择用最大值最小值与中值的乘积 后开方进行改进,既可以从距离和的角度衡量其稳定性,又简 化了由于模糊元个数不定带来的繁琐过程.为确定犹豫模糊 元的中值,通过定义5进行犹豫模糊元的排序.利用式(5)得 到了标准化后的犹豫模糊矩阵Kc x c2…Cn兄2…ym~Y=>21》22 (2)Am L…y n u,-c,Q Cn'u y^n l r l U y e'y\21y1…U…J y l-u r e h i i r l•«•U rehn^lAm.u r6>m i I r t u y“m2丨7 1…JyOmn17 i-第3步计算加权决策矩阵Z.设%是指标C;(y = 1,2,…,m)的权重,则备选项A,〇= 1,2,•••,;〇的第7个指标的 指标加权值为&= % • (h+1).这一步中所给出的指标权222小型微型计算机系统2021 年域矩阵的距离矩阵备选项与边界逼近区域的距离矩阵Z),由备选项的加权决策矩阵Z中的指标加权值‘与边界逼近区域矩阵G中相应指标下的边界逼近区域值&的差值组成.D=Z-G:C2…Cn■-8i:12_》2…Z l n- g…"a2^21 _8y;22_》2…^2n - 8nAm-Zml~8i…^mn8 n-C,c2•••Cn^11^12 ^21^22du d2…da:-^m<^m2…其中,f表示为元素全为零的犹豫模糊元,距离测度A表 示为:d C z y-g j), d(Z i j-h') >d(gj-h')〇,d(i r h X gj-h.)-d(gj - z,j),dCz,j-h")<d(gj-A* )备选项次(/= 1,2,…,/〇可能属于边界逼近区域G,上逼 近区域CT或下逼近区域G_,即A,+e |G V G+V G_丨.属于 上逼近区域C T的备选项A,是理想备选项反之,属于下 逼近区域G_的备选项A,+是非理想备选项/T.同样,该方法 中的边界区域划分也与K A N O模型具有相通之处,关系图见 图2所示.备选项的归属区域(0,0+或0_)按以下情形决定:G+if>〇G if=0G~if d,j<〇所以,为了使备选项A,.成为最优选项,则此备选项的指 标要尽可能多的属于上逼近区域,即需要尽可能多的A>0.最后,进行备选产品设计方案的排序与择优.为进一步体 现用户期望在该评价方法中的重要性,对原方法中单纯的贴 近度分量累加的形式进行了拓展,采用用户对指标的期望权 重与贴近度分量的加权计算,得出各备选方案的贴近度.贴近 系数CC,+ ( the closen ess c o e ffic ie n t)的值越大,备选项越优.用户平均$望重%是由决策专家根据第1部分K A N O模型中,质量因素 对不同消费群体的重要性程度给出的,该权重不仅可以在保留专家经验的基础上充分体现用户期望偏好,更能体现以用 户为导向的评价思想,加权决策矩阵Z为:c丨Q…c,Q… c…^12••A,'U y e(y1I + !H)i 1 -~y)W l1U re(>i2+ll|) I1 -C 1 -y)W2\…⑴)11-(1-7广|-^21in** iln_^2U ye(hi+ H I) 11__r)W,1A m-Zm2^m n-A m■u”、丨+ m)U-(1-y广M u rE(y^+m)I1 -(!-r)^!…U T e(w l l|)|l-(l-y)-l.第4步确定用户期望参考解,这一步中确定的参考解为 企业可达到的平均用户期望,边界用户期望矩阵G表示为:G -[容丨,容2,.",5n]lxuIs 1/ = 1i = 1求得边界矩阵后,接下来就是计算各备选方案与边界区贴近系数的计算公式如下:CC,= X w j d u»*= 1, •(6)A+用户最高期望用户满意度逐渐增^X/用户满意度逐渐降A•用户最低期望图2边界逼近区域关系图Fig. 2 Boundary approxim ation area relationship diagram4算例实证4.1问题背景与数据来源为验证上述模型的有效性和优越性,现根据具体算例进 行验证.随着我国电子产品行业的飞速发展与人均电子产品 持有率的逐年攀升,电子产品已经在方方面面融人我们的生 活,其中最必不可少的就是智能手机和计算机设备,本文以某 智能电子企业的高端计算机业务为背景进行产品设计方案质 量评估.高端计算机设备的消费群体主要为从事精密计算的 工作人员或研究型企业,由于其具有针对性的消费特征以及 产品特性,所以对于该产品的设计方案更加需要时刻关注消 费群体的期望与产品技术的需求,也就更适用于以用户需求 为导向的综合评价体系.现该企业组建由5名专家构成的决 策小组,其中专家A与B为产品设计部门内由于多年设计经 验的设计师和管理人员;专家C为多年从事评价领域理论研 究的专家学者;专家D与E为主要消费群体中的用户代表. 4.2评价步骤通过上文中构建的指标体系对次,A2,…,A55个设计方 案进行排序择优,得到初始决策矩阵X.决策小组根据消费群表5 K A N O质量因素准则权重表Table 5 K A N O quality factor criteria w eight table准则指标C3Q Q Q C7权重0.060.060.060.070.060.060.07准则指标c9Cl〇C n c12c13c14权重0.070. 100. 100.100.060.060.07体对不同K A N O质量因素的期望偏好,给出专家权重(见 表5).。

萨丕尔-沃尔夫假说

萨丕尔-沃尔夫假说

萨丕尔-沃尔夫假设主要内容美国人萨丕尔及其弟子沃尔夫提出的有关语言与思维关系的假设是这个领域里至今为止最具争议的理论。

沃尔夫首先提出,所有高层次的思维都倚赖于语言。

说得更明白一些,就是语言决定思维,这就是语言决定论这一强假设。

由于语言在很多方面都有不同,沃尔夫还认为,使用不同语言的人对世界的感受和体验也不同,也就是说与他们的语言背景有关,这就是语言相对论。

Linguistic relativity stems from a question about the relationship between language and thought, about whether one's language determines the way one thinks. This question has given birth to a wide array of research within a variety of different disciplines, especially anthropology, cognitive science, linguistics, and philosophy. Among the most popular and controversial theories in this area of scholarly work is the theory of linguistic relativity(also known as the Sapir–Whorf hypothesis). An often cited "strong version" of the claim, first given by Lenneberg in 1953 proposes that the structure of our language in some way determines the way we perceive the world. A weaker version of this claim posits that language structure influences the world view adopted by the speakers of a given language, but does not determine it.[1]由萨丕尔-沃尔夫假设的这种强假设可以得出这样的结论:根本没有真正的翻译,学习者也不可能学会另一种文化区的语言,除非他抛弃了他自己的思维模式,并习得说目的语的本族语者的思维模式。

符号象似性在英语词汇教学中的应用

符号象似性在英语词汇教学中的应用

在英语教学中,词汇教学是基本教学内容之一,直接影响学生的学习效果,而我国学生英语学不好的主要原因是记不住词汇。

本文主要探索象似性理论在英语词汇教学中的应用。

象似性观念起源于古希腊“唯名论”与“唯实论”之争。

最早提出象似性原则的是美国实用主义和符号学的创始人皮尔斯,他提出了“三元符号模式”。

在这个观点的基础上,海曼(1985)提出语言象似性的定义:若某一语言表达式具有象似的性質,则这一语言表达式在外形、长度、复杂性以及构成成分之间的各种相互关系上平行于这一表达式所编码的概念、经验或交际策略。

1983、1992、1997年国外召开过三次象似性专题研讨会,其中海曼的研究成果充分证实了语言具有象似性。

根据Householder统计显示,英语中完全任意的词汇很少,只占9%。

英语中大部分词是有理据性的,即这些词和所指的事物之间存在着某种特定的联系。

本文探讨的象似性理论在词汇教学方面的表现主要包括语音,形态,语义,词源。

一、语音象似性的词汇教学若单词发音和所指的现实事物之间有着一种自然的象似关系,则称语音象似性。

在英语中,拟声词(又可称为“象声词”)是最能体现语音象似性。

拟声词中主要包括大自然声音(猫叫声mew, miaow;鸭子的叫声quack)、重叠词及词组(如Coca-cola可口可乐,ping-pong乒乓,bye-bye拜拜)、音素组合(“sl-”开头的单词与滑有关,像slide滑动,滑行,slip滑落,溜走,“/m/”的读音常与女性相关,mother, mummy, miss, madam)。

在英语词汇教学中,教师可以引导学生利用上下文中已知的词来猜测未知的词义。

如,“Life is short. Tick tock,tick tock.”模仿时钟的滴答声,警告别人“人生苦短,光阴似箭”。

同时应多给学生讲解一些常用的字母组合的意思,让他们平时理解记忆并积累。

这样在学生遇到学习过的字母组合构成的单词时,可以容易推出其词义。

高效液相色谱法测定酱油中三氯蔗糖含量不确定度的评定

高效液相色谱法测定酱油中三氯蔗糖含量不确定度的评定

崔婷婷,祁伟,何文江,等. 高效液相色谱法测定酱油中三氯蔗糖含量不确定度的评定[J]. 食品工业科技,2024,45(7):270−275.doi: 10.13386/j.issn1002-0306.2023050252CUI Tingting, QI Wei, HE Wenjiang, et al. Evaluation of Uncertainty in Determination of Sucralose in Soy Sauce by High Performance Liquid Chromatography[J]. Science and Technology of Food Industry, 2024, 45(7): 270−275. (in Chinese with English abstract). doi:10.13386/j.issn1002-0306.2023050252· 分析检测 ·高效液相色谱法测定酱油中三氯蔗糖含量不确定度的评定崔婷婷1,祁 伟1, *,何文江1,张家琪2,黄青春1,*(1.中国地质调查局呼和浩特自然资源综合调查中心,内蒙古呼和浩特 010010;2.内蒙古自治区特种设备检验研究院乌兰察布分院,内蒙古乌兰察布 012000)摘 要:目的:建立一种高效液相色谱法测定酱油中三氯蔗糖的不确定度的评定方法。

方法:按照食品安全国家标准GB 22255-2014进行检测,依据国家计量技术规范JJF 1059.1-2012分析酱油中三氯蔗糖的含量,建立不确定度评定数学模型,分析测量过程中的不确定度因素,通过样品重复测定、标准溶液纯度、标准曲线、玻璃器具、称量过程、回收率、检测仪器对检测结果不确定度进行评定,并且进行计算。

结果:按置信区间为95%,酱油中三氯蔗糖含量为(0.048±0.007)g/kg ,k=2。

结论:建立了高效液相色谱法测定酱油中三氯蔗糖的不确定度的评定方法,最终确定酱油中三氯蔗糖的含量测定结果的不确定度来源主要有:三氯蔗糖标准溶液建立的标准曲线的拟合、回收率,明确检测酱油中三氯蔗糖含量过程中带来的各种不确定度评定因素的占比。

犹豫模糊多属性决策的折中比值法

犹豫模糊多属性决策的折中比值法

犹豫模糊多属性决策的折中比值法李兰平【摘要】针对属性值为犹豫模糊元的多属性决策问题,提出了一种新的多属性决策方法——折中比值法。

折中比值法方法是通过定义能同时反映出备选方案尽可能地接近正理想点又同时尽可能地远离负理想点,并且把决策者的主观态度也包含在内的排序指标对备选方案进行排序和择优。

最后,通过应用实例说明了所提出的方法的有效性和可行性。

%For the multiple attribute decision making problem with attribute value expressed as hesitant fuzzy elements, a new multi-attribute decision making method, and named compromise ratio method is proposed. Compromise ratio method is developed by introducing the ranking index based on the concept that the chosen alternative should be as aloes as possible to the ideal solution and as far away from the negative ideal solution as possible simultaneously, while the decision maker's subjective attitude are also included. Finally, a practical example is presented to demonstrate the effectiveness and feasibility of the proposed method.【期刊名称】《齐齐哈尔大学学报(自然科学版)》【年(卷),期】2015(000)001【总页数】4页(P57-60)【关键词】犹豫模糊集;多属性决策;折中比值法;理想点【作者】李兰平【作者单位】湖南财政经济学院基础课部,长沙 410205【正文语种】中文【中图分类】C934自Zadeh提出模糊集[1]以来,模糊集理论已经被应用到各个领域。

翻译研究:从规范走向描写

翻译研究:从规范走向描写

Origin 2
• 接下来是准备期。到了60 年代,捷克和斯洛 伐克的一些研究者,如列维(JǐvíLevy) 、米科 (FrantiÍek Miko) 和波波维奇(Anton Popovic) ,响应麦克法兰的号召,共同努力探 寻新的方法使翻译研究系统化。他们所提 出的理论构架与后来多元系统理论有很多 相似之处。
Disadvantages of Prescriptive
studies
• 它总认为自己的标准是唯一正确的,并想把它的应用范围 推广到天下所有的翻译上去(如奈达之于动态对等论), 或者总有别的什么人想这样去做(如后人之于严复的信达 雅论)。然而它却没有看到或是不愿意承认世界上实际存 在着各种各样的翻译,其中有符合这种规范性标准的,但 是,同时也有不少翻译是不符合这种标准或者不完全符合 这种标准的。规范性翻译标准的另一个不足是,它把自己 局限在语言这个狭小的圈子里,把翻译仅仅看作是一种语 言艺术。而不太考虑文化的大环境。即使涉及到了文化, 最终的目标还是落在了具体的翻译技巧上,过分专注于翻 译技巧的钻研。也许正是由于这个原因,规范性的翻译研 究总是脱离不开直译、意译之争。
Example 1
• 爱尔兰作家乔伊斯的作品《尤利西斯》出 了两个中译本。我们的评论家,从规范的 角度出发,分析哪个是直译,哪个是意译, 哪个好哪个不好。而描写翻译学派却说, 出了两个译本是件大好事,充分反映出中 国真的开放了。
Achievement
• 描写学派的功劳在于给予各种各样的翻译以正确的定位。 避免了由于规范性的翻译标准而造成的概念上的困惑以及 无谓而又无止无休的争论。描写翻译学派对翻译有两个基 本的认识。一个是翻译的“不完整性” (partiality ), 就是说你不可能把原文百分之百统统翻到译文中去。在这 个基础上导出描写学派的另一个认识,即任何翻译都经过 了译者程度不等的摆布(manipulation),因此同一个原 文会在不同的译者手里,会在不同的的时代出现许多不同 的译文。这儿要特别强调的是,描写翻译学派并不想完全 推翻传统的规范性的翻译标准。他们是想解构 (deconstruct) 传统的翻译理论, 也就是对传统的翻译 理论当中的一些不尽完善的地方提出批评,而不是想摧毁 (destroy)传统的翻译理论。

国内外“名义无水矿物”研究现状

国内外“名义无水矿物”研究现状

Value Engineering• 191 •国内外“名义无水矿物”研究现状The Research about "Nominally Anhydrous Minerals" at Home and Abroad范爱玲F A N A i-l i n g(昆明理工大学,昆明650000)(Kunming University of Science and Technology,Kunming650000, China)摘要:对名义上无水矿物(NAMs)中结构水的研究是近年来国内外地学界的热点之一,虽然这些矿物中结构水的含量普遍很低,但 由于这些矿物本身具有庞大的体积和质量,可能构成了地球深部最重要的储水库。

这些水可以影响矿物和岩石的许多物理化学性质,并对地球深部很多地质作用有重要的制约作用。

Abstract:The study of nominally anhydrous minerals(NAMs)is one of the hotspots whether in domestic or foreign countries in recent years,although water content in these minerals are generally low,however,a s the mineral itself has large volume and quality,they may constitute the most important reservoir in deep earth.The water can influence minerals and rocks in many physical and chemical properties, and also have an important influence on many geological processes.关键词:名义无水矿物;结构水;深部地质作用Key words:NAMs;constitution water;geological processes中图分类号:P342+.1 文献标识码:A1国外研究现状国外的某些学者在上世纪的七、八十年代就开始利用红外光谱技术来观察矿物中的结构水。

基层社会治理创新如何获得更高绩效?

基层社会治理创新如何获得更高绩效?

湖南农业大学学报(社会科学版)2023年12月第24卷第6期Journal of Hunan Agricultural University(Social Sciences), Dec. 2023, 24(6):71–79DOI: 10.13331/ki.jhau(ss).2023.06.008基层社会治理创新如何获得更高绩效?宋娜娜1,徐龙顺2*,陈贤胜1(1.上海财经大学公共经济与管理学院,上海200433;2.江苏师范大学公共管理与社会学院,江苏徐州221116)摘要:如何提升基层社会治理创新绩效是政府和学界共同关注的热点问题。

文章选取33个基层社会治理创新案例,基于TOE理论框架,运用模糊集定性比较分析方法(fsQCA)从技术、组织和环境3个维度分析多因素对基层社会治理创新绩效的“联合效应”和“互动关系”。

研究发现,内部环境开放性构成了基层社会治理高创新绩效的必要条件;影响基层社会治理创新绩效的条件组态可以归纳为环境主导下的技术-组织驱动型、技术-组织主导下的环境驱动型、组织-环境主导下的技术驱动型、技术-组织-环境复合驱动型等4种模式;实现基层社会治理高创新绩效组态路径之间的条件变量存在互补或替代关系。

关键词:基层社会治理;创新绩效;TOE理论;模糊集定性比较分析中图分类号:D630 文献标志码:A 文章编号:1009–2013(2023)06–0071–09 How can grassroots social governance innovation achieve higher performance?SONG Nana1, XU Longshun2*, CHEN Xiansheng1(1.School of Public Economics and Management, Shanghai University of Finance and Economics, Shanghai 200433,China; 2.School of Public Administration and Society, Jiangsu Normal University, Xuzhou 221116, China)Abstract: How to improve the innovation performance of grassroots social governance is a hot issue in government and academia. Based on TOE theoretical framework, this paper selects 33 samples of grassroots social governance innovation, and uses fuzzy set qualitative comparative analysis(fsQCA) to analyze the “joint effect” and “interactive relationship” of multiple factors on grassroots social governance innovation performance from three di mensions: technology, organization and environment. The results show that the openness of internal environment is the necessary condition for the high innovation performance of grassroots social governance; the conditional configuration affecting the innovation performance of grassroots social governance can be summarized into four modes including technology and organization-driven under environment, environment-driven under technology-organization, technology-driven under organization-environment, technology-driven under organization-environment, and technology-organization-environment driven; the conditional variables between the configuration paths to achieve high innovation performance of grassroots social governance are complementary or substitutive.Keywords: grassroots social governance; innovation performance; TOE theory; fuzzy set qualitative comparative analysis一、问题的提出党的十八届三中全会首次从国家层面提出“社会管理”向“社会治理”的嬗变,为推进治理体系和治理能力现代化提供了制度遵循。

优序关系(超过关系)

优序关系(超过关系)
S(ak)之差小于qj时,则认为两个方案在准则j上是无差异的 ➢ Pj表示在准则j上,方案ai严格优于方案ak的阈值 ➢ Vj表示否决阈值,即在准则j上,方案评价值S(ai)劣于S(ak)达到或超过vj时,
就不再承认方案ai在总体上优于ak
16
ELECTRE III(文献[6])
➢ 步骤一:构造优序关系 一致性指数
17
ELECTRE III(文献[6])
➢ 步骤一:构造优序关系 非一致性指数
18
ELECTRE III(文献[6])
➢ 步骤二:计算一致性指数 一致性指数/综合一致性指数
19
ELECTRE III(文献[6])
➢ 步骤三:计算置信度指数 非一致性指数
20
ELECTRE 方法比较
➢ ELECTRE I和ELECTRE II方法:对于准则j而言,无论方案准则值S(ai)>S(ak) 的差值有多大,都认为ai优于ak,忽视了方案之间的差值大小的信息
扩展占优关系
37
➢ 占优向量
扩展占优关系
38
➢ 占优向量
扩展占优关系
39
➢ 占优向量
扩展占优关系
40
➢ 占优向量
扩展占优关系
41
个人感想
➢ 文献阅读:整块的时间 ➢ 写文章:从模仿开始,有想法了尽快付诸行动 ➢ 数据处理:学习Matlab、Maple等数据处理软件 ➢ 论文格式调整:定义样式生成模版、使用文献管理软件
➢ 综合一致性/非一致性指数
32
QUALIFLEX(文献[10])
P1=(a1,a2,a3)、P2=(a1,a3,a2)、P3=(a2,a1,a3)、P4=(a2,a3,a1)、P5=(a3,a1,a2)、P6=(a3,a2,a1)

概率语言术语集的相关理论及其在多属性决策中的应用

概率语言术语集的相关理论及其在多属性决策中的应用
关键词: 概率语言术语集; 语言术语集; 规范化方法; 运算法则; 多属性决策
II

Theory of probabilistic linguistic term set and its application in multi-attribute decision making
Abstract
The probabilistic linguistic term set, as a new tool for describing uncertain decision information, can better reflect the degree of hesitation of decision makers, linguistic variables, and the relative importance of each linguistic variable in actual decision making problems, and its theory and its applications in the fields of modern medicine, cluster analysis, and edge computing have attracted extensive attention from scholars at home and abroad. This article is driven by practical decision making problems and studies related theories of probabilistic linguistic term sets and their applications in multi-attribute decision making problems, including the normalization of incomplete probabilistic linguistic term sets, operations of the probabilistic linguistic term sets, the probabilistic linguistic E-VIKOR method, the probabilistic linguistic two-step method and the probabilistic linguistic double interactive alternative reduction approach proposed based on the actual decision making problems. The specific work is divided into the following four parts:

《菜根谭》英译中结构对称性的处理

《菜根谭》英译中结构对称性的处理

《菜根谭》英译中结构对称性的处理【摘要】《菜根谭》作为明末清初清言的代表作之一,在语言及句式上呈现出鲜明的艺术性特点。

本文从其英译中差异出发,探讨了不同译文对其结构对称性的处理,旨在典籍英译的策略上有所启发或收获。

【关键词】《菜根谭》;结构的对称性;翻译主体《菜根谭》文体上的一大特点为亦诗亦文,具有明显的艺术性特征,主要表现为以下几个方面:1)诗化语言的运用;2)结构的对称性;3)生活美学意识及幻灭感的体现。

本文着重探讨第二个特点,即结构的对称性,旨在阐释英译文对此处理的差异及其缘由,以期在典籍英译的策略上有所启发。

结构的对称性在译文中的处理主要体现在两方面,即对原文中省略部分的再现和对原文句式结构的重组上。

《菜根谭》句式上的一大特点为对仗的运用,使结构呈现很强的对称性,这一点与中国古文的骈文很类似,即在结构上呈现四六四六、六四六四、四四、六六、四四四四的格式,例如“鸟语│虫声(四),总是│传心之诀(六);花英│草色(四),无非│见道之文(六)”;而每一小句都有其独特的节奏感,体现了语言的音乐性特点,并且每句相对应部分的字数都一样,例如“鸟语-花英”,“虫声-草色”,“总是-无非” 及“传心之诀-见道之文”。

对仗加上口语化语言的使用,使读者读起来更加朗朗上口。

再者,原文中的暗含之意也给译者在理解上造成了很大的困难。

翻译从来都不是在真空中进行的。

译者的前理解会对其理解造成很大的正影响及负影响。

印欧语系中常见的主谓结构在中国古文并不常见,尤其在像《菜根谭》这样的清言体文章中,而句子的意义在一定程度上取决于句子的语序及语境。

原文中的每一条在语义上并没有很紧密的联系,但它们都享有一个既定的共同主题。

因而,译者应仔细分析句子内部的逻辑及语法结构以便更好地传达原文的意义,同时保留原文的句式特点。

首先,就是译文对原文省略部分的再现上。

根据乔姆斯基的转换生成语法,句子的表述为表层结构是由深层结构转换而来的,而各种不同语言的深层结构基本上是一样的。

Hesitant Fuzzy Linguistic Term Sets for Decision Making

Hesitant Fuzzy Linguistic Term Sets for Decision Making

Hesitant Fuzzy Linguistic Term Sets for Decision MakingRosa M.Rodr´ıguez,Luis Mart´ınez,and Francisco Herrera,Member,IEEEAbstract—Dealing with uncertainty is always a challenging problem,and different tools have been proposed to deal with it. Recently,a new model that is based on hesitant fuzzy sets has been presented to manage situations in which experts hesitate between several values to assess an indicator,alternative,variable,etc.Hes-itant fuzzy sets suit the modeling of quantitative settings;however, similar situations may occur in qualitative settings so that experts think of several possible linguistic values or richer expressions than a single term for an indicator,alternative,variable,etc.In this pa-per,the concept of a hesitant fuzzy linguistic term set is introduced to provide a linguistic and computational basis to increase the rich-ness of linguistic elicitation based on the fuzzy linguistic approach and the use of context-free grammars by using comparative terms. Then,a multicriteria linguistic decision-making model is presented in which experts provide their assessments by eliciting linguistic ex-pressions.This decision model manages such linguistic expressions by means of its representation using hesitant fuzzy linguistic term sets.Index Terms—Context-free grammar,fuzzy linguistic approach, hesitant fuzzy sets,linguistic decision making,linguistic informa-tion.I.I NTRODUCTIONP ROBLEMS that are defined under uncertain conditions are common in real-world decision-making problems but are quite challenging because of the difficulty of modeling and cop-ing with such uncertainty.Different tools have been used to solve problems,such as probability;however,in many situations,un-certainty is not probabilistic in nature but,rather,imprecise or vague.Hence,other models,such as fuzzy logic and fuzzy sets theory[6],[39],have been successfully applied to handle im-perfect,vague,and imprecise information[26].Nevertheless,to handle vague and imprecise information whereby two or more sources of vagueness appear simultaneously,the modeling tools of ordinary fuzzy sets are limited.For this reason,different gen-eralizations and extensions of fuzzy sets have been introduced.Manuscript received January31,2011;revised April27,2011and August2,2011;accepted August19,2011.Date of publication September 29,2011;date of current version February7,2012.This work was supported in part under the Research Project TIN-2009-08286and P08-TIC-3548and by the European fund for regional development.R.M.Rodr´ıguez and L.Mart´ınez are with the Department of Computer Science,University of Ja´e n,Ja´e n23071,Spain(e-mail:rmrodrig@ujaen.es; martin@ujaen.es).F.Herrera is with the Department of Computer Science and Artifi-cial Intelligence,University of Granada,Granada18071,Spain(e-mail: herrera@decsai.ugr.es).Digital Object Identifier10.1109/TFUZZ.2011.21700761)Type-2fuzzy sets[6],[24]and type-n fuzzy sets[6]thatincorporate uncertainty about the membership function in their definition.2)Nonstationary fuzzy sets[8]that introduce into the mem-bership functions a connection that expresses a slight vari-ation in the membership function.3)Intuitionistic fuzzy sets[1]that extend fuzzy sets by an ad-ditional degree,which is called the degree of uncertainty.4)Fuzzy multisets[37]based on multisets that allow repeatedelements in the set.5)Hesitant fuzzy sets(HFS)that have been recently intro-duced in[32]provide a very interesting extension of fuzzy sets.They try to manage those situations,where a set of values are possible in the definition process of the mem-bership of an element.The previous fuzzy tools suit problems that are defined as quantitative situations,but uncertainty is often because of the vagueness of meanings that are used by experts in problems whose nature is rather qualitative.In such situations,the fuzzy linguistic approach[40]–[42]has provided very good results in manyfields and applications[2],[13],[18],[20],[27],[36]. However,in a similar way to the fuzzy sets,the use of the fuzzy linguistic approach presented some limitations,mainly regarding information modeling and computational processes, which are called processes of computing with words(CW)[9], [15],[21],[23].Different linguistic models have tried to extend and improve the fuzzy linguistic approach from both points of view.1)The linguistic model based on type-2fuzzy sets represen-tation[22],[33],[43]that represents the semantics of the linguistic terms by type-2membership functions and using interval type-2fuzzy sets for CW.2)The linguistic2-tuple model[12]that adds a parameterto the linguistic representation that is known as symbolic translation,which keeps the accuracy in the processes of CW.3)The proportional2-tuple model[34]that generalizes andextends the2-tuple model by using two linguistic terms with their proportion to model the information and per-forms the processes of CW more accurately.4)Other extensions that are based on previous ones intro-duced in[5]and[17].By the revision of the fuzzy linguistic approach and the dif-ferent linguistic extensions and generalizations,it is observed that the modeling of linguistic information is still quite lim-ited,mainly because it is based on the elicitation of single and very simple terms that should encompass and express the infor-mation provided by the experts regarding a linguistic variable.1063-6706/$31.00©2012IEEEHowever,in different situations,the experts that are involved in the problems defined under uncertainty cannot easily provide a single term as an expression of his/her knowledge,because he/she is thinking of several terms at the same time or looking for a more complex linguistic term that is not usually defined in the linguistic term set.Therefore,we work with a view to overcome such limitations, taking into account the idea under the concept of HFS introduced in[32]to deal with several values in a membership function in a quantitative setting.In this paper,we propose the concept of hesitant fuzzy linguistic term set(HFLTS),based on the fuzzy linguistic approach,that will serve as the basis of increasing the flexibility of the elicitation of linguistic information by means of linguistic expressions.Additionally,different computational functions and properties of HFLTS are introduced,and we then present how they can be used to improve the elicitation of lin-guistic information by using the fuzzy linguistic approach and context-free grammars.This is very important because it allows us to use different expressions to represent decision makers’knowledge/preferences in decision making.In order to answer the question:How is the concept of HFLTS and its use in decision making justified?We present a multicriteria linguistic decision-making model in which experts provide their assessments by means of linguis-tic expressions based on comparative terms close to the expres-sions used by human beings.This decision model manages the linguistic expressions that are represented by HFLTS.We pro-pose the use of two symbolic aggregation operators that allow us to obtain a linguistic interval,which is associated with each alternative,and an exploitation process based on the application of the nondominance choice degree to a preference relation that is obtained from the previous linguistic intervals.We are only aware of two papers on linguistic decision making that use linguistic expressions instead of single terms[19],[30]. In[30],the authors presented a linguistic model that dealt with linguistic expressions generated by applying logical connec-tives to the linguistic terms.In[19],the authors introduced the concepts of determinacy and consistency of linguistic terms in multicriteria decision-making problems and presented a model based on a fuzzy set in which decision makers could provide their assessments by using several linguistic terms and the relia-bility degree of each term.These proposals are not very close to human beings’cognitive processes and they are simpler than the model proposed in this paper,that uses linguistic expressions based on comparative terms.The paper is organized as follows.In Section II,we briefly re-view some preliminary concepts that will be used in the HFLTS proposal.In Section III,we introduce the concept of HFLTS and several basic properties and operations to carry out the pro-cesses of CW.In Section IV,we present the use of HFLTS to facilitate and increaseflexibility to elicit linguistic information. In Section V,we present a multicriteria linguistic decision-making model and define two symbolic aggregation operators to accomplish the processes of CW by using linguistic intervals. An illustrative example is also introduced in this section.In Section VI,we make some concluding remarks and suggestfu-Fig.1.Set of seven terms with its semantics.ture research in this area.Appendix A contains a brief review of several necessary concepts to compare HFLTS,and Appendix B contains some definitions to build a preference relation between numeric intervals.II.P RELIMINARIESDue to the fact that our proposal is based on the fuzzy linguis-tic approach[40]–[42]and HFS[32],in this section,we review their main concepts,necessary to understand the proposal of HFLTS and its use.A.Fuzzy Linguistic ApproachIn many real decision situations,the use of linguistic infor-mation is suitable and straightforward because of the nature of different aspects of the problem.In such situations,one com-mon approach to model the linguistic information is the fuzzy linguistic approach[40]–[42]that uses the fuzzy sets theory[39] to manage the uncertainty and model the information.In[40]–[42],Zadeh introduced the concept of linguistic vari-able as“a variable whose values are not numbers but words or sentences in a natural or artificial language.”A linguistic value is less precise than a number,but it is closer to human cognitive processes that are used to successfully solve problems dealing with uncertainty.A linguistic variable is formally defined as follows.Definition1:[40].A linguistic variable is characterized by a quintuple(H,T(H),U,G,M)in which H is the name of the variable;T(H)(or simply T)denotes the term set of H,i.e.,the set of names of linguistic values of H,with each value being a fuzzy variable that is denoted generically by X and ranging across a universe of discourse U,which is associated with the base variable u;G is a syntactic rule(which usually takes the form of a grammar)for the generation of the names of values of H;and M is a semantic rule for associating its meaning with each H,M(X),which is a fuzzy subset of U.To deal with linguistic variables,it is necessary to choose the linguistic descriptors for the term set and their semantics.Fig.1 shows a linguistic term set with the syntax and semantics of their terms.There are different approaches to selecting the linguistic descriptors and different ways to define their semantics[38], [40]–[42].The selection of the linguistic descriptors can be per-formed by means of the following.RODR´IGUEZ et al.:HESITANT FUZZY LINGUISTIC TERM SETS FOR DECISION MAKING1111)An ordered structure approach:This defines the linguisticterm set by means of an ordered structure providing the term set that is distributed on a scale at which a total order has been defined[10],[38].For example,a set of seven terms,S,could be given as follows:S={s0:nothing,s1:very low,s2:low,s3:medium s4:high,s5:very high,s6:perfect}.In these cases,the existence of the following is usually required.a)A negation operator Neg(s i)=s j so that j=g−i(g+1is the granularity of the term set).b)A maximization operator:Max(s i,s j)=s i if s i≥s j.c)A minimization operator:Min(s i,s j)=s i if s i≤s j.2)A context-free grammar approach:This defines the lin-guistic term set by means of a context-free grammar G so that the linguistic terms are the sentences that are generated by G[3],[4],[40]–[42].A grammar G is a 4-tuple(V N,V T,I,P),where V N is the set of nonter-minal symbols,V T is the set of terminals’symbols,I is the starting symbol,and P is the production rules that are defined in an extended Backus–Naur form[4].Among the terminal symbols of G,we canfind pri-mary terms(e.g.,low,medium,high),hedges(e.g.,not, much,very),relations(e.g.,lower than,higher than), conjunctions(e.g.,and,but),and disjunctions(e.g.,or).Thus,choosing I as any nonterminal symbol and us-ing P could be generated linguistic expressions,such as, {lower than medium,greater than high,...}.The definition of their semantics can be accomplished as in[38]and[40]–[42]as follows.1)Semantics based on membership functions and a semanticrule:This approach assumes that the meaning of each linguistic term is given by means of a fuzzy subset that is defined in the interval[0,1],which is described by membership functions[4].This semantic approach is used when the linguistic descriptors are generated by means ofa context-free grammar.Thus,it contains two elements:a)the primary fuzzy sets that are associated with the primary linguistic terms and b)a semantic rule M that provides the fuzzy sets of the nonprimary linguistic terms[40]–[42].2)Semantics based on an ordered structure of the linguisticterm set:It introduces the semantics from the structure that is defined over the linguistic term set.Therefore,the users provide their assessments by using an ordered linguistic term set[31],[38].The distribution of a linguistic term set on a scale[0,1]can be distributed symmetrically[38]or nonsymmetrically[11],[31].3)Mixed semantics:This assumes elements from the afore-mentioned semantic approaches.B.Hesitant Fuzzy SetsIn[32],the author introduced a new extension for fuzzy sets to manage those situations in which several values are possible for the definition of a membership function of a fuzzy set.Although this situation might be modeled by fuzzy multisets,they are not completely adequate for these situations.An HFS is defined in terms of a function that returns a set of membership values for each element in the domain[32].Definition2:Let X be a reference set,an HFS on X is a function h that returns a subset of values in[0,1]:h:X→{[0,1]}.Therefore,given a set of fuzzy sets an HFS is defined as the union of their membership functions.Definition3:Let M={μ1,μ2,...,μn}be a set of n mem-bership functions.The HFS that is associated with M,h M,is defined ash M:M→{[0,1]}h M(x)=μ∈M{μ(x)}.Some basic operations with the HFS were defined[32]as follows.Definition4:Given an HFS h,its lower and upper bounds areh−(x)=min h(x)h+(x)=max h(x).Definition5:Let h be an HFS,its complement is defined ash c(x)=γ∈h(x){1−γ}.Proposition1:[32].The complement is involutive.(h c)c=h.Definition6:Let h1and h2be two HFSs,their union is defined as(h1∪h2)(x)={h∈(h1(x)∪h2(x))/h≥max(h−1,h−2)}. Definition7:Let h1and h2be two HFS,their intersection is defined as(h1∩h2)(x)={h∈(h1(x)∩h2(x))/h≤min(h+1,h+2)}. Definition8:Let h be an HFS,the envelope of h,A env(h),is defined asA env(h)={x,μA(x),νA(x)}with A env(h)being the intuitionistic fuzzy set[1]of h,andμand v are,respectively,defined asμA(x)=h−(x)andv A(x)=1−h+(x).III.H ESITANT F UZZY L INGUISTIC T ERM S ETS Similarly to the situations that are described and managed by HFS in[32],where an expert may consider several values to define a membership function,in the qualitative setting,it may occur that experts hesitate among several values to assess112IEEE TRANSACTIONS ON FUZZY SYSTEMS,VOL.20,NO.1,FEBRUARY2012 a linguistic variable.The fuzzy linguistic approach is,however,aimed at statically assessing single linguistic terms for the lin-guistic variables.Hence,it is clear that,when experts hesitateabout several values for a linguistic variable,the fuzzy linguisticapproach is very limited.As pointed out in Section I,there aretwo proposals that use linguistic expressions instead of singleterms[19],[30].However,neither of them is adequate to fulfillthe necessities and requirements of experts in hesitant situations.Consequently,bearing in mind the idea under the HFS[32],in this section the concept of HFLTS,that is based on the fuzzylinguistic approach and the HFS is introduced.Some basic op-erations of HFLTS are then defined and some properties of suchoperations are revised.A.Concept and Basic OperationsDefinition9:Let S be a linguistic term set,S={s0,...,s g},an HFLTS,H S,is an orderedfinite subset of the consecutivelinguistic terms of S.Let S be a linguistic term set,S={s0,...,s g},we thendefine the empty HFLTS and the full HFLTS for a linguisticvariableϑas follows.1)empty HFLTS:H S(ϑ)={},2)full HFLTS:H S(ϑ)=S.Any other HFLTS is formed with at least one linguistic termin S.Example1:Let S be a linguistic term set,S={s0:nothing,s1:very low,s2:low,s3:medium,s4:high,s5:very high,s6:perfect},a different HFLTS might beH S(ϑ)={s1:very low,s2:low,s3:medium}H S(ϑ)={s3:medium,s4:high,s5:very highs6:perfect}.Once the concept of HFLTS has been defined,it is necessary tointroduce the computations and operations that can be performedon them.Let S be a linguistic term set,S={s0,...,s g},and H S,H1S,and H2S be the three HFLTS.Definition10:The upper bound H S+and lower bound H S−of the HFLTS H S are defined as1)H S+=max(s i)=s j,s i∈H S and s i≤s j∀i;2)H S−=min(s i)=s j,s i∈H S and s i≥s j∀i.Definition11:The complement of HFLTS,H S,is defined asH c S=S−H S={s i/s i∈S and s i/∈H S}.Proposition2:The complement of an HFLTS is involutive:(H c S)c=H S.Proof:By the use of the definition of a complement of anHFLTS(H c S)c=S−H c S=S−(S−H S)=H S.Definition12:The union between two HFLTS,H1S and H2S,is defined asH1S∪H2S={s i/s i∈H1S or s i∈H2S} and the result will be another HFLTS.Definition13:The intersection of two HFLTS,H1Sand H2S, isH1S∩H2S={s i/s i∈H1S and s i∈H2S}and the result of this operation is another HFLTS.The comparison of linguistic terms is necessary in many problems,and it has always been defined in different linguis-tic approaches.An HFLTS is a linguistic term subset,and the comparison among these elements is not simple.Therefore,we introduce the concept of envelope for an HFLTS in order to simplify these operations as shown later in the text.Definition14:The envelope of the HFLTS,env(H S),is a linguistic interval whose limits are obtained by means of upper bound(max)and lower bound(min).Henceenv(H S)=[H S−,H S+],H S−H S+.Example2:Let S={nothing,very low,low,medium,high, very high,perfect}be a linguistic term set,and H S= {high,very high,perfect}be an HFLTS of S,its envelope is H S−(high,very high,perfect)=highH S+(high,very high,perfect)=perfectenv(H S)=[high,perfect].Definition15:The definition of the comparison between two HFLTS is based on the concept of the envelope of the HFLTS, env(H S).Hence,the comparison between H1S and H2S is defined as follows:H1S(ϑ)>H2S(ϑ)iff env(H1S(ϑ))>env(H2S(ϑ))H1S(ϑ)=H2S(ϑ)iff env(H1S(ϑ))=env(H2S(ϑ)). Consequently,the comparison is conducted by interval val-ues.In Appendix A,different approaches to comparing inter-vals are briefly reviewed and how to compare HFLTS is then clarified.B.PropertiesTo conclude this section,some relevant properties of the HFLTS operations are reviewed.Let H1S,H2S,and H3S be three HFLTS,and S={s0,...,s g}. Then1)CommutativityH1S∪H2S=H2S∪H1SH1S∩H2S=H2S∩H1S.Proof of the union:⊆Let s i∈S be a linguistic value,s i∈H1S∪H2S,then,by the definition of union,s i∈H1S or s i∈H2S;if s i∈H2S or s i∈H1S,then s i∈H2S∪H1S.⊇Let s i∈H2S∪H1S,then,s i∈H2S or s i∈H1S;if s i∈H1S or s i∈H2S,then s i∈H1S∪H2S.The demonstration of the intersection would be similar to the union.RODR´IGUEZ et al.:HESITANT FUZZY LINGUISTIC TERM SETS FOR DECISION MAKING1132)AssociativeH1S∪(H2S∪H3S)=(H1S∪H2S)∪H3SH1S∩(H2S∩H3S)=(H1S∩H2S)∩H3S.Proof of the union:⊆Let s i∈S be a linguistic value,s i∈H1S∪(H2S∪H3S),then,s i∈H1S or s i∈H2S∪H3S.In the second case,s i∈H2S or s i∈H3S;therefore,if s i∈H1S∪H2S or s i∈H3S,then s i∈(H1S∪H2S)∪H3S.⊇Let s i∈(H1S∪H2S)∪H3S then,s i∈H1S∪H2S or s i∈H3S.In thefirst case,s i∈H1S or s i∈H2S;therefore,if s i∈H1S or s i∈H2S∪H3S,then s i∈H1S∪(H2S∪H3S).In a similar way,the associative property of the intersec-tion can be demonstrated.3)DistributiveH1S∩(H2S∪H3S)=(H1S∩H2S)∪(H1S∩H3S)H1S∪(H2S∩H3S)=(H1S∪H2S)∩(H1S∪H3S).Proof of the union:⊆Let s i∈(H1S∪H2S)∩H3S then,s i∈H1S∪H2S and s i∈H3S.Therefore,s i∈H1S or s i∈H2S.If s i∈H1S,then s i∈H1S∩H3S.If s i∈H2S,then s i∈H2S∩H3S.Thus,s i∈H1S∩H3S or s i∈H2S∩H3S,this means that s i∈(H1S∩H3S)∪(H2S∩H3S).⊇Let s i∈(H1S∩H3S)∪(H2S∩H3S).Then,s i∈H1S∩H3S or s i∈H2S∩H3S.On thefirst case,as s i∈H1S,then s i∈H1S∪H2S;therefore,s i∈(H1S∪H2S)∩H3S.In the second case,as s i∈H2S,then s i∈H1S∪H2S;therefore, s i∈(H1S∪H2S)∩H3S.Similarly to the property of the union,the distributive property of the intersection can be demonstrated.IV.E LICITATION OF L INGUISTIC I NFORMATIONB ASED ON H ESITANT F UZZY L INGUISTIC T ERM S ETS Throughout the paper,it has been pointed out that the aim of the HFLTS is to improve the elicitation of linguistic information, mainly when experts hesitate among several values to assess linguistic variables.The concept of HFLTS has been introduced as something that can be directly used by the experts to elicit several linguistic values for a linguistic variable,but such elements are not similar to human beings’way of thinking and reasoning.Therefore,in this section,the definition of simple but elaborated linguistic expressions that are more similar to human beings’expressions is proposed to be semantically represented by means of HFLTS and generated by a context-free grammar.A simple context-free grammar G H is introduced to support the type of linguistic information that we want to allow the experts to elicit in order to increase theflexibility and expres-siveness of linguistic information,which is denoted by ll.Besides the previous grammar G H,it is also necessary to define how its linguistic expressions will be represented and managed in processes of CW.To do so,a function E(ll)is pre-sented that transforms such linguistic expressions into HFLTS. The context-free grammar G H and the transformation func-tion E(·)are further detailed in the following sections.A.Context-Free Grammar for Eliciting Linguistic Information Based on HFLTSA context-free grammar G provides a way to generate lin-guistic terms and linguistic expressions by means of its different elements.Our objective is to define a context-free grammar G H that generates simple but rich linguistic expressions that can be easily represented by means of HFLTS.Therefore,the context-free grammar G H is defined to generate the type of linguistic expressions that we want to model in hesitant situations.Definition16:Let G H be a context-free grammar,and S= {s0,...,s g}be a linguistic term set.The elements of G H= (V N,V T,I,P)are defined as follows:V N={ primary term , composite termunary relation , binary relation , conjunction }V T={lower than,greater than,between,and,s0,s1,...,s g} I∈V N.The production rules are defined in an extended Backus–Naur form so that the brackets enclose optional elements and the symbol“|”indicates alternative elements[4].For the context-free grammar G H,the production rules are as follows:P={I::= primary term | composite termcomposite term ::= unary relation primary term |binary relation primary term conjunction primary term primary term ::=s0|s1|...|s gunary relation ::=lower than|greater thanbinary relation ::=betweenconjunction ::=and}.Remark1:The unary relation has some limitations.If the nonterminal symbol is“lower than,”then the“primary term”cannot be s0,and if the nonterminal symbol is“greater than,”then the“primary term”cannot be s g.Remark2:In the“binary relation,”the“primary term”on the left-hand side must be less than the“primary term”on the right-hand side.Example3:Let S={nothing,very low,low,medium,high, very high,perfect}be a linguistic term set;some linguistic ex-pressions that are obtained by means of the context-free gram-mar G H might bell1=highll2=lower than mediumll3=greater than highll4=between medium and very high.These linguistic expressions are close to the linguistic struc-tures used by human beings to provide their assessments in real-world problems,where they are not sure about one sin-gle value to assess the criteria or the alternatives.Therefore,the114IEEE TRANSACTIONS ON FUZZY SYSTEMS,VOL.20,NO.1,FEBRUARY2012Fig.2.HFLTS associated with the linguistic expressions.hesitant situation is modeled by means of linguistic structures that are generated by the production rules,P∈G H,being nec-essary to model semantically such information.To do so,the use of HFLTS is proposed.B.Transforming Linguistic Expressions of G H into HFLTS The transformation of the linguistic expressions ll that are produced by G H into HFLTS is done by means of the transfor-mation function E GH .Definition17:Let E GH be a function that transformslinguistic expressions ll,which are obtained by G H,into HFLTS H S,where S is the linguistic term set that is used by G H:E GH:ll−→H S.The linguistic expressions that are generated by using the production rules will be transformed into HFLTS in different ways according to their meaning:1)E GH (s i)={s i/s i∈S};2)E GH (less than s i)={s j/s j∈S and s j≤s i};3)E GH (greater than s i)={s j/s j∈S and s j≥s i};4)E GH (between s i and s j)={s k/s k∈S and s i≤s k≤s j}.With the previous definition of E GH ,it is easy tofigure out therepresentation of the initial linguistic expressions ll into HFLTS. Fig.2shows these transformations graphically.Example4:By the use of the linguistic expressions that are obtained in Example3,i.e.,ll1,ll2,ll3,and ll4their transformation into HFLTS by the transformation functionE GH isE GH (high)={high}E GH (lower than medium)={nothing,very low,lowmedium}E GH (greater than high)={high,very high,perfect}E GH (between medium and very high)={mediumhigh,very high}.Fig.3.Schema of the decision-making model.V.M ULTICRITERIA L INGUISTIC D ECISION-M AKING M ODELW ITH L INGUISTIC E XPRESSIONS B ASED ONC OMPARATIVE T ERMSIn this section,we present a multicriteria linguistic decision-making model in which decision makers can provide their as-sessments by means of linguistic expressions based on compar-ative terms close to the expressions used by human beings or bymeans of single linguistic terms.This decision model managessuch linguistic expressions by its representation using HFLTS.To fuse these linguistic expressions,we propose two symbolicaggregation operators,min upper and max lower,that providea linguistic interval for each alternative.Finally,an exploitationprocess based on the application of the nondominance choicedegree to obtain the solution set of alternatives is proposed.An example of a decision-making problem is also introducedto easily understand the proposed model.A.Multicriteria Linguistic Decision-Making ProblemA multicriteria linguistic decision-making problem consistsof afinite set of alternatives,X={x1,...,x n},where eachalternative is defined by means of afinite set of criteria,C={c1,...,c m},which is assessed by using linguistic expressions.In this decision-making problem,we suppose a linguisticterm set,S={s0,...,s g},and a context-free grammar G H,which produces the linguistic expressions ll(x i,c j)based oncomparative terms to assess the criteria,C={c1,...,c m},foreach alternative,X={x1,...,x n}.B.Multicriteria Linguistic Decision Making ModelThe proposed decision-making model consists mainly of thefollowing three phases(see Fig.3).1)Transformation phase:The linguistic expressions pro-vided by experts are transformed into HFLTS by usingthe transformation function E GH.2)Aggregation phase:The assessments represented byHFLTS are aggregated by using two symbolic aggrega-tion operators that obtain a linguistic interval,which isused to rank the alternatives in the following phase.3)Exploitation phase:The linguistic intervals obtained inthe previous phase are used to build a preference relationbetween alternatives,and a nondominance choice degreeis applied to obtain a solution set of alternatives for thedecision problem.。

10.1007_s10044-014-0397-3

10.1007_s10044-014-0397-3
Sidong Xian • Weijie Sun • Sihan Xu • Yuyang Gao
Received: 22 July 2013 / Accepted: 22 July 2014 Ó Springer-Verlag London 2014
Abstract The Minkowski distance is a distance measure that generalizes a wide range of other distances such as the Euclidean and the Hamming distance. In this paper, we develop a new decision making model using induced ordered weighted averaging operators and the Minkowski distance of the fuzzy linguistic variables. Then, the authors introduce a new aggregation operator called the fuzzy linguistic induced ordered weighted averaging Minkowski distance (FLIOWAMD) operator by defining a fuzzy linguistic variable distance. It is an induced generalized aggregation operator that utilizes induced OWA operator, Minkowski distance measures and uncertain information represented as fuzzy linguistic variables. Some of its main properties and particular cases are studied. And a further generalization that uses quasi-arithmetic means also is presented. A method based on the FLIOWAMD operator for decision making is presented. At last, we end the paper with a numerical example of the new method.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Hesitant Fuzzy Linguistic VIKOR Method and Its Application in Qualitative MultipleCriteria Decision MakingHuchang Liao,Member,IEEE,Zeshui Xu,Senior Member,IEEE,and Xiao-Jun Zeng,Member,IEEEAbstract—The hesitant fuzzy linguistic term set(HFLTS)has turned out to be a powerful andflexible technique in represent-ing decision makers’qualitative assessments in the processes of decision making.The aim of this paper is to develop a method to solve the multicriteria decision making(MCDM)problem within the context of HFLTS in which the criteria conflict with each other. To do so,the concepts of ideal solutions for a HFL-MCDM prob-lem have been introduced.In addition,in order to represent the closeness of one solution to the ideal one,we propose a sort of hesitant fuzzy linguistic measures,such as the hesitant fuzzy lin-guistic group utility measure,the hesitant fuzzy linguistic individ-ual regret measure,and the hesitant fuzzy linguistic compromise measure.Based on these measures,we develop a hesitant fuzzy linguistic VIKOR(HFL-VIKOR)method,which is motivated by the traditional VIKOR method.The general procedures for the HFL-VIKOR method are given.Some numerical examples are provided to demonstrate the advantages and practicality of our method.Finally,we make some discussions on the advantages of the HFL-VIKOR method,as well as future work.Index Terms—Hesitant fuzzy linguistic term set(HFLTS),hes-itant fuzzy linguistic VIKOR method,multiple criteria decision making(MCDM),qualitative decision making.I.I NTRODUCTIONI N MANY real-life decision making problems,experts arerequested to provide their evaluation values or preferences on a set of alternatives over some predefined criteria in order to make a decision by means of some reasoning methodologies [1].In the process of deriving thefinal decision,how to ex-press the judgments of experts naturally lays the foundation of any decision-making approaches and,thus,has been discussed by many scholars over the half past century[2].Modeling a decision maker’s cognition is a quite challengeable issue be-cause there is much vague and imprecise information.In1965,Manuscript received January3,2014;revised April15,2014;accepted August 27,2014.Date of publication September26,2014;date of current version October2,2015.This work was supported in part by the National Natural Science Foundation of China under Grant61273209,the Excellent Ph.D.Thesis Foundation of Shanghai Jiao Tong University under Grant20131216,and the Scholarship from China Scholarship Council under Grant201306230047. H.C.Liao is with the Antai College of Economics and Management,Shanghai Jiao Tong University,Shanghai200052,China.He is now with the Business School,Sichuan University,Chengdu610064,China(e-mail:liaohuchang@ ).Z.S.Xu is with the Business School,Sichuan University,Chengdu610064, China(e-mail:xuzeshui@).X.-J.Zeng is with the School of Computer Science,University of Manchester, Manchester M139PL,U.K.(e-mail:x.zeng@).Color versions of one or more of thefigures in this paper are available online at .Digital Object Identifier10.1109/TFUZZ.2014.2360556fuzzy set[3]was proposed to deal with imprecise and vague information.Nonetheless,to cope with imperfect and imprecise information,where two or more sources of vagueness appear simultaneously the traditional fuzzy sets show some limitations [4]–[6].Hence,it has been extended into several different forms, such as intuitionistic fuzzy sets,interval-valued intuitionistic fuzzy sets,type-2fuzzy sets,type-n fuzzy sets,fuzzy multisets (also named the fuzzy bags),and hesitant fuzzy sets(HFSs).All these extensions are based on the same rationale that it is not clear to assign the membership degree of an element to afixed set[7].These different forms of fuzzy sets suit problems that are defined as quantitative situations.However,in real-world decision making problems,many aspects of different activities cannot be assessed in a quantitative form,but rather in a quali-tative one[8].Using linguistic information to express experts’opinions is suitable and straightforward because it is very close to human’s cognitive processes.A common approach to model linguistic information is the fuzzy linguistic approach proposed by Zadeh[9]in1975,which represents qualitative information as linguistic variables.Although it is less precise than a number, the linguistic variable,defined as“a variable whose values are not numbers but words or sentences in a natural or artificial language,”enhances theflexibility and reliability of decision models and provides good results in differentfields: Nevertheless,similar to fuzzy sets,the fuzzy linguistic ap-proach has some limitations as follows:1)Regarding the information modeling,the fuzzy linguis-tic approach defines a priori via linguistic terms,which prevents other choices to express preferences in a richer way.2)Meanwhile,decision makers are restricted to use only oneterm to express their assessments,which may not always reflect experts’cognition completely and perfectly[10].3)As for the computational process,since the informationrepresentation model of fuzzy linguistic approach is dis-crete in a continuous domain,the traditional models of computing with words(CWW)may lose information es-pecially in the approximation processes.To circumvent theseflaws and to improve the accuracy and understandability of the processes of CWW,different linguistic representation models have been introduced,such as the two-tuple fuzzy linguistic representation model[11],the linguistic model based on type-2fuzzy set[12],the virtual linguistic model [13],the proportional two-tuple model[14],etc.However,all these extended models are still very limited due to the fact that they are based on the elicitation of single and simple terms that1063-6706©2014IEEE.Personal use is permitted,but republication/redistribution requires IEEE permission.See /publications standards/publications/rights/index.html for more information.should encompass and describe the information provided by ex-perts regarding a linguistic variable[15].When experts hesitate among different linguistic terms and feel the need to use a more complex linguistic term that is not usually defined in the linguis-tic term set to depict their assessments,the aforementioned fuzzy linguistic approaches are out of use.Thus,motivated by the HFS [7],Rodr´ıguez et al.[15]proposed the concept of hesitant fuzzy linguistic term set(HFLTS),which provides a different and great flexible form to represent the assessments of experts.Since the HFLTS provides a new and more powerful tech-nique to represent the qualitative judgments of experts,it has attracted more and more scholars’attentions in recent years and has shown its efficiency and validation in aiding practi-cal decision making processes.After introducing the definition of HFLTS and some operations over HFLTSs,Rodr´ıguez et al.[15]applied the HFLTS to linguistic multicriteria decision mak-ing(L-MCDM)in which experts provide their evaluations by linguistic expressions based on comparative terms,such as“be-tween very low and medium,”or by simple linguistic terms, such as“very low;low;medium;high;very high.”Based on the HFLTS and context-free grammars,Rodr´ıguez et al.[8] then proposed a new linguistic group decision-making model that facilitates the elicitation offlexible and riches linguistic ex-pressions close to the cognitive models of experts for express-ing linguistic preferences.For further application of HFLTS to decision making,Zhu and Xu[16]defined the hesitant fuzzy linguistic preference relation(HFLPR)as a tool to collect and represent experts preferences and investigated the consistency measure of HFLPR.In order to apply the HFLTSs into the MCDM problems more deeply,Liao et al.[17]paid their at-tention to the basic characteristics of HFLTS and proposed a family of distance and similarity measures for HFLTSs and then implemented them into MCDM problems within the context of hesitant fuzzy linguistic circumstance.Wei et al.[18]developed some comparison methods and studied the aggregation theory for HFLTSs.Beg and Rashid[19]proposed a TOPSIS-based method for MCDM in which the opinions of experts are rep-resented by ter,Liu and Rodr´ıguez[20]proposed another TOPSIS-based method in which all the HFLTSs are transformed into fuzzy envelopes.As for a MCDM problem with hesitant fuzzy linguistic infor-mation,it is common that the criteria involved in the problem conflict with each other.Thus,it is highly probable that there is no solution optimizing all criteria simultaneously.This leads the decision making processes to be very tough and intractable.In such a situation,how tofind the best possible solution is an im-portant and urgent question needed to be answered.To the best of our knowledge,up to now,there is no work having addressed this issue.Hence,in this paper,we are going tofill this gap by de-veloping an approach for MCDM within the context of HFLTSs. The aim of MCDM is tofind sufficiently good alternative(s) from a collection of alternatives,which attains the goal of each criteria.In general cases of MCDM with crisp numerical evalua-tions,there are two different solution concepts:one is the pareto optimal solution and the other is the compromise solution.The pareto optimal solution is defined as“if one criterion is to be improved,at least one other criterion has to be made worse”[21].The Pareto optimal solution is always a set of noninfe-rior alternatives,thus it cannot satisfy our initial purpose which is to select one alternative best satisfying the overall criteria from a set of alternatives.On the other hand,the compromise solution is defined by using a compromise programming[22], which is based on the distance measure determining the close-ness of a particular solution to the ideal/infeasible solution. Compromise programming provides an effective way to handle conflicting criteria.Based on the compromise programming, many multicriteria ranking methods have been introduced,in which the most popular one is the VIKOR(vlsekriterijumska optimizacija i kompromisno resenje in serbian,meaning mul-ticriteria optimization and compromise solution)method[23]. The main idea of VIKOR is to determine a compromise solution, which provides a maximum“group utility”for the“majority”and a minimum“individual regret”for the“opponent,”for a MCDM problem with noncommensurable and conflicting cri-teria by mutual concessions[23]–[25].Up to now,the VIKOR method has been applied widely in many differentfields,such as the postearthquake sustainable reconstruction[24],mountain destination choosing[25],alternative bus fuel modes selection [26],alternative hydropower systems assessment[27],financial performance evaluation[28],and so forth[29]–[44].The classi-cal VIKOR method has also been extended into many different forms,such as the fuzzy VIKOR[34]–[37],the interval val-ued VIKOR[38],[39],the intuitionistic fuzzy VIKOR[40],the interval-valued intuitionistic fuzzy VIKOR[41],and the hesitant fuzzy VIKOR[42]–[44].Noticing that the VIKOR method is so powerful in handling MCDM problems with conflicting criteria, we are motivated to investigate the extended form of VIKOR within the hesitant fuzzy linguistic circumstances,which con-sists of the basic idea in this paper.The remainder of this paper is organized as follows:Section II gives some basic knowledge on fuzzy linguistic approach and HFLTSs.The basic operations and distance measure over HFLTSs are also reviewed in this section.Section III describes the procedures of standard VIKOR method and also the ad-vances of different forms of VIKOR methods.In Section IV, we propose the concepts of hesitant fuzzy linguistic ideal so-lutions and some different types of hesitant fuzzy linguistic measures for the HFL-MCDM problem.Based on these con-cepts and measures,the HFL-VIKOR method is developed to derive the compromise solution(s)for a HFL-MCDM problem. For the simplicity of application,the procedure for the HFL-VIKOR method is also presented.Further,some practical ex-amples are given to illustrate the validity and applicability of the proposed method.In Section V,the analysis and discussion on the advantages of the HFL-VIKOR method is given,as well as the future work about this method.The paper ends in Section VI with some concluding remarks.II.F UZZY L INGUISTIC A PPROACH AND H ESITANT F UZZYL INGUISTIC T ERM S ETA.Fuzzy Linguistic ApproachIn practical MCDM problem,many aspects of the prob-lem cannot be assessed in a quantitative form,but rather in a qualitative one.Meanwhile,experts sometimes may feel moreLIAO et al.:HESITANT FUZZY LINGUISTIC VIKOR METHOD AND ITS APPLICATION IN QUALITATIVE MULTIPLE CRITERIA1345Fig.1.Semantics of virtual linguistic terms.comfortable and straightforward to express their opinions bylinguistic information directly because it is close to the humancognitive processes.Thus,the fuzzy linguistic approach[9],asa common way to model linguistic information,has attracted alot of attention.In such an approach,experts’opinions are takenas the values of a linguistic variable,which is established by alinguistic descriptors and its semantics[45].Once the expertsprovide the linguistic evaluation information,the following stepis to translate these linguistic inputs into a machine manipula-tive format in which the computation can be carried out.Suchtranslation is conducted by some fuzzy tools.Meanwhile,theoutputs of the CWW model should also be easy to convertinto the linguistic information.To do so,Xu[46]proposed thesubscript-symmetric additive linguistic term set,which is shownasS={s t|t=−τ,...,−1,0,1,...τ}(1) where the mid linguistic label s0represents an assessment of“indifference,”and the rest of them are placed symmetricallyaround it.In particular,s−τand sτare the lower and upperbounds of linguistic labels used by the experts in practical ap-plications,τis a positive integer,and S satisfies the followingconditions;1)Ifα>β,then sα>sβ.2)The negation operator is defined:neg(sα)=s−α,espe-cially,neg(s0)=s0.It should be noted that the linguistic term set S is a discretelinguistic term set,thus is not convenient for calculation andanalysis.In order to preserve all given linguistic information,Xu[46]extended the discrete linguistic term set to a continuouslinguistic term set¯S={sα|α∈[−q,q]},where q(q>τ)is a sufficiently large positive integer.In general,the linguistic termsα(sα∈S)is determined by experts,and the extended linguis-tic term(also named virtual linguistic term)¯sα(¯sα∈¯S)only appears in computation.The virtual linguistic term provides a tool to compute with the linguistic terms.The mapping between virtual linguistic terms and their corresponding semantics is easy to build,as shown in Fig.1[17].B.Hesitant Fuzzy Linguistic Term SetNote that the(virtual)linguistic term set use only one term to express the uncertain information of an expert.When an expert cannot provide a single or simple term to describe his/her preference because he/she is thinking of several terms at the same time or looking for a more complex linguistic term thatis not usually defined in the linguistic term set,the(virtual)linguistic term set is out of use.In quantitative setting,whenan expert considers several values to determine the membershipof an element to a set,the concept of HFS was introduced[7].The HFS,permitting the membership of an element to a givenset represented by several possible values between0and1,iscapable to determine the membership degree especially whenthe experts have several different values on it[47].Definition1[7]:Let X be afixed set,a HFS on X is in terms of a function that when applied to X returns a subset of[0,1].Motivated by the idea of HFS,Rodr´ıguez et al.[15]intro-duced the HFLTS,whose envelope is an uncertain linguisticvariable[48].The HFLTS has been investigated by many schol-ars after being proposed(for more details,see[8]and[15]–[20]).Definition2[15]:Let S={s0,...,sτ}be a linguistic term set.A HFLTS H S is an orderedfinite subset of the consecutivelinguistic terms of S.Note:For the linguistic term set S={s0,...,sτ}given in Definition1,when its subscripts are not symmetric,some problems will arise(for more details,see[17]).To overcome these problems,Liao et al.[17]replaced the linguistic term set S={s0,...,sτ}by the subscript-symmetric linguistic term set S={s i|i=−τ,...,−1,0,1,...,τ}.Although the HFLTS can be used to elicit several linguis-tic values for a linguistic variable,it is still not similar to thehuman way of thinking and reasoning.Thus,Rodr´ıguez et al.[15]further proposed a context-free grammar to generate sim-ple but elaborated linguistic expressions that are more similar tothe human expressions and can be easily represented by meansof HFLTSs.The grammar G H is a four-tuple(V N,V T,I,P),where V N is a set of nonterminal symbols,V T is the set of termi-nals’symbols,I is the starting symbol,and P is the productionrules that are defined in an extended Backus–Naur form[49].Definition3[15]:Let S be a linguistic term set,G H be acontext-free grammar.The element of G H=(V N,V T,I,P)aredefined as follows:V N={ primary term , composite termunary relation , binary relationconjunction }V T={lower than,greater than,at least,at most between,and,s−τ,...,s−1,s0,s1...,sτ} I∈V NP={I::= primary term | composite termcomposite term ::= unary relationprimary term | binary relationconjunction primary termprimary term ::=s−τ|···|s−1|s0|s1|···|sτunary relation ::=lower than|greater than1346IEEE TRANSACTIONS ON FUZZY SYSTEMS,VOL.23,NO.5,OCTOBER 2015binary relation ::=between conjunction ::=and }.Note that in the above definition,the brackets enclose optionalelements and the symbol “|”indicates alternative elements.The expressions ll generated by the context-free grammar G H may be either single-valued linguistic terms s t ∈S or lin-guistic expressions.The transformation function E G H can be used to transform the expressions ll that are produced by G H into HFLTS.Definition 4[15]:Let E G H be a function that transforms linguistic expressions ll ∈S ll ,obtained by using G H ,into the HFLTS H S .S is the linguistic term set used by G H ,and S ll is the expression domain generated by G HE G H :S ll →H S .(2)The linguistic expression generated by G H using the produc-tion rules are converted into HFLTS by means of the followingtransformations.1)E G H (s t )={s t |s t ∈S }.2)E G H (at most s m )={s t |s t ∈S and s t ≤s m }.3)E G H (lower than s m )={s t |s t ∈S and s t <s m }.4)E G H (at least s m )={s t |s t ∈S and s t ≥s m }.5)E G H (greater than s m )={s t |s t ∈S and s t >s m }.6)E G H (between s m and s n )={s t |s t ∈S and s m ≤s t ≤s n }.With the transformation function E G H defined as Definition 4,it is easy to transform the initial linguistic ex-pressions into HFLTS.C.Basic Operations and Distance Measures Over HesitantFuzzy Linguistic Term SetsRodr´ıguez et al.[15]defined the complement,union,and intersection of HFLTSs.Definition 5[15]:For three HFLTSs H S ,H 1S,and H 2S ,the following operations are defined:1)Lower bound:H −S=min (s t )=s k ,s t ∈h S and s t ≥s k ,∀t .2)Upper bound:H +S=max (s t )=s k ,s t ∈h S and s t ≤s k ,∀t .3)H cS =S −H S ={s t |s t ∈S and s t /∈H S }.4)H 1S ∪H 2S ={s t |s t ∈H 1S or s t ∈H 2S}.5)H 1S ∩H 2S ={s t |s t ∈H 1S and s t ∈H 2S}.Note that different HFLTSs have different number of lin-guistic terms in most cases.In order to operate correctly when comparing two HFLTSs,Liao et al.[17]introduced a method to add linguistic terms in a HFLTS.Assume a HFLTS b ={b l |l =1,...,#b }(#b is the number of linguistic terms in b ),let b +and b −be the maximum and minimum linguistic terms in b respectively,and ξ(0≤ξ≤1)be an optimized parameter,then we can add the linguistic term–b =ξb +⊕(1−ξ)b −(3)to the HFLTS.The max,min,and the average added linguistic terms correspond to b ∗,b ∗,and b A respectively,where b ∗=b +,b ∗=b −,and b A =(b +⊕b −)/2.Its clear that b ∗and b ∗correspond with the optimism and pessimism rules,respectively.The optimized parameter,which is used to reflect the decision makers’risk preferences,is provided by the decision makers.Without loss of any generality,in this paper,we take ξ=1/2.After giving the fundamental axioms for distance measures,Liao et al.[17]developed a family of distance measures of HFLTSs and that of different sets of HFLTSs (for more details,see [17]).In this paper,we use the Euclidean distance betweentwo HFLTSs H 1Sand H 2S as a representation,which is in the mathematical form as follows:d ed (H 1S,H 2S )= 1L L l =1|δ1l −δ2l |2τ+12 1/2(4)where H 1S=∪s δ1l ∈H 1S{s δ1l |l =1,...,#H 1S }(#H 1S is thenumber of linguistic terms in H 1S )and H 2S =∪s δ2l ∈H 2S{s δ2l |l =1,...,#H 2S }are two HFLTSs with #H 1S =#H 2S =L (other-wise,we can extend the shorter one by adding the linguisticterms given as (3)).The linguistic terms s δt l in H tS(t =1,2)are arranged in ascending order.III.A DV ANCES IN VIKOR M ETHODThe VIKOR method,originally introduced by Opricovic [23],is proposed to solve the MCDM problem with conflicting and noncommensurable (different units)criteria.The VIKOR method is an efficient tool to find a compromise solution from a set of conflicting criteria,where the compromise means an agreement established by mutual concessions.It introduces the multicriteria ranking index based on the particular measure of “closeness”to the “ideal”solution,named L p −metric ,which is used as an aggregation function in the compromise program-ming [22].For a classical MCDM problem with I alternatives a i (i =1,2,...,I ),the evaluation values of the alternatives over the criteria c j (j =1,2,...,J )are given as f ij (i =1,2,...,I ;j =1,2,...,J ).The discrete form of L p −metric over the al-ternatives a i (i =1,2,...,I )in compromise programming was determined asL p,i =⎛⎝J j =1ωj f +j −f ijf +j −f −j p ⎞⎠1p1≤p ≤∞,i =1,2,...,I(5)where ωj (j =1,2,...,J )are the corresponding weights of criteria,f +j =max i f ij and f −j =min i f ij are the best and worst values of a i over the benefit-type criterion c j ,respec-tively.Within the VIKOR method,the metric L 1,i and L ∞,i are used to formulate overall (or total)satisfactory for the major-ity of criteria and “sacrifice”of each individual criterion.TheLIAO et al.:HESITANT FUZZY LINGUISTIC VIKOR METHOD AND ITS APPLICATION IN QUALITATIVE MULTIPLE CRITERIA1347 VIKOR method provides a maximum“overall(or total)satis-factory”for the majority of criteria and a minimum“sacrifice”of each individual criterion.The compromise ranking procedureof the ordinary VIKOR method can be set out as follows.Step1:Find f+j and f−j.Step2:Compute the values of group utility and individual regret over alternatives a i(i=1,2,...,I)by the equations:S i=L1,i=Jj=1ωjf+j−f ijf+j−f−j(6)R i=L∞,i=maxjωjf+j−f ijf+j−f−j.(7)The objective function min i S i implies tofind a solution with maximum group utility,which also can be seen as“majority”rule.The objective function min i R i indicates to minimize in-dividual regret of the opponent.In order tofind a compromise solution,we should minimize these two objective functions si-multaneously.Step3:Calculate the values of Q i(i=1,2,...,I)by the relationQ i=υS i−S+S−−S++(1−υ)R i−R+R−−R+(8)where S+=min i S i,S−=max i S i,R+=min i R i,R−= max i R i,andυis the weight of the strategy of the majority of criteria or the maximum group utility.Without loss of gen-erality,it takes the value0.5.The smaller the value of Q i,the better the alternative a i.Step4:Rank alternatives A i(i=1,2,...,I)according to the values of S i,R i,and Q i.The results are three ranking lists.Step5:Determine the best solution or a compromise solution.To ensure the uniqueness of thefinal alternative,the following two qualifications must be satisfied simultaneously:C1:Q(a(2))−Q(a(1))≥1J−1,where a(1)and a(2)are thealternatives with thefirst and second positions in the ranking list,respectively;C2:a(1)should also be the best ranked by S i and R i. Unfortunately,these two conditions often cannot be attained simultaneously.Thus,a set of compromise solutions are de-rived,which is of the most critical significance for the VIKOR method.If the condition C1is not satisfied,then we shall explore the maximum value of M according to the equationQ(a(M))−Q(a(1))<1J−1.(9)All the alternatives a(i)(i=1,2,...,M)are the compromise solutions.If the condition C2is not satisfied,then the alternatives a(1) and a(2)are the compromise solutions.Since it was proposed by Opricovic[23],the VIKOR method has been investigated by many scholars and has been applied to manyfields.Opricovic and Tzeng[24]applied the ordi-nary VIKOR into the postearthquake reconstruction problem in Central Taiwan.They[25]further made a comparison between the VIKOR and TOPSIS methods and applied these two methods to select the destinations for a mountain climber.The difference between the VIKOR and TOPSIS methods can be clarified as follows:1)The VIKOR method uses linear normalization and thenormalized value does not depend on the evaluation unit of a criterion;while the TOPSIS method uses the vector normalization and the normalized value could be different for different evaluation unit of a particular criterion.2)In addition,the VIKOR method introduces an aggregatingfunction which combines all criteria,the relative impor-tance of the criteria,and a balance between the total and individual satisfactions,while the TOPSIS method only considers the distances from the ideal point and from the negative-ideal point without considering their relative importance.3)As Opricovic and Tzeng[25]pointed out,the highestranked alternative by the VIKOR method is the closest to the ideal solution,but the highest ranked alternative by the TOPSIS method is the best in terms of the ranking index and is not always the closest to the ideal solution.To show the difference between the VIKOR and TOPSIS methods,Tzeng et al.[26]used these two methods respec-tively to select a moderate fuel mode for buses in urban area of Taiwan with several types of fuels such as electricity,fuel cell(hydrogen),and methanol considered as alternative-fuel ter on,Opricovic and Tzeng[27]enhanced the VIKOR method with a stability analysis determining the weight stability intervals and with tradeoffs analysis,and then com-pared it deeply with the TOPSIS method,the PROMETHEE method,and the ELECTRE method.They applied these four methods respectively to evaluate alternative hydropower sys-tems on the Drina River in the former Yugoslavia.Yalcin et al.[28]used the VIKOR method to evaluate thefinancial perfor-mance of the companies in the Turkish manufacturing sectors traded on Istanbul Stock Exchange(ISE)by considering both the accounting-basedfinancial performance measures and the value-basedfinancial performance measures together in a fuzzy environment.Besides the aforementioned applications of the classical VIKOR method,the VIKOR method has also been improved by many scholars.Based on the concept of regret theory,Huang et al.[29]proposed a revised model of VIKOR,which defines the regret as the choiceless utility.Chang[30]developed a mod-ified VIKOR method to avoid numerical difficulties in solving problems by the classical VIKOR method.Liou et al.[31]mod-ified the VIKOR method by replacing afixed common number of criteria for all alternatives with a set of criteria for each al-ternative and provided a method to rank the unimproved gaps of alternatives,and based on this,they then used the modified VIKOR method to improve the domestic airlines’service qual-ity in Taiwan.Since sometimes approaching the target values is desirable,Jahan et al.[32]modified the VIKOR method by us-ing a novel normalization technique.Kaya and Kahraman[33] proposed an integrated VIKOR-AHP methodology,in which the。

相关文档
最新文档