第十四章流变学基础-资料

合集下载

Rheology(流变学基础)

Rheology(流变学基础)

二.非牛顿流动
实际上大多数液体不符合牛顿粘度定律, 实际上大多数液体不符合牛顿粘度定律,如高分子溶 胶体溶液、乳剂、混悬剂、软膏以及固液、胶体溶液、乳剂、混悬剂、软膏以及固-液的不均匀 体系的流动。把这种不遵循牛顿粘度定律的物质称为非牛 不遵循牛顿粘度定律的物质称为 体系的流动。把这种不遵循牛顿粘度定律的物质称为非牛 顿流体,这种物质的流动现象称为非牛顿流动 非牛顿流动。 顿流体,这种物质的流动现象称为非牛顿流动。 非牛顿流体的剪切速度D和剪切应力S的变化规律,经 非牛顿流体的剪切速度D和剪切应力S的变化规律, 作图后可得四种曲线的类型:塑性流动、假塑性流动、 作图后可得四种曲线的类型:塑性流动、假塑性流动、胀 形流动、触变流动。 形流动、触变流动。 对于非牛顿流体可以用旋转粘度计进行测定。 对于非牛顿流体可以用旋转粘度计进行测定。
对于这种粘弹性, 对于这种粘弹性,我们用弹性模型化的弹簧和把 粘性通过模型的缓冲器的复合型模型加以表示: 粘性通过模型的缓冲器的复合型模型加以表示: 麦克斯韦尔(Maxwell) (一)麦克斯韦尔(Maxwell)模型 福格特(Voigt) (二)福格特(Voigt)模型 (三)双重粘弹性模型 (四)多重粘弹性模型
胀性液体的流动公式: 胀性液体的流动公式: /η D= Sn /ηa n<1,为胀性流体; n<1,为胀性流体; 当n接近1时,流动接近牛顿流动。 接近1 流动接近牛顿流动。
(d)胀性流动
胀性流体的结构变化示意图
• 胀性流动的特点:没屈伏值;过原点;切应速度很小时, 胀性流动的特点:没屈伏值;过原点;切应速度很小时, 液体流动速度较大,当切应速度逐渐增加时, 液体流动速度较大,当切应速度逐渐增加时,液体流动速度 逐渐减小,液体对流动的阻力增加,表观粘度增加, 逐渐减小,液体对流动的阻力增加,表观粘度增加,流动曲 线向上弯曲。 线向上弯曲。 • 在制剂中表现为胀性流动的剂型为含有大量固体微粒的高 浓度混悬剂如50%淀粉混悬剂、糊剂等。 50%淀粉混悬剂 浓度混悬剂如50%淀粉混悬剂、糊剂等。

流变学基础PPT课件

流变学基础PPT课件

当剪切应力大于屈服值时液体开始流动,而发生塑 性变形,此时D与S呈直线关系,η为定值;
10
4)其流动公式为D=(S-S0)/ η· 2020年9月28日
塑性流体的结构变化示意图
11
2020年9月28日
11
二、非牛顿流动
2.假塑性流动(pseudoplastic flow)
1)随剪切应力的增大,η下降; 2)曲线通过原点为准塑性流动; 3)其流动公式为D=Sn/ ηa
蠕变性(creep):对物质附加一定的重量时, 表现为一定的伸展性或形变,而且随时间发生 变化,此现象称为蠕变性。
18
2020年9月28日
第十四章:流变学基础
第三节 蠕变性质的测定方法
落球 黏度

旋转 黏度

圆锥平 板黏度

19
2020年9月28日
蠕变性质的测定方法
20
2020年9月28日
20
是存在一定的时间差)·
3)原因:····
16
2020年9月28日
三、粘弹性与蠕变性
黏弹性(viscoelasticity):高分子物质或分散 体系,具有黏性(viscosity)和弹性(elasticity) 双重特性,这种性质称为黏弹性. ·
应力缓和(stress relaxation):物质被施加一 定的压力而变形,并使其保持一定变形时,应 力随时间而减少,此现象称为应力缓和。
D=dv/dy
剪切应力(S):使液层产生相对
运动需施加外力,在单位面积上
4
所需施加的这种力称剪切应力。 2020年9月28日
4
5
2020年9月28日
第十四章:流变学基础
第二节 流变性质

14流变学基础

14流变学基础

(三)胀性流体
切变稠化现象:曲线经过原点,且随
体填充 非凝聚性粒子处于密集型状态,其空隙被液
D
着剪切应力的增大其
剪切应力较低时(缓慢搅拌),粒子排列不紊
粘性也随之增大
乱,表现为较好的流动性。 剪切应力较大(快速搅拌),由于其粒子形成 疏松的填充状态,粒子空隙不能很好地吸 收水分而形成块状集合体,增大粒子间的
四、制剂流变性的评价方法
测定软膏、乳剂、雪花膏等半固体制剂的流变 性质,主要用penetrometer,curd tensionmeter 和spread meter进行测定。
液体
混合
半固体
固体
制备工艺 装量的生产 能力
皮肤铺展性和 压片或填充时 黏附性 粉体的流动
由剪切引起的 从瓶或管状容 粉末状或颗粒 操作效率的 二、流变学在药剂学中的应用 分散系粒子的 器中挤出制剂 状固体的充填 提高 粉碎 性 容器中液体的 流出和流入 通过管道输送 液体制剂 分散体系的物 理稳定性 与液体能够混 合的固体量 基质中药物的 释放
其保持一定应力时,应力随时间而减少的现象。
(三)双重粘弹性模型:
蠕变性:对物质附加一定重量时,表现为一定的
伸展性或形变,而且随时间变化的现象。
第三节 蠕变性质的测定方法
具体测定方法: 三个主要测定途径:
不随时间变化的静止测定法,即 r0一定时,施加应 ①测定使待测样品产生微小应变 r(t)时所需的应力 S(t); 力 S 0; ②测定对待测样品施加应力 S(t) 时所产生的应变程度 r(t) ; 转动测定法,对于胶体和高分子溶液的粘度,其变 ③施加一定剪切速度时,测定其应力S(t)。 S 化主要依赖于剪切速度。
• 混悬剂:静止时不沉降,振摇时易倾倒, 因此选择塑性流动的助悬剂和分散媒。常 见有羧甲基纤维素钠、西黄蓍胶、海藻酸 钠。皂土、胶性硅酸镁铝混合物具有塑性 流动和触变特性,用于外用混悬剂。

14流变学

14流变学

第二节流变性质 二、非牛顿流动
3.胀性流动 图14-7e。曲线与假塑性相似,弯曲 方向相反。当切变速度很低时,液体流动速度较大; 当切变速度逐渐增加时,流动速度减少。含大量固 体微粒的高浓度混悬液属这种流动性质。
三、触变流动
图14-7 f。随剪切应力增大,黏度下降,剪切应 力消除后黏度在等温条件下缓慢恢复原来状态的现 象称触变性。浓混悬剂、乳剂及某些亲水性高分子 溶液,在静止时形成凝胶,当振摇搅拌时,变为可 流动的状态,静止后又恢复凝胶状态。这种等温的 可逆转换就是触变流动的特点。非牛顿流体多具触 变性。
第十四章 流变学(Rheology)基础 第二节流变性质
四、粘弹性
高分子物质或分散体系具黏性和弹性双重特 性称为黏弹性。固体被施加外力而变形,并使其 保持一定应力时,应力随时间而减少,称此现象 为应力缓和。
对物体施加一定重量时,表现为一定的伸展 性或形变,而随时间变化,此现象称蠕变性。
粘弹性可用弹性模型的弹簧和粘性模型的缓 冲器加以组合的各种模型表示。 第三节 蠕变性质测定方法(自学)
软膏基质的粘性(涂展性和黏附性) P346表14-1流变学在药学中的应用领域
第二节流变性质
第十四章 流变学(Rheology)基础
一、牛顿流动
牛顿黏度定律:剪切应力S与剪切速度D成正比, 为过原点直线。 S=F/A=ηD 或D=S/ η F:A面积上施加的力;η为粘度系数,简称粘度。
温度一定η是常Biblioteka 。η随温度升高而减少。二、流变学在药剂学中的应用 1.在混悬剂中应用
剪切速度小,流动慢,粘性高;反之粘性低。 振摇倾倒与粘性有关。具触变性的助悬剂理想 2.在乳剂中应用(流动性)
分散相体积比较低时表现为牛顿流体。体积比升 高粘性增加变为假塑性流动,较高时变为塑性流动, 达0.74时产生相转移黏度显著增加。 3.在半固体制剂中应用

流变学基础

流变学基础
流变学基础
一、概述
• 观察河中的流水:尽管水流方向一致,但水流速度却不 同,中心处的水流最快,靠近河岸水流较慢。 • 因此,在流速不太快时,可以将流动着的液体视为互相 平行移动的一个个液层;由于各层的速度是不同的,所 以产生速度梯度dυ/dy,这是流动的基本特征。
• 因为有速度梯度存在,流动较慢 的液层阻滞着流动较快液层的运动, 所以产生流动阻力。
(一)流变学在混悬剂中的应用
• 如图,表现假塑性流动的 西黄蓍胶、海藻酸钠、羧 甲基纤维素钠等物质具有 上述性能。 • 图中用具有牛顿流体性质 的甘油为对照组进行实验, 结果说明,甘油的粘性作 为悬浮粒子的助悬剂较为 理想。
• 触变性物质在静置状态下 可形成凝胶,经振摇后转 变为液状。
(一)流变学在混悬剂中的应用
(二)非牛顿流体
• 4、触变流动——大多数非牛顿流体 均具有触变性,凝胶、溶胶为典型 触变性体系。 • 特点: • 1)上升曲线与下降曲线不重合,形 成环形滞后曲线; • 2)上升和下降曲线包围成一定面积, 称为滞后面积,这种现象称为滞后 现象; • 3)滞后面积是衡量触变性大小定量 指标,其大小由切变时间和切变速 度决定。
SM
K
度液体, 平行圆板型用于测定高粘度液 体。
(a)双重圆筒型
(b)圆锥圆板形 (c)平行圆板型
图---旋转粘度hirley粘度计为圆锥—平板粘度计的一种类型。如 图所示。 • 测定方法为将试验液放在平板的中央,然后把平板推至上 面的圆锥下部,使试验液在静止的平板和旋转的圆锥之间 产生切变。
(二)流变学在乳剂中的应用
• 粘性的影响因素: • 分散相
• 连续相
• 乳化剂
(二)流变学在乳剂中的应用
• 分散相:与分散相相关的主要因素有相的体积比、 粒度分布、内相固有的粘度等。 • 分散相体积: • 粒度分布

流变学基础部分内容

流变学基础部分内容

流变学基础部分内容内容提要流变学是研究物质在外力作用下发生变形和流动的科学。

通常作用力以切变应力表示,变形以切变速率表示,研究不同种类的物体在外力作用下切变应力与切变速率之间的关系,及其在牛顿流体与非牛顿流体表现出的特征,并据此对乳剂、混悬剂、半固体制剂等的剂型设计、处方组成、质量控制等进行评价,这是本章的重点。

但应用流变学理论对于具有粘性与弹性双重特性的物体或分散体系亦进行定量讨论,为深入研究物体的粘弹性奠定基础。

第一节概述一.流变学的基本概念(一)流变学研究内容流变学——Rheology来源于希腊的Rheos=Sream(流动)词语,由Bingham和Crawford 为了表示液体的流动和固体的变形现象而提出来的概念。

流变学主要是研究物质的变形和流动的一门科学。

变形主要与固体的性质相关。

对某一物体外加压力,其内部的各部分的形状和体积发生变化,即所谓的变形。

对固体施加外力,则固体内部存在一种与外力相对抗的内力使固体恢复原状。

此时在单位面积上存在的内力称为应力(Stress)。

由外部应力而产生的固体的变形,如除去其应力,则固体恢复原状,这种性质称为弹性(Elasticity)。

把这种可逆性变形称为弹性变形。

流动主要表示液体和气体的性质。

流动的难易与物质本身具有的性质有关,把这种现象称为粘性(Viscosity)。

流动也视为一种非可逆性变形过程。

实际上,某一种物质对外力表现为弹性和粘性双重特性(粘弹性)。

这种性质称为流变学性质,对这种现象进行定量解析的学问称为流变学。

(二)切变应力与切变速率从日常的经验已知,观察在河到中流水,水流方向一致,但水流速度不同,中心处的水流最快,越靠近河岸水流越慢。

因此在流速不太快时可以将流动着的液体视为互相平行移动的液层如图13-1,由于各层的速度不同,便形成速度梯度du/dy,这是流动的基本特征。

因为有速度梯度存在,流动较慢的液层阻滞着流动较快液层的运动,所以产生流动阻力。

14-药剂学-流变学基础

14-药剂学-流变学基础
S0 S
假塑性流动
随着S值的增大而粘度下降的流动称为假塑性流 动。 D=Sn/ ηa ηa 表观粘度,随剪切速度的改变而改变 n越大,非牛顿性越大, n=1为牛顿流体 甲基纤维素、西黄耆胶等 链状高分子的1%水溶液 表现为假塑性流动
S D
胀性流动
随着剪切力的增大其粘性也随之增大,表现为向 上突起的曲线,由于这种流体在切变过程中体积 增加,故称为胀性流动。 D=Sn/ ηa n<1
流变学在混悬剂的应用
在非牛顿流体中,只有塑性及假塑性流体才能用作混悬剂的 分散媒。 在牛顿流体中,很少采用增加粘度的办法来改善稳定性。
1 2 3
切 变 速 度
A
B 切变应力
制备混悬剂时,常选用非牛顿流体,如CMC-Na、 西黄耆胶、阿拉伯胶、皂土等作为混悬剂。 具有假塑性流动的助悬剂较牛顿流体(甘油)为佳
旋转粘度计
W
η=kv
V
圆锥平板粘度计
η=C.T/ V η=C.(T-Tf)/ V
流变学在混悬剂的应用 混悬液在静止时和经过振摇后流变性质会发生改 变。 混悬剂在贮存过程中若剪切速度小,则显示较高 的粘性;若剪切速度大,则显示较低的粘性。 混悬剂在振摇、倒出及铺展时能自由流动是形成 理性混悬剂的最佳条件
第二节 流变性质
一、牛顿流动 纯流体和多数低分子溶液在层流条件下的剪切应 力S与剪切速度D成正比,遵循该法则的液体为 牛顿流体(Newtonian fluid)。 1/ η S=F/A=ηD D=S/η 粘度与剪切速度无关, 只要温度一定,粘度就一定D NhomakorabeaS
粘度的单位
η= S/D Pa.s ,mPa.s 达因.厘米-2.秒(泊,p) 1泊=0.1 Pa.s 药学中常用厘泊(cp) 1cp=10-2泊=10-3pa.s

流变学基础

流变学基础

第十四章流变学基础第一节概述一、流变学的基本概念(一)流变学研究内容流变学—Rheology 来源于希腊的Rheos=Sream(流动)词语,是Bingham 和Crawford为了表示液体的流动和固体的变形现象而提出来的概念。

流变学主要是研究物质的变形和流动的一门科学。

对某一物体外加压力时,其内部各部分的形状和体积发生变化,即所谓的变形。

对固体施加外力,固体内部存在一种与外力相对抗的内力使固体保持原状。

此时在单位面积上存在的内力称为内应力(stress)。

对于外部应力而产生的固体的变形,当去除其应力时恢复原状的性质称为弹性(elasticity)。

把这种可逆性变形称为弹性变形(elastic deformation),而非可逆性变形称为塑形变形(plastic deformation)。

流动是液体和气体的主要性质之一,流动的难易程度与流体本身的粘性(viscosity)有关,因此流动也可视为一种非可逆性变形过程。

实际上,多数物质对外力表现为弹性和粘性双重特性,称为粘弹性物质。

(二)剪切应力与剪切速度观察河道中流水,水流方向一致,但水流速度不同,中心处的水流最快,越靠近河岸的水流越慢。

因此在流速不太快时可以将流动着的液体视为互相平行移动的液层,叫层流,如图14-1。

由于各层的速度不同,便形成速度梯度du/dy,或称剪切速度。

这反映流体流动的特征。

由于流动阻力便产生速度梯度,流动较慢的液层阻滞着流动较快液层的运动。

使各液层间产生相对运动的外力叫剪切力,在单位液层面积(A)上所需施加的这种力称为剪切应力,简称剪切力(shearing force),单位为N·m-2,以S 表示。

剪切速度(rate of shear),单位为s-1,以D 表示。

剪切应力与剪切速度是表征体系流变性质的两个基本参数。

二、流变学在药剂学中的应用流变学在药学研究中的重要意义在于可以应用流变学理论对乳剂、混悬剂、半固体制剂等的剂型设计、处方组成以及制备、质量控制等进行评价。

《药剂》课件第十四章-流变学基础

《药剂》课件第十四章-流变学基础
第十四章 流变学基础 (P343)
1
第一节 概述
一、流变学的基本概念 (一)流变学研究内容 ?流变学——Rheology来源于希腊的 Rheos=Sream (流动)词语,由 Bingham和Crawford为了表示 液 体的流动 和固体的变形 现象而提出来的概念。 ?流变学主要是研究物质的变形和流动的一门科学。
?影响乳剂黏度的还有一个主要因素为乳化剂。
?膜的物理学特性和电学性质也是影响乳剂黏性的重要因素之 一。
8
(三)流变学在半固体制剂中 的应用 在制备软膏剂和化妆品用雪花 膏时,必须控制好非牛顿流体 材料的浓度(稠度)。图表示 的是乳剂性基质,亲水性凡士 林或含有水分的亲水性凡士林 溶液的流动曲线。当亲水性凡 士林中加入水,屈服点(下降 曲线延伸与横轴相交的点)由 520g下降到 320g,同时,亲 水凡士林的塑性黏度(下降曲 线斜率的倒数)和触变性随着 水的加入而增大。
9
? 温度对软膏基质稠度 的影响,可以利用经过 改进的旋转黏度计进行 测定,并对其现象加以 解释。 ? 从图中可以看出,温 度对两种基质的影响是 一样的,而且,屈服点 的温度变化曲线也表现 为同样的性质。
10
第二节 流变性质
一.牛顿流动
液体流动时在液体内形成速度梯度,故产生流动阻力。反
映此阻力大小的切变应力 S和切变速度D有关。实验证明,纯液
非可逆性变形称为 塑形变形 。
3
?流动主要表示 液体和气体的性质。 ?流动的难易与物质本身具有的性质有关,把这种 现象称为黏性(Viscosity )。流动也视为一种非可 逆性变形过程。 ?实际上,某一种物质对外力表现为弹性和黏性双 重特性( 黏弹性 )。
4
(二)剪切应力与剪切速率 ?在流速不太快时可以将流动着的液体视为互相平行移动 的液层如图,由于各层的速度不同,便形成速度梯度 du/dy(剪切速度),这是流动的基本特征。

第14章 流变学基础

第14章 流变学基础

第十四章流变学基础第一节概述一、流变学的基本概念(一)流变学研究内容流变学—Rheology来源于希腊的Rheos=Sream(流动)词语,是Bingham和Crawford 为了表示液体的流动和固体的变形现象而提出来的概念。

流变学主要是研究物质的变形和流动的一门科学。

对某一物体外加压力时,其内部各部分的形状和体积发生变化,即所谓的变形。

对固体施加外力,固体内部存在一种与外力相对抗的内力使固体保持原状。

此时在单位面积上存在的内力称为内应力(stress)。

对于外部应力而产生的固体的变形,当去除其应力时恢复原状的性质称为弹性(elasticity)。

把这种可逆性变形称为弹性变形(elastic deformation),而非可逆性变形称为塑形变形(plastic deformation)。

流动是液体和气体的主要性质之一,流动的难易程度与流体本身的粘性(viscosity)有关,因此流动也可视为一种非可逆性变形过程。

实际上,多数物质对外力表现为弹性和粘性双重特性,称为粘弹性物质。

(二)剪切应力与剪切速度观察河道中流水,水流方向一致,但水流速度不同,中心处的水流最快,越靠近河岸的水流越慢。

因此在流速不太快时可以将流动着的液体视为互相平行移动的液层,叫层流,如图14-1。

由于各层的速度不同,便形成速度梯度du/dy,或称剪切速度。

这反映流体流动的特征。

由于流动阻力便产生速度梯度,流动较慢的液层阻滞着流动较快液层的运动。

使各液层间产生相对运动的外力叫剪切力,在单位液层面积(A)上所需施加的这种力称为剪切应力,简称剪切力(shearing force),单位为N·m-2,以S表示。

剪切速度(rate of shear),单位为s-1,以D表示。

剪切应力与剪切速度是表征体系流变性质的两个基本参数。

图14-1 流动时形成的速度梯度二、流变学在药剂学中的应用流变学在药学研究中的重要意义在于可以应用流变学理论对乳剂、混悬剂、半固体制剂等的剂型设计、处方组成以及制备、质量控制等进行评价。

流变学

流变学
第十四章 流变学基础
第一节
概述
一,流变学的基本概念 (一)流变学研究内容
流变学 流变学(rheology)系指研究物体变形和流动的科 系指研究物体变形和流动的科 年由Bengham和Crawford提出. 提出. 学,1929年由 年由 和 提出 物体的二重性:物体在外力作用下可观察到变 物体的二重性: 形和流动现象. 流变性: 形和流动现象. 流变性:物体在外力作用下表 现出来的变形性和流动性. 现出来的变形性和流动性. 流动是液体和气体的主要性质之一,流动的难 流动是液体和气体的主要性质之一, 易程度与流体本身的粘性有关, 易程度与流体本身的粘性有关,因此流动可视 为一种非可逆性变形过程. 为一种非可逆性变形过程.
流变学在药学中应用
液体
a. 混合
半固体
皮肤表面上制剂的 铺展性和粘附性 从瓶或管状容器中 制剂的挤出 与液体能够混合的 固体量 从基质中药物的释放
固体
压片或填充胶囊时 粉体的流动 粉末状或颗粒状 固体充填性
制备工艺
装量的生产能力
b. 由剪切引起的 分散系粒子的粉碎 c. 容器中的液体 的流出和流入 d. 通过管道输送 液体的制剂过程 e. 分散体系的物理 稳定性
(二)剪切应力和剪切速度 剪切应力与剪切速度是表征体系流变性 质的两个基本参数. 质的两个基本参数. 流体的层流速度不同,形成速度梯度, 流体的层流速度不同,形成速度梯度, 或称剪切速度 剪切速度. 或称剪切速度.速度梯度的产生是由于 流动阻力的存在, 流动阻力的存在,流动较慢的液层阻滞 流动较快液层的运动. 流动较快液层的运动. 使各液层间产生相对运动的外力叫剪切 在单位液层面积( 力,在单位液层面积(A)上所需施加 剪切应力, 的这种力称为剪切应力 简称剪切力. 的这种力称为剪切应力,简称剪切力.

药剂学流变学基础

药剂学流变学基础

交点
屈服值: 引起塑性液
体流动的最
低切变应力
S0(致流值)
S<S0时,形成向上弯曲的曲线——弹性形变,不流动 S>S0时,剪切速度D和剪切应力呈直线关系——流动
精品课件
塑性液体的流动公式:D=(S-S0)/pl pl ——塑性粘度
在制剂中表现为塑性流动的剂型有: 浓度较高的乳剂、混悬剂、单糖浆、涂S 剂 在其它材料中表现: 油漆、牙膏、泥浆等
精品课件
塑性流体的结构变化示意图
产生原因:体系中粒子受到范德华力或氢键作 用在静置状态下形成立体网络结构,要使体系 流动,就要破坏这些网状结构。
精品课件
(二)假塑性流动(pseudoplastic flow)
D
流动公式:D=Sn/a
a——表观粘度
剪切力增大,
粘度下降,
0
S
液体变稀
没屈服值;过原点的凹形曲线
粒径:
粒径较大时,在同样的平均粒径条件下,粒 度分布范围广的系统粘度低 连续相粘度: ✓切变速度 ——粘度 (液滴间距离增大) ✓乳化剂类型、浓度
精品课件
(三)流变学在半固体制剂中的应用
❖ 半固体制剂的处方组成发生变化时可改变其流 变性质
❖ 外界因素(如温度等)也对半固体制剂的流变 性质有影响
❖ 具有适宜的粘度是半固体制剂的处方设计和制 备工艺过程优化的关键
润滑作用相应减小,流动阻力增大,表观粘度随
之上升。
精品课件
a=Sn/D
在制剂中表现为胀性流动的剂型为: 含有大量固体微粒的高浓度混悬剂如50%淀粉
混悬剂、糊剂、淀粉、滑石粉等 在其它材料中有:
涂料、颜料等
精品课件
三、触变流动(thixotropic flow)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11
塑性流体的结构变化示意图
12
(二)假塑性流动(pseudoplastic flow)
假塑性流动:随着S值的增大而粘度下降的流动称 为假塑性流动。 在制剂中表现为假塑性流动的剂型有某些亲水性高 分子溶液及微粒分散体系处于絮凝状态的液体。 如西黄蓍胶、甲图
14
(三)胀性流动(dilatant flow)
胀性流动曲线 :曲线经过原点,且随着剪切应力的增 大其粘性也随之增大,表现为向上突起的曲线称为胀 性流动(dilatant flow)曲线 。 如滑石粉或淀粉。
15
胀性流体的结构变化示意图
16
三、触变流动(thixotropic flow)
触变性(thixotropy):象这种随着剪切应力增大,粘度下 降,剪切应力消除后粘度在等温条件下缓慢地恢复到 原来状态的现象称为触变性。 其流动曲线的特性表现为剪切应力的下降曲线与上升 曲线相比向左迁移,在图上表现为环状滞后曲线。也 就是说,与同一个S值进行比较,曲线下降时粘度低, 上升时被破坏的结构并不因为应力的减少而立即恢复 原状,而是存在一种时间差。
的函数,随温度升高而减小。
7
二、非牛顿流体
非牛顿液体(nonNewtonian fluid):不符合 牛顿定律的液体,如乳剂、混悬剂、高分 子溶液、胶体溶液等。 非牛顿流动:非牛顿液体的流动现象。
8
流变曲线:以切变速率D为纵坐标,切应力S为横 坐标作图,所得曲线为流变曲线或流动曲线。
A-牛顿流体; B-塑性流体; C-假塑性流体;D-胀性流体; E-触变性流体.
17
即所谓的触变性是施加应力使流体产生 流动时,流体的粘性下降,流动性增加; 而停止流动时,其状态恢复到原来性质 的现象。
18
四、黏弹性
粘弹性: 高分子物质或分散体系,具有粘性和 弹性的双重特性,我们把这种性质称为粘弹性。
物质被施加一定的压力而变形,并使其保持一 定应力时,应力随时间而减少,把这种现象称 为应力缓和。
对物质附加一定重量时,表现为一定的伸展性 或形变,而且随时间变化,把这种现象称为蠕 变性。
19
第三节 蠕变性质的测定方法
一点法 旋转或转动测定法
20
粘度的测定
毛细管粘度计
式中为粘度,P为液体密度.t是样品流过毛 细管的时间。
21
落球黏度计 旋转黏度计
22
谢谢大家!
9
按非牛顿液体流动曲线为类型可将非牛 顿液分为塑性流动、假塑性流动、胀性 流动、触变流动。
10
(一)塑性流动(plastic flow)
塑性流动:不过原点;有屈服值S0;当切应力 S< S0时,形成向上弯曲的曲线;当切应力S> S0 时,切变速度D和切应力呈直线关系。 屈服值(yield value):引起塑性液体流动的最低 切应力S0 塑性液体的流动公式:D=(S- S0)/ D为切变速度,S为切应力, S0 为屈服值, 为 塑性粘度(表观粘度)。 在制剂中表现为塑性流动的剂型有浓度较高的 乳剂和混悬剂。
3
二、剪切应力与剪切速率
剪切速度:由于各层的速度不同,
便形成速度梯度du/dy,称剪切
速度,用D表示。 剪切力:使各液层间产生相对运
动的外力 。 剪切应力:在单位液层面积(A)
上所需施加的这种力称为剪切应 力,用S表示。
4
牛顿液体的特点: ①一般为低分子的纯液体或稀溶液; ②在一定温度下,牛顿液体的粘度为常数,它只是温度
第 十 四 章 流 变 学 基 础 资 料
-
第十四章 流变学基础
第一节 概述 第二节 流变性质 第三节 蠕变性质的测定方法
2
第一节 概述
一、基本概念
流变学(rheology):系指研究物体在外力作用下发生变形和流动的 科学,1929年由Bengham和Crawford提出。 内应力:液体在运动中都会受到力的作用,单位面积上所用的力称 内应力。 弹性 弹性变形 塑性变形
相关文档
最新文档