2017年北京市海淀区高三二模数学(理)试题及答案
精选题库北京市海淀区高考数学二模试卷及参考答案(理科)
![精选题库北京市海淀区高考数学二模试卷及参考答案(理科)](https://img.taocdn.com/s3/m/c8acdd259b89680203d825f2.png)
本文部分内容来自网络,本人不为其真实性负责,如有异议请及时联系,本人将予以删除本文部分内容来自网络,本人不为其真实性负责,如有异议请及时联系,本人将予以删除2018年北京市海淀区高考数学二模试卷(理科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)已知全集U={1,2,3,4,5,6},集合A={1,2,4},B={1,3,5},则(?U A)∩B=()A.{1}B.{3,5}C.{1,6}D.{1,3,5,6} 2.(5分)已知复数z在复平面上对应的点为(1,﹣1),则()A.z+1是实数B.z+1是纯虚数C.z+i是实数D.z+i是纯虚数3.(5分)已知x>y>0,则()A.B.C.cosx>cosy D.ln(x+1)>ln(y+1)4.(5分)若直线x+y+a=0是圆x2+y2﹣2y=0的一条对称轴,则a的值为()A.1B.﹣1C.2D.﹣25.(5分)设曲线C是双曲线,则“C的方程为”是“C的渐近线方程为y=±2x”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6.(5分)关于函数f(x)=sinx﹣xcosx,下列说法错误的是()A.f(x)是奇函数B.0不是f(x)的极值点C.f(x)在,上有且仅有3个零点D.f(x)的值域是R7.(5分)已知某算法的程序框图如图所示,则该算法的功能是()A.求首项为1,公比为2的等比数列的前2017项的和B.求首项为1,公比为2的等比数列的前2018项的和C.求首项为1,公比为4的等比数列的前1009项的和D.求首项为1,公比为4的等比数列的前1010项的和8.(5分)已知集合M={x∈N*|1≤x≤15},集合A1,A2,A3满足①每个集合都恰有5个元素②A1∪A2∪A3=M,集合A i中元素的最大值与最小值之和称为集合A i的特征数,记为X i(i=1,2,3),则X1+X2+X3的值不可能为()A.37B.39C.48D.57二、填空题共6小题,每小题5分,共30分.9.(5分)极坐标系中,点到直线ρcosθ=1的距离为.10.(5分)在的二项展开式中,x3的系数是(用数字作答).11.(5分)已知平面向量,的夹角为,且满足,,则=,=.12.(5分)在△ABC中,a:b:c=4:5:6,则tanA=.13.(5分)能够使得命题“曲线上存在四个点P,Q,R,S满足四边形PQRS是正方形”为真命题的一个实数a的值为.14.(5分)如图,棱长为2的正方体ABCD﹣A1B1C1D1中,M是棱AA1的中点,点P在侧面ABB1A1内,若D1P垂直于CM,则△PBC的面积的最小值为.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)如图,已知函数f(x)=Asinx(ωx+φ)()在一个周期内的图象经过,,三点(Ⅰ)写出A,ω,φ的值;(Ⅱ)若,且f(α)=1,求cos2α的值.16.(13分)某中学为了解高二年级中华传统文化经典阅读的整体情况,从高二年级随机抽取10名学生进行了两轮测试,并把两轮测试成绩的平均分作为该名学生的考核成绩.记录的数据如下:1号2号3号4号5号6号7号8号9号10号第一轮测试成绩96898888929087909290第二轮测试成绩90909088888796928992(Ⅰ)从该校高二年级随机选取一名学生,试估计这名学生考核成绩大于90分的概率;(Ⅱ)从考核成绩大于90分的学生中再随机抽取两名同学,求这两名同学两轮测试成绩均大于等于90分的概率;(Ⅲ)记抽取的10名学生第一轮测试的平均数和方差分别为,,考核成绩的平均数和方差分别为,,试比较与,与的大小.(只需写出结论)17.(14分)如图,在三棱柱ABC﹣A1B1C1中,AC=BC=AB1=2,AB1⊥平面ABC,AC1⊥AC,D,E分别是AC,B1C1的中点(Ⅰ)证明:AC⊥B1C1;(Ⅱ)证明:DE∥平面AA1B1B;(Ⅲ)求DE与平面BB1C1C所成角的正弦值.18.(14分)已知椭圆C:,F为右焦点,圆O:x2+y2=1,P为椭圆C 上一点,且P位于第一象限,过点P作PT与圆O相切于点T,使得点F,T 在OP的两侧.(Ⅰ)求椭圆C的焦距及离心率;(Ⅱ)求四边形OFPT面积的最大值.19.(13分)已知函数f(x)=e ax﹣ax﹣3(a≠0)(Ⅰ)求f(x)的极值;(Ⅱ)当a>0时,设,求证:曲线y=g(x)存在两条斜率为﹣1且不重合的切线.20.(13分)如果数列{a n}满足“对任意正整数i,j,i≠j,都存在正整数k,使得a k=a i a j”,则称数列{a n}具有“性质P”.已知数列{a n}是无穷项的等差数列,公差为d(Ⅰ)若a1=2,公差d=3,判断数列{a n}是否具有“性质P”,并说明理由;(Ⅱ)若数列{a n}具有“性质P”,求证:a1≥0且d≥0;(Ⅲ)若数列{a n}具有“性质P”,且存在正整数k,使得a k=2018,这样的数列共有多少个?并说明理由.2018年北京市海淀区高考数学二模试卷(理科)参考答案与试题解析一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)已知全集U={1,2,3,4,5,6},集合A={1,2,4},B={1,3,5},则(?U A)∩B=()A.{1}B.{3,5}C.{1,6}D.{1,3,5,6}【解答】解:?U A={3,5,6};∴(?U A)∩B={3,5}.故选:B.2.(5分)已知复数z在复平面上对应的点为(1,﹣1),则()A.z+1是实数B.z+1是纯虚数C.z+i是实数D.z+i是纯虚数【解答】解:复数z在复平面上对应的点为(1,﹣1),则z=1﹣i,∴z+1=2﹣i,z+i=1.因此只有C正确.故选:C.3.(5分)已知x>y>0,则()A.B.C.cosx>cosy D.ln(x+1)>ln(y+1)【解答】解:x>y>0,∴<,<,cosx与cos y的大小关系不确定,ln(x+1)>ln(y+1).故选:D.4.(5分)若直线x+y+a=0是圆x2+y2﹣2y=0的一条对称轴,则a的值为()A.1B.﹣1C.2D.﹣2【解答】解:圆x2+y2﹣2y=0化为x2+(y﹣1)2=1,圆心坐标为(0,1),∵直线x+y+a=0是圆x2+y2﹣2y=0的一条对称轴,∴0+1+a=0,即a=﹣1.故选:B.5.(5分)设曲线C是双曲线,则“C的方程为”是“C的渐近线方程为y=±2x”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:C的方程为,则双曲线的渐近线方程为y=±2x,即充分性成立,双曲线﹣x2=1的渐近线方程也是y=±2x,即必要性不成立,故“C的方程为”是“C的渐近线方程为y=±2x”的充分不必要条件,故选:A.6.(5分)关于函数f(x)=sinx﹣xcosx,下列说法错误的是()A.f(x)是奇函数B.0不是f(x)的极值点C.f(x)在,上有且仅有3个零点D.f(x)的值域是R【解答】解:对于A:由f(﹣x)=sin(﹣x)+xcos(﹣x)=﹣f(x),∴f(x)是奇函数,A对;对于B,f(x)=sinx﹣xcos x,f′(x)=cosx﹣cosx﹣xsinx=﹣xsinx,当x=0时,f(x)=0,f′(x)=0,0不是f(x)的极值点.B对.对于C:f(x)=sinx﹣xcosx,f′(x)=cos x﹣cosx﹣xsinx=﹣xsinx,可得在(,0)上单调递增.(0,)上单调递减.f(0)可得最大值,f(0)=0,所以,f(x)在,上不是3个零点.C不对;对于D:当x无限大或无线小时,可得f(x)的值域为R,D对.故选:C.7.(5分)已知某算法的程序框图如图所示,则该算法的功能是()A.求首项为1,公比为2的等比数列的前2017项的和B.求首项为1,公比为2的等比数列的前2018项的和C.求首项为1,公比为4的等比数列的前1009项的和D.求首项为1,公比为4的等比数列的前1010项的和【解答】解:由已知中的程序框图可知:该程序的循环变量n的初值为1,终值为2019,步长为2,故循环共执行了1009次由S中第一次累加的是21﹣1=1,第二次累加的是23﹣1=4,……故该算法的功能是求首项为1,公比为4的等比数列的前1009项的和,故选:C.8.(5分)已知集合M={x∈N*|1≤x≤15},集合A1,A2,A3满足①每个集合都恰有5个元素②A1∪A2∪A3=M,集合A i中元素的最大值与最小值之和称为集合A i的特征数,记为X i(i=1,2,3),则X1+X2+X3的值不可能为()A.37B.39C.48D.57【解答】解:由题意集合M={x∈N*|1≤x≤15}={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15},当A1={1,4,5,6,7},A2={3,12,13,14,15},A3={2,8,9,10,11}时,X1+X2+X3=8+18+13=39,故排除B选项;当A1={1,4,5,6,15},A2={2,7,8,9,14},A3={3,10,11,12,13}时,X1+X2+X3=16+16+16=48,故排除C选项;当A1={1,2,3,4,15},A2={5,6,7,8,14},A3={9,10,11,12,13}时,X1+X2+X3=16+19+22=57,故排除D选项.∴X1+X2+X3的值不可能为37.故选:A.二、填空题共6小题,每小题5分,共30分.9.(5分)极坐标系中,点到直线ρcosθ=1的距离为1.【解答】解:把点(2,)转换为直角坐标为:(0,2),直线ρcosθ=1转换为直角坐标方程为:x=1,则:点(0,2)到直线x=1的距离为:d=1.如图所示:故答案为:110.(5分)在的二项展开式中,x3的系数是10(用数字作答).【解答】解:因为其通项为:T r+1=c5r x5﹣r?=2r?c5r?x5﹣2r.令5﹣2r=3得r=1,所以:x3的系数为21×c51=10.故答案为:10.11.(5分)已知平面向量,的夹角为,且满足,,则=1,=2.【解答】解:∵向量与的夹角为,||=2,||=1,∴?=||?||?cos=2×1×=1,∴|+2|2=||2+4||2+4?=4+4+4=12,∴|+2|=2,故答案为:1,212.(5分)在△ABC中,a:b:c=4:5:6,则tanA=.【解答】解:△ABC中,a:b:c=4:5:6,设a=4k,b=5k,c=6k,k>0,则cosA===,∴sinA===;∴tan A==.故答案为:.13.(5分)能够使得命题“曲线上存在四个点P,Q,R,S满足四边形PQRS是正方形”为真命题的一个实数a的值为a<﹣2或a>2的任意实数.【解答】解:曲线上存在四个点P,Q,R,S满足四边形PQRS是正方形,可设P(m,n),(m>0,n>0),由对称性可得Q(﹣m,n),R(﹣m,﹣n),S(m,﹣n),则|PQ|=|QR|,即2m=2n,即m=n,由曲线的方程可得﹣=1,即﹣=1有解,即有m2=>4,可得>0,解得a>2或a<﹣2,故答案为:a>2或a<﹣2的任意实数.14.(5分)如图,棱长为2的正方体ABCD﹣A1B1C1D1中,M是棱AA1的中点,点P在侧面ABB1A1内,若D1P垂直于CM,则△PBC的面积的最小值为.【解答】解:以AB,AD,AA1为坐标轴建立空间坐标系如图所示:则M(0,0,1),C(2,2,0),D1(0,2,2),设P(a,0,b),则=(a,﹣2,b﹣2),=(﹣2,﹣2,1),∵D1P⊥CM,∴=﹣2a+4+b﹣2=0,即b=2a﹣2.取AB的中点N,连结B1N,则P点轨迹为线段B1N,过B作BQ⊥B1N,则BQ==.又BC⊥平面ABB1A1,故BC⊥BQ,∴S△PBC的最小值为S△QBC==.故答案为:.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)如图,已知函数f(x)=Asinx(ωx+φ)()在一个周期内的图象经过,,三点(Ⅰ)写出A,ω,φ的值;(Ⅱ)若,且f(α)=1,求cos2α的值.【解答】解:(Ⅰ)=,即x=为图象的一条对称轴,可得A=2,=﹣,∴ω=2,再结合五点法作图可得2×+φ=0,求得.(Ⅱ)由(Ⅰ)得,,∵f(α)=1,∴.∵,∴,∴,∴,∴.16.(13分)某中学为了解高二年级中华传统文化经典阅读的整体情况,从高二年级随机抽取10名学生进行了两轮测试,并把两轮测试成绩的平均分作为该名学生的考核成绩.记录的数据如下:1号2号3号4号5号6号7号8号9号10号第一轮测试成绩96898888929087909290第二轮测试成绩90909088888796928992(Ⅰ)从该校高二年级随机选取一名学生,试估计这名学生考核成绩大于90分的概率;(Ⅱ)从考核成绩大于90分的学生中再随机抽取两名同学,求这两名同学两轮测试成绩均大于等于90分的概率;(Ⅲ)记抽取的10名学生第一轮测试的平均数和方差分别为,,考核成绩的平均数和方差分别为,,试比较与,与的大小.(只需写出结论)【解答】(本小题共13分)解:(Ⅰ)这10名学生的考核成绩(单位:分)分别为:93,89.5,89,88,90,88.5,91.5,91,90.5,91.其中大于90分的有1号、7号、8号、9号、10号,共5人.所以样本中学生考核成绩大于90分的频率为:=0.5,从该校高二年级随机选取一名学生,估计这名学生考核成绩大于90分的概率为0.5.………………………………………….(4分)(Ⅱ)设事件A:从上述考核成绩大于等于90分的学生中再随机抽取两名同学,这两名同学两轮测试成绩均大于等于90分.考核成绩大于等于90分的学生共6人,其中两轮测试成绩均大于等于90分的学生有1号,8号,10号,共3人.所以,.(9分)(Ⅲ),.(13分)17.(14分)如图,在三棱柱ABC﹣A1B1C1中,AC=BC=AB1=2,AB1⊥平面ABC,AC1⊥AC,D,E分别是AC,B1C1的中点(Ⅰ)证明:AC⊥B1C1;(Ⅱ)证明:DE∥平面AA1B1B;(Ⅲ)求DE与平面BB1C1C所成角的正弦值.【解答】(本小题共14分)证明:(Ⅰ)因为AB1⊥平面ABC,AC?平面ABC,所以AB1⊥AC.因为AC1⊥AC,AB1∩AC1=A,AB1,AC1?平面AB1C1,所以AC⊥平面AB1C1.因为B1C1?平面AB1C1,所以AC⊥B1C1.(4分)(Ⅱ)取A1B1的中点M,连接MA、ME.因为E、M分别是B1C1、A1B1的中点,所以ME∥A1C1,且ME=.在三棱柱ABC﹣A1B1C1中,AD∥A1C1,且,所以ME∥AD,且ME=AD,所以四边形ADEM是平行四边形,所以DE∥AM.又AM?平面AA1B1B,DE?平面AA1B1B,所以DE∥平面AA1BB.(9分)解:(Ⅲ)在三棱柱ABC﹣A1B1C1中,BC∥B1C1,因为AC⊥B1C1,所以AC⊥BC.在平面ACB1内,过点C作Cz∥AB1,因为,AB1⊥平面ABC,所以,Cz⊥平面ABC.建立空间直角坐标系C﹣xyz,如图.则C(0,0,0),B(2,0,0),B1(0,2,2),C1(﹣2,2,2),D(0,1,0),E(﹣1,2,2).,,.设平面BB1C1C的法向量为=(x,y,z),则,即,得x=0,令y=1,得z=﹣1,故=(0,1,﹣1).设直线DE与平面BB1C1C所成的角为θ,则sinθ=|cos<,>|==,所以直线DE与平面BB1C1C所成角的正弦值为.(14分)18.(14分)已知椭圆C:,F为右焦点,圆O:x2+y2=1,P为椭圆C 上一点,且P位于第一象限,过点P作PT与圆O相切于点T,使得点F,T 在OP的两侧.(Ⅰ)求椭圆C的焦距及离心率;(Ⅱ)求四边形OFPT面积的最大值.【解答】解:(Ⅰ)在椭圆C:中,a=2,b=1,所以,故椭圆C的焦距为,离心率.(Ⅱ)设P(x0,y0)(x0>0,y0>0),则,故.所以,所以,.又O(0,0),,故.因此=.由,得,即x0?y0≤1,所以,当且仅当,即,时等号成立.19.(13分)已知函数f(x)=e ax﹣ax﹣3(a≠0)(Ⅰ)求f(x)的极值;(Ⅱ)当a>0时,设,求证:曲线y=g(x)存在两条斜率为﹣1且不重合的切线.【解答】解:(Ⅰ)f'(x)=a?e ax﹣a=a?(e ax﹣1)(a≠0,x∈R),令f'(x)=0,得x=0.①当a>0时,f'(x)与e ax﹣1符号相同,当x变化时,f'(x),f(x)的变化情况如下表:x(﹣∞,0)0(0,+∞)f'(x)﹣0+f(x)↘极小↗②当a<0时,f'(x)与e ax﹣1符号相反,当x变化时,f'(x),f(x)的变化情况如下表:x(﹣∞,0)0(0,+∞)f'(x)﹣0+f(x)↘极小↗综上,f(x)在x=0处取得极小值f(0)=﹣2.(7分)(Ⅱ)g'(x)=e ax﹣ax﹣3=f(x)(a>0,x∈R),故g'(x)=﹣1?f(x)=﹣1.注意到f(0)=﹣2<﹣1,,,所以,,,使得f(x1)=f(x2)=﹣1.因此,曲线y=g(x)在点P1(x1,f(x1)),P2(x2,f(x2))处的切线斜率均为﹣1.下面,只需证明曲线y=g(x)在点P1(x1,f(x1)),P2(x2,f(x2))处的切线不重合.曲线y=g(x)在点P i(x i,f(x i))(i=1,2)处的切线方程为y﹣g(x i)=﹣(x﹣x i),即y=﹣x+g(x i)+x i.假设曲线y=g(x)在点P i(x i,f(x i))(i=1,2)处的切线重合,则g(x2)+x2=g(x1)+x1.令G(x)=g(x)+x,则G(x1)=G(x2),且G'(x)=g'(x)+1=f(x)+1.由(Ⅰ)知,当x∈(x1,x2)时,f(x)<﹣1,故G'(x)<0.所以,G(x)在区间[x1,x2]上单调递减,于是有G(x1)>G(x2),矛盾!因此,曲线y=g(x)在点P i(x i,f(x i))(i=1,2)处的切线不重合.(13分)20.(13分)如果数列{a n}满足“对任意正整数i,j,i≠j,都存在正整数k,使得a k=a i a j”,则称数列{a n}具有“性质P”.已知数列{a n}是无穷项的等差数列,公差为d(Ⅰ)若a1=2,公差d=3,判断数列{a n}是否具有“性质P”,并说明理由;(Ⅱ)若数列{a n}具有“性质P”,求证:a1≥0且d≥0;(Ⅲ)若数列{a n}具有“性质P”,且存在正整数k,使得a k=2018,这样的数列共有多少个?并说明理由.【解答】解:(Ⅰ)若a1=2,公差d=3,则数列{a n}不具有性质P.理由如下:由题知a n=3n﹣1,对于a1和a2,假设存在正整数k,使得a k=a1a2,则有3k﹣1=2×5=10,解得,得出矛盾,所以对任意的k∈N*,a k≠a1a2.(Ⅱ)若数列{a n}具有“性质P”,则:①假设a1<0,d≤0,则对任意的n∈N*,a n=a1+(n﹣1)?d<0.设a k=a1×a2,则a k>0,矛盾!②假设a1<0,d>0,则存在正整数t,使得a1<a2<a3<…<a t≤0<a t+1<a t+2<…设,,,…,,,i=1,2,…,t+1,则:,但数列{a n}中仅有t项小于等于0,矛盾!③假设a1≥0,d<0,则存在正整数t,使得a1>a2>a3>…>a t≥0>a t+1>a t+2>…设,,,…,,,i=1,2,…,t+1,则:,但数列{a n}中仅有t项大于等于0,矛盾!综上,a1≥0,d≥0.(Ⅲ)设公差为d的等差数列{a n}具有“性质P”,且存在正整数k,使得a k=2018.若d=0,则{a n}为常数数列,此时a n=2018恒成立,故对任意的正整数k,,这与数列{a n}具有“性质P”矛盾,故d≠0.设x是数列{a n}中的任意一项,则x+d,x+2d均是数列{a n}中的项,设,则,因为d≠0,所以x=k2﹣k1∈Z,即数列{a n}的每一项均是整数.由(Ⅱ)知,a1≥0,d≥0,故数列{a n}的每一项均是自然数,且d是正整数.由题意知,2018+d是数列{a n}中的项,故2018?(2018+d)是数列中的项,设a m=2018?(2018+d),则a m﹣a k=2018?(2018+d)﹣2018=2018×2017+2018d =(m﹣k)?d,即(m﹣k﹣2018)?d=2018×2017.因为m﹣k﹣2018∈Z,d∈N*,故d是2018×2017的约数.所以,d=1,2,1009,2017,2×1009,2×2017,1009×2017,2×1009×2017.当d=1时,a1=2018﹣(k﹣1)≥0,得k=1,2,…,2018,2019,故a1=2018,2017,…,2,1,0,共2019种可能;当d=2时,a1=2018﹣2(k﹣1)≥0,得k=1,2,…,1008,1009,1010,故a1=2018,2016,2014,…,4,2,0,共1010种可能;当d=1009时,a1=2018﹣1009×(k﹣1)≥0,得k=1,2,3,故a1=2018,1009,0,共3种可能;当d=2017时,a1=2018﹣2017(k﹣1)≥0,得k=1,2,故a1=2018,1,共2种可能;当d=2×1009时,a1=2018﹣2018×(k﹣1)≥0,得k=1,2,故a1=2018,0,共2种可能;当d=2×2017时,a1=2018﹣2×2017×(k﹣1)≥0,得k=1,故a1=2018,共1种可能;当d=1009×2017时,a1=2018﹣1009×2017×(k﹣1)≥0,得k=1,故a1=2018,共1种可能;当d=2×1009×2017时,a1=2018﹣2×1009×2017×(k﹣1)≥0,得k=1,故a1=2018,共1种可能.综上,满足题意的数列{a n}共有2019+1010+3+2+2+1+1+1=3039(种).经检验,这些数列均符合题意.免责声明:本文仅代表作者个人观点,作参考,并请自行核实相关内容.声明:本文部分内容来自网络,本司不为其真实性负责,如有异议请及时联系,本司将予以删除本文部分内容来自网络,本人不为其真实性负责,如有异议请及时联系,本人将予以删除BaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadi ubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubai dubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiu BaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadi ubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubai dubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiu BaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadi ubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubai dubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiu BaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadi ubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubai dubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiu BaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadi ubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubai dubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiu BaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadi ubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubai dubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiu BaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadi ubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiu BaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadi ubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubai dubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiu BaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadi ubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubai dubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiu BaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadi ubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubai dubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiu BaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadi ubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubai dubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiu第21页(共21页)。
2017北京市海淀区高三(上)期末数学(理)
![2017北京市海淀区高三(上)期末数学(理)](https://img.taocdn.com/s3/m/ef7fb5640740be1e650e9ae0.png)
2017北京市海淀区高三(上)期末数学(理)一、选择题(共8小题,每小题5分,满分40分)1.抛物线y2=2x的焦点到准线的距离为()A.B.1 C.2 D.32.在极坐标系中,点(1,)与点(1,)的距离为()A.1 B.C.D.3.如图程序框图所示的算法来自于《九章算术》,若输入a的值为16,b的值为24,则执行该程序框图的结果为()A.6 B.7 C.8 D.94.已知向量,满足,()=2,则=()A.﹣ B.C.﹣2 D.25.已知直线l经过双曲线的一个焦点且与其一条渐近线平行,则直线l的方程可以是()A.y=﹣B.y=C.y=2x﹣D.y=﹣2x+6.设x,y满足,则(x+1)2+y2的最小值为()A.1 B.C.5 D.97.在手绘涂色本的某页上画有排成一列的6条未涂色的鱼,小明用红、蓝两种颜色给这些鱼涂色,每条鱼只能涂一种颜色,两条相邻的鱼不都涂成红色,涂色后,既有红色鱼又有蓝色鱼的涂色方法种数为()A.14 B.16 C.18 D.208.如图,已知正方体ABCD﹣A1B1C1D1的棱长为1,E,F分别是棱AD,B1C1上的动点,设AE=x,B1F=y,若棱DD1与平面BEF有公共点,则x+y的取值范围是()A.[0,1] B.[,] C.[1,2] D.[,2]二、填空题(共6小题,每小题5分,满分30分)9.已知复数z满足(1+i)z=2,则z= .10.6的展开式中常数项是.(用数字作答)11.若一个几何体由正方体挖去一部分得到,其三视图如图所示,则该几何体的体积为.12.已知圆C:x2﹣2x+y2=0,则圆心坐标为;若直线l过点(﹣1,0)且与圆C相切,则直线l的方程为.13.已知函数y=2sin(ωx+φ)(ω>0,|φ|<).①若f(0)=1,则φ=;②若∃x∈R,使f(x+2)﹣f(x)=4成立,则ω的最小值是.14.已知函数f(x)=e﹣|x|+cosπx,给出下列命题:①f(x)的最大值为2;②f(x)在(﹣10,10)内的零点之和为0;③f(x)的任何一个极大值都大于1.其中,所有正确命题的序号是.三、解答题(共6小题,满分80分)15.(13分)在△ABC中,c=2a,B=120°,且△ABC面积为.(1)求b的值;(2)求tanA的值.16.(13分)诚信是立身之本,道德之基,某校学生会创设了“诚信水站”,既便于学生用水,又推进诚信教育,并用“”表示每周“水站诚信度”,为了便于数据分析,以四周为一周期,如表为该水站连续十二周(共三个周期)的诚信数据统计:第一周第二周第三周第四周第一个周期 95% 98% 92% 88%第二个周期 94% 94% 83% 80%第三个周期 85% 92% 95% 96%(1)计算表中十二周“水站诚信度”的平均数;(2)分别从表中每个周期的4个数据中随机抽取1个数据,设随机变量X表示取出的3个数据中“水站诚信度”超过91%的数据的个数,求随机变量X的分布列和期望;(3)已知学生会分别在第一个周期的第四周末和第二个周期的第四周末各举行了一次“以诚信为本”的主题教育活动,根据已有数据,说明两次主题教育活动的宣传效果,并根据已有数据陈述理由.17.(14分)如图1,在梯形ABCD中,AB∥DC,∠ABC=90°,AB=2DC=2BC=4,O是边AB的中点,将三角形AOD饶边OD所在直线旋转到A,OD位置,使得∠A,OB=120°,如图2,设m为平面A1DC与平面A1OB的交线.(1)判断直线DC与直线m的位置关系并证明;(2)若在直线m上的点G满足OG⊥A1D,求出A1G的长;(3)求直线A1O与平面A1BD所成角的正弦值.18.(13分)已知A(0,2),B(3,1)是椭圆G:上的两点.(1)求椭圆G的离心率;(2)已知直线l过点B,且与椭圆G交于另一点C(不同于点A),若以BC为直线的圆经过点A,求直线l的方程.19.(14分)已知函数f(x)=lnx﹣.(1)若曲线y=f(x)存在斜率为﹣1的切线,求实数a的取值范围;(2)求f(x)的单调区间;(3)设函数g(x)=,求证:当﹣1<a<0时,g(x)在(1,+∞)上存在极小值.20.(13分)对于无穷数列{a n},{b n},若b i=max{a1,a2,…,a i}﹣min{a1,a2,…,a k}(k=1,2,3,…),则称{b n}是{a n}的“收缩数列”,其中max{a1,a2,…,a k},min{a1,a2,…,a k}分别表示a1,a2,…,a k中的最大数和最小数.已知{a n}为无穷数列,其前n项和为S n,数列{b n}是{a n}的“收缩数列”.(1)若a n=2n+1,求{b n}的前n项和;(2)证明:{b n}的“收缩数列”仍是{b n};(3)若S1+S2+…+S n=(n=1,2,3,…),求所有满足该条件的{a n}.数学试题答案一、选择题(共8小题,每小题5分,满分40分)1.【考点】抛物线的简单性质.【分析】利用抛物线的方程求出p即可得到结果.【解答】解:抛物线y2=2x的焦点到准线的距离为:p=1.故选:B.【点评】本题考查抛物线的简单性质的应用,是基础题.2.【考点】极坐标刻画点的位置.【分析】极坐标化为直角坐标,即可得出结论.【解答】解:点(1,)与点(1,)的距离,即点(,)与点(﹣,)的距离为,故选B.【点评】本题考查极坐标与直角坐标的互化,比较基础.3.【考点】程序框图.【分析】模拟程序的运行,根据程序流程,依次判断写出a,b的值,可得当a=b=8时,不满足条件a≠b,输出a 的值为8,即可得解.【解答】解:模拟程序的运行,可得a=16,b=24满足条件a≠b,不满足条件a>b,b=24﹣16=8,满足条件a≠b,满足条件a>b,a=16﹣8=8,不满足条件a≠b,输出a的值为8.故选:C.【点评】本题考查的知识点是循环结构,当循环次数不多时,多采用模拟循环的方法,本题属于基础题.4.【考点】平面向量数量积的运算.【分析】根据平面向量的线性运算与数量积运算,即可求出的值.【解答】解:向量,满足+2=,即++=,∴+=﹣,又()=2,∴﹣•=2,∴=﹣2.故选:C.【点评】本题考查了平面向量的线性运算和数量积运算的问题,是基础题.5.【考点】双曲线的简单性质.【分析】求出双曲线的渐近线方程,以及双曲线的焦点坐标,然后求解即可.【解答】解:直线l经过双曲线的焦点(,0),渐近线方程为:y=,选项C、D错误;焦点坐标代入选项A正确,选项B错误.故选:A.【点评】本题考查双曲线的简单性质的应用,考查计算能力.6.【考点】简单线性规划.【分析】作出不等式组对应的平面区域,根据两点间的距离公式进行求解即可.【解答】解:作出不等式组对应的平面区域如图:(x+1)2+y2的几何意义是区域内的点到定点A(﹣1,0)的距离的平方,由图象知A到直线x+y﹣2=0的距离最小,此时距离d==,则距离的平方d2=()2=,故选:B.【点评】本题主要考查线性规划的应用,根据两点间的距离公式是解决本题的关键.7.【考点】排列、组合的实际应用.【分析】分类讨论,利用加法原理,可得结论.【解答】解:红色用1次,有6种方法,红色用2次,有2+3+4=9种方法,红色用3次,有3种方法,共18种,故选C.【点评】本题考查计数原理的运用,考查学生的计算能力,比较基础.8.【考点】空间中直线与平面之间的位置关系.【分析】由题意,若x=y=1,则棱DD1与平面BEF交于点D,若x=1,y=0,则棱DD1与平面BEF交于线段DD1,即可得出结论.【解答】解:由题意,若x=y=1,则棱DD1与平面BEF交于点D,符合题意;若x=1,y=0,则棱DD1与平面BEF交于线段DD1,符合题意.故选C.【点评】本题考查线面位置关系,考查特殊法的运用,属于中档题.二、填空题(共6小题,每小题5分,满分30分)9.【考点】复数代数形式的乘除运算.【分析】把已知等式变形,再由复数代数形式的乘除运算化简得答案.【解答】解:由(1+i)z=2,得,故答案为:1﹣i.【点评】本题考查复数代数形式的乘除运算,是基础的计算题.10.【考点】二项式定理的应用.【分析】本题可通过通项公式T r+1=C n r a n﹣r b r来确定常数项,从而根据常数相中x的指数幂为0即可确定C6r(x2)6﹣r中r的值,然后即可求出常数项是15【解答】解:设通项公式为,整理得C6r x12﹣3r,因为是常数项,所以12﹣3r=0,所以r=4,故常数项是c64=15故答案为15.【点评】本题主要考查二项式定理中通项公式的应用,属于基础题型.难度系数0.9.一般的通项公式的主要应用是求常数项,求有理项或者求某一项的系数,二项式系数等.所以在今后遇到这样的试题时首先都可以尝试用通项来加以解决.11.【考点】棱柱、棱锥、棱台的体积;由三视图求面积、体积.【分析】由已知中的三视图可得:该几何体是一个正方体挖去一个同底同高的四棱锥得到的组合体,分别计算他们的体积,相减可得答案.【解答】解:由已知中的三视图可得:该几何体是一个正方体挖去一个同底同高的四棱锥得到的组合体,正方体的体积为:2×2×2=8,四棱锥的体积为:×2×2×2=,故组合体的体积V=8﹣=,故答案为:【点评】本题考查的知识点是棱柱的体积和表面积,棱锥的体积和表面积,简单几何体的三视图,难度中档.12.【考点】圆的一般方程.【分析】圆的方程化为标准方程,可得圆心坐标;圆心到直线的距离d==1,可得直线方程.【解答】解:圆C:x2﹣2x+y2=0,可化为(x﹣1)2+y2=1,圆心坐标为(1,0),设直线l的方程为y﹣0=k(x+1),即kx﹣y+k=0,圆心到直线的距离d==1,∴k=±,∴直线l的方程为y=±(x+1),故答案为(1,0),y=±(x+1)【点评】本题考查圆的方程,考查直线与圆的位置关系,考查学生的计算能力,属于中档题.13.【考点】y=Asin(ωx+φ)中参数的物理意义.【分析】①由已知可得sinφ=,利用正弦函数的图象及特殊角的三角函数值,结合范围|φ|<,即可得解φ的值.②化简已知等式可得sin(ωx+2ω+φ)﹣sin(ωx+φ)=2,由正弦函数的性质可求ω=(k1﹣k2)π﹣,k1,k2∈Z,结合范围ω>0,即可得解ω的最小值.【解答】解:①∵由已知可得2sinφ=1,可得:sinφ=,∴可得:φ=2kπ+,或φ=2kπ+,k∈Z,∵|φ|<,∴当k=0时,φ=.②∵∃x∈R,使2sin[ω(x+2)+φ]﹣2sin(ωx+φ)=4成立,即:sin(ωx+2ω+φ)﹣sin(ωx+φ)=2,∴∃x∈R,使ωx+2ω+φ=2k1π+,ωx+φ=2k2π+,k∈Z,∴解得:ω=k1π﹣k2π﹣,k1,k2∈Z,又∵ω>0,|∴ω的最小值是.故答案为:,.【点评】本题主要考查了正弦函数的图象和性质,特殊角的三角函数值的综合应用,考查了数形结合思想的应用,属于中档题.14.【考点】命题的真假判断与应用.【分析】根据已知中函数f(x)=e﹣|x|+cosπx,分析函数的最值,对称性,极值,进而可得答案.【解答】解:由→0,故当x=0时,f(x)的最大值为2,故①正确;函数f(x)=e﹣|x|+cosπx,满足f(﹣x)=f(x),故函数为偶函数;其零点关于原点对称,故f(x)在(﹣10,10)内的零点之和为0,故②正确;当cosπx取极大值1时,函数f(x)=e﹣|x|+cosπx取极大值,但均大于1,故③正确;故答案为:①②③【点评】本题以命题的真假判断与应用为载体,考查了函数的最值,函数的极值,函数的零点,函数的奇偶性等知识点,难度中档.三、解答题(共6小题,满分80分)15.【考点】正弦定理.【分析】(1)由已知利用三角形面积公式可求a,c的值,进而利用余弦定理可求b的值.(2)由余弦定理可求cosA的值,进而利用同角三角函数基本关系式可求tanA=的值.【解答】(本题满分为13分)解:(1)∵c=2a,B=120°,△ABC面积为=acsinB=.∴解得:a=1,c=2,∴由余弦定理可得:b===.(2)∵a=1,c=2,b=,∴cosA==,∴tanA==.【点评】本题主要考查了三角形面积公式,余弦定理,同角三角函数基本关系式在解三角形中的应用,考查了计算能力和转化思想,属于基础题.16.【考点】离散型随机变量的期望与方差;众数、中位数、平均数;离散型随机变量及其分布列.【分析】(1)利用平均数公式能求出表中十二周“水站诚信度”的平均数.(2)随机变量X的可能取值为0,1,2,3,分别求出相应的概率,由此能求出X的分布列和数学期望.(3)两次活动效果均好,活动举办后,“水站诚信度”由88%→94%和80%到85%看出,后继一周都有提升.【解答】解:(1)表中十二周“水站诚信度”的平均数:=×=91%.(2)随机变量X的可能取值为0,1,2,3,P(X=0)==,P(X=1)==,P(X=2)=,P(X=3)=,∴X的分布列为:X 0 1 2 3PEX==2.(3)两次活动效果均好.理由:活动举办后,“水站诚信度”由88%→94%和80%到85%看出,后继一周都有提升.【点评】本题考查平均数的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,在历年高考中都是必考题型之一.17.【考点】直线与平面所成的角;点、线、面间的距离计算.【分析】(1)利用线面平行的性质判断并证明直线DC与直线m的位置关系;(2)A1D在平面A1OB中的射影为A1O,OG⊥A1O,即可求出A1G的长;(3)求出O到平面A1DB的距离,即可求直线A1O与平面A1BD所成角的正弦值.【解答】解:(1)∵DC∥OB,DC⊄平面A1OB,OB⊂平面A1OB∴DC∥平面A1OB,∵m为平面A1DC与平面A1OB的交线,∴DC∥m;(2)由题意,A1D在平面A1OB中的射影为A1O,∴OG⊥A1O,∴A1G=2A1O=4;(3)△A1OB中,A1B==2,∵A1D=DB=2,∴ ==,设O到平面A1DB的距离为h,则,∴h=,∵A1O=2,∴直线A1O与平面A1BD所成角的正弦值=.【点评】本题考查线面平行的判定与性质,考查线面垂直的证明,考查线面角,考查学生分析解决问题的能力,属于中档题.18.【考点】直线与椭圆的位置关系;椭圆的标准方程.【分析】(1)将A和B点的坐标代入椭圆G的方程,列出方程组求出a和b的值,再求出c和离心率;(2)由(1)求出椭圆G的方程,对直线l的斜率进行讨论,不妨设直线l的方程,与椭圆G的方程联立后,利用韦达定理写出式子,将条件转化为,由向量数量积的坐标运算列出式子,代入化简后求出k的值,即得直线l的方程.【解答】解:(1)∵椭圆G过A(0,2),B(3,1),∴,解得,则=,∴椭圆G的离心率e==;(2)由(1)得,椭圆G的方程是,①当直线的斜率不存在时,则直线BC的方程是x=3,代入椭圆G的方程得,C(3,﹣1),不符合题意;②当直线的斜率存在时,设斜率为k,C(x1,y1),则直线BC的方程为y=k(x﹣3)+1,由得,(3k2+1)x2﹣6k(3k﹣1)x+27k2﹣18k﹣3=0,∴3+x1=,3x1=,则x1=,∵以BC为直径圆经过点A,∴AB⊥AC,则,即(3,﹣1)•(x1,y1﹣2)=0,∴3x1﹣y1+2=0,即3x1﹣[k(x1﹣3)+1]=0,∴(3﹣k)x1+3k+1=0,(3﹣k)•+3k+1=0,化简得,18k2﹣7k﹣1=0,解得k=或k=,∴直线BC的方程为y=(x﹣3)+1或y=(x﹣3)+1,即直线BC的方程是x+2y﹣5=0或x﹣9y+6=0,综上得,直线l的方程是x+2y﹣5=0或x﹣9y+6=0.【点评】本题考查了待定系数法求椭圆标准方程,直线与椭圆位置关系,向量数量积的坐标运算,以及“设而不求”的解题思想方法,考查转化思想,化简、变形、计算能力.19.(14分)(2016秋•海淀区期末)已知函数f(x)=lnx﹣.(1)若曲线y=f(x)存在斜率为﹣1的切线,求实数a的取值范围;(2)求f(x)的单调区间;(3)设函数g(x)=,求证:当﹣1<a<0时,g(x)在(1,+∞)上存在极小值.【考点】利用导数研究函数的单调性;利用导数研究曲线上某点切线方程;导数在最大值、最小值问题中的应用.【分析】(1)求出函数的导数,问题转化为x2+x+a=0存在大于0的实数根,根据y=x2+x+a在x>0时递增,求出a 的范围即可;(2)求出函数f(x)的导数,通过讨论a的范围,判断导函数的符号,求出函数的单调区间即可;(3)求出函数g(x)的导数,根据f(e)=﹣>0,得到存在x0∈(1,e)满足g′(x0)=0,从而得到函数的单调区间,求出函数的极小值,证出结论即可.【解答】解:(1)由f(x)=lnx﹣﹣1得:f′(x)=,(x>0),由已知曲线y=f(x)存在斜率为﹣1的切线,∴f′(x)=﹣1存在大于0的实数根,即x2+x+a=0存在大于0的实数根,∵y=x2+x+a在x>0时递增,∴a的范围是(﹣∞,0);(2)由f′(x)=,(x>0),得:a≥0时,f′(x)>0,∴f(x)在(0,+∞)递增;a<0时,若x∈(﹣a,+∞)时,f′(x)>0,若x∈(0,﹣a),则f′(x)<0,故f(x)在(﹣a,+∞)递增,在(0,﹣a)递减;(3)由g(x)=及题设得:g′(x)==,由﹣1<a<0,得:0<﹣a<1,由(2)得:f(x)在(﹣a,+∞)递增,∴f(1)=﹣a﹣1<0,取x=e,显然e>1,f(e)=﹣>0,∴存在x0∈(1,e)满足f(x0)=0,即存在x0∈(1,e)满足g′(x0)=0,令g′(x)>0,解得:x>x0,令g′(x)<0,解得:1<x<x0,故g(x)在(1,x0)递减,在(x0,+∞)递增,∴﹣1<a<0时,g(x)在(1,+∞)存在极小值.【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想、是一道综合题.20.(13分)(2016秋•海淀区期末)对于无穷数列{a n},{b n},若b i=max{a1,a2,…,a i}﹣min{a1,a2,…,a k}(k=1,2,3,…),则称{b n}是{a n}的“收缩数列”,其中max{a1,a2,…,a k},min{a1,a2,…,a k}分别表示a1,a2,…,a k中的最大数和最小数.已知{a n}为无穷数列,其前n项和为S n,数列{b n}是{a n}的“收缩数列”.(1)若a n=2n+1,求{b n}的前n项和;(2)证明:{b n}的“收缩数列”仍是{b n};(3)若S1+S2+…+S n=(n=1,2,3,…),求所有满足该条件的{a n}.【考点】数列的求和.【分析】(1)由新定义可得b n=2n﹣2,即可求出前n项和,(2)根据“收缩数列”的定义证明即可,(3)猜想:满足S1+S2+…+S n=n(n+1)a1+n(n﹣1)b1的数列{ a n}是,a n=,a2≥a1,并证明即可.【解答】解:(1)由a n=2n+1可得{ a n}为递增数列,所以b n=max{ a1,a2,…,a n}﹣min{ a1,a2,…,a n}=a n﹣a1=2n+1﹣3=2n﹣2,故{ b n}的前n项和为(2n﹣2)n=n(n﹣1)(2)因为max{ a1,a2,…,a n}≤max{ a1,a2,…,a n+1},因为min{ a1,a2,…,a n}≥min{ a1,a2,…,a n+1},所以max{ a1,a2,…,a n+1}﹣min{ a1,a2,…,a n+1}≥max{ a1,a2,…,a n}﹣min{ a1,a2,…,a n},所以b n+1≥b n,又因为b n=a1﹣a1=0,所以max{ b1,b2,…,b n}﹣min{ b1,b2,…,b n}=b n﹣b1=b n,所以{ b n}的“收缩数列”仍是{ b n},(3)由S1+S2+…+S n=n(n+1)a1+n(n﹣1)b1,当n=1时,a1=a1,当n=2时,3a1+2a2+a3=6a3+3b3,即3b3=2(a2﹣a1)+(a3﹣a1),(*),若a1<a3<a2,则b3=a2﹣a1,所以由(*)可得a3=a2与a3<a2矛盾,若a3<a1≤a2,则b3=a2﹣a3,所以由(*)可得a3﹣a2=3(a1﹣a3),所以a3﹣a2与a1﹣a3同号,这与a3<a1≤a2矛盾;若a3≥a2,则b3=a3﹣a2,由(*)可得a3=a2,猜想:满足S1+S2+…+S n=n(n+1)a1+n(n﹣1)b1的数列{ a n}是,a n=,a2≥a1,经验证:左式=S1+S2+…+S n=na1+[1+2+…+(n﹣1)]=na1+n(n﹣1)a2,右式=n(n+1)a1+n(n﹣1)b1=n(n+1)a1+n(n﹣1)(a2﹣na1)=na1+n(n﹣1)a2下面证明其它数列都不满足(3)的题设条件由上述n≤3的情况可知,n≤3,a n=,a2≥a1是成立的,假设a k=是首次不符合a n=,a2≥a1的项,则a1≤a2=a3=…=a k﹣1≠a k由题设条件可得(k2﹣k﹣2)a2+a k=k(k﹣1)a1+k(k﹣1)b k(*),若a1<a k<a2,则由(*)可得a k=a2与a k<a2矛盾,若a k<a1≤a2,则b k=a2﹣a k,所以由(*)可得a k﹣a2=k(k﹣1)(a1﹣a k),所以a k﹣a2与a1﹣a k同号,这与a k<a1≤a2矛盾;所以a k≥a2,则b k=a k﹣a1,所以由(*)化简可得a k=a2,这与假设a k≠a2相矛盾,所以不存在数列不满足a n=,a2≥a1的{a n}符合题设条件【点评】本题考查了新定义和应用,考查了数列的求和和分类讨论的思想,以及反证法,属于难题.word下载地址。
北京市海淀区2017届高三上学期期末考试数学(理)试题(全Word版,含答案)
![北京市海淀区2017届高三上学期期末考试数学(理)试题(全Word版,含答案)](https://img.taocdn.com/s3/m/6ea701be6bec0975f565e214.png)
海淀区高三年级第一学期期末练习数学(理科)2017.1本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项. 1.抛物线22y x =的焦点到准线的距离为A .12B .1C .2D .32.在极坐标系中,点π(1,)4与点3π(1,)4的距离为A .1B .2C .3D .53.右侧程序框图所示的算法来自于《九章算术》.若输入a 的值为16,b 的值为24,则执行该程序框图输出的结果为 A .6B .7C .8D .94.已知向量,a b 满足2+=0a b ,()2+⋅=a b a ,则⋅=a bA .12-B .12C .2-D .25.已知直线l 经过双曲线2214x y -=的一个焦点且与其一条渐近线平行,则直线l 的方程可能是A .1522y x =-+B .152y x =- C .322y x =- D .23y x =-+6.设,x y 满足0,20,2,x y x y x -≤⎧⎪+-≥⎨⎪≤⎩则22(1)x y ++的最小值为A .1B .92C .5D .97.在手绘涂色本的某页上画有排成一列的6条未涂色的鱼,小明用红、蓝两种颜色给这些鱼涂色,每条鱼只能涂一种颜色,两条相邻的鱼不.都.涂成红色....,涂色后,既有红色鱼又有蓝色鱼的涂色方法种数为 A .14 B .16 C .18 D .20 8.如图,已知正方体1111ABCD A B C D -的棱长为1,,E F 分别是棱AD ,B 1C 1上的动点,设1,AE x B F y ==.若棱.1DD 与平面BEF 有公共点,则x y +的取值范围是 A .[0,1]B .13[,]22C .[1,2]D .3[,2]2二、填空题共6小题,每小题5分,共30分. 9.已知复数z 满足(1i)2z +=,则z =________.ABCD1D 1A 1B 1C E F开始是否是否a a b=-b b a=-a输出结束,a b输入a b≠a b>10.在261()x x+的展开式中,常数项为________.(用数字作答)11.若一个几何体由正方体挖去一部分得到,其三视图如图所示,则该几何体的体积为________.12.已知圆C :2220x x y -+=,则圆心坐标为_____;若直线l 过点(1,0)-且与圆C 相切,则直线l 的方程为____13.已知函数2sin()y x ωϕ=+π(0,||)2ωϕ><.① 若(0)1f =,则ϕ=________;② 若x ∃∈R ,使(2)()4f x f x +-=成立,则ω的最小值是__. 14.已知函数||()e cos πx f x x -=+,给出下列命题:①()f x 的最大值为2;②()f x 在(10,10)-内的零点之和为0; ③()f x 的任何一个极大值都大于1. 其中所有正确命题的序号是________.三、解答题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程. 15.(本小题满分13分)在∆ABC 中,2c a =,120B =,且∆ABC 面积为32. (Ⅰ)求b 的值; (Ⅱ)求tan A 的值.16.(本小题满分13分)诚信是立身之本,道德之基.某校学生会创设了“诚信水站”,既便于学生用水,又推进诚信教育,并用“周实际回收水费周投入成本”表示每周“水站诚信度”.为了便于数据分析,以四周为一....周期..,下表为该水站连续十二周(共三个周期)的诚信度数据统计:第一周 第二周 第三周 第四周 第一个周期95% 98% 92% 88% 第二个周期94% 94% 83% 80% 第三个周期85%92%95%96%(Ⅰ)计算表中十二周“水站诚信度”的平均数x ;(Ⅱ)分别从上表每个周期的4个数据中随机抽取1个数据,设随机变量X 表示取出的3个数据中“水站诚信度”超过91%的数据的个数,求随机变量X 的分布列和期望;(Ⅲ)已知学生会分别在第一个周期的第四周末和第二个周期的第四周末各举行了一次“以诚信为本”的主题教育活动.根据已有数据,说明两次主题教育活动的宣传效果,并根据已有数据陈述理由.17.(本小题满分14分)如图1,在梯形ABCD 中,//AB CD ,90ABC ∠=,224AB CD BC ===,O 是边AB 的中点.将三俯视图2左视图211主视图角形AOD 绕边OD 所在直线旋转到1A OD 位置,使得1120AOB ∠=,如图2.设m 为平面1A DC 与平面1A OB 的交线.(Ⅰ)判断直线DC 与直线m 的位置关系并证明; (Ⅱ)若直线m 上的点G 满足1OG A D ⊥,求出1A G 的长; (Ⅲ)求直线1A O 与平面1A BD 所成角的正弦值.18.(本小题满分13分)已知(0,2),(3,1)A B 是椭圆G :22221(0)x y a b a b+=>>上的两点.(Ⅰ)求椭圆G 的离心率;(Ⅱ)已知直线l 过点B ,且与椭圆G 交于另一点C (不同于点A ),若以BC 为直径的圆经过点A ,求直线l 的方程.19. (本小题满分14分)已知函数()ln 1af x x x=--. (Ⅰ)若曲线()y f x =存在斜率为1-的切线,求实数a 的取值范围;(Ⅱ)求()f x 的单调区间;(Ⅲ)设函数()ln x ag x x+=,求证:当10a -<<时,()g x 在(1,)+∞上存在极小值.20.(本小题满分13分)对于无穷数列{}n a ,{}n b ,若1212max{,,,}min{,,,}(1,2,3,)k k k b a a a a a a k =-=,则称{}n b 是{}n a 的“收缩数列”.其中,12max{,,,}k a a a ,12min{,,,}k a a a 分别表示12,,,k a a a 中的最大数和最小数.已知{}n a 为无穷数列,其前n 项和为n S ,数列{}n b 是{}n a 的“收缩数列”.(Ⅰ)若21n a n =+,求{}n b 的前n 项和; (Ⅱ)证明:{}n b 的“收缩数列”仍是{}n b ;(Ⅲ)若121(1)(1)22n n n n n n S S S a b +-+++=+(1,2,3,)n =,求所有满足该条件的{}n a .海淀区AOBCD1图ODCB2图1A高三年级第一学期期末练习数学(理科)答案及评分标准2017.1一、选择题(共8小题,每小题5分,共40分)1.B2.B3. C4.C5.A6. B7.D8.C 二、填空题(共6小题,每小题5分,共30分,9. 1i -10.15 11.16312.(1,0);3(1)3y x =+和3(1)3y x =-+13.π6,π214.①②③三、解答题(共6小题,共80分) 15.(本小题满分13分)解:(Ⅰ)由∆ABC 面积公式及题设得1sin 2S ac B ==1332222a a ⨯⨯=,解得1,2,a c ==由余弦定理及题设可得2222cos b a c ac B =+-114212()72=+-⨯⨯⨯-=,又0,7b b >∴=. (不写b>0不扣分) (Ⅱ)在∆ABC 中,由正弦定理sin sin a bA B =得:1321sin sin 2147a A B b ==⨯=, 又120B =,所以A 是锐角(或:因为12,a c =<=) 所以217557cos 1sin 19614A A =-==, 所以sin 213tan .cos 557A A A === 16. (本小题满分13分)解:(Ⅰ)十二周“水站诚信度”的平均数为x =95+98+92+88+94+94+83+80+85+92+95+96=91%12100⨯(Ⅱ)随机变量X 的可能取值为0,1,2,3三个周期“水站诚信度”超过91%分别有3次,2次,3次1212(0)44464P X ==⨯⨯=32112112314(1)44444444464P X ==⨯⨯+⨯⨯+⨯⨯=32132132330(2)44444444464P X ==⨯⨯+⨯⨯+⨯⨯=32318(3)44464P X ==⨯⨯=随机变量X的分布列为X0 1 2 3P 1327321532932171590123232323232EX=⨯+⨯+⨯+⨯=.(Ⅲ)本题为开放问题,答案不唯一,在此给出评价标准,并给出可能出现的答案情况,阅卷时按照标准酌情给分.给出明确结论,1分,结合已有数据,能够运用以下三个标准中的任何一个陈述得出该结论的理由,2分.标准1:会用主题活动前后的百分比变化进行阐述标准2:会用三个周期的诚信度平均数变化进行阐述标准3:会用主题活动前后诚信度变化趋势进行阐述可能出现的作答情况举例,及对应评分标准如下:情况一:结论:两次主题活动效果均好.(1分)理由:活动举办后,“水站诚信度”由88%→94%和80%→85%看出,后继一周都有提升.(2分)情况二:结论:两次主题活动效果都不好.(1分)理由:三个周期的“水站诚信度”平均数分别为93.25%,87.75%,92%(平均数的计算近似即可),活动进行后,后继计算周期的“水站诚信度”平均数和第一周期比较均有下降.(2分)情况三:结论:第一次主题活动效果好于第二次主题活动.(1分)理由:第一次主题活动举办的后继一周“水站诚信度”提升百分点(94%-88%=6%)高于第二次主题活动举办的后继一周“水站诚信度”提升百分点(85%-80%=5%).(2分)情况四:结论:第二次主题活动效果好于第一次主题活动.(1分)理由:第一次活动后“水站诚信度”虽有上升,但两周后又有下滑,第二次活动后,“水站诚信度”数据连续四周呈上升趋势. (2分)(答出变化)情况五:结论:两次主题活动累加效果好.(1分)理由:两次主题活动“水站诚信度”均有提高,且第二次主题活动后数据提升状态持续周期好.(2分)情况六:以“‘两次主题活动无法比较’作答,只有给出如下理由才给3分:“12个数据的标准差较大,尽管平均数差别不大,但比较仍无意义”.给出其他理由,则结论和理由均不得分(0分).说明:①情况一和情况二用极差或者方差作为得出结论的理由,只给结论分1分,不给理由分2分.②以下情况不得分.情况七:结论及理由“只涉及一次主题活动,理由中无法辩析是否为两次活动后数据比较之结果”的.例:结论:第二次主题活动效果好.理由:第二次主题活动后诚信度有提高.③其他答案情况,比照以上情况酌情给分,赋分原则是:遵循三个标准,能使用表中数据解释所得结论.17. (本小题满分14分)解:(Ⅰ)直线DC //m .证明:由题设可得//,CD OB 1CD AOB ⊄平面,1OB AOB ⊂平面, 所以//CD 平面1A OB .又因为CD ⊂平面1A DC ,平面1ADC 平面1A OB m =所以//CD m .法1:(Ⅱ)由已知224AB CD BC ===,O 是边AB 的中点,//AB CD ,所以//CD OB ,因为90ABC ∠=,所以四边形CDOB 是正方形, 所以在图1中DO AB ⊥,所以结合题设可得,在图2中有1DO OA ⊥,DO OB ⊥, 又因为1OA OB O =,所以1DO AOB ⊥平面. 在平面AOB 内作OM 垂直OB 于M ,则DO OM ⊥. 如图,建立空间直角坐标系O xyz -,则1(3,1,0),(0,2,0),(0,0,2)A B D -,所以1(3,1,2)A D =-.设(3,,0)G m ,则由1OG A D ⊥可得10A D OG ⋅=,即(3,1,2)(3,,0)30m m -⋅=-+=解得3m =.所以14AG =. (Ⅲ)设平面1A BD 的法向量(,,)x y z =n ,则110,0,A D A B ⎧⋅=⎪⎨⋅=⎪⎩n n 即320,330,x y z x y ⎧-++=⎪⎨-+=⎪⎩令1y =,则3,1x z ==, 所以(3,1,1)=n ,设直线1A O 与平面1A BD 所成角为θ,则sin θ=1115cos ,5A O n A O n A O n⋅<>==⋅.法2:(Ⅱ)由已知224AB CD BC ===,O 是边AB 的中点,//AB CD ,所以//CD OB ,因为90ABC ∠=,所以四边形CDOB 是正方形, 所以在图1中DO AB ⊥,所以结合题设可得,在图2中有1DO OA ⊥,DO OB ⊥, 又因为1OA OB O =,ODCBG1A zxy M所以1DO AOB ⊥平面. 又因为1OG AOB ⊂平面,所以DO OG ⊥. 若在直线m 上的点G 满足1OG A D ⊥,又1OD A D D =,所以1OG AOD ⊥平面, 所以1OG OA ⊥,因为11120,//AOB OB AG ∠=,所以160OAG ∠=, 因为12OA =,所以14A G =.(注:答案中标灰部分,实际上在前面表达的符号中已经显现出该条件,故没写不扣分) (Ⅲ)由(II )可知1OD OA OG 、、两两垂直,如图,建立空间直角坐标系O xyz -,则10,0,0),(2,0,0),(1,3,0),(0,0,2)O A B D -(, 所以11(2,0,2),(3,3,0,)A D A B =-=- 设平面1A BD 的法向量(,,)n x y z =,则110,0,n A D n A B ⎧⋅=⎪⎨⋅=⎪⎩即220,330,x z x y -+=⎧⎪⎨-+=⎪⎩令1x =,则3,1y z ==,所以(1,3,1)n =,设直线1A O 与平面1A BD 所成角为θ,则 sin θ=1115cos ,5AO n AO n AO n ⋅<>==⋅.18. (本小题满分13分) 解:(Ⅰ)由已知2,b =由点(3,1)B 在椭圆G 上可得29114a +=, 解得212,23a a ==.所以2228,22c a b c =-==, 所以椭圆G 的离心率是6.3c e a == (Ⅱ)法1:因为以BC 为直径的圆经过点A ,所以AB AC ⊥,O DCBG1A zxy由斜率公式和(0,2),(3,1)A B 可得13AB k =-,所以3Ac k =,设直线AC 的方程为32y x =+. 由2232,1124y x x y =+⎧⎪⎨+=⎪⎩得2790x x +=,由题设条件可得90,7A C x x ==-,所以913()77C -,-,所以直线BC 的方程为213y x =-. 法2:因为以BC 为直径的圆经过点A ,所以AB AC ⊥,由斜率公式和(0,2),(3,1)A B 可得13AB k =-,所以3Ac k =,设C C C x y (,) ,则23C Ac Cy k x -==,即32C C y x =+① 由点C 在椭圆上可得221124C C x y +=② 将①代入②得2790C C x x +=,因为点C 不同于点A ,所以97C x =-,所以913()77C -,-,所以直线BC 的方程为213y x =-. 法3:当直线l 过点B 且斜率不存在时,可得点(3,1)C -,不满足条件.设直线BC 的方程为1(3)y k x -=-,点C C C x y (,)由2213,1124y kx k x y =+-⎧⎪⎨+=⎪⎩可得222(31)6(13)3(13)120k x k k x k ++-+--=,显然0∆>,此方程两个根是点B C 和点的横坐标,所以223(13)12331C k x k --=+,即22(13)4,31C k x k --=+所以22361,31C k k y k --+=+因为以BC 为直径的圆经过点A , 所以AB AC ⊥,即0AB AC ⋅=. (此处用1AB AC k k ⋅=-亦可)2222963961(3,1)(,)3131k k k k AB AC k k -----⋅=-⋅=++2236128031k k k --=+,即(32)(31)0k k -+=,1221,,33k k ==-当213k =-时,即直线AB ,与已知点C 不同于点A 矛盾,所以12,3BC k k ==所以直线BC 的方程为213y x =-.19. (本小题满分14分) 解:(Ⅰ)由()ln 1af x x x =--得221'()(0)a x af x x x x x+=+=>.由已知曲线()y f x =存在斜率为1-的切线, 所以'()1f x =-存在大于零的实数根, 即20x x a ++=存在大于零的实数根, 因为2y x x a =++在0x >时单调递增, 所以实数a 的取值范围0∞(-,).(Ⅱ)由2'()x af x x+=,0x >,a ∈R 可得 当0a ≥时,'()0f x >,所以函数()f x 的增区间为(0,)+∞; 当0a <时,若(,)x a ∈-+∞,'()0f x >,若(0,)x a ∈-,'()0f x <, 所以此时函数()f x 的增区间为(,)a -+∞,减区间为(0,)a -.(Ⅲ)由()ln x a g x x+=及题设得22ln 1('()(ln )(ln )a x f x x g x x x --==), 由10a -<<可得01a <-<,由(Ⅱ)可知函数()f x 在(,)a -+∞上递增, 所以(1)10f a =--<,取e x =,显然e 1>,(e)lne 10e a af e=--=->, 所以存在0(1,e)x ∈满足0()0f x =,即存在0(1,e)x ∈满足0'()0g x =,所以(),'()g x g x 在区间(1,)+∞上的情况如下:x0(1,)x 0x 0(,)x +∞'()g x-0 +()g x极小所以当10a -<<时,()g x 在(1,)+∞上存在极小值. (本题所取的特殊值不唯一,注意到0(1)ax x->>),因此只需要0ln 1x ≥即可)20. (本小题满分13分)解:(Ⅰ)由21n a n =+可得{}n a 为递增数列, 所以12121max{,,,}min{,,,}21322n n n n b a a a a a a a a n n =-=-=+-=-,故{}n b 的前n 项和为22(1)2n n n n -⨯=-.- (Ⅱ)因为12121max{,,,}max{,,,}(1,2,3,)n n a a a a a a n +≤=,12121min{,,,}min{,,,}(1,2,3,)n n a a a a a a n +≥=,所以1211211212max{,,,}min{,,,}max{,,,}min{,,,}n n n n a a a a a a a a a a a a ++-≥-所以1(1,2,3,)n n b b n +≥=. 又因为1110b a a =-=, 所以12121max{,,,}min{,,,}n n n n b b b b b b b b b -=-=,所以{}n b 的“收缩数列”仍是{}n b .(Ⅲ)由121(1)(1)22n n n n n n S S S a b +-+++=+(1,2,3,)n =可得 当1n =时,11a a =;当2n =时,121223a a a b +=+,即221b a a =-,所以21a a ≥;当3n =时,123133263a a a a b ++=+,即3213132()()b a a a a =-+-(*), 若132a a a ≤<,则321b a a =-,所以由(*)可得32a a =,与32a a <矛盾;若312a a a <≤,则323b a a =-,所以由(*)可得32133()a a a a -=-,--所以3213a a a a --与同号,这与312a a a <≤矛盾; 若32a a ≥,则331b a a =-,由(*)可得32a a =. 猜想:满足121(1)(1)22n n n n n n S S S a b +-+++=+(1,2,3,)n =的数列{}n a 是: 1212,1,,1,n a n a a a a n =⎧=≥⎨>⎩.经验证,左式=121212(1)[12(1)]2n n n S S S na n a na a -+++=++++-=+, 右式=112112(1)(1)(1)(1)(1)()22222n n n n n n n n n n n a b a a a na a +-+--+=+-=+.下面证明其它数列都不满足(Ⅲ)的题设条件.法1:由上述3n ≤时的情况可知,3n ≤时,1212,1,,1,n a n a a a a n =⎧=≥⎨>⎩是成立的.假设k a 是首次不符合1212,1,,1,n a n a a a a n =⎧=≥⎨>⎩的项,则1231k k a a a a a -≤===≠,由题设条件可得2212(1)(1)222k k k k k k k k a a a b ----+=+(*), 若12k a a a ≤<,则由(*)式化简可得2k a a =与2k a a <矛盾; 若12k a a a <≤,则2k k b a a =-,所以由(*)可得21(1)()2k k k k a a a a --=- 所以21k k a a a a --与同号,这与12k a a a <≤矛盾; 所以2k a a ≥,则1k k b a a =-,所以由(*)化简可得2k a a =.这与假设2k a a ≠矛盾.所以不存在数列不满足1212,1,,1,n a n a a a a n =⎧=≥⎨>⎩的{}n a 符合题设条件.法2:当i n ≤时,11212max{,,,}min{,,,}i i i i a a a a a a a a b -≤-=,所以1121()ki k i a a b b b =-≤+++∑,(1,2,3,,)k n =即112()k k S ka b b b ≤++++,(1,2,3,,)k n =由1(1,2,3,)n n b b n +≥=可得(1,2,3,,)k n b b k n ≤=又10b =,所以可得1(1)k n S ka k b ≤+-(1,2,3,)k =, 所以12111(2)[02(1)]n n n n n S S S a a na b b b n b +++≤++++⨯++++-,--即121(1)(1)22n n n n n nS S S a b +-+++≤+ 所以121(1)(1)22n n n n n n S S S a b +-+++≤+等号成立的条件是1(1,2,3,,)i i n a a b b i n -===,所以,所有满足该条件的数列{}n a 为1212,1,,1,n a n a a a a n =⎧=≥⎨>⎩.(说明:各题的其他做法,可对着参考答案的评分标准相应给分)精品文档考试教学资料施工组织设计方案。
2017年5月高三理科数学二模练习参考答案
![2017年5月高三理科数学二模练习参考答案](https://img.taocdn.com/s3/m/c85824d7a1c7aa00b52acb45.png)
海淀区高三年级第二学期期末练习参考答案数学(理科) 2017.5一、选择题(本大题共8小题,每小题5分,共40分)二、填空题(本大题共6小题,每小题5分, 有两空的小题,第一空3分,第二空2分, 共30分)三、解答题(本大题共6小题,共80分) 15.(本小题满分13分) 解:(Ⅰ)3π3π3π()sin 2coscos 2sin sin(2)555f x x x x =-=-- 所以()f x 的最小正周期2ππ2T ==, 因为sin y x =的对称轴方程为ππ,2x k k =+∈Z , 令3ππ2π,52x k k -=+∈Z , 得11π1π,202x k k =+∈Z . 所以()f x 的对称轴方程为11π1π,202x k k =+∈Z . 或者:()f x 的对称轴方程为3ππ22π52x k -=+和3ππ22π,52x k k -=-+∈Z , 即11ππ20x k =+和ππ,20x k k =+∈Z . (Ⅱ)因为π[0,]2x ∈,所以2[0,π]x ∈, 所以3π3π2π2[,]555x -∈- 所以,当3ππ252x -=-即π20x =时, ()f x 在区间π[0,]2上的最小值为1-.16.(本小题满分13分)解:(Ⅰ)选择人文类课程的人数为(100+200+400+200+300)⨯1%=12(人);选择自然科学类课程的人数为(300+200+300)⨯1%=8(人). (Ⅱ) (ⅰ) 依题意,随机变量X 可取0,1,2.4062483(0)14C C p X C ===;3162484(1)7C C p X C ===;2262483(2).14C C p X C === 故随机变量X 的分布列为(ⅱ)法1:依题意,随机变量Y =2000X +1500(4)X -=6000+500X , 所以随机变量Y 的数学期望为E (Y )=6000+500E (X )=6000+500(34301214714⨯+⨯+⨯) =6500.(ⅱ)法2:依题意,随机变量Y 可取6000,6500,7000. 所以随机变量Y 的分布列为所以随机变量Y E (Y )=34360006500700014714⨯+⨯+⨯ =6500.17.(本小题满分14分) 解:(Ⅰ)因为AD DB ⊥,且1DB =,2AB =,所以AD =, 所以60DBA ∠=.因为ABC ∆为正三角形,所以60CAB ∠=,又由已知可知ACBD 为平面四边形,所以//DB AC . 因为AC ⊄平面PDB ,DB⊂平面PDB , 所以//AC 平面PDB .(Ⅱ)由点P 在平面ABC 上的射影为D 可得PD ⊥平面ACBD ,所以PD DA ⊥,PD DB ⊥.如图,建立空间直角坐标系,则由已知可知(1,0,0)B ,A ,(0,0,1)P ,C .平面ABC 的法向量(0,0,1)=n ,设(,,)x y z =m 为平面PAB 的一个法向量,则 由0,0BA BP ⎧⋅=⎪⎨⋅=⎪⎩m m可得0,0,x x z ⎧-+=⎪⎨-+=⎪⎩令1y =,则x z ==PAB的一个法向量=m ,所以cos ,||||7⋅<>===m n m n m n , 所以二面角P AB C --的余弦值为.(Ⅲ)由(Ⅱ)可得(1,AB =,1)PC =-,因为1)(1,10PC AB ⋅=-⋅=-≠, 所以PC 与AB 不垂直,所以在线段PC 上不存在点E 使得PC ⊥平面ABE .18.(本小题满分14分) 解:(Ⅰ)设动点(,)M x y ,由抛物线定义可知点M 的轨迹E 是以(1,0)N 为焦点,直线l :1x =-为准线的抛物线, 所以轨迹E 的方程为24y x =.(Ⅱ)法1:由题意可设直线':l x my n =+,由2,4x my n y x =+⎧⎪⎨=⎪⎩可得2440y my n --= (*), 因为直线'l 与曲线E 有唯一公共点A , 所以216160m n ∆=+=,即2n m =-. 所以(*)可化简为22440y my m -+=, 所以2(,2)A m m , 令1x =-得1(1,)nP m+--, 因为2n m =-,所以221(1,2)(2,)22220nNA NP m m m n m+⋅=-⋅--=-+--= 所以NA NP ⊥,所以点N 在以P A 为直径的圆C 上.法2:依题意可设直线':,(0)l y kx b k =+≠ ,由2,4y kx b y x=+⎧⎪⎨=⎪⎩可得2222(2)0k x bk x b +-+= (*), 因为直线'l 与曲线E 有唯一公共点A ,且与直线l 的交点为P ,所以0,0,k ≠⎧⎨∆=⎩即0,1,k bk ≠⎧⎨=⎩所以(*)可化简为222140k x x k-+=, 所以212(,)A kk . 令1x =-得1(1,)P k k--, 因为22212122(1,)(2,)220NA NP k k k k k k-⋅=-⋅--=++-=, 所以NA NP ⊥,所以点N 在以P A 为直径的圆C 上.19.(本小题满分13分) 解:(Ⅰ)'()e 1ax f x a =-,因为曲线()y f x =在(0,(0))f 处的切线与直线230x y ++=垂直, 所以切线l 的斜率为2, 所以'(0)2f =, 所以3a =.(Ⅱ)法1:当0a ≤时,显然有(1)e 101a f <-≤<,即存在实数0x 使0()1f x <; 当0,1a a >≠时,由'()0f x =可得11ln x a a=,所以在11(,ln )x a a ∈-∞时,'()0f x <,所以函数()f x 在11(,ln )a a -∞上递减;11(ln ,)x a a ∈+∞时,'()0f x >,所以函数()f x 在11(ln ,)a a+∞上递增所以11(ln )f a a=1(1ln )a a +是()f x 的极小值.由函数()e ax f x x =-可得(0)1f =,由1a ≠可得11ln 0a a≠, 所以11(ln )(0)1f f a a<=,综上,若1a ≠,存在实数0x 使0()1f x <.(Ⅱ)法2:当0a ≤时,显然有(1)e 101a f <-≤<,即存在实数0x 使0()1f x <; 当0,1a a >≠时,由'()0f x =可得11ln x a a=,所以在11(,ln )x a a ∈-∞时,'()0f x <,所以函数()f x 在11(,ln )a a -∞上递减;11(ln ,)x a a ∈+∞时,'()0f x >,所以函数()f x 在11(ln ,)a a +∞上递增. 所以11(ln )f a a =1ln a a+是()f x 的极小值.设1ln ()xg x +=,则2ln '()(0)x g x x -=>,令'()0g x =,得1x =所以当1x ≠时()(1)1g x g <=, 所以11(ln )1f a a<,综上,若1a ≠,存在实数0x 使0()1f x <.20.(本小题满分13分) 解:(Ⅰ)数列{}n a 不具有性质(2)P ;具有性质(4)P .(Ⅱ)(不充分性)对于周期数列1,1,2,2,1,1,2,2,,{0,1}T =是有限集,但是由于21320,1a a a a -=-=,所以不具有性质(0)P ;(必要性)因为数列{}n a 具有性质(0)P ,所以一定存在一组最小的*,m k ∈N 且m k >,满足0m k a a -=,即m k a a =由性质(0)P 的含义可得11222112,,,,,m k m k m k m m k m a a a a a a a a ++++----====所以数列{}n a 中,从第k 项开始的各项呈现周期性规律:11,,,k k m a a a +-为一个周期中的各项, 所以数列{}n a 中最多有m 个不同的项,所以T 最多有2m C 个元素,即T 是有限集.(Ⅲ)因为数列{}n a 具有性质(2)P ,数列{}n a 具有性质(5)P ,所以数列{}n a 中一定存在一项M a ,使得2M p M a a +-=,5M q M a a +-=,其中,p q 分别是满足上述关系式的最小的正整数,显然p q ≠,由性质(2),(5)P P 的含义可得k ∀∈N ,2,5M p k M k M q k M k a a a a ++++++-=-=, 所以(1)(1)(2)()()()2M qp M M qp M q p M q p M q p M p M a a a a a a a a q +++-+-+-+-=-+-++-= (1)(1)(2)()()()5M qp M M pq M p q M p q M p q M q M a a a a a a a a p +++-+-+-+-=-+-++-=所以25M qp M M a a q a p +=+=+. 所以25q p =,又,p q 是满足2M p M a a +-=,5M q M a a +-=的最小的正整数, 所以5,2q p ==,252,5M M M M a a a a ++-=-=,所以k ∀∈N ,252,5M k M k M k M k a a a a ++++++-=-=, 所以k ∀∈N ,22(1)22M k M k M a a a k ++-=+==+,55(1)55M k M k M a a a k ++-=+==+,取5N M =+,则k ∀∈N ,所以,若k 是偶数,则N k N a a k +=+;若k 是奇数,则5(5)5(5)5(5)N k N k N N N a a a k a k a k +++-+==+-=++-=+,所以k ∀∈N ,N k N a a k +=+所以12,,,,,N N N N k a a a a +++是公差为1的等差数列.。
北京市海淀区2016-2017学年高三第二次联合考试
![北京市海淀区2016-2017学年高三第二次联合考试](https://img.taocdn.com/s3/m/0a6e2533f78a6529647d53c8.png)
海淀区2017年高三第二次联合考试数学一、选择题1.已知复数,则在复平面内对应的点在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.已知全集U={1,2,3,4,5,6,7},集合,,则( )A.B.C.D.3.下列选项中说法正确的是( )A. 命题“为真”是命题“为真”的必要条件.B. 若向量,满足,则与的夹角为锐角.C. 若,则.D. “”的否定是“”.4.若等差数列的公差为2,且是与的等比中项,则该数列的前n项和S n取最小值时,n的值等于( )A. 7B. 6C. 5D. 45.过双曲线的左焦点的直线交双曲线的左支于,两点,且,这样的直线可以作2条,则b的取值范围是( )A.B.C.D.6.已知若e1,e2是夹角为90°的两个单位向量,则,的夹角为( )A.B.C.D.7.,则展开式中,项的系数为( )A.B.C.D.8.右图是求样本x 1,x2,…,x10平均数的程序框图,图中空白框中应填入的内容为( )A. S=S+B. S=S+C. S=S+ nD. S=S+9.设为抛物线的焦点,A,B,C为该抛物线上三点,若0++=,则FA FB FC ++的值为( )FA FB FCA. 3B. 6C. 9D. 1210.函数的定义域是R,若对于任意的正数a,函数都是其定义域上的减函数,则函数的图象可能是( )A.B.C.D.11.公元前3世纪,古希腊欧几里得在《几何原本》里提出:“球的体积(V)与它的直径(d)的立方成正比”,此即。
与此类似,我们可以得到:(1)正四面体(所有棱长都相等的四面体)的体积(V)与它的棱长(a)的立方成正比,即;(2)正方体的体积(V)与它的棱长(a)的立方成正比,即;(3)正八面体(所有棱长都相等的八面体)的体积(V)与它的棱长(a)的立方成正比,即;那么( )A.B.C.D.12.记为最接近的整数,如:,,,,,……,若,则正整数m的值为( )A.B.C.D.二、填空题13.函数y=3cos(2x+φ)的图象关于点中心对称,那么|φ|的最小值为____.14.袋中有大小质地完全相同的2个红球和3个黑球,不放回地摸出两球,设“第一次摸得红球”为事件, “摸得的两球同色”为事件,则概率为____.15.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的外接球的表面积为____.16.已知动点满足:,则的最小值为____.三、解答题17.在△ABC中,内角A,B,C的对边分别为a,b,c,且2a sin B=3sin B.(1)求角A的大小;(2)若0<A<,a=6,且△ABC的面积,求△ABC的周长.18.某手机卖场对市民进行国产手机认可度的调查,随机抽取100名市民,按年龄(单位:岁)进行统计的频数分布表和频率分布直方图如下:(1)求频率分布表中x、y的值,并补全频率分布直方图;(2)在抽取的这100名市民中,按年龄进行分层抽样,抽取20人参加国产手机用户体验问卷调查,现从这20人中随机选取2人各赠送精美礼品一份,设这2名市民中年龄在[35,40)内的人数X,求X的分布列及数学期望.19.如图,在四棱锥P—ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=1,O为AC的中点,PO⊥平面ABCD,PO=1,M为PD的中点.(1)证明:PB∥平面ACM;(2)设直线AM与平面ABCD所成的角为α,二面角M—AC—B的大小为β,求sinα·cosβ的值.20.设椭圆(a>0)的焦点在x轴上.(1)若椭圆E的离心率,求椭圆E的方程;(2)设F1,F2分别是椭圆E的左、右焦点,P为直线x+y=与椭圆E的一个公共点,直线F2P交y轴于点Q,连结F1P.问当a变化时,F1P与F1Q的夹角是否为定值,若是定值,求出该定值;若不是定值,说明理由.21.设函数f(x)=x2-a x(a>0,且a≠1),g(x)=,(其中为f(x)的导函数).(1)当a=e时,求g(x)的极大值点;(2)讨论f(x)的零点个数.22.设直线l:3x+y+1=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1 P2的中点且与l垂直的直线的极坐标方程.23.选修4—5:不等式选讲.已知函数的最大值为10.(1)求的值;(2)求的最小值,并求出此时的值.答案一、选择题1. C2. D3. A4. B5. D6. C7. A 8. D 9. B 10. B 11. A 12. C二、填空题13.14.15.16. 0解析一、选择题1.,∴复数对应的点的坐标是,∴在复平面内对应的点在第三象限,故选C.2.由题意得,,∴,故选D.3.对于A,∵命题“为真”则p和q均为真命题,∴命题“为真”可以推出命题“为真,反之命题“为真不能推出命题“为真,故命题“为真”是命题“为真”的必要条件,A正确;对于B,若与的夹角为0°,则可得,此时与的夹角不是锐角,故B错;对于C,若且当时可能存在,故C错;对于D,“”的否定是“”,故D错.综上所述,正确答案为A,故选A.4.由是与的等比中项可得:,由等差数列的公差为2得:,解得,,由可得该数列的前n项和S n取最小值时,n=6,故选C.5.由,则双曲线的左焦点为F,当AB所在直线斜率不存在时,则其方程为,代入可得,此时;由焦点弦公式及性质知过左焦点的直线交双曲线的左支于A,B两点的弦长,即过左焦点的弦长中,垂直于x轴的弦长最短,则要满足的直线可以作2条,则设坐标分别为,则,又,∴,故选D.6.∵,是夹角为90°的两个单位向量,∴,,∴,故,的夹角为45°,故选C.7.则二项式的展开式的通项公式为,令解得r=3,∴展开式中项的系数为:,故选A.8.由题意可知:该程序的作用是求样本x 1,x2,…,x10平均数,循环体的功能是累加各样本的值再求平均数,故应为:,故选D.9.抛物线的焦点坐标,准线方程为,设,,,∵,∴点F是△ABC的重心,∴,再由抛物线的定义可得:,,,∴,故选B.10.设,∵是其定义域上的减函数,∴即,∴,由此可知,在自变量增大的过程中函数值增加的量越来越小,故有,故选B.11.设正四面体的棱长为a,则正四面体的底面高为,故底面积为,正四面体的底面半径为,∴正四面体的高,所以正四面体的体积,∴;设正方体的棱长为a,则正方体的体积,∴;设正八面体的棱长为a,则正八面体的一半即四棱锥的高,底面积,∴该四棱锥的体积,故正八面体的体积,∴,故,故选A.12.根据已知可得:,,有2个1;,,,有4个2;,,,,,,有6个3;,……,有8个4……;∴又,其中总共的项数为:,又,∴,故选C.二、填空题13.∵函数y=3cos(2x+φ)的图象关于点中心对称,∴,∴,则的最小值为,故答案为.14.由,,由条件概率计算公式得,故答案为.15.由三视图知该几何体是如下图所示的三棱锥A—BCD,将该三棱锥放在棱长为4的正方体中,E是棱的中点,所以三棱锥A—BCD和三棱柱DEF —ABC的外接球相同,设外接球的球心为O,半径为R,△ABC外接圆的圆心为M,则OM=2,在△ABC中,,由余弦定理得:,∴,由正弦定理得:,则,∴,则外接球的表面积,故答案为:.16.∵,则,∴要使只要,∴;∴动点P满足,该不等式表示的平面区域如下图:设,∴,∴表示以为圆心的圆的半径,由图形可知该圆经过原点O时半径最小为3,∴,则z的最小值为0,故答案为0.三、解答题17. (1)由正弦定理得2sin A sin B=∵0<A<π,∴或(2)∵,∴,由余弦定理得,,故△ABC的周长l=a+b+c=1418.(1)由图知,P(25≤xx=100×0.05=5;P(30≤xy=100×0.2=20,其补全频率分布直方图,如下图:(2)∵各层之间的比为5∶20∶35∶30∶10=1∶4∶7∶6∶2,且共抽取20人,∴年龄在[35,40)内层抽取的人数为7人.X可取0,1,2,,故X的分布列为:故.19.(1)连结OM,BD,∵O为BD中点,M为PD中点,∴OM为△PBD的中位线,故OM ∥PB,OM平面ACM,PB平面ACM,故PB∥平面ACM;(2)取DO的中点N,连结MN,AN,则MN∥PO,∵PO⊥平面ABCD,∴MN⊥平面ABCD,故∠MAN=α为所求的直线AM与平面ABCD所成的角.∵在Rt△ADO中,,在Rt△AMN中,∴,取AO的中点R,连结NR,MR,∵NR∥AD,∴NR⊥OA,MN⊥平面ABCD,由三垂线定理知MR⊥AO,故∠MRN为二面角M—AC—B 的补角,即为π-β.∵∴,∴20.(1)由题知,由得:a4 - 25a2+100=0,故a2=5或20(舍),故椭圆E的方程为.(2).设P(x0,y0),F1(-c,0),F2(c,0),则c2=2a2-8,联立得8x2 -4x+a4=0,即,故,,直线PF2的方程为,令x=0,则,即点Q的坐标为,故,故故与的夹角为定值.21.(1)g(x)=2x-e x ,=2-e x=0,当x<ln2时,>0;当x>ln2时,<0,故的极大值点为ln2(2)22.联立直线方程与C的方程可解得:,P2(0,1),P1 P2线段中点,,故P1 P2线段中垂线的方程为,即3x-9y-4=0,即极坐标方程为23.(1)当且仅当时等号成立,又的最大值为又已知的最大值为10,所以(2)由(1)知,由柯西不等式得:,即,当且仅当即时等号成立.。
北京市海淀区2017届高三上学期期末考试数学理试题(全Word版,含答案)模板
![北京市海淀区2017届高三上学期期末考试数学理试题(全Word版,含答案)模板](https://img.taocdn.com/s3/m/b4fbff374b73f242336c5fa3.png)
海淀区高三年级第一学期期末练习数学(理科) 2017.1本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上 作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项.1.抛物线22y x =的焦点到准线的距离为A .12B .1C .2D .32.在极坐标系中,点π(1,)4与点3π(1,)4的距离为A .1 BCD3.右侧程序框图所示的算法来自于《九章算术》.若输入a 的值为16,b 的值为24,则执行该程序框图输出的结果为A .6B .7C .8D .94.已知向量,a b 满足2+=0a b ,()2+⋅=a b a ,则⋅=a bA .12-B .12C .2-D .25.已知直线l 经过双曲线2214x y -=的一个焦点且与其一条渐近线平行,则直线l 的方程可能是A.12y x =- B.12y x =C.2y x =- D.2y x =-6.设,x y 满足0,20,2,x y x y x -≤⎧⎪+-≥⎨⎪≤⎩则22(1)x y ++的最小值为A .1B .92C .5D .97.在手绘涂色本的某页上画有排成一列的6条未涂色的鱼,小明用红、蓝两种颜色给这些鱼涂色,每条鱼只能涂一种颜色,两条相邻的鱼不.都.涂成红色....,涂色后,既有红色鱼又有蓝色鱼的涂色方法种数为 A .14B .16C .18D .208.如图,已知正方体1111ABCD A B C D -的棱长为1,,E F 分别是棱AD ,B 1C 1上的动点,设1,AE x B F y ==.若棱.1DD 与平面BEF 有公共点,则x y +的取值范围是 A .[0,1] B .13[,]22 C .[1,2]D .3[,2]2二、填空题共6小题,每小题5分,共30分. 9.已知复数z 满足(1i)2z +=,则z =________.10.在261()x x+的展开式中,常数项为________.(用数字作答)11.若一个几何体由正方体挖去一部分得到,其三视图如图所示,则该几何体的体积为________.12.已知圆C :2220x x y -+=,则圆心坐标为_____;若直线l 过点(1,0)-且与圆C 相切,则直线l 的方程为____________.13.已知函数2sin()y x ωϕ=+π(0,||)2ωϕ><.① 若(0)1f =,则ϕ=________;② 若x ∃∈R ,使(2)()4f x f x +-=成立,则ω的最小值是________.14.已知函数||()e cos πx f x x -=+,给出下列命题:①()f x 的最大值为2;②()f x 在(10,10)-内的零点之和为0; ③()f x 的任何一个极大值都大于1. 其中所有正确命题的序号是________.俯视图主视图ABCD1D 1A 1B 1C E F三、解答题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程. 15.(本小题满分13分)在∆ABC 中,2c a =,120B = ,且∆ABC. (Ⅰ)求b 的值; (Ⅱ)求tan A 的值.16.(本小题满分13分)诚信是立身之本,道德之基.某校学生会创设了“诚信水站”,既便于学生用水,又推进诚信教育,并用“周实际回收水费周投入成本”表示每周“水站诚信度”.为了便于数据分析,以四周为一周期......,下表为该水站连续十二周(共三个周期)的诚信度数据统计:第一周 第二周 第三周 第四周 第一个周期95% 98% 92% 88% 第二个周期94% 94% 83% 80% 第三个周期 85% 92% 95%96%(Ⅰ)计算表中十二周“水站诚信度”的平均数x ;(Ⅱ)分别从上表每个周期的4个数据中随机抽取1个数据,设随机变量X 表示取出的3个数据中“水站诚信度”超过91%的数据的个数,求随机变量X 的分布列和期望;(Ⅲ)已知学生会分别在第一个周期的第四周末和第二个周期的第四周末各举行了一次“以诚信为本”的主题教育活动.根据已有数据,说明两次主题教育活动的宣传效果,并根据已有数据陈述理由.17.(本小题满分14分)如图1,在梯形ABCD 中,//AB CD ,90ABC ∠= ,224AB CD BC ===,O 是边AB 的中点.将三角形AOD 绕边OD 所在直线旋转到1A OD 位置,使得1120AOB ∠= ,如图2.设m 为平面1A DC 与平面1A OB 的交线.(Ⅰ)判断直线DC 与直线m 的位置关系并证明; (Ⅱ)若直线m 上的点G 满足1OG A D ⊥,求出1A G 的长; (Ⅲ)求直线1A O 与平面1A BD 所成角的正弦值.AOBCD1图ODCB2图1A18.(本小题满分13分)已知(0,2),(3,1)A B 是椭圆G :22221(0)x y a b a b+=>>上的两点.(Ⅰ)求椭圆G 的离心率;(Ⅱ)已知直线l 过点B ,且与椭圆G 交于另一点C (不同于点A ),若以BC 为直径的圆经过点A ,求直线l 的方程.19. (本小题满分14分)已知函数()ln 1af x x x=--. (Ⅰ)若曲线()y f x =存在斜率为1-的切线,求实数a 的取值范围;(Ⅱ)求()f x 的单调区间;(Ⅲ)设函数()ln x ag x x+=,求证:当10a -<<时,()g x 在(1,)+∞上存在极小值.20.(本小题满分13分)对于无穷数列{}n a ,{}n b ,若1212max{,,,}min{,,,}(1,2,3,)k k k b a a a a a a k =-= ,则称{}n b 是{}n a 的“收缩数列”.其中,12max{,,,}k a a a ,12min{,,,}k a a a 分别表示12,,,k a a a 中的最大数和最小数.已知{}n a 为无穷数列,其前n 项和为n S ,数列{}n b 是{}n a 的“收缩数列”. (Ⅰ)若21n a n =+,求{}n b 的前n 项和; (Ⅱ)证明:{}n b 的“收缩数列”仍是{}n b ; (Ⅲ)若121(1)(1)22n n n n n n S S S a b +-+++=+ (1,2,3,)n = ,求所有满足该条件的{}n a .海淀区高三年级第一学期期末练习数学(理科)答案及评分标准2017.1一、选择题(共8小题,每小题5分,共40分)1.B2.B3. C4.C5.A6. B7.D8.C 二、填空题(共6小题,每小题5分,共30分,9. 1i -10.15 11.16312.(1,0);1)y x =+和1)y x =+13.π6,π214.①②③三、解答题(共6小题,共80分) 15.(本小题满分13分)解:(Ⅰ)由∆ABC 面积公式及题设得1sin 2S ac B ==122a a ⨯=解得1,2,a c ==由余弦定理及题设可得2222cos b a c ac B =+-114212()72=+-⨯⨯⨯-=,又0,b b >∴=. (不写b>0不扣分)(Ⅱ)在∆ABC 中,由正弦定理sin sin a bA B =得:sin sin a A B b == 又120B = ,所以A 是锐角(或:因为12,a c =<=)所以cos A ==所以sin tan cos A A A == 16. (本小题满分13分)解:(Ⅰ)十二周“水站诚信度”的平均数为x =95+98+92+88+94+94+83+80+85+92+95+96=91%12100⨯(Ⅱ)随机变量X 的可能取值为0,1,2,3三个周期“水站诚信度”超过91%分别有3次,2次,3次1212(0)44464P X ==⨯⨯=32112112314(1)44444444464P X==⨯⨯+⨯⨯+⨯⨯=32132132330(2)44444444464P X==⨯⨯+⨯⨯+⨯⨯=32318(3)44464P X==⨯⨯=随机变量X的分布列为X0 1 2 3P 1327321532932171590123232323232EX=⨯+⨯+⨯+⨯=.(Ⅲ)本题为开放问题,答案不唯一,在此给出评价标准,并给出可能出现的答案情况,阅卷时按照标准酌情给分.给出明确结论,1分,结合已有数据,能够运用以下三个标准中的任何一个陈述得出该结论的理由,2分.标准1:会用主题活动前后的百分比变化进行阐述标准2:会用三个周期的诚信度平均数变化进行阐述标准3:会用主题活动前后诚信度变化趋势进行阐述可能出现的作答情况举例,及对应评分标准如下:情况一:结论:两次主题活动效果均好.(1分)理由:活动举办后,“水站诚信度”由88%→94%和80%→85%看出,后继一周都有提升.(2分)情况二:结论:两次主题活动效果都不好.(1分)理由:三个周期的“水站诚信度”平均数分别为93.25%,87.75%,92%(平均数的计算近似即可),活动进行后,后继计算周期的“水站诚信度”平均数和第一周期比较均有下降.(2分)情况三:结论:第一次主题活动效果好于第二次主题活动.(1分)理由:第一次主题活动举办的后继一周“水站诚信度”提升百分点(94%-88%=6%)高于第二次主题活动举办的后继一周“水站诚信度”提升百分点(85%-80%=5%).(2分)情况四:结论:第二次主题活动效果好于第一次主题活动.(1分)理由:第一次活动后“水站诚信度”虽有上升,但两周后又有下滑,第二次活动后,“水站诚信度”数据连续四周呈上升趋势. (2分)(答出变化)情况五:结论:两次主题活动累加效果好.(1分)理由:两次主题活动“水站诚信度”均有提高,且第二次主题活动后数据提升状态持续周期好.(2分)情况六:以“‘两次主题活动无法比较’作答,只有给出如下理由才给3分:“12个数据的标准差较大,尽管平均数差别不大,但比较仍无意义”.给出其他理由,则结论和理由均不得分(0分).说明:①情况一和情况二用极差或者方差作为得出结论的理由,只给结论分1分,不给理由分2分.②以下情况不得分. 情况七:结论及理由“只涉及一次主题活动,理由中无法辩析是否为两次活动后数据比较之结果”的. 例:结论:第二次主题活动效果好.理由:第二次主题活动后诚信度有提高.③其他答案情况,比照以上情况酌情给分,赋分原则是:遵循三个标准,能使用表中数据解释所得结论.17. (本小题满分14分) 解:(Ⅰ)直线DC //m .证明:由题设可得//,CD OB 1CD AOB ⊄平面,1OB AOB ⊂平面, 所以//CD 平面1A OB .又因为CD ⊂平面1A DC ,平面1A DC 平面1A OB m = 所以//CD m .法1:(Ⅱ)由已知224AB CD BC ===,O 是边AB 的中点,//AB CD ,所以//CD OB ,因为90ABC ∠= ,所以四边形CDOB 是正方形, 所以在图1中DO AB ⊥,所以结合题设可得,在图2中有1DO OA ⊥,DO OB ⊥, 又因为1OA OB O = , 所以1DO AOB ⊥平面. 在平面AOB 内作OM 垂直OB 于M ,则DO OM ⊥. 如图,建立空间直角坐标系O xyz -,则11,0),(0,2,0),(0,0,2)A B D -,所以1(,2)A D =.设,0)G m ,则由1OG A D ⊥可得10A D OG ⋅=,即(,2),0)30m m ⋅=-+=解得3m =.所以14AG =. (Ⅲ)设平面1A BD 的法向量(,,)x y z =n ,则A110,0,A D A B ⎧⋅=⎪⎨⋅=⎪⎩n n即20,30,y z y ⎧++=⎪⎨+=⎪⎩令1y =,则1x z =,所以=n ,设直线1A O 与平面1A BD 所成角为θ,则sin θ=111cos ,A O n A O n A O n⋅<>==⋅法2:(Ⅱ)由已知224AB CD BC ===,O 是边AB 的中点,//AB CD ,所以//CD OB ,因为90ABC ∠= ,所以四边形CDOB 是正方形, 所以在图1中DO AB ⊥,所以结合题设可得,在图2中有1DO OA ⊥,DO OB ⊥, 又因为1OA OB O = , 所以1DO AOB ⊥平面. 又因为1OG AOB ⊂平面,所以DO OG ⊥. 若在直线m 上的点G 满足1OG A D ⊥,又1OD A D D = , 所以1OG AOD ⊥平面, 所以1OG OA ⊥,因为11120,//AOB OB AG ∠= ,所以160OAG ∠= , 因为12OA =,所以14A G =.(注:答案中标灰部分,实际上在前面表达的符号中已经显现出该条件,故没写不扣分) (Ⅲ)由(II )可知1OD OA OG 、、两两垂直,如图,建立空间直角坐标系O xyz -,则10,0,0),(2,0,0),((0,0,2)O A B D -(,所以11(2,0,2),(A D A B =-=-设平面1A BD 的法向量(,,)n x y z =,则110,0,n A D n A B ⎧⋅=⎪⎨⋅=⎪⎩即220,30,x z x -+=⎧⎪⎨-=⎪⎩令1x =,则1y z ==,所以n =,设直线1A O 与平面1A BD 所成角为θ,则sin θ=111cos ,AO n AO n AO n ⋅<>=⋅18. (本小题满分13分) 解:(Ⅰ)由已知2,b =由点(3,1)B 在椭圆G 上可得29114a +=,解得212,a a ==.所以2228,c a b c =-==, 所以椭圆G的离心率是c e a == (Ⅱ)法1:因为以BC 为直径的圆经过点A ,所以AB AC ⊥,由斜率公式和(0,2),(3,1)A B 可得13AB k =-,所以3Ac k =,设直线AC 的方程为32y x =+. 由2232,1124y x x y =+⎧⎪⎨+=⎪⎩得2790x x +=,由题设条件可得90,7A C x x ==-,所以913()77C -,-,所以直线BC 的方程为213y x =-. 法2:因为以BC 为直径的圆经过点A ,所以AB AC ⊥,由斜率公式和(0,2),(3,1)A B 可得13AB k =-,所以3Ac k =,设C C C x y (,) ,则23C Ac Cy k x -==,即32C C y x =+① 由点C 在椭圆上可得221124C C x y +=②将①代入②得2790C C x x +=,因为点C 不同于点A ,所以97C x =-,所以913()77C -,-,所以直线BC 的方程为213y x =-. 法3:当直线l 过点B 且斜率不存在时,可得点(3,1)C -,不满足条件.设直线BC 的方程为1(3)y k x -=-,点C C C x y (,)由2213,1124y kx k x y =+-⎧⎪⎨+=⎪⎩可得222(31)6(13)3(13)120k x k k x k ++-+--=,显然0∆>,此方程两个根是点B C 和点的横坐标,所以223(13)12331C k x k --=+,即22(13)4,31C k x k --=+所以22361,31C k k y k --+=+因为以BC 为直径的圆经过点A ,所以AB AC ⊥,即0AB AC ⋅=. (此处用1AB AC k k ⋅=-亦可)2222963961(3,1)(,)3131k k k k AB AC k k -----⋅=-⋅=++ 2236128031k k k --=+,即(32)(31)0k k -+=,1221,,33k k ==-当213k =-时,即直线AB ,与已知点C 不同于点A 矛盾,所以12,3BC k k ==所以直线BC 的方程为213y x =-.19. (本小题满分14分) 解:(Ⅰ)由()ln 1af x x x =--得221'()(0)a x af x x x x x+=+=>.由已知曲线()y f x =存在斜率为1-的切线, 所以'()1f x =-存在大于零的实数根, 即20x x a ++=存在大于零的实数根, 因为2y x x a =++在0x >时单调递增, 所以实数a 的取值范围0∞(-,).(Ⅱ)由2'()x af x x+=,0x >,a ∈R 可得 当0a ≥时,'()0f x >,所以函数()f x 的增区间为(0,)+∞; 当0a <时,若(,)x a ∈-+∞,'()0f x >,若(0,)x a ∈-,'()0f x <, 所以此时函数()f x 的增区间为(,)a -+∞,减区间为(0,)a -.(Ⅲ)由()ln x a g x x+=及题设得22ln 1('()(ln )(ln )a x f x x g x x x --==), 由10a -<<可得01a <-<,由(Ⅱ)可知函数()f x 在(,)a -+∞上递增, 所以(1)10f a =--<,取e x =,显然e 1>,(e)lne 10e a af e=--=->, 所以存在0(1,e)x ∈满足0()0f x =,即 存在0(1,e)x ∈满足0'()0g x =,所以(),'()g x g x 在区间(1,)+∞上的情况如下:x0(1,)x 0x 0(,)x +∞'()g x-0 +()g x极小所以当10a -<<时,()g x 在(1,)+∞上存在极小值. (本题所取的特殊值不唯一,注意到0(1)ax x->>),因此只需要0ln 1x ≥即可)20. (本小题满分13分)解:(Ⅰ)由21n a n =+可得{}n a 为递增数列,所以12121max{,,,}min{,,,}21322n n n n b a a a a a a a a n n =-=-=+-=- ,故{}n b 的前n 项和为22(1)2n n n n -⨯=-.- (Ⅱ)因为12121max{,,,}max{,,,}(1,2,3,)n n a a a a a a n +≤= ,12121min{,,,}min{,,,}(1,2,3,)n n a a a a a a n +≥= ,所以1211211212max{,,,}min{,,,}max{,,,}min{,,,}n n n n a a a a a a a a a a a a ++-≥-所以1(1,2,3,)n n b b n +≥= . 又因为1110b a a =-=,所以12121max{,,,}min{,,,}n n n n b b b b b b b b b -=-= , 所以{}n b 的“收缩数列”仍是{}n b .(Ⅲ)由121(1)(1)22n n n n n n S S S a b +-+++=+ (1,2,3,)n = 可得 当1n =时,11a a =;当2n =时,121223a a a b +=+,即221b a a =-,所以21a a ≥;当3n =时,123133263a a a a b ++=+,即3213132()()b a a a a =-+-(*), 若132a a a ≤<,则321b a a =-,所以由(*)可得32a a =,与32a a <矛盾;若312a a a <≤,则323b a a =-,所以由(*)可得32133()a a a a -=-, 所以3213a a a a --与同号,这与312a a a <≤矛盾; 若32a a ≥,则331b a a =-,由(*)可得32a a =. 猜想:满足121(1)(1)22n n n n n n S S S a b +-+++=+ (1,2,3,)n = 的数列{}n a 是: 1212,1,,1,n a n a a a a n =⎧=≥⎨>⎩.经验证,左式=121212(1)[12(1)]2n n n S S S na n a na a -+++=++++-=+ , 右式=112112(1)(1)(1)(1)(1)()22222n n n n n n n n n n n a b a a a na a +-+--+=+-=+.下面证明其它数列都不满足(Ⅲ)的题设条件.法1:由上述3n ≤时的情况可知,3n ≤时,1212,1,,1,n a n a a a a n =⎧=≥⎨>⎩是成立的.假设k a 是首次不符合1212,1,,1,n a n a a a a n =⎧=≥⎨>⎩的项,则1231k k a a a a a -≤===≠ ,由题设条件可得2212(1)(1)222k k k k k k k k a a a b ----+=+(*), 若12k a a a ≤<,则由(*)式化简可得2k a a =与2k a a <矛盾; 若12k a a a <≤,则2k k b a a =-,所以由(*)可得21(1)()2k k k k a a a a --=- 所以21k k a a a a --与同号,这与12k a a a <≤矛盾; 所以2k a a ≥,则1k k b a a =-,所以由(*)化简可得2k a a =.这与假设2k a a ≠矛盾.所以不存在数列不满足1212,1,,1,n a n a a a a n =⎧=≥⎨>⎩的{}n a 符合题设条件.法2:当i n ≤时,11212max{,,,}min{,,,}i i i i a a a a a a a a b -≤-= ,所以1121()ki k i a a b b b =-≤+++∑ ,(1,2,3,,)k n =即112()k k S ka b b b ≤++++ ,(1,2,3,,)k n = 由1(1,2,3,)n n b b n +≥= 可得(1,2,3,,)k n b b k n ≤= 又10b =,所以可得1(1)k n S ka k b ≤+-(1,2,3,)k = ,所以12111(2)[02(1)]n n n n n S S S a a na b b b n b +++≤++++⨯++++- ,即121(1)(1)22n n n n n nS S S a b +-+++≤+ 所以121(1)(1)22n n n n n nS S S a b +-+++≤+ 等号成立的条件是1(1,2,3,,)i i n a a b b i n -=== ,所以,所有满足该条件的数列{}n a 为1212,1,,1,n a n a a a a n =⎧=≥⎨>⎩.(说明:各题的其他做法,可对着参考答案的评分标准相应给分)。
北京市海淀区高三数学理科二模试卷及答案(WORD版)
![北京市海淀区高三数学理科二模试卷及答案(WORD版)](https://img.taocdn.com/s3/m/8bdff193ce2f0066f433222c.png)
北京市海淀区2012高三二模数 学(理科)2012.05一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若sin cos 0θθ<,则角θ是 (A )第一或第二象限角 (B )第二或第三象限角 (C )第三或第四象限角 (D )第二或第四象限角 (2)已知命题p :0x ∃∈R ,021x =.则p ⌝是 (A )0x ∀∈R ,021x ≠ (B )0x ∀∉R ,021x ≠ (C )0x ∃∈R ,021x ≠(D )0x ∃∉R ,021x ≠(3)直线11x ty t =+⎧⎨=-⎩(t 为参数)的倾斜角的大小为(A )4-π (B )4π (C )2π(D )34π(4)若整数,x y 满足1,1,3,2x y x y y ìïïï-?ïïï+?íïïïï£ïïî则2x y +的最大值是 (A )1(B )5(C )2 (D )3(5)已知点12,F F 是椭圆2222x y +=的两个焦点,点P 是该椭圆上的一个动点,那么12PF PF +u u u r u u u u r的最小值是(A )0 (B )1 (C )2 (D)(6)为了得到函数2log y =2log y x =的图象上所有的点的(A )纵坐标缩短到原来的12倍,横坐标不变,再向右平移1个单位长度 (B )纵坐标缩短到原来的12倍,横坐标不变,再向左平移1个单位长度(C )横坐标伸长到原来的2倍,纵坐标不变,再向左平移1个单位长度(D )横坐标伸长到原来的2倍,纵坐标不变,再向右平移1个单位长度俯视图主视图(7)某几何体的主视图与俯视图如图所示,左视图与主视图相同,且图中的四边形都是边长为2的正方形,两条虚线互相垂直,则该几何体的体积是(A )203(B )43(C )6 (D )4(8)点(,)P x y 是曲线1:(0)C y x x=>上的一个动点,曲线C 在点P 处的切线与x 轴、y 轴分别交于,A B 两点,点O 是坐标原点. 给出三个命题:①PA PB =;②OAB ∆的周长有最小值4+;③曲线C 上存在两点,M N ,使得OMN ∆为等腰直角三角形.其中真命题的个数是(A )1 (B )2 (C )3 (D )0二、填空题:本大题共6小题,每小题5分,共30分,把答案填在题中横线上. (9)在面积为1的正方形ABCD 内部随机取一点P ,则PAB ∆的面积大于等于14的概率是_________. (10)已知1021012311(1)x a a x a x a x +=++++L . 若数列123,,,,(111,)k a a a a k k #?Z L 是一个单调递增数列,则k 的最大值是 . (11)在ABC ∆中,若120A ??,5c =,ABC ∆的面积为,则a = .(12)如图,O e 的直径AB 与弦CD 交于点P ,7, 5, 15CP PD AP ===,则DCB Ð=______.(13)某同学为研究函数()1)f x x =#的性质,构造了如图所示的两个边长为1的正方形ABCD 和BEFC ,点P 是边BC 上的一个动点,设CP x =,则()AP PF f x +=. 请你参考这些信息,推知函数()f x 的图象的对称轴是 ;函数()4()9g x f x =-的零点的个数是 .(14)曲线C 是平面内到定点(1,0)A 的距离与到定直线1x =-的距离之和为3的动点P 的轨迹. 则曲线C 与y 轴交点的坐标是 ;又已知点(,1)B a (a 为常数),那么BEFAB C DPPB PA +的最小值()d a = .三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. (15)(本小题满分13分)已知公差不为0的等差数列{}n a 的前n 项和为n S ,346S a =+,且1413,,a a a 成等比数列. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列1{}nS 的前n 项和公式. (16)(本小题满分14分)如图所示,PA ^平面ABC ,点C 在以AB 为直径的⊙O 上,30CBA??,2PA AB ==,点E 为线段PB 的中点,点M 在»AB 上,且OM ∥AC . (Ⅰ)求证:平面MOE ∥平面P AC ;(Ⅱ)求证:平面P AC ^平面PCB ;(Ⅲ)设二面角M BP C --的大小为θ,求cos θ的值.(17)(本小题满分13分)某公司准备将100万元资金投入代理销售业务,现有A ,B 两个项目可供选择:且X 1的数学期望E (X 1)=12;(2)投资B 项目一年后获得的利润X 2(万元)与B 项目产品价格的调整有关, B 项目产品价格根据销售情况在4月和8月决定是否需要调整,两次调整相互独立且在4月和8月进行价格调整的概率分别为p (0< p <1)和1-p . 经专家测算评估:B 项目产品价格一年内调整次数X (次)与X 2的关系如下表所示:(Ⅱ)求X 2的分布列;(Ⅲ)若E (X 1)< E (X 2),则选择投资B 项目,求此时 p 的取值范围.(18)(本小题满分13分)已知椭圆C :22221(0)x y a b a b+=>>的右焦点为(1,0)F ,且点(1,2-在椭圆C 上. (Ⅰ)求椭圆C 的标准方程;ME BOCAP(Ⅱ)已知动直线l 过点F ,且与椭圆C 交于A ,B 两点.试问x 轴上是否存在定点Q ,使得716QA QB ⋅=-u u u r u u u r 恒成立?若存在,求出点Q 的坐标;若不存在,请说明理由.(19)(本小题满分14分)已知函数21()ln()(0)2f x a x a x x a =--+<. (Ⅰ)求()f x 的单调区间;(Ⅱ)若12(ln 21)a -<<-,求证:函数()f x 只有一个零点0x ,且012a x a +<<+; (Ⅲ)当45a =-时,记函数()f x 的零点为0x ,若对任意120,[0,]x x x ∈且211,x x -=都有21()()f x f x m -≥成立,求实数m 的最大值.(本题可参考数据:99ln 20.7,ln 0.8,ln 0.5945≈≈≈)(20)(本小题满分13分)将一个正整数n 表示为12(*)p a a a p +++?N L 的形式,其中*i a ÎN ,1,2,,i p =L ,且p a a a ≤≤≤Λ21,记所有这样的表示法的种数为)(n f (如4=4,4=1+3,4=2+2,4=1+1+2,4=1+1+1+1,故5)4(=f ).(Ⅰ)写出)5(),3(f f 的值,并说明理由;(Ⅱ)对任意正整数n ,比较)1(+n f 与)]2()([21++n f n f 的大小,并给出证明; (Ⅲ)当正整数6≥n 时,求证:134)(-≥n n f .海淀区高三年级第二学期期末练习数 学(理科)参考答案及评分标准 2012.05一. 选择题:本大题共8小题,每小题5分,共40分.二.填空题:本大题共6小题,每小题5分,共30分.(9)12(10)6 (11(12)45° (13)12x =;2 (14)(0,±; 1.41,4, 1.41,2, 1 1.a a a a a a ìï??ïïï+-<?íïï--<<ïïïî或注:(13)、(14)题第一空3分;第二空2分.三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. (15)(本小题满分13分)解:(Ⅰ)设等差数列{}n a 的公差为0d ¹.因为346S a =+, 所以11323362da a d 创+=++. ① ……………………………………3分 因为1413,,a a a 成等比数列,所以2111(12)(3)a a d a d +=+. ② ……………………………………5分由①,②可得:13,2a d ==. ……………………………………6分 所以21n a n =+. ……………………………………7分 (Ⅱ)由21n a n =+可知:2(321)22n n nS n n ++?==+.……………………………………9分所以11111()(2)22n S n n n n ==-++. ……………………………………11分 所以123111111n nS S S S S -+++++L 11111111111()2132435112n n n n =-+-+-++-+--++L 21111135()212124(1)(2)n n n n n n +=+--=++++.所以数列1{}nS 的前n 项和为2354(1)(2)n n n n +++.……………………………………13分(16)(本小题满分14分)(Ⅰ)证明:因为点E 为线段PB 的中点,点O 为线段AB 的中点,所以 OE ∥PA . ……………………………………1分 因为 PA Ì平面PAC ,OE Ë平面PAC ,所以 OE ∥平面P AC . ……………………………………2分因为 OM ∥AC , 因为 AC Ì平面PAC ,OM Ë平面PAC ,所以 OM ∥平面P AC . ……………………………………3分因为 OE Ì平面MOE ,OM Ì平面MOE ,OE OM O =I ,所以 平面MOE ∥平面P AC . ………………………………………5分(Ⅱ)证明:因为 点C 在以AB 为直径的⊙O 上,所以 90ACB??,即BC AC ⊥.因为 PA ^平面ABC ,BC Ì平面ABC , 所以PA BC ⊥. ……………………………………7分因为 AC Ì平面PAC ,PA Ì平面PAC ,PA AC A =I ,所以 BC ^平面PAC . 因为 BC Ì平面PBC ,所以 平面P AC ^平面PCB . ……………………………………9分(Ⅲ)解:如图,以C 为原点,CA 所在的直线为x 轴,CB 所在的直线为y 轴,建立空间直角坐标系C xyz -. 因为 30CBA??,2PA AB ==,所以2cos30CB =?1AC =.延长MO 交CB 于点D . 因为 OM ∥AC ,所以131, 1,222MD CB MD CD CB ^=+===. 所以 (1,0,2)P ,(0,0,0)C,B,3(2M . 所以 (1,0,2)CP =u u u r,CB =u u u r.设平面PCB 的法向量(,,)=x y z m .因为 0,0.CP CBìï?ïíï?ïîu u u r u u u r m m所以(,,)(1,0,2)0,(,,)0,x y z x y z ì?ïïíï?ïî即20,0.x z ì+=ïïíï=ïî 令1z =,则2,0x y =-=.所以 (2,0,1)=-m . ……………………………………12分 同理可求平面PMB 的一个法向量n ()=.……………………………………13分 所以 1cos ,5⋅==-⋅m n m n m n . 所以 1cos 5θ=. ………………………………………14分 (17)(本小题满分13分) 解:(Ⅰ)由题意得:0.41,11120.41712.a b a b ++=⎧⎨+⨯+=⎩解得:0.5,0.1a b ==. ……………………………………3分 (Ⅱ)X 2 的可能取值为4.12,11.76,20.40.()[]2 4.12(1)1(1)(1)P X p p p p ==---=-,()[]22211.761(1)(1)(1)(1)P X p p p p p p ==--+--=+-,()220.40(1)P X p p ==-.所以X 2的分布列为:(Ⅲ)由(Ⅱ)可得:()2224.12(1)11.76(1)20.40(1)E Xp p p p p p ⎡⎤=-++-+-⎣⎦211.76p p =-++. ……………………………………11分因为E (X 1)< E (X 2),所以21211.76p p<-++. 所以0.40.6p <<.当选择投资B 项目时,p 的取值范围是()0.4,0.6.……………………………………13分(18)(本小题满分13分) 解:(Ⅰ)由题意知:1c =. 根据椭圆的定义得:22a =,即a =……………………………………3分 所以 2211b =-=.所以 椭圆C 的标准方程为2212x y +=. ……………………………………4分 (Ⅱ)假设在x 轴上存在点(,0)Q m ,使得716QA QB ⋅=-u u u r u u u r恒成立. 当直线l 的斜率为0时,(A B .则7,0)(,0)16m m ?=-. 解得 54m =?. ……………………………………6分 当直线l的斜率不存在时,(1,(1,22A B -.由于557(1,(1,424216+?-?,所以54m ?. 下面证明54m =时,716QA QB ⋅=-u u u r u u u r 恒成立.……………………………………8分显然 直线l 的斜率为0时,716QA QB ⋅=-u u u r u u u r .当直线l 的斜率不为0时,设直线l 的方程为:1x ty =+,()()1122,,,A x y B x y .由221,21x y x ty ìïï+=ïíïï=+ïî可得:22(2)210t y ty ++-=. 显然0∆>.1221222,21.2t y y t y y t ìïï+=-ïï+ïíïï=-ïï+ïî……………………………………10分 因为 111x ty =+,221x ty =+,所以 112212125511(,)(,)()()4444x y x y ty ty y y -?=--+ 2121211(1)()416t y y t y y =+-++2221121(1)24216t t t t t =-+++++ 22222172(2)1616t t t --+=+=-+.综上所述:在x 轴上存在点5(,0)4Q ,使得716QA QB ⋅=-u u u r u u u r 恒成立.……………………………………13分(19)(本小题满分14分)(Ⅰ)解:()f x 的定义域为(,)a +∞.2(1)'()1a x a xf x x x a x a-++=-+=--. ……………………………………1分令'()0f x =,0x =或+1x a =.当10a -<<时,+10a >,函数()f x 与'()f x 随x 的变化情况如下表:所以,函数()f x 的单调递增区间是(0,1)a +,单调递减区间是(,0)a 和(1,)a ++?.……………………………………3分当1a =-时,2'()01x f x x -=≤+. 所以,函数()f x 的单调递减区间是(1,)-+?. ……………………………………4分 当1a <-时,+10a <,函数()f x 与'()f x 随x 的变化情况如下表:所以,函数()f x 的单调递增区间是(1,0)a +,单调递减区间是(,1)a a +和(0,)+?.……………………………………5分(Ⅱ)证明:当12(ln21)0a -<<-<时,由(Ⅰ)知,()f x 的极小值为(0)f ,极大值为(1)f a +.因为(0)ln()0f a a =->,2211(1)(1)(1)(1)022f a a a a +=-+++=->,且()f x 在(1,)a ++?上是减函数,所以()f x 至多有一个零点. ……………………………………7分 又因为211(2)ln 2[2(ln 21)]022f a a a a a a +=--=---<, 所以 函数()f x 只有一个零点0x ,且012a x a +<<+.……………………………………9分(Ⅲ)解:因为412(ln 21)5-<-<-, 所以 对任意120,[0,]x x x ∈且211,x x -=由(Ⅱ)可知:1[0,1)x a ∈+,20(1,]x a x ∈+,且21x ≥. ……………………………………10分因为 函数()f x 在[0,1)a +上是增函数,在(1,)a ++?上是减函数,所以 1()f x (0)f ≥,2()f x (1)f ≤. ……………………………………11分 所以 12()()(0)(1)f x f x f f -?.当45a =-时,1(0)(1)ln()12a f f a a -=--=491ln 542->0. 所以 12()()(0)(1)0f x f x f f -?>. ……………………………………13分所以 21()()f x f x -的最小值为491(0)(1)ln 542f f -=-. 所以 使得21()()f x f x m -≥恒成立的m 的最大值为491ln 542-.……………………………………14分(20)(本小题满分13分)(Ⅰ)解:因为3=3,3=1+2,3=1+1+1,所以3)3(=f .因为5=5,5=2+3,5=1+4,5=1+1+3,5=1+2+2,5=1+1+1+2,5=1+1+1+1+1, 所以7)5(=f . ……………………………………3分 (Ⅱ)结论是)1(+n f )]2()([21++≤n f n f . 证明如下:由结论知,只需证).1()2()()1(+-+≤-+n f n f n f n f因为21≥+n ,把1+n 的一个表示法中11a =的1a 去掉,就可得到一个n 的表示法;反之,在n 的一个表示法前面添加一个“1+”,就得到一个1n +的表示法,即1+n 的表示法中11a =的表示法种数等于n 的表示法种数,所以)()1(n f n f -+表示的是1+n 的表示法中11a ¹的表示法数,)1()2(+-+n f n f 是2n +的表示法中11a ¹的表示法数.同样,把一个11a ¹的1+n 的表示法中的p a 加上1, 就可得到一个11a ¹的2n +的表示法,这样就构造了从11a ¹的1+n 的表示法到11a ¹的2+n 的表示法的一个对应.所以有).1()2()()1(+-+≤-+n f n f n f n f ……………………………………9分(Ⅲ)由第(Ⅱ)问可知:当正整数6m ³时,()(1)(1)(2)(6)(5)f m f m f m f m f f --?--吵-L. 又,7)5(,11)6(==f f 所以 ()(1)4f m f m --?. *对于*式,分别取m 为n ,,7,6Λ,将所得等式相加得)5(4)5()(-≥-n f n f .即134)(-≥n n f . ……………………………………13分。
海淀区高三二模数学试题及答案(理科)
![海淀区高三二模数学试题及答案(理科)](https://img.taocdn.com/s3/m/3d28fd26cc22bcd127ff0c6e.png)
海淀区高三年级第二学期期末练习数 学 (理科) 2010.5审核:陈亮 校对:张浩一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知集合{}0A x x =≥,{0,1,2}B =,则A .AB ⊂≠B .B A ⊂≠C .A B B =D .A B =∅2.函数()sin(2)3f x x π=+图象的对称轴方程可以为A .12x π=B .512x π=C .3x π=D .6x π=3.如图,CD 是⊙O 的直径,AE 切⊙O 于点B ,连接DB ,若20D ∠=︒,则DBE ∠的大小为 A. 20︒ B. 40︒ C. 60︒ D. 70︒ 4.函数()2ln f x x x =--在定义域内零点的个数为A .0B .1C .2D .35.已知不等式组02,20,20x x y kx y ≤≤⎧⎪+-≥⎨⎪-+≥⎩所表示的平面区域的面积为4,则k 的值为A .1B .3-C .1或3-D .06.已知m ,n 是不同的直线,α,β是不同的平面,则下列条件能 使n α⊥成立的是A .αβ⊥,m β⊂B .//αβ,m β⊥C .αβ⊥,//n βD .//m α,n m ⊥7.按照如图的程序框图执行,若输出结果为15,则M 处条件为A .16k ≥B .8k <C .16k <D .8k ≥8.已知动圆C 经过点F (0,1),并且与直线1y =-相切,若直线34200x y -+=与圆C 有公共点,则圆C 的面积A .有最大值为πB .有最小值为πC .有最大值为4πD .有最小值为4π 开始S =0MS =S +k 2k k =⨯ 结束 输出S 是否k =1 CO D二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9.在极坐标系中,若点0(,)3A πρ(00ρ≠)是曲线2cos ρθ=上的一点,则0ρ= .10.某校高中年级开设了丰富多彩的校本课程,甲、乙两班各随机抽取了5名学生的学分,用茎叶图表示(如右图).1s ,2s 分别表示甲、乙两班各自5名学生学分的 标准差,则1s 2s .(填“>”、“<”或“=”)11.已知向量a =)0,1(,b =)1,(x ,若a b 2=,则x = ;a b += . 12. 已知数列{}n a 满足11a =,12n n n a a +=(n ∈N *),则910a a +的值为 . 13.在ABC ∆中,角A ,B ,C 所对应的边分别为a ,b ,c ,若sin a c A =,则a bc+的最大值为 . 14.给定集合{1,2,3,...,}n A n =,映射:n n f A A →满足: ①当,,n i j A i j ∈≠时,()()f i f j ≠;②任取,n m A ∈若2m ≥,则有m {(1),(2),..,()}f f f m ∈..则称映射f :n n A A →是一个“优映射”.例如:用表1表示的映射f :33A A →是一个“优映射”. 表1 表2(1)已知表2表示的映射f : 44A A →是一个优映射,请把表2补充完整(只需填出一个满足条件的映射);(2)若映射f :1010A A →是“优映射”,且方程()f i i =的解恰有6个,则这样的“优映射”的个数是_____.三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程. 15.(本小题满分13分)记等差数列{}n a 的前n 项和为n S ,已知2446,10a a S +==. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)令2n n n b a =⋅*(N )n ∈,求数列{}n b 的前n 项和n T . i1 2 3 ()f i231i1 2 3 4 ()f i3已知四棱锥P ABCD -,底面ABCD 为矩形,侧棱PA ABCD ⊥底面,其中226BC AB PA ===,M N ,为侧棱PC 上的两个三等分点,如图所示.(Ⅰ)求证://AN MBD 平面;(Ⅱ)求异面直线AN 与PD 所成角的余弦值;(Ⅲ)求二面角M BD C --的余弦值.17.(本小题满分13分)为保护水资源,宣传节约用水,某校4名志愿者准备去附近的甲、乙、丙三家公园进行宣传活动,每名志愿者都可以从三家公园中随机选择一家,且每人的选择相互独立. (Ⅰ)求4人恰好选择了同一家公园的概率;(Ⅱ)设选择甲公园的志愿者的人数为X ,试求X 的分布列及期望. 18.(本小题满分13分)已知函数2()(2)e ax f x ax x =-,其中a 为常数,且0a ≥. (Ⅰ)若1a =,求函数()f x 的极值点;(Ⅱ)若函数()f x在区间上单调递减,求实数a 的取值范围. 19.(本小题满分13分)已知椭圆1C 和抛物线2C 有公共焦点F (1,0), 1C 的中心和2C 的顶点都在坐标原点,过点M (4,0)的直线l 与抛物线2C 分别相交于A ,B 两点. (Ⅰ)写出抛物线2C 的标准方程;(Ⅱ)若12AM MB =,求直线l 的方程;(Ⅲ)若坐标原点O 关于直线l 的对称点P 在抛物线2C 上,直线l 与椭圆1C 有公共点,求椭圆1C 的长轴长的最小值.已知函数()f x 的图象在[,]a b 上连续不断,定义:1()min{()|}f x f t a t x =≤≤([,])x a b ∈, 2()max{()|}f x f t a t x =≤≤([,])x a b ∈.其中,min{()|}f x x D ∈表示函数()f x 在D 上的最小值,max{()|}f x x D ∈表示函数()f x 在D 上的最大值.若存在最小正整数k ,使得21()()()f x f x k x a -≤-对任意的[,]x a b ∈成立,则称函数()f x 为[,]a b 上的“k 阶收缩函数”.(Ⅰ)若()cos f x x =,[0,]x π∈,试写出1()f x ,2()f x 的表达式;(Ⅱ)已知函数2()f x x =,[1,4]x ∈-,试判断()f x 是否为[1,4]-上的“k 阶收缩函数”,如果是,求出对应的k ;如果不是,请说明理由;(Ⅲ)已知0b >,函数32()3f x x x =-+是[0,]b 上的2阶收缩函数,求b 的取值范围.海淀区高三年级第二学期期末练习数 学 (理)参考答案及评分标准 2010.5说明: 合理答案均可酌情给分,但不得超过原题分数.第Ⅰ卷(选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分)题号 1 2 3 4 5 6 7 8 答案BADCABAD第Ⅱ卷(非选择题 共110分)二、填空题(本大题共6小题,每小题5分, 有两空的小题,第一空3分,第二空2分,共30分)9.1 10.< 11.2 ;10 12.48 13.2 14.;84.三、解答题(本大题共6小题,共80分) 15.(本小题满分13分)解:(Ⅰ)设等差数列{}n a 的公差为d ,由2446,10a a S +==,可得11246434102a d a d +=⎧⎪⎨⨯+=⎪⎩ , ………………………2分即1123235a d a d +=⎧⎨+=⎩,解得111a d =⎧⎨=⎩,………………………4分∴()111(1)n a a n d n n =+-=+-=, 故所求等差数列{}n a 的通项公式为n a n =.………………………5分 (Ⅱ)依题意,22n nn n b a n =⋅=⋅,∴12n n T b b b =+++231122232(1)22n n n n -=⨯+⨯+⨯++-⋅+⋅,………………………7分又2n T =2341122232(1)22n n n n +⨯+⨯+⨯++-⋅+⋅, …………………9分两式相减得2311(22222)2n n n n T n -+-=+++++-⋅………………………11分()1212212n n n +-=-⋅-1(1)22n n +=-⋅-,………………………12分 ∴1(1)22n n T n +=-⋅+.………………………13分16.(本小题满分14分)(Ⅰ)证明:连结AC 交BD 于O ,连结OM , ABCD 底面为矩形,O AC ∴为中点,………… 1分 M N PC 、为侧棱的三等分点, CM MN ∴=,//OM AN ∴ ,………… 3分 ,OM MBD AN MBD ⊂⊄平面平面,//AN MBD ∴平面.………… 4分 (Ⅱ)如图所示,以A 为原点,建立空间直角坐标系A xyz -,则(0,0,0)A ,(3,0,0)B ,(3,6,0)C ,(0,6,0)D ,(0,0,3)P ,(2,4,1)M ,(1,2,2)N , (1,2,2),(0,6,3)AN PD ==-,………………………5分cos ,3AN PDAN PD AN PD⋅∴<>===⨯ ………………………7分∴异面直线AN 与PD . ………………………8分(Ⅲ)侧棱PA ABCD ⊥底面,(0,0,3)BCD AP ∴=平面的一个法向量为,………………………9分设MBD 平面的法向量为(,,)x y z =m ,(3,6,0),(1,4,1)BD BM =-=-,并且,BD BM ⊥⊥m m ,36040x y x y z -+=⎧∴⎨-++=⎩,令1y =得2x =,2z =-, ∴MBD 平面的一个法向量为(2,1,2)=-m . (11)分D2cos ,3AP AP AP ⋅<>==-mm m,………………………13分由图可知二面角M BD C --的大小是锐角, ∴二面角M BD C --大小的余弦值为23. .………………………14分17. (本小题满分13分) 解:(Ⅰ)设“4人恰好选择了同一家公园”为事件A .………………1分每名志愿者都有3种选择,4名志愿者的选择共有43种等可能的情况 . …………………2分事件A 所包含的等可能事件的个数为3, …………………3分 所以,()431327P A ==. 即:4人恰好选择了同一家公园的概率为127. ………………5分(Ⅱ)设“一名志愿者选择甲公园”为事件C ,则()13P C =. .………………………6分4人中选择甲公园的人数X 可看作4次独立重复试验中事件C 发生的次数,因此,随机变量X 服从二项分布.X 可取的值为0,1,2,3,4..………………………8分 ()4412()()33i i iP X i C -==, 0,1,2,3,4i =..………………………10分X 的分布列为:X 0 1 2 3 4P1681 3281 2481 881 181.………………………12分X 的期望为()14433E X =⨯=..………………………13分18.(本小题满分13分)解法一:(Ⅰ)依题意得2()(2)e x f x x x =-,所以2()(2)e x f x x '=-, .………………………1分 令()0f x '=,得2x =±,.………………………2分()f x ',()f x 随x 的变化情况入下表:x(,2)-∞-2-(2,2)-2(2,)+∞()f x ' - 0 + 0 - ()f x极小值极大值………………………4分由上表可知,2x =-是函数()f x 的极小值点,2x =是函数()f x 的极大值点.………………………5分(Ⅱ) 22()[(22)2]e ax f x ax a x a '=-+-+,.………………………6分由函数()f x 在区间(2,2)上单调递减可知:()0f x '≤对任意(2,2)x ∈恒成立,.………………………7分当0a =时,()2f x x '=-,显然()0f x '≤对任意(2,2)x ∈恒成立; .…………………8分 当0a >时,()0f x '≤等价于22(22)20ax a x a ---≥,因为(2,2)x ∈,不等式22(22)20ax a x a ---≥等价于2222a x x a--≥,.………………………9分令2(),[2,2]g x x x x =-∈,则22()1g x x'=+,在[2,2]上显然有()0g x '>恒成立,所以函数()g x 在[2,2]单调递增, 所以()g x 在[2,2]上的最小值为(2)0g =,.………………………11分由于()0f x '≤对任意(2,2)x ∈恒成立等价于2222a x x a --≥对任意(2,2)x ∈恒成立,需且只需2min22()a g x a -≥,即2220a a-≥,解得11a -≤≤,因为0a >,所以01a <≤. 综合上述,若函数()f x 在区间(2,2)上单调递减,则实数a 的取值范围为01a ≤≤..………………………13分解法二:(Ⅰ)同解法一(Ⅱ)22()[(22)2]e ax f x ax a x a '=-+-+,.………………………6分由函数()f x 在区间(2,2)上单调递减可知:()0f x '≤对任意(2,2)x ∈恒成立, 即22(22)20ax a x a ---≥对任意(2,2)x ∈恒成立,…………………7分当0a =时,()2f x x '=-,显然()0f x '≤对任意(2,2)x ∈恒成立; …………………8分当0a >时,令22()(22)2h x ax a x a =---,则函数()h x 图象的对称轴为21a x a-=,.………………………9分若210a a-≤,即01a <≤时,函数()h x 在(0,)+∞单调递增,要使()0h x ≥对任意(2,2)x ∈恒成立,需且只需(2)0h ≥,解得11a -≤≤,所以01a <≤; ..………………………11分若210a a->,即1a >时,由于函数()h x 的图象是连续不间断的,假如()0h x ≥对任意(2,2)x ∈恒成立,则有(2)0h ≥,解得11a -≤≤,与1a >矛盾,所以()0h x ≥不能对任意(2,2)x ∈恒成立.综合上述,若函数()f x 在区间(2,2)上单调递减,则实数a 的取值范围为01a ≤≤..………………………13分19.(本小题满分13分)解:(Ⅰ)由题意,抛物线2C 的方程为:24y x =, …………2分(Ⅱ)设直线AB 的方程为:(4),(0)y k x k k =-≠存在且. 联立2(4)4y k x y x=-⎧⎨=⎩,消去x ,得 24160ky y k --=,………………3分显然216640k ∆=+>,设1122(,),(,)A x y B x y ,则 124y y k+= ①1216y y ⋅=- ②…………………4分 又12AM MB =,所以 1212y y =- ③…………………5分由①② ③消去12,y y ,得 22k =,故直线l 的方程为242,y x =-或242y x =-+ .…………………6分(Ⅲ)设(,)P m n ,则OP 中点为(,)22m n, 因为O P 、两点关于直线(4)y k x =-对称,所以(4)221nm k n k m ⎧=-⎪⎪⎨⎪⋅=-⎪⎩,即80km n k m nk -=⎧⎨+=⎩,解之得2228181k m k kn k ⎧=⎪⎪+⎨⎪=-⎪+⎩, …………………8分将其代入抛物线方程,得:222288()411k k k k -=⋅++,所以,21k =. ………………………9分联立 2222(4)1y k x x y ab =-⎧⎪⎨+=⎪⎩,消去y ,得:2222222222()8160b a k x k a x a k a b +-+-=.………………………10分由2222222222(8)4()(16)0k a b a k a k a b ∆=--+-≥,得 242222216()(16)0a k b a k k b -+-≥,即222216a k b k +≥,…………………12分222BM AF Py xO2217a≥,所以342 a≥,即234a≥,因此,椭圆1C长轴长的最小值为34. ………………………13分20.(本小题满分14分)解:(Ⅰ)由题意可得:1()cos,[0,]f x x xπ=∈, ………………………1分2()1,[0,]f x xπ=∈. ………………………2分(Ⅱ)21,[1,0)()0,[0,4]x xf xx⎧∈-=⎨∈⎩,………………………3分221,[1,1)(),[1,4]xf xx x∈-⎧=⎨∈⎩, ………………………4分22121,[1,0)()()1,[0,1),[1,4]x xf x f x xx x⎧-∈-⎪-=∈⎨⎪∈⎩, ………………………5分当[1,0]x∈-时,21(1)x k x-≤+1k x∴≥-,2k≥;当(0,1)x∈时,1(1)k x≤+11kx∴≥+1k∴≥;当[1,4]x∈时,2(1)x k x≤+21xkx∴≥+165k∴≥.综上所述,165k∴≥………………………6分即存在4k=,使得()f x是[1,4]-上的4阶收缩函数. ………………………7分(Ⅲ)()2()3632f x x x x x'=-+=--,令'()0f x=得0x=或2x=.函数()f x的变化情况如下:令()0f x=,解得0x=或3. ………………………8分ⅰ)2b≤时,()f x在[0,]b上单调递增,因此,()322()3f x f x x x==-+,()1()00f x f==.因为32()3f x x x=-+是[0,]b上的2阶收缩函数,所以,①()()21()20f x f x x -≤-对[0,]x b ∈恒成立;②存在[]0,x b ∈,使得()()21()0f x f x x ->-成立.………………………9分 ①即:3232x x x -+≤对[0,]x b ∈恒成立,由3232x x x -+≤,解得:01x ≤≤或2x ≥,要使3232x x x -+≤对[0,]x b ∈恒成立,需且只需01b <≤..………………………10分 ②即:存在[0,]x b ∈,使得()2310x x x -+<成立.由()2310x x x -+<得:0x <x <<,所以,需且只需b >1b <≤. .………………………11分 ⅱ)当2b >时,显然有3[0,]2b ∈,由于()f x 在[0,2]上单调递增,根据定义可得: 2327()28f =,13()02f =, 可得 2133273()232282f f ⎛⎫-=>⨯= ⎪⎝⎭, 此时,()()21()20f x f x x -≤-不成立..………………………13分1b <≤.注:在ⅱ)中只要取区间(1,2)内的一个数来构造反例均可,这里用32只是因为简单而已.。
2017年北京市海淀区高三上学期期末数学试卷与解析答案(理科)
![2017年北京市海淀区高三上学期期末数学试卷与解析答案(理科)](https://img.taocdn.com/s3/m/d952c0f3f5335a8103d22017.png)
几何体的体积为
.
的一个焦点且与其一条渐近线平行,
则直线 l 的方程可以是(
A. y=﹣
B. y=
) C. y=2x﹣
D. y=﹣ 2x+
6.( 5 分)设 x, y 满足
,则( x+1) 2+y2 的最小值为(
)
A. 1 B. C. 5 D. 9
7.( 5 分)在手绘涂色本的某页上画有排成一列的
6 条未涂色的鱼,小明用红、
3.( 5 分)如图程序框图所示的算法来自于《九章算术》
的值为 24,则执行该程序框图的结果为(
)
)的距离为(
)
,若输入 a 的值为 16,b
A. 6 B. 7 C. 8 D. 9 4.( 5 分)已知向量 , 满足 A.﹣ B. C.﹣ 2 D. 2
,( ) =2,则 =( )
5.( 5 分)已知直线 l 经过双曲线
范围是(
)
A. [ 0, 1] B. [ , ] C. [ 1, 2] D. [ , 2]
二、填空题(共 6 小题,每小题 5 分,满分 30 分)
9.( 5 分)已知复数 z 满足( 1+i ) z=2,则 z=10 .(5分)(2x
+
) 6 的展开式中常数项是
. .(用数字作答)
11.( 5 分)若一个几何体由正方体挖去一部分得到,其三视图如图所示,则该
2016-2017 学年北京市海淀区高三(上)期末数学试卷(理科)
一、选择题(共 8 小题,每小题 5 分,满分 40 分)
1.( 5 分)抛物线 y2=2x 的焦点到准线的距离为(
)
A. B. 1 C. 2 D. 3
2.( 5 分)在极坐标系中,点( 1, )与点( 1,
北京市海淀区2017届高三一模数学(理)试题【含答案】
![北京市海淀区2017届高三一模数学(理)试题【含答案】](https://img.taocdn.com/s3/m/995f0103fc4ffe473368ab54.png)
北京海淀区高三年级2016-2017学年度第一次综合练习数学试卷(理科)2017.3一、选择题:共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知集合(){}10A x x x =+≤,集合{}0B x x =>,则A B =( )A .{}1x x ≥-B .{}1x >-C .{}0x x ≥D .{}0x x >2.已知复数()()z i a bi a b R =+∈,),则“z 为纯虚数”的充分必要条件为( ) A .220a b +≠B .0ab =C .00a b =≠,D .00a b ≠=,3.执行如图所示的程序框图,输出的x 值为( ) A .0B .3C .6D .84.设a b R ∈,若a b >,则( ) A .11a b> B .22a b> C .lg lg a b >D .sin sin a b >5.已知1a xdx =⎰,12b x dx =⎰,0c =⎰,则a b c 、、的大小关系是( )A .a b c <<B .a c b <<C .b a c <<D .c a b <<6.已知曲线2:2x C y a ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),()()1010A B -,、,,若曲线C 上存在点P 满足0AP BP ⋅=,则实数a 的取值范围为( )A.22⎡-⎢⎣⎦,B .[]11-,C.⎡⎣D .[]22-,7.甲、乙、丙、丁、戊五人排成一排,甲和乙都排在丙的同一侧,排法种数为( ) A .12B .40C .60D .808.某折叠餐桌的使用步骤如图所示,有如图检查项目:项目①:折叠状态下(如图1),检查四条桌腿长相等;项目②:打开过程中(如图2),检查''''OM ON O M O N ===; 项目③:打开过程中(如图2),检查''''OK OL O K O L ===; 项目④:打开后(如图3),检查123490∠=∠=∠=∠=; 项目⑤:打开后(如图3),检查''''AB A B C D CD ===.在检查项目的组合中,可以正确判断“桌子打开之后桌面与地面平行的是”( ) A .①②③ B .②③④C .②④⑤D .③④⑤二、填空题(每题5分,满分30分,将答案填在答题纸上)9.若等比数列{}n a 满足24548a a a a ==,,则公比q =________,前n 项和n S =________. 10.已知()()122020F F -,、,,满足122PF PF -=的动点P 的轨迹方程为________. 11.在ABC ∆中,cos c a B =.①A =________;②若1sin 3C =,则()cos B π+=________. 12.若非零向量a ,b 满足()0a a b ⋅+=,2a b =,则向量a ,b 夹角的大小为________.13.已知函数()210cos 0x x f x x x π⎧-≥=⎨<⎩,,,若关于x 的方程()0f x a +=在()0+∞,内有唯一实根,则实数a 的最小值是________.14.已知实数u v x y ,,,满足221u v +=,102202x y x y x +-≥⎧⎪-+≥⎨⎪≤⎩,则z ux vy =+的最大值是________.三、解答题(本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.) 15.(本小题满分13分)已知3π是函数()22cos sin 21f x x a x =++的一个零点. (Ⅰ)求实数a 的值;(Ⅱ)求()f x 的单调递增区间.据报道,巴基斯坦由中方投资运营的瓜达尔港目前已通航.这是一个可以停靠8~10万吨油轮的深水港,通过这一港口,中国船只能够更快到达中东和波斯湾地区,这相当于给中国平添了一条大动脉!在打造中巴经济走廊协议(简称协议)中,能源投资约340亿美元,公路投资约59亿美元,铁路投资约38亿美元,高架铁路投资约16亿美元,瓜达尔港投资约6.6亿美元,光纤通讯投资约为0.4亿美元.有消息称,瓜达尔港的月货物吞吐量将是目前天津、上海两港口月货物吞吐量之和.表格记录了2015年天津、上海两港口的月吞吐量(单位:百万吨):(Ⅰ)根据协议提供信息,用数据说明本次协议投资重点;(Ⅱ)从表中12个月任选一个月,求该月天津、上海两港口月吞吐量之和超过55百万吨的概率;(Ⅲ)将(Ⅱ)中的计算结果视为瓜达尔港每个月货物吞吐量超过55百万吨的概率,设X为瓜达尔未来12个月的月货物吞吐量超过55百万吨的个数,写出X的数学期望(不需要计算过程).如图,由直三棱柱111ABC A B C -和四棱锥11D BB C C -构成的几何体中,90BAC ∠=,1AB =,12BC BB ==,1C D CD ==1CC D ⊥平面11ACC A .(Ⅰ)求证:1AC DC ⊥;(Ⅱ)若M 为1DC 的中点,求证://AM 平面1DBB ;(Ⅲ)在线段BC 上是否存在点P ,使直线DP 与平面1BB D 所成的角为3π?若存在,求BPBC 的值,若不存在,说明理由.已知函数()()()2241ln 1f x x ax a x =-+-+,其中实数3a <. (Ⅰ)判断1x =是否为函数()f x 的极值点,并说明理由; (Ⅱ)若()0f x ≤在区间[]01,上恒成立,求a 的取值范围.已知椭圆22:12x G y +=,与x 轴不重合的直线l 经过左焦点1F ,且与椭圆G 相交于A B 、两点,弦AB 的中点为M ,直线OM 与椭圆G 相交于C D 、两点.(Ⅰ)若直线l 的斜率为1,求直线OM 的斜率; (Ⅱ)是否存在直线l ,使得2AM CM DM =⋅成立?若存在,求出直线l 的方程;若不存在,请说明理由.已知含有n 个元素的正整数集{}()12123n n A a a a a a a n =<<<≥,,,,具有性质P :对任意不大于()S A (其中()12n S A a a a =+++)的正整数k ,存在数集A 的一个子集,使得该子集所有元素的和等于k .(Ⅰ)写出12a a ,的值;(Ⅱ)证明:“12n a a a ,,,成等差数列”的充要条件是“()()12n n S A +=”; (Ⅲ)若()2017S A =,求当n 取最小值时n a 的最大值.2017年北京市海淀区高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x(x+1)≤0},集合B={x|x>0},则A∪B=()A.{x|x≥﹣1} B.{x|x>﹣1} C.{x|x≥0} D.{x|x>0}【解答】解:∵集合A={x|x(x+1)≤0}={x|﹣1≤x≤0},集合B={x|x>0},∴A∪B={x|x≥﹣1}.故选:A.2.(5分)已知复数z=i(a+bi)(a,b∈R),则“z为纯虚数”的充分必要条件为()A.a2+b2≠0 B.ab=0 C.a=0,b≠0 D.a≠0,b=0【解答】解:复数z=i(a+bi)=ai﹣b(a,b∈R),则“z为纯虚数”的充分必要条件为﹣b=0,a≠0.故选:D.3.(5分)执行如图所示的程序框图,输出的x值为()A.0 B.3 C.6 D.8【解答】解:x=0,y=9,≠,x=1,y=8,≠,x=2,y=6,=4≠,x=3,y=3,3=,输出x=3,故选:B.4.(5分)设a,b∈R,若a>b,则()A.<B.2a>2b C.lga>lgb D.sina>sinb【解答】解:a,b∈R,a>b,当a>0,b<0时,A不成立,根据指数函数的单调性可知,B正确,根据对数函数的定义,可知真数必需大于零,故C不成立,由于正弦函数具有周期性和再某个区间上为单调函数,故不能比较,故D不成立,故选:B.5.(5分)已知a=xdx,b=x2dx,c=dx,则a,b,c的大小关系是()A.a<b<c B.a<c<b C.b<a<c D.c<a<b【解答】解:a=xdx=|=,b=x2dx=|=,c=dx=|=,则b<a<c,故选:C6.(5分)已知曲线C:(t为参数),A(﹣1,0),B(1,0),若曲线C上存在点P满足•=0,则实数a的取值范围为()A.,B.[﹣1,1] C.,D.[﹣2,2]【解答】解:∵A(﹣1,0),B(1,0),若曲线C上存在点P满足•=0,∴P的轨迹方程是x2+y2=1.曲线C:(t为参数),普通方程为x﹣y+a=0,由题意,圆心到直线的距离d=≤1,∴,故选C.7.(5分)甲、乙、丙、丁、戊五人排成一排,甲和乙都排在丙的同一侧,排法种数为()A.12 B.40 C.60 D.80【解答】解:根据题意,分2种情况讨论:①、甲和乙都排在丙的左侧,将甲乙安排在丙的左侧,考虑甲乙之间的顺序,有2种情况,排好后有4个空位,在4个空位中选一个安排丁,有4种情况,排好后有5个空位,在5个空位中选一个安排戊,有5种情况,则甲和乙都排在丙的左侧的情况有2×4×5=40种,②、甲和乙都排在丙的右侧,同理有40种不同的排法;故甲和乙都排在丙的同一侧的排法种数为40+40=80种;故选:D.8.(5分)某折叠餐桌的使用步骤如图所示,有如图检查项目:项目①:折叠状态下(如图1),检查四条桌腿长相等;项目②:打开过程中(如图2),检查OM=ON=O'M'=O'N';项目③:打开过程中(如图2),检查OK=OL=O'K'=O'L';项目④:打开后(如图3),检查∠1=∠2=∠3=∠4=90°;项目⑤:打开后(如图3),检查AB=A'B'=C'D'=CD.在检查项目的组合中,可以正确判断“桌子打开之后桌面与地面平行的是”()A.①②③B.②③④C.②④⑤D.③④⑤【解答】解:项目①:折叠状态下(如图1),四条桌腿长相等时,桌面与地面不一定平行;项目②:打开过程中(如图2),若OM=ON=O'M'=O'N',可以得到线线平行,从而得到面面平行;项目③:打开过程中(如图2),检查OK=OL=O'K'=O'L',可以得到线线平行,从而得到面面平行;项目④:打开后(如图3),检查∠1=∠2=∠3=∠4=90°,可以得到线线平行,从而得到面面平行项目⑤:打开后(如图3),检查AB=A'B'=C'D'=CD.桌面与地面不一定平行;故选:B.二、填空题(每题5分,满分30分,将答案填在答题纸上)9.(5分)若等比数列{a n}满足a2a4=a5,a4=8,则公比q=2,前n项和S n=2n﹣1.【解答】解:∵等比数列{a n}满足a2a4=a5,a4=8,∴,解得a1=1,q=2,∴前n项和S n==2n﹣1.故答案为:2,2n﹣1.10.(5分)已知F1(﹣2,0),F2(2,0),满足||PF1|﹣|PF2||=2的动点P的轨迹方程为.【解答】解:根据题意,F1(﹣2,0),F2(2,0),则|F1F2|=4,动点P满足||PF1|﹣|PF2||=2,即2<4,则P的轨迹是以F1、F2为焦点的双曲线,其中c=2,2a=2,即a=1,则b2=c2﹣a2=3,双曲线的方程为:;故答案为:.11.(5分)在△ABC中,c=acosB.①A=90°;②若sinC=,则cos(π+B)=﹣.【解答】解:①∵c=acosB.∴cosB==,整理可得:a2=b2+c2,∴A=90°;②∵sinC=,A=90°,∴B=90°﹣C,∴cos(π+B)=﹣cosB=﹣sinC=﹣故答案为:90°,.12.(5分)若非零向量,满足•(+)=0,2||=||,则向量,夹角的大小为120°.【解答】解:设向量,的夹角为θ,则θ∈[0°,180°];又•(+)=0,2||=||,∴+•=0,即+||×2||cosθ=0,解得cosθ=﹣,∴θ=120°,即向量,夹角为120°.故答案为:120°.13.(5分)已知函数f(x)=,,<若关于x的方程f(x+a)=0在(0,+∞)内有唯一实根,则实数a的最小值是﹣.【解答】解:作出f(x)的函数图象如图所示:∵f(x+a)在(0,+∞)上有唯一实根,∴f(x)在(a,+∞)上有唯一实根,∴﹣≤a<1.故答案为.14.(5分)已知实数u,v,x,y满足u2+v2=1,,则z=ux+vy的最大值是2.【解答】解:约束条件的可行域如图三角形区域:A(2,1),B(2,﹣1),C(0,1),u2+v2=1 设u=sinθ,v=cosθ,目标函数经过A时,z=2sinθ+2cosθ=2sin().目标函数经过B时,z=2sinθ﹣cosθ=(θ+β)(其中tanβ=).目标函数经过C时,z=sinθ≤1.所以目标函数的最大值为:2.故答案为:.三、解答题(本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.)15.(13分)已知是函数f(x)=2cos2x+asin2x+1的一个零点.(Ⅰ)求实数a的值;(Ⅱ)求f(x)的单调递增区间.【解答】解:(Ⅰ)由题意可知,即,即,解得.(Ⅱ)由(Ⅰ)可得==,函数y=sinx的递增区间为,,k∈Z.由<<,k∈Z,得<<,k∈Z,所以,f(x)的单调递增区间为,,k∈Z.16.(13分)据报道,巴基斯坦由中方投资运营的瓜达尔港目前已通航.这是一个可以停靠8~10万吨油轮的深水港,通过这一港口,中国船只能够更快到达中东和波斯湾地区,这相当于给中国平添了一条大动脉!在打造中巴经济走廊协议(简称协议)中,能源投资约340亿美元,公路投资约59亿美元,铁路投资约38亿美元,高架铁路投资约16亿美元,瓜达尔港投资约6.6亿美元,光纤通讯投资约为0.4亿美元.有消息称,瓜达尔港的月货物吞吐量将是目前天津、上海两港口月货物吞吐量之和.表格记录了2015年天津、上海两港口的月吞吐量(单位:百万吨):(Ⅰ)根据协议提供信息,用数据说明本次协议投资重点;(Ⅱ)从表中12个月任选一个月,求该月天津、上海两港口月吞吐量之和超过55百万吨的概率;(Ⅲ)将(Ⅱ)中的计算结果视为瓜达尔港每个月货物吞吐量超过55百万吨的概率,设X为瓜达尔未来12个月的月货物吞吐量超过55百万吨的个数,写出X的数学期望(不需要计算过程).【解答】解:(Ⅰ)本次协议的投资重点为能源,因为能源投资为340亿,占总投资460亿的50%以上,所占比重大.(Ⅱ)设事件A:从12个月中任选一个月,该月超过55百万吨.根据提供的数据信息,可以得到天津、上海两港口的月吞吐量之和分别是:56,49,58,54,54,57,59,58,58,56,54,56,其中超过55百万吨的月份有8个,所以,.(Ⅲ)X的数学期望EX=8.17.(13分)如图,由直三棱柱ABC﹣A1B1C1和四棱锥D﹣BB1C1C构成的几何体中,∠BAC=90°,AB=1,BC=BB1=2,C1D=CD=,平面CC1D⊥平面ACC1A1.(Ⅰ)求证:AC⊥DC1;(Ⅱ)若M为DC1的中点,求证:AM∥平面DBB1;(Ⅲ)在线段BC上是否存在点P,使直线DP与平面BB1D所成的角为?若存在,求的值,若不存在,说明理由.【解答】解:(Ⅰ)证明:在直三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,故AC⊥CC1,由平面CC1D⊥平面ACC1A1,且平面CC1D∩平面ACC1A1=CC1,所以AC⊥平面CC1D,又C1D⊂平面CC1D,所以AC⊥DC1.(Ⅱ)证明:在直三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,所以AA1⊥AB,AA1⊥AC,又∠BAC=90°,所以,如图建立空间直角坐标系A﹣xyz,依据已知条件可得A(0,0,0),,,,,,,B(0,0,1),B1(2,0,1),,,,所以,,,,,,设平面DBB1的法向量为,,,由即令y=1,则,x=0,于是,,,因为M为DC1中点,所以,,,所以,,,由,,,,,可得,所以AM与平面DBB1所成角为0,即AM∥平面DBB1.(Ⅲ)解:由(Ⅱ)可知平面BB1D的法向量为,,.设,λ∈[0,1],则,,,,,.若直线DP与平面DBB1成角为,则<,>,解得,,故不存在这样的点.18.(13分)已知函数f(x)=x2﹣2ax+4(a﹣1)ln(x+1),其中实数a<3.(Ⅰ)判断x=1是否为函数f(x)的极值点,并说明理由;(Ⅱ)若f(x)≤0在区间[0,1]上恒成立,求a的取值范围.【解答】解:(Ⅰ)由f(x)=x2﹣2ax+4(a﹣1)ln(x+1)可得函数f(x)定义域为(﹣1,+∞),=,令g(x)=x2+(1﹣a)x+(a﹣2),经验证g(1)=0,因为a<3,所以g(x)=0的判别式△=(1﹣a)2﹣4(a﹣2)=a2﹣6a+9=(a﹣3)2>0,由二次函数性质可得,1是函数g(x)的异号零点,所以1是f'(x)的异号零点,所以x=1是函数f(x)的极值点.(Ⅱ)已知f(0)=0,因为,又因为a<3,所以a﹣2<1,所以当a≤2时,在区间[0,1]上f'(x)<0,所以函数f(x)单调递减,所以有f(x)≤0恒成立;当2<a<3时,在区间[0,a﹣2]上f'(x)>0,所以函数f(x)单调递增,所以f(a﹣2)>f(0)=0,所以不等式不能恒成立;所以a≤2时,有f(x)≤0在区间[0,1]恒成立.19.(14分)已知椭圆G:+y2=1,与x轴不重合的直线l经过左焦点F1,且与椭圆G相交于A,B两点,弦AB的中点为M,直线OM与椭圆G相交于C,D两点.(1)若直线l的斜率为1,求直线OM的斜率;(2)是否存在直线l,使得|AM|2=|CM|•|DM|成立?若存在,求出直线l的方程;若不存在,请说明理由.【解答】解:(1)由已知可知F1(﹣1,0),又直线l的斜率为1,所以直线l的方程为y=x+1,设A(x1,y1),B(x2,y2),由解得或,所以AB中点,,于是直线OM的斜率为.(2)假设存在直线l,使得|AM|2=|CM|•|DM|成立.当直线l的斜率不存在时,AB的中点M(﹣1,0),所以,,矛盾;故直线的斜率存在,可设直线l的方程为y=k(x+1)(k≠0),联立椭圆G的方程,得(2k2+1)x2+4k2x+2(k2﹣1)=0,设A(x1,y1),B(x2,y2),则,,于是,点M的坐标为,,.直线CD的方程为,联立椭圆G的方程,得,设C(x0,y0),则,由题知,|AB|2=4|CM|•|DM|=4(|CO|+|OM|)(|CO|﹣|OM|)=4(|CO|2﹣|OM|2),即,化简,得,故,所以直线l的方程为,.20.(14分)已知含有n个元素的正整数集A={a1,a2,…,a n}(a1<a2<…<a n,n≥3)具有性质P:对任意不大于S(A)(其中S(A)=a1+a2+…+a n)的正整数k,存在数集A的一个子集,使得该子集所有元素的和等于k.(Ⅰ)写出a1,a2的值;(Ⅱ)证明:“a1,a2,…,a n成等差数列”的充要条件是“S(A)=”;(Ⅲ)若S(A)=2017,求当n取最小值时a n的最大值.【解答】解:(Ⅰ)由集合A={a1,a2,…,a n},}(a1<a2<…<a n,n≥3),由a n为正整数,则a1=1,a2=2.(Ⅱ)先证必要性:因为a1=1,a2=2,又a1,a2,…,a n成等差数列,故a n=n,所以;再证充分性:因为a1<a2<…<a n,a1,a2,…,a n为正整数数列,故有a1=1,a2=2,a3≥3,a4≥4,…,a n≥n,所以,又,故a m=m(m=1,2,…,n),故a1,a2,…,a n为等差数列.(Ⅲ)先证明(m=1,2,…,n).假设存在>,且p为最小的正整数.依题意p≥3,则a1+a2+…+a p﹣1≤1+2+…+2p﹣2=2p﹣1﹣1,又因为a1<a2<…<a n,故当k∈(2p﹣1﹣1,a p)时,k不能等于集合A的任何一个子集所有元素的和.故假设不成立,即(m=1,2,…,n)成立.因此,即2n≥2018,所以n≥11.因为S=2017,则a1+a2+…+a n﹣1=2017﹣a n,若2017﹣a n<a n﹣1时,则当k∈(2017﹣a n,a n)时,集合A中不可能存在若干不同元素的和为k,故2017﹣a n≥a n﹣1,即a n≤1009.此时可构造集合A={1,2,4,8,16,32,64,128,256,497,1009}.因为当k∈{2,2+1}时,k可以等于集合{1,2}中若干个元素的和;故当k∈{22,22+1,22+2,22+3}时,k可以等于集合{1,2,22}中若干不同元素的和;…故当k∈{28,28+1,28+2,…,28+255}时,k可以等于集合{1,2,…,28}中若干不同元素的和;故当k∈{497+3,497+4,…,497+511}时,k可以等于集合{1,2,…,28,497}中若干不同元素的和;故当k∈{1009,1009+1,1009+2,…,1009+1008}时,k可以等于集合{1,2,…,28,497,1009}中若干不同元素的和,所以集合A={1,2,4,8,16,32,64,128,256,497,1009}满足题设,所以当n取最小值11时,a n的最大值为1009.。
2017届高三下学期二模考试(理)数学试题(附答案)
![2017届高三下学期二模考试(理)数学试题(附答案)](https://img.taocdn.com/s3/m/882d90b384254b35eefd3483.png)
2 3.若 x ,y 满足 ⎨ x + y ≤ 0 ,则 x + 2 y 的最大值为( )⎪ y ≥ 0 2D .216B.北京市东城区 2017 届高三下学期二模数学试卷(理科)一、选择题共 8 小题,每小题 5 分,共 40 分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合 A = {x | x ﹣4<0} ,则 RA =( )A . {x | x ≤ -2或x ≥ 2}B . {x | x <-2或x >2}C .{x | -2<x <2}D .{x | -2 ≤ x ≤ 2}2.下列函数中为奇函数的是( )A . y = x + cosxB . y = x + sin xC . y = xD . y = e - x⎧ x - y + 1 ≥ 0⎪ ⎩A . -1B .0C . 14.设 a, b 是非零向量,则“ a, b 共线”是“ | a + b |=| a | + | b | ”的()A .充分而不必要条件 C .充分必要条件B .必要而不充分条件D .既不充分也不必要条件5.已知等比数列{a n }为递增数列, S n 是其前 n 项和.若 a + a = 1 5 17 2, a a = 4 ,则 S =( ) 2 4 6A . 2727 863 63 C . D .4 26.我国南宋时期的数学家秦九韶(约1202﹣1261)在他的著作《数书九章》中提出了多项式求值的秦九韶算法.如图所示的框图给出了利用秦九韶算法求多项式的一个实例.若输入的n = 5,v = 1, x = 2 ,则程序框图 计算的是()A . 25 + 24 + 23 + 22 + 2 + 1B . 25 + 24 + 23 + 22 + 2 + 5C . 26 + 25 + 24 + 23 + 22 + 2 + 1D . 24 + 23 + 22 + 2 + 147.动点P从点A出发,按逆时针方向沿周长为1的平面图形运动一周,A,P两点间的距离Y与动点P所走过的路程X的关系如图所示,那么动点P所走的图形可能是()A.B.C.D.8.据统计某超市两种蔬菜A,B连续n天价格分别为a,a,a,⋯,a,和b,b,b,,令123n123M={m|a<b,m=1,2,,n},若M中元素个数大于3n,则称蔬菜A在这n天的价格低于蔬菜B的价格, m m记作:A,B,现有三种蔬菜A,B,C,下列说法正确的是()A.若A<B,B<C,则A<CB.若A<B,B<C同时不成立,则A<C不成立C.A<B,B<A可同时不成立D.A<B,B<A可同时成立二、填空题共6小题,每小题5分,共30分.9.复数i(2-i)在复平面内所对应的点的坐标为_______.10.在极坐标系中,直线ρcosθ+3ρsinθ+1=0与圆ρ=2a cosθ(a>0)相切,则a=_______.11.某校开设A类选修课4门,B类选修课2门,每位同学需从两类选修课中共选4门,若要求至少选一门B类课程,则不同的选法共有_______种.(用数字作答)12.如图,在四边形ABCD中,∠ABD=45︒,∠ADB=30︒,BC=1,DC=2,cos∠BCD=角形ABD的面积为_______.14,则BD=_______;三13.在直角坐标系xOy中,直线l过抛物线y2=4x的焦点F,且与该抛物线相交于A,B两点,其中点14.已知函数f(x)⎨min{|x-1|,|x-3|},x∈(2,4]{}⎩min|x-3|,|x-5|,x∈(4,+∞)(Ⅱ)若(x)在⎢,⎥上单调递减,求f(x)的最大值.flE A B,A在x轴上方.若直线的倾斜角为60︒,则OA=_______.⎧|x-1|,x∈(0,2]⎪⎪①若f(x)=a有且只有一个根,则实数a的取值范围是_______.②若关于x的方程f(x+T)=f(x)有且仅有3个不同的实根,则实数T的取值范围是_______.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.已知函数f(x)=3sin2x+a cos2x(a∈R).(Ⅰ)若f(π)=2,求a的值;6⎡π7π⎤⎣1212⎦16.小明计划在8月11日至8月20日期间游览某主题公园.根据旅游局统计数据,该主题公园在此期间“游览舒适度”(即在园人数与景区主管部门核定的最大瞬时容量之比,40%以下为舒适,40%﹣60%为一般,60%以上为拥挤)情况如图所示.小明随机选择8月11日至8月19日中的某一天到达该主题公园,并游览2天.(Ⅰ)求小明连续两天都遇上拥挤的概率;(Ⅱ)设X是小明游览期间遇上舒适的天数,求X的分布列和数学期望;(Ⅲ)由图判断从哪天开始连续三天游览舒适度的方差最大?(结论不要求证明)17.如图,在几何体ABCDEF中,平面A D⊥平面C四边形ABCD为菱形,且∠DAB=60︒,EA=ED=AB=2EF,EF∥AB,M为BC中点.(Ⅰ)求证:FM∥平面BDE;(Ⅱ)求直线CF与平面BDE所成角的正弦值;(Ⅲ)在棱CF上是否存在点G,使BG⊥DE?若存在,求CGCF的值;若不存在,说明理由.n维T向量.对于两个n维T向量A,B,定义(A,B)=∑|a-b|.d,),0),A为12维T向量序列中的项,求出所有的m.18.设函数f(x)=(x2+ax-a)e-x(a∈R).(Ⅰ)当a=0时,求曲线y=f(x)在点(1,f(-1))处的切线方程;(Ⅱ)设g(x)=x2-x-1,若对任意的t∈[0,2],存在s∈[0,2]使得f(s)≥g(t)成立,求a的取值范围.19.已知椭圆C:x2y2+a2b2=1(a>b>0)的短轴长为23,右焦点为F(1,0),点M是椭圆C上异于左、右顶点A,B的一点.(Ⅰ)求椭圆C的方程;(Ⅱ)若直线AM与直线x=2交于点N,线段B N的中点为E.证明:点B关于直线EF的对称点在直线MF 上.20.对于n维向量A=(a,a,⋯,a),若对任意i∈{1,2,12n,n}均有a=0或a=1,则称A为i ini ii=1(Ⅰ)若A=(1,0,1,0,1),B=(0,1,1,1,0),求d(A B的值.(Ⅱ)现有一个5维T向量序列:A,A,A,⋯,若A1=(1,1,1,1,1)且满足:d(A,A+1)=2,i∈N*.求证:1231i i该序列中不存在5维T向量(0,0,0,0,0).(Ⅲ)现有一个12维T向量序列:A,A,A,,若A(1,1,,1)且满足:d(A,A)=m,m∈N*,i=1,2,3,,1231i i+112个若存在正整数j使得A(0,0,j12个j北京市东城区2017届高三下学期二模考试(理)数学试卷答案1.A2.B3.C4.B5.D6.A7.C8.C9.(1,2)10.111.1412.2;3-113.2114.①(1,+∞);②(-4,-2)(2,4)15.解(Ⅰ)因为f(π)=3sin2631+a=2.22故得:a=1.ππ+a cos2=2, 66(Ⅱ)由题意:f(x)=3+a2sin(2x+θ),其中tanθ=a 3 ,∴函数的周期T=π,且7πππ-=, 12122所以当x=π12时,函数f(x)取得最大值,即f(x)maxππ=f()=3+a2sin(+θ)=3+a2,126π∴sin(+θ)=1,6πa∴θ=+2kπ,k∈Z.∴tanθ==3,∴a=3.33因此f(x)的最大值为23.16.解:设A表示事件“小明8月11日起第i日连续两天游览主题公园”(i=1,2, i1根据题意,P(A)=,且事件A与A互斥.i i j ,9).993 故 X 的期望 E( X ) = 0 ⨯ + 1⨯(Ⅰ)设 B 为事件“小明连续两天都遇上拥挤”,则 B = AA .47所以 P(B) = P( A4A ) = P( A ) + P( A ) = 27 4 7. (Ⅱ)由题意,可知 X 的所有可能取值为 0,1,2,P( X = 0) = P( A 4A71A ) = P( A ) + P( A ) + P( A ) = ,8 4 7 8P( X = 1) = P( A3A 5A6A ) = P( A ) + P( A ) + P( A ) + P( A ) = 9 3 5 6 9 4 9, P( X = 2) = P( A1A ) = P( A ) + P( A ) = 2 1 2 2 9.所以 X 的分布列为X0 1 2P13 4 9 2 91 3 42 8+ 2 ⨯ = .9 9 9(Ⅲ)从 8 月 16 日开始连续三天游览舒适度的方差最大.17.证明:(Ⅰ) 取CD 中点 N , 连结 M N 、FN .因为 N , M 分别为 C D, BC 中点, 所以MN ∥BD .又BD ⊂ 平面BDE, 且MN ⊄ 平面BDE, 所以MN ∥平面BDE ,因为 EF / / AB, AB = 2EF , 所以EF ∥CD, EF = DN .所以四边形 EFND 为平行四边形.所以 FN ∥ED . 又 ED ⊂ 平面BDE 且FN ⊄ 平面BDE , 所以 FN ∥平面BDE , 又 FNMN = N , 所以平面MFN ∥平面BDE .又 FM ⊂ 平面MFN , 所以FM ∥平面BDE . 解:(Ⅱ) 取AD 中点O , 连结EO, BO .因为 EA = ED, 所以EO ⊥ AD .因为平面 ADE ⊥ 平面ABCD, 所以EO ⊥ 平面ABCD, EO ⊥ BO . 因为 AD = AB, ∠DAB = 60︒, 所以△ADB 为等边三角形.因为 O 为AD 中点, 所以AD ⊥ BO .因为 EO, BO, AO 两两垂直, 设AB = 4,以 O 为原点, O A, O B, O E 为x, y , z 轴,如图建立空间直角坐标系 O - xyz .-6-/15⎪ ⎩ ⎩由题意得, A (2,0,0 ), B(0,2 3,0) , C (-4,2 3,0) , D (-2,0,0 ), E (0,0,2 3) , F (-1, 3,2 3) .CF = (3,- 3,2 3) , CE = (2,0,2 3) , BE = (3,-2 3,2 3) .设平面 BDE 的法向量为 n =(x, y , z ),⎧n BE = 0 ⎧⎪ y - z = 0 则 ⎨ ,即 ⎨ ,⎪n DE = 0⎪ x + 3z = 0令 z = 1,则y = 1 , x = - 3 .所以 n = (- 3,1,1) .设直线 CF 与平面 BDE 成角为 α , sin α =| cos < CF ,n >|= 10 10,所以直线 CF 与平面ADE 所成角的正弦值为 10 10.(Ⅲ)设 G 是CF 上一点,且 CG = λ CF , λ ∈[0,1] .因此点 G(3λ - 4, - 3λ + 2 3,2 3λ) .BG = (3λ - 4, - 3λ,2 3λ) .由 BG DE = 0 ,解得 λ = 49.所以在棱 CF 上存在点G 使得BG ⊥ DE ,此时CG 4= .CF 9' ' ' ' ' 2] 2] '18.解:(Ⅰ)当 a = 0时,f (x )= x 2e - x ,∴ f (x )=( - x 2 + 2 x )e - x ,∴ f ( - 1)= - 3e .又∵ f ( - 1)= e ,∴曲线 y = f ( x )在点(-1, f (-1)) 处的切线方程为:y - e = -3e(x + 1),即3ex + y + 2e = 0 .(Ⅱ)“对任意的 t ∈ [0,2 ], 存在 s ∈ [0, 2]使得 f (s )≥ g (t )成立”,等价于“在区间[0,2 ]上, f (x )的最大值大于或等于g (x )的最大值”.∵ g ( x ) = x 2 - x - 1 = ( x - 1 )2 - 25 4,∴ g (x )在[0,2 ]上的最大值为g (2)= 1 .f (x )=(2 x + a ) e - x -(x 2 + ax - a ) e - x = -e x [ x 2 +(a - 2)x - 2a] = e - x (x - 2)(x + a ) ,令 f (x )= 0, 得x = 2, 或x = -a .①当 -a <0,即a >0时,f (x )>0在[0,上恒成立 ,f (x )在[0, 上为单调递增函数,f (x )的最大值为f (2)=(4 + a ) 1 e 2,由(4 + a ) 1 e 2≥ 1,得a ≤ e 2 - 4②当 0< - a <2,即 - 2<a <0 时,当 x ∈(0,- a )时,f (x )<0, f (x )为单调递减函数,当 x ∈ (-a, -2)时,f '(x)>0, f ( x ) 为单调递增函数.∴ f ( x )的最大值为f (0) = -a 或f (2) = (4 + a) 1e 2,-8-/15设点 M (x , y ),由 ⎨x 2 y 2 ,整理得(4k 2 + 3)x 2 + 16k 2 x + 16k 2 - 12 = 0 , ⎪ + = 1 ' 2] 2] , 3 + 4k 3 + 4k ①当 MF ⊥ x 轴时, x = 1,此时k = ± .2 则 M (1,± ), N (2, ±2), E (2, ±1).时,直线 MF 的斜率为 k=y 16k 2 + (4k 2 - 1)2 =由 -a ≥ 1,得a ≤ -1;由(4 + a)1≥ 1 ,得 a ≤ e 2-4 .e 2又∵ -2<a <0,∴- 2<a = 1 .③当 -a >2,即a <-2 时,f (x )<0在[0,上恒成立 ,f (x )在[0, 上为单调递减函数,f (x )的最大值为f (0)= -a ,由 -a ≥ 1, 得a ≤ -1 ,又因为 a <-2,所以a <-2 .综上所述,实数 a 的值范围是{x | a ≤ -1或a ≥ e 2 - 4} .19.解:(Ⅰ)由题意得 2b = 2 3 ,则 b = 3 , c = 1,则a 2 = b 2 + c 2 = 4, 则a = 2 ,x 2 y 2 ∴椭圆 C 的方程为+= 1;43(Ⅱ)证明:“ 点B 关于直线 EF 的对称点在直线 MF 上”等价于 “ E F 平分 ∠MFB ”.设直线 AM 的方程为y = k (x + 2)(k ≠ 0),则N (2,4 k ) E (2,2 k ) .⎧ y = k ( x + 2)⎪ 0 0⎩ 4 316k 2 - 12 -8k 2 + 6由韦达定理可知 -2 x = ,则 x =0 2 0 2, y = k (x + 2)= 0 0 12k 3 + 4k 2 ,132此时,点 E 在∠BFM 的角平分线所在的直线 y = x - 1或y = - x + 1 ,即 EF 平分∠MFB .②当 k ≠ 1 4k 0 = ,2 x - 1 1 - 4k 2 0所以直线 MF 的方程为4kx +(4k 2 - 1)y - 4k = 0 .所以点 E 到直线 MF 的距离d = | 8k + 2k (4k 2 - 1) - 4k | | 4k + 2k (4k 2 - 1)| (4k 2 + 1)2=| 2k(4k 2 + 1)| | 4k 2 + 1| = 2k = BE .即点 B 关于直线 EF 的对称点在直线 MF 上,20.解:(Ⅰ)由于 A = (1,0,1,0,1) , B = (0,1,1,1,0) ,由定义 d ( A,B) = ∑ | a - b | , i + = 2 ,0) , A 为 12 维 T 向 量 序 列 中 的 项 , 此 时 m综上可知:点 B 关于直线 EF 的对称点在直线 MF 上.n i ii =1可得 d (A, B )= 4 .(Ⅱ)反证法:若结论不成立,即存在一个含 5 维 T 向量序列, A , A , A ,123, A ,n使得 A = (1,1,1,1,1) A = (0,0,0,0,0,0) .1m因为向量 A = (1,1,1,1,1)的每一个分量变为 0,都需要奇数次变化,1不妨设 A 的第 (i = 1,2,3,4,5 )个分量1变化了2n -1 次之后变成 0, 1i所以将 A 中所有分量 1 变为 0 共需要:1(2 n - 1) + (2 n - 1) + (2 n - 1) + (2 n - 1) (2n -1) (n + n + n + n + n - 2)-1次,此数为奇数.1234512345又因为 d (A , A )= m , m ∈ N * ,说明 A 中的分量有 2 个数值发生改变,ii +1i进而变化到 A , 所以共需要改变数值 2(m -1)次,此数为偶数,所以矛盾.i +1所以该序列中不存在 5 维 T 向量(0,0,0,0,0 ).( Ⅲ ) 存 在 正 整 数 j 使 得 A = (0,0,j12个=1,2,3,4,5,6,7,8,9,10,11,12.j3.解:作出 x ,y 满足 ⎨ x + y ≤ 0 表示的平面区域,⎪ y ≥ 0 得到如图的三角形及其内部,由 ⎨, x + y = 0 F = ∴ z 最大值 = F (- , ) = (26 - 1)解 析1.解:集合 A = {x | x 2-4<0} = {x | -2<x <2} ,则 RA = {x | x ≤ -2或x ≥ 2} .故选:A .2.解:对于 A 非奇非偶函数,不正确; 对于 B ,计算,正确,对于 C ,非奇非偶函数,不正确; 对于 D ,偶函数,不正确, 故选:B .⎧ x - y + 1 ≥ 0 ⎪⎩⎧ x - y + 1 = 0 ⎩1 1解得 A (- , ) ,2 2设 z = (x ,y ) x + 2 y ,将直线 l :z = x + 2 y 进行平移,当 l 经过点 A 时,目标函数 z 达到最大值1 12 2 1 2.故选:C .4.解:“ | a + b |=| a | + | b | ” “ a, b 共线”,反之不成立,例如 a = -b ≠ 0 .∴ a , b 是非零向量,则“ a , b 共线”是“ | a + b |=| a | + | b | ”的必要不充分条件.故选:B .5.解:设递增的等比数列{a1解得 a =, a = 8 .125n }的公比为 q ,∵ a 1+ a = 5 172 , a a = 4 = a a ,2 4 1 5解得 q = 2 ,1 则 S = 2663= .2 - 1 2故选:D .-11-/1512 i 2 i .2) θ θ 2 0) θn = 5,v = 1,x = 2,i = 4 满足条件 i ≥0,执行循环体,v =3,i =3满足条件 i ≥ 0 ,执行循环体, v = 7,i = 2满足条件 i ≥ 0 ,执行循环体, v = 15,i = 1 满足条件 i ≥ 0 ,执行循环体, v = 31,i = 0 满足条件 i ≥ 0 ,执行循环体, v = 63,i =﹣ 不满足条件 i ≥ 0 ,退出循环,输出 v 的值为 63 .由于 25+24+23+22+2+1=63.故选:A .7.解:由题意可知:对于 A 、B ,当P 位于A ,B 图形时,函数变化有部分为直线关系,不可能全部是曲线, 由此即可排除 A 、B ,对于 D ,其图象变化不会是对称的,由此排除 D , 故选 C .8.解:若 a = b ,i = 1,, n ,ii则 A < B ,B < A 同时不成立,故选 C .9.解:复数(﹣)= 2i + 1 在复平面内所对应的点的坐标为(1,2) 故答案为: (1, .10.解:直线 ρ=2acosθ(a >0)化为直角坐标方程: x + 3 y + 1 = 0 .圆 ρ = 2a cos (a >0)即 ρ 2 = 2ρ a cos (a >0), 可 得 直 角 坐 标 方 程 : x 2 + y 2 = 2ax , 配 方 为 :(x - a ) + y 2 = a 2 .可得圆心 (a ,,半径 a .∵直线 ρcos θ + 3ρsin θ + 1 = 0 与圆 ρ = 2acos (a >0)相切,∴ | a + 1|= a ,a >0 ,解得 a = 1 .2故答案为:1.11.解:根据题意,分 2 种情况讨论:①.选择 1 门 B 类课程,需要选择 A 类课程 3 门,则 B 类课程有 C 1 = 2 种选法,A 类课程有 C 3 = 4 种选法,24此时有 2 ⨯ 4 = 8 种选择方法;②.选择 2 门 B 类课程,需要选择 A 类课程 2 门,则 B 类课程有 C 2 = 1 种选法,A 类课程有 C 2 = 6 种选法,24此时有 1×6=6 种选择方法;3 y + 1 ,⎪⎪ y = 3 y + 1 ,解得: ⎨ 3 , , ⎨ 解:① f ( x ) ⎨| x - 3|, x ∈ (2,4] , ⎪| x - 5|, x ∈ (4, +∞) x ⎩2则一共有 8+6=14 种不同的选法;故答案为:14.12.解: △CBD 中,由余弦定理,可得, BD = 1 + 4 - 2 ⨯1⨯ 2 ⨯ 1= 2 ,4△ABD 中,利用正弦定理,可得 AD = 2sin 45︒ sin105︒= 2 3 - 2 ,1 1∴三角形 ABD 的面积为 ⨯ 2 ⨯ (2 3 - 2) ⨯ = 3 - 1,2 2故答案为 2, 3 - 1.13.解:抛物线 y 2 = 4 x 的焦点 F 的坐标为(1,0)∵直线 l 过F ,倾斜角为 60︒ ,即斜率 k = tan α = 3 ,∴直线 l 的方程为: y =3( ﹣1) ,即 x =3⎧ 3 ⎧ 2 3⎪ x = ⎧⎪ y = 2 3 ⎨⎪ y 2 = 4 x⎪⎩ x = 3 ⎪ x = 1 ⎪⎩ 3由点 A 在x 轴上方,则A(3, 3) ,则 OA = (3)2 + (2 3) 2 = 21 ,则 OA = 21 ,故答案为: 21 .14.⎧| x - 1|, x ∈ (0,2]⎪ ⎩作出 f (x) 的函数图象如图所示:f42+4)15.(Ⅰ)根据f()=2,即可求a的值;⎢12,12⎥上单调递减,可得最大值.(29)此时CG1]'=f2]2]f≥g2]f x g g2]由图象可知当a>1时,f(x)=a只有1解.②∵关于x的方程f(x+T)=f(x)有且仅有3个不同的实根,∴将(x)的图象向左或向右平移T个单位后与原图象有3个交点,∴2<T<4,即﹣<T<﹣或2<T<4.故答案为:①(1,∞),②(﹣4,-2)(2,.π6(Ⅱ)利用辅助角公式基本公式将函数化为y=Asinωx+ϕ)的形式,结合三角函数的图象和性质,f(x)在⎡π7π⎤⎣⎦16.设A表示事件“小明8月11日起第i日连续两天游览主题公园”(i=1,,,.根据题意P(A)=i i 且事件A与A互斥.i j 1 9,,(Ⅰ)设B为事件“小明连续两天都遇上拥挤”,则B=A4A.利用互斥事件的概率计算公式即可得出.7(Ⅱ)由题意,可知X的所有可能取值为0,1,2,结合图象,利用互斥事件与古典概率计算公式即可得出.(Ⅲ)从8月16日开始连续三天游览舒适度的方差最大.17.(Ⅰ)取CD中点N,连结M N、FN,推导出四边形EFND为平行四边形.从而FN//ED.进而FN//平面BDE,由此能证明平面MFN//平面BDE,从而FM//平面BDE.(Ⅱ)取AD中点O,连结EO,BO.以O为原点,OA,OB,OE为x,y,z轴,建立空间直角坐标系O-xyz,利用向量法能求出直线CF与平面ADE所成角的正弦值.(Ⅲ)设G是CF上一点,且CG=λCF,λ∈[0,.利用向量法能求出在棱CF上存在点G使得BG⊥DE, 4=.CF918.(Ⅰ)当a=0时,f(x)(-x2+2x)e-x,由此能求出曲线y=(x)在点(-1,f(-1))处的切线方程.(Ⅱ)“对任意的t∈[0,,存在s∈[0,使得(s)(t)成立”,等价于“在区间[0,上,(x)的最大值大于或等于()的最大值”.求出(x)在[0,上的最大值为g = ' = = ' + (4k - 1) 20.(Ⅰ)由于 A =(10101,),B =(01110,),由定义 d ( A,B) = ∑ | a - b |,求 d (A ,B )的值. ,,, ,,,(2) 1.f (x ) e - (x - 2)(x + a ),令f (x ) 0,得x = 2,或x = -a .由此利用分类讨论思想结合导数性质能求出实数 a 的值范围.19.(Ⅰ)由题意可知 b = 3,c = 1,a = b + c = 4 ,即可求得椭圆方程;222(Ⅱ)由“点 B 关于直线 EF 的对称点在直线 MF 上”等价于 “ E F 平分∠MFB ”设直线 A M 的方程,代入椭圆方程 , 由 韦 达 定 理 求 得 M 点坐标,分类讨论,当 MF ⊥ x 轴时,求得 k 的 值 , 即 可 求 得N 和E 点坐标,求得点E 在∠BFM 的角平分线所在的直线 y = x - 1或y = - x + 1 ,则 EF 平分∠MFB ,当 k ≠ 12时,即可求得直线 MF 的斜率及方程 ,利用点到直线的距离公式 ,求得 d = | 8k + 2k (4k 2 - 1)- 4k|16k 2 2 2=| BE | ,则点 B 关于直线 EF 的对称点在直线 MF 上.n iii =1(Ⅱ)利用反证法进行证明即可;(Ⅲ)根据存在正整数 j 使得 A = (0,0,j12个,0) , A 为12维T 向量序列中的项,求出所有的 m .j-15-/15。
北京市海淀区2017届高三上学期期末考试数学(理)试题【含答案】
![北京市海淀区2017届高三上学期期末考试数学(理)试题【含答案】](https://img.taocdn.com/s3/m/7016f6e7770bf78a6529544a.png)
1D 1A 1B 1C F北京市海淀区2016-2017学年度第一学期高三期末理科数学2017.1一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.抛物线22y x =的焦点到准线的距离为( ) A .12B .1 C.2D .32.在极坐标系中,点14π⎛⎫⎪⎝⎭,与点314π⎛⎫⎪⎝⎭,的距离为( ) A .1 B C D 3.右侧程序框图所示的算法来自于《九章算术》.若输入a 的值为16,b 的值为24则执行该程序框图输出的结果为( ) A .6 B .7 C .8D .94.已知向量,a b 满足2+=0a b ,()2+⋅=a b a ,则⋅=a b ( ) A .12-B .12C .2-D .2 5.已知直线l 经过双曲线2214x y -=的一个焦点且与其一条渐近线平行,则直线l 的方程可能是( ) A.12y x =-B .12y x =C .2y x =-D .2y x =-6.设x y ,满足0202x y x y x -≤⎧⎪+-≥⎨⎪≤⎩,则()221x y ++的最小值为( )A .1B .92C .5D .5 7.在手绘涂色本的某页上画有排成一列的6条未涂色的鱼,小明用红、蓝两种颜色给这些鱼涂色,每条鱼只能涂一种颜色,两条相邻的鱼不.都.涂.成红色...,涂色后,既有红色鱼又有蓝色鱼的涂色方法种数为( ) A .14 B .16 C .18 D .208.如图,已知正方体1111ABCD A BC D -的棱长为1,E F ,分别是棱11ADB C ,上的动点,设俯视图主视图1AE x B F y ==,.若棱1DD 与平面BEF 有公共点,则x y +的取值范围是( )A .[]01,B .1322⎡⎤⎢⎥⎣⎦,C .[]12,D .322⎡⎤⎢⎥⎣⎦二、填空题共6小题,每小题5分,共30分.9.已知复数z 满足()12i z +=,则z =_________.10.在621x x ⎛⎫+ ⎪⎝⎭的展开式中,常数项为_________.(用数字作答)11.若一个几何体由正方体挖去一部分得到,其三视图如图所示,则该几何体的体积为_________. 12.已知圆22:20C x x y -+=,则圆心坐标为_________;若直线l 过点()10-, 且与圆C 相切,则直线l 的方程为_________.13.已知函数()2sin 02y x πωϕωϕ⎛⎫=+>< ⎪⎝⎭,. ①若()01f =,则ϕ=_________;②若x R ∃∈,使()()24f x f x +-=成立,则ω的最小值是_________. 14.已知函数()||cos x f x e x π-=+,给出下列命题: ①()f x 的最大值为2;②()f x 在()1010-,内的零点之和为0; ③()f x 的任何一个极大值都大于1. 其中所有正确命题的序号是_________.三、解答题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程. 15.(本小题满分13分)在ABC ∆中,2c a =,120B =,且ABC ∆. (Ⅰ)求b 的值; (Ⅱ)求tan A 的值.16.(本小题满分13分)诚信是立身之本,道德之基. 某校学生会创设了“诚信水站”,既便于学生用水,又推进诚信教育,并用“周实际回收水费周投入成本”表示每周“水站诚信度”. 为了便于数据分析,以四周为一周期......,下表为该水站连续十二周(共三个周期)的诚信度数据统计:(Ⅰ)计算表中十二周“水站诚信度”的平均数x ;(Ⅱ)分别从上表每个周期的4个数据中随机抽取1个数据,设随机变量X 表示取出的3个数据中“水站诚信度”超过91%的数据的个数,求随机变量X 的分布列和期望;(Ⅲ)已知学生会分别在第一个周期的第四周末和第二个周期的第四周末各举行了一次“以诚信为本”的主题教育活动.根据已有数据,说明两次主题教育活动的宣传效果,并根据已有数据陈述理由.17.(本小题满分14分)如图1,在梯形ABCD 中,//AB CD ,90ABC ∠=,224AB CD BC ===,O 是边AB 的中点.将三角形AOD 绕边OD 所在直线旋转到1AOD 位置,使得1120AOB ∠=;如图2,设m 为平面1A DC 与平面1AOB 的交线. (Ⅰ)判断直线DC 与直线m 的位置关系并证明;(Ⅱ)若直线m 上的点G 满足1OG A D ⊥,求出1AG 的长; (Ⅲ)求直线1AO 与平面1A BD 所成角的正弦值.18.(本小题满分13分)已知()()0231A B , ,, 是椭圆()2222:10x y G a b a b+=>>上的两点.AOBCD1图ODCB2图1A(Ⅰ)求椭圆G 的离心率;(Ⅱ)已知直线l 过点B ,且与椭圆G 交于另一点C (不同于点A ),若以BC 为直径的圆经过点A ,求直线l 的方程.19.(本小题满分14分)已知函数()ln 1af x x x=--. (Ⅰ)若曲线()y f x =存在斜率为1-的切线,求实数a 的取值范围;(Ⅱ)求()f x 的单调区间; (Ⅲ)设函数()ln x ag x x+=,求证:当10a -<<时,()g x 在()1+∞,上存在极小值.20.(本小题满分13分)对于无穷数列{}n a 、{}n b ,若{}{}()1212max min k k k b a a a a a a k N *=-∈,,,,,,,则称{}n b 是{}n a 的“收缩数列”. 其中,{}12max k a a a ,,,,{}12min k a a a ,,,分别表示12k a a a ,,,中的最大数和最小数.已知{}n a 为无穷数列,其前n 项和为n S ,数列{}n b 是{}n a 的“收缩数列”. (Ⅰ)若21n a n =+,求{}n b 的前n 项和; (Ⅱ)证明:{}n b 的“收缩数列”仍是{}n b ; (Ⅲ)若()()1211122n n n n n n S S S a b +-+++=+()n N *∈,求所有满足该条件的{}n a .海淀区高三年级第一学期期末练习数学(文科)答案及评分标准 2017.1一、选择题共8小题,每小题5分,共40分。
(精品)2017年北京市海淀区高考数学零模试卷(理科)-版含解析
![(精品)2017年北京市海淀区高考数学零模试卷(理科)-版含解析](https://img.taocdn.com/s3/m/6a39b30e2e3f5727a5e96257.png)
2017年北京市海淀区高考数学零模试卷(理科)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={x|x2=x},N={﹣1,0,1},则M∩N=()A.{﹣1,0,1}B.{0,1}C.{1}D.{0}2.下列函数中为偶函数的是()A.y=x2sinx B.y=2﹣x C.y=D.y=|log0.5x|3.执行如图所示的程序框图,则输出的S值为()A.1 B.3 C.7 D.154.在极坐标系中圆ρ=2cosθ的垂直于极轴的两条切线方程分别为()A.θ=0(ρ∈R)和ρcosθ=2B.θ=(ρ∈R)和ρcosθ=2C.θ=(ρ∈R)和ρcosθ=1D.θ=0(ρ∈R)和ρcosθ=15.设为两个非零向量,则“?=|?|”是“与共线”的()A.充分而不必要条件B.必要而不充要条件C.充要条件D.既不充分也不必要条件6.设不等式组表示的平面区域为D,若函数y=log a x(a>1)的图象上存在区域D上的点,则实数a的取值范围是()A.(1,3]B.[3,+∞)C.(1,2]D.[2,+∞)7.某三棱锥的三视图如图所示,则该三棱锥的四个面中,面积最大的面的面积是()A.B. C.D.8.已知函数f(x)满足如下条件:①任意x∈R,有f(x)+f(﹣x)=0成立;②当x≥0时,f(x)=(|x﹣m2|+|x﹣2m2|﹣3m2);③任意x∈R,有f(x)≥f(x﹣1)成立.则实数m的取值范围()A.B.C.D.二、填空题(每题5分,满分30分,将答案填在答题纸上)9.复数Z=i(1+i)在复平面内对应的点的坐标为.10.抛物线y2=8x的焦点到双曲线的渐近线的距离是.11.在锐角△ABC中,角A、B所对的边长分别为a、b,若2asinB=b,则角A 等于.12.已知数列{a n}的前n项和为S n,且满足S n=2a n﹣2,若数列{b n}满足b n=10﹣log2a n,则使数列{b n}的前n项和取最大值时的n的值为.13.小明、小刚、小红等5个人排成一排照相合影,若小明与小刚相邻,且小明与小红不相邻,则不同的排法有种.14.已知正方体ABCD﹣A1B1C1D1的棱长为2,长度为2的线段MN的一个端点M 在棱DD1上运动,另一个端点N在正方形ABCD内运动,则MN中点的轨迹与正方体ABCD﹣A1B1C1D1的表面所围成的较小的几何体的体积等于.三、解答题(本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.)15.已知函数(ω>0)的最小正周期为π.(Ⅰ)求ω的值;(Ⅱ)求函数f(x)的单调递增区间.16.如图1,在直角梯形ABCP中,CP∥AB,CP⊥CB,AB=BC=CP=2,D是CP 的中点,将△PAD沿AD折起,使得PD⊥CD.(Ⅰ)若E是PC的中点,求证:AP∥平面BDE;(Ⅱ)求证:平面PCD⊥平面ABCD;(Ⅲ)求二面角A﹣PB﹣C的大小.17.某公司准备将1000万元资金投入到市环保工程建设中,现有甲、乙两个建设项目选择,若投资甲项目一年后可获得的利润ξ1(万元)的概率分布列如表所示:ξ1110120170P m0.4n且ξ1的期望E(ξ1)=120;若投资乙项目一年后可获得的利润ξ2(万元)与该项目建设材料的成本有关,在生产的过程中,公司将根据成本情况决定是否在第二和第三季度进行产品的价格调整,两次调整相互独立且调整的概率分别为p(0<p<1)和1﹣p.若乙项目产品价格一年内调整次数X(次数)与ξ2的关系如表所示:X012ξ241.2117.6204.0(Ⅰ)求m,n的值;(Ⅱ)求ξ2的分布列;(Ⅲ)若该公司投资乙项目一年后能获得较多的利润,求p的取值范围.18.已知椭圆C:=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(Ⅰ)求椭圆C的标准方程和长轴长;(Ⅱ)设F为椭圆C的左焦点,P为直线x=﹣3上任意一点,过点F作直线PF 的垂线交椭圆C于M,N,记d1,d2分别为点M和N到直线OP的距离,证明:d1=d2.19.已知函数.(Ⅰ)若曲线y=f(x)与直线y=kx相切于点P,求点P的坐标;(Ⅱ)当a≤e时,证明:当x∈(0,+∞),f(x)≥a(x﹣lnx).20.已知数集A={a1,a2,…,a n}(1=a1<a2<…<a n,n≥2)具有性质P:对任意的k(2≤k≤n),?i,j(1≤i≤j≤n),使得a k=a i+a j成立.(Ⅰ)分别判断数集{1,3,4}与{1,2,3,6}是否具有性质P,并说明理由;(Ⅱ)求证:a n≤2a1+a2+…+a n﹣1(n≥2);(Ⅲ)若a n=72,求数集A中所有元素的和的最小值.2017年北京市海淀区高考数学零模试卷(理科)参考答案与试题解析一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={x|x2=x},N={﹣1,0,1},则M∩N=()A.{﹣1,0,1}B.{0,1}C.{1}D.{0}【考点】交集及其运算.【分析】求出M中方程的解确定出M,找出M与N的交集即可.【解答】解:由M中方程变形得:x(x﹣1)=0,解得:x=0或x=1,即M={0,1},∵N={﹣1,0,1},∴M∩N={0,1}.故选:B.2.下列函数中为偶函数的是()A.y=x2sinx B.y=2﹣x C.y=D.y=|log0.5x|【考点】函数奇偶性的判断.【分析】利用奇偶函数的定义,进行判断即可.【解答】解:对于A,f(﹣x)=(﹣x)2sin(﹣x)=﹣x2sinx,是奇函数;对于B,非奇非偶函数;对于C,f(﹣x)==,是偶函数;对于D,非奇非偶函数.故选C.3.执行如图所示的程序框图,则输出的S值为()A.1 B.3 C.7 D.15【考点】程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加S=0+20+21+22+23的值,并输出.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加S=0+20+21+22+23的值∵S=0+20+21+22+23=15,故选D.的垂直于极轴的两条切线方程分别为()4.在极坐标系中圆ρ=2cosθA.θ=0(ρ∈R)和ρcosθ=2B.θ=(ρ∈R)和ρcosθ=2C.θ=(ρ∈R)和ρcosθ=1D.θ=0(ρ∈R)和ρcosθ=1【考点】简单曲线的极坐标方程;圆的切线方程.【分析】利用圆的极坐标方程和直线的极坐标方程即可得出.【解答】解:如图所示,在极坐标系中圆ρ=2cosθ是以(1,0)为圆心,1为半径的圆.故圆的两条切线方程分别为(ρ∈R),ρcosθ=2.故选B.5.设为两个非零向量,则“?=|?|”是“与共线”的()A.充分而不必要条件B.必要而不充要条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分条件和必要条件的定义,利用向量共线的等价条件,即可得到结论.【解答】解:若?=|?|,则||?||cos<,>=|||||cos<,>|,即cos<,>=|cos<,>|,则cos <,>≥0,则与共线不成立,即充分性不成立.若与共线,当<,>=π,cos<,>=﹣1,此时?=|?|不成立,即必要性不成立,故“?=|?|”是“与共线”的既不充分也不必要条件,故选:D.6.设不等式组表示的平面区域为D,若函数y=log a x(a>1)的图象上存在区域D上的点,则实数a的取值范围是()A.(1,3]B.[3,+∞)C.(1,2]D.[2,+∞)【考点】简单线性规划.【分析】结合二元一次不等式(组)与平面区域的关系画出其表示的平面区域,再利用函数y=log a x(a>1)的图象特征,结合区域的角上的点即可解决问题.【解答】解:作出不等式组对应的平面区域如图:由a>1,对数函数的图象经过可行域的点,满足条件,由,解得A(3,1),此时满足log a3≤1,解得a≥3,∴实数a的取值范围是:[3,+∞),故选:B.7.某三棱锥的三视图如图所示,则该三棱锥的四个面中,面积最大的面的面积是()A. B. C. D.【考点】由三视图求面积、体积.【分析】根据几何体的三视图知该几何体是三棱锥,由三视图求出几何体的棱长、并判断出线面的位置关系,由勾股定理、余弦定理、三角形的面积公式求出各个面的面积,即可得几何体的各面中面积最大的面的面积.【解答】解:根据几何体的三视图知,该几何体是三棱锥P﹣ABC,直观图如图所示:由图得,PA⊥平面ABC,,,,,则,在△PBC中,,由余弦定理得:,则,所以,所以三棱锥中,面积最大的面是△PAC,其面积为,故选B.8.已知函数f(x)满足如下条件:①任意x∈R,有f(x)+f(﹣x)=0成立;②当x≥0时,f(x)=(|x﹣m2|+|x﹣2m2|﹣3m2);③任意x∈R,有f(x)≥f(x﹣1)成立.则实数m 的取值范围()A.B.C.D.【考点】抽象函数及其应用.【分析】化简f(x)在[0,+∞)上的解析式,根据f(x)的奇偶性做出函数图象,根据条件③得出不等式解出.【解答】解:∵f(x)+f(﹣x)=0,∴f(x)是奇函数.当m=0时,f(x)=x,显然符合题意.当m≠0时,f(x)在[0,+∞)上的解析式为:f(x)=,做出f(x)的函数图象如图所示:∵任意x∈R,有f(x)≥f(x﹣1)成立,∴6m2≤1,解得﹣≤m≤.故选A.二、填空题(每题5分,满分30分,将答案填在答题纸上)9.复数Z=i(1+i)在复平面内对应的点的坐标为(﹣1,1).【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则、几何意义即可得出.【解答】解:Z=i(1+i)=i﹣1在复平面内对应的点的坐标为(﹣1,1).故答案为:(﹣1,1)10.抛物线y2=8x的焦点到双曲线的渐近线的距离是.【考点】双曲线的简单性质.【分析】求出抛物线y2=8x的焦点坐标、双曲线的渐近线,即可求出结论.【解答】解:抛物线y2=8x的焦点(2,0)到双曲线的渐近线y=x的距离是d==,故答案为.11.在锐角△ABC中,角A、B所对的边长分别为a、b,若2asinB=b,则角A等于60°.。
北京市海淀区高三年级第二学期期中练习数学(理)试卷
![北京市海淀区高三年级第二学期期中练习数学(理)试卷](https://img.taocdn.com/s3/m/972f268a8762caaedd33d4b1.png)
北京市海淀区高三年级第二学期期中练习数学(理)试卷2014.4本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}211,2,,,,2A B y y x x A A B ⎧⎫===∈=⎨⎬⎩⎭集合则A.⎭⎬⎫⎩⎨⎧21 B.{}2 C.{}1 D.φ 2.复数()()1i 1i z =+-在复平面内对应的点的坐标为A. (1,0)B. (0,2)C.()1,0D. (2,0) 3.下列函数()f x 图象中,满足1()(3)(2)4f f f >>的只可能是A B C D4.已知直线l 的参数方程为1,1x t y t =+⎧⎨=-+⎩(t 为参数),则直线l 的普通方程为A.02=--y xB.02=+-y xC.0x y +=D.02=-+y x 5.在数列{}n a 中,“12,2,3,4,n n a a n -== ”是“{}n a 是公比为2的等比数列”的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6. 小明有4枚完全相同的硬币,每个硬币都分正反两面.他想把4个硬币摆成一摞,且满足相邻两枚硬币的正面与正面不相对,不同的摆法有A. 4种B.5种C.6种D.9种7.某购物网站在2013年11月开展“全场6折”促销活动,在11日当天购物还可以再享受“每张订单金额(6折后)满300元时可减免100元”.某人在11日当天欲购入原价48元(单价)的商品共42件,为使花钱总数最少,他最少需要下的订单张数为A.1B.2C.3D.48. 已知(1,0)A ,点B 在曲线:G ln(1)y x =+上,若线段AB 与曲线:M 1y x=相交且交点恰为线段AB 的中点,则称B 为曲线G 关于曲线M 的一个关联点.记曲线G 关于曲线M 的关联点的个数为a ,则 A .0a = B .1a = C .2a = D .2a >二、填空题:本大题共6小题,每小题5分,共30分.9.一个空间几何体的三视图如图所示,该几何体的体积为______.10. 函数2y x x =-的图象与x 轴所围成的封闭图形的面积等于_______.11.如图,AB 切圆O 于B,AB =,1AC =,则AO 的长为_______.12. 已知圆04122=-++mx y x 与抛物线24y x =的准线相切,则=m _______.13.如图,已知ABC ∆中,30BAD ∠= ,45CAD ∠= ,3,2AB AC ==,则BDDC=_____________.14.已知向量序列:123,,,,,n a a a a 满足如下条件:1||4||2==a d ,121⋅=-a d 且1n n --=a a d (2,3,4,n = ).ABC俯视图主视图侧视图若10k ⋅=a a ,则k =________;123||,||,||,,||,n a a a a 中第_____项最小.三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15.(本小题满分13分)已知函数ππ()2sin cos 66f x x x =,过两点(,()),(1,(1))A t f t B t f t ++的直线的斜率记为()g t . (Ⅰ)求(0)g 的值;(II )写出函数()g t 的解析式,求()g t 在33[,]22-上的取值范围.16. (本小题满分13分)为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,制表如下:每名快递员完成一件货物投递可获得的劳务费情况如下:甲公司规定每件4.5元;乙公司规定每天35件以内(含35件)的部分每件4元,超出35件的部分每件7元.(Ⅰ)根据表中数据写出甲公司员工A 在这10天投递的快递件数的平均数和众数;(Ⅱ)为了解乙公司员工B 的每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为X (单位:元),求X 的分布列和数学期望;(Ⅲ)根据表中数据估算两公司的每位员工在该月所得的劳务费.17. (本小题满分14分)如图1,在Rt △ABC 中,∠ACB =30°,∠ABC =90°,D 为AC 中点,AE BD ⊥于E ,延长AE 交BC 于F ,将∆ABD 沿BD 折起,使平面ABD ⊥平面BCD,如图2所示. (Ⅰ)求证:AE ⊥平面BCD ;(Ⅱ)求二面角A –DC –B 的余弦值.(Ⅲ)在线段AF 上是否存在点M 使得//EM 平面ADC ?若存在,请指明点M 的位置;若不存在,请说明理由.BF18. (本小题满分13分)已知曲线:e ax C y =.(Ⅰ)若曲线C 在点(0,1)处的切线为2y x m =+,求实数a 和m 的值; (Ⅱ)对任意实数a ,曲线C 总在直线l :y ax b =+的上方,求实数b 的取值范围.19. (本小题满分14分)已知,A B 是椭圆22:239C x y +=上两点,点M 的坐标为(1,0).(Ⅰ)当,A B 两点关于x 轴对称,且MAB ∆为等边三角形时,求AB 的长; (Ⅱ)当,A B 两点不关于x 轴对称时,证明:MAB ∆不可能为等边三角形.20. (本小题满分13分)在平面直角坐标系中,对于任意相邻三点都不共线的有序整点列(整点即横纵坐标都是整数的点)()A n :123,,,,n A A A A 与()B n :123,,,,n B B B B ,其中3n ≥,若同时满足:①两点列的起点和终点分别相同;②线段11i i i i A A B B ++⊥,其中1,2,3,,1i n =- , 则称()A n 与()B n 互为正交点列.(Ⅰ)求(3)A :123(0,2),(3,0),(5,2)A A A 的正交点列(3)B ;(Ⅱ)判断(4)A :12340,0),3,1),6,0)(((,9,1)(A A A A 是否存在正交点列(4)B ?并说明理由; (Ⅲ)5n n ∀≥∈,N ,是否都存在无正交点列的有序整点列()A n ?并证明你的结论.1图 图 2海淀区高三年级第二学期期中练习参考答案数 学 (理科) 2014.4阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。
2017海淀高三期末数学理
![2017海淀高三期末数学理](https://img.taocdn.com/s3/m/2a84e8ab4028915f814dc22d.png)
平面 A1OB ,
所以 CD // 平面 A1OB .
又因为 CD 平面 A1DC ,平面 A1DC 平面 A1OB m
所以 CD / / m . 法 1:
(Ⅱ)由已知 AB 2CD 所以 CD //OB ,
2 BC
4 , O 是边 AB 的中点, AB / / CD ,
因为 ABC 90 ,所以四边形 CDOB 是正方形, 所以在图 1 中 DO AB ,
13 B.[ , ]
22 3 D. [ ,2] 2
D E
A
C B
二、填空题共 6 小题,每小题 5 分,共 30 分 .
9.已知复数 z 满足 (1 i) z 2 ,则 z ________.
10.在 (x2
1 )
6
的展开式中,常数项为
________.(用数字作答)
x
11.若一个几何体由正方体挖去一部分得到,其三视图如图所示, 则该几何体的体积为 ________.
站诚信度”数据连续四周呈上升趋势 . ( 2 分)(答出变化)
情况五: 结论:两次主题活动累加效果好
. ( 1 分)
理由:两次主题活动“水站诚信度”均有提高,且第二次主题活动后数据提升状态持续周
期好 . ( 2 分)
情况六:
以“‘两次主题活动无法比较’作答,只有给出如下理由才给
3 分:“ 12 个数据的标准差
诚信是立身之本,道德之基 .某校学生会创设了“诚信水站”,既便于学生用水,又推进诚信教
育,并用“ 周实际回收水费 周投入成本
”表示每周“水站诚信度”.为了便于数据分析,以四周为一.周.期.... ,下
表为该水站连续十二周(共三个周期)的诚信度数据统计:
北京市海淀区2017年高三二模数学试题(理科含答案)
![北京市海淀区2017年高三二模数学试题(理科含答案)](https://img.taocdn.com/s3/m/8e75433e05087632301212b7.png)
北京市海淀区高三二模数学〔理科〕本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上 作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题共8小题,每题5分,共40分。
在每题列出的四个选项中,选出符合题目要求的一项。
{2,0,1}A =-,{|1B x x =<-或0}x >,则AB =A. {2}-B. {1}C. {2,1}-D. {2,0,1}-2.二项式62)x x-(的展开式的第二项是A.46xB.46x -C.412xD. 412x -,x y 满足10,30,3,x y x y y --≥⎧⎪+-≥⎨⎪≤⎩则2x y +的最小值为A. 11B.5C.4D. 22220x y y +-=与曲线=1y x -的公共点个数为A .4B .3C .2D.05.已知{}n a 为无穷等比数列,且公比1q >,记n S 为{}n a 的前n 项和,则下面结论正确的选项是 A. 32a a > B. 12+0a a > C.2{}n a 是递增数列 D. n S 存在最小值6.已知()f x 是R 上的奇函数,则“120x x +=”是“12()()0f x f x +=”的 A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件7. 现有编号为①、②、③的三个三棱锥〔底面水平放置〕,俯视图分别为图1、图2、图3,则至少存在....一个侧面与此底面互相垂直的三棱锥的所有编号是A. ①B.①②C.②③D.①②③1图 2图3图8.已知两个半径不等的圆盘叠放在一起〔有一轴穿过它们的圆心〕,两圆盘上分别有互相垂直的两条直径将其分为四个区域,小圆盘上所写的实数分别记为1234,,,x x x x ,大圆盘上所写的实数分别记为1234,,,y y y y ,如下图.将小圆盘逆时针旋转(1,2,3,4)i i =次,每次转动90︒,记(1,2,3,4)i T i =为转动i 次后各区域内两数乘积之和,例如112233441T x y x y x y x y =+++. 假设1234++0x x x x +<,1234+++0y y y y <,则以下结论正确的选项是A.1234,,,T T T T 中至少有一个为正数B.1234,,,T T T T 中至少有一个为负数C.1234,,,T T T T 中至多有一个为正数D.1234,,,T T T T 中至多有一个为负数二、填空题共6小题,每题5分,共30分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
海淀区高三年级第二学期期末练习数学(理科) 2017.5本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.若集合{2,0,1}A =-,{|1B x x =<-或0}x >,则A B = A. {2}- B. {1} C. {2,1}- D. {2,0,1}-2.二项式62)x x-(的展开式的第二项是 A.46x B.46x - C.412x D. 412x -3.已知实数,x y 满足10,30,3,x y x y y --≥⎧⎪+-≥⎨⎪≤⎩则2x y +的最小值为 A.11 B.5 C.4 D. 24.圆2220x y y +-=与曲线=1y x -的公共点个数为 A .4 B .3 C .2 D.05.已知{}n a 为无穷等比数列,且公比1q >,记n S 为{}n a 的前n 项和,则下面结论正确的是A. 32a a >B. 12+0a a >C.2{}n a 是递增数列D. n S 存在最小值 6.已知()f x 是R 上的奇函数,则“120x x +=”是“12()()0f x f x +=”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件 7. 现有编号为①、②、③的三个三棱锥(底面水平放置),俯视图分别为图1、图2、图3,则至少存在....一个侧面与此底面互相垂直的三棱锥的所有编号是A. ①B.①②C.②③D.①②③8.已知两个半径不等的圆盘叠放在一起(有一轴穿过它们的圆心),两圆盘上分别有互相垂直的两条直径将其分为四个区域,小圆盘上所写的实数分别记为1234,,,x x x x ,大圆盘上所写的实数分别记为1234,,,y y y y ,如图所示.将小圆盘逆时针旋转(1,2,3,4)i i =次,每次转动90︒,记(1,2,3,4)i T i =为转动i 次后各区域内两数乘积之和,例如112233441T x y x y x y x y =+++. 若1234++0x x x x +<,1234+++0y y y y <,则以下结论正确的是A.1234,,,T T T T 中至少有一个为正数B.1234,,,T T T T 中至少有一个为负数C.1234,,,T T T T 中至多有一个为正数D.1234,,,T T T T 中至多有一个为负数 二、填空题共6小题,每小题5分,共30分。
9.在极坐标系中,极点到直线cos 1ρθ=的距离为____. 10.已知复数1iiz -=,则||z =____.11.在ABC ∆中,2A B =,23a b =,则cos B =_______.12.已知函数1()2x f x x =-,则1()2f ____(1)f (填“>”或“<”);()f x 在区间1(,)1n nn n -+上存在零点,则正整数n =_____. 13.在四边形ABCD 中,2AB =. 若1()2DA CA CB =+,则AB ⋅DC =____.14.已知椭圆G :22216x y b+=(0b <<的两个焦点分别为1F 和2F ,短轴的两个端点分别为1B 和2B ,点P 在椭圆G 上,且满足1212PB PB PF PF +=+. 当b 变化时,给出下列三个命题:①点P 的轨迹关于y 轴对称;②存在b 使得椭圆G 上满足条件的点P 仅有两个;③||OP 的最小值为2,其中,所有正确命题的序号是_____________. 三、解答题共6小题,共80分。
解答应写出文字说明、演算步骤或证明过程。
15.(本小题满分13分)已知函数3π3π()sin 2cos cos2sin 55f x x x =-.(Ⅰ)求()f x 的最小正周期和对称轴的方程;(Ⅱ)求()f x 在区间π[0,]2上的最小值.16.(本小题满分13分)为了响应教育部颁布的《关于推进中小学生研学旅行的意见》,某校计划开设八门研学旅行课程,并对全校学生的选择意向进行调查(调查要求全员参与,每个学生必须从八门课程中选出唯一一门课程).本次调查结果整理成条形图如下.上图中,已知课程,,,,A B C D E 为人文类课程,课程,,F G H 为自然科学类课程.为进一步研究学生选课意向,结合上面图表,采取分层抽样方法从全校抽取1%的学生作为研究样本组(以下简称“组M ”).(Ⅰ)在“组M ”中,选择人文类课程和自然科学类课程的人数各有多少?(Ⅱ)为参加某地举办的自然科学营活动,从“组M ”所有选择自然科学类课程的同学中随机抽取4名同学前往,其中选择课程F1图2图3图或课程H 的同学参加本次活动,费用为每人1500元,选择课程G 的同学参加,费用为每人2000元. (ⅰ)设随机变量X 表示选出的4名同学中选择课程G 的人数,求随机变量X 的分布列; (ⅱ)设随机变量Y 表示选出的4名同学参加科学营的费用总和,求随机变量Y 的期望. 17.(本小题满分14分)如图,三棱锥P ABC -,侧棱2PA =,底面三角形ABC 为正三角形,边长为2,顶点P 在平面ABC 上的射影为D ,有AD DB ⊥,且1DB =.(Ⅰ)求证://AC 平面PDB ;(Ⅱ)求二面角P AB C --的余弦值;(Ⅲ)线段PC 上是否存在点E 使得PC ⊥平面ABE ,如果存在,求CECP 的值;如果不存在,请说明理由.18.(本小题满分14分)已知动点M 到点(1,0)N 和直线l :1x =-的距离相等. (Ⅰ)求动点M 的轨迹E 的方程;(Ⅱ)已知不与l 垂直的直线'l 与曲线E 有唯一公共点A ,且与直线l 的交点为P ,以AP 为直径作圆C .判断点N 和圆C 的位置关系,并证明你的结论.19.(本小题满分13分)已知函数()e ax f x x =-.(Ⅰ)若曲线()y f x =在(0,(0))f 处的切线l 与直线230x y ++=垂直,求a 的值;(Ⅱ)当1a ≠时,求证:存在实数0x 使0()1f x <.20.(本小题满分13分)对于无穷数列{}n a ,记{|,}j i T x x a a i j ==-<,若数列{}n a 满足:“存在t T ∈,使得只要m k a a t -=(*,m k ∈N 且m k >),必有11m k a a t ++-=”,则称数列{}n a 具有性质()P t .(Ⅰ)若数列{}n a 满足2,2,25,3,n n n a n n ≤⎧=⎨-≥⎩判断数列{}n a 是否具有性质(2)P ?是否具有性质(4)P ?(Ⅱ)求证:“T 是有限集”是“数列{}n a 具有性质(0)P ”的必要不充分条件; (Ⅲ)已知{}n a 是各项为正整数的数列,且{}n a 既具有性质(2)P ,又具有性质(5)P ,求证:存在整数N ,使得12,,,,,N N N N k a a a a +++是等差数列.A C DB P海淀区高三年级第二学期期末练习参考答案数学(理科) 2017.5共30分)三、解答题(本大题共15.(本小题满分13分)解:(Ⅰ)3π3π3π()sin 2cos cos2sinsin(2)555f x x x x =-=--所以()f x 的最小正周期2ππ2T ==,因为sin y x =的对称轴方程为ππ,2x k k =+∈Z ,令3ππ2π,52x k k -=+∈Z ,得11π1π,202x k k =+∈Z .所以()f x 的对称轴方程为11π1π,202x k k =+∈Z . 或者:()f x 的对称轴方程为3ππ22π52x k -=+和3ππ22π,52x k k -=-+∈Z ,即11ππ20x k =+和ππ,20x k k =+∈Z . (Ⅱ)因为π[0,]2x ∈,所以2[0,π]x ∈,所以3π3π2π2[,]555x -∈-,所以当3ππ252x -=-即π20x =时,()f x 在区间π[0,]2上的最小值为1-.16.(本小题满分13分)解:(Ⅰ)选择人文类课程的人数为(100+200+400+200+300)⨯1%=12(人); 选择自然科学类课程的人数为(300+200+300)⨯1%=8(人).(Ⅱ)(ⅰ)依题意,随机变量X 可取0,1,2.4062483(0)14C Cp X C ===;3162484(1)7C C p X C ===;2262483(2).14C C p X C === 故随机变量X 的分布列为(ⅱ)法1:依题意,随机变量Y X X ,所以随机变量Y 的数学期望为E (Y )=6000+500E (X )=6000+500(34301214714⨯+⨯+⨯)=6500.(ⅱ)法2:依题意,随机变量Y 可取6000,6500,7000.所以随机变量Y 的分布列如右表,所以随机变量Y 的数学期望为E (Y )=34360006500700014714⨯+⨯+⨯=6500.17.(本小题满分14分)解:(Ⅰ)因为AD DB ⊥,且1DB =,2AB =,所以AD ,所以60DBA ∠=.因为ABC ∆为正三角形,所以60CAB ∠=,又由已知可知ACBD 为平面四边形,所以//DB AC .所以//AC 平面PDB .(Ⅱ)由点P 在平面ABC 上的射影为D 可得PD ⊥平面ACBD ,所以PD DA ⊥,PD DB ⊥.如图,建立空间直角坐标系,则由已知可知(1,0,0)B ,A ,(0,0,1)P ,C .平面ABC 的法向量(0,0,1)=n ,设(,,)x y z =m 为平面PAB 的一个法向量,则由0,BA BP ⎧⋅=⎪⎨⋅=⎪⎩m m 可得0,0,x x z ⎧-+=⎪⎨-+=⎪⎩令1y =,则x z =所以平面PAB 的一个法向量=m ,cos ,||||71⋅<>==⨯m n m n m n 所以二面角P AB C --的余弦值为(Ⅲ)由(Ⅱ)可得(1,AB =,1)PC =-,因为1)(1,10PC AB ⋅=-⋅=-≠,所以PC 与AB 不垂直,所以在线段PC 上不存在点E 使得PC ⊥平面ABE . 18.(本小题满分14分)解:(Ⅰ)设动点(,)M x y ,由抛物线定义可知点M 的轨迹E 是以(1,0)N 为焦点,直线l :1x =-为准线的抛物线,所以轨迹E 的方程为24y x =.(Ⅱ)法1:由题意可设直线':l x my n =+,由2,4x my n y x =+⎧⎪⎨=⎪⎩可得2440y my n --=(*),因为直线'l 与曲线E 有唯一公共点A ,所以216160m n ∆=+=,即2n m =-.所以(*)可化简为22440y my m -+=,所以2(,2)A m m ,令1x =-得1(1,)nP m+--,因为2n m =-,所以221(1,2)(2,)22220nNA NP m m m n m+⋅=-⋅--=-+--=所以NA NP ⊥,所以点N 在以P A 为直径的圆C 上.法2:依题意可设直线':,(0)l y kx b k =+≠,由2,4y kx b y x =+⎧⎪⎨=⎪⎩可得2222(2)0k x bk x b +-+=(*),因为直线'l 与曲线E 有唯一公共点A ,且与直线l 的交点为P ,所以0,0,k ≠⎧⎨∆=⎩即0,1,k bk ≠⎧⎨=⎩所以(*)可化简为222140k x x k -+=,所以212(,)A k k .令1x =-得1(1,)P k k --,因为22212122(1,)(2,)220NA NP k k k k k k-⋅=-⋅--=++-=,所以NA NP ⊥,所以点N 在以P A 为直径的圆C 上.19.(本小题满分13分)解:(Ⅰ)'()e 1ax f x a =-,因为曲线()y f x =在(0,(0))f 处的切线与直线230x y ++=垂直,所以切线l 的斜率为2,所以'(0)2f =,所以3a =.(Ⅱ)法1:当0a ≤时,显然有(1)e 101a f <-≤<,即存在实数0x 使0()1f x <;当0,1a a >≠时,由'()0f x =可得11ln x a a=,所以在11(,ln )x a a ∈-∞时,'()0f x <,所以函数()f x 在11(,ln )a a -∞上递减;11(ln ,)x a a∈+∞时,'()0f x >,所以函数()f x 在11(ln ,)a a +∞上递增,所以11(ln )f a a =1(1ln )a a +是()f x 的极小值.由函数()e ax f x x =-可得(0)1f =,由1a ≠可得11ln 0a a≠,所以11(ln )(0)1f f a a<=,综上,若1a ≠,存在实数0x 使0()1f x <.(Ⅱ)法2:当0a ≤时,显然有(1)e 101a f <-≤<,即存在实数0x 使0()1f x <;当0,1a a >≠时,由'()0f x =可得11ln x a a=,所以在11(,ln )x a a ∈-∞时,'()0f x <,所以函数()f x 在11(,ln )a a -∞上递减;11(ln ,)x a a∈+∞时,'()0f x >,所以函数()f x 在11(ln ,)a a +∞上递增.所以11(ln )f =1ln a +是()f x 的极小值.设1ln ()x g x +=,则2ln '()(0)x g x x x-=>,令'()0g x =,得1x =所以当1x ≠时()(1)1g x g <=,所以(ln )1f a a<,综上,若1a ≠,存在实数0x 使0()1f x <.20.(本小题满分13分)解:(Ⅰ)数列{}n a 不具有性质(2)P ;具有性质(4)P . (Ⅱ)(不充分性)对于周期数列1,1,2,2,1,1,2,2,,{1,0,1}T =-是有限集,但是由于21320,1a a a a -=-=,所以不具有性质(0)P ;(必要性)因为数列{}n a 具有性质(0)P ,所以一定存在一组最小的*,m k ∈N 且m k >,满足0m k a a -=,即m k a a =。