八年级数学上册:变量与函数练习(含答案)

合集下载

2020秋八年级数学上册全册同步练习 沪科版(付,98)

2020秋八年级数学上册全册同步练习 沪科版(付,98)

第1课时 平面直角坐标系及点的坐标一、选择题1.确定平面直角坐标系内点的位置是 ( ) A 、一个实数 B 、一个整数 C 、一对实数 D 、有序数实数对2.已知点A (0,a )到x 轴的距离是3,则a 为 ( ) A.3 B.-3 C.±3 D.±63.无论m 取什么实数,点(-1,-m 2-1)一定在 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限4.如果点P (m ,n )是第三象限内的点,则点Q (-n ,0)在 ( ) A.x 轴正半轴上 B.x 轴负半轴上 C.y 轴正半轴上 D.y 轴负半轴上5.点P 在第二象限,并且到x 轴的距离为1,到y 轴的距离为3,那么点P 的坐标为( ) A.(-1,3) B.(-1,-3) C.(-3,-1) D.(-3,1) 二、填空题6.若点P (a ,b )在第四象限,则点M (-a ,a -b )在第 象限.7.已知点P (3,-4),它到x 轴的距离是 ,到y 轴的距离是 .8.设点P (x ,y )在第四象限,且42=x ,3=y ,则P 点的坐标为 .9.如果点A (x ,4-2x )在第一、三象限夹角平分线上,则x= , 如果点A 在第二、四 象限夹角平分线上,则x= .10.已知点P(a-1,a 2-9)在x 轴的负半轴上,点P 的坐标 . 三、解答下列各题11.(6分)P (2a -1,2-a )在第一象限,且a 是整数,求a 的值.12.(8分)已知A (a-3,a 2-4),求a 及A 点的坐标: (1)当A 在x 轴上;(2)当A 在y 轴上.第2课时 坐标平面内的图形1.在如图所示的平面直角坐标系中描出下面各点:A (0,3);B (1,-3);C (3,-5);D(-3,-5);E(3,5);F(5,7);G(5,0).(1)将点C向x轴的负方向平移6个单位,它与点重合.y轴是什么关系?(2)连接CE,则直线CE与(3)顺次连接D、E、G、C、D得到四边形DEGC,求四边形DEGC的面积。

北师大版八年级数学上册第四章4.1--4.4分节练习题含答案

北师大版八年级数学上册第四章4.1--4.4分节练习题含答案

北师大版八年级数学上册第四章4.1--4.4分节练习题含答案4.1 函数一.选择题1.下列图象中,y不是x的函数的是()A .B .C .D .2.下列式子中,y不是x的函数的是()A.y=x2B.y =C.y =D.y =±3.在行进路程s、速度v和时间t的相关计算中,若保持行驶的路程不变,则下列说法正确的是()A.速度v是变量B.时间t是变量C.速度v和时间t都是变量D.速度v、时间t、路程s都是常量4.已知声音在空气中的传播速度与空气的温度有关,在一定范围内,其关系如表所示,下列说法错误的是()温度/℃﹣20﹣100102030318324330336342348传播速度/m/sA.自变量是温度,因变量是传播速度B.温度越高,传播速度越快C.当温度为10℃时,声音5s可以传播1650mD.温度每升高10℃,传播速度增加6m/s5.函数y=中自变量x的取值范围是()A.x≠0 B.x≥2或x≠0 C.x≥2 D.x≤﹣2且x≠0 6.在函数y=+x﹣2中,自变量x的取值范围是()A.x≥﹣4 B.x≠0 C.x≥﹣4且x≠0 D.x>﹣4且x≠0 7.下列函数中,自变量的取值范围不是x≠1的是()A.y=B.y=(x﹣1)﹣1C.y=(x﹣1)0D.y=2x﹣18.函数y=中自变量x的取值范围在数轴上表示正确的是()A.B.C.D.9.根据图中的程序计算y的值,若输入的x值为3,则输出的y值为()A.﹣5 B.5 C.D.410.如图是用程序计算函数值,若输入x=3,y=2,则输出的k的值为()A.B.6 C.D.11.小华同学喜欢锻炼,周六他先从家跑步到新华公园,在那里与同学打一会羽毛球后又步行回家,下面能反映小华离家距离y与所用时间x之间关系的图象是()A .B .C .D .12.某地区用电量与应缴电费之间的关系如下表:则下列叙述错误的是()1234…用电量(千瓦•时)应缴电费(元)0.55 1.10 1.65 2.20…A.用电量每增加1千瓦•时,电费增加0.55元B.若用电量为8千瓦•时,则应缴电费4.4元C.若应缴电费为2.75元,则用电量为6千瓦•时D.应缴电费随用电量的增加而增加二.填空题13.已知y=kx+b,其中y,k,x均不等于零,用y,b,x表示k,则k =.14.下列:①y=x2;②y=2x+1;③y2=2x(x≥0);④y=(x≥0),具有函数关系(自变量为x)的是.15.小亮拿15元钱去文具店买签字笔,每支1.5元,小亮买签字笔后所剩钱数y(元)与买签字笔的支数x(支)之间的关系式为.16.函数y=中,自变量的取值范围是.17.下表中y与x的数据满足我们初中学过的某种函数关系.其函数表达式为.x…﹣1013…y…0340…三.解答题18.在一次实验中,小强把一根弹簧的上端固定,在其下端悬挂物体.下面是他测得的弹簧的长度y与所挂物体的质量x的一组对应值:所挂物体的质量x/kg012345弹簧的长度y/cm202224262830(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)填空:①当所挂的物体为3kg时,弹簧长是.不挂重物时,弹簧长是.②当所挂物体的质量为8kg(在弹簧的弹性限度范围内)时,弹簧长度是.19.如图所示,在△ABC中,底边BC=8cm,高AD=6cm,E为AD上一动点,当点E从点D向点A运动时,△BEC的面积发生了变化.(1)在这个变化过程中,自变量和因变量各是什么?(2)若设DE长为x(cm),△BEC的面积为y,求y与x之间的关系式.(3)当DE长度为3cm时,△BEC的面积y是多少?20.求下列函数中自变量x的取值范围.(1)y=3x﹣1;(2)y=+;(3)y=.21.已知y=(a﹣1)x+2a﹣4,当x=﹣1时,y=0.(1)求a的值;(2)当x=1时,求y的值.22.某公交车每月的支出费用为4000元,每月的乘车人数x(人)与每月利润(利润=收入费用﹣支出费用)y(元)的变化关系如下表所示(每位乘客的公交票价是固定不变的):x(人)50010001500200025003000…y(元)﹣3000﹣2000﹣1000010002000…(1)在这个变化过程中,是自变量,是因变量;(2)观察表中数据可知,每月乘客量达到人以上时,该公交车才不会亏损;(3)请你估计当每月乘车人数为3500人时,每月利润为多少元?(4)若5月份想获得利润5000元,则请你估计5月份的乘客量需达人.参考答案一.选择题1.C.2.D.3.C.4.C.5.C.6.C.7.D.8.C.9.B.10.B.11.B.12.C.二.填空题13..14.①②.15.y=15﹣1.5x.16.x≥1且x≠3.17.y=﹣x2+2x+3.三.解答题18.(1)反映了弹簧长度y与所挂物体质量x之间的关系,所挂物体的质量是自变量,弹簧的长度是因变量;(2)①根据表格可知:当所挂物体重量为3千克时,弹簧长度为26cm;不挂重物时,弹簧长度为10cm;故答案为:26cm20cm.②根据表格可知:所挂重物每增加1千克,弹簧增长2cm,根据弹簧的长度=弹簧原来的长度+弹簧伸长的长度可知当所挂物体的重量为x千克时,弹簧长度y=2x+20,将x=8代入得y=2×8+20=36.故答案为:36cm.19.(1)在这个变化过程中,自变量为DE的长,因变量是△BEC的面积;(2)y=×BC×DE=4x(0≤x≤6);(3)当x=3时,y=4×3=12(cm2).20.(1)x是任意实数;(2)根据题意得:,解得:x≥2且x≠3;(3)根据题意得:x﹣1≠0,解得:x≠1.21.(1)由y=(a﹣1)x+2a﹣4,当x=﹣1时,y=0,得﹣(a﹣1)+2a﹣4=0,解得a=3;(2)函数解析式为y=2x+2,当x=1时,y=2+2=4.22.(1)在这个变化过程中,每月的乘车人数x是自变量,每月的利润y是因变量;故答案为每月的乘车人数x,每月的利润y;(2)观察表中数据可知,每月乘客量达到观察表中数据可知,每月乘客量达到2000人以上时,该公交车才不会亏损;故答案为2000;(3)由表中数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元,当每月的乘车人数为2000人时,每月利润为0元,则当每月乘车人数为3500人时,每月利润为3000元;(4)由表中数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元,当每月的乘车人数为2000人时,每月利润为0元,则当每月利润为5000元时,每月乘车人数为4500人,故答案为4500.4.2一次函数与正比例函数知识储备:1.一次函数:若两个变量x,y间的对应关系可以表示成____(k,b为常数,k≠0)的形式,则称y是x的一次函数.2.正比例函数:一般地,形如____(k≠0)的函数,称y是x的正比例函数.考前测一.选择题.1.下列函数中,正比例函数是( )A.y=-xB.y=x+1C.y=x2+1D.y=2.下列函数中,是一次函数但不是正比例函数的是( )A.y=-B.y=-C.y=-D.y=3.函数y=-3x-2,y=x,y=1+,y=x2+4中,一次函数的个数为( )A.1B.2C.3D.44.设圆的面积为S,半径为R,那么下列说法正确的是( )A.S是R的一次函数B.S是R的正比例函数C.S与R2成正比例关系D.以上说法都不正确5.若y=mx+m-1是正比例函数,则m的值为( )A.0B.1C.-1D.26.函数y=mx m-1+(m-1)是一次函数,则( )A.m≠0B.m=2C.m=2或4D.m>2二.填空题.1.当k=____时,函数y=(k+1)x2-|k|+4是一次函数.2.对于圆的周长公式C=2πr,其中自变量是____,因变量是____.3.等腰三角形的顶角y与底角x之间的函数关系为____.4.对于函数y=(k-3)x+k+3,当k=____时,它是正比例函数;当k_ __时,它是一次函数.5.某音像社对外出租的光盘的收费方法是:每张光盘出租后的前两天,每天收0.8元,以后每天收0.5元,那么一张光盘在出租后n天(n>2)应收租金____元.6.如图,由火柴棒拼出的一列图形中,第n个图形由n个正方形组成:通过观察可以发现:第4个图形中,火柴棒有____根,第n个图形中,火柴棒有__ __根,若用y表示火柴棒的根数,x表示正方形的个数,则y与x的函数关系式是____,y是x的___函数.三.解答题.1.已知y+a与x+b(a,b为常数)成正比例.y是x的一次函数吗?请说明理由.2.某种优质蚊香一盘长105 cm,小海点燃后观察发现每小时蚊香缩短10 cm.(1)写出蚊香点燃后的长度y(cm)与点燃时间t(h)之间的函数关系式.(2)该盘蚊香可使用多长时间?3.已知y=(k-1)x|k|+(k2-4)是一次函数.(1)求k的值.(2)求x=3时,y的值.(3)当y=0时,x的值.4.某商人进货时,进价已按原价a扣去了25%.他打算对此货定一新价销售,以便按新价让利20%销售后,还可获得售价的25%的利润.试写出此商人经销这种货物时按新价让利总额y元与货物售出件数x件之间的函数关系式.5. 赵亮和爸爸上山游玩,赵亮乘坐缆车,爸爸步行,两人相约在山顶的缆车终点会合.已知爸爸行走到缆车终点的路程是缆车到山顶的线路长的2倍,赵亮在爸爸出发后50分钟才乘上缆车,缆车的平均速度为180米/分.设爸爸出发x分后行走的路程为y米.图中的折线表示爸爸在整个行走过程中y随x的变化关系.(1)爸爸行走的总路程是________米,他途中休息了________分.(2)请求出爸爸在休息前后所走的路程段上的步行速度.(3)当赵亮到达缆车终点时,爸爸离缆车终点的路程是多少?6.某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费.月用电量不超过200度时,按0.55元/度计费;月用电量超过200度时,其中的200度仍按0.55元/度计费,超过部分按0.70元/度计费.设每户家庭月用电量为x度时,应交电费y元. (1)分别求出0≤x≤200和x>200时,y与x的函数关系式.(2)小明家5月份交纳电费117元,小明家这个月用电多少度?北师大版八年级上册数学期中考试考前复习微专题考前测一次函数与正比例函数(答案)知识储备:1.一次函数:若两个变量x,y间的对应关系可以表示成__y=kx+b__(k,b为常数,k ≠0)的形式,则称y是x的一次函数.2.正比例函数:一般地,形如__y=kx__(k≠0)的函数,称y是x的正比例函数.考前测一.选择题.1.下列函数中,正比例函数是( A )A.y=-xB.y=x+1C.y=x2+1D.y=2.下列函数中,是一次函数但不是正比例函数的是( C )A.y=-B.y=-C.y=-D.y=3.函数y=-3x-2,y=x,y=1+,y=x2+4中,一次函数的个数为( B )A.1B.2C.3D.44.设圆的面积为S,半径为R,那么下列说法正确的是( C )A.S是R的一次函数B.S是R的正比例函数C.S与R2成正比例关系D.以上说法都不正确5.若y=mx+m-1是正比例函数,则m的值为( B )A.0B.1C.-1D.26.函数y=mx m-1+(m-1)是一次函数,则( B )A.m≠0B.m=2C.m=2或4D.m>2二.填空题.1.当k=__1__时,函数y=(k+1)x2-|k|+4是一次函数.2.对于圆的周长公式C=2πr,其中自变量是__r__,因变量是__C__.3.等腰三角形的顶角y与底角x之间的函数关系为__y=-2x+180°__.4.对于函数y=(k-3)x+k+3,当k=__-3__时,它是正比例函数;当k__≠3__时,它是一次函数.5.某音像社对外出租的光盘的收费方法是:每张光盘出租后的前两天,每天收0.8元,以后每天收0.5元,那么一张光盘在出租后n天(n>2)应收租金__(0.5n+0.6)__元.6.如图,由火柴棒拼出的一列图形中,第n个图形由n个正方形组成:通过观察可以发现:第4个图形中,火柴棒有__13__根,第n个图形中,火柴棒有__(3n+1)__根,若用y表示火柴棒的根数,x表示正方形的个数,则y与x的函数关系式是__y=3x+1__,y是x的__一次__函数.三.解答题.1.已知y+a与x+b(a,b为常数)成正比例.y是x的一次函数吗?请说明理由.答案:是.理由:因为y+a与x+b成正比例,设比例系数为k,则y+a=k(x+b),整理得y=kx+kb-a,所以y是x的一次函数.2.某种优质蚊香一盘长105 cm,小海点燃后观察发现每小时蚊香缩短10 cm.(1)写出蚊香点燃后的长度y(cm)与点燃时间t(h)之间的函数关系式.(2)该盘蚊香可使用多长时间?答案:(1)y=105-10t.(2)当蚊香燃尽时,y=0.由(1),得105-10t=0,即t=10.5,所以该盘蚊香可使用10.5 h.3.已知y=(k-1)x|k|+(k2-4)是一次函数.(1)求k的值.(2)求x=3时,y的值.(3)当y=0时,x的值.答案:(1)由题意可得:|k|=1,k-1≠0,解得:k=-1;(2)当x=3时,y=-2x-3=-9;(3)当y=0时,0=-2x-3,解得:x=-.4.某商人进货时,进价已按原价a扣去了25%.他打算对此货定一新价销售,以便按新价让利20%销售后,还可获得售价的25%的利润.试写出此商人经销这种货物时按新价让利总额y元与货物售出件数x件之间的函数关系式.答案:设新价为b元,则销售价为(1-20%)b,进价为(1-25%)a,(1-20%)b-(1-25%)a 是每件的纯利.所以(1-20%)b-(1-25%)a=(1-20%)b×25%,所以b= a.新价让利总额为y元,售出货物为x件,则y=20%bx=20%×ax=ax.故此商人经销这种货物时按新价让利总额y元与货物售出件数x件之间的函数关系式为y=ax.5. 赵亮和爸爸上山游玩,赵亮乘坐缆车,爸爸步行,两人相约在山顶的缆车终点会合.已知爸爸行走到缆车终点的路程是缆车到山顶的线路长的2倍,赵亮在爸爸出发后50分钟才乘上缆车,缆车的平均速度为180米/分.设爸爸出发x分后行走的路程为y米.图中的折线表示爸爸在整个行走过程中y随x的变化关系.(1)爸爸行走的总路程是________米,他途中休息了________分.(2)请求出爸爸在休息前后所走的路程段上的步行速度.(3)当赵亮到达缆车终点时,爸爸离缆车终点的路程是多少?答案:(1)根据图象知,爸爸行走的总路程是3 600米,他途中休息了20分钟.答案:3 600 20(2)爸爸休息前的速度为=65(米/分),爸爸休息后的速度为=55(米/分).(3)赵亮到达终点所用时间为=10(分),爸爸比赵亮迟到80-50-10=20(分),则赵亮到达终点时,爸爸离缆车终点的路程为20×55=1 100(米).6.某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费.月用电量不超过200度时,按0.55元/度计费;月用电量超过200度时,其中的200度仍按0.55元/度计费,超过部分按0.70元/度计费.设每户家庭月用电量为x度时,应交电费y元. (1)分别求出0≤x≤200和x>200时,y与x的函数关系式.(2)小明家5月份交纳电费117元,小明家这个月用电多少度?答案:(1)当0≤x≤200时,y与x的函数关系式是y=0.55x;当x>200时,y与x的函数关系式是y=0.55×200+0.7(x-200),即y=0.7x-30. (2)因为0.55×200=110,小明家5月份的电费超过110元,所以用电超过200度.将y=117代入y=0.7x-30中,得x=210.答:小明家5月份用电210度.4.3 一次函数的图象一.选择题1.在同一直角坐标系中,一次函数y=kx+b和y=bx+k的图象可能正确的是()A.B.C.D.2.下面所画的函数图象中,不可能是一次函数y=mx+2﹣m图象的是()A.B.C.D.3.一次函数y1=kx+b与y2=bx+k(k,b为常数)在同一平面直角坐标系中大致图象可能是()A.B.C.D.4.下列图形中,表示一次函数y=mx+n与正比例函数y=﹣mnx(m,n为常数,且mn≠0)的图象不正确的是()A.B.C.D.5.若正比例函数y=kx的图象如图所示,则一次函数y=﹣kx+k的图象大致是()A.B.C.D.6.点P1(x1,y1),点P2(x2,y2)是一次函数y=4x+3图象上的两个点,且x1<x2,则y1与y2的大小关系是()A.y1>y2B.y1>y2>0 C.y1<y2D.y1=y27.一次函数y=mx﹣n与y=mnx(mn≠0),在同一平面直角坐标系的图象不可能是()A.B.C.D.8.若a,b为实数,且++b=3,则直线y=ax﹣b不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限9.已知关于x的多项式x2+kx+1是一个完全平方式,则一次函数y=(k﹣2)x+5经过的象限是()A.第一、二、三象限B.第二、三、四象限C.第一、二、四象限D.第一、三、四象限10.如图,平面直角坐标系xOy中,阴影部分(射线y=x,x>0与y正半轴之间,不含边界)的点的坐标(x,y)满足()A.x=y B.x>y>0 C.y>x>0 D.y=x>011.下列一次函数中,y随x值的增大而减小的()A.y=2x+1 B.y=3﹣4x C.y=πx+2 D.y=(5﹣2)x 12.在一次函数y=(k﹣1)x的图象上,y都随x的增大而增大,则k的值可以是()A.﹣1 B.0 C.1 D.213.一次函数y=(m﹣1)x+3,y随x的增大而增大,则m的值可以为()A.0 B.1 C.2 D.﹣214.若点P在一次函数y=x﹣4的图象上,则点P一定不在()A.第一象限B.第二象限C.第三象限D.第四象限15.对于函数y=﹣3x+1,下列结论正确的是()A.它的图象必经过点(1,3)B.y的值随x值的增大而增大C.当x>0时,y<0D.它的图象不经过第三象限二.填空题16.若点P(﹣1,y1)和点Q(﹣2,y2)是一次函数y=﹣x+b的图象上的两点,则y1,y2的大小关系是:y1y2(填“>,<或=”).17.直线ax+y﹣2a+1=0与直线(a+2)x﹣ay+3=0垂直,则a的值为.18.复习课中,教师给出关于x的函数y=﹣2mx+m﹣1(m≠0),学生们在独立思考后,给出了5条关于这个函数的结论:①此函数是一次函数,但不可能是正比例函数;②函数的值y随着自变量x的增大而减小;③该函数图象与y轴的交点在y轴的正半轴上;④若函数图象与x轴交于A(a,0),则a<0.5;⑤此函数图象与直线y=4x﹣3,y轴成的面积必小于0.5.对于以上5个结论正确有个.19.正比例函数y=﹣的图象经过第象限.20.已知正比例函数y=(1+)x,y随着x的增大而增大,则k的取值范围是.21.有一种动画设计,屏幕上的△ABC是黑色区域(含三角形的边界).其中A(﹣1,1),B(2,1),C(1,3).用信号枪沿直线y=kx﹣2发射信号,当信号遇到黑色区域时,区域便由黑变白,则能够使黑色区域变白的k的取值范围是.22.如图,平面直角坐标系中,直线y=﹣x+1与x轴、y轴分别交于点A、B,点P与点O关于直线AB对称,则点P的坐标为.23.如图,直线y=x+3与x轴,y轴分别交于点A和点B,点C,D分别为线段AB,OB 的中点,点P为OA上一动点,则PC+PD的最小值为.24.如图,将直线OA向上平移2个单位长度,则平移后的直线的表达式为.25.要把直线y=3x﹣2向上平移,使其图象经过点(2,10),需要向上平移个单位.三.解答题26.画出下列正比例函数和一次函数的图象:(1)y=2x;(2)y=﹣2x﹣4.27.(1)在平面直角坐标系中,作出y=2x﹣2的图象.(2)根据图象,直接写出y>0时自变量x的取值范围.28.已知一次函数y=(2m+1)x+3+m.(1)若y随x的增大而减小,求m的取值范围;(2)若图象经过点(﹣1,1),求m的值,画出这个函数图象.29.对于平面直角坐标系中的任意两点P1(x1,y1),P2(x2,y2),我们把|x1﹣x2|+|y1﹣y2|叫做P1,P2两点间的直角距离,记作d(P1,P2).(1)已知A(1,1),B(5,4),求d(A,B).(2)已知点O为坐标原点,动点P(x,y)满足d(O,P)=2,请写出y与x之间的关系式,并在所给的直角坐标系中画出所有符合条件的点P所组成的图形.(3)设点P0(x0,y0)是一定点,点Q(x,y)是直线y=ax+b上的动点,我们把d(P0,Q)的最小值叫做点P0到直线y=ax+b的直角距离.试求点M(1,﹣3)到直线y=x+2的直角距离.30.已知正比例函数的图象经过点A(2,3);(1)求出此正比例函数表达式;(2)该直线向上平移3个单位,写出平移后所得直线的表达式,并画出它的图象.参考答案一.选择题1.解:A、一条直线反映k>0,b>0,一条直线反映k>0,b<0,故本选项错误;B、一条直线反映出k>0,b<0,一条直线反映k>0,b<0,一致,故本选项正确;C、一条直线反映k<0,b>0,一条直线反映k>0,b<0,故本选项错误;D、一条直线反映k>0,b<0,一条直线反映k<0,b<0,故本选项错误.故选:B.2.解:根据图象知:A、m<0,2﹣m>0.解得m<0,所以有可能;B、m>0,2﹣m>0.解得0<m<2,所以有可能;C、m<0,2﹣m<0.两不等式无公共部分,所以不可能;D、m>0,2﹣m<0.解得m>2,所以有可能.故选:C.3.解:A、直线y1=kx+b反映k>0,b<0,直线y2=bx+k反映k>0,b>0,故本选项错误;B、直线y1=kx+b反映k<0,b<0,直线y2=bx+k反映k>0,b<0,故本选项错误;C、直线y1=kx+b反映k>0,b<0,直线y2=bx+k反映k<0,b<0,故本选项错误;D、直线y1=kx+b反映k<0,b>0,直线y2=bx+k反映k<0,b>0,一致,故本选项正确.故选:D.4.解:①当﹣mn<0,m,n同号,同正时y=mx+n过一、二、三象限,同负时过二、三、四象限;②当﹣mn>0时,m,n异号,则y=mx+n过一、三、四象限或一、二、四象限.故选:B.5.解:∵正比例函数y=kx的图象经过第二、四象限,∴k<0,∴﹣k>0,∴y=﹣kx+k的图象经过一、三、四象限,故选:D.6.解:∵k=4>0,∴y随x的增大而增大,又∵x1<x2,∴y1<y2.故选:C.7.解:当m>0,n>0时,一次函数y=mx﹣n的图象经过第一、三、四象限,一次函数y =mnx的图象经过第一、三象限,故选项B正确,选项C错误;当m>0,n<0时,一次函数y=mx﹣n的图象经过第一、二、三象限,一次函数y=mnx 的图象经过第二、四象限,故选项A正确;当m<0,n<0时,一次函数y=mx﹣n的图象经过第一、二、四象限,一次函数y=mnx 的图象经过第一、三象限,故选项D正确;故选:C.8.解:∵++b=3,∴,解得a=,∴+b=3,∴b=3,∴直线y=x﹣3,该直线经过第一、三、四象限,不经过第二象限,故选:B.9.解:∵关于x的多项式x2+kx+1是一个完全平方式,∴k=±2,当k=2时,函数y=(2﹣2)x+5=5是常数函数,不是一次函数;当k=﹣2时,一次函数y=(﹣2﹣2)x+5=﹣4x+5,则该函数经过第一、二、四象限,故选:C.10.解:当x=y>0时在射线y=x上,故当y>x>0时点(x,y)在阴影部分内,故选:C.11.解:A、∵k=2>0,∴y随x值的增大而增大;B、∵k=﹣4<0,∴y随x值的增大而减少;C、∵k=π>0,∴y随x值的增大而增大;D、∵k=5﹣2=3>0,∴y随x值的增大而增大.故选:B.12.解:∵一次函数y=(k﹣1)x的图象中,y随x的增大而增大,∴k﹣1>0,解得k>1,∴k可以取2.故选:D.13.解:∵一次函数y=(m﹣1)x+3,若y随x的增大而增大,∴m﹣1>0,解得m>1,只有2合适,故选:C.14.解:∵k=1>0,b=﹣4<0,∴一次函数y=x﹣4的图象经过第一、三、四象限,又∵点P在一次函数y=x﹣4的图象上,∴点P一定不在第二象限.故选:B.15.解:A、当x=1时,y=﹣3×1+1=﹣2,∴点(1,﹣2)在函数y=﹣3x+1的图象,结论A不正确;B、∵k=﹣3<0,∴y随x的增大而减小,结论B不正确;C、当y=0时,﹣3x+1=0,解得:x=,∴当0<x<时,y>0,结论C不正确;D、∵k=﹣3<0,b=1>0,∴函数y=﹣3x+1的图象经过第一、二、四象限,∴函数y=﹣3x+1的图象不经过第三象限,结论D正确.故选:D.二.填空题16.解:∵k=﹣1<0,∴y随x的增大而减小,又∵﹣1>﹣2,∴y1<y2.故答案为:<.17.解:当a=0时,直线ax+y﹣2a+1=0可以写成直线y=﹣1,直线(a+2)x﹣ay+3=0可以写成x=﹣,此时直线ax+y﹣2a+1=0与直线(a+2)x﹣ay+3=0垂直;当a≠0时,直线ax+y﹣2a+1=0可以写成直线y=﹣ax+2a﹣1,直线(a+2)x﹣ay+3=0可以写成直线y=x+,∵直线ax+y﹣2a+1=0与直线(a+2)x﹣ay+3=0垂直,∴﹣a=﹣1,解得a=﹣1;故答案为:0或﹣1.18.解:此函数是一次函数,当m=1时,它是正比例函数,所以①错误;当m<0时,函数的值y随着自变量x的增大而增大,所以②错误;当m<1时,该函数图象与y轴的交点在y轴的负半轴上,所以③错误;若函数图象与x轴交于A(a,0),则﹣2ma+m﹣1=0,解得a==0.5﹣,当m >0时,a<0.5,当m<0时,a>0.5,所以④错误;此函数图象与直线y=4x﹣3的交点坐标为(,﹣1),此直线与y轴的交点坐标为(0,m﹣1),直线y=4x﹣3与y轴的交点坐标为(0,﹣3),所以此函数图象与直线y=4x﹣3、y轴围成的面积=•|m﹣1+3|•=•|m+2|,当m=2时,面积为1,所以⑤错误.故答案为:0.19.解:由正比例函数y=﹣中的k=﹣,知函数y=﹣的图象经过第二、四象限.故答案是:二、四.20.解:∵正比例函数y=(1+)x中,y随x的增大而增大,∴1+>0,即k>﹣5.故答案为:k>﹣5.21.解:∵A(﹣1,1),B(2,1),C(1,3).∴当直线y=kx﹣2经过点A时,﹣k﹣2=1,解得k=﹣3;当直线y=kx﹣2经过点B时,2k﹣2=1,解得k=,∴k≤﹣3或0<k≤.故答案为k≤﹣3或0<k≤.22.解:∵直线y=﹣x+1与x轴、y轴分别交于点A、B,∴A(2,0),B(0,1),∵点P与点O关于直线AB对称,∴直线OP为y=2x,OA=P A,设P(m,2m),则(m﹣2)2+(2m)2=22,解得m1=,m2=0(舍去),∴P的坐标为(,),故答案为(,).23.解:作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图.令y=x+3中x=0,则y=3,∴点B的坐标为(0,3);令y=x+3中y=0,则x+3=0,解得:x=﹣8,∴点A的坐标为(86,0).∵点C、D分别为线段AB、OB的中点,∴点C(﹣4,),点D(0,).∵点D′和点D关于x轴对称,∴点D′的坐标为(0,﹣),∴PC+PD的最小值=CD′==5,故答案为:5.24.解:设直线OA的解析式为:y=kx,把(1,2)代入,得k=2,则直线OA解析式是:y=2x.将其上平移2个单位长度,则平移后的直线的表达式为:y=2x+2.故答案是:y=2x+2.25.解:设直线y=3x﹣2向上平移h个单位,其图象经过点(2,10),则函数解析式为y=3x﹣2+h,将点(2,10)代入,得10=3×2﹣2+h,解得h=6.故答案为:6.三.解答题26.解:(1)如图所示;(2)如图所示.27.解:(1)列表:描点,连线,;(2)由图象可得,y>0时自变量x的取值范围是x>1.28.解:(1)由题意得:2m+1<0,解得:m<﹣.(2)将点(﹣1,1)代入可得:1=﹣(2m+1)+3+m,解得:m=1,∴y=3x+4,令x=0,则y=4,∴图象经过点(﹣1,1),(0,4),如图:29.解(1)∵A(1,1),B(5,4),∴d(A,B)=|x A﹣x B|+|y A﹣y B|=|1﹣5|+|1﹣4|=7;(2)由题意得d(O,P)=|0﹣x|+|0﹣y|=2,∴|x|+|y|=2,所有符合条件的点P组成的图形如图所示:(3)∵Q点在直线y=x+2,∴Q(x,x+2),∴d(Q,M)=|x Q﹣x M|+|y Q﹣y M|=|x﹣1|+|x+2﹣(﹣3)|=|x﹣1|+|x+5|,又∵x可取一切实数,|x﹣1|+|x+5|表示数轴上实数x所对应的点到数1和﹣5所对应的点的距离之和,其最小值为6,∴M(1,﹣3)到直线y=x+2的直角距离为6.30.解:(1)设正比例函数的解析式为y=kx,把A(2,3),代入得到k=,∴正比例函数的解析式为y=x.(2)将直线y=x向上平移3个单位,得直线y=x+3,如图;4.4一次函数的应用一、选择题1、某公司市场营销部的个人月收入与其每月的销售量成一次函数关系,其图象如上图所示,由图中给出的信息可知,营销人员没有销售时(最低工资)的收入是()A.310元B.300元C.290元D.280元2、已知一次函数y=kx-4(k<0)的图象与两坐标轴所围成的三角形的面积等于4,则该一次函数的表达式为()A.y=-x-4B.y=-2x-4C.y=-3x+4D.y=-3x-43、小明和哥哥从家里出发去买书,从家出发走了20分钟到一个离家1 000 m的书店.小明买了书后随即按原路返回;哥哥看了20分钟书后,用15分钟返家.下面的图象表示哥哥离家时间与距离之间关系的是()4、一次函数y kx b =+的图象经过点A (0,2)-和B (3,6)-两点,那么该函数的表达式是( )A .26y x =-+B .823y x =-- C .86y x =-- D .823y x =--5.正比例函数y kx =的图象经过点(1,3)-,那么它一定经过的点是( ) A .(3,1)-B .1(,1)3C .(3,1)-D .1(,1)3-6、甲、乙两人沿相同的路线由A 地到B 地匀速前进,A,B 两地间的路程为20 km .他们前进的路程为s (单位:km),甲出发后的时间为t (单位:h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是( ) A.甲的速度是4 km/h B.乙的速度是10 km/h C.乙比甲晚出发1 h D.甲比乙晚到B 地3 h7、如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h 与注水时间t 之间的函数关系图象可能是( )8.小苏和小林在如图①所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离y (单位:m)与跑步时间t (单位:s)的对应关系如图②所示.下列叙述正确的是( )图①图②A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C.小苏前15 s 跑过的路程大于小林前15 s 跑过的路程D.小林在跑最后100 m 的过程中,与小苏相遇2次9.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S (单位:m 2)与工作时间t (单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每时完成的绿化面积是( )A.300 m 2B.150 m 2C.330 m 2D.450 m 2 10、已知两条直线111y k x b =+,222y k x b =+的交点的横坐标为x 0且10k >,20k <,当0x x >时,则( )A .12y y =B .12y y >C .12y y <D .12y y ≥二、填空题11、如果正比例函数的图象经过点(2,4),那么这个函数的表达式为 . 12.已知y 与x 成正比例,且3x =时,6y =-,则y 与x 的函数关系式是 . 13.若直线1y kx =+,经过点(3,2),则k =_______.14.已知一次函数2y kx =-,当2x =时,6y =-,则当3x =-时,y =_______.15.若一次函数(21)y kx k=-+的图象与y轴交于点A(0,2),则k=_____.16.已知点A(3,0),B(0,3)-,C(1,)m在同一条直线上,则m=______.三、解答题17、如图,表示一骑自行车者和一骑摩托车者沿相同路线由甲地到乙地行驶过程的函数图象,两地间的距离是80千米,请根据图象回答下面问题:(1)谁出发的较早?早多长时间?(2)谁到达乙地较早?早到多长时间?(3)途中,自行车和摩托车的速度各是多少?(4)自行车出发几小时后被摩托车追上?此时摩托车出发几个小时?摩托车自行车876543218070605020x(时)40y(千米)301018、某工厂有甲种原料130 kg,乙种原料144 kg.现用这两种原料生产出A,B两种产品共30件.已知生产每件A产品需甲种原料5 kg,乙种原料4 kg,且每件A产品可获利700元;生产每件B产品需甲种原料3 kg,乙种原料6 kg,且每件B产品可获利900元.设生产A产品x件(产品件数为整数件),根据以上信息解答下列问题:(1)生产A,B两种产品的方案有哪几种?(2)设生产这30件产品可获利y元,写出y关于x的函数解析式,写出(1)中利润最大的方案,并求出最大利润.19、我国每年有大量土地被沙漠吞没,改造沙漠、保护土地资源已是一项十分紧迫的任务.某地现有耕地面积100万km2,沙漠面积为200万km2,土地沙漠化的变化情况如图所示,图中y表示新增沙漠面积(单位:万km2),x表示时间(单位:年).(1)写出y与x之间的函数表达式.(2)若不采取任何措施,10年后该地区将新增加沙漠面积多少?(3)按此趋势继续下去,多少年后本地区将丧失全部的土地资源?(4)如果从现在起开始采取植树造林等措施,每年可改造4万km2沙漠,那么到哪一年底,该地区沙漠面积将减少到176万km2?。

八年级数学上册:变量与函数练习(含答案)

八年级数学上册:变量与函数练习(含答案)

八年级数学上册:变量与函数练习(含答案)一、选择题:1.下列关于圆的面积S与半径R之间的函数关系式S=πR2中,有关常量和变量的说法正确的是()A.S,R2是变量,π是常量 B.S,R是变量,2是常量C.S,R是变量,π是常量 D.S,R是变量,π和2是常量2.据调查,•北京石景山苹果园地铁站自行车存车处在某星期日的存车量为4000次,其中电动车存车费是每辆一次0.3元,普通车存车费是每辆一次0.2元.•若普通车存车数为x辆次,存车费总收入为y元,则y关于x的函数关系式是()A.y=0.1x+800(0≤x≤4000) B.y=0.1x+1200(0≤x≤4000)C.y=-0.1x+800(0≤x≤4000) D.y=-0.1x+1200(0≤x≤4000)3.某同学在测量体温时意识到体温计的读数与水银柱的长度之间可能存在着某种函数关系,就此他与同学们选择了一种类型的体温计,经历了收集数据、分析数据、得出结论的探索过程.他们收集的数据如下:请你根据上述数据分析判断,水银柱的长度L(mm)与体温计的读数t℃(35≤t•≤42)之间存在的函数关系式为()A.L=110t-66 B.L=11370t C.L=6t-3072D.L=39552t二、填空题4.小明带10元钱去文具商店买日记本,已知每本日记本定价2元,•则小明剩余的钱y(元)与所买日记本的本数x(元)•之间的关系可表示为y=•10-•2x.•在这个问题中______是变量,_______是常量.5.在函数y=12x-中,自变量x的取值范围是______.6.某种活期储蓄的月利率是0.16%,存入10000元本金,按国家规定,•取款时应缴纳利息部分20%的利息税,则这种活期储蓄扣除利息税后,实得本息和y(元)与所存月数x之间的函数关系式为________.三、解答题7.求下列函数中自变量x的取值范围;(1)y=2x2+1;(2)y=13x.8.写出下列各问题中的函数关系式(不需标明自变量的取值范围):(1)小明绕着一圈为400m的跑道跑步,求小明跑的路程s(m)与圈数n•之间的函数关系式;(2)已知等腰三角形的周长为36,腰长是x,底边上的高是6,若把面积y•看作腰长x的函数,试写出它们的函数关系式.四、思考题9.某旅客带了30公斤的行李乘飞机,按规定,旅客最多可免费携带20公斤的行李,超重部分每公斤按飞机票价的1.5%购买行李票,现该旅客购买了120元的行李费,求他的飞机票价格.B卷:提高题一、七彩题1.(一题多解题)按如图所示堆放钢管.(1)填表:(2)当堆到x层时,求钢管总数y关于层数x的函数关系式.二、知识交叉题2.(科外交叉题)一个小球由静止开始在一个斜坡上向下滚动,•其速度每秒增加2米,到达坡底时,小球速度达到40米/秒.(1)求小球速度v(米/秒)与时间t(秒)之间的函数关系式;(2)求3.5秒时小球的速度;(3)求几秒时小球的速度为16米/秒.三、实际应用题3.山东省是水资源比较贫乏的省份之一,为了加强公民的节水和用水意识,合理利用水资源,各地采用价格调控等手段达到节约用水的目的.某市规定用水收费标准如下:每户每月的用水不超过6立方米时,水费按每立方米a元收费;超过6立方米时,•不超过的部分每立方米仍按a元收费,超过的部分每立方米按c元收费,该市某户今年3,4月份的用水量和水费如下表所示:用水量(立方米)水费(元)月份3 5 7.54 9 27设某户该月用水量为x(立方米),应交水费为y(元).(1)求a,c的值,并写出用水不超过6立方米和超过6立方米时,y与x之间的函数关系式;(2)若该户5月份的用水量为8立方米,求该户5月份的水费是多少元?四、经典中考题4.( ,齐齐哈尔,4分),函数中,自变量x的取值范围是_______.C卷:课标新型题一、探究题1.(结论探究题)某商场计划投入一笔资金采购一批商品并转手出售,•经市场调查发现,如果月初出售,可获利15%,并可用本和利再投资其他商品,•到月末又可获得10%;如果月末出售可获利30%,但要付出仓储费用700元.请问根据商场的资金状况,•如何购销获利较多?二、说理题2.某移动通讯公司开设两种业务,“全球通”:先缴50元月租费,然后每通话1跳次,再付0.4元;“神州行”:不缴月租费,每通话1跳次,付话费0.6元(•本题的通话均指市内通话).若设一个月内通话x跳次,两种方式的费用分别为y1和y2元.(跳次:•1min为1跳次,不足1min按1跳次计算,如3.2min为4跳次)(1)分别写出y1,y2与x之间的函数关系式;(2)一个月内通话多少跳次时,两种方式的费用相同?(3)某人估计一个月内通话300跳次,应选择哪种合算?参考答案A卷一、1.C 点拨:解题的关键是对π和R2中的指数如何处理.判断变量和常量的根据就是看它们是否可改变,显然π是不改变的,是常量,圆的面积是随半径R的变化而变化的,故S和R 为变量,当R变化时R2也变化,R2中的指数2与变量和常量无关.2.D 点拨:存车费总收入y=电动车存车总费用+•普通车存车总费用=0.3×(4000-x)+0. 2x=-0.1x+1200,其中0≤x≤4000.故应选D.3.C 点拨:由图表可知L随t的变化而变化,通过变化规律,可以得到L与t之间的关系式为L=56.5+6(t-35),即L=6t-3072(35≤t≤42).二、4.x,y;10,2 点拨:因为所买日记本数x是可以变化的,小明余下的钱y也是变化的,故y与x是变量,而10和2是保持不变的,故它们是常量.5.x≠2 点拨:分式12x-有意义,须令x-2≠2,得x≠2.6.y=10000+12.8x(x≥0且x为整数)点拨:本息和=本金+利润,本金=10000元,•利息=本金×月利率×月数×(1-20%)=10000×0.16%·x·0.8=12.8x,所以y=10000+12.8x.三、7.解:(1)自变量x的取值范围是全体实数;(2)因为3-x≠0,所以x≠3,•即自变量x的取值范围是x≠3.8.解:(1)s=400n.(2)y=-6x+108.点拨:(1)总路程=一圈的长度×圈数;(2)由题意可知,等腰三角形的底边长为(•36-2x),所以y=12×(36-2x)×6,即y=-6x+108.四、9.解法一:(从方程的角度解)设他的飞机票价格为x元,根据题意,得(30-20)·x·1.5%=120,所以x=800.解法二:(从函数的角度解)设飞机票价格为k元,则行李票的价格y(元)与所带行李的公斤数x(公斤,x>20)之间的函数关系为y=(x-20)·k·1.5%,已知x=30时,y=120,•代入关系式,得120=(30-20)·k·1.5%,解得k=800.答:略.点拨:解法一和解法二实质上是一致的,只不过考虑问题的角度不同,•解法一是解法二的特殊情况.B卷一、1.解法一:(1)当x=1时,y=1;当x=2时,y=1+2=3;当x=3时,y=1+2+3=6;当x=•4时,y=1+2+3+4=10;…;当x=x时,y=1+2+3+4+…+x=12x(x+1).(2)y=12x(x+1)=12x2+x12(x≥1且为整数).解法二:如图所示,将原题图倒置过来与原图一起拼成平行四边形,利用其面积计算公式可得到结论y=12x(x+1),即y=12x2+12x.(1)题表中依次填为:1,3,6,10,12x2+12x.(2)y=12x·(x+1)=12x2+12x.(x≥1且为整数)点拨:仔细分析总数与层数之间的关系是解决这类图形问题常用方法之一.二、2.解:(1)v=2t;(2)当t=3.5时,v=2×3.5=7,即3.5秒时小球的速度为7米/秒;(3)当v=16时,16=2t,t=8,即8秒时小球的速度为16米/秒.点拨:•本题是函数关系式与物理学科的知识交叉题,也就是函数关系式在物理学科中的实际应用.三、3.解:(1)当x≤6时,y=ax;当x>6时,y=6a+c(x-6).将x=5,y=7.5代入y=ax,得7.5=5a,将x=9,y=27代入y=6a+c(x-6),得27=6a+3c.解得a=1.5,c=6.所以y=1.5x(x≤6),y=6x-27(x>6);(2)将x=8代入y=6x-27,得y=21,所以5月份的水费是21元.四、4.x≤3且x≠1C卷一、1.解:设商场投资x元,在月初出售可获利y1元,到月末出售出获利y2元.•根据题意,得y1=15%x+10%(1+15%)x=0.265x,y2=30%x-700=0.3x-700.(1)当y1=y2时,0.265x=0.3x-700,所以x=20000;(2)当y1<y2时,0.265x<0.3x-700,所以x>20000;(3)当y1>y2时,0.265x>0.3x-700,所以x<20000.所以当商场投资20000元时,两种销售方法获利相同;当商场投资超过20000元时,第二种销售方式获利较多;当商场投资不足20000元时,•第一种销售方式获利较多.点拨:要求哪种销售方式获利较多,•关键是比较在自变量的相同取值范围内,两个函数值的大小,除上述方法外,•也可以采用作差的方法解决.二、2.解:(1)y1=50+0.4x,y2=0.6x;(2)两种方式的费用相同时,y1=y2,即50+0.4x=0.6x,解得x=250.即一个月内通话250跳次,两种方式的费用相同;(3)某人一个月估计通话300跳次,则全球通的费用为:y1=50+0.4×300=170(元),神州行的费用为:y2=0.6×300=180(元),因为y1<y2,所以选择“全球通”合算.点拨:“话费问题”是日常生活中常见的问题,电话费与通话时间也是一种函数关系,要用函数的思想来加以说理解决.本题体现了分类思想,分两种情况来分析问题是解决此题的关键.。

八年级上册数学练习册及答案

八年级上册数学练习册及答案

八年级上册数学练习册及答案### 第一章:实数练习一:理解实数1. 实数的概念:实数包括有理数和无理数。

有理数可以表示为两个整数的比,而无理数则不能。

2. 实数的性质:实数具有连续性、有序性等特征。

3. 实数的运算:掌握加、减、乘、除等基本运算。

练习二:实数的运算- 例题:计算下列各数的和:- \( \sqrt{2} + \pi \)- \( \frac{1}{2} - \frac{1}{3} \)- 答案:- \( \sqrt{2} + \pi \) 的和为 \( \sqrt{2} + \pi \)。

- \( \frac{1}{2} - \frac{1}{3} = \frac{3}{6} - \frac{2}{6} = \frac{1}{6} \)。

练习三:实数的应用- 例题:如果一个数的平方是16,求这个数。

- 答案:这个数可以是 \( \sqrt{16} = 4 \) 或 \( -\sqrt{16} = -4 \)。

### 第二章:代数基础练习一:变量与表达式1. 变量的意义:变量是数学表达式中可以变化的量。

2. 表达式的构成:由变量和数字通过运算符连接而成。

练习二:代数式的简化- 例题:简化下列表达式:- \( 3x + 2y - 5x + 3y \)- 答案:\( 3x - 5x + 2y + 3y = -2x + 5y \)。

练习三:代数方程的解法- 例题:解方程 \( ax + b = c \)。

- 答案:\( x = \frac{c - b}{a} \)。

### 第三章:几何基础练习一:点、线、面1. 点:几何中最基本的元素。

2. 线:由点的连续移动形成。

3. 面:由线的连续移动形成。

练习二:角的度量- 例题:如果一个角的度数是 \( \frac{\pi}{4} \),求它的度数。

- 答案:\( \frac{\pi}{4} \) 弧度等于 \( 45^\circ \)。

练习三:三角形的性质- 例题:在一个三角形中,如果两个角分别是 \( 30^\circ \) 和\( 60^\circ \),求第三个角的度数。

北师大版八年级上册数学第四章 一次函数含答案(综合知识)

北师大版八年级上册数学第四章 一次函数含答案(综合知识)

北师大版八年级上册数学第四章一次函数含答案一、单选题(共15题,共计45分)1、函数y=中,自变量x的取值范围是()A.x≠2B.x≥2C.x≤2D.全体实数2、成都市双流新城公园是亚洲最大的城市湿地公园,周末小李在这个公园里某笔直的道路上骑车游玩,先前进了a千米,休息了一段时间,又原路返回b千米(b<a),再前进c千米,则他离起点的距离s与时间t的关系的示意图是()A. B.C. D.3、下列各式中,自变量x的取值范围是x≥2的是( )A.y=x-2B.y=C.y=·D.y=x 2-44、下列函数的图象不经过第一象限,且y随x的增大而减小的是( )A. B. C. D.5、同一坐标系中有四条直线::,:,:,:,其中与轴交于点的直线是()A.直线B.直线C.直线D.直线6、某星期天小李步行取图书馆看书,途中遇到一个红灯,停下来耽误了几分钟,为了赶时间,他以更快速度步行到图书馆,下面几幅图是步行路程s (米)与行进时间t(分)的关系的示意图,你认为正确的是()A. B. C.D.7、如图,反映了某公司的销售收入(单位:元)与销售量(单位:吨)的关系,反映了该公司的销售成本(单位:元)与销售量(单位:吨)的关系,当该公司盈利(收入大于成本)时,销售量应为()A.大于4吨B.等于5吨C.小于5吨D.大于5吨8、已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=kx+k的图象大致是图中的()A. B. C.D.9、若一次函数y=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围是()A.k>3B.0<k≤3C.0≤k<3D.0<k<310、下列各图中,是函数图象的是().A. B. C. D.11、对于0≤x≤100,用[x]表示不超过x的最大整数,则[x]+[ x]的不同取值的个数为( )A.267B.266C.234D.23312、一次函数y=-2x+5的图象性质错误的是().A.y随x的增大而减小B.直线经过第一、二、四象限C.直线从左到右是下降的D.直线与x轴交点坐标是(0,5)13、如图,已知点A 的坐标为(-1,0 ),点B在直线y=x上运动,当线段AB 最短时,点B的坐标为()A.(0,0)B.(, - )C.(-,-)D.(-,-)14、若正比例函数的图象经过(﹣3,2),则这个图象一定经过点()A.(2,﹣3)B.C.(﹣1,1)D.(2,﹣2)15、某商店销售一种商品,售出部分商品后进行了降价促销,销售金额y (元)与销售量(x)的函数关系如图所示,则降价后每件商品的销售价格为()A.5元B.10元C.12.5元D.15元二、填空题(共10题,共计30分)16、若函数y=(2m+6)x+(1﹣m)是正比例函数,则m的值是________.17、如图所示的是春季某地一天气温随时间变化的图象,根据图象判断,在这天中,最高温度与最低温度的差是________ ℃.18、一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设快车离乙地的距离为y1(km),慢车离乙地的距离为y2(km),慢车行驶时间为x(h),两车之间的距离为s(km).y1, y2与x的函数关系图象如图1所示,s与x的函数关系图象如图2所示.则下列判断:①图1中a=3;②当x=h时,两车相遇;③当x=时,两车相距60km;④图2中C点坐标为(3,180);⑤当x=h或h时,两车相距200km.其中正确的有________(请写出所有正确判断的序号)19、如图,A(4,3),B(2,1),在x轴上取两点P、Q,使PA+PB值最小,|QA-QB|值最大,则PQ=________.20、表示变量之间关系的常用方法有________ ,________ ,________ .21、某函数满足当自变量x=-1时,函数的值y=2,且函数y的值始终随自变量x的增大而减小,写出一个满足条件的函数表达式________.22、若一次函数y=(m﹣3)x+1中,y值随x值的增大而减小,则m的取值需满足________.23、已知正比例函数的图像经过点M( )、、,如果,那么________ .(填“>”、“=”、“<”)24、写出一个正比例函数,使其图象经过第二、四象限:________.25、已知二次函数y=ax2(a≠0的常数),则y与x2成________ 比例.三、解答题(共5题,共计25分)26、一个正比例函数的图象经过点A(﹣2,3),B(a,﹣3),求a的值.27、中国联通在某地的资费标准为包月186元时,超出部分国内拨打0.36元/分,由于业务多,小明的爸爸打电话已超出了包月费.下表是超出部分国内拨打的收费标准时间/分 1 2 3 4 5 …电话费/元 0.36 0.72 1.08 1.44 1.8 …(1)这个表反映了哪两个变量之间的关系?哪个是自变量?(2)如果用x表示超出时间,y表示超出部分的电话费,那么y与x的表达式是什么?(3)如果打电话超出25分钟,需付多少电话费?(4)某次打电话的费用超出部分是54元,那么小明的爸爸打电话超出几分钟?28、如图,已知一次函数的图象与轴,轴分别交于A,B两点,点在该函数的图象上,连接OC.求点A,B的坐标和的面积.29、小亮和小刚进行赛跑训练,他们选择了一个土坡,按同一路线同时出发,从坡脚跑到坡顶再原路返回坡脚.他们俩上坡的平均速度不同,下坡的平均速度则是各自上坡平均速度的1.5倍.设两人出发x min后距出发点的距离为y m.图中折线表示小亮在整个训练中y与x的函数关系,其中A点在x轴上,M 点坐标为(2,0).(1)A点所表示的实际意义是;=;(2)求出AB所在直线的函数关系式;(3)如果小刚上坡平均速度是小亮上坡平均速度的一半,那么两人出发后多长时间第一次相遇?30、如图1,在△ABC中,∠A=120°,AB=AC,点P、Q同时从点B出发,以相同的速度分别沿折线B→A→C、射线BC运动,连接PQ.当点P到达点C时,点P、Q同时停止运动.设BQ=x,△BPQ与△ABC重叠部分的面积为S.如图2是S 关于x的函数图象(其中0≤x≤8,8<x≤m,m<x≤16时,函数的解析式不同).(1)求m的值。

沪科版数学八年级上册 第十二章 一次函数 单元测试(含答案)

沪科版数学八年级上册  第十二章 一次函数 单元测试(含答案)

第 十二 章 一次函数(时间:120分钟满分:150分)题 号一二三四五六七八总 分得 分一、选择题(本大题共10 小题,每小题4分,满分40 分)1.函数 y =x−3x中,自变量x 的取值范围是 ( )A. x≠0B. x≥3C. x≥3且x≠0D. x>3且x≠02.若正比例函数的图象经过点(-1,2),则这个图象必经过点 ( )A.(1,2)B.(-1,-2)C.(2,-1)D.(1,-2)3.函数 y =k (x−k )(k <0)的图象不经过 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限4.已知函数y =−x +3,,当x=a 时,y=5;当x=b 时,y=-5;当x=c 时,y =3,则a ,b ,c 的大小关系是( )A.a >b >cB. a>c>bC. b>a>cD. b>c>a5.直线 y =2x 向下平移2 个单位得到的直线是 ( ) A.y =2x (x +2) B.y =2(x−2) C.y =2x−2 D.y =2x +26.如图,在下列平面直角坐标系中,一次函数 y =12kx−2k 的图象只可能是( )7.如图,下列方程组的解可以用两直线 l₁,l₂的交点坐标表示的是 ( )A.{x−y =1,2x−y =1 B.{x−y =−1,2x−y =1 C.{x−y =3,2x−y =1 D.{x−y =−3,2x−y =−18.如图,函数 y 1=|x|,y 2=13x +43.当 y₁>y₂时,x 的取值范围是 ( )A. x< -1B.−1<x <2C.x <−1或x>2D.x >29.小高从家门口骑车去单位上班,先走平路到达点 A ,再走上坡路到达点B ,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是 ( )A.12 分钟B.15分钟C.25分钟D.27 分钟10.如图,在平面直角坐标系中,在边长为1 的正方形ABCD 的边上有一动点 P 沿A→B→C→D→A 运动一周,则点 P 的纵坐标y 与点 P 走过的路程s 之间的函数关系用图象表示大致是 ( )二、填空题(本大题共4 小题,每小题5分,满分20分)11.已知一次函数 y =(4m +1)x−(m +1),,当m 满足 时,直线在y 轴上的截距小于0.12.一次函数 y =2x−6的函数值为0,则 x =.13.甲、乙两人以相同路线前往距离单位10 千米的培训中心参加学习.图中 l 甲,l 乙分别表示甲、乙两人前往目的地所走的路程s(千米)随时间t(分)变化的函数图象.以下说法:①乙比甲提前12分钟到达;②甲的平均速度为15千米/时;③乙的平均速度为1507千米/时;④乙出发6分钟后追上甲.其中正确的有 .(填所有正确的序号)14.已知一次函数 y =ax +b (a ,b 是常数),x 与y 的部分对应值如下表:x -2-10123y642-2-4那么方程ax+b=0的解是 ;不等式。

浙教版八年级数学上册《5.1 常量与变量》同步练习-含参考答案

浙教版八年级数学上册《5.1 常量与变量》同步练习-含参考答案

浙教版八年级数学上册《5.1 常量与变量》同步练习-含参考答案一、选择题1.一个长方体的宽为b(定值),长为x,高为h,体积为V,则V=bxh,其中变量是( )A.xB.hC.VD.x,h,V2.一个圆柱的高h为10 cm,当圆柱的底面半径r由小到大变化时,圆柱的体积V也发生了变化,在这个变化过程中( )A.r是因变量,V是自变量B.r是自变量,V是因变量C.r是自变量,h是因变量D.h是自变量,V是因变量3.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是( )A.太阳光强弱B.水的温度C.所晒时间D.热水器4.小军用50元钱买单价为8元的笔记本,他剩余的钱数Q(元)与他买这种笔记本的本数x之间的关系式为Q=50-8x,则下列说法正确的是( )A.Q和x是变量B.Q是自变量C.50和x是常量D.x是Q的函数5.某物体一天中的温度是时间t的函数:T(t)=t3-3t+60,时间单位是小时,温度单位为℃,t=0表示12:00,其后t的取值为正,则上午8时的温度为( )A.8℃B.112℃C.58℃D.18℃6.某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表):温度/℃-20 -10 0 10 20 30声速/(m/s) 318 324 330 336 342 34下列说法错误的是( )A.在这个变化中,自变量是温度,因变量是声速B.温度越高,声速越快C.当空气温度为20℃时,声音5s可以传播1740mD.当温度每升高10℃,声速增加6m/s7.根据科学研究表明,在弹簧的承受范围内,弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的重量x(kg)间有下表的关系:下列说法不正确的是( )A.弹簧不挂重物时的长度为0cmB.x与y都是变量,且x是自变量,y是因变量C.随着所挂物体的重量增加,弹簧长度逐渐边长D.所挂物体的重量每增加1kg,弹簧长度增加0.5cm8.在某次实验中,测得两个变量m和v之间的4组对应数据如下表:则m与v之间的关系最接近于下列各表达式中的( )m 1 2 3 4v 0.01 2.9 8.03 15.1A.v=2m-2B.v=m2-1C.v=3m-3D.v=m+19.假设汽车匀速行驶在高速公路上,那么在下列各量中,变量的个数是( )①行驶速度;②行驶时间;③行驶路程;④汽车油箱中的剩余油量.A.1个B.2个C.3个D.4个10.某品牌豆浆机成本为70元,销售商对其销量定价的关系进行了调查,结果如下( )A.定价是常量,销量是变量B.定价是变量,销量是不变量C.定价与销售量都是变量,定价是自变量,销量是因变量D.定价与销量都是变量,销量是自变量,定价是因变量二、填空题11.温度随着时间的改变而改变,则自变量是_____(时间,温度)12.直角三角形两锐角的度数分别为x,y,其表达式为y=90-x,其中变量为__________,常量为__________.13.已知3x﹣y=7中,变量是,常量是 .把它写成用x的式子表示y的形式是 .14.明星中学计划投资8万元购买学生用电脑,则所购电脑的台数n(台)与单价x(万元)之间的关系是_______,其中________是常量,_______是变量.15.王老师开车去加油站加油,发现加油表如图所示.加油时,单价其数值固定不变,表示“数量”、“金额”的量一直在变化,在数量 2.45 (升)金额 16.66 (元)单价 6.80 (元/升)这三个量中, 是常量, 是自变量, 是因变量.16.小亮帮母亲预算家庭4月份电费开支情况,下表是小亮家4月初连续8天每天早上电表显示的读数(1)表格中反映的变量是,自变量是,因变量是 .(2)估计小亮家4月份用电量是,若每度电是0.49元,估计他家4月份应交电费是 .三、解答题17.一种树苗的高度用h表示,树苗生长的年数用a表示,测得有关数据如下表:(树苗原高100 cm)年数a 高度h/cm1 100+52 100+103 100+154 100+20……(1)试用年数a的代数式表示h;(2)此树苗需多少年就可长到200 cm高?18.一种手机卡的缴费方式为:每月必须缴纳月租费20元,另外每通话1 min要缴费0.2元.(1)如果每月通话时间为x(min),每月缴费y(元),请用含x的代数式表示y.(2)在这个问题中,哪些是常量?哪些是变量?(3)当一个月通话时间为200 min时,应缴费多少元?(4)当某月缴费56元时,此人该月通话时间为多少分钟?19.声音在空气中的传播速度y(米/秒)(简称音速)随气温x(℃)的变化而变化.下表列出了一组不同气温时的音速.气温x/℃0 5 10 15 20音速y/(米/331 334 337 340 343秒)(1)当x的值逐渐增大时,y的变化趋势是什么?(2)x每增加5℃,y的变化情况相同吗?(3)估计气温为25℃时音速是多少.20.在烧水时,水温达到100 ℃就会沸腾,下表是某同学做“观察水的沸腾”试验时记录的数据:时间/min 0 2 4 6 8 10 12 14 …温度/℃30 44 58 72 86 100 100 100 …(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)水的温度是如何随着时间的变化而变化的?(3)时间每推移2 min,水的温度如何变化?(4)时间为8 min时,水的温度为多少?你能得出时间为9 min时水的温度吗?(5)根据表格,你认为时间为16 min和18 min时水的温度分别为多少?(6)为了节约能源,你认为应在什么时间停止烧水?21.父亲告诉小明:“距离地面越远,温度越低,”并给小明出示了下面的表格. 距离地面高度(千0 1 2 3 4 5米)温度(℃)20 14 8 2 -4 -10根据上表,父亲还给小明出了下面几个问题,你和小明一起回答.(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用h表示距离地面的高度,用t表示温度,那么随着h的变化,t是怎么变化的?(3)你知道距离地面6千米的高空温度是多少吗?22.在一次实验中,小明把一根弹簧的上端固定.在其下端悬挂物体,下面是测得的弹簧的长度y与所挂物体质量x的一组对应值.所挂重量x(kg)0 1 2 3 4 5弹簧长度y(cm)18 20 22 24 26 28(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当所挂物体重量为3千克时,弹簧多长?不挂重物时呢?(3)若所挂重物为7千克时(在允许范围内),你能说出此时的弹簧长度吗?答案1.D2.B3.B4.A5.A6.C7.A8.B9.C10.C11.答案为:时间.12.答案为:x,y,-1,9013.答案为:答案是:x和y;3和7;y=3x﹣7.14.答案为:n=8x-1,x和n15.答案为:单价;数量;金额16.答案为:(1)日期和电表读数,自变量为日期,因变量为电表读数;(2)58.5(元).17.解:(1)由表可知h=100+5a.(2)当h=200 cm时,有200=100+5a,解得a=20.答:此树苗需20年就可长到200 cm高.18.解:(1)每月缴费y(元)与通话时间x(min)的关系式为y=15x+20.(2)在这个问题中,月租费20元和每分钟通话费15元是常量,每月通话时间x(min)与每月缴费y(元)是变量.(3)当x=200时,y=15×200+20=60(元).因此当一个月通话时间为200 min时,应缴费60元.(4)当y=56时,15x+20=56,解得x=180.因此当某月缴费为56元时,此人该月通话时间为180 min.19.解:(1)x增大时,y也随着增大.(2) x每增加5℃,y的变化情况相同(都增加了3米/秒).(3) x=25℃时,估计y=346米/秒.20.解:(1)上表反映了水的温度与时间的关系,时间是自变量,水的温度是因变量.(2)水的温度随着时间的增加而增加,到100 ℃时恒定.(3)时间每推移2 min,水的温度增加14 ℃,到10 min时恒定.(4)时间为8 min时,水的温度是86 ℃,时间为9 min时,水的温度是93 ℃.(5)根据表格,时间为16 min和18 min时水的温度均为100 ℃.(6)为了节约能源,应在第10 min后停止烧水.21.解:(1)上表反映了温度和距地面高度之间的关系,高度是自变量,温度是因变量.(2)由表可知,每上升一千米,温度降低6 ℃,可得解析式为y=20-6x.(3)由表可知,距地面5千米时,温度为零下10 ℃.22.解:(1)弹簧长度与所挂物体质量之间的关系;其中所挂物体质量是自变量,弹簧长度是因变量;(2)24厘米;18厘米;(3)32厘米.。

八年级数学上册 变量与函数(3)-习题课课件 新人教版

八年级数学上册 变量与函数(3)-习题课课件 新人教版
(1)写出表示y与x的函数关系的式子。
y= 50-0.1x
(2)指出自变量x的取值范围。 x≤500 因为0.1x≤50 又因为x≥0 0≤x≤500
例1.一辆汽车的油箱中现有汽油50L,如果不再 加油,那么油箱中的油量y(单位:L)随行驶 里程x(单位:㏎)的增加而减少,平均耗油量 为0.1 L/㏎。 (3)汽车行驶200 ㏎时,油箱中还有多少汽油? 将x=200代入到y=50- 0.1x中,得 y=50- 0.1×200=30
(C)x ≠ ±1
5 x x 1
2
(2)函数y=
中,自变量x的取值范围是
_________
x≥-5
(3)函数y=x+
2 x
中,自变量x的取值范围是
x≤2 ________。
(4)下列函数中,自变量取值范围是2<x≤3的是
(A)y= (C)y= + x2
1 x2 1
x3 3 x
(B)y= (D)y=
函数的取值范围:当函数用解析式表 示出来时,使解析式有意义的自变量的取 值的全体。
在确定函数的自变量的取值范围时, 不仅要考虑函数关系式的意义,还要考虑 问题中的实际意义。
(1)分母不为0 (2)开偶数次方 的被开方数≥0
(1)y=
4x 1 x

2
的自变量x的取值范围是 ( )
C
(A)X
0
(B)x ≠ 1 (D)为一切实数
变量
常量
函数(因变量)
自变量
函数值
找出下列各式中的变量和常量。
S=4π
2 R
V=
4 3
π
3 R
2+9 y=8x
判断下列各式中y是x的函数吗? 并找出中的自变量和因变量。

八年级数学上册(6.1 函数)练习题 试题

八年级数学上册(6.1 函数)练习题 试题

轧东卡州北占业市传业学校< 函数>练习题理解函数、自变量、因变量的意义.一、选择题1.以下变量之间的关系中,具有函数关系的有〔 〕①三角形的面积与底边 ②多边形的内角和与边数 ③圆的面积与半径④y =12-x 中的y 与x A.1个 B.2个C.3个D.4个 2.对于圆的面积公式S =πR 2,以下说法中,正确的为〔 〕A.π是自变量B.R 2是自变量C.R 是自变量D.πR 2是自变量 3.以下函数中,自变量x 的取值范围是x ≥2的是〔 〕A.y =x -2B.y =21-xC.y =24xD.y =2+x ·2-x4.函数y =212+-x x ,当x =a 时的函数值为1,那么a 的值为〔 〕 A.3 B.-1 C.-3 D.15.某人从A 地向B 地打长途 6分钟,按通话时间收费,3分钟内收元,每加一分钟加收1元.那么表示 费y 〔元〕与通话时间x (分)之间的函数关系正确的选项是〔 〕二、填空题6.轮子每分钟旋转60转,那么轮子的转数n 与时间t (分)之间的关系是__________.其中______是自变量,______是因变量.7.方案花500元购置篮球,所能购置的总数n (个)与单价a 〔元〕的函数关系式为______,其中______是自变量,______是因变量.8.某种储蓄的月利率是0.2%,存入100元本金后,那么本息和y (元)与所存月数x 之间的关系式为______.9.矩形的周长为24,设它的一边长为x,那么它的面积y与x之间的函数关系式为______.10.等腰三角形的周长为20 cm,那么腰长y(cm)与底边x(cm)的函数关系式为______,其中自变量x的取值范围是______.三、解答题11.如下列图堆放钢管.(1)填表〔2〕当堆到x层时,钢管总数如何表示?12.如图,这是某地区一天的气温随时间变化的图象,根据图象答复:在这一天中:(1)______时气温最高,______时气温最低,最高气温是______,最低气温是______.(2)20时的气温是______;(3)______时的气温是6 ℃;(4)______时间内,气温不断下降;(5)______时间内,气温持续不变.13.某出租车起步价是7元〔路程小于或等于2千米〕,超过2千米每增加1千米加收1.6元,请写出出租车费y〔元〕与行程x〔千米〕之间的函数关系式.14.一个小球由静止开始在一个斜坡上向下滚动,其速度每秒增加2 m/s,到达坡底时小球的速度到达40 m/s.(1)求小球的速度v(m/s)与时间t(s)之间的函数关系式;〔2〕求t的取值范围;〔3〕求 s时小球的速度;〔4〕求n(s)时小球的速度为16 m/s.。

初中数学常量与变量课后练习(含答案及解析)

初中数学常量与变量课后练习(含答案及解析)

常量与变量课后练习(含答案)1.在△ABC中,它的底边是a,底边上的高是h,则三角形面积S=ah,当a为定长时,在此式中()A.S,h是变量,,a是常量B.S,h,a是变量,是常量C.S,h是变量,,S是常量D.S是变量,,a,h是常量2.在圆的周长C=2πR中,常量与变量分别是()A.2是常量,C、π、R是变量B.2π是常量,C、R是变量C.C、2是常量,R是变量D.2是常量,C、R是变量3.李师傅到单位附近的加油站加油,如图是所用的加油机上的数据显示牌,则其中的常量是()A.金额B.数量C.单价D.金额和数量4.骆驼被称为“沙漠之舟”,它的体温是随时间的变化而变化的,在这一问题中,因变量是()A.沙漠B.体温C.时间D.骆驼5.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是()A.太阳光强弱B.水的温度C.所晒时间D.热水器6.以固定的速度v0(米/秒)向上抛一个小球,小球的高度h(米)与小球的运动的时间t (秒)之间的关系式是h=v0t﹣4.9t2,在这个关系式中,常量、变量分别为()A.4.9是常量,t、h是变量B.v0是常量,t、h是变量C.v0、﹣4.9是常量,t、h是变量D.4.9是常量,v0、t、h是变量7.“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语反映了我国新疆地区一天中,随变化而变化,其中自变量是,因变量是.8.如果用总长为60m的篱笆围成一个长方形场地,设长方形的面积为S(m2),周长为p (m),一边长为a(m),那么S,p,a中是变量的是()A.S和p B.S和a C.p和a D.S,p,a9.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)之间有下面的关系,下列说法不正确的是()x/kg012345y/cm2020.52121.52222.5A.弹簧不挂重物时的长度为0cmB.x与y都是变量,且x是自变量,y是因变量C.物体质量每增加1 kg,弹簧长度y增加0.5cmD.所挂物体质量为7 kg时,弹簧长度为23.5cm10.某人要在规定的时间内加工100个零件,则工作效率η与时间t之间的关系中,下列说法正确的是()A.数100和η,t都是变量B.数100和η都是常量C.η和t是变量D.数100和t都是常量11.对于圆的周长公式C=2πR,下列说法正确的是()A.π、R是变量,2是常量B.R是变量,π是常量C.C是变量,π、R是常量D.C、R是变量,2、π是常量12.明明从广州给远在上海的爷爷打电话,电话费随着时间的变化而变化,在这个过程中,因变量是()A.明明B.电话费C.时间D.爷爷13.在圆的周长公式C=2πR中,是变量的是()A.C B.R C.π和R D.C和R14.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是()A.太阳光强弱B.水的温度C.所晒时间D.热水器的容积15.世纪花园居民小区收取电费的标准是0.6元/千瓦时,当用电量为x(单位:千瓦时)时,收取电费为y(单位:元).在这个问题中,下列说法中正确的是()A.x是自变量,0.6元/千瓦时是因变量B.y是自变量,x是因变量C.0.6元/千瓦时是自变量,y是因变量D.x是自变量,y是因变量16.一本笔记本5元,买x本共付y元,则5和y分别是()A.常量,常量B.变量,变量C.常量,变量D.变量,常量参考答案及解析1.在△ABC中,它的底边是a,底边上的高是h,则三角形面积S=ah,当a为定长时,在此式中()A.S,h是变量,,a是常量B.S,h,a是变量,是常量C.S,h是变量,,S是常量D.S是变量,,a,h是常量【考点】常量与变量.【分析】根据函数的定义:对于函数中的每个值x,变量y按照一定的法则有一个确定的值y与之对应;来解答即可.【解答】解:∵三角形面积S=ah,∴当a为定长时,在此式中S、h是变量,,a是常量;故选:A.【点评】函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,记作y=f(x);变量是指在程序的运行过程中随时可以发生变化的量.2.在圆的周长C=2πR中,常量与变量分别是()A.2是常量,C、π、R是变量B.2π是常量,C、R是变量C.C、2是常量,R是变量D.2是常量,C、R是变量【考点】常量与变量.【分析】根据在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量,即可答题.【解答】解:∵在圆的周长公式C=2πr中,C与r是改变的,π是不变的;∴变量是C,r,常量是2π.故选:B.【点评】本题考查了常量与变量的知识,属于基础题,变量是指在程序的运行过程中随时可以发生变化的量.3.李师傅到单位附近的加油站加油,如图是所用的加油机上的数据显示牌,则其中的常量是()A.金额B.数量C.单价D.金额和数量【考点】常量与变量.【分析】根据常量与变量的定义即可判断.【解答】解:常量是固定不变的量,变量是变化的量,单价是不变的量,而金额是随着数量的变化而变化,故选:C.【点评】本题考查常量与变量,解题的关键是正确理解常量与变量,本题属于基础题型.4.骆驼被称为“沙漠之舟”,它的体温是随时间的变化而变化的,在这一问题中,因变量是()A.沙漠B.体温C.时间D.骆驼【考点】常量与变量.【分析】因为骆驼的体温随时间的变化而变化,符合“对于一个变化过程中的两个量x 和y,对于每一个x的值,y都有唯一的值和它相对应”的函数定义,自变量是时间,因变量是体温.【解答】解:∵骆驼的体温随时间的变化而变化,∴自变量是时间,因变量是体温,故选:B.【点评】考查了函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D 中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数.5.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是()A.太阳光强弱B.水的温度C.所晒时间D.热水器【考点】常量与变量.【分析】函数的定义:设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一的值与它对应,那么称y是x的函数,x叫自变量.函数关系式中,某特定的数会随另一个(或另几个)会变动的数的变动而变动,就称为因变量.【解答】解:根据函数的定义可知,水温是随着所晒时间的长短而变化,可知水温是因变量,所晒时间为自变量.故选:B.【点评】本题主要考查常量与变量的知识,解题的关键是对函数的定义以及对自变量和因变量的认识和理解,难度不大.6.以固定的速度v0(米/秒)向上抛一个小球,小球的高度h(米)与小球的运动的时间t (秒)之间的关系式是h=v0t﹣4.9t2,在这个关系式中,常量、变量分别为()A.4.9是常量,t、h是变量B.v0是常量,t、h是变量C.v0、﹣4.9是常量,t、h是变量D.4.9是常量,v0、t、h是变量【考点】常量与变量.【分析】根据在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量,即可答题.【解答】解:h=v0t﹣4.9t2中的v0(米/秒)是固定的速度,﹣4.9是定值,故v0和﹣4.9是常量,t、h是变量,故选:C.【点评】本题考查了常量与变量的知识,属于基础题,变量是指在程序的运行过程中随时可以发生变化的量.7.“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语反映了我国新疆地区一天中,温度随时间变化而变化,其中自变量是时间,因变量是温度.【考点】常量与变量.【分析】根据函数的定义:对于函数中的每个值x,变量y按照一定的法则有一个确定的值y与之对应;来解答即可.【解答】解:“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语反映了我国新疆地区一天中,温度随时间变化而变化,其中自变量是:时间,因变量是:温度.故答案是:温度、时间、时间、温度.【点评】函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,记作y=f(x);变量是指在程序的运行过程中随时可以发生变化的量.8.如果用总长为60m的篱笆围成一个长方形场地,设长方形的面积为S(m2),周长为p (m),一边长为a(m),那么S,p,a中是变量的是()A.S和p B.S和a C.p和a D.S,p,a【考点】常量与变量.【分析】根据篱笆的总长确定,即可得到周长、一边长及面积中的变量.【解答】解:∵篱笆的总长为60米,∴周长P是定值,而面积S和一边长a是变量,故选:B.【点评】本题考查了常量与变量的知识,解题的关键是能够根据篱笆总长不变确定定值,然后确定变量.9.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)之间有下面的关系,下列说法不正确的是()x/kg012345y/cm2020.52121.52222.5A.弹簧不挂重物时的长度为0cmB.x与y都是变量,且x是自变量,y是因变量C.物体质量每增加1 kg,弹簧长度y增加0.5cmD.所挂物体质量为7 kg时,弹簧长度为23.5cm【考点】常量与变量.【分析】根据自变量、因变量的含义,以及弹簧的长度y(cm)与所挂的物体的质量x (kg)之间的关系逐一判断即可.【解答】解:∵弹簧不挂重物时的长度为20cm,∴选项A不正确;∵x与y都是变量,且x是自变量,y是因变量,∴选项B正确;∵20.5﹣20=0.5(cm),21﹣20.5=0.5(cm),21.5﹣21=0.5(cm),22﹣21.5=0.5(cm),22.5﹣22=0.5(cm),∴物体质量每增加1 kg,弹簧长度y增加0.5cm,∴选项C正确;∵22.5+0.5×(7﹣5)=22.5+1=23.5(cm)∴所挂物体质量为7kg时,弹簧长度为23.5cm,∴选项D正确.故选:A.【点评】此题主要考查了函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则x叫自变量,y叫因变量.10.某人要在规定的时间内加工100个零件,则工作效率η与时间t之间的关系中,下列说法正确的是()A.数100和η,t都是变量B.数100和η都是常量C.η和t是变量D.数100和t都是常量【考点】常量与变量.【分析】常量是在某个过程中不变的量,变量就是在某个过程中可以取到不同的数值,变化的量.根据定义即可判断.【解答】解:某人要在规定的时间内加工100个零件,则工作效率η与时间t之间的关系中:η和t是变量,零件的个数100是常量.故选:C.【点评】本题考查了常量与变量的概念,是一个基础题.11.对于圆的周长公式C=2πR,下列说法正确的是()A.π、R是变量,2是常量B.R是变量,π是常量C.C是变量,π、R是常量D.C、R是变量,2、π是常量【考点】常量与变量.【分析】常量就是在变化过程中不变的量,变量是指在变化过程中随时可以发生变化的量.【解答】解:C、R是变量,2、π是常量.故选:D.【点评】本题主要考查了常量,变量的定义,是需要识记的内容.12.明明从广州给远在上海的爷爷打电话,电话费随着时间的变化而变化,在这个过程中,因变量是()A.明明B.电话费C.时间D.爷爷【考点】常量与变量.【分析】根据函数的定义:对于函数中的每个值x,变量y按照一定的法则有一个确定的值y与之对应.【解答】解:∵电话费随着时间的变化而变化,∴自变量是时间,因变量是电话费;故选:B.【点评】函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,其中x叫自变量,y叫x的函数.13.在圆的周长公式C=2πR中,是变量的是()A.C B.R C.π和R D.C和R【考点】常量与变量.【分析】根据变量是改变的量,据此即可确定周长公式中的变量.【解答】解:圆的周长公式C=2πR中,变量是C和R,故选:D.【点评】本题考查了常量和变量的定义,明确变量是改变的量,常量是不变的量.14.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是()A.太阳光强弱B.水的温度C.所晒时间D.热水器的容积【考点】常量与变量.【分析】函数的定义:设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一的值与它对应,那么称y是x的函数,x叫自变量.函数关系式中,某特定的数会随另一个(或另几个)会变动的数的变动而变动,就称为因变量.【解答】解:根据函数的定义可知,水温是随着所晒时间的长短而变化,可知水温是因变量,所晒时间为自变量.故选:B.【点评】本题主要考查的是对函数的定义以及对自变量和因变量的认识和理解.15.世纪花园居民小区收取电费的标准是0.6元/千瓦时,当用电量为x(单位:千瓦时)时,收取电费为y(单位:元).在这个问题中,下列说法中正确的是()A.x是自变量,0.6元/千瓦时是因变量B.y是自变量,x是因变量C.0.6元/千瓦时是自变量,y是因变量D.x是自变量,y是因变量【考点】常量与变量.【分析】根据函数的定义:对于函数中的每个值x,变量y按照一定的法则有一个确定的值y与之对应;来解答即可.【解答】解:在这个问题中,x是自变量,y是因变量,0.6元/千瓦时是常数.故选:D.【点评】函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,记作y=f(x);变量是指在程序的运行过程中随时可以发生变化的量.16.一本笔记本5元,买x本共付y元,则5和y分别是()A.常量,常量B.变量,变量C.常量,变量D.变量,常量【考点】常量与变量.【分析】在一个变化的过程中,数值发生变化的量称为变量,数值始终不变的量称为常量,所以5和y分别是常量,变量,据此判断即可.【解答】解:一本笔记本5元,买x本共付y元,则5和y分别是常量,变量.故选:C.【点评】此题主要考查了常量与边量问题,要熟练掌握,解答此题的关键是要明确:常量与变量必须存在于同一个变化过程中,判断一个量是常量还是变量,需要看两个方面:一是它是否在一个变化过程中;二是看它在这个变化过程中的取值情况是否发生变化.。

八年级数学上册第12章一次函数12.1函数变量与函数

八年级数学上册第12章一次函数12.1函数变量与函数
(1)这个问题中,涉及(shèjí)哪几个量? (2)热气球在升空的过程中平均每分钟上升多少米? (3)你能求出上升3min和6min 时热气球到达的海拔高度吗?
第七页,共二十二页。
思考
在问题1中,热气球在上升的过程中是一个不断变化的过程, 在这个(zhè ge)过程中有哪些量是不断变化的?哪些量始终保持不变?
Image
12/13/2021
第二十二页,共二十二页。
上述判断正确的有( ) A.0个 B.1个 C.2个 D.3个
B
第十八页,共二十二页。
4.寄一封质量在20g以内的市内平信(píngxìn),需邮资0.80元,则寄x封这 样的信所需邮资y(元).试用含x的式子表示y,并指出其中的常量和 变量. 解:根据题意,得y=0.8x,所以(suǒyǐ)0.8是常量,x、y是变量.
第十六页,共二十二页。
2.半径是R的圆周长C=2πR,下列说法正确(zhèngquè)的是(D )
A. π、R是变量,2是常量 B. C是变量,2,π,R是常量 C. R是变量,2,π ,C是常量 D. C,R是变量,2,π是常量
第十七页,共二十二页。
3.笔记本每本a元,买3本笔记本共支出y元,在这个(zhège)问题中: ①a是常量时,y是变量; ②a是变量时,y是常量; ③a是变量时,y也是变量;
第12章 一次函数
12.1 函数(hánshù)
第1课时 变量与函数
第一页,共二十二页。
新课导入
行星在宇宙(yǔzhòu)中的位置随时间而变化
第二页,共二十二页。
气温(qìwēn)随海拔而变化
第三页,共二十二页。
汽车行驶(xíngshǐ)路程随行驶时间而变化
第四页,共二十二页。

人教版八年级数学下册第十九章19.1.1变量与函数同步练习题(含答案)

人教版八年级数学下册第十九章19.1.1变量与函数同步练习题(含答案)

人教版八年级数学下册第十九章19.1.1变量与函数同步练习题一、选择题1.在圆的面积公式S =πr 2中,常量是(B )A .SB .πC .rD .S 和r2.小王计划用100元钱买乒乓球,所购买乒乓球的个数W(单位:个)与单价n(单位:元/个)的关系式W =100n 中(A )A .100是常量,W ,n 是变量B .100,W 是常量,n 是变量C .100,n 是常量,W 是变量D .无法确定3.小邢到单位附近的加油站加油,如图是小邢所用的加油机上的数据显示牌,则数据中的变量是(D )A .金额B .数量C .单价D .金额和数量4.一个长方形的面积是10 cm 2,其长是a cm 2,宽是b cm 2,下列判断错误的是(B )A .10是常量B .10是变量C .b 是变量D .a 是变量5.下列关系式中,y 是x 的函数的是(B )A .2x =y 2B .y =3x -1C .||y =23xD .y 2=3x -56.下列变量间的关系不是函数关系的是(C )A.长方形的宽一定,其长与面积B.正方形的周长与面积C.等腰三角形的底边长与面积D.圆的周长与半径7.已知两个变量之间的函数关系式为y=-x+2,则当x=-1时,对应的y的值为(B)A.1 B.3C.-1 D.-38.在函数y=1x+3+4-x中,自变量x的取值范围是(D)A.x<4 B.x≥4且x≠-3C.x>4 D.x≤4且x≠-39.若等腰三角形的周长为60 cm,底边长为x cm,一腰长为y cm,则y关于x的函数解析式及自变量x的取值范围是(D)A.y=60-2x(0<x<60)B.y=60-2x(0<x<30)C.y=12(60-x)(0<x<60)D.y=12(60-x)(0<x<30)10.根据如图所示的程序计算函数y的值,若输入x的值是7,则输出y的值是-2,若输入x的值是-8,则输出y的值是(C)A .5B .10C .19D .2111.函数y =2x -4的自变量x 的取值范围是(D )A .x <2B .x ≤2C .x >2D .x ≥2二、填空题12.如图,圆锥的底面半径r =2 cm ,当圆锥的高h 由小到大变化时,圆锥的体积V 也随之发生了变化,在这个变化过程中,变量是V ,h(圆锥体积公式:V =13πr 2h).13.某地某一时刻的地面温度为10 ℃,高度每增加1 km ,温度下降4 ℃,则有下列说法:①10 ℃是常量;②高度是变量;③温度是变量;④该地某一高度这一时刻的温度y(℃)与高度x(km )的关系式为y =10-4x.其中正确的是(D )A .①②③B .②③④C .①③④D .①②③④14.n 边形的内角和α°的公式是α=(n -2)·180,其中变量是n ,α,常量是2,180.15.用黑、白两种颜色的正六边形地板砖镶嵌成若干图案(如图),则第n 个图案中白色地板砖的总块数N(块)与n 之间的关系式是N =4n +2,其中常量是4,2,变量是N ,n .16.若92号汽油的售价为6.8元/升,则付款金额y(元)随加油数量x(升)的变化而变化,其中,x是自变量,y是x的函数,其解析式为y=6.8x.17.函数y=1x-6中,自变量x的取值范围是x≠6.18.某公交车每月的利润y(元)与乘客人数x(人)之间的函数关系式为y=2.5x -6 000,该公交车为使每月不亏损,则每月乘客量x应满足的条件是x≥2__400且x为整数.19.对于函数y=6xx+3,当y=2时,x=32.20.若物体运动的路程s(米)与时间t(秒)的函数关系式为s=3t2+2t+1,则当t=4秒时,该物体运动的路程为57米.21.函数y=x+2x中,自变量x的取值范围是x≥-2且x≠0.22.函数y=x-2+(x-3)0中,自变量x的取值范围是x≥2且x≠3.三、解答题23.写出下列问题中的变量和常量:(1)购买单价为5元的钢笔n支,共花去y元;(2)全班50名同学,有a名男同学,b名女同学;(3)汽车以60 km/h的速度行驶了t h,所走过的路程为s km.解:(1)y,n是变量,5是常量.(2)a,b是变量,50是常量.(3)s,t是变量,60是常量.24.如图,已知m∥n,直线m,n之间的距离是3,△ABC的顶点A在直线m上,边BC在直线n上,设BC边的长为x,△ABC的面积为S,请用含x的式子表示S,并指出式子中的常量与变量.解:S=12×3x=32x.常量:3 2;变量:S,x.25.已知水池中有800立方米的水,每小时抽水50立方米.(1)写出剩余水的体积Q(立方米)与时间t(小时)之间的函数解析式;(2)写出自变量t的取值范围;(3)10小时后,池中还有多少水?解:(1)Q=800-50t.(2)令y=0,则0=800-50t,解得t=16.∴0≤t≤16.(3)当t=10时,Q=800-50×10=300.答:10小时后,池中还有300立方米水.。

八年级上册数学函数概念练习题

八年级上册数学函数概念练习题

课时14 平面直角坐标系与函数的概念【课前热身】1.函数3-=x y 的自变量x 的取值范围是 .2.若点P(2,k-1)在第一象限,则k 的取值范围是 .3.点A(-2,1)关于y 轴对称的点的坐标为___________;关于原点对称的点的坐标为________.4. 如图,葡萄熟了,从葡萄架上落下来,下面图象可以大致反映葡萄下落过程中的速度v 随时间变化情况是( )5.在平面直角坐标系中,平行四边形ABCD 顶点A 、B 、D 的坐标分别是(0,0),(5,0)(2,3),则C 点的坐标是( )A .(3,7) B.(5,3)C.(7,3)D.(8,2)【考点链接】1. 坐标平面内的点与______________一一对应.2. 根据点所在位置填表(图) 点的位置 横坐标符号纵坐标符号 第一象限第二象限第三象限第四象限3. x 轴上的点______坐标为0, y 轴上的点______坐标为0.4. P(x,y)关于x 轴对称的点坐标为__________,关于y 轴对称的点坐标为________,关于原点对称的点坐标为___________.5. 描点法画函数图象的一般步骤是__________、__________、__________.6. 函数的三种表示方法分别是__________、__________、__________.7. x y =有意义,则自变量x 的取值范围是 . xy 1=有意义,则自变量x 的取值范围是 .【典例精析】例1⑴在平面直角坐标系中,点A、B、C的坐标分别为A(-•2,1),B(-3,-1),C(1,-1).若四边形ABCD为平行四边形,那么点D的坐标是_______.(2)将点A(3,1)绕原点O顺时针旋转90°到点B,则点B•的坐标是_____.例2 ⑴一天,亮亮发烧了,早晨他烧得厉害,吃过药后感觉好多了, 中午时亮亮的体温基本正常,但是下午他的体温又开始上升,直到半夜亮亮才感觉身上不那么烫了. 图中能基本上反映出亮亮这一天(0时~24时)体温的变化情况的是( )⑵汽车由长沙驶往相距400km 的广州. 如果汽车的平均速度是100km/h,那么汽车距广州的路程s(km)与行驶时间t(h)的函数关系用图象表示应为( )例3 一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售, 售出土豆千克数与他手中持有的钱线(含备用零钱)的关系如图所示,结合图象回答下列问题:(1) 农民自带的零钱是多少?(2) 降价前他每千克土豆出售的价格是多少?(3) 降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱) 是26元,问他一共带了多少千克土豆.【中考演练】1.函数11+=x y 中,自变量x 的取值范围是 .2.已知点P 在第二象限,且到x 轴的距离是2,到y 轴的距离是3,则点P 的坐标为 .3.将点(12),向左平移1个单位,再向下平移2个单位后得到对应点的坐标是 .4.点A (—3,2)关于y 轴对称的点的坐标是( )A.(-3,-2)B.(3,2)C.(3,-2)D.(2,-3)5.若点P (1-m ,m )在第二象限,则下列关系式正确的是( )A. 0<m<1B. m<0C. m>0D. m>l9.小强在劳动技术课中要制作一个周长为80cm 的等腰三角形,请你写出底边长y(cm)与一腰长为x(cm)的函数关系式,并求出自变量x 的取值范围.。

初中数学同步练习八年级上册答案2023

初中数学同步练习八年级上册答案2023

初中数学同步练习八年级上册答案2023初中八年级上册数学同步练习答案§18.1变量与函数(一)一、选择题. 1.A 2.B二、填空题. 1. 2.5,x、y 2. 3. 三、解答题. 1. 2. §18.1变量与函数(二)一、选择题. 1.A 2.D二、填空题. 1. 2. 5 3. ,三、解答题. 1. ,的整数 2. (1) ,(2)810元§18.2函数的图象(一)一、选择题. 1.B 2.A二、填空题. 1. x ,三,四 2. (-1,-2) 3. -7,4三、解答题. 1. 作图(略),点A在y轴上,点B在第一象限,点C在第四象限,点D在第三象限; 2.(1)A(-3,2),B(0,-1),C(2,1) (2)6§18.2函数的图象(二)一、选择题. 1.A 2.B二、填空题. 1. 5.99 2. 20 3. (1)100 (2)甲 (3) ,三、解答题. 1.(1)40 (2)8,5 (3) , 2.(1)时间与距离 (2)10千米,30千米 (3)10点半到11点或12点到13点§18.2函数的图象(三)一、选择题. 1.C 2.D二、填空题. 1. 3 2. 12分钟 3.时间t(h)6121824体温(℃)39363836三、解答题1. (1)体温与时间(2):2.(1) , (2)作图略初中八年级上册数学同步练习册答案§18.4反比例函数(二)一、选择题. 1.D 2.D二、填空题. 1. 第一、三;减小 2. 二,第四 3. 2三、解答题.1. (1)-2 (2) 2. (1) ,§18.5实践与探索(一)一、选择题. 1.A 2.B二、填空题. 1. 2. (1,-1) 3. (4,3)三、解答题. 1. 2.(1)①.甲,甲,2 ②.3小时和5.5小时(2)甲在4到7小时内,10 个§18.5实践与探索(二)一、选择题. 1.A 2.B二、填空题. 1. 2. 3. 三、解答题. 1.(1) (2) (作图略)2. (1)1000(2) (3)40§18.5实践与探索(三)一、选择题. 1.B 2.C二、填空题. 1. 7 , 2. 3. 三、解答题. 1. (1) (2) 27cm第19章全等三角形§19.1命题与定理(一)一、选择题. 1.C 2.A二、填空题. 1.题设,结论 2.如果两条直线相交,只有一个交点,真 3.如:平行四边形的对边相等三、解答题. 1.(1)如果两条直线平行,那么内错角相等 (2)如果一条中线是直角三角形斜边上的中线,那么它等于斜边的一半;2.(1)真命题;(2)假命题,如:,但 ;3.正确,已知:,求证:b∥c ,证明(略)§19.2三角形全等的判定(一)一、选择题. 1. A 2.A二、填空题. 1.(1)AB和DE;AC和DC;BC和EC (2)∠A和∠D;∠B和∠E;∠ACB和∠DCE; 2.2 3. 三、解答题. 1.(1)△ABP≌△ACQ, AP和AQ, AB和AC, BP和QC,∠ABP和∠ACQ, ∠BAP和∠CAQ,∠APB和∠AQC, (2)90°人教版初二年级数学上册同步练习题答案1.答案:B2.解析:∠α=30°+45°=75°.答案:D3.解析:延长线段CD到M,根据对顶角相等可知∠CDF=∠EDM.又因为AB∥CD,所以根据两直线平行,同位角相等,可知∠EDM=∠EAB=45°,所以∠CDF=45°.答案:B4. 解析:∵CD∥AB,∴∠EAB=∠2=80°.∵∠ 1=∠E+∠EAB=120°,∴∠E=40°,故选A.答案:A5.答案:B6.答案:D7. 答案:D8. 答案:D9.解析:根据四个选项的描述,画图如下,从而直接由图确定答案.答案:①②④10.答案:如果两个角是同一个角或相等角的余角,那么这两个角相等11.答案:40°12.答案:112.5°13.解:(1)如果一个四边形是正方形,那么它的四个角都是直角,是真命题;(2)如果两个三角形有两组角对应相等,那么这两个三角形相似,是真命题;(3)如果两条直线不相交,那么这两条直线互相平行,是假命题,如图中长方体的棱a,b所在的直线既不相交,也不平行.14. 解:平行.理由如下:∵∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∴∠DBC=∠ECB.∵∠DBF=∠F,∴∠ECB=∠F.∴EC与DF平行.15.证明:∵CE平分∠ACD(已知),∴∠1=∠2(角平分线的定义).∵∠BAC ∠1(三角形的一个外角大于任何一个和它不相邻的内角),∴∠BAC ∠2(等量代换).∵∠2 ∠B(三角形的一个外角大于任何一个和它不相邻的内角),∴∠BAC∠B(不等式的性质).16.证明:如图④,设AD与BE交于O点,CE与AD交于P点,则有∠EOP=∠B+∠D,∠OPE=∠A+∠C(三角形的外角等于和它不相邻的两个内角的和).∵∠EOP+∠OPE+∠E=180°(三角形的内角和为180°),∴∠A+∠B+∠C+∠D+∠E=180°.如果点B移动到AC上(如图⑤)或AC的另一侧(如图⑥)时,∠EOP,∠OPE仍然分别是△BOD,△APC的外角,所以可与图④类似地证明,结论仍然成立.17.解:(1)∠3=∠1+∠2;证明:证法一:过点P作CP∥l1(点C在点P的左边),如图①,则有∠1=∠MPC .图①∵CP∥l1,l1∥l2,∴CP∥l2,∴∠2=∠NPC.∴∠3=∠MPC+∠NPC=∠1+∠2,即∠3=∠1+∠2.证法二:延长NP交l1于点D,如图②.图②∵l1∥l2,∴∠2=∠MDP.又∵∠3=∠1+∠MDP,∴∠3=∠1+∠2.(2)当点P在直线l1上方时,有∠3=∠2-∠1;当点P在直线l2下方时,有∠3=∠1-∠2.初中数学同步练习八年级上册答案。

八年级数学上册《第十九章 一次函数》单元测试卷附带答案-人教版

八年级数学上册《第十九章 一次函数》单元测试卷附带答案-人教版

八年级数学上册《第十九章 一次函数》单元测试卷附带答案-人教版一、单选题1.对于函数y=x+1,自变量x 取5时,对应的函数值为( )A .3B .36C .16D .62.下列各图像中,y 不是x 的函数的是( ).A .B .C .D .3.已知正比例函数3y x =的图象经过点()1m ,,则m 的值为( ) A .13B .3C .13-D .3-4.若一次函数的3y x b =-+图象上有两点()12A y -,和()26B y ,,则下列1y ,2y 大小关系正确的是( ). A .12y y >B .12y y <C .12y y ≥D .12y y ≤5.如图,直线()0y kx b k =+≠经过点()32A -,,则关于x 的不等式2kx b +<解集为( )A .3x >-B .3x <-C .2x >D .2x <6.一个圆形花坛,面积S 与半径r 的函数关系式2S πr =中关于常量和变量的表述正确的是( )A .常量是2,变量是S 、π、rB .常量是2、π,变量是S 、rC .常量是2,变量是S 、πD .常量是π,变量是S 、r7.点在直线23y x =-+上的是( )A .()23,B .()21-,C .()30,D .()03-,8.根据图象,可得关于x 的不等式k 1x <k 2x+b 的解集是( )A .x <2B .x >2C .x <3D .x >39.同一平面直角坐标系中,一次函数1y k x b =+的图象与2y k x =的图象如图所示,则关于x 的方程12k x b k x +=的解为( )A .0x =B .1x =-C .2x =-D .以上都不对10.清明假期第一天天气晴朗,小明和爸爸去爬山.小明和爸爸同时从山脚出发,由于爸爸有爬山经验,匀速爬到山顶.小明刚开始的速度比爸爸快,累了之后减速继续爬山,和爸爸相遇后0.5h 才加速追赶爸爸,最终爸爸用2h 爬到了山顶,小明比爸爸晚了6min 到达.他们出发的时间x (单位:h )与爬山的路程y (单位:km )的函数图象如图所示,则下列说法错误的是( )A .爸爸爬山的速度为3km/hB .1.5h 时爸爸与小明的距离为0.5kmC .山脚到山顶的总路程为6kmD .小明加速追赶爸爸时的速度为3km/h二、填空题11.函数232x y x -=+中,自变量x 的取值范围是 . 12.正比例函数(2)y m x =-的图象从左到右逐渐下降,则m 的取值范围是 .13.将直线21y x =--向左平移a (0a >)个单位长度后,经过点()15-,,则a 的值为 . 14.如图,点A ,B ,C 在一次函数2y x m =-+的图象上,它们的横坐标依次为-1,0.5,2.分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是 .三、解答题15.一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y (单位:升)与时间x (单位:分钟)之间的部分关系如图象所示.求从关闭进水管起需要多少分钟该容器内的水恰好放完.16.正比例函数 y kx = 的图象经过点 ()1,3A - , (),1B a a + 求a 的值.17.已知一次函数的图象经过点A (﹣4,9)与点B (6,3),求这个一次函数的解析式.18.由于灯管老化,现某学校要购进A 、B 两种节能灯管320只,A 、B 两种灯管的单价分别为25元和30元,现要求B 种灯管的数量不少于A 种灯管的3倍,那么购买A 种灯管多少只时,可使所付金额最少?最少为多少元?四、综合题19.如图,长为32米,宽为20米的长方形地面上,修筑宽度均为m 米的两条互相垂直的小路(图中阴影部分),其余部分作耕地,如果将两条小路铺上地砖,选用地砖的价格是60元/米2.(1)写出买地砖需要的钱数y (元)与m (米)的函数关系式 . (2)计算当m =3时,地砖的费用.20.在平面直角坐标系中,一个正比例函数的图象经过点(12),,把此正比函数的图象向上平移5个单位,得到一次函数:y kx b =+ (1)求一次函数的解析式.(2)直线(0)y kx b k =+≠与x 轴交于点A ,求A 点的坐标.(3)点(1)B n -,是该直线上一点,点C 在x 轴上,当ABC 的面积为154时,请直接写出C 点的坐标.21.如图,一次函数()10y kx b k =+≠的图象分别与x 轴和y 轴相交于C 、()03A ,两点,且与正比例函数22y x =-的图象交于点()1B m -,.(1)求一次函数的解析式;(2)当12y y >时,直接写出自变量x 的取值范围;22.某养殖场计划今年养殖无公害标准化龙虾和鲤鱼,由于受养殖水面的制约,这两个品种的苗种的总投放量只有50吨.根据经验测算,这两个品种的种苗每投放一吨的先期投资、养殖期间的投资以及产值如下表:(单位: 千元/吨)品种 先期投资养殖期间投资产值 鲤鱼 9 3 30 龙虾41020苗的投放量为x 吨. (1)求x 的取值范围;(2)设这两个品种产出后的总产值为y(千元),试写出y 与x 之间的函数关系式,并求出当x 等于多少时,y 有最大值?最大值是多少?参考答案与解析1.【答案】D【解析】【解答】解:当x=5时,y=5+1=6故答案为:D .【分析】将x=5代入y=x+1,求出y 的值即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学上册:变量与函数练习(含答案)一、选择题:1.下列关于圆的面积S与半径R之间的函数关系式S=πR2中,有关常量和变量的说法正确的是()A.S,R2是变量,π是常量 B.S,R是变量,2是常量C.S,R是变量,π是常量 D.S,R是变量,π和2是常量2.据调查,•北京石景山苹果园地铁站自行车存车处在某星期日的存车量为4000次,其中电动车存车费是每辆一次0。

3元,普通车存车费是每辆一次0。

2元.•若普通车存车数为x 辆次,存车费总收入为y元,则y关于x的函数关系式是()A.y=0。

1x+800(0≤x≤4000) B.y=0。

1x+1200(0≤x≤4000)C.y=-0。

1x+800(0≤x≤4000) D.y=-0。

1x+1200(0≤x≤4000)3.某同学在测量体温时意识到体温计的读数与水银柱的长度之间可能存在着某种函数关系,就此他与同学们选择了一种类型的体温计,经历了收集数据、分析数据、得出结论的探索过程.他们收集的数据如下:请你根据上述数据分析判断,水银柱的长度L(mm)与体温计的读数t℃(35≤t•≤42)之间存在的函数关系式为()A.L=110t-66 B.L=11370t C.L=6t-3072D.L=39552t二、填空题4.小明带10元钱去文具商店买日记本,已知每本日记本定价2元,•则小明剩余的钱y(元)与所买日记本的本数x(元)•之间的关系可表示为y=•10-•2x.•在这个问题中______是变量,_______是常量.5.在函数y=12x-中,自变量x的取值范围是______.6.某种活期储蓄的月利率是0。

16%,存入10000元本金,按国家规定,•取款时应缴纳利息部分20%的利息税,则这种活期储蓄扣除利息税后,实得本息和y(元)与所存月数x之间的函数关系式为________.三、解答题7.求下列函数中自变量x的取值范围;(1)y=2x2+1;(2)y=13x.8.写出下列各问题中的函数关系式(不需标明自变量的取值范围):(1)小明绕着一圈为400m的跑道跑步,求小明跑的路程s(m)与圈数n•之间的函数关系式;(2)已知等腰三角形的周长为36,腰长是x,底边上的高是6,若把面积y•看作腰长x的函数,试写出它们的函数关系式.四、思考题9.某旅客带了30公斤的行李乘飞机,按规定,旅客最多可免费携带20公斤的行李,超重部分每公斤按飞机票价的1。

5%购买行李票,现该旅客购买了120元的行李费,求他的飞机票价格.B卷:提高题一、七彩题1.(一题多解题)按如图所示堆放钢管.(1)填表:(2)当堆到x层时,求钢管总数y关于层数x的函数关系式.二、知识交叉题2.(科外交叉题)一个小球由静止开始在一个斜坡上向下滚动,•其速度每秒增加2米,到达坡底时,小球速度达到40米/秒.(1)求小球速度v(米/秒)与时间t(秒)之间的函数关系式;(2)求3。

5秒时小球的速度;(3)求几秒时小球的速度为16米/秒.三、实际应用题3.山东省是水资源比较贫乏的省份之一,为了加强公民的节水和用水意识,合理利用水资源,各地采用价格调控等手段达到节约用水的目的.某市规定用水收费标准如下:每户每月的用水不超过6立方米时,水费按每立方米a元收费;超过6立方米时,•不超过的部分每立方米仍按a元收费,超过的部分每立方米按c元收费,该市某户今年3,4月份的用水量和水费如下表所示:用水量(立方米)水费(元)月份3 5 7。

54 9 27设某户该月用水量为x(立方米),应交水费为y(元).(1)求a,c的值,并写出用水不超过6立方米和超过6立方米时,y与x之间的函数关系式;(2)若该户5月份的用水量为8立方米,求该户5月份的水费是多少元?四、经典中考题4.( ,齐齐哈尔,4分),函数中,自变量x的取值范围是_______.C卷:课标新型题一、探究题1.(结论探究题)某商场计划投入一笔资金采购一批商品并转手出售,•经市场调查发现,如果月初出售,可获利15%,并可用本和利再投资其他商品,•到月末又可获得10%;如果月末出售可获利30%,但要付出仓储费用700元.请问根据商场的资金状况,•如何购销获利较多?二、说理题2.某移动通讯公司开设两种业务,“全球通”:先缴50元月租费,然后每通话1跳次,再付0.4元;“神州行”:不缴月租费,每通话1跳次,付话费0。

6元(•本题的通话均指市内通话).若设一个月内通话x跳次,两种方式的费用分别为y1和y2元.(跳次:•1min为1跳次,不足1min按1跳次计算,如3。

2min为4跳次)(1)分别写出y1,y2与x之间的函数关系式;(2)一个月内通话多少跳次时,两种方式的费用相同?(3)某人估计一个月内通话300跳次,应选择哪种合算?参考答案A卷一、1.C 点拨:解题的关键是对π和R2中的指数如何处理.判断变量和常量的根据就是看它们是否可改变,显然π是不改变的,是常量,圆的面积是随半径R的变化而变化的,故S和R 为变量,当R变化时R2也变化,R2中的指数2与变量和常量无关.2.D 点拨:存车费总收入y=电动车存车总费用+•普通车存车总费用=0。

3×(4000-x)+0。

2x=-0。

1x+1200,其中0≤x≤4000.故应选D.3.C 点拨:由图表可知L随t的变化而变化,通过变化规律,可以得到L与t之间的关系式为L=56。

5+6(t-35),即L=6t-3072(35≤t≤42).二、4.x,y;10,2 点拨:因为所买日记本数x是可以变化的,小明余下的钱y也是变化的,故y与x是变量,而10和2是保持不变的,故它们是常量.5.x≠2 点拨:分式12x-有意义,须令x-2≠2,得x≠2.6.y=10000+12。

8x(x≥0且x为整数)点拨:本息和=本金+利润,本金=10000元,•利息=本金×月利率×月数×(1-20%)=10000×0。

16%·x·0。

8=12。

8x,所以y=10000+12。

8x.三、7.解:(1)自变量x的取值范围是全体实数;(2)因为3-x≠0,所以x≠3,•即自变量x的取值范围是x≠3.8.解:(1)s=400n.(2)y=-6x+108.点拨:(1)总路程=一圈的长度×圈数;(2)由题意可知,等腰三角形的底边长为(•36-2x),所以y=12×(36-2x)×6,即y=-6x+108.四、9.解法一:(从方程的角度解)设他的飞机票价格为x元,根据题意,得(30-20)·x·1。

5%=120,所以x=800.解法二:(从函数的角度解)设飞机票价格为k元,则行李票的价格y(元)与所带行李的公斤数x(公斤,x>20)之间的函数关系为y=(x-20)·k·1。

5%,已知x=30时,y=120,•代入关系式,得120=(30-20)·k·1。

5%,解得k=800.答:略.点拨:解法一和解法二实质上是一致的,只不过考虑问题的角度不同,•解法一是解法二的特殊情况.B卷一、1.解法一:(1)当x=1时,y=1;当x=2时,y=1+2=3;当x=3时,y=1+2+3=6;当x=•4时,y=1+2+3+4=10;…;当x=x时,y=1+2+3+4+…+x=12x(x+1).(2)y=12x(x+1)=12x2+x12(x≥1且为整数).解法二:如图所示,将原题图倒置过来与原图一起拼成平行四边形,利用其面积计算公式可得到结论y=12x(x+1),即y=12x2+12x.(1)题表中依次填为:1,3,6,10,12x2+12x.(2)y=12x·(x+1)=12x2+12x.(x≥1且为整数)点拨:仔细分析总数与层数之间的关系是解决这类图形问题常用方法之一.二、2.解:(1)v=2t;(2)当t=3。

5时,v=2×3。

5=7,即3。

5秒时小球的速度为7米/秒;(3)当v=16时,16=2t,t=8,即8秒时小球的速度为16米/秒.点拨:•本题是函数关系式与物理学科的知识交叉题,也就是函数关系式在物理学科中的实际应用.三、3.解:(1)当x≤6时,y=ax;当x>6时,y=6a+c(x-6).将x=5,y=7。

5代入y=ax,得7。

5=5a,将x=9,y=27代入y=6a+c(x-6),得27=6a+3c.解得a=1。

5,c=6.所以y=1。

5x (x≤6),y=6x-27(x>6);(2)将x=8代入y=6x-27,得y=21,所以5月份的水费是21元.四、4.x≤3且x≠1C 卷一、1.解:设商场投资x 元,在月初出售可获利y 1元,到月末出售出获利y 2元.•根据题意,得y 1=15%x+10%(1+15%)x=0。

265x,y 2=30%x-700=0。

3x-700.(1)当y 1=y 2时,0。

265x=0。

3x-700,所以x=20000;(2)当y 1<y 2时,0。

265x<0。

3x-700,所以x>20000;(3)当y 1>y 2时,0。

265x>0。

3x-700,所以x<20000.所以当商场投资20000元时,两种销售方法获利相同;当商场投资超过20000元时,第二种销售方式获利较多;当商场投资不足20000元时,•第一种销售方式获利较多. 点拨:要求哪种销售方式获利较多,•关键是比较在自变量的相同取值范围内,两个函数值的大小,除上述方法外,•也可以采用作差的方法解决.二、2.解:(1)y 1=50+0。

4x,y 2=0。

6x ;(2)两种方式的费用相同时,y 1=y 2,即50+0。

4x=0。

6x,解得x=250.即一个月内通话250跳次,两种方式的费用相同;(3)某人一个月估计通话300跳次,则全球通的费用为:y 1=50+0。

4×300=170(元),神州行的费用为:y 2=0。

6×300=180(元),因为y 1<y 2,所以选择“全球通”合算. 点拨:“话费问题”是日常生活中常见的问题,电话费与通话时间也是一种函数关系,要用函数的思想来加以说理解决.本题体现了分类思想,分两种情况来分析问题是解决此题的关键.。

相关文档
最新文档