众数中位数平均数与频率分布直方图的关系
_众数,中位数,平均数与频率分布直方图
谢谢观看! 2020
月均用水量
/t
0.5 1 1.5 2 2.5 3 3.5 4 4.5
三 三种数字特征的优缺点
1、众数体现了样本数据的最大集中 点,但它对其它数据信息的忽视使得无 法客观地反映总体特征.如上例中众数是 2.25t,它告诉我们,月均用水量为2.25t的 居民数比月均用水量为其它数值的居民 数多,但它并没有告诉我们多多少.
二 、 众数、中位数、平均数 与频率分布直方图的关系
1、众数在样本数据的频率分布直方图 中,就是最高矩形的中点的横坐标。
例如,在上一节调查的100位居民的月 均用水量的问题中,从这些样本数据的频 率分布直方图可以看出,月均用水量的众 数是2.25t.如图所示:
频率分布直方图如下:
频率 组距
众数(Байду номын сангаас高的矩形的中点)
2200 1500
1100
2000 100 6900
(1)指出这个问题中周工资的众数、中
位数、平均数 (2)这个问题中,工资的平均数能客观
地反映该厂的工资水平吗?为什么?
分析:众数为200,中位数为220,
平均数为300。
因平均数为300,由表格中所列 出的数据可见,只有经理在平均数以 上,其余的人都在平均数以下,故用 平均数不能客观真实地反映该工厂的 工资水平。
3、平均数是频率分布直方图的“重 心”.
是直方图的平衡点. n 个样本数据的平均 数的估计值等于频率分布直方图中每个 小矩形的面积乘以小矩形底边中点的横 坐标之和。 给出.下图显示了居民月均用水量的平 均数: x=2.02
频率分布直方图如下:
频率 组距
平均数
0.50
0.40
0.30
(最全)高中数学概率统计知识点总结
概率与统计一、普通的众数、平均数、中位数及方差1、 众数 :一组数据中,出现次数最多的数。
2、平均数 : ①、常规平均数:xx 1x 2x n②、加权平均数: xx 1 1 x 2 2x nnn12n3、中位数: 从大到小或者从小到大排列,最中间或最中间两个数的平均数 。
4、方差: s 21[( x 1 x) 2 ( x 2 x )2( x nx )2 ]n二、频率直方分布图下的频率1、频率 =小长方形面积: f S y 距 d ;频率 =频数 / 总数2、频率之和 : f 1f 2f n 1 ;同时 S 1 S 2S n1 ;三、频率直方分布图下的众数、平均数、中位数及方差1、众数: 最高小矩形底边的中点。
2、平均数: x x 1 f 1 x 2 f 2 x 3 f 3 x n f nx x 1 S 1 x 2 S 2x 3 S 3x n S n3、中位数: 从左到右或者从右到左累加,面积等于0.5 时 x 的值。
4、方差: s 2( x 1x )2 f 1 ( x 2 x) 2 f 2( x n x) 2 f n四、线性回归直线方程 : ? ? ?bxy an(x ix )( y iy )nx i y i nxy??其中: b i 1i 1,a?ybxnn( x i x )2x i 2nx 2i 1i11、线性回归直线方程必过样本中心( x , y ) ;??0 : 负相关。
2、 b 0 : 正相关; b?3、线性回归直线方程: y? ?bx a?的斜率 b 中,两个公式中分子、分母对应也相等;中间可以推导得到。
五、回归分析?i1、残差 : ?iy i?i 越小越好;ey (残差 =真实值—预报值)。
分析:e2、残差平方和 :n? )2(y i,i 1y in( y iy )2( y 1 y )2 ( yy )2( yy )2分析:①意义:越小越好;②计算:?i?12?2n?ni 1n ?i )23、拟合度(相关指数) : R 21( yy ,分析:① . R 20,1②. 越大拟合度越高;i 1的常数;ny)2i ( y i1nn4、相关系数 : ri ( x i x )( y i y)x i y i nx y1i 1nx)2 ny) 2 nx) 2 ny )2i 1( x i i ( y i( x i ( y i1i 1i 1分析:① . r[ 1,1]的常数;② . r 0: 正相关; r0: 负相关③. r[0,0.25] ;相关性很弱;r(0.25,0.75) ;相关性一般;r [0.75,1] ;相关性很强;六、独立性检验 x 1 x 21、2×2 列联表 :合计2、独立性检验公式 bc)2y 1 a b a b ①. k 2(an( add )y 2cdc db)(c d )(a c)(b合计a cb dn②.犯错误上界 P 对照表3、独立性检验步骤①.计算观察值n(ad bc) 2k : k;(a b)(c d )(a c)(b d )②.查找临界值 k0:由犯错误概率P,根据上表查找临界值k0;③.下结论: k k0:即犯错误概率不超过P 的前提下认为:, 有 1-P 以上的把握认为:;k k0:即犯错误概率超过P 的前提认为:,没有 1-P 以上的把握认为:;【经典例题】题型 1 与茎叶图的应用例 1( 2014 全国)某市为考核甲、乙两部门的工作情况,学科网随机访问了50 位市民。
用频率分布直方图估计三个特征数
2.02这个中位数的估计值,与样本的中 位数值2.0不一样,你能解释其中的原因吗?
2.02这个中位数的估计值,与样本的中 位数值2.0不一样,这是因为样本数据的 频率分布直方图,只是直观地表明分布 的形状,但是从直方图本身得不出原始 的数据内容,所以由频率分布直方图得 到的中位数估计值往往与样本的实际 中位数值不一致.
1 ( x1 x 2 x n ) n
数,即 x=
频率 组距
众数在样本数据的频率分布直方图中 就是最高矩形的中点的横坐标。 例如下面是100位居民的月均用水量, 从这些样本数据的频率分布直方图可以 看出,月均用水量的众数是 2.25t
0.5 0.4 0.3 0.2 0.1
O
0.5
1
1.5
3、平均数是频率分布直方图的“重心”.是直方图的 频率 组距 平衡点n 个样本数据的平均数由公式:
1 X= ( x1 x 2 x n ) n
0.5 0.4 0.3
0.2
0.1 O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月平均用水量(t)
上图显示了居民月均用水量的平均数: x=1.973
用样本的数字特征估计总 体的数字特征
一 众数、中位数、平均数的概念
众数:在一组数据中,出现次数最多的 数据叫做这组数据的众数.
中位数:将一组数据按大小依次排列,把处 在最中间位置的一个数据(或最中间两个数 据的平均数)叫做这组数据的中位数.
平均数: 一组数据 x1 , x2 xn 的算术平均
三、 三种数字特征的优缺点 1、众数体现了样本数据的最大集中点,但它对其它数据信息的 忽视使得无法客观地反映总体特征.如上例中众数是2.25t,它告诉 我们,月均用水量为2.25t的居民数比月均用水量为其它数值的居民 数多,但它并没有告诉我们多多少. 2、中位数是样本数据所占频率的等分线,它不受少数几个极 端值的影响,这在某些情况下是优点,但它对极端值的不敏感有 时也会成为缺点。如上例中假设有某一用户月均用水量为10t, 那么它所占频率为0.01,几乎不影响中位数,但显然这一极端值是 不能忽视的。 3、由于平均数与每一个样本的数据有关,所以任何一个样本数 据的改变都会引起平均数的改变,这是众数、中位数都不具有的 性质。也正因如此 ,与众数、中位数比较起来,平均数可以反映 出更多的关于样本数据全体的信息,但平均数受数据中的极端值 的影响较大,使平均数在估计时可靠性降低。
高中数学必修二统计概率知识点总结
必修第二册第九章 统计知识点总结知识点一:简单随机抽样1. 全面调查和抽样调查2.简单随机抽样的概念放回简单随机抽样不放回简单随机抽样一般地,设一个总体含有N(N 为正整数)个个体,从中逐个抽取n (1≤n<N)个个体作为样本如果抽取是放回的,且每次抽取时总体内的各个个体被抽到的概率都相等,我们把这样的抽样方法叫做放回简单随机抽样如果抽取是不放回的,且每次抽取时总体内未进入样本的各个个体被抽到的概率都相等,我们把这样的抽样方法叫做不放回简单随机抽样放回简单随机抽样和不放回简单随机抽样统称为简单随机抽样.通过简单随机抽样获得的样本称为简单随机样本3.抽签法先把总体中的个体编号,然后把所有编号写在外观、质地等无差别的小纸片(也可以是卡片、小球等)上作为号签,并将这些小纸片放在一个不透明的盒里,充分搅拌.最后从盒中不放回地逐个抽取号签,使与号签上的编号对应的个体进入样本,直到抽足样本所需要的个体数.调查方式全面调查(普查)抽样调查定义对每一个调查对象都进行调查的方法,称为全面调查,又称普查根据一定目的,从总体中抽取一部分个体进行调查,并以此为依据对总体的情况作出估计和推断的调查方法,称为 抽样调查相关概念总体:在一个调查中,我们把调查对象的全体称为总体.个体:组成总体的每一个调查对象称为个体样本:把从总体中抽取的那部分个体 称为样本.样本量:样本中包含的个体数称为 样本量4.随机数法(1)定义:先把总体中的个体编号,用随机数工具产生已编号范围内的整数随机数,把产生的随机数作为抽中的编号,使与编号对应的个体进入样本,重复上述过程,直到抽足样本所需要的个体数.(2)产生随机数的方法:(i)用随机试验生成随机数;(ii)用信息技术生成随机数.5.总体均值和样本均值(1)总体均值:一般地,总体中有N个个体,它们的变量值分别为Y1,Y2,…,Y N,则称Y=Y1+Y2+⋯+Y NN =1N∑i=1NY i为总体均值,又称总体平均数.(2)总体均值加权平均数的形式:如果总体的N个变量值中,不同的值共有k(k≤N)个,不妨记为Y1,Y2,…,Y k,其中Y i出现的频数f i(i=1,2,…,k),则总体均值还可以写成加权平均数的形式Y=1N ∑i=1kf i Y i.(3)如果从总体中抽取一个容量为n的样本,它们的变量值分别为y1,y2,…,y n,则称y=y1+y2+⋯+y nn =1n∑i=1ny i为样本均值,又称样本平均数.6.分层随机抽样的相关概念(1)分层随机抽样的定义:一般地,按一个或多个变量把总体划分成若干个子总体,每个个体属于且仅属于一个子总体,在每个子总体中独立地进行简单随机抽样,再把所有子总体中抽取的样本合在一起作为总样本,这样的抽样方法称为分层随机抽样,每一个子总体称为层.(2)比例分配:在分层随机抽样中,如果每层样本量都与层的大小成比例,那么称这种样本量的分配方式为比例分配.(3)进行分层随机抽样的相关计算时,常用到的关系①样本容量n总体容量N =该层抽取的个体数该层的个体数;②总体中某两层的个体数之比等于样本中这两层抽取的个体数之比;③样本的平均数和各层的样本平均数的关系:w=mm+n x+nm+ny=MM+Nx+NM+Ny.1.画频率分布直方图的步骤(1)求极差:极差为一组数据中最大值与最小值的差;(2)决定组距与组数:当样本容量不超过100时,常分成5-12组,为方便起见,一般取等长组距,并且组距应力求“取整”;(3)将数据分组;(4)列频率分布表:一般分四列:分组、频数累计、频数、频率.其中频数合计应是样本容量,频率合计是⑥1;.(5)画频率分布直方图:横轴表示分组,纵轴表示频率组距=频率,各小长方形的面积的总和等于1.小长方形的面积=组距×频率组距2.其他统计图表统计图表主要应用扇形图直观描述各部分数据在全部数据中所占的比例条形图和直方图直观描述不同类别或分组数据的频数和频率反映统计对象在不同时间(或其他合适情形)的发展折线图变化情况1.第p百分位数:一般地,一组数据的第p百分位数是这样一个值,它使得这组数据中至少有p%的数据小于或等于这个值,且至少有(100-p)%的数据大于或等于这个值.2.计算一组n个数据的第p百分位数的步骤第1步,按从小到大排列原始数据.第2步,计算i=n×p%.第3步,若i不是整数,而大于i的比邻整数为j,则第p百分位数为第j项数据;若i是整数,则第p百分位数为第i项与第(i+1)项数据的平均数.3.四分位数:第25百分位数,第50百分位数,第75百分位数,这三个分位数把一组由小到大排列后的数据分成四等份,因此称为四分位数.知识点四:总体集中趋势的估计1.众数、中位数和平均数的定义(1)众数:一组数据中出现次数最多的数.(2)中位数:一组数据按大小顺序排列后,处于中间位置的数.如果这组数据是偶数个,则取中间两个数据的平均数.(3)平均数:一组数据的和除以数据个数所得到的数.2.众数、中位数、平均数与频率分布直方图的关系(1)平均数:在频率分布直方图中,样本平均数可以用每个小矩形底边中点的横坐标与小矩形的面积的乘积之和近似代替.(2)中位数:在频率分布直方图中,中位数左边和右边的直方图的面积应该相等.(3)众数:众数是最高小矩形底边的中点所对应的数据.2.众数、中位数、平均数与频率分布直方图的关系众数众数是最高小长方形底边的中点所对应的数据,表示样本数据的中心值中位数①在频率分布直方图中,中位数左边和右边的直方图面积相等,由此可以估计中位数的值,但是有偏差;②表示样本数据所占频率的等分线平均数①平均数等于每个小长方形的面积乘小长方形底边中点的横坐标之和;②平均数是频率分布直方图的重心,是频率分布直方图的平衡点1.一组数据x1,x2,…,x n的方差和标准差数据x1,x2,…,x n的方差为1n ∑i=1n(x i-x)2=1n∑i=1nx i2-x2,标准差为√1n∑i=1n(x i-x)2.2.总体方差和总体标准差(1)总体方差和标准差:如果总体中所有个体的变量值分别为Y1,Y2,…,Y N,总体的平均数为Y,则称S2= 1N ∑i=1N(Y i-Y)2为总体方差,S=√S2为总体标准差.(2)总体方差的加权形式:如果总体的N个变量值中,不同的值共有k(k≤N)个,不妨记为Y1,Y2,…,Y k,其中Y i出现的频数为f i(i=1,2,…,k),则总体方差为S2= 1N ∑i=1kf i(Y i-Y)2.3.样本方差和样本标准差如果一个样本中个体的变量值分别为y1,y2,…,y n,样本平均数为y,则称s2= 1n ∑i=1n(y i-y)2为样本方差,s=√s2为样本标准差.4.标准差的意义标准差刻画了数据的离散程度或波动幅度,标准差越大,数据的离散程度越大;标准差越小,数据的离散程度越小.5.分层随机抽样的方差设样本容量为n,平均数为x,其中两层的个体数量分别为n1,n2,两层的平均数分别为x1,x2,方差分别为s12,s22,则这个样本的方差为s2=n1n [s12+(x1-x)2]+n2n[s22+(x2-x)2].必修第二册第十章概率知识点总结知识点一:有限样本空间与随机事件1.随机试验的概念和特点(1)随机试验:我们把对随机现象的实现和对它的观察称为随机试验,简称试验,常用字母E表示.(2)随机试验的特点:(i)试验可以在相同条件下重复进行;(ii)试验的所有可能结果是明确可知的,并且不止一个;(iii)每次试验总是恰好出现这些可能结果中的一个,但事先不能确定出现哪一个结果.2.样本点和样本空间定义字母表示样本点我们把随机试验E的每个可能的基本结果称为样本点用ω表示样本点样本空间全体样本点的集合称为试验E的样本空间用Ω表示样本空间有限样本空间如果一个随机试验有n个可能结果ω1,ω2,…,ωn,则称样本空间Ω={ω1,ω2,…,ωn}为有限样本空间Ω={ω1,ω2,…,ωn}3.事件的类型我们将样本空间Ω的子集称为随机事件,简称事件,并把只包含一个样本点的事件称为基本事件.随机事件一般用大写字母A,B,C,…表示.在每次试验中,当且仅当A中某个样本点出现时,称为事件A发生.Ω作为自身的子集,包含了所有的样本点,在每次试验中总有一个样本点发生,所以Ω总会发生,我们称Ω为必然事件.而空集⌀不包含任何样本点,在每次试验中都不会发生,我们称⌀为不可能事件.必然事件与不可能事件不具有随机性.为了方便统一处理,将必然事件和不可能事件作为随机事件的两个极端情形.这样,每个事件都是样本空间Ω的一个子集.知识点二:事件的关系和运算1.包含关系定义一般地,若事件A 发生,则事件B 一定发生,我们就称事件B 包含事件A(或事件A 包含于事件B)含义 A 发生导致B 发生 符号表示B ⊇A(或A ⊆B)图形表示特殊情形如果事件B 包含事件A,事件A 也包含事件B,即B ⊇A 且A ⊇B,则称事件A 与事件B 相等,记作A=B2.并事件(和事件)定义一般地,事件A 与事件B 至少有一个发生,这样的一个事件中的样本点或者在事件A 中,或者在事件B 中,我们称这个事件为事件A 与事件B 的并事件(或 和事件)含义 A 与B 至少有一个发生符号表示A ∪B(或A+B)图形表示3.交事件(积事件)定义一般地,事件A 与事件B 同时发生,这样的一个事件中的样本点既在事件A中,也在事件B 中,我们称这样的一个事件为事件A 与事件B 的交事件(或积 事件)含义 A 与B 同时发生 符号表示A ∩B(或AB)图形表示4.互斥(互不相容)一般地,如果事件A与事件B不能同时发生,也就是说A∩B是一个不可能定义事件,即A∩B=⌀,则称事件A与事件B互斥(或互不相容)含义A与B不能同时发生符号表示A∩B=⌀图形表示5.互为对立一般地,如果事件A与事件B在任何一次试验中有且仅有一个发生,即A∪B=定义Ω,且A∩B=⌀,那么称事件A与事件B互为对立.事件A的对立事件记为A 含义A与B有且仅有一个发生符号表示A∩B=⌀,且A∪B=Ω图形表示6.清楚随机事件的运算与集合运算的对应关系有助于解决此类问题.符号事件的运算集合的运算A 随机事件集合A A的对立事件A的补集AB 事件A与B的交事件集合A与B的交集A∪B 事件A与B的并事件集合A与B的并集知识点三:古典概型1.古典概型的定义试验具有如下共同特征:(1)有限性:样本空间的样本点只有有限个;(2)等可能性:每个样本点发生的可能性相等.我们将具有以上两个特征的试验称为古典概型试验,其数学模型称为古典概率模型,简称古典概型.2.古典概型的概率计算公式一般地,设试验E是古典概型,样本空间Ω包含n个样本点,事件A包含其中的k个样本点,则定义事件A的概率P(A)= kn =n(A)n(Ω),其中n(A)和n(Ω)分别表示事件A和样本空间Ω包含的样本点个数.知识点四:概率的基本性质1.概率的基本性质性质1 对任意的事件A,都有P(A)≥0.性质2 必然事件的概率为1,不可能事件的概率为0,即P(Ω)=1,P(⌀)=0.性质3 如果事件A与事件B互斥,那么P(A∪B)=P(A)+P(B).性质4 如果事件A与事件B互为对立事件,那么P(B)=1-P(A),P(A)=1-P(B).性质5 如果A⊆B,那么P(A)≤P(B).性质6 设A,B是一个随机试验中的两个事件,我们有P(A∪B)=P(A)+P(B)-P(A∩B).知识点五:事件的相互独立性1.相互独立事件的定义:对任意两个事件A与B,如果P(AB)=P(A)P(B)成立,则称事件A 与事件B相互独立,简称为独立.2.相互独立事件的性质:当事件A,B相互独立时,则事件A与事件B相互独立,事件A与事件B相互独立,事件A与事件B相互独立.【提示】公式P(AB)=P(A)P(B)可以推广到一般情形:如果事件A1,A2,…,A n相互独立,那么这n个事件同时发生的概率等于每个事件发生的概率的积,即P(A1A2·…·A n)=P(A1)P(A2)·…·P(A n).3. 两个事件是否相互独立的判断方法(1)直接法:由事件本身的性质直接判定两个事件发生是否相互影响.(2)公式法:若P(AB)=P(A)P(B),则事件A,B为相互独立事件.4.求相互独立事件同时发生的概率的步骤:①首先确定各事件之间是相互独立的.②求出每个事件的概率,再求积.5.事件间的独立性关系已知两个事件A,B相互独立,它们的概率分别为P(A),P(B),则有事件表示概率A,B同时发生AB P(A)P(B)A,B都不发生A B P(A)P(B)A,B恰有一个发生(A B)∪(A B) P(A)P(B)+P(A)P(B)A,B中至少有一个发生(A B)∪(A B)∪(AB) P(A)P(B)+P(A)P(B)+P(A)P(B)A,B中至多有一个发生(A B)∪(A B)∪(A B) P(A)P(B)+P(A)P(B)+P(A)P(B)。
经典:众数、中位数、平均数与频率分布直方图的关系
分布直方图如图3,则这20名工人中一天生产
该产品 数量在
的中位 数.
3、平均数是频率分布直方图的“重心”.
是直方图的平衡点. n 个样本数据的平均数由 公式:
X= n 1(x1x2xn)
假设每组数据分别为〔a1, b1)、 〔a2, b2)、 … … 〔ak, bk)时, 且每组数据相应的 频率分别为f1、 f2 、 …… fk;那么样本的平 均数(或总体的数学期望)由下列公式计算即 可。
1002000.102003000.153004000.40
2
2
2
4005000.205006000.15151409082.5365.
2
2
我 们 估 计 总 体 生子产元的件电的 寿 命 的
期 望 值 ( 总 体 均36值5. ) 为
思考:从样本数据可知,所求得该样本的众 数、中位数和平均数,这与我们从样本频率 分布直方图得出的结论有偏差,你能解释一 下原因吗?
频数
20 30 80 40 30 200
频率
0.10 0.15 0.40 0.20
0.15 1
累积频率 0.10 0.25 0.65 0.85 1
0 100 200300400 500 600 寿命(h)
总体分布的估计
(3)由频率分布表 出可 ,以 寿看 命 10在 h0~400
的电子元件出现 为的 :0.6频 5,率 所以我们估计电子
元件寿命 10在 h0~40h0的概率:0为 .65.
( 4) .由 频 率 分 布 表 命可 在 40知 h0以, 上寿 的 电 子
元 件 出 现 的 :0.2频 00率 .15为 0.3, 5 故 我 们
众数 中位数 平均数与频率分布直方图的关系
O
0.5
1
1.5
2
2.5
3
3.5
4
4.5
月平均用水量(t)
例题分析:月均用水量的众数是2.25t.如图所示:(2+2.5)/2=2.25
2、从频率分布直方图中估计中位数
(中位数是样本数据所占频率的等分线。)
• 当最高矩形的数据组为〔a, b) 时, 设中位 数为(a+X),根据中位数的定义得知, 中位 数左边立方图的小矩形面积为0.5, 列方程 得: • 当最高矩形的数据组之前所有小矩形的面 积之和为fm,
用样本数字特征估计总体数字特征
众数、中位数、平均数与频率分布直方 图的关系
二 、 众数、中位数、平均数 与频率分布直方图的关系
1、众数在样本数据的频率分布直方图中, 就是最高矩形的中点的横坐标。 当最高矩形的数据组为〔a, b) 时, 那 么(a+b)/2就是众数。
频率 组距
0.5 0.4 0.3 0.2 0.1
• xh+fm=0.5求解X, 那么a+X即为中位数。 • h=最高矩形的高
思考题:如何从频率分布直方图中估计中位数? 频率/组距
0.50 0.44 0.40 0.30 0.16 0.20 0.08 0.10 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
x
中位数左边立方图的小矩形面积为0.5 月均用水量 /t 0~2的小矩形面积之和为: 0.5×(0.08+0.16+0.30+0.44)=0.49 0.5-0.49=0.01 0.01/0.5=0.02 如图在直线t=2.02之前所有小矩形的面积为0.5 所以该样本的中位数为2.02
思考:从样本数据可知,所求得该样本的众 数、中位数和平均数,这与我们从样本频率 分布直方图得出的结论有偏差,你能解释一 下原因吗? 频率分布直方图损失了一些样本数据,得 到的是一个估计值,且所得估值与数据分组 有关. 注:在只有样本频率分布直方图的情况下,我 们可以按上述方法估计众数、中位数和平均 数,并由此估计总体特征.
222用样本的数字特征估计总体的数字特征(2)方差标准差讲解
性质归纳:kan b的平均数和方差:
已知a1,a2,,an的平均数是3,方差是2. 则a1 b,a2 b,,an b的平均数是3 b, 方差是2. ka1,ka2,,kan的平均数是3k,方差是2k 2.
标准差是样本平均数的一种平均距离,一般用s表示.
所谓“平均距离”,其含义可作如下理解:
假设样本数据是x1,x2,...xn ,x 表示这组数据的平均数,xi到 x
的距离是
-
xi - x (i = 1,2,… ,n).
, :
-
于是
样本数据x1,
x2,
x
到
n
x
的“平均距离”是
x1 x x2 x xn x
2.2.2用样本的数字特征估计总体 的数字特征(2) 方差、标准差
学习目标 1.明确标准差、方差等数字特征的意义,深刻 体会它们所反映的样本特征。 2.会用样本的数字特征估计总体的的数字特征, 初步体会样本的数字特征的随机性
复习回顾
一.什么是一组数据的众数、中位数及平均数?
众数:一组数据中出现次数最多的数据。
[解析] (1)甲组成绩的众数为 90 分,乙组成绩的众数为
70 分,从成绩的众数比较看,甲组成绩好些.
(2)s
2
甲
=
1 2+5+10+13+14+6
×[2×(50
-
80)2
+
5×(60
- 80)2 + 10×(70 - 80)2 + 13×(80 - 80)2 + 14×(90 - 80)2 +
A.众数 B.平均数
众数、中位数、平均数(1)标准差、方差
好;
(4)乙队很少不失球.
例题分析
例1 画出下列四组样本数据的条形图, 说明他们的异同点.
(1) 5,5,5,5,5,5,5,5,5; (2) 4,4,4,5,5,5,6,6,6;
频率
x5
1.0 0.8
s0
0.6
0.4
0.2
O 12345678
(1)
频率 x 5
1.0 0.8
s 0.82
0.6
0.4
4,x,7,14,中位数为5,则这组数据的平均数和
方差分别为
( A)
A.5,24 2 3
B.5,24 1 3
C.4,25 1
D.4,25 2
3
3
解析 ∵中位数为5,∴5= 4 x ,∴x=6.
2
x104671 45,
6
s2= 1 [(5+1)2+(5-0)2+(5-4)2+(5-6)2+
6
(5-7)2+(5-14)2]=24 2 . 3
0.000 4
三种数字特征的优缺点
1、众数体现了样本数据的最大集中点,但它对其它 数据信息的忽视使得无法客观地反映总体特征.
2、中位数它不受少数几个极端值的影响,这在某些 情况下是优点,但它对极端值的不敏感有时也会成为 缺点。
3、由于平均数与每一个样本的数据有关,所以任何 一个样本数据的改变都会引起平均数的改变,这是众 数、中位数都不具有的性质。也正因如此 ,与众数、 中位数比较起来,平均数可以反映出更多的关于样本 数据全体的信息,但平均数受数据中的极端值的影响 较大,使平均数在估计时可靠性降低。
频率 组距
0.5 0.4 0.3 0.2
众数,中位数,平均数,标准差
巧合 频率 组距
分组 [0,0.5) [0.5,1) [1,1.5) [1.5,2) [2,2.5) [2.5,3) [3,3.5) [3.5,4) [4,4.5]
频率 0.04 0.08 0.15 0.22 0.25 0.14 0.06 0.04 0.02
0.50 0.40 0.30 0.20 0.10
四
众数、中位数、平均数的简单应用
例1 某工厂人员及工资构成如下:
人员 周工资 人数 合计 经理 2200 1 2200 管理人员 250 6 1500 高级技工 220 5 1100 工人 200 10 2000 学徒 合计 100 1 23 100 6900
(1)指出这个问题中周工资的众数、中 位数、平均数 (2)这个问题中,工资的平均数能客观 地反映该厂的工资水平吗?为什么?
? 16
找到啦!有区别了!
上述各偏差的平方和的大小还与什么有关?
——与射击次数有关!
所以要进一步用各偏差平方的平均数来衡量数据的稳定性
设一组数据x1、x2、…、xn中,各数据与它们的平均 数的差的平方分别是(x1-x)2、(x2-x)2 、… (xn-x)2 , 那么我们用它们的平均数,即用
S2=
分析:众数为200,中位数为220,
平均数为300。 因平均数为300,由表格中所列出的数据 可见,只有经理在平均数以上,其余的人 都在平均数以下,故用平均数不能客观真 实地反映该工厂的工资水平。
教练的烦恼
甲,乙两名射击手的测试成绩统计如下:
第一次 第二次 第三次 第四次 第五次
甲命中环数 乙命中环数
O
0.5
1
1.5
2
人教A版高一数学必修第二册第九章《统计》单元练习题卷含答案解析 (36)
高一数学必修第二册第九章《统计》单元练习题卷11(共22题)一、选择题(共10题)1.天津市某中学组织高二年级学生参加普法知识考试(满分100分),考试成绩的频率分布直方图如图,数据(成绩)的分组依次为[20,40),[40,60),[60,80),[80,100],若成绩低于60分的人数是180,则考试成绩在区间[60,80)内的人数是( )A.180B.240C.280D.3202.关于频率分布直方图中小长方形的高的说法,正确的是( )A.表示该组上的个体在样本中出现的频率B.表示取某数的频率C.表示该组上的个体数与组距的比值D.表示该组上的个体在样本中出现的频率与组距的比值3.下列问题中,最适合用简单随机抽样方法抽样的是( )A.某学术厅有32排座位,每排有40个座位,座位号是1∼40,有一次报告会学术厅里坐满了观众,报告会结束以后听取观众的意见,要留下32名观众进行座谈B.从10台冰箱中抽取3台进行质量检验C.某学校有在编人员160人,其中行政人员16人,教师112人,后勤人员32人.教育部门为了解大家对学校机构改革的意见,要从中抽取容量为20的样本D.某乡农田有山地8000亩,丘陵12000亩,平地24000亩,洼地4000亩,现抽取农田480亩估计全乡农田平均产量4.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分,1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是( )A.中位数B.平均数C.方差D.极差5.从一批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:[5.31,5.33),[5.33,5.35),⋯,[5.45,5.47],[5.47,5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为( )A.10B.18C.20D.366.10名工人生产某一零件,生产的件数分别是10,12,14,14,15,15,16,17,17,17.设其平均数为a,中位数为b,众数为c,则( )A.a>b>c B.b>c>a C.c>a>b D.c>b>a7.某班由编号为01,02,03,⋯,50的50名学生组成,现在要选取8名学生参加合唱团,选取方法是从如下随机数表的第1行第11列开始由左到右依次选取两个数字,则该样本中选出的第8名学生的编号为( )495443548217379323783035209623842634916450258392120676572355068877044767217633502583921206764954A.20B.23C.26D.348.在一次体育测试中,某班的6名同学的成绩(单位:分)分别为66,83,87,83,77,96.关于这组数据,下列说法错误的是( )A.众数是83B.中位数是83C.极差是30D.平均数是839.一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是A.12,24,15,9B.9,12,12,7C.8,15,12,5D.8,16,10,610.某学校随机抽取了部分学生,对他们每周使用手机的时间进行统计,得到如下的频率分布直方图.若从每周使用时间在[15,20),[20,25),[25,30)三组内的学生中用分层抽样的方法选取8人进行访谈,则应从使用时间在[20,25)内的学生中选取的人数为( )A.1B.2C.3D.4二、填空题(共6题)11.某次体检,8位同学的身高(单位:米)分别为 1.68,1.71,1.73,1.63,1.81,1.74,1.66,1.78,则这组数据的中位数是(米).12.为了了解高三学生的数学成绩,抽取了某班60名学生,将所得数据整理后,画出其频率分布直方图(如图所示),已知从左到右各长方形高的比为2:3:5:6:3:1,则该班学生数学成绩在(80,100)之间的学生人数是.13.校本课程的学分,统计如表.甲811141522乙67102324用s12,s22分别表示甲、乙两班抽取的5名学生学分的方差,计算两个班学分的方差,得s22=,并由此可判断成绩更稳定的班级是班.14.众数、中位数、平均数(1)众数、中位数、平均数的概念.①众数:在一组数据中,出现最多的数据(即频率分布最大值所对应的样本数据)叫这组数据的众数.若有两个或两个以上的数据出现得最多,且出现的次数一样,则这些数据都叫众数;若一组数据中每个数据出现的次数一样多,则没有众数.②中位数:将一组数据按大小依次排列,把处在位置的一个数据(或中间两个数据的平均数)叫这组数据的中位数.③平均数:指样本数据的算术平均数.即:x=.(2)众数、中位数、平均数与频率分布直方图的关系.众数众数是最高矩形的 所对应的数据,表示样本数据的中心值中位数①在频率分布直方图中,中位数左边和右边的直方图 相等,由此可以估计中位数的值,但是有偏差②表示样本数据所占频率的等分线平均数①平均数等于每个小长方形的面积乘以小长方形底边中点的横坐标之和②平均数是频率分布直方图的重心,是频率分布直方图的平衡点15.某学校高一、高二、高三年级的学生人数之比为3:3:4,现用分层随机抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取名学生.16.一汽车厂生产甲,乙,丙三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):轿车甲轿车乙轿车丙舒适型100120z标准型300480600按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有甲类轿车10辆,则z的值为,抽取的50辆车中,乙类舒适型的数量为.三、解答题(共6题)17.一个地区共有5个乡镇,人口3万人,其中人口比例为3:2:5:2:3,从3万人中抽取一个300人的样本,分析某种疾病的发病率,已知这种疾病与不同的地理位置及水土有关,问应采取什么样的方法?并写出具体过程.18.作为北京副中心,通州区的建设不仅成为京津冀协同发展战略的关键节点,也肩负着医治北京市“大城市病”的历史重任,因此,通州区的发展备受啊目,2017年12月25日发布的《北京市通州区统计年鉴(2017)》显示:2016年通州区全区完成全社会固定资产投资939.9亿元,比上年增长17.4%,下面给出的是通州区2011∼2016年全社会固定资产投资及增长率,如图一.根据通州区统计局2018年1月25日发布:2017年通州区全区完成全社会固定资产投资1054.5亿元,比上年增长12.2%.(1) 在图二中画出2017年通州区全区完成全社会固定资产投资(柱状图),标出增长率并补全折线图;(2) 从2011∼2017这7年中随机选取续的2年份,求后一年份增长率高于前一年份增长率的概率;(3) 设2011∼2017这7年全社会固定资产投资总额的中位数为x0,平均数为x,比较x0与x的大小(写出结论即可).19.某校从参加高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图所示.(1) 求这次测试数学成绩的众数; (2) 求这次测试数学成绩的中位数.20. 某公交公司为了估计某线路公交公司发车的时间间隔,对乘客在这条线路上的某个公交车站等车的时间进行了调查,以下是在该站乘客候车时间的部分记录:等待时间(分钟)频数频率[0,3) 0.2[3,6) 0.4[6,9)5x [9,12)2y [12,15) 0.05合计z 1 (1) 求 x ,y ,z ;(2) 画出频率分布直方图及频率分布折线图; (3) 计算乘客平均等待时间的估计值.21. 某校从高一全体男生中用简单随机抽样抽取了 20 人测量出体重情况如下:(单位 kg )6556708266725486706258726460767280685866试估计该校高一男生的平均体重,以及体重在 60∼75 kg 之间的人数所占比例.22. 平均数、中位数、众数中,哪个量与样本的每一个数据有关,它有何缺点?答案一、选择题(共10题)1. 【答案】B【知识点】频率分布直方图2. 【答案】D,面积表示频率.【解析】频率分布直方图中小长方形的高是频率组距【知识点】频率分布直方图3. 【答案】B【知识点】简单随机抽样4. 【答案】A【解析】根据题意,从9个原始评分中去掉1个最高分,1个最低分,得到7个有效评分,7个有效评分与9个原始评分相比,最中间的一个数不变,即中位数不变.【知识点】样本数据的数字特征5. 【答案】B【解析】根据直方图,直径落在区间[5.43,5.47)之间的零件频率为:(6.25+5.00)×0.02=0.225,则区间[5.43,5.47)内零件的个数为:80×0.225=18.【知识点】频率分布直方图6. 【答案】D=14.7,【解析】依题意,得a=10+12+14+14+15+15+16+17+17+1710中位数b=15,众数c=17,故c>b>a.【知识点】样本数据的数字特征7. 【答案】D【解析】从样本中选出来的8名学生的编号分别为17,37,23,30,35,20,26,34.故该样本中选出的第8名学生的编号为34.【知识点】简单随机抽样8. 【答案】D【知识点】样本数据的数字特征9. 【答案】D【解析】高级职称应抽取:160×40800=8(人),中级职称应抽取:320×40800=16(人),初级职称应抽取:200×40800=10(人),其余人员:120×40800=6(人).【知识点】分层抽样10. 【答案】C【解析】由频率分布直方图可知:5×(0.01+0.02+a+0.04+0.04+0.06)=1,解得:a=0.03,即在[15,20),[20,25),[25,30)三组内的学生数之比为:4:3:1,则从每周使用时间在[15,20),[20,25),[25,30)三组内的学生中用分层抽样的方法选取8人进行访谈,则应从使用时间在[20,25)内的学生中选取的人数为38×8=3.【知识点】分层抽样、频率分布直方图二、填空题(共6题)11. 【答案】1.72【知识点】样本数据的数字特征12. 【答案】33【解析】数学成绩在(80,100)之间的学生人数是(520+620)×60=33.【知识点】频率分布直方图13. 【答案】62;甲【知识点】样本数据的数字特征14. 【答案】次数;最中间;1n(x1+x2+⋯+x n);中点;面积【知识点】样本数据的数字特征15. 【答案】15【解析】高二年级学生人数占总数的310,样本容量为50,则应从高二年级抽取的学生人数为50×310=15.【知识点】分层抽样16. 【答案】400;3【解析】由题意知抽样比为10100+300=140,则50100+300+120+480+z+600=140,解得z=400.可得甲,乙,丙三类车数量的比例为2:3:5,则乙类车抽到的数量为310×50=15,乙类车中,舒适型与标准型的数量比为1:4,所以舒适型的数量为15×15=3.【知识点】分层抽样三、解答题(共6题)17. 【答案】因为疾病与地理位置和水土均有关系,所以不同乡镇的发病情况差异明显,因而应采用分层抽样的方法.具体过程如下:(1)将3万人分成5层,一个乡镇为一层.(2)按照各乡镇的人口比例随机抽取各乡镇的样本:300×315=60( 人),300×215=40(人),300×515=100( 人),300×215=40( 人),300×315=60( 人).各乡镇分别用分层抽样抽取的人数分别为60,40,100,40,60.(3)将抽取的这300人组到一起,即得到一个样本.【知识点】分层抽样18. 【答案】(1) 由题意在图二中画出2017年通州区全区完成全社会固定资产投资(柱状图),标出增长率并补全折线图,如图.(2) 从2011∼2017这7年里,随机选取连续的2个年份,共6组,分别为:(2011,2012),(2012,2013),(2013,2014),(2014,2015),(2015,2016),(2016,2017),设事件A表示“随机选取续的2年份,后一年份增长率高于前一年份增长率”,则事件A包含的基本事件有2个,分别为:(2011,2012),(2015,2016),所以随机选取续的2年份,后一年份增长率高于前一年份增长率的概率P(A)=26=13.(3) x0<x.【知识点】频率与频数、样本数据的数字特征、频率分布直方图19. 【答案】(1) 由题干图知众数为70+802=75.(2) 由题干图知,设中位数为x,由于前三个矩形面积之和为0.4,第四个矩形面积为0.3,0.3+0.4>0.5,因此中位数位于第四个矩形内,得0.1=0.03(x−70),所以x≈73.3,即中位数为73.3.【知识点】频率分布直方图、样本数据的数字特征20. 【答案】(1) 由上面表格得0.2+0.4+x+y+0.05=1即x+y=0.35,又52=xy,所以x=0.25,y=0.1.又5z=x=0.25,所以z=20(2) 根据上一问做出的数据画出频率分步直方图.(3) 由频率分步直方图可以知道x=1.5×0.2+4.5×0.4+7.5×0.25+10.5×0.1+13.5×0.05=5.7,即乘客平均等待时间的估计值是5.7.【知识点】频率分布直方图、样本数据的数字特征、频率与频数21. 【答案】这20名男生的平均体重为65+56+70+⋯+68+58+6620=67.85(kg).20名男生中体重在60∼75kg之间的人数为12,故这20名男生体重在60∼75kg之间的人数所占比例为1220=0.6.所以佔计该校高一男生的平均体重约为67.85kg,体重在60∼75kg之间的人数所占比例约为0.6.【知识点】样本数据的数字特征22. 【答案】平均数与样本的每一个数据有关,它可以反映出更多的关于样本数据总体的信息,但是平均数受数据中极端值的影响较大.【知识点】样本数据的数字特征。
最新众数、中位数、平均数与频率分布直方图的关系
二 、 众数、中位数、平均数 与频率分布直方图的关系
(在只有频率分布直方图的情况下,也可以估计总体特征,而且直方图比较直观 便于形象地进行分析。)
1、众数在样本数据的频率分布直方图中, 就是最高矩形的中点的横坐标。
频数
20 30 80 40 30 200
频率
0.10 0.15 0.40 0.20
0.15 1
累积频率 0.10 0.25 0.65 0.85 1
0 100 200300400 500 600 寿命(h)
总体分布的估计
(3)由频率分布表 出可 ,以 寿看 命 10在 h0~400
的电子元件出现 为的 :0.6频 5,率 所以我们估计电子
1、通过频率分布直方图的估计精度低;
2、通过频率分布直方图的估计结果与数据分组 有关;
3、在不能得到样本数据,只能得到频率分布直 方图的情况下,也可以估计总体特征,而且直方图 比较直观便于形象地进行分析。
20
30
80
40
30
(1)列出频率分布表;
(2)画出频率分布直方图; (3)估计电子元件寿命在100h~400h以内的概率; (4)估计电子元件寿命在400h以上的概率; (5)估计总体的数学期望.
寿命 100~200 200~300 300~400 400~500 500~600
合计
频率/组距
总体分布的估计
1002000.102003000.153004000.40
2
2
2
4005000.205006000.15151409082.5365.
用直方图算平均数,中位数、众数、标准差
,n ,这n个数的 3、算出 x i -x i=1, 2,… 2 平均数,即为样本方差 s 4、算出方差的算术平均值,即为样本标准差s。
2 2 2 2 1 s = x1 - x x 2 - x x 3 - x … x n - x n 2 2 1 n 1 2 2 2 2 = x i - x = x1 x 2 x 3 … x n -nx n i=1 n 2
的更稳定些吗?
为了从整体上更好地把握总体的规律,我们要通 过样本的数据对总体的数字特征进行研究。——用样 本的数字特征估计总体的数字特征。
1、众数
在一组数据中,出现次数最多
的数据叫做这一组数据的众数. 2、中位数 将一组数据按大小依次排列, 把处在最中间位置的一个数据(或两个数据 的平均数)叫做这组数据的中位数. 3、平均数 (1) (2) x = (x1+x2+……+xn) /n x = x1f1+x2f2+……+xkfk
4
4.5
月平均用水
频率 组距
如何在频率分布直方图中估计中位数
0.6 0.5 0.4 0.3 0.2 0.1 0
前四个小矩形的 面积和=0.49
0.25
后四个小矩形的 面积和=0.26
0.22 0.15 0.08 0.04 0.5 1 1.5 2 2.5 3
0.14 0.06
0.04 3.5
0.02 4 4.5
有两位射击运动员在一次射击测试中各射 靶十次,每次命中的环数如下:
如果你是教练,你应当如何对这次射击情况作出 评价?如果这是一次选拔性考核,你应当如何作出选 择?
标准差
标准差是样本数据到平均数的一种平均距 离.它用来描述样本数据的离散程度.在实际应 用中,标准差常被理解为稳定性.
众数、中位数、平均数与频率分布直方图的关系
0.5-0.49=0.01 0.01/0.5=0.02 如图在直线t=2.02之前所有小矩形的面积为0.5 所以该样本的中位数为2.02
练习.(广东11变式题1)为了调查某厂工人生产 某种产品的能力,随机抽查 了20位工人某天生
__9_._5_,__0__.0_1_6______;
去掉最高分和最低分合理吗?
2、已知数据 a1, a2 , a的3 平2均2 数是3,方差为2,求
数据 2a1, 2a的2 ,平2a均3 数、方差、标准差?
解:平均数是6,方差是8,标准差是 2 2 .
如果求 2 a1、2 a2、2 a3 的平均数、方差、 标准差?已知ai的平均数X、方差Y、标准差Z, 则b+kai的平均数
2
2
我 们 估 计 总 体 生 产 的 电子 元 件 的 寿 命 的
期 望 值 ( 总 体 均 值 ) 为365.
思考:从样本数据可知,所求得该样本的众 数、中位数和平均数,这与我们从样本频率 分布直方图得出的结论有偏差,你能解释一 下原因吗?
频率分布直方图损失了一些样本数据,得 到的是一个估计值,且所得估值与数据分组 有关.
• x*最高矩形的(频率/组距)+ fm=0.5
• 求解X, 那么a+X即为中位数。
思考题:如何从频率分布直方图中估计中位数? 频率/组距
0.44
0.50 0.40
0.30
0.16 0.20
0.08 0.10
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
中位数左边立方图的小矩形面积为0.5 月均用水量 /t
直方图求中位数
2252225数为ax根据中位数的定义得知中位数左边立方图的小矩形面积为05列方程当最高矩形的数据组之前所有小矩形的面积之和为fm
二 、 众数、中位数、平均数 与频率分布直方图的关系
(在只有频率分布直方图的情况下,也可以估计总体特征,而且直方图比较直观 便于形象地进行分析。)
1、众数在样本数据的频率分布直方图中, 就是最高矩形的中点的横坐标。 当最高矩形的数据组为〔a, b) 时, 那 么(a+b)/2就是众数。
• 求解X, 那么a+X即为中位数。
思考题:如何从频率分布直方图中估计中位数? 频率/组距
0.50 0.44 0.40 0.30 0.16 0.20 0.08 0.10 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
中位数左边立方图的小矩形面积为0.5 月均用水量 /t 0~2的小矩形面积之和为: 0.5×(0.08+0.16+0.30+0.44)=0.49 0.5-0.49=0.01 0.01/0.5=0.02 如图在直线t=2.02之前所有小矩形的面积为0.5 所以该样本的中位数为2.02
练习.(广东11变式题1)为了调查某厂工人生产 某种产品的能力,随机抽查 了20位工人某天生 产该产品的数量.产品数量的分组区间为 45,55 , 55, 65 , 65, 75 , 75,85 85,95 由此得到频率 , 分布直方图如图3,则这20名工人中一天生产 该产品 数量在 的中位 数 .
频率 组距
0.5 0.4 0.3 0.2 0.1
O
ቤተ መጻሕፍቲ ባይዱ
0.5
1
1.5
2
2.5
3
3.5
4
4.5
月平均用水量(t)
众数、中位数、平均数与样本频率分布直方图的关系
频率 组距
1
初中统计部分曾学过用什么来反映总体的水平? 用什么来考察稳定程度?它们是怎么定义的?
在初中我们学过用平均数、众数和中位数反映总体 的水平,用方差考察稳定程度。
1、众数:在一组数据中,出现次数最多的数据叫做 这组数据的众数
2、中位数:将一组数据按大小依次排列,把处在 最中间位置的一个数据(或最中间两个数据的平均 数)叫做这组数据的中位数
(1)求分数在[120,130) 内的频率,并补全这个 频率分布直方图
(2)估计本次考试的 平均分、众数、 中位数
9
【解析】(1)分数在[120,130)内的频率为: 1-(0.1+0.15+0.15+0.25+0.05)=1-0.7=0.3
频率 组距
0.3 10
0.03补全后的直方图如图:
(2)众数为125
0.6 0.5 0.4 0.3 0.2
面积有样关数本系的数?比据重的愈频大率,所分以布为直了公
0.25 0.22
0.15
0.14
方图乘平样小数图中以中体本,先在用中每小现平我乘,频其,个矩各各 均 们以率 区等 小 形个个数把其分 间于 长 底组小中每所布 的频 方 边的组所个在直 中的占的小率 形 中平平比小组方 点分 面 点均均例长的图 表布 积 的数数的方平在大形均 横的坐面示标积即之,区和然间后的再两相加个所端得到
走进高考
24
走进高考
25
课外探究
26
走进高考
27
走进高考
28
29
30
31
32
33
解题
34
学习
35
思考题
中位数平均数众数方差
-100)2+(100-100)2]=1.
(2)因为
,说明甲机床加工零件波动比较大,因此乙机
床加工零件更符合要求.
附注:
1.平均数与方差都是重要的数字特征,是对总体的一种简 明的描述,它们所反映的情况有着重要的实际意义, 平均数、中位数、众数描述其集中趋势,方差和标准 差描述波动大小.
2.平均数、方差的公式推广 (1)若数据x1,x2,…,xn的平均数为 ,那么mx1+a, mx2+a,mx3+a,…,mxn+a的平均数是m +a. (2)数据x1,x2,…,xn的方差为s2. ①s2= ②数据x1+a,x2+a,…,xn+a的方差也为s2; ③数据ax1,ax2,…,axn的方差为a2s2.
频率 组距
0.5 0.4 0.3 0.2 0.1
O 0.5 1 1.5 2 2.5 3 3.5 4
2.02这个中位数的估计值,与样本 的中位数值2.0不一样,这是因为样本数 据的频率分布直方图,只是直观地表明 分布的形状,但是从直方图本身得不出 原始的数据内容,所以由频率分布直方 图得到的中位数估计值往往与样本的 实际中位数值不一致.
5: 甲、乙两台机床同时加工直径为10 mm的零件,为了检验产品的 质量,从产品中各随机抽取6件进行测量,测得数据如下 (单位mm) 甲:99,100,98,100,100,103 乙:99,100,102,99,100,100 (1)分别计算上述两组数据的平均数和方差; (2)根据(1)的计算结果,说明哪一台机床加工的这种零件更符合要求.
(1)完成数据的茎叶图;(2)用茎叶图处理现有的数据,有什么优点?
(3)通过观察茎叶图,对品种A与B的亩产量及其稳定性进行比较,写出
统计结论.
【解】 (1)
高三数学众数、中位数、平均数
二 、 众数、中位数、平均数 与频率分布直方图的关系
1、众数在样本数据的频率分布直方图 中,就是最高矩形的中点的横坐标。 例如,在上一节调查的100位居民的月 均用水量的问题中,从这些样本数据的频 率分布直方图可以看出,月均用水量的众 数是2.25t.如图所示:
频率 组距
0.5 0.4 0.3 0.2 0.1
孝,可是,盈儿„„”“不管你有啥啊天大的理由,反正你就是不能去你二哥那里!”“娘亲!”“盈儿,爹娘连想都没有想过让你去四川的事 情。五年前是因为你二哥在京城需要有人照应,爹娘没有办法,不得已而为之的事情。去年是因为有你二哥壹路同行,而且你二哥也没有娶妻, 所以娘才同意你去四川。现在的情况完全不壹样咯!你二哥已经娶咯嫂子,你过去不是要受嫂子的气吗?而且自古蜀道艰险,爹娘能让你壹各姑 娘家,孤零零地壹各人走那条险路吗?再有咯,京城可是在天子脚下,要啥啊有啥啊,不比那蛮夷之地强多咯?在京城里给你觅得壹各佳婿,总 比你嫁到山高路远的巴蜀之地好啊!你二哥那是去上任,总有回来的那壹天,你假如是嫁到咯那里,啥啊时候能让娘亲再见到你啊!这可是壹辈 子怕是要见不到咯啊!”年夫人越说越伤心,越说越动情,到最后,竟然伏在桌案上抬不起身来。玉盈也是被娘亲的话感动得热泪盈眶,更为自 己只为咯躲避王爷而惹得娘亲如此伤心而内疚不已。见娘亲哭得难以自持,她扑通壹下子就跪倒在咯年夫人的面前:“娘亲,玉盈不孝,伤咯娘 亲的心,盈儿再也不去四川咯,盈儿这就跟你回京城,好吗?娘啊,您不要再哭咯,盈儿知错咯。”“盈儿,自从你来到年府的第壹天,娘就壹 直拿你当亲生的闺女看待,凝儿有的,你壹定不能缺咯!这是娘对你亲生爹娘许下的承诺。”“娘,盈儿知错咯,您千万不要再难过咯。盈儿壹 定跟爹娘回京城,壹定为爹娘恪尽孝道,为爹娘养老送终„„”“傻孩子,爹娘怎么会要你养老送终呢!爹娘只要你嫁得壹各良人佳婿就是最大 的心愿。”“娘,盈儿说过咯,盈儿不会嫁人的,假如娘亲壹定要盈儿嫁人,盈儿还不如进咯道观做姑子!”“盈儿!你”年夫人壹口气堵在心 中,顿觉胸闷气短,直挺挺地就要栽倒。眼见着闯咯大祸的玉盈吓得啥啊也不敢再说,壹边喊人请大夫,壹边将娘亲扶到咯床上。大夫很快就请 来,仔细诊治壹番,见没有大碍,留下方子就走咯。大夫走后,年老爷、玉盈壹直守在夫人的身边。眼见着天色已晚,年老爷看看玉盈,又看看 夫人,想咯壹下,他对玉盈发咯话:“大夫看过咯,没有啥啊大碍,你早些回去歇息,明天再来照料娘亲,现在有爹爹陪着就可以咯。”“爹爹, 您的身体会受不住的,这些还是由盈儿来做吧。”“爹爹说啥啊,你听啥啊就是咯,爹爹自有爹爹的安排。”玉盈见状,只好和翠珠两人又忙咯 半天,把壹切料理妥当才离开。听见玉盈走咯,年夫人才慢慢地睁开咯眼睛。果然猜得不假,年大人心中有咯底。第壹卷 第201章 疑问“夫人 这又是为何事跟盈儿闹咯脾气?气坏咯身体可就不值当咯。”“唉,老爷,妾身这可就是想不
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由频率分布直方图估计样本平 均数(或总体数学期望)公式:
X =( a1+b1)/2* f1+ (a2+b2)/2* f2+ … … (ak+bk)/2* fk (其中每组数据的频率还可以由频率直方图的面积计算而得,即组距乘以频率/组距。)
练习.(广东11变式题2)为了调查某厂工人生产 某种产品的能力,随机抽查 了20位工人某天生 产该产品的数量.产品数量的分组区间为 45,55, 55,65 ,65,75 , 75,85 , 85,95 由此得到频率 分布直方图如图3,则这20名工人中一天生产 该产品 数量在 的平均 数 .
二 、 众数、中位数、平均数 与频率分布直方图的关系
(在只有频率分布直方图的情况下,也可以估计总体特征,而且直方图比较直观 便于形象地进行分析。)
1、众数在样本数据的频率分布直方图中, 就是最高矩形的中点的横坐标。 当最高矩形的数据组为〔a, b) 时, 那 么(a+b)/2就是众数。
频率 组距
一 众数、中位数、平均数的概念
众数、中位数、平均数都是描述一组 数据的集中趋势的特征数,只是描述的角 度不同,其中以平均数的应用最为广泛. 众数:在一组数据中,出现次数最多 的数据叫做这组数据的众数.
中位数:将一组数据按大小依次排列, 把处在最中间位置的一个数据(或最中 间两个数据的平均数)叫做这组数据的 中位数.
(5)估计总体的数学期望.
总体分布的估计
寿命 100~200 200~300 300~400 400~500 500~600 合计
频率/组距
频数 20 3Βιβλιοθήκη 80 40 30 200频率 0.10 0.15 0.40 0.20 0.15 1
累积频率 0.10 0.25 0.65 0.85 1
0
100 200 300 400 500 600 寿命(h)
3、平均数是频率分布直方图的“重心”.
是直方图的平衡点. n 个样本数据的平均数由 公式:
X=
1 ( x1 x 2 x n ) n
假设每组数据分别为〔a1, b1)、 〔a2, b2)、 … … 〔ak, bk)时, 且每组数据相应的 频率分别为f1、 f2 、 …… fk;那么样本的平 均数(或总体的数学期望)由下列公式计算即 可。
0.5 0.4 0.3 0.2 0.1
O
0.5
1
1.5
2
2.5
3
3.5
4
4.5
月平均用水量(t)
例题分析:月均用水量的众数是2.25t.如图所示:(2+2.5)/2=2.25
2、从频率分布直方图中估计中位数
(中位数是样本数据所占频率的等分线。)
• 当最高矩形的数据组为〔a, b) 时, 设中位 数为(a+X),根据中位数的定义得知, 中位 数左边立方图的小矩形面积为0.5, 列方程 得: • 当最高矩形的数据组之前所有小矩形的面 积之和为fm;(频率直方图的面积计算,即组距乘以频率/组距。) • x*最高矩形的(频率/组距)+ fm=0.5
总体分布的估计
(3) 由 频 率 分 布 表 可 以 出 看,寿命在 100h ~ 400 的电子元件出现的频为 率 : 0.65, 所 以 我 们 估 计 电 子 元件寿命在 100h ~ 400h的 概 率 为 : 0.65.
( 4 ) .由频率分布表可知,寿 命在400h以上的电子 元件出现的频率为: 0.20 0.15 0.35 ,故我们 估计电子元件寿命在 400h以上的概率为: 0.35.
练习.(广东11变式题1)为了调查某厂工人生产 某种产品的能力,随机抽查 了20位工人某天生 产该产品的数量.产品数量的分组区间为 45,55, 55,65 ,65,75 , 75,85 , 85,95 由此得到频率 分布直方图如图3,则这20名工人中一天生产 该产品 数量在 的中位 数 .
思考:从样本数据可知,所求得该样本的众 数、中位数和平均数,这与我们从样本频率 分布直方图得出的结论有偏差,你能解释一 下原因吗? 频率分布直方图损失了一些样本数据,得 到的是一个估计值,且所得估值与数据分组 有关. 注:在只有样本频率分布直方图的情况下,我 们可以按上述方法估计众数、中位数和平均 数,并由此估计总体特征.
• 求解X, 那么a+X即为中位数。
思考题:如何从频率分布直方图中估计中位数? 频率/组距
0.50 0.44 0.40 0.30 0.16 0.20 0.08 0.10 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
中位数左边立方图的小矩形面积为0.5 月均用水量 /t 0~2的小矩形面积之和为: 0.5×(0.08+0.16+0.30+0.44)=0.49 0.5-0.49=0.01 0.01/0.5=0.02 如图在直线t=2.02之前所有小矩形的面积为0.5 所以该样本的中位数为2.02
平均数: 一组数据的算术平均数,即
x=
1 ( x1 x 2 x n ) n
1、 平均数 :由数据及频率计算平均数,即 x = x1f1+x2f2+……xkfk (其中fk是xk的频率。) 2、加权平均数 :由数据及其权数和样本容量计算平均 数 ,即 x = (x1n1+x2n2+……xknk)/n (其中nk是xk的权数, n为样本容量, 且n1+n2 +……nk=n. ) 3、 已知xn的平均数为x, 则kxn+b的平均数为kx+b。
(5).样本的期望值为: 100 200 200 300 300 400 0.10 0.15 0.40 2 2 2 400 500 500 600 0.20 0.15 15 140 90 82.5 365. 2 2 我们估计总体生产的电 子元件的寿命的 期望值(总体均值)为 365.
总体分布的估计
练习:对某电子元件进行寿命追踪调查,情况如下: 寿命 个数 100~200 20 200~300 30 300~400 400~500 80 40 500~600 30
(1)列出频率分布表; (2)画出频率分布直方图; (3)估计电子元件寿命在100h~400h以内的概率;
(4)估计电子元件寿命在400h以上的概率;