人教版数学高一学案系统抽样

合集下载

系统抽样、分层抽样、数据的收集

系统抽样、分层抽样、数据的收集

【高一数学学案】系统抽样、分层抽样、数据的收集一、复习:简单随机抽样方法有,二、自主学习阅读教材P52~P56完成下列填空:1、系统抽样:当总体元素个数很大时,可将总体分成的若干部分,然后按照规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样方法叫做。

2、系统抽样的优点:。

3.系统抽样的步骤:从元素个数为N的总体中抽取容量为n的样本,如果总体容量能被样本容量,设Nkn,可先由数字1到k中随机地抽取一个数s作为起始数,然后顺次抽取第,,……个数,这样就得到容量为n的样本。

如果总体容量被样本容量整除,可随机地从总体中余数,然后再用系统抽样方法进行抽样。

4.分层抽样:当总体由有的几部分组成时,可将总体中各个个体按照某种特征分成若干个的几部分,每一部分叫做,在各层中按在总体中所占比例进行简单随机抽样或系统抽样,这种抽样方法叫做。

5分层抽样的优点:。

6.收集数据的方式有:①,②,③。

二、典型例题例1:为了了解某地区今年高一学生期末考试数学学科的成绩,需要从参加考试的15000名学生中抽取容量为150的样本。

请给出一个系统抽样方案。

例2 某学校有900名高中生,为考察他们的体重状况打算抽取容量为45的一个样本,已知高一有400名学生,高二有300名学生,高三有200名学生。

请给出一个分层抽样方案。

三、小结:四、作业1、某工厂生产A、B、C三种不同型号的产品,产品数量之比依次为2:3:5,现用分层抽样的方法抽出一个容量为n的样本,样本中A种型号产品有16件,那么此样本的容量n= 。

2、某公司生产三种型号的轿车,产量分别为1200辆,6000辆和2000辆,为检验公司的产品的质量,现用分层抽样的方法抽取46辆进行检验,这三种型号的轿车依次应抽取,,辆。

3.一工厂生产了某种产品16800件,它们来自甲、乙、丙3条生产线,为检查这批产品的质量,决定采用分层抽样的方法进行抽样,已知从甲、乙、丙3条生产线抽取的个体数之比为2:3:5,则乙生产线生产了件产品。

人教新课标版数学高一数学人教B版必修3学案 系统抽样

人教新课标版数学高一数学人教B版必修3学案 系统抽样

2.1.2 系统抽样自主学习学习目标1.理解系统抽样的概念、特点.2.掌握系统抽样的方法和操作步骤,会用系统抽样法进行抽样.自学导引1.系统抽样的概念将总体分成________的若干部分,然后按照预先制定的规则,从每一部分抽取________个体,得到所需要的样本,这种抽样的方法叫做系统抽样.在抽样过程中,由于抽样的间隔________,因此系统抽样也称作________抽样.2.适用的条件总体中个体差异不大并且总体的容量________.3.系统抽样的步骤一般地,假设要从容量为N 的总体中抽取容量为n 的样本,可以按下列步骤进行系统抽样.(1)先将总体的N 个个体________.有时可直接利用个体自身所带的号码,如学号,准考证号,门牌号等;(2)确定分段间隔k 对编号进行分段,当N n (n 是样本容量)是整数时,取k =________; (3)在第一段用____________确定一个个体编号s (s ≤k );(4)按照一定的规则抽取样本.通常是将s 加上间隔k 得到第2个个体编号________,再加k 得到第3个个体编号________,依次进行下去,直到得到容量为n 的样本.对点讲练知识点一 系统抽样的概念例1 下列抽样中,最适宜用系统抽样法的是( )A .从某厂生产的20 000个电子元件中随机抽取6个做样本B .从某厂生产的2 000个电子元件中随机抽取5个做样本C .从某厂生产的2 000个电子元件中随机抽取200个做样本D .从某厂生产的20个电子元件中随机抽取7个做样本点评 解决该类问题的关键是掌握系统抽样的特点及适用范围.变式迁移1 某学校附近的一家小型超市为了了解一年的客流情况,决定用系统抽样从一年中抽出52天作为样本实施调查(即从每周抽取1天,一年恰好有52个星期),你觉得这样的选择合适吗?为什么?知识点二系统抽样的应用例2为了解参加某种知识竞赛的1 000名学生的成绩,从中抽取一个容量为50的样本,那么采用什么抽样方法比较恰当?简述抽样过程.点评(1)解决系统抽样问题中两个关键的步骤为:①分组的方法应依据抽取比例而定,即根据定义每组抽取一个样本.②起始编号的确定应用随机抽样的方法,一旦起始编号确定,其他编号便随之确定了.(2)当总体中的个体数不能被样本容量整除时,需要在总体中剔除一些个体.变式迁移2某工厂有1 003名工人,从中抽取10人参加体检,试用系统抽样进行具体实施.知识点三系统抽样的综合应用例3某工厂有工人1 021人,其中高级工程师20人,现抽取普通工人40人,高级工程师4人组成代表队参加某项活动,怎样抽样?点评 (1)当问题比较复杂时,可以考虑在一个问题中交叉使用多种方法,面对实际问题,准确合理地选择抽样方法,对初学者来说是至关重要的.(2)选择抽样方法的规律①当总体容量较小,样本容量也较小时,制签简单,号签容易搅匀,可采用抽签法. ②当总体容量较大,样本容量较小时,可采用随机数表法.③当总体容量较大,样本容量也较大时,适合用系统抽样法.变式迁移3 某单位在岗职工共有624人,为了调查工人用于上班途中的时间,该单位工会决定抽取10%的工人进行调查,请问如何采用系统抽样法完成这一抽样?系统抽样的理解 (1)系统抽样的本质是“等距抽样”,要取多少个样本就将总体分成多少组,每组中取一个;(2)若总体个数不能被样本个数整除,则先从总体中剔除若干个个体达到整除状态,重新编号,并根据样本个数进行分组;(3)剔除个体及第一段抽样都用简单随机抽样;(4)系统抽样是等可能抽样,每个个体被抽到的可能性都是n N;(5)系统抽样适用于总体容量较大,且分布均衡(即个体间无明显的差异)的情况.注意:如果总体中个体数N 正好被样本容量n 整除,则每个个体被入样的可能性是n N,若N 不能被n 整除,需要剔除m 个个体,m =N -n ·⎣⎡⎦⎤N n (这里⎣⎡⎦⎤N n 表示不超过N n的最大整数),此时每个个体入样的可能性仍是n N ,而不是n N -m.课时作业一、选择题1.为调查某产品的销售情况,销售部门从下属的92家销售连锁店中抽取30家了解情况.若用系统抽样法,则抽样间隔和随机剔除的个体数分别为( )A .3,2B .2,3C .2,30D .30,22.从2 008名学生中选取50名学生组成参观团,若采用下面的方法选取:先用简单随机抽样方法从2 008人中剔除8人,剩余的2 000人再按系统抽样的方法进行,则每人入选的机会( )A .不全相等B .均不相等C .都相等D .无法确定3.要从已经编号(1~50)的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射试验,用系统抽样方法确定所选取的5枚导弹的编号可能是( )A .5,10,15,20,25B .3,13,23,33,43C .1,2,3,4,5D .2,4,8,16,324.从N 个编号中要抽取n 个号码入样,若采用系统抽样方法抽取,则分段间隔应为(N nN n N nA 、B 中抽取样本容量太小,不适宜.D 中总体元素较少,不适宜.C 中总体容量和样本容量都较大,适于用系统抽样.故选C .应先剔除2家,间隔k =9030=3. 2.C3.B4.C5.C6.35 47解析 因为1 64535=47,故采用系统抽样法时,编号后分成35组,每组47个个体. 7.系统抽样8.501 003解析 每个个体被抽到的可能性为样本容量总体容量=501 003. 9.解 采用系统抽样较合理.设每班一组,共36组,编号为1~36组,先在第一组用简单随机抽样抽出一名学生,再将其他各组与此学生学号相同的学生全部抽出.10.解 第一步:采用随机的方式给个体编号:0001,0002, (2004)第二步:利用随机数表法剔除4个个体.第三步:分段,由于20∶2 000=1∶100,故将总体分为20组,其中每组含100个个体,即间隔k =100;第四步:在第一组中随机抽取一个号码,比如0066号;第五步:“起始号”+“间隔”确定样本中的各个个体,如166,266,…,1966. 这20个号所对应的学生组成样本.。

高中数学教案抽样方法

高中数学教案抽样方法

高中数学教案抽样方法
年级:高中
学科:数学
目标:学生能够理解和应用不同的抽样方法进行统计调查,能够根据具体情况选择合适的抽样方法。

教学重点:简单随机抽样、系统抽样、分层抽样、整群抽样
教学难点:理解和区分各种抽样方法,能够应用到实际问题中
教学准备:教材、教具、实验工具、教学PPT
教学过程:
1.导入:通过一个小调查开始,了解同学们对抽样方法的了解程度,引入本节课的主题。

2.简单随机抽样:
-介绍简单随机抽样的定义和步骤
-通过实例演示简单随机抽样的过程和计算方法
-让学生自行完成一个简单随机抽样的实验
3.系统抽样:
-介绍系统抽样的定义和原理
-通过实例演示系统抽样的过程和计算方法
-让学生自行完成一个系统抽样的实验
4.分层抽样:
-介绍分层抽样的定义和目的
-通过实例演示分层抽样的过程和计算方法
-让学生自行完成一个分层抽样的实验
5.整群抽样:
-介绍整群抽样的定义和适用情况
-通过实例演示整群抽样的过程和计算方法
-让学生自行完成一个整群抽样的实验
6.实际应用:
-讨论各种抽样方法的优缺点及适用范围
-让学生通过实际案例分析,选择合适的抽样方法进行统计调查
7.总结:总结各种抽样方法的特点和应用场景,强调实际问题中的抽样方法选择的重要性。

作业布置:布置练习题,要求学生熟练掌握各种抽样方法的步骤和原理。

教学反馈:通过课堂讨论和练习题的批改,及时纠正学生的错误,加强对抽样方法的理解
和应用能力。

人教版数学高一-高一数学学案 抽样方法(1)

人教版数学高一-高一数学学案 抽样方法(1)

【学习目标】(1)理解简单随机抽样的概念,会用简单随机抽样(抽签法、随机数表法)从总体中抽取样本。

(2)初步感受收集数据的科学性对决策所起的作用。

【课前预习】阅读书本P54—57【新课讲解】1、总体、样本、样本容量我们要考察的对象的全体叫做_______,其中每个考察的对象叫_______.从总体中抽出的一部分个体叫做_______,样本中个体的数目叫做_______.统计学的基本思想是:通过从总体中抽取一个,根据的情况去估计的相应情况。

因此,收集的样本数据应当能够很好地反映总体,这是得出正确结论的前提。

2、简单随机抽样一般地,设一个总体含有N个个体,从中地抽取n个个体作为样本(n≤N),如果每次抽取时各个个体被抽到的都相等,就把这种抽样方法叫做简单随机抽样.每个个体被抽取的可能性等于。

3、简单随机抽样主要有两种方法:和。

①抽签法的步骤:编号、制签,搅拌均匀,逐个抽取.抽签法简便易行,适用于个体数不太多总体.②随机数表法:“三步曲”:第一步,;第二步,;第三步,。

【典例分析】例1、要了解某产品的使用寿命,从中抽取10件产品进行实验,在这个问题中,总体是,个体是,样本是,样本容量是。

例2、1936 年,美国著名的«文学摘要»杂志社,为了预测总统候选人罗斯福与兰登两人谁能当选,他们以电话簿上的地址和俱乐部成员名单上的地址发出1000万封信,收回回信200万封,在调查史上这是少有的样本容量,花费了大量的人力、物力,«文学摘要»相信自己的调查结果,即兰登将以57%对43%的比例获胜,并进行大量宣传,最后选举却是罗斯福以62%对38%的巨大优势获胜,这个调查断送了这家原本颇有名气的杂志社的前程,不久只得关门停刊,试分析这次调查失败的原因。

例3、下面的抽样方法是简单随机抽样的是(1)某班有40名同学,指定个子最高的5名同学参加篮球比赛;(2)从无限个个体中抽取50个个体作为样本;(3)小孩从箱中的20件玩具中随意拿出一件来玩,玩后放回再拿出一件,连续玩了5件;(4)从2000个灯泡中逐个抽取20个进行质量检查。

人教版数学高一教学设计系统抽样

人教版数学高一教学设计系统抽样

2.1.2系统抽样三维目标1.知识与技能(1)了解系统抽样的定义,特点及操作步骤.(2)理解科学、合理选用抽样方法的必要性.2.过程与方法(1)系统抽样的操作步骤.(2)通过生活实例的对比分析,让学生了解各种抽样方法的使用范围,能根据实际情况选择适当的抽样方法.3.情感、态度与价值观(1)将生活实例与数学进行结合,使学生感受到生活处处有数学;激发学生学习的兴趣,渗透“运用数学”解决实际问题的意识.(2)培养学生科学的探索精神,培养学生合作探讨,相互交流的能力,概括归纳的能力,合情推理的意识.重点难点重难点:系统抽样的定义及操作步骤.在探讨中总结定义,培养学生合作探讨,相互交流的能力.培养学生概括归纳的能力,让学生体会学数学的成就感.通过师生的互动,深化系统抽样和分层抽样概念及遵循原则的理解,用程序框图来表示分层抽样的步骤,加深学生对分层步骤的理解,进而强化了重点.学生对系统抽样和分层抽样刚刚接触,还没有形成理性认识,所以鼓励学生相互交流,让他们先想、先说、先做,再规范学生的解题过程,避免了老师的单独说教,既降低了学习难度,又激发了学习兴趣.在兴趣中化解了难点.教学建议本课利用多媒体辅助教学,在教法上充分体现教师“问题诱导,启发讨论”的引导作用,在学法上突出学生的“自主探究,合作交流”的学习方式,真正实现“教师为主导,学生为主体”的新课程理念,让学生通过“析案例、议疑难、现过程、得结论、做小结”等一系列学习活动来掌握重点,突破难点,充分发挥学生的主动性和参与性.以促进学生发展为出发点,着眼于知识的形成和发展以及学生的学习体验,以问题链形式,由浅入深、循序渐进,让不同层次的学生都能参与到课堂教学中,体验成功的喜悦.【问题导思】1.某中学从5 000名学生中选出50人参加2013年10月1日的庆国庆文娱活动,若用抽签法可行吗?【提示】 可行,但费时费力、操作不变.2.能否设计一个合理的抽样方法完成此样本的抽取?【提示】 能.先将总体中的个体逐一编号,然后按号码顺序以一定的间隔k 进行抽取,先从第一个间隔中随机地抽取一个号码,然后逐个抽取的号码依次增加间隔数即得到所求样本.[例1] (1)法:从某本发票的存根中随机抽一张,如15号,然后按顺序将65号,115号,165号,…,发票上的销售金额组成一个调查样本.这种抽取样本的方法是( )A .抽签法B .随机数法C .系统抽样法D .以上都不对(2)为了解1 200名学生对学校某项教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔k =________.【解析】(1)上述抽样方法是将发票平均分成若干组,每组50张,从第一组抽出了15 号,以后各组抽15+50n (n ∈N *)号,符合系统抽样的特点.(2)根据样本容量为30,将1 200名学生分为30段,每段人数即间隔k =1 20030=40. 【答案】(1)C (2)40[类题通法]系统抽样的判断方法判断一个抽样是否为系统抽样:(1)首先看是否在抽样前知道总体是由什么组成,多少个个体,(2)再看是否将总体分成几个均衡的部分,并在每一个部分中进行简单随机抽样,(3)最后看是否等距抽样.[活学活用]某影院有40排座位,每排有46个座位,一个报告会上坐满了听众,会后留下座号为20的所有听众进行座谈,这是运用了( )A .抽签法B .随机数表法C .系统抽样法D .放回抽样法【解析】选C 此抽样方法将座位分成40组,每组46个个体,会后留下座号为20的相当于第一组抽20号,以后各组抽取20+46n ,符合系统抽样特点.【答案】C[例2] (1)50名学生做牙齿健康检查.现将800名学生从1到800进行编号,求得间隔数k =80050=16,即每16人抽取一个人.在1~16中随机抽取一个数,如果抽到的是7,则从33~48这16个数中应 取的数是________.【解析】∵采用系统抽样方法,每16人抽取一个人,1~16中随机抽取一个数抽到的是7,∴在第k 组抽到的是7+16(k -1),∴从33~48这16个数中应取的数是7+16×2=39.【答案】39(2)某企业对新招的504名员工进行岗前培训,为了了解员工的培训情况,试用系统抽样的方法按照下列要求抽取员工,请你写出具体步骤.①从中抽取8名员工,了解基本理论的掌握情况.②从中抽取50名员工,了解实际操作的掌握情况.解 ①第一步,将504名员工随机编号,依次为001,002,003,…,503,504,将其等距分成8段,每一段有63个个体;第二步,在第一段(001~063)中用简单随机抽样方法随机抽取一个号码作为起始号码,比如26号;第三步,起始号+间隔的整数倍,确定各个个体:将编号为26,26+63,26+63×2,…,26+63×7的个体抽出组成样本.②第一步,用随机方式给每个个体编号:001,002,003,…,503,504;第二步,利用随机数表法剔除4个个体,比如剔除编号为004,135,069,308的4个个体,然后再对余下的500名员工重新编号,分别为001,002,003,…,499,500,并等距分成50段,每段10个个体;第三步,在第一段001,002,003,…,010中用简单随机抽样方法抽出一个号码(如006)作为起始号码;第四步,起始号+间隔的整数倍,确定各个个体,将编号为006,016,026,…,486,496的个体抽出组成样本.[类题通法]设计系统抽样应关注的几个问题(1)系统抽样一般是等距离抽取,适合总体中个体数较多,个体无明显差异的情况;(2)总体均匀分段,通常在第一段(也可以选在其他段)中采用简单随机抽样的方法抽取一个编号,再通过将此编号加段距的整数倍的方法得到其他的编号.注意要保证每一段中都能取到一个个体;(3)若总体不能均匀分段,要将多余的个体剔除(通常用随机数表的方法),不影响总体中每个个体被抽到的可能性.[活学活用]某校高中二年级有253名学生,为了了解他们的视力情况,准备按1∶5的比例抽取一个样本,试用系统抽样方法进行抽取,并写出过程.解(1)先把这253名学生编号000,001, (252)(2)用随机数表法任取出3个号,从总体中剔除与这三个号对应的学生.(3)把余下的250名学生重新编号1,2,3, (250)(4)分段.取分段间隔k=5,将总体均分成50段.每段含5名学生.(5)以第一段即1~5号中随机抽取一个号作为起始号,如l.(6)从后面各段中依次取出l+5,l+10,l+15,…,l+245这49个号.这样就按1∶5的比例抽取了一个样本容量为50的样本.[例3]人.该集团拟组织一次出国学习,参加人员确定为:获得过国家级表彰的人员5人,其他人员30人,如何确定人选?解获得过国家级表彰的人员选5人,适宜使用抽签法:其他人员选30人,适宜使用系统抽样法.(1)确定获得过国家级表彰的人员人选:①用随机方式给29人编号,号码为1,2, (29)②将这29个号码分别写在一个小纸条上,揉成小球,制成号签;③将得到的号签放入一个不透明的袋子中,搅拌均匀;④从袋子中逐个抽取5个号签,并记录上面的号码;⑤从总体中将与抽到的号签的号码相一致的个体取出,人选就确定了.(2)确定其他人员人选:第一步:将990名其他人员重新编号(分别为1,2,…,990),并分成30段,每段33人;第二步,在第一段1,2,…,33这33个编号中用简单随机抽样法抽出一个(如3)作为起始号码;第三步,将编号为3,36,69,…,960的个体抽出,人选就确定了.(1),(2)确定的人选合在一起就是最终确定的人选.[类题通法]系统抽样与简单随机抽样的区别和联系1.区别(1)系统抽样比简单随机抽样更容易实施,可节约抽样成本;(2)系统抽样所得样本的代表性与具体的编号有关,而简单随机抽样所得样本的代表性与个体的编号无关.如果编号的个体特征随编号的变化呈一定的周期性,可能会使抽样的代表性很差;(3)系统抽样的应用比简单随机抽样的应用更广泛,尤其是工业生产线上产品质量的检验,不知道产品的数量,因此不能用简单随机抽样.2.联系(1)将总体均分后的起始部分进行抽样时,采用的是简单随机抽样;(2)与简单随机抽样一样,系统抽样是等概率抽样,它是客观的、公平的;(3)与简单随机抽样一样是不放回的抽样;(4)总体中的个体数恰好能被样本容量整除时,可用它们的比值作为系统抽样的间隔;当总体中的个体数不能被样本容量整除时,可用简单随机抽样先从总体中剔除少量个体,使剩下的个体数能被样本容量整除再进行系统抽样.[活学活用]下面给出某村委会调查本村各户收入情况做的抽样,阅读并回答问题.本村人口数: 1 200,户数300,每户平均人口数4人;应抽户数:30;抽样间隔:1 20030=40; 确定随机数字:取一张人民币,后两位数为12;确定第一样本户:编号12的户为第一样本户;确定第二样本户:12+40=52,52号为第二样本户……(1)该村委会采用了何种抽样方法?(2)抽样过程存在哪些问题,试修改.(3)何处是用简单随机抽样?解(1)系统抽样.(2)本题是对某村各户进行抽样,而不是对某村人口抽样.抽样间隔30030=10,其他步骤相应改为确定随机数字:取一张人民币,末位数为2.(假设)确定第一样本户:编号02的住户为第一样本户;确定第二样本户:2+10=12,12号为第二样本户.(3)确定随机数字:取一张人民币,其末位数为2.[例4]什么抽样方法比较恰当?简述抽样过程.【思路探究】 编号→剔除→再编号→分段→在第一段上抽样→在其他段上抽样→成样 解 (1)随机地将这1 003个个体编号为1,2,3,…,1 003;(2)利用简单随机抽样,先从总体中随机剔除3个个体,剩下的个体数1 000能被样本容量50整除,然后将1 000个个体重新编号为1,2,3,…,1 000;(3)将总体按编号顺序均分成50组,每组包括20个个体;(4)在编号为1,2,3,…,20的第一组个体中,利用简单随机抽样抽取一个号码,比如是18;(5)以18为起始号码,每间隔20抽取一个号码,这样得到一个容量为50的样本:18,38,58,…,978,998.[类题通法]当总体容量不能被样本容量整除时,可以先从总体中随机剔除几个个体,但要注意的是剔除过程必须是随机的,也就是总体中的每个个体被剔除的机会均等.剔除几个个体后使总体中剩余的个体数能被样本容量整除.[活学活用]从某厂生产的802辆轿车中抽取80辆测试某项性能.请用系统抽样方法进行抽样,并写出抽样过程.解 第一步,先从802辆轿车中剔除2辆轿车(剔除方法可用随机数法);第二步,将余下的800辆轿车编号为1,2,…,800,并均匀分成80段,每段含k =80080=10个个体;第三步,从第1段即1,2,…,10这10个编号中,用简单随机抽样的方法抽取一个号(如5)作为起始号;第四步,从5开始,再将编号为15,25,…,795的个体抽出,得到一个容量为80的样本.易错易误辨析系统抽样概念不清致误[典例] 从2 009名学生中选取50名学生参加数学竞赛,若采用下面方法选取:先用简单随机抽样从2 009人中剔除9人,剩下的2 000人再按系统抽样的方法抽取50人,则在2 009人中,每个人入选的机会( )A .都相等,且为502 009 B .不全相等 C .均不相等 D .都相等,且为140【解析】因为在系统抽样中,若所给的总体个数不能被样本容量整除,则要先剔除几个个体,本题要先剔除9人,然后再分组,在剔除过程中,每个个体被剔除的机会相等,所以每个个体被抽到包括两个过程,一是不被剔除,二是被选中,这两个过程是相互独立的,所以,每个人入选的机会都相等,且为502 009. 【答案】A课堂小结抽样方法的选取:1.若总体由差异明显的几个层次组成,则选用分层抽样.2.若总体没有差异明显的层次,则考虑采用简单随机抽样或系统抽样.当总体容量较小时宜用抽签法;当总体容量较大、样本容量较小时宜用随机数表法;当总体容量较大、样本容量也较大时宜用系统抽样.3.采用系统抽样时,当总体容量N 能被样本容量n 整除时,抽样间隔为k =N n;当总体容量不能被样本容量整除时,先用简单随机抽样剔除多余个体,抽样间隔为k =[N n]. 当堂检测1.老师从全班50名同学中抽取学号为3,13,23,33,43的五名同学了解学习情况,其最可能用到的抽样方法为( )A .简单随机抽样B .抽签法C .随机数表法D .系统抽样【解析】符合系统抽样的特征.【答案】D2.为了解2 400名学生对某项教改的意见,打算从中抽取60名学生调查,采用系统抽样法,则分段间隔k 为( )A .40B .30C .20D .60【解析】k =2 40060=40. 【答案】A3.某单位有职工200人,35岁以下有40人,35岁到50岁的有120人,51岁及以上的有40人,用分层抽样的方法从中抽取40人,各年龄段分别抽取人数为( )A .8,24,8B .4,12,20C .24,28,30D .16,16,32 【解析】各年龄段的比为1∶3∶1,∴各段人数分别为40×15=8,40×35=24,40×15=8. 【答案】A4.某运输队有货车1 200辆,客车800辆,从中抽取110调查车辆的使用和保养情况,请给出抽样过程.解利用分层抽样.第一步,确定货车和客车各应抽取多少辆.货车:1 200×110=120(辆),客车:800×110=80(辆);第二步,用系统抽样法分别抽取货车120辆,客车80辆;第三步,把抽取的货车和客车组成样本.。

高中数学系统抽样教案

高中数学系统抽样教案

高中数学系统抽样教案
教学目标:
1. 理解系统抽样的概念和原理。

2. 掌握系统抽样的方法和步骤。

3. 能够运用系统抽样进行统计调查。

教学重点:
1. 理解系统抽样的概念和方法。

2. 掌握系统抽样的步骤。

教学难点:
1. 理解系统抽样和随机抽样的区别。

2. 运用系统抽样进行具体问题的解决。

教学准备:
1. 讲义、课件、黑板、彩色笔。

2. 学生配备纸和笔。

教学过程:
一、导入
老师简要介绍抽样的概念和在统计学中的应用,引入系统抽样的概念。

二、讲解
1. 介绍系统抽样的定义和原理。

2. 分析系统抽样与随机抽样的区别。

3. 详细讲解系统抽样的步骤和方法。

三、实例分析
老师通过实际例子演示系统抽样的具体操作过程,让学生理解系统抽样的实际应用。

四、练习
1. 学生自行完成一道系统抽样的练习题。

2. 老师随机抽取几位学生上台解答,帮助学生加深对系统抽样的理解。

五、总结
老师对系统抽样的概念、原理、步骤进行总结,并强调学生掌握系统抽样方法的重要性。

六、作业
布置系统抽样的作业,要求学生能够独立完成相关问题,并在下节课上交。

教学反思:
系统抽样是统计学中常用的一种抽样方法,它能够在一定程度上减少抽样误差,提高统计结果的准确性。

在教学中,要注重让学生理解系统抽样的原理和方法,引导他们能够熟练运用系统抽样进行实际问题的解决。

高中数学 2.1.2系统抽样导学案新人教版必修3

高中数学 2.1.2系统抽样导学案新人教版必修3

2.1.2 系统抽样【学习目标】1.理解系统抽样的概念;2.掌握系统抽样的一般步骤,会用系统抽样从总体中抽取样本;3.理解系统抽样与简单随机抽样的关系;4.了解系统抽样在实际生活中的应用,提高学习数学的兴趣.【学法指导】通过对实际问题的探究,归纳应用数学知识解决实际问题的方法,理解分类讨论的数学方法,通过数学活动,感受数学对实际生活的需要,体会现实世界和数学知识的联系. 1.系统抽样的概念先将总体中的个体逐一编号,然后按号码顺序以一定的间隔k 进行抽取,先从第一个间隔中 地抽取一个号码,然后按此间隔依次抽取即得到所求样本. 2.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本,步骤为:(1)先将总体的N 个个体 .有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等.(2)确定分段间隔k ,对编号进行 .当N n(n 是样本容量)是整数时,取k = ;(3)在第1段用 抽样确定第一个个体编号l (l ≤k );(4)按照一定的规则抽取样本.通常是将l 得到第2个个体编号 ,再加 得到第3个个体编号 ,依次进行下去,直到获取整个样本.[问题情境] 大家都知道盲人摸象的故事,四个盲人在庞大的大象面前,每人只摸了大象的一个部位,就都有了对大象与众不同的认识.在他们争得面红耳赤,不可开交时,有一智者对他们建议,要他们每个人按一定的间隔从左到右、从上到下去摸大象,结果每个人都得到了大象的正确形象,你知道这是一种什么方法吗? 探究点一 系统抽样的基本思想问题1 某学校为了了解高一年级学生对教师教学的意见,打算从高一年级500名学生中抽取50名进行调查,除了用简单随机抽样获取样本外,你能否设计其他抽取样本的方法?(分组讨论) 问题2 你能归纳系统抽样的定义吗? 例1 下列抽样中不是系统抽样的是( )A .从标有1~15号的15个小球中任选3个作为样本,按从小号到大号排序,随机确定起点i ,以后为i +5,i +10(超过15则从1再数起)号入样B .工厂生产的产品,用传送带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品检验C .搞某一市场调查,规定在商场新门口随机抽一个人进行询问,直到调查到事先规定的调查人数为止D .电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈 探究点二 系统抽样的一般步骤问题1 用系统抽样从总体中抽取样本时,首先要做的工作是什么?问题2 如果用系统抽样从505件产品中抽取50件进行质量检查,由于505件产品不能均衡分成50部分,对此应如何处理?问题3 用系统抽样从含有N 个个体的总体中抽取一个容量为n 的样本,要平均分成多少段,每段各有多少个号码?问题4 将含有N 个个体的总体抽取容量为n 的样本,平均分成Nn的整数部分段,每段的号码个数称为分段间隔,那么分段间隔k 的值如何确定?问题5 用系统抽样抽取样本时,每段各取一个号码,其中第1段的个体编号怎样抽取?以后各段的个体编号怎样抽取?问题6 一般地,用系统抽样从含有N 个个体的总体中抽取一个容量为n 的样本,其操作步骤如何?问题7 系统抽样适合在哪种情况下使用?与简单随机抽样比较,哪种抽样方法更使样本具有代表性?例2 某校高中三年级的295名学生已经编号为1,2,…,295,为了了解学生的学习情况,要按1∶5的比例抽取一个样本,用系统抽样的方法进行抽取,并写出过程.例3 为了解参加某种知识竞赛的1 000名学生的成绩,从中抽取一个容量为50的样本,那么采用什么抽样方法比较恰当?简述抽样过程.达标检测:1.下列抽样问题中最适合用系统抽样法抽样的是 ( ) A .从全班48名学生中随机抽取8人参加一项活动B .一个城市有210家百货商店,其中大型商店20家,中型商店40家,小型商店150家.为了掌握各商店的营业情况,要从中抽取一个容量为21的样本C .从参加模拟考试的1 200名高中生中随机抽取100人分析试题作答情况D .从参加模拟考试的1 200名高中生中随机抽取10人了解某些情况2.为了了解参加一次知识竞赛的1 252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本,那么总体中应随机剔除的个体数目是 ( )A.2B.3C.4D.5 3.有20个同学,编号为1~20,现在从中抽取4人的作文卷进行调查,用系统抽样方法确定所抽的编号为( )A .5,10,15,20B .2,6,10,14C .2,4,6,8D .5,8,11,14跟踪训练1 系统抽样适用的总体应 ( )A .容量较小B .容量较大C .个体数较多但不均衡D .任何总体跟踪训练2 从编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是( ) A.5,10,15,20,25 B.3,13,23,33,43 C.1,2,3,4,5 D.2,4,6,16,32 跟踪训练3 某工厂有1 003名工人,从中抽取10人参加体检,试用系统抽样进行具体实施.课堂小结:系统抽样的优点是简单易操作,当总体个数较多的时候也能保证样本的代表性;缺点是对存在明显周期性的总体,选出来的个体,往往不具备代表性.从系统抽样的步骤可以看出,系统抽样是把一个问题划分成若干部分分块解决,从而把复杂问题简单化,体现了数学转化思想.2.1.2 系统抽样练习题一、基础过关1.要从160名学生中抽取容量为20的样本,用系统抽样法将160名学生从1~160编号.按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组应抽出的号码为125,则第一组中按此抽签方法确定的号码是( )A.7 B.5 C.4 D.32.为了调查某产品的销售情况,销售部门从下属的92家销售连锁店中抽取30家了解情况.若用系统抽样法,则抽样间隔和随机剔除的个体数分别为( )A.3,2 B.2,3 C.2,30 D.30,23.某会议室有50排座位,每排有30个座位.一次报告会坐满了听众.会后留下座号为15的所有听众50人进行座谈.这是运用了( )A.抽签法B.随机数法C.系统抽样D.有放回抽样4.为了解1 202名学生对学校某项教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔k为( )A.40 B.30 C.20 D.125.某班级共有学生52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号同学在样本中,那么样本中还有一个同学的学号为________.6.采用系统抽样的方法,从个体数为1 003的总体中抽取一个容量为50的样本,则在抽样过程中,被剔除的个体数为________,抽样间隔为________.7.某学校有30个班级,每班50名学生,上级要到学校进行体育达标验收.需要抽取10%的学生进行体育项目的测验.请你制定一个简便易行的抽样方案(写出实施步骤).8.某学校有8 000名学生,需从中抽取100个进行健康检查,采用何种抽样方法较好,并写出过程.二、能力提升9.总体容量为524,若采用系统抽样,当抽样的间距为下列哪一个数时,不需要剔除个体( ) A.3 B.4 C.5 D.610.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2, (960)分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为( ) A .7B .9C .10D .1511.采用系统抽样从含有8 000个个体的总体(编号为0000,0001,…,7999)中抽取一个容量为50的样本,则最后一段的编号为____________,已知最后一个入样编号是7894,则开头5个入样编号是__________________.12.某装订厂平均每小时大约装订图书362册,要求检验员每小时抽取40册图书,检验其质量状况,请你设计一个抽样方案.三、探究与拓展13.下面给出某村委调查本村各户收入情况所作的抽样,阅读并回答问题:本村人口:1 200人,户数300,每户平均人口数4人; 应抽户数:30户; 抽样间隔:1 20030=40;确定随机数字:取一张人民币,编码的后两位数为12; 确定第一样本户:编码的后两位数为12的户为第一样本户; 确定第二样本户:12+40=52,52号为第二样本户; ……(1)该村委采用了何种抽样方法? (2)抽样过程中存在哪些问题,并修改. (3)何处是用简单随机抽样.。

人教版高中数学高一-必修三教学设计系统抽样

人教版高中数学高一-必修三教学设计系统抽样

§2.1.2 系统抽样教学目标:1、知识与技能:(1)正确理解系统抽样的概念;(2)掌握系统抽样的一般步骤;(3)正确理解系统抽样与简单随机抽样的关系;2、过程与方法:通过对实际问题的探究,归纳应用数学知识解决实际问题的方法,理解分类讨论的数学方法.3、情感态度与价值观:通过数学活动,感受数学对实际生活的需要,体会现实世界和数学知识的联系.4、重点与难点:正确理解系统抽样的概念,能够灵活应用系统抽样的方法解决统计问题. 知识探究(一):系统抽样的基本思想思考1. 某中学高一年级有12个班,每班50人,为了了解高一年级学生对老师教学的意见,教务处打算从年级600名学生中抽取60名进行问卷调查,那么年级每个同学被抽到的概率是多少?2. 你能用简单随机抽样对上述问题进行抽样吗?具体如何操作?3. 如果从600件产品中抽取60件进行质量检查,按照上述思路抽样应如何操作? 第一步,将这600件产品编号为1,2,3, (600)第二步,将总体平均分成60部分,每一部分含10个个体.第三步,在第1部分中用简单随机抽样抽取一个号码(如8号).第四步,从该号码起,每隔10个号码取一个号码,就得到一个容量为60的样本.(如8,18, (598)系统抽样的定义:一般地,要从容量为N 的总体中抽取容量为n 的样本,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样.由系统抽样的定义可知系统抽样有以下特征:(1)当总体容量N 较大时,采用系统抽样。

(2)将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,因此,系统抽样又称等距抽样,这时间隔一般为k =[nN ]. (3)预先制定的规则指的是:在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号.思考.下列抽样中不是系统抽样的是 ( C )A 、从标有1~15号的15号的15个小球中任选3个作为样本,按从小号到大号排序,随机确定起点i,以后为i+5, i+10(超过15则从1再数起)号入样B 工厂生产的产品,用传关带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品检验C、搞某一市场调查,规定在商场门口随机抽一个人进行询问,直到调查到事先规定的调查人数为止D、电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈知识探究(二):系统抽样的一般步骤思考1:用系统抽样从总体中抽取样本时,首先要做的工作是什么?将总体中的所有个体编号.思考2:如果用系统抽样从605件产品中抽取60件进行质量检查,由于605件产品不能均衡分成60部分,对此应如何处理?先从总体中随机剔除5个个体,再均衡分成60部分.思考3:用系统抽样从含有N个个体的总体中抽取一个容量为n的样本,要平均分成多少段,每段各有多少个号码?思考4:如果N不能被n整除怎么办?思考5:将含有N个个体的总体平均分成n段,每段的号码个数称为分段间隔,那么分段间隔k的值如何确定?总体中的个体数N除以样本容量n所得的商.思考6:用系统抽样抽取样本时,每段各取一个号码,其中第1段的个体编号怎样抽取?以后各段的个体编号怎样抽取?用简单随机抽样抽取第1段的个体编号.在抽取第1段的号码之前,自定义规则确定以后各段的个体编号,通常是将第1段抽取的号码依次累加间隔k.思考7:一般地,用系统抽样从含有N个个体的总体中抽取一个容量为n的样本,其操作步骤如何?第一步,将总体的N个个体编号.第二步,确定分段间隔k,对编号进行分段.第三步,在第1段用简单随机抽样确定起始个体编号l.第四步,按照一定的规则抽取样本.思考8:系统抽样适合在哪种情况下使用?与简单随机抽样比较,哪种抽样方法更使样本具有代表性?总体中个体数比较多;系统抽样更使样本具有代表性.思考9:在数字化时代,各种各样的统计数字和图表充斥着媒体,由于数字给人的印象直观、具体,所以让数据说话是许多广告的常用手法.下列广告中的数据可靠吗?“……瘦体减肥灵真的灵,其减肥的有效率为75%.”“现代研究证明,99%以上的人皮肤感染有螨虫…….”“……美丽润肤膏,含有多种中药成分,可以彻底清除脸部皱纹,只需10天,就能让你的肌肤得到改善.”例题精析例1、从编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是A.5,10,15,20,25 B、3,13,23,33,43C.1,2,3,4,5 D、2,4,6,16,32[分析]用系统抽样的方法抽取至的导弹编号应该k,k+d,k+2d,k+3d,k+4d,其中d=50/5=10,k是1到10中用简单随机抽样方法得到的数,因此只有选项B满足要求,故选B。

学案6:2.1.2系统抽样

学案6:2.1.2系统抽样

2.1.2 系统抽样学习目标1.理解系统抽样的定义、适用条件及其步骤.2.会利用系统抽样抽取样本.基础知识系统抽样(1)定义:一般地,要从容量为N 的总体中抽取容量为n 的样本,可将总体分成____的 若干部分,然后按照预先制定的____,从每一部分抽取____个体,得到所需要的样本,这种 抽样的方法叫做系统抽样.(2)步骤:归纳总结系统抽样的特征:(1)当总体中个体无差异且个体数目较大时,采用系统抽样.(2)将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,因此,系统抽样又称等距抽样,间隔一般为k =⎣⎡⎦⎤N n ⎝⎛⎭⎫⎣⎡⎦⎤N n 表示不超过N n 的最大整数. (3)预先制定的规则指的是:在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整数倍即为抽样编号.(4)在每段上仅抽一个个体,所分的组数(即段数)等于样本容量.(5)第一步编号中,有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等,不再重新编号.【做一做1-1】中央电视台动画城节目为了对本周的热心小观众给予奖励,要从已确定编号的一万名小观众中抽出十名幸运小观众.现采用系统抽样法抽取,其组容量为() A.10 B.100 C.1 000 D.10 000【做一做1-2】为了了解1 200名学生对学校某项教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔k为()A.40 B.30 C.20 D.12重点难点1.系统抽样与简单随机抽样的区别2.系统抽样与简单随机抽样的联系3.系统抽样中的合理分段问题典型例题题型一如何选择系统抽样【例题1】下列问题中,最适合用系统抽样抽取样本的是()A.从10名学生中,随机抽取2名学生参加义务劳动B.从全校3 000名学生中,随机抽取100名学生参加义务劳动C.从某市30 000名学生中,其中小学生有14 000人,初中生有10 000人,高中生有6 000人,抽取300名学生以了解该市学生的近视情况D.从某班周二值日小组6人中,随机抽取1人擦黑板跟踪训练1.一个年级有12个班,每个班有50名学生,随机编为1~50号,为了解他们在课外的兴趣爱好.要求每班的40号学生留下来进行问卷调查,这里运用的抽样方法是()A.分层抽样B.抽签法C.随机数表法D.系统抽样法题型二系统抽样的应用【例题2】某校高中三年级的295名学生已经编号为1,2,…,295,为了了解学生的学习情况,要按1∶5的比例抽取一个样本.请用系统抽样的方法进行抽取,并写出过程.跟踪训练2.从2 015名同学中,抽取一个容量为20的样本,试叙述系统抽样的步骤.题型三 易错辨析【例题3】 现从全班63人中,用系统抽样方法任选10人进行高中生体重与身高的关系的调查.应如何实施?错解:由于6310不是整数, 因此先用简单抽样方法从总体中随机剔除3个个体,然后分段间隔为6010=6. 第一步,先将63人编号,号码是01,02, (63)第二步,随机剔除3人;第三步,将余下的60人,按照男女生交替排成一路纵队,用掷骰子的方法在前6名中任选1名,对应号码为l ;第四步,将队中序列号为l ,l +6,l +6×2,…,l +6×9的10名同学选出来,组成容量为10的样本.错因分析:由于男女生交替排列,因而单、双号分别对应男生或女生,因此如果从第一段中抽出一个个体号l (假如是男生),则后面所取个体都是男生.由于男生和女生的体重分布有明显的不同,则抽取的样本仅仅代表了某一性别的个体,因此这个样本不具有代表性.正解:第一步,先对63人随机编号01,02, (63)第二步,用抽签法从63人中随机剔除3人;第三步,余下60人重新编号为01,02,03,…,60,并分成10段,每段6人;第四步,从第一段6人中用抽签法抽出1个号,如02;第五步,将号码为02,08,14,20,26,32,38,44,50,56的学生作为样本.随堂检测1.为了了解参加一次知识竞赛的1 252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本.那么总体中应随机剔除的个体数目是( )A .2B .4C .5D .62.某中学从已编号(1~60)的60个班级中,随机抽取6个班级进行卫生检查,用每部分选取的号码间隔一样的系统抽样方法确定所选的6个班级的编号可能是( )A .6,16,26,36,46,56B .3,10,17,24,31,38C .4,11,18,25,32,39D .5,14,23,32,41,503.下列抽样试验中,最适宜用系统抽样法的是( )A.某市的4个区共有2 000名学生,4个区的学生人数之比为3∶2∶8∶2,从中抽取200人入样B.从某厂生产的2 000个电子元件中抽取50个入样C.从某厂生产的10个电子元件中抽取2个入样D.从某厂生产的20个电子元件中抽取5个入样4.将参加数学竞赛的1 000名学生编号如下000,001,002,…,999,打算从中抽取一个容量为50的样本,按系统抽样方法分成50个部分,第一段编号为000,002,…,019,如果在第一段随机抽取的一个号码为015,则抽取的第40个号码为__________.5.某单位的在岗职工为620人,为了调查上班时,从家到单位的路上平均所用的时间,决定抽取10%的职工调查这一情况,如何采用系统抽样抽取样本?参考答案(1)均衡规则一个(2)编号分段间隔简单随机抽样间隔k l+k l+2k【做一做1-1】C依题意,要抽十名幸运小观众,所以要分成十个组,每个组容量为10 000÷10=1 000,即分段间隔.【做一做1-2】 A ∵N =1 200,n =30,∴k =N n =1 20030=40. 重点难点1.剖析:(1)系统抽样比简单随机抽样更容易实施,可节约抽样成本.(2)抽样所得样本的代表性与具体的编号有关,而简单随机抽样所得样本的代表性与个体的编号无关.如果编号的个体特征随编号的变化呈现一定的周期性,则可能会使抽样的代表性差些.(3)系统抽样的应用比简单随机抽样的应用更广泛,尤其是工业生产线上对产品质量的检验,由于不知道产品的数量,因此不能用简单随机抽样.2.剖析:(1)对总体均分后的每一部分进行抽样时,采用的是简单随机抽样.(2)与简单随机抽样一样,系统抽样是等概率抽样,它是客观的、公平的.(3)与简单随机抽样一样是不放回抽样.(4)总体中的个体数恰好能被样本容量整除时,可用它们的比值作为系统抽样的间隔;当总体中的个体数不能被样本容量整除时,可用简单随机抽样先从总体中剔除少量个体,使剩下的个体数能被样本容量整除后再进行系统抽样.3.剖析:系统抽样操作的要领是先将个体数较多的总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分中抽取1个个体,从而得到所需的样本.由于抽样的间隔相等,因此系统抽样又称为等距抽样(或叫机械抽样),所以系统抽样中必须对总体中的每个个体进行合理(即等距)分段.(1)若从容量为N 的总体中抽取容量为n 的样本,用系统抽样时,应先将总体中的各个个体编号,再确定分段间隔k ,以便对总体进行分段.(2)当N n 是整数时,取k =N n 作为分段间隔即可,如N =100,n =20,则分段间隔k =10020=5.也就是将100个个体按平均每5个为1段(组)进行分段(组);(3)当N n不是整数时,应先从总体中随机剔除一些个体,使剩余个体数N ′能被n 整除,这时分段间隔k =N ′n,如N =101,n =20,则应先用简单随机抽样从总体中剔除1个个体,使剩余的总体容量(即100)能被20整除,从而得出分段间隔k =10020=5,也就是说,只需将100个个体平均分为20段(组).(4)一般地,用简单随机抽样的方法从总体中剔除部分个体,其个数为总体中的个体数除以样本容量所得的余数.【例题1】【解析】A 项中总体个体无差异,但个数较少,适合用简单随机抽样;同样D 项中也适合用简单随机抽样;C 项中总体中个体有差异不适合用系统抽样;B 项中,总体中有 3 000个个体,个数较多且无差异,适合用系统抽样.【答案】B跟踪训练1.【解析】根据系统抽样的特点可知是系统抽样.【答案】D【例题2】 解:按照1∶5的比例抽取样本,则样本容量为15×295=59. 抽样步骤是:(1)编号:按现有的号码.(2)确定分段间隔k =5,把295名同学分成59组,每组5人;第1段是编号为1~5的5名学生,第2段是编号为6~10的5名学生,依次下去,第59段是编号为291~295的5名学生.(3)采用简单随机抽样的方法,从第一段5名学生中抽出一名学生,不妨设编号为l (1≤l ≤5).(4)那么抽取的学生编号为l +5k (k =0,1,2,…,58),得到59个个体作为样本,如当l =3时的样本编号为3,8,13,…,288,293.跟踪训练2.解:(1)先给这2 015名同学编号为1,2,3,4,…,2 015.(2)利用简单随机抽样剔除15个个体,再对剩余的2 000名同学重新编号为1,2,…,2 000.(3)分段,由于20∶2 000=1∶100,故将总体分为20个部分,其中每一部分有100个个体.(4)然后在第1部分随机抽取1个号码,例如第1部分的个体编号为1,2,…,100,抽取66号.(5)从第66号起,每隔100个抽取1个号码,这样得到容量为20的样本:66,166,266,366,466,566,666,766,866,966,1 066,1 166,1 266,1 366,1 466,1 566,1 666,1 766,1 866,1 966.1.【解析】因为1 252=50×25+2,所以应随机剔除2个个体.【答案】A2.【解析】选取的号码间隔一样的系统抽样方法,需把总体分为6段,即1~10,11~20,21~30,31~40,41~50,51~60,既符合间隔为10又符合每一段取一号的只有A 项.【答案】A3.【解析】A项中总体中个体间有差异,不适用系统抽样;C项和D项中总体中个体无差异,但个体数目不多,不适用系统抽样;B项中总体中个体间无差异,且个体数目较多,适宜用系统抽样.【答案】B4.【解析】利用系统抽样抽取样本,在第1段抽取号码为015,分段间隔为100050=20,则在第i段中抽取号码为015+20(i-1).则抽取的第40个号码为015+(40-1)×20=795.【答案】7955.解:用系统抽样抽取样本,样本容量是620×10%=62.步骤是:(1)编号:把这620人随机编号为1,2,3, (620)(2)确定分段间隔k=62062=10,把620人分成62段,每段10人;第1段是编号为1~10的10人,第2段是编号为11~20的10人,依次下去,第62段是编号为611~620的10人.(3)采用简单随机抽样的方法,从第1段10人中抽出一人,不妨设编号为l(1≤l≤10).(4)那么抽取的职工编号为l+10k(k=0,1,2,…,61),得到62个个体作为样本,如当l=3时的样本编号为3,13,23,…,603,613.。

2019-2020学年高中数学 系统抽样与分层抽样导学案 新人教A版必修1.doc

2019-2020学年高中数学 系统抽样与分层抽样导学案 新人教A版必修1.doc

2019-2020学年高中数学 系统抽样与分层抽样导学案 新人教A 版必修1【学习目标】(1)记住系统抽样、分层抽样的概念;(2)能说出系统抽样、分层抽样的一般步骤;(3)能区分简单随机抽样、系统抽样和分层抽样,并能选择适当正确的方法进行抽样。

【学习重点与难点】重点:系统抽样、分层抽样的步骤难点:系统抽样、分层抽样的概念【使用说明与学法指导】1、带着预习案中问题导学中的问题自主设计预习提纲,通读教材6358P P 页内容,阅读XXX 资料XXX 页内容,对概念、关键词、XXX 等进行梳理,作好必要的标注和笔记。

2、认真完成基础知识梳理,在“我的疑惑”处填上自己不懂的知识点,在“我的收获”处填写自己对本课自主学习的知识及方法收获。

3、熟记、XXX 基础知识梳理中的重点知识。

预习案一、问题导学1、系统抽样有哪些特征?请将系统抽样与简单随机抽样做一个对比,你认为这样的抽样方法能提高样本的代表性吗?为什么?2、如果遇到nN 不是整数的情况,采用系统抽样需要怎样处理? 3、你认为系统抽样有哪些优点和缺点?二、知识梳理1、在抽样中,________________时,可将总体分成均衡的几部分,然后按照预先制定的规则,_______________________,得到所需要的样本,这样的抽样方法叫做系统抽样.2.系统抽样的四个步骤为_________,_______________,_____________________,_____________________。

3、 分层抽样: 当已知总体由差异明显的几部分组成时,为了使样本更充分地反映总体的情况,常将总体分成 ,然后按照 从__________抽取一定数量的个体,将_____取出的个体合在一起作为样本,这种抽样的方法叫做分层抽样,所分成的部分叫做层三、预习自测1、系统抽样适合的总体应是( )A 、容量较少的总体B 、总体容量较多C 、个体数较多且均衡的总体D 、任何总体2、从编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是( )A 、5,10,15,20,25B 、3,13,23,33,43C 、1,2,3,4,5D 、2,4,6,16,323、分层抽样适合的总体是( )A 、总体容量较多B 、样本容量较多C 、总体容量很大,且总体中个体有差异D 、任何总体4、某高中共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采用分层抽样抽取容量为45的样本,那么高一、高二、高三各年级抽取的人数分别为( )A 、15,5,25B 、15,15,15C 、10,5,30D 、15,10,20探究案一、合作探究探究1、从个体总数N=80的总体中抽取一个容量为n =10的样本,使用随机数表法进行抽取,要取两位数。

高一数学学案:抽样方法(2)

高一数学学案:抽样方法(2)

【学习目标】1.学习目标:理解什么是系统抽样,会用系统抽样从总体中抽取样本。

2.重点与难点:正确理解系统抽样的概念,能够灵活应用系统抽样的方法解决统计问题。

【课前预习】阅读书本P58内容【新课讲解】1.概念解析:(1)系统抽样的定义:一般地,要从容量为N的总体中抽取容量为n的样本,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取个个体,得到所需要的样本,这种抽样的方法叫做系统抽样。

(2)系统抽样的步骤:从容量为N的总体中抽取容量为n的样本,我们可以按下列步骤进行系统抽样:①:采取随机方式将总体中的N个个体编号.②:将整个的编号均衡地分段,确定分段间隔k.N是整n不是整数时,从N中剔除一些个体,使得k为整数时,k= ;Nn数为止。

③在第段用简单随机抽样确定起始号码l。

④按照规则抽取样本:l;+k; ;……l+(n—1)k;2.典型例题例1、下列抽样中不是系统抽样的是()A、从标有1~15号的15号的15个小球中任选3个作为样本,按从小号到大号排序,随机确定起点i,以后为i+5, i+10(超过15则从1再数起)号入样;B、工厂生产的产品,用传关带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品检验;C、搞某一市场调查,规定在商场门口随机抽一个人进行询问,直到调查到事先规定的调查人数为止;D、电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈。

例2、从编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是( )A.5,10,15,20,25 B、3,13,23,33,43C.1,2,3,4,5 D、2,4,6,16,32例3、为了解参加一次知识竞赛的1252名学生的成绩,决定采用系统抽样的方法抽取一个]容量为50的样本,那么总体中随机剔除个体的数目是,每个体被抽到的可能性是反思小结:课本中指出,当总体中的个体数N不能被样本容量n整除时,可先用简单随机抽样从总体中剔除几个个体,使剩下的个体数能被样本容量整除,然后再按系统抽样进行。

人教版数学高一课时作业 系统抽样_ 分层抽样

人教版数学高一课时作业 系统抽样_ 分层抽样

2.1.2系统抽样2.1.3分层抽样一、选择题1.为了抽查某城市小轿车年检情况,在该城市采取抽车牌末位数字为6的小轿车进行检查,这种抽样方法是()A.随机数法B.抽签法C.系统抽样法D.其他抽样方法2.某校三个年级共有24个班,学校为了了解同学们的心理状况,将每个班编号,依次为1到24,现用系统抽样方法抽取4个班进行调查,若抽到的编号之和为48,则抽到的最小编号为()A.2 B.3 C.4 D.53.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种及20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是()A.4 B.5 C.6 D.74.对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则() A.p1=p2<p3B.p2=p3<p1C.p1=p3<p2D.p1=p2=p35.某学校高一、高二、高三三个年级共有学生3 500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按1100的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为()A.8 B.11 C.16 D.106.某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为()A.11 B.12 C.13 D.14二、填空题7.某企业共有职工150人,其中高级职称15人,中级职称45人,低级职称90人,现采用分层抽样来抽取30人,则抽取的高级职称的人数为________.8.某工厂生产A.B.C三种不同型号的产品,产品数量之比为2∶3∶5.现用分层抽样的方法抽出一个容量为n的样本,其中A种型号产品有16件,那么此样本的容量n=________.9.200名职工年龄分布如图所示,从中随机抽取40名职工作样本,采用系统抽样方法,按1~200编号,分为40组,分别为1~5,6~10,…,196~200,第5组抽取号码为22,第8组抽取号码为________.若采用分层抽样,40岁以下年龄段应抽取________人.10.某班共有学生52人,现根据学生的学号用系统抽样的方法抽取一个容量为4的样本,已知学号为6号、32号、45号的同学在样本中,那么样本中剩下的一个同学的学号是________号.三、解答题11.一个公司有职工160人,其中业务人员120人,管理人员16人,后勤服务人员24人.为了了解职工的某种情况,要从中抽取一个容量为20的样本,用分层抽样的方法抽取样本,并写出过程.12.某停车场停有6辆卡车、12辆小轿车和18辆电动车,现要从这些车辆中抽取一个容量为n的样本进行某项指标调查.若采用系统抽样的方法或分层抽样的方法抽取,则不用剔除个体;若样本容量增加1,则在采用系统抽样的方法时,需要在总体中先剔除1个个体,求样本容量n.13.为了对某课题进行研究,分别从A.B.C三所高校中用分层抽样法抽取若干名教授组成研究小组,其中高校A 有m 名教授,高校B 有72名教授,高校C 有n 名教授(其中0<m ≤72≤n ).(1)若A.B 两所高校中共抽取3名教授,B.C 两所高校中共抽取5名教授,求m 、n ;(2)若高校B 中抽取的教授数是高校A 和C 中抽取的教授数的23,求三所高校的教授的总人数.参考答案1.C解析:由于每个车牌的末位数字为0,1,2,…,9十个数字之一,某辆车车牌末位数字为6是随机的,这相当于将所有汽车分成若干组,每组10个(车牌的末位数字依次为0,1,2,…,9),取每一组中的第6个,故为系统抽样.2.B解析:由题意得系统抽样的抽样间隔为244=6.设抽到的最小编号为x ,则x +(6+x )+(12+x )+(18+x )=48,所以x =3,故选B .3.C解析:四类食品的种数比为4∶1∶3∶2,则抽取的植物油类的种数为20×110=2,抽取的果蔬类的种数为20×210=4,二者之和为6,故选C . 4.D解析:因为采取简单随机抽样、系统抽样和分层抽样抽取样本时,总体中每个个体被抽中的概率相等,故选D .5.A解析:若设高三学生数为x ,则高一学生数为x 2,高二学生数为x 2+300,所以有x +x 2+x 2+300=3 500,解得x =1 600.故高一学生数为800,因此应抽取高一学生数为800100=8. 6.B解析:由于84042=20,即每20人抽取1人,所以抽取编号落入区间[481,720]的人数为720-48020=24020=12. 7.3解析:由题意得抽样比为30150=15,所以抽取的高级职称的人数为15×15=3. 8.80解析:16÷22+3+5=80. 9.37 20解析:将1~200编号分为40组,则每组的间隔为5,其中第5组抽取号码为22,则第8组抽取的号码应为22+3×5=37;由已知条件200名职工中40岁以下的职工人数为200×50%=100,设在40岁以下年龄段中应抽取x 人,则40200=x 100,解得x =20.10.19解析:∵45-32=13,∴抽样间隔为13,故抽取学生的学号依次为6.19.32.45,故填19.11.解:样本容量与职工总人数的比为20∶160=1∶8,所以业务人员、管理人员和后勤服务人员各应抽取的人数分别为1208、168和248,即分别为15.2和3,每一层抽取时采用简单随机抽样或系统抽样,再将各层抽取的个体合在一起,就得到要抽取的样本.12.解:由题意知总体容量为6+12+18=36.当样本容量是n 时,由题意知,系统抽样的间隔为36n ,分层抽样的抽样比是n 36,分层抽样过程中,抽取的卡车数为n 36·6=n 6,轿车数为n 36·12=n 3,电动车数为n 36·18=n 2, 所以n 应是6的倍数,36的约数,且0<n <36,即n =6,12,18.当样本容量为(n +1)时,剔除一个个体后的总体容量是35,系统抽样的间隔为35n +1,所以35n +1必须是整数, 所以n 只能取6,即样本容量n =6.13.解:(1)∵0<m ≤72≤n ,A.B 两所高校中共抽取3名教授,∴B 高校中抽取2人,∴A 高校中抽取1人,C 高校中抽取3人,∴1m =272=3n,解得m =36,n =108. (2)∵高校B 中抽取的教授数是高校A 和C 中抽取的教授数的23,∴23(m +n )=72,解得m +n =108,∴三所高校的教授的总人数为m +n +72=180.。

人教版数学高一课时作业系统抽样

人教版数学高一课时作业系统抽样

2.1.2 系统抽样一、选择题1.为了检查某城市汽车尾气排放执行情况,在该城市的主要干道上抽取车牌末尾数字为5的汽车检查,这种抽样方法为( )A .抽签法B .随机数表法C .系统抽样法D .其他抽样2.中央电视台“动画城节目”为了对本周的热心小观众给予奖励,要从已确定编号的一万名小观众中抽出十名幸运小观众.现采用系统抽样的方法抽取,每段容量为( )A .10B .100C .1 000D .10 0003.系统抽样又称为等距抽样,从N 个个体中抽取n 个个体为样本,抽样间距为k =⎣⎡⎦⎤N n (取整数部分),从第一段1,2,…,k 个号码中随机抽取一个号码i 0,则i 0+k ,…,i 0+(n -1)k 号码均被抽取构成样本,所以每个个体被抽取的可能性是( )A .相等的B .不相等的C .与i 0有关D .与编号有关4.从编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是( )A .5,10,15,20,25B .3,13,23,33,43C .1,2,3,4,5D .2,4,8,16,325.采用系统抽样方法从960人中抽取32人做问卷调查.为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间的人做问卷A ,编号落入区间的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为( )A .7B .9C .10D .15二、填空题6.下列抽样中不是系统抽样的是________.①从标有1~15号的15个球中,任选3个作样本,按从小号到大号排序,随机选起点i 0(1≤i 0≤5),以后选i 0+5,i 0+10号入选;②工厂生产的产品,用传送带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品进行检验;③进行某一市场调查,规定在商场门口随机抽一个人进行询问调查,直到调查到事先规定的调查人数为止;④在报告厅对与会听众进行调查,通知每排(每排人数相等)座位号为14的观众留下来座谈.7.某班有学生48人,现用系统抽样的方法,抽取一个容量为4的样本,已知座位号分别为6,30,42的同学都在样本中,那么样本中另一位同学的座位号应该是________.8.一个总体中有100个个体,随机编号为00,01,02,…,99,依编号顺序平均分成10个小组,组号分别为1,2,3,…,10.现抽取一个容量为10的样本,规定如果在第1组中随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k的个位数字相同.若m =6,则在第7组中抽取的号码是________.三、解答题9.为了了解某地区今年高一学生期末考试数学成绩,拟从参加考试的15 000名学生的数学成绩中抽取容量为150的样本.请写出用系统抽样抽取的过程.10.某校有2 008名学生,从中抽取20人参加体检,试用系统抽样进行具体实施.11.一个总体中的1 000个个体编号为0,1,2,…,999,并依次将其均分为10个小组,组号为0,1,2,…,9,要用系统抽样方法抽取一个容量为10的样本,规定如果在第0组随机抽取的号码为x,那么依次错位地得到后面各组的号码,即第k组中抽取的号码的后两位数为x+33k的后两位数.(1)当x=24时,写出所抽取样本的10个号码;(2)若所抽取样本的10个号码中有一个的后两位数是87,求x的取值范围.参考答案1.【解析】根据系统抽样的概念可知,这种抽样方法是系统抽样.【答案】C2.【解析】将10 000个个体平均分成10段,每段取一个,故每段容量为1 000.【答案】C3.【解析】系统抽样是公平的,所以每个个体被抽到的可能性都相等,与i 0编号无关,故选A.【答案】A4.【解析】据题意从50枚中抽取5枚,故分段间隔k =505=10,故只有B 符合条件. 【答案】B5.【解析】从960人中用系统抽样方法抽取32人,则抽样间距为k =96032=30, 因为第一组号码为9,则第二组号码为9+1×30=39,…,第n 组号码为9+(n -1)×30=30n -21,由451≤30n -21≤750,即151115≤n ≤25710,所以n =16,17,…,25,共有25-16+1=10(人).【答案】C6.【解析】选项③不是系统抽样,因事先不知道总体,抽样方法不能保证每个个体等可能入选,其余3个间隔都相同,符合系统抽样的特征.【答案】③7.【解析】由题意,分段间隔k =484=12,所以6应该在第一组,所以第二组为6+12=18. 【答案】188.【解析】由题意知第7组中的数为“60~69”10个数.由题意知m =6,k =7,故m +k =13,其个位数字为3,即第7组中抽取的号码的个位数为3,综上知第7组中抽取的号码为63.【答案】639.解 (1)对全体学生的数学成绩进行编号:1,2,3,…,15 000.(2)分段:由于样本容量与总体容量的比是1∶100,我们将总体平均分为150个部分,其中每一部分含100个个体.(3)在第一部分,即1号到100号用简单随机抽样抽取一个号码,比如是56.(4)以56作为起始数,然后顺次抽取156,256,356,…,14 956,这样就得到一个样本容量为150的样本.10.解 (1)将每个人随机编一个号由0 001至2 008;(2)利用随机数表法找到8个号将这8名学生剔除;(3)将剩余的2 000名学生重新随机编号0 001至2 000;(4)分段,取间隔k =2 00020=100,将总体平均分为20段,每段含100个学生; (5)从第一段即为0 001号到0 100号中随机抽取一个号l ;(6)按编号将l ,100+l ,200+l ,…,1 900+l 共20个号码选出,这20个号码所对应的学生组成样本.11.解 (1)由题意此系统抽样的间隔是100,根据x =24和题意得,24+33×1=57,第二组抽取的号码是157;由24+33×2=90,则在第三组抽取的号码是290,…故依次是24,157,290,323,456,589,622,755,888,921.(2)由x +33×0=87得x =87,由x +33×1=87得x =54,由x +33×3=187得x =88…, 依次求得x 值可能为21,22,23,54,55,56,87,88,89,90.。

人教版高中数学教案-系统抽样

人教版高中数学教案-系统抽样

2. 1.2系統抽樣【教學目標】:1. 正確理解系統抽樣的概念.2. 掌握系統抽樣的一般步驟.【教學重難點】:教學重點:正確理解系統抽樣的概念,能夠靈活應用系統抽樣的方法解決統計問題.教學難點:靈活應用系統抽樣的方法解決統計問題.【教學過程】:複習回顧:隨機抽樣有什麼優缺點?答:優點是簡單易行;缺點是當樣本容量較大時工作量大且不易實現“攪拌均勻”.情境導入:某學校為了瞭解高一年級學生對教師教學的意見,打算從高一年級500名學生中抽取50名進行調查,除了用簡單隨機抽樣獲取樣本外,你能否設計其他抽取樣本的方法?新知探究:一、系統抽樣的定義:一般地,要從容量為N的總體中抽取容量為n的樣本,可將總體分成均衡的若干部分,然後按照預先制定的規則,從每一部分抽取一個個體,得到所需要的樣本,這種抽樣的方法叫做系統抽樣。

【說明】由系統抽樣的定義可知系統抽樣有以下特證:(1)當總體容量N較大時,採用系統抽樣。

(2)將總體分成均衡的若干部分指的是將總體分段,分段的間隔要求相等,因此,系統抽樣又稱等距抽樣,這時間隔一般為k=[n N].(3)預先制定的規則指的是:在第1段內採用簡單隨機抽樣確定一個起始編號,此編號基礎上加上分段間隔的整倍數即為抽樣編號.練一練:(1)你能舉幾個系統抽樣的例子嗎?(2)下列抽樣中不是系統抽樣的是()A、從標有1~15號的15號的15個小球中任選3個作為樣本,按從小號到大號排序,隨機確定起點i,以後為i+5, i+10(超過15則從1再數起)號入樣B、工廠生產的產品,用傳關帶將產品送入包裝車間前,檢驗人員從傳送帶上每隔五分鐘抽一件產品檢驗C、搞某一市場調查,規定在商場門口隨機抽一個人進行詢問,直到調查到事先規定的調查人數為止D、電影院調查觀眾的某一指標,通知每排(每排人數相等)座位號為14的觀眾留下來座談解析:(2)c不是系統抽樣,因為事先不知道總體,抽樣方法不能保證每個個體按事先規定的概率入樣。

人教B版必修3高一数学《抽样方法》学案

人教B版必修3高一数学《抽样方法》学案

人教B版必修3高一数学《抽样方法》学案高一数学2.1《抽样方法》学案4月日教学目标:1、正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤;2、正确理解系统抽样的概念,掌握系统抽样的一般步骤,正确理解系统抽样与简单随机抽样的关系;3、正确理解分层抽样的概念,掌握分层抽样的一般步骤,区分简单随机抽样、系统抽样和分层抽样,并选择适当正确的方法进行抽样。

重点难点:掌握系统抽样与分层抽样的步骤,并能够选择正确的方法进行抽样。

教学过程:一、自主探究:阅读课本,填写下面的内容:1.总体、样本、样本容量我们要考察的对象的全体叫做_______,其中每个考察的对象叫_______.从总体中抽出的一部分个体叫做_______,样本中个体的数目叫做_______.2.简单随机抽样设一个总体由N个个体组成,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时,各个个体被抽到的_______相等,就称这样的抽样为简单随机抽样。

3.简单随机抽样最常用的方法:、4.抽签法的步骤:5.抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力,又不方便,如果标号的签搅拌得不均匀,会导致抽样不公平。

适用范围:6.随机数表法的步骤:7.随机数表法的优点与抽签法相同,缺点当总体容量较大时,仍然不是很方便,但比抽签法公平。

适用范围:8.系统抽样一般地,要从容量为N的总体中抽取容量为n的样本,可将总体分成,然后按照,从每一部分抽取个个体,得到所需要的样本,这种抽样的方法叫做系统抽样。

适用范围是:9.分层抽样当已知总体由的几部分组成时,为了使样本更能充分地反映总体的情况,常将总体分成几个部分,然后按照各部分所占的_______进行抽样,这种抽样叫做分层抽样.其第1页共4页中所分成的各个部分叫做_______。

适用范围是10、数据的收集方式通常为、、二、自学检测:1.下列抽样方法是简单随机抽样的是:()A.从50个零件中一次性抽取5个作质量检验B.从50个零件中有放回的抽取5个作质量检验C.从实数集中逐个抽取10个分析奇偶性D.运动员从8个跑道中随机选取一个跑道2.为了了解1200名学生对学校某项校改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔K为()A.40B.30C.20D.123.已知某单位有职工120人,男职工有90人,现采用分层抽样(按男.女分层)抽取一个样本,若已知样本中有27名男职工,则样本容量为:()A.30B.36C.40D.无法确定4.为了了解参加运动会的2000名运动员的年龄情况,从中抽取20名运动员,就这个问题,下列说法中正确的是12000名运动员是总体○2每个运动员是个体○3所抽取的20名运动员是一个样本○4样本容量为20○5这个抽样方法可采用随机数法抽样○6每个运动员被抽到的机会均等○5.某企业共有职工150人,其中高级职称15人,中级职称45人,初级职称90人.现采用分层抽样抽取容量为30的样本,则抽取的各职称的人数分别为.三、合作探究、讲解提高例1:某学校为了了解高一年级学生对教学管理的意见,打算从高一1500学生中抽取50名学生进行调查,请利用系统抽样的方法完成这一抽样。

高一数学系统抽样教案

高一数学系统抽样教案

城东蜊市阳光实验学校2.1.2系统抽样教学目的:1.结合实际问题情景,理解系统抽样的必要性和重要性2.学会用系统抽样的方法从总体中抽取样本教学重点:学会用系统抽样的方法从总体中抽取样本教学过程:1.系统抽样〔等距抽样或者者机械抽样〕:把总体的单位进展排序,再计算出抽样间隔,然后按照这一固定的抽样间隔抽取样本。

第一个样本采用简单随机抽样的方法抽取。

K〔抽样间隔〕=N〔总体规模〕/n〔样本规模〕前提条件:总体中个体的排列对于研究的变量来说,应是随机的,即不存在某种与研究变量相关的规那么分布。

可以在调查允许的条件下,从不同的样本开始抽样,比照几次样本的特点。

假设有明显差异,说明样本在总体中的分布承某种循环性规律,且这种循环和抽样间隔重合。

2.系统抽样,即等距抽样是实际中最为常用的抽样方法之一。

因为它对抽样框的要求较低,施行也比较简单。

更为重要的是,假设有某种与调查指标相关的辅助变量可供使用,总体单元按辅助变量的大小顺序排队的话,使用系统抽样可以大大进步估计精度。

3.例子:〔1〕某工厂平均每天消费某种机器零件大约10000件,要求产品检验员每天抽取50件零件,检查其质量情况。

假设一天的消费时间是是中消费的机器零件数是均匀的,请你设计一个调查方案〔2〕某装订厂平均每小时大约装订图书362册,要求检验员每小时抽取40册图书,检查其质量状况,请你设计一个调查方案.〔3〕调查某班学生的身高情况,利用系统抽样的方法样本容量为40,这个班一一共分5个组,每个组都是8名同学,他们的座次是按身高进展编排的。

李莉是这样做的,抽样距是8,按照每个小组的座次进展编号。

你觉得这样做有代表性么?〔4〕在〔3〕中,抽样距是8,按身全班身高进展编号,然后进展抽样,你觉得这样做有代表性么?课堂练习:第54页,练习A,练习B小结:本节重点介绍系统抽样的方法及其局限性课后作业:第58页,习题2-1A第4题,。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1.2系统抽样1.理解系统抽样的概念.2.会用系统抽样从总体中抽取样本.3.能用系统抽样解决实际问题.知识点一系统抽样的概念在抽样中,当总体中个体数较大时,可将总体分为均衡的几个部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这样的抽样方法叫做系统抽样.系统抽样具有如下特点:项目特点个体数目总体中个体无较大差异且个体数目较大抽取方式总体分成均衡的若干部分,分段间隔相等,在第一段内用简单随机抽样确定起始编号,其余依次加上间隔的整数倍概率特征每个个体被抽到的可能性相同,是等可能抽样一般地,假设要从容量为N的总体中抽取容量为n的样本,我们可以按下列步骤进行系统抽样:(1)编号:先将总体的N个个体编号.有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等;(2)分段:确定分段间隔k,对编号进行分段.当Nn(n是样本容量)是整数时,取k=Nn;(3)确定第一个编号:在第1段用简单随机抽样确定第一个个体编号l(l≤k);(4)成样:按照一定的规则抽取样本.通常是将l加上间隔k得到第2个个体编号(l+k),再加k得到第3个个体编号(l+2k),依次进行下去,直到获取整个样本.知识点三系统抽样与简单随机抽样的区别与联系简单随机抽样系统抽样区别①操作简单易行;②抽样的结果与个体编号无关①当总体中的个体数较大时,用系统抽样更易实施,更节约成本;②系统抽样的效果与个体的编号有关,如果编号的特征随编号呈周期性变化,可能使样本的代表性很差联系系统抽样在总体中的个体均匀分段后,在第一段进行抽样时,采用的是简单随机抽样题型一对系统抽样概念的理解例1下列抽样中,最适宜用系统抽样的是()A.某市的4个区共有2000名学生,且4个区的学生人数之比为3∶2∶8∶2,从中抽取200名入样B.从某厂生产的2000个电子元件中随机抽取5个入样C.从某厂生产的2000个电子元件中随机抽取200个入样D.从某厂生产的20个电子元件中随机抽取5个入样答案C解析根据系统抽样的定义和特点判断,A项中的总体有明显的层次,不适宜用系统抽样;B项中样本容量很小,适合用随机数法;D项中总体容量很小,适合用抽签法.反思与感悟系统抽样适用于个体数较大的总体,判断一种抽样是否为系统抽样,首先看在抽样前是否知道总体是由什么构成的.抽样的方法能否保证将总体分成几个均衡的部分,并保证每个个体等可能入样.跟踪训练1下列抽样方法不是系统抽样的是()A.从标有1~15号的15个球中,任选三个作样本,按从小号到大号的顺序,随机选起点i0,以后选i0+5,i0+10(超过15则从1再数起)号入选B.工厂生产的产品用传送带将产品送入包装车间前,在一天时间内检验人员从传送带上每隔五分钟抽一件产品进行检验C.做某项市场调查,规定在商场门口随机抽一个人进行询问调查,直到达到事先规定的调查人数为止D.电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈答案C解析A编号间隔相同,B时间间隔相同,D相邻两排座位号的间隔相同,均满足系统抽样的特征.只有C项无明显的系统抽样的特征.题型二系统抽样的应用例2为了了解某地区今年高一学生期末考试数学学科的成绩,拟从参加考试的15000名学生的数学成绩中抽取容量为150的样本.请用系统抽样写出抽取过程.解(1)对全体学生的数学成绩进行编号:1,2,3, (15000)(2)分段:由于样本容量与总体容量的比是1∶100,所以我们将总体平均分为150个部分,其中每一部分包含100个个体.(3)在第一部分即1号到100号用简单随机抽样抽取一个号码,比如是56.(4)以56作为起始数,然后顺次抽取156,256,356,…,14956,这样就得到一个容量为150的样本.反思与感悟 当总体容量能被样本容量整除时,分段间隔k =N n,样本编号相差k 的整数倍;系统抽样过程中可能会与其他抽样方法结合使用,通常不单独运用.跟踪训练2 现有60瓶牛奶,编号为1至60,若从中抽取6瓶检验,用系统抽样方法确定所抽取的编号可能为( )A .3,13,23,33,43,53B .2,14,26,38,42,56C .5,8,31,36,48,54D .5,10,15,20,25,30答案 A解析 因为60瓶牛奶分别编号为1至60,所以把它们依次分成6组,每组10瓶,要从中抽取6瓶检验,用系统抽样方法进行抽样.若在第一组抽取的编号为n (1≤n ≤10),则所抽取的编号应为n ,n +10,…,n +50.对照4个选项,只有A 项符合系统抽样.系统抽样的显著特点之一就是“等距抽样”.因此,对于本题只要求出抽样的间隔k =606=10,就可判断结果. 题型三 系统抽样的设计例3 某校高中二年级有253名学生,为了了解他们的视力情况,准备按1∶5的比例抽取一个样本,试用系统抽样方法进行抽取,并写出过程.解 (1)先把这253名学生编号000,001, (252)(2)用随机数法任取出3个号,从总体中剔除与这三个号对应的学生;(3)把余下的250名学生重新编号1,2,3, (250)(4)分段.取分段间隔k =5,将总体均分成50段,每段含5名学生;(5)从第一段即1~5号中用简单随机抽样抽取一个号作为起始号,如l ;(6)从后面各段中依次取出l +5,l +10,l +15,…,l +245这49个号.这样就按1∶5的比例抽取了一个样本容量为50的样本.反思与感悟 1.当总体容量不能被样本容量整除时,要先从总体中随机剔除整除后余数个个体且必须是随机的,即每个个体被剔除的机会均等.剔除个体后使总体中剩余的总体容量能被样本容量整除.2.剔除个体后需对样本重新编号.3.起始编号的确定应用简单随机抽样的方法,一旦起始编号确定,其他编号便随之确定了.跟踪训练3为了了解参加某次考试的2607名学生的成绩,决定用系统抽样的方法抽取一个容量为260的样本.请根据所学的知识写出抽样过程.解按下列步骤获取样本:(1)将每一名学生编号,由0001到2607;(2)利用随机数法从总体中剔除7人;(3)将剩下的2600名学生重新编号(分别为0001,0002,…,2600),并分成260段;(4)在第一段0001,0002,…,0010这十个编号中用简单随机抽样法抽取一个号码(如0003)作为起始号码;(5)将编号为0003,0013,0023,…,2593的个体抽出,即组成样本.系统抽样的应用例4要从参加全运会某些项目比赛的1013名运动员中抽取100名进行兴奋剂检查,采用何种抽样方法较好?写出过程.错解应采用系统抽样.过程如下:先将1013名运动员随机编号为1,2,3,…,1013,将这1013个号码分成100段,其中前87段每段10人,后13段每段11人,在第一段中用简单随机抽样确定起始编号L,将会得到编号L,L+10,L+20,…,L+990的运动员抽出,从而获得整体样本.错解分析错误的根本原因在于前87段的个体中,每个个体被抽取的可能性为110,而在后13段中,每个个体被抽取的可能性为111,这是不公平的.正解应采用系统抽样.过程如下:第一步,将1013名运动员随机编号为0001,0002,0003, (1013)第二步,随机地从总体中抽取13个号码,并将编号相对应的运动员剔除;第三步,将剩下的1000名运动员重新编号为1,2,3,…,1000,分成100段,每段10个号码,在第一段十个编号中用简单随机抽样确定第一个个体编号为L ,则将编号为L ,L +10,L +20,…,L +990的运动员抽出,组成样本.1.为了解1200名学生对学校食堂饭菜的意见,打算从中抽取一个样本容量为40的样本,考虑采用系统抽样,则分段间隔k 为( ) A .10B .20C .30D .40答案 C解析 分段间隔k =120040=30. 2.为了了解参加某次知识竞赛的1252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本,那么从总体中应随机剔除的个体数目为( )A .2B .3C .4D .5 答案 A解析 因为1252=50×25+2,所以应随机剔除2个个体,故选A.3.要从160名学生中抽取容量为20的样本,用系统抽样法将160名学生从1~160编号.按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组应抽出的号码为125,则第一组中按抽签方法确定的号码是( )A .7B .5C .4D .3 答案 B解析 由系统抽样知第一组确定的号码是125-15×8=5.4.某公司有52名员工,要从中抽取10名员工参加国庆联欢活动,若采用系统抽样,则该公司每个员工被抽到的机会是________.答案 526 解析 采用系统抽样,需先剔除2名员工,确定间隔k =5,但每名员工被剔除的机会相等,即每名员工被抽到的机会也相等,故虽然剔除了2名员工,但这52名员工中每名员工被抽到的机会仍相等,且均为1052=526. 5.在1000个有机会中奖的号码(编号为000~999)中,公证部门用随机抽样的方法确定后两位数为88的号码为中奖号码,这种抽样方法是________,这10个中奖号码为________. 答案 系统抽样088,188,288,388,488,588,688,788,888,988解析 这里运用了系统抽样的方法来确定中奖号码,中奖号码依次为:088,188,288,388,488,588,688,788,888,988.1.系统抽样的实质是“分组”抽样,适用于总体中的个体数较大的情况.2.解决系统抽样问题的两个关键步骤为(1)分组的方法应依据抽取比例而定,即根据定义每组抽取一个样本.(2)用系统抽样法抽取样本,当N n不为整数时,取k =⎣⎡⎦⎤N n ,即先从总体中用简单随机抽样的方法剔除N -nk 个个体,且剔除多余的个体不影响抽样的公平性.一、选择题1.下列抽样试验中,最适宜用系统抽样的是( )A .从全班48名学生中随机抽取8人参加一项活动B .一个城市有210家百货商店,其中有大型商店20家,中型商店40家,小型商店150家.为了掌握各商店的营业情况,要从中抽取一个容量为21的样本.C .从参加考试的1200名考生中随机抽取100人分析试题作答情况D .从参加模拟考试的1200名高中生中随机抽取10人了解情况答案 C解析 A 项中总体容量、样本容量都较小,可用抽签法或随机数法;B 项中总体含有差异明显的几部分,不宜用系统抽样;D 项中样本容量较小,可采用随机数法;只有C 项中总体容量与样本容量都较大,适宜用系统抽样.2.为了了解某地参加计算机水平测试的5008名学生的成绩,从中抽取了200名学生的成绩进行统计分析,运用系统抽样方法抽取样本时,每组的容量为( )A .24B .25C .26D .28答案 B解析 5008除以200的整数商为25,∴选B.3.有20个同学,编号为1~20,现在从中抽取4人的作文卷进行调查,用系统抽样方法确定所抽的编号为( )A .5,10,15,20B .2,6,10,14C .2,4,6,8D .5,8,11,14答案 A解析 将20个同学分成4个组,每组5个号,间距为5.4.将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为( )A .26,16,8B .25,17,8C .25,16,9D .24,17,9 答案 B解析 由题意知间隔为60050=12,故抽到的号码为12k +3(k =0,1,…,49),列出不等式可解得:第Ⅰ营区抽25人,第Ⅱ营区抽17人,第Ⅲ营区抽8人.5.总体容量为524,若采用系统抽样,下列的抽取间隔不需要剔除个体的是( )A .3B .4C .5D .6答案 B解析 因为5244=131,所以当间隔为4时,不需要剔除个体. 6.为规范学校办学,省教育厅督察组对某所高中进行了抽样调查.抽到的班级一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽取一个容量为4的样本,已知7号、33号、46号同学在样本中,那么样本中还有一位同学的编号应是( )A .13B .19C .20D .51答案 C解析 由系统抽样的原理可知,抽样的间隔k =524=13,故抽取的样本的编号分别为7,7+13,7+13×2,7+13×3,从而可知C 项正确.7.用系统抽样的方法从个体为1003的总体中,抽取一个容量为50的样本,则在整个抽样过程中每个个体被抽到的可能性是( )A.11000B.11003C.501003D.120 答案 C解析根据系统抽样的方法可知,每个个体入样的可能性相同,均为nN,所以每个个体入样的可能性是501003.二、填空题8.一个总体的60个个体的编号为0,1,2,…,59,现要从中抽取一个容量为10的样本,请根据编号按被6除余3的方法,取足样本,则抽取的样本号码是________.答案3,9,15,21,27,33,39,45,51,57解析由题意,设抽取样本的编号为6n+3,则3≤6n+3≤59,且n∈N,所以n=0,1,2,3,4,5,6,7,8,9,相应的编号依次为3,9,15,21,27,33,39,45,51,57.9.某单位有职工72人,现需用系统抽样法从中抽取一个样本,若样本容量为n,则不需要剔除个体,若样本容量为n+1,则需剔除2个个体,则n=________.答案4或6或9解析由题意知n为72的约数,n+1为70的约数,其中72的约数有1,2,3,4,6,8,9,12,18,24,36,72,其中加1能被72整除的有1,4,6,9,其中n=1不符合题意,故n =4或6或9.10.若总体中含有1650个个体,现要采用系统抽样从中抽取一个容量为35的样本,分段时应从总体中随机剔除________个个体,重新编号后应均分为________段,每段有________个个体.答案53547解析1650=47×35+5,根据系统抽样的定义求解.11.一个总体中的80个个体的编号为0,1,2,…,79,并依次将其分为8个组,组号为0,1,…,7,用错位系统抽样的方法抽取一个容量为8的样本,即规定先在第0组随机抽取一个号码,记为i,依次错位地得到后面各组的号码,即在第k组中抽取个位数字为i+k(当i+k<10时)或i+k-10(当i+k≥10时)的号码.当i=6时,所抽到的8个号码是______________________.答案6,17,28,39,40,51,62,73解析由题意得,在第1组抽取的号码的个位数字是6+1=7,故应选17;在第2组抽取的号码的个位数字是6+2=8,故应选28;依此类推,应选39,40,51,62,73.三、解答题12.某装订厂平均每小时装订图书362册,要求检验员每小时抽取40册图书,检验其质量情况,请设计一个抽样方案.解 第一步,将362册图书随机编号;第二步,用随机数法从这些书中抽取2册书,不进行检查;第三步,将剩下的书重新编号(分别为0,1,…,359),并平均分成40段;第四步,从第一段(编号为0,1,…,8)中用简单随机抽样的方法,抽取1册书,设其编号为k ; 第五步,抽取编号分别为k ,k +9,k +18,k +27,…,k +39×9的书,这样就抽取了总共有40个个体的样本.13.某工厂有工人1021人,其中高级工程师20人,现抽取普通工人40人,高级工程师4人组成代表队去参加某项活动,应怎样抽样?解 (1)将1001名普通工人用随机方式编号.(2)从总体中剔除1人(剔除方法可用随机数法),将剩下的1000名职工重新编号(分别为0001,0002,…,1000),并平均分成40段,其中每一段包含100040=25个个体. (3)在第一段0001,0002,…,0025这25个编号中用简单随机抽样法抽出一个(如0003)作为起始号码.(4)将编号为0003,0028,0053,…,0978的个体抽出.(5)将20名高级工程师用随机方式编号为1,2, (20)(6)将这20个号码分别写在大小、形状相同的小纸条上,揉成小球,制成号签.(7)将得到的号签放入一个不透明的容器中,充分搅拌均匀.(8)从容器中逐个抽取4个号签,并记录上面的编号.(9)从总体中将与所抽号签的编号相一致的个体取出.以上得到的个体便是代表队成员.。

相关文档
最新文档