2008年全国硕士研究生入学统一考试数学三真题及答案
2008年全国硕士研究生入学统一考试数学三真题及答案
2008年全国硕士研究生入学统一考试数学三试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)设函数()f x 在区间[1,1]-上连续,则0x =是函数0()()xf t dtg x x=⎰的( )()A 跳跃间断点. ()B 可去间断点. ()C 无穷间断点.()D 振荡间断点.【答案】()B【考点】可去间断点,积分上限函数及其导数【难易度】★★ 【详解】解析:()()0()lim ()limlim 0xx x x f t dt g x f x f x→→→===⎰,所以0x =是函数()g x 的可去间断点.(2)如图,曲线方程为()y f x =,函数()f x 在区间[0,]a 上有连续导 数,则定积分'()axf x dx ⎰等于( )()A 曲边梯形ABCD 面积.()B 梯形ABCD 面积.()C 曲边三角形ACD 面积.()D 三角形ACD 面积.【答案】()C【考点】定积分的分部积分法,定积分的几何应用—平面图形的面积【难易度】★★ 【详解】 解析:()()()()aa a xf x dx xdf x af a f x dx '==-⎰⎰⎰,其中()af a 是矩形面积,0()af x dx ⎰为曲边梯形的面积,所以0()axf x dx '⎰为曲边三角形ACD 的面积.(3)已知24(,)x y f x y e+=则 ( )()A (0,0),(0,0)x y f f ''都存在 ()B (0,0)x f '存在,(0,0)y f '不存在()C(0,0)x f '不存在,(0,0)y f '存在 ()D (0,0),(0,0)x y f f ''都不存在【答案】()C【考点】多元函数的偏导数 【难易度】★★★ 【详解】 解析:2400011(0,0)limlim 00xx x x x ee f x x +→→--'==-- 00011lim lim 100xx x x e e x x →+→+--==--,001lim 10x x e x -→--=-- 000011lim lim 00xx x x e e x x -→+→---≠--,所以偏导数不存在. 24200011(0,0)limlim 000y y y y y ee f y y +→→--'===-- 所以偏导数存在。
考研数学三历年真题答案与解析-模拟试题
考研数学三历年真题答案与解析|模拟试题展开全文第一部分历年真题及详解2008年全国硕士研究生入学统一考试考研数学三真题及详解2009年全国硕士研究生入学统一考试考研数学三真题及详解2010年全国硕士研究生入学统一考试考研数学三真题及详解2011年全国硕士研究生入学统一考试考研数学三真题及详解详解2013年全国硕士研究生入学统一考试考研数学三真题及详解2014年全国硕士研究生入学统一考试考研数学三真题及详解2015年全国硕士研究生招生考试考研数学三真题及详解2016年全国硕士研究生招生考试考研数学三真题及详解2017年全国硕士研究生招生考试考研数学三真题及详解2018年全国硕士研究生招生考试考研数学三真题及详解2019年全国硕士研究生招生考试考研数学三真题及详解(2)模拟试题及详解部分:精选了3套模拟试题,且附有详尽解析。
考生可通过模拟试题部分的练习,掌握最新考试动态,提前感受考场实战。
第二部分模拟试题及详解全国硕士研究生招生考试考研数学三模拟试题及详解(一)全国硕士研究生招生考试考研数学三模拟试题及详解(二)全国硕士研究生招生考试考研数学三模拟试题及详解(三)第一部分历年真题及详解解一、选择题(1~8小题,每小题4分,共32分。
下列每题给出的四个选项中,只有一个选项符合题目要求。
)1设函数f(x)在区间[-1,1]上连续,则x=0是函数的()。
A.跳跃间断点B.可去间断点C.无穷间断点D.振荡间断点【答案】B查看答案【考点】函数间断点的类型【解析】首先利用间断点的定义确定该点为间断点,然后利用如下的间断点的类型进行判断。
第一类间断点:x=x0为函数f(x)的间断点,且与均存在,则称x=x0为函数f(x)的第一类间断点,其中:①跳跃型间断点:②可去型间断点:第二类间断点:x=x0为函数f(x)的间断点,且与之中至少有一个不存在,则称x=x0为函数f(x)的第二类间断点,其中:①无穷型间断点:与至少有一个为∞;②振荡型间断点:或为振荡型,极限不存在。
考研数学十年真题 数三
(D)
v u
f
(u
)
(5) 设 A 为 n 阶非零矩阵, E 为 n 阶单位矩阵若 A3 = 0 ,则( )
(A) E − A 不可逆, E + A 不可逆 .
(B) E − A 不可逆, E + A 可逆 .
(C) E − A 可逆, E + A 可逆 .
(D) E − A 可逆, E + A 不可逆 .
求极限
lim
x→0
1 x2
ln
sin x
x
(16)(本题满分 10 分)
设 z = z (x, y) 是由方程 x2 + y2 − z= ϕ ( x + y + z ) 所确定的函数,其中ϕ 具有 2 阶导数且ϕ′ ≠ −1,
求 :(1) dz ;(2)记= u ( x, y)
x
1 −
y
∂z ∂x
(Xi
−
X
)2
,
=T X 2 − 1 S 2 n
(1)证 T 是 µ 2 的无偏估计量 . (2)当=µ 0= ,σ 1时 ,求 D(T).
8
2009 年全国硕士研究生入学统一考试数学三试题
2009 年全国硕士研究生入学统一考试数学三试题
一、 选择题 : 本题共 8 小题,每小题 4 分,共 32 分 . 下列每题给出的四个选项中,只有一个 选项符合题目要求的,请将所选项前的字母填在答题纸指定位置上 .
三、 解答题 : 本题共 9 小题,共 94 分 . 请将解答写在答题纸指定的位置上 . 解答应写出文字 说明、证明过程或演算步骤 .
(15)(本题满分 9 分)
( ) 求二元函数 f (x, y) = x2 2 + y2 + y ln y 的极值
2008硕士研究生数3考试真题
2008年全国硕士研究生入学统一考试数 学三试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)设函数()f x 在区间[1,1]-上连续,则0x =是函数0()()xf t dtg x x=⎰的( )(A )跳跃间断点. (B )可去间断点.(C )无穷间断点.(D )振荡间断点.(2)如图,曲线段方程为()y f x =,函数()f x 在区间[0,]a 上有连续的导数,则定积分()at xf x dx ⎰等于( )(A )曲边梯形ABOD 面积.(B ) 梯形ABOD 面积.(C )曲边三角形ACD 面积.(D )三角形ACD 面积.(3)已知(,)f x y =(A )(0,0)x f ',(0,0)y f '都存在 (B )(0,0)x f '不存在,(0,0)y f '存在 (C )(0,0)x f '存在,(0,0)y f '不存在 (D )(0,0)x f ',(0,0)y f '都不存在(4)设函数f连续,若22(,)uvD F u v =⎰⎰,其中uv D 为图中阴影部分,则Fu∂=∂( )(A )2()vf u (B )2()v f u u (C )()vf u (D )()vf u u(5)设A 为阶非0矩阵,E 为n 阶单位矩阵,若30A =,则( )(A )E A -不可逆,E A +不可逆.(B )E A -不可逆,E A +可逆. (C )E A -可逆,E A +可逆.(D )E A -可逆,E A +不可逆.(6)设1221A ⎛⎫= ⎪⎝⎭则在实数域上域与A 合同的矩阵为( )(A )2112-⎛⎫⎪-⎝⎭.(B )2112-⎛⎫⎪-⎝⎭.(C )2112⎛⎫⎪⎝⎭.(D )1221-⎛⎫⎪-⎝⎭.(7)随机变量,X Y 独立同分布,且X 分布函数为()F x ,则{}max ,Z X Y =分布函数为( )(A )()2Fx .(B )()()F x F y .(C )()211F x --⎡⎤⎣⎦.(D )()()11F x F y --⎡⎤⎡⎤⎣⎦⎣⎦.(8)随机变量()~0,1X N ,()~1,4Y N 且相关系数1XY ρ=,则( )(A ){}211P Y X =--=.(B ){}211P Y X =-=.(C ){}211P Y X =-+=.(D ){}211P Y X =+=.二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(9)设函数21,()2,x x c f x x c x ⎧+≤⎪=⎨>⎪⎩在(,)-∞+∞内连续,则c = .(10)设341()1x x f x x x ++=+,则2()______f x dx =⎰.(11)设22{(,)1}D x y x y =+≤,则2()Dx y dxdy -=⎰⎰ . (12)微分方程0xy y '+=满足条件(1)1y =的解是y = .(13)设3阶矩阵A 的特征值为1,2,2,E 为3阶单位矩阵,则14_____A E --=. (14)设随机变量X 服从参数为1的泊松分布,则{}2P X EX == . 三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15) (本题满分10分) 求极限201sin limln x xx x→.(16) (本题满分10分)设(,)z z x y =是由方程()22x y z x y z ϕ+-=++所确定的函数,其中ϕ具有2阶导数且1ϕ'≠-时.(Ⅰ)求dz (Ⅱ)记()1,z z u x y x y x y ⎛⎫∂∂=- ⎪-∂∂⎝⎭,求u x ∂∂.计 算max(,1),Dxy dxdy ⎰⎰其中{(,)02,02}D x y x y =≤≤≤≤.(18) (本题满分10分) 设()f x 是周期为2的连续函数, (Ⅰ)证明对任意的实数t ,有()()22t tf x dx f x dx +=⎰⎰;(Ⅱ)证明()()()202xt t G x f t f s ds dt +⎡⎤=-⎢⎥⎣⎦⎰⎰是周期为2的周期函数.(19) (本题满分10分)设银行存款的年利率为0.05r =,并依年复利计 算,某基金会希望通过存款A 万元,实现第一年提取19万元,第二年提取28万元,…,第n 年提取(10+9n )万元,并能按此规律一直提取下去,问A 至少应为多少万元?设n 元线性方程组Ax b =,其中2221212n n a a a A a a ⨯⎛⎫⎪⎪= ⎪ ⎪⎝⎭ ,12n x x x x ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ ,100b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦(Ⅰ)求证行列式()1nA n a =+;(Ⅱ)a 为何值时,该方程组有唯一解,并求1x ; (Ⅲ)a 为何值时,方程组有无穷多解,并求通解。
2008考研学三真题解析
2008年考研数学(三)真题解析一、选择题 (1)【答案】【详解】 ,所以是函数的可去间断点. (2)【答案】 【详解】其中是矩形ABOC 面积,为曲边梯形ABOD 的面积,所以为曲边三角形的面积.(3)【答案】【详解】 , 故不存在.所以存在.故选. (4)【答案】【详解】用极坐标得所以. (5)【答案】B ()()0()lim ()limlim 0xx x x f t dt g x f x f x→→→===⎰0x =()g x C 00()()()()()()aa a aaxf x dx xdf x xf x f x dx af a f x dx '==-=-⎰⎰⎰⎰()af a 0()af x dx ⎰()axf x dx '⎰B 000(,0)(0,0)11(0,0)limlim lim 0xx x x x f x f e f x xx→→→---'===-0011lim lim 1xx x x e e x x ++→→--==0011lim lim 1xx x x e e x x---→→--==-(0,0)x f '220000(0,)(0,0)11(0,0)lim limlim lim 00y y y y y y f y f e y f y yy y→→→→---'=====-(0,0)y f 'B A ()222()2011,()v uuf r rDf u v F u v dv rdr v f r dr +===⎰⎰⎰()2Fvf u u∂=∂C【详解】,. 故均可逆. (6)【答案】【详解】记,则又, 所以和有相同的特征多项式,所以和有相同的特征值.又和为同阶实对称矩阵,所以和相似.由于实对称矩阵相似必合同,故正确.(7)【答案】【详解】. (8)【答案】【详解】 用排除法. 设,由,知道正相关,得,排除、由,得所以 所以. 排除. 故选择. 二、填空题 (9)【答案】1【详解】由题设知,所以因为 , 又因为在内连续,必在处连续所以 ,即. 23()()E A E A A E A E -++=-=23()()E A E A A E A E +-+=+=,E A E A -+D 1221D -⎛⎫= ⎪-⎝⎭()2121421E D λλλλ--==---()2121421E A λλλλ---==----A D A D A D A D D A ()(){}{}()()()()()2max ,Z Z Z Z F z P Z z P X Y z P X z P Y z F z F z F z =≤=≤=≤≤==D Y aX b =+1XY ρ=,X Y 0a >()A ()C ~(0,1),~(1,4)X N Y N 0,1,EX EY ==()()E Y E aX b aEX b =+=+01,a b =⨯+=1b =()B ()D ||0c x ≥≥22,()1,2,x x c f x x c x c x x c >⎧⎪=+-≤≤⎨⎪-<-⎩()22lim lim(1)1x cx cf x x c --→→=+=+()22lim lim x c x cf x x c++→→==()f x (,)-∞+∞()f x x c =()()lim lim ()x cx cf x f x f c +-→→==2211c c c+=⇒=(10)【答案】【详解】,令,得 所以. (11)【答案】【详解】. (12)【答案】 【详解】由,两端积分得,所以,又,所以. (13)【答案】3【详解】的特征值为,所以的特征值为, 所以的特征值为,, 所以. (14)【答案】【详解】由,得,又因为服从参数为1的泊松分布,所以,所以,所以 .三、解答题 (15) 【详解】 方法一: 1ln 32222111112x xx x f x x x x x x ++⎛⎫+== ⎪⎝⎭⎛⎫++- ⎪⎝⎭1t x x =+()22t f t t =-()()()22222111ln 2ln6ln 2ln32222x f x dx dx x x ==-=-=-⎰⎰4π()22221()2DDDx y dxdy x dxdy x y dxdy -=+⎰⎰⎰⎰⎰⎰利用函数奇偶性21200124d r rdr ππθ==⎰⎰1y x=dy ydx x -=1ln ln y x C -=+1x C y=+(1)1y =1y x=A 1,2,21A -1,12,1214A E --4113⨯-=41211⨯-=41211⨯-=143113B E --=⨯⨯=112e -22()DX EX EX =-22()EX DX EX =+X 1DX EX ==2112EX =+={}21111222P X e e --===!22001sin 1sin limln lim ln 11x x x x x x x x →→⎛⎫=+- ⎪⎝⎭方法二: (16) 【详解】(I)(II) 由上一问可知, 所以 所以. (17) 【详解】 曲线将区域分成两 个区域和,为了便于计算继续对 区域分割,最后为(18) 【详解】32000sin cos 1sin 1limlim lim 366x x x x x x x x x x →→→--===-=-2230001sin cos sin cos sin limln lim lim 2sin 2x x x x x x x x x xx x x x x→→→--=洛必达法则20sin 1lim66x x x x →-=-洛必达法则()()22xdx ydy dz x y z dx dy dz ϕ'+-=++⋅++()()()122dz x dx y dy ϕϕϕ'''⇒+=-++-+()()221x dx y dy dz ϕϕϕ''-++-+⇒='+()1ϕ'≠-22,11z x z yx y ϕϕϕϕ''∂-+∂-+==''∂+∂+()11221222,()()1111z z x y y x u x y x y x y x y x y ϕϕϕϕϕϕ''∂∂-+-+-+=-=-=⋅=''''-∂∂-++-++()()()()223322(1)2(1)2(12)2(12)11111x z u x x x xϕϕϕϕϕϕϕϕϕϕϕϕ'-∂''+''-+'''''''∂++-++∂==-=-=-∂''''++++1xy =1D 23D D +()max ,1Dxy dxdy ⎰⎰123D D D xydxdy dxdy dxdy =++⎰⎰⎰⎰⎰⎰112222211102211x xdx dy dx dy dx xydy =++⎰⎰⎰⎰⎰⎰1512ln 2ln 24=++-19ln 24=+方法一:(I) 由积分的性质知对任意的实数,令,则所以(II) 由(1)知,对任意的有,记,则. 所以,对任意的,所以是周期为2的周期函数.方法二:(I) 设,由于,所以为常数,从而有. 而,所以,即.(II) 由(I)知,对任意的有,记,则,由于对任意,,所以 ,从而 是常数 即有 所以是周期为2的周期函数.(19) 【详解】方法一:设为用于第年提取万元的贴现值,则t ()()()()20222t t ttf x dx f x dx f x dx f x dx ++=++⎰⎰⎰⎰2x u =+()()()()222t tttf x dx f u du f u du f x dx +=+==-⎰⎰⎰⎰()()()()()20202t tttf x dx f x dx f x dx f x dx f x dx +=+-=⎰⎰⎰⎰⎰t ()()222t f x dx f x dx +=⎰⎰()2a f x dx =⎰()0()2xG x f u du ax =-⎰x ()()2(2)()2(2)2x xG x G x f u du a x f u du ax ++-=-+-+⎰⎰()()2222220x xf u du a f u du a +=-=-=⎰⎰()G x 2()()t tF t f x dx +=⎰()(2)()0F t f t f t '=+-=()F t ()(0)F t F =2(0)()F f x dx =⎰2()()F t f x dx =⎰22()()t tf x dx f x dx +=⎰⎰t ()()222t f x dx f x dx +=⎰⎰()2a f x dx =⎰()0()2xG x f u du ax =-⎰()2(2)2(2)x G x f u du a x ++=-+⎰x ()(2)2(2)2()G x f x a f x a '+=+-=-()()2()G x f x a '=-()(2)()0G x G x '+-=(2)()G x G x +-(2)()(2)(0)0G x G x G G +-=-=()G x n A n (109)n +(1)(109)n n A r n -=++故 设因为 所以 (万元)故 (万元),即至少应存入3980万元.方法二:设第年取款后的余款是,由题意知满足方程, 即 (1)(1)对应的齐次方程 的通解为 设(1)的通解为 ,代入(1)解得 , 所以(1)的通解为 由,得 故至少为3980万元.(20) 【详解】(I)1111110919102009(1)(1)(1)(1)n n n n nn n n n n n n nA A r r r r ∞∞∞∞∞=====+===+=+++++∑∑∑∑∑1()(1,1)n n S x nx x ∞== ∈-∑21()()()(1,1)1(1)n n x xS x x x x x x x ∞=''=== ∈---∑11()()4201 1.05S S r ==+20094203980A =+⨯=t t y t y 1(10.05)(109)t t y y t -=+-+11.05(109)t t y y t --=-+11.050t t y y --=(1.05)t t y C =*t y at b =+180a =3980b =(1.05)1803980t t y C t =++0y A =0t y ≥3980A C =+0C ≥A证法一:证法二:记,下面用数学归纳法证明.当时,,结论成立.当时,,结论成立.2222122121213210122122112221301240134(1)2(1)3231(1)0nn n a a aa a a aa aA r ar aa a aa a a n a a n ar ar a n a nnn a n-=-=-+-=⋅⋅⋅=++||n D A =(1)n n D n a =+1n =2222122121213210122122112221301240134(1)2(1)3231(1)0nn n a a aa a a aa aA r ar aa a aa a a n a a n ar ar a n a nnn a n-=-=-+-=⋅⋅⋅=++12D a =2n =2222132a D a aa==假设结论对小于的情况成立.将按第1行展开得故证法三:记,将其按第一列展开得 ,所以即(II) 因为方程组有唯一解,所以由知,又,故. 由克莱姆法则,将的第1列换成,得行列式为所以 (III) 方程组有无穷多解,由,有,则方程组为n n D 221221221210212121222(1)(1)n n n n nn n a a a aD aD a aaD a D ana a n a n a -----=-=-=--=+||(1)n A n a =+||n D A =2122n n n D aD a D --=-211212()n n n n n n D aD aD a D a D aD ------=-=-222321()()n n n n a D aD a D aD a ---=-==-=12122()2n n n n n n n n D a aD a a a aD a a D ----=+=++=++2121(2)(1)n n n n n a a D n a a D --==-+=-+1(1)2(1)n n n n a a a n a -=-+⋅=+Ax B =0A ≠(1)n A n a =+0a ≠n D b 2221122(1)(1)112102121221122n n n nn n a aa a a aa aD na a a a a --⨯-⨯-===11(1)n n D nx D n a-==+0A =0a =此时方程组系数矩阵的秩和增广矩阵的秩均为,所以方程组有无穷多解,其通解为为任意常数.(21)【详解】(I)证法一:假设线性相关.因为分别属于不同特征值的特征向量,故线性无关,则可由线性表出,不妨设,其中不全为零(若同时为0,则为0,由可知,而特征向量都是非0向量,矛盾),又 ,整理得:则线性相关,矛盾. 所以,线性无关.证法二:设存在数,使得 (1)用左乘(1)的两边并由得(2)(1)—(2)得 (3)因为是的属于不同特征值的特征向量,所以线性无关,从而,代入(1)得,又由于,所以,故线性无关.(II) 记,则可逆,12101101001000n n x x x x -⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1n -()()10000100,TTk k +123,,ααα12,αα12,αα3α12,αα31122l l ααα=+12,l l 12,l l 3α323A ααα=+20α=11,A αα=-22A αα=∴32321122A l l αααααα=+=++311221122()A A l l l l ααααα=+=-+∴112221122l l l l ααααα-+=++11220l αα+=12,αα123,,ααα123,,k k k 1122330k k k ααα++=A 11,A αα=-22A αα=1123233()0k k k k ααα-+++=113220k k αα-=12,ααA 12,αα130k k ==220k α=20α≠20k =123,,ααα123(,,)P ααα=P 123123(,,)(,,)AP A A A A αααααα==1223(,,)αααα=-+123100(,,)011001ααα-⎛⎫⎪= ⎪ ⎪⎝⎭100011001P -⎛⎫ ⎪= ⎪ ⎪⎝⎭所以 .(22)【详解】(I) (II)所以(23) 【详解】(I) 因为,所以,从而.因为所以,是的无偏估计(II)方法一:,,所以1100011001P AP --⎛⎫ ⎪= ⎪ ⎪⎝⎭1201(0,)11112(0)(0)()122(0)22P X Y P Z X P X Y X P Y dy P X =≤≤==+≤===≤===⎰(){}{}Z F z P Z z P X Y z =≤=+≤{,1}{,0}{,1}P X Y z X P X Y z X P X Y z X =+≤=-++≤=++≤={1,1}{,0}{1,1}P Y z X P Y z X P Y z X =≤+=-+≤=+≤-={1}{1}{}{0}{1}{1}P Y z P X P Y z P X P Y z P X =≤+=-+≤=+≤-=[]1{1}{}{1}3P Y z P Y z P Y z =≤++≤+≤-[]1(1)()(1)3Y Y Y F z F z F z =+++-[]1()(1)()(1)3Z Y Y Y f z f z f z f z =+++-1,1230,z ⎧-≤<⎪=⎨⎪⎩其它2(,)X N μσ2(,)XN nσμ2,E X D X nσμ= =221()()E T E X S n =-221()E X E S n=-221()()D X E X E S n=+-222211n n σμσμ=+-=T 2μ22()()D T ET ET =-()0E T =22()1E S σ==2()D T ET =442222()S E X X S n n=-⋅+4224221()()()()E X E X E S E S n n=-+因为,所以, 有, 所以 因为,所以,又因为,所以,所以 所以 . 方法二:当时(注意和独立)(0,1)XN 1(0,)X N n 10,E X D X n ==()221E X DX E X n =+=2242222()()()()()E X D X E X D D X E X ⎡⎤=+=++⎣⎦2221()D D X n ⎡⎤=+⎣⎦2221132n n n ⎛⎫=⋅+= ⎪⎝⎭()2422222()1ES E S DS ES DS ⎡⎤==+=+⎢⎥⎣⎦2222(1)(1)(1)n S W n S n χσ-==--2(1)DW n =-22(1)DW n DS =-22(1)DS n =-4211(1)1n ES n n +=+=--2223211111n ET n n n n n +=-⋅⋅+⋅-2(1)n n =-0,1μσ==221()()D T D X S n=-X 2S 222222221111(1)(1)DX DS D D n S n n n n ⎡⎤=+=+⋅-⎣⎦-。
2008年考研数学三真题
2008年考研数学(三)真题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)设函数()f x 在区间[1,1]-上连续,则0x =是函数0()()xf t dtg x x=⎰的( )()A 跳跃间断点. ()B 可去间断点.()C 无穷间断点.()D 振荡间断点.(2)曲线段方程为()y f x =,函数()f x 在区间[0,]a 上有连续的导数,则定积分()at af x dx ⎰等于( )()A 曲边梯形ABCD 面积.()B 梯形ABCD 面积.()C 曲边三角形ACD 面积.()D 三角形ACD 面积.(3)已知(,)f x y =,则(A )(0,0)x f ',(0,0)y f '都存在 (B )(0,0)x f '不存在,(0,0)y f '存在 (C )(0,0)x f '不存在,(0,0)y f '不存在 (D )(0,0)x f ',(0,0)y f '都不存在 (4)设函数f连续,若22(,)uvD f u v =⎰⎰,其中uv D 为图中阴影部分,则Fu∂=∂( ) (A )2()vf u (B )2()v f u u(C )()vf u (D )()vf u u(5)设A 为阶非0矩阵E 为阶单位矩阵若30A =,则( )()A E A -不可逆,E A +不可逆.()B E A -不可逆,E A +可逆.()C E A -可逆,E A +可逆.()D E A -可逆,E A +不可逆.(6)设1221A ⎛⎫=⎪⎝⎭则在实数域上域与A 合同矩阵为( ) ()A 2112-⎛⎫⎪-⎝⎭.()B 2112-⎛⎫⎪-⎝⎭.()C 2112⎛⎫ ⎪⎝⎭.()D 1221-⎛⎫⎪-⎝⎭.(7)随机变量,X Y 独立同分布且X 分布函数为()F x ,则{}max ,Z X Y =分布函数为( )()A ()2F x .()B ()()F x F y .()C ()211F x --⎡⎤⎣⎦.()D ()()11F x F y --⎡⎤⎡⎤⎣⎦⎣⎦.(8)随机变量()~0,1X N ,()~1,4Y N 且相关系数1XY ρ=,则( )()A {}211P Y X =--=. ()B {}211P Y X =-=. ()C {}211P Y X =-+=.()D {}211P Y X =+=.二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(9)设函数21,()2,x x cf x x c x ⎧+≤⎪=⎨>⎪⎩在(,)-∞+∞内连续,则c = .(10)设341()1x x f x x x ++=+,则2()______f x dx =⎰.(11)设22{(,)1}D x y x y =+≤,则2()Dx y dxdy -=⎰⎰ . (12)微分方程0xy y '+=满足条件(1)1y =的解y = .(13)设3阶矩阵A 的特征值为1,2,2,E 为3阶单位矩阵,则14_____A E --=. (14)设随机变量X 服从参数为1的泊松分布,则{}2P X EX == .三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15) (本题满分10分)求极限21sin limln x xx x→. (16) (本题满分10分)设(,)z z x y =是由方程()22x y z x y z ϕ+-=++所确定的函数,其中ϕ具有2阶导数且1ϕ'≠-时. (1)求dz (2)记()1,z z u x y x y x y ⎛⎫∂∂=- ⎪-∂∂⎝⎭,求u x ∂∂. (17) (本题满分11分)计算max(,1),Dxy dxdy ⎰⎰其中{(,)02,02}D x y x y =≤≤≤≤.(18) (本题满分10分)设()f x 是周期为2的连续函数,(1)证明对任意实数t ,有()()22t tf x dx f x dx +=⎰⎰;(2)证明()()()202xt t G x f t f s ds dt +⎡⎤=-⎢⎥⎣⎦⎰⎰是周期为2的周期函数.(19) (本题满分10分)设银行存款的年利率为0.05r =,并依年复利计算,某基金会希望通过存款A 万元,实现第一年提取19万元,第二年提取28万元,…,第n 年提取(10+9n )万元,并能按此规律一直提取下去,问A 至少应为多少万元?(20) (本题满分12分)设矩阵2221212n na a a A a a ⨯⎛⎫⎪⎪= ⎪⎪⎝⎭,现矩阵A 满足方程AX B =,其中()1,,Tn X x x =,()1,0,,0B =,(1)求证()1nA n a =+;(2)a 为何值,方程组有唯一解; (3)a 为何值,方程组有无穷多解. (21)(本题满分10分)设A 为3阶矩阵,12,a a 为A 的分别属于特征值1,1-特征向量,向量3a 满足323Aa a a =+, 证明(1)123,,a a a 线性无关;(2)令()123,,P a a a =,求1P AP -.(22)(本题满分11分)设随机变量X 与Y 相互独立,X 的概率分布为{}()11,0,13P X i i ===-,Y 的概率密度为()1010Y y f y ≤≤⎧=⎨⎩其它,记Z X Y =+(1)求102P Z X ⎧⎫≤=⎨⎬⎩⎭; (2)求Z 的概率密度.(23) (本题满分11分)12,,,n X X X 是总体为2(,)N μσ的简单随机样本.记11n i i X X n ==∑,2211()1n i i S X X n ==--∑,221T X S n=-.(1)证 T 是2μ的无偏估计量.(2)当0,1μσ==时 ,求DT .2008年考研数学(三)真题解析需要完整答案及试卷解析的同学请添加微信公众号:考研365天微信号:ky365t关注后聊天窗口回复“答案”(听说关注我们的同学都能顺利上研哦)1994-2016 年政治考研真题+答案解析1986-2016 年英语一/二考研真题+答案解析1987-2016 年数学一/二/三考研真题+答案解析。
数三08年真题答案解析
数三08年真题答案解析2008年的数学三真题是高考数学试卷中的一部分,对于考生来说是非常重要的一次考试。
“数学三”是指数学科目的第三部分,通常是高难度题目。
正因为如此,许多考生都对2008年数学三真题的答案解析非常感兴趣。
下面将对该份真题进行一定的解析,以帮助考生更好地理解和掌握。
首先我们来看看第一道题目,该题目是关于平面向量的问题。
题目给出了两个向量a和b,要求求解三个未知变量x、y、z的值,从而使得向量a + x向量b与向量a - z向量b之间的夹角等于120度。
这道题目主要考察了对向量的运算和夹角的概念的理解。
考生需要根据向量加法和向量的夹角公式来进行求解。
具体的计算过程可以通过解方程组的方法得出。
这个题目的解答过程相对较长,需要考生有较强的计算能力和耐心。
接下来是第二道题目,该题目是关于排列组合的问题。
题目给出了一个有特殊条件的排列,要求求解这个排列中有多少个数字是奇数。
这个题目的解答相对简单,只需要根据给定的条件,采用排列组合的技巧进行计算即可。
考生需要注意理解题目的要求,分析问题,得出解题的思路。
通过排列组合的公式和技巧来进行计算,得到最终的答案。
第三道题目是关于导数的问题。
题目给出了一个函数和其导数的性质,要求求解该函数的一个特定点。
这个题目主要考察了对导数概念和性质的理解。
考生需要根据导数的定义和性质来进行计算,得出函数的特定点。
这个题目要求考生对导数的基本概念和定理有较好的掌握,对函数的性质和图像有一定的理解。
第四道题目是关于不等式的问题。
题目给出了两个复杂的不等式,要求求解不等式的解集。
这个题目主要考察了对不等式的运算和求解的能力。
考生需要通过分析不等式的特点,采用恒不等式和推论的方法,对不等式进行简化和求解。
这个题目要求考生对不等式的性质和运算技巧有一定的掌握。
最后是第五道题目,该题目是关于立体几何的问题。
题目给出了一个立方体,要求求解其两个对角线的夹角。
这个题目主要考察了对立体几何的理解和运用。
2008年数学三_考研数学真题及解析
2008年考研数学(三)真题一、选择题:(1)设函数()f x 在区间[1,1]-上连续,则0x =是函数0()()xf t dtg x x =⎰的( )()A 跳跃间断点. ()B 可去间断点.()C 无穷间断点. ()D 振荡间断点.(2)曲线段方程为()y f x =,函数()f x 在区间[0,]a 上有连续的导数,则定积分0()a taf x dx ⎰等于() ()A 曲边梯形ABCD 面积. ()B 梯形ABCD 面积.()C 曲边三角形ACD 面积. ()D 三角形ACD 面积.(3)已知(,)f x y =,则(A )(0,0)x f ',(0,0)y f '都存在 (B )(0,0)x f '不存在,(0,0)y f '存在(C )(0,0)x f '不存在,(0,0)y f '不存在 (D )(0,0)x f ',(0,0)y f '都不存在(4)设函数f连续,若22(,)uv D f u v =⎰⎰,其中uv D 为图中阴影部分,则F u ∂=∂( )(A )2()vf u (B )2()vf u u (C )()vf u (D )()vf u u(5)设A 为阶非0矩阵E 为阶单位矩阵若30A =,则( )()A E A -不可逆,E A +不可逆. ()B E A -不可逆,E A +可逆.()C E A -可逆,E A +可逆. ()D E A -可逆,E A +不可逆.(6)设1221A ⎛⎫= ⎪⎝⎭则在实数域上域与A 合同矩阵为( )()A 2112-⎛⎫⎪-⎝⎭. ()B 2112-⎛⎫⎪-⎝⎭.()C 2112⎛⎫ ⎪⎝⎭. ()D 1221-⎛⎫⎪-⎝⎭.(7)随机变量,X Y 独立同分布且X 分布函数为()F x ,则{}max ,Z X Y =分布函数为( )()A ()2F x . ()B ()()F x F y .()C ()211F x --⎡⎤⎣⎦. ()D ()()11F x F y --⎡⎤⎡⎤⎣⎦⎣⎦.(8)随机变量()~0,1X N ,()~1,4Y N 且相关系数1XY ρ=,则( )()A {}211P Y X =--=.()B {}211P Y X =-=. ()C {}211P Y X =-+=. ()D {}211P Y X =+=.二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(9)设函数21,()2,x x c f x x c x ⎧+≤⎪=⎨>⎪⎩在(,)-∞+∞内连续,则c = . (10)设341()1x x f x x x ++=+,则2()______f x dx =⎰.(11)设22{(,)1}D x y x y =+≤,则2()D xy dxdy -=⎰⎰ .(12)微分方程0xy y '+=满足条件(1)1y =的解y = .(13)设3阶矩阵A 的特征值为1,2,2,E 为3阶单位矩阵,则14_____A E --=.(14)设随机变量X 服从参数为1的泊松分布,则{}2P X EX == .三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15) (本题满分10分) 求极限201sin lim ln x x x x→. (16) (本题满分10分)设(,)z z x y =是由方程()22x y z x y z ϕ+-=++所确定的函数,其中ϕ具有2阶导数且1ϕ'≠-时. (1)求dz(2)记()1,z z u x y x y x y ⎛⎫∂∂=- ⎪-∂∂⎝⎭,求u x ∂∂. (17) (本题满分11分)计算max(,1),Dxy dxdy ⎰⎰其中{(,)02,02}D x y x y =≤≤≤≤.(18) (本题满分10分)设()f x 是周期为2的连续函数,(1)证明对任意实数t ,有()()220t t f x dx f x dx +=⎰⎰;(2)证明()()()202xt t G x f t f s ds dt +⎡⎤=-⎢⎥⎣⎦⎰⎰是周期为2的周期函数. (19) (本题满分10分)设银行存款的年利率为0.05r =,并依年复利计算,某基金会希望通过存款A 万元,实现第一年提取19万元,第二年提取28万元,…,第n 年提取(10+9n )万元,并能按此规律一直提取下去,问A 至少应为多少万元?(20) (本题满分12分)设矩阵2221212n n a a a A a a ⨯⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,现矩阵A 满足方程AX B =,其中()1,,Tn X x x =,()1,0,,0B =,(1)求证()1n A n a =+;(2)a 为何值,方程组有唯一解;(3)a 为何值,方程组有无穷多解.(21)(本题满分10分)设A 为3阶矩阵,12,a a 为A 的分别属于特征值1,1-特征向量,向量3a 满足323Aa a a =+,证明(1)123,,a a a 线性无关;(2)令()123,,P a a a =,求1P AP -. (22)(本题满分11分)设随机变量X 与Y 相互独立,X 的概率分布为{}()11,0,13P X i i ===-,Y 的概率密度为()1010Y y f y ≤≤⎧=⎨⎩其它,记Z X Y =+(1)求102P Z X ⎧⎫≤=⎨⎬⎩⎭; (2)求Z 的概率密度.(23) (本题满分11分)12,,,n X X X 是总体为2(,)N μσ的简单随机样本.记11n i i X X n ==∑,2211()1n i i S X X n ==--∑,221T X S n=-. (1)证 T 是2μ的无偏估计量.(2)当0,1μσ==时 ,求DT .卖炭翁白居易(唐) 字乐天号香山居士卖炭翁,伐薪烧炭南山中。
2008年考研数学(三)真题答案与解析
2008年考研数学(三)真题答案与解析一、选择题(1)【答案】B【详解】 ()()0()lim ()limlim 0xx x x f t dt g x f x f x→→→===⎰,所以0x =是函数()g x 的可去间断点. (2)【答案】C 【详解】()()()()()()aaa aaxf x dx xdf x xf x f x dx af a f x dx '==-=-⎰⎰⎰⎰其中()af a 是矩形ABOC 面积,0()af x dx ⎰为曲边梯形ABOD 的面积,所以0()axf x dx '⎰为曲边三角形的面积.(3)【答案】B【详解】240000(,0)(0,0)11(0,0)limlim lim 0xx x x x x f x f ee f x xx+→→→---'===- 0011lim lim 1xx x x e e x x ++→→--==,0011lim lim 1xx x x e e x x---→→--==- 故(0,0)x f '不存在.242020000(0,)(0,0)11(0,0)lim limlim lim 00y y y y y y y f y f e e y f y yyy +→→→→---'=====- 所以(0,0)y f '存在.故选B . (4)【答案】A【详解】用极坐标得 ()()222()22211,()vu uf r r Df u v F u v dudv dv rdr v f r dr u v +===+⎰⎰⎰⎰⎰所以()2Fvf u u∂=∂. (5)【答案】C【详解】23()()E A E A A E A E -++=-=,23()()E A E A A E A E +-+=+=. 故,E A E A -+均可逆. (6)【答案】D【详解】记1221D -⎛⎫= ⎪-⎝⎭,则()2121421E D λλλλ--==---, 又()2121421E A λλλλ---==----, 所以A 和D 有相同的特征多项式,所以A 和D 有相同的特征值.又A 和D 为同阶实对称矩阵,所以A 和D 相似.由于实对称矩阵相似必合同,故D 正确. (7)【答案】A【详解】()(){}{}()()()()()2max ,Z Z Z Z F z P Z z P X Y z P X z P Y z F z F z F z =≤=≤=≤≤==.(8)【答案】D【详解】 用排除法. 设Y aX b =+,由1XY ρ=,知道,X Y 正相关,得0a >,排除()A 、()C 由~(0,1),~(1,4)X N Y N ,得0,1,EX EY ==所以 ()()E Y E aX b aEX b =+=+01,a b =⨯+= 所以1b =. 排除()B . 故选择()D . 二、填空题(9)【答案】1【详解】由题设知||0c x ≥≥,所以22,()1,2,x x c f x x c x c x x c >⎧⎪=+-≤≤⎨⎪-<-⎩因为 ()22lim lim(1)1x cx cf x x c --→→=+=+,()22lim lim x c x cf x x c++→→== 又因为()f x 在(,)-∞+∞内连续,()f x 必在x c =处连续所以 ()()l i m l i m ()x cxcf x f x f c +-→→==,即2211c c c+=⇒=. (10)【答案】1ln 32【详解】222111112x xx x f x x x x x x ++⎛⎫+== ⎪⎝⎭⎛⎫++- ⎪⎝⎭,令1t x x =+,得()22t f t t =- 所以()()()22222222222111ln 2ln 6ln 2ln 32222x f x dx dx x x ==-=-=-⎰⎰. (11)【答案】4π【详解】()22221()2DDDx y dxdy x dxdy x y dxdy -=+⎰⎰⎰⎰⎰⎰利用函数奇偶性 21200124d r rdr ππθ==⎰⎰. (12)【答案】1y x=【详解】由dy y dx x -=,两端积分得1ln ln y x C -=+,所以1x C y=+,又(1)1y =,所以1y x =. (13)【答案】3【详解】A 的特征值为1,2,2,所以1A -的特征值为1,12,12, 所以14A E --的特征值为4113⨯-=,41211⨯-=,41211⨯-=所以143113B E --=⨯⨯=.(14)【答案】112e - 【详解】由22()DX EX EX =-,得22()EX DX EX =+,又因为X 服从参数为1的泊松分布,所以1DX EX ==,所以2112EX =+=,所以 {}21111222P X e e --===!.三、解答题(15) 【详解】 方法一:22001sin 1sin limln lim ln 11x x x x x x x x →→⎛⎫=+- ⎪⎝⎭32000sin cos 1sin 1limlim lim 366x x x x x x x x x x →→→--===-=- 方法二:2230001sin cos sin cos sin lim ln lim lim 2sin 2x x x x x x x x x xx x x x x →→→--=洛必达法则20sin 1lim 66x x x x →-=-洛必达法则(16) 【详解】(I) ()()22xdx ydy dz x y z dx dy dz ϕ'+-=++⋅++()()()122dz x dx y dy ϕϕϕ'''⇒+=-++-+ ()()221x dx y dy dz ϕϕϕ''-++-+⇒='+()1ϕ'≠-(II) 由上一问可知22,11z x z yx y ϕϕϕϕ''∂-+∂-+==''∂+∂+, 所以 ()11221222,()()1111z z x y y x u x y x y x y x y x y ϕϕϕϕϕϕ''∂∂-+-+-+=-=-=⋅=''''-∂∂-++-++ 所以 ()()()()223322(1)2(1)2(12)2(12)11111x z u x x x x ϕϕϕϕϕϕϕϕϕϕϕϕ'-∂''+''-+'''''''∂++-++∂==-=-=-∂''''++++. (17) 【详解】 曲线1xy =将区域分成两 个区域1D 和23D D +,为了便于计算继续对 区域分割,最后为()max ,1Dxy dxdy ⎰⎰123D D D xydxdy dxdy dxdy =++⎰⎰⎰⎰⎰⎰112222211102211x xdx dy dx dy dx xydy =++⎰⎰⎰⎰⎰⎰1512ln 2ln 24=++- 19ln 24=+ (18) 【详解】方法一:(I) 由积分的性质知对任意的实数t ,()()()()20222t t ttf x dx f x dx f x dx f x dx ++=++⎰⎰⎰⎰令2x u =+,则()()()()222t tttf x dx f u du f u du f x dx +=+==-⎰⎰⎰⎰所以()()()()()222t tttf x dx f x dx f x dx f x dx f x dx +=+-=⎰⎰⎰⎰⎰(II) 由(1)知,对任意的t 有()()222t f x dx f x dx +=⎰⎰,记()2a f x dx =⎰,则()0()2xG x f u du ax =-⎰. 所以,对任意的x ,()()2(2)()2(2)2x xG x G x f u du a x f u du ax ++-=-+-+⎰⎰()()22022220x xf u du a f u du a +=-=-=⎰⎰所以()G x 是周期为2的周期函数.O 0.5 2 xD 1D 3 D 2方法二:(I) 设2()()t tF t f x dx +=⎰,由于()(2)()0F t f t f t '=+-=,所以()F t 为常数,从而有()(0)F t F =. 而2(0)()F f x dx =⎰,所以2()()F t f x dx =⎰,即220()()t tf x dx f x dx +=⎰⎰.(II) 由(I)知,对任意的t 有()()222t f x dx f x dx +=⎰⎰,记()20a f x dx =⎰,则()0()2xG x f u du ax =-⎰ , ()20(2)2(2)x G x f u du a x ++=-+⎰由于对任意x ,()(2)2(2)2()G x f x a f x a '+=+-=-,()()2()G x f x a '=- 所以 ()(2)()0G x G x '+-=,从而 (2)()G x G x +-是常数 即有 (2)()(2)(0)0G x G x G G +-=-= 所以()G x 是周期为2的周期函数.(19) 【详解】方法一:设n A 为用于第n 年提取(109)n +万元的贴现值,则(1)(109)n n A r n -=++故 1111110919102009(1)(1)(1)(1)n n n nnn n n n nn n nA A r r r r ∞∞∞∞∞=====+===+=+++++∑∑∑∑∑设 1()(1,1)n n S x n x x ∞==∈-∑因为 21()()()(1,1)1(1)nn x xS x x x xx x x ∞=''=== ∈---∑所以 11()()4201 1.05S S r ==+(万元) 故 2009420398A =+⨯=(万元),即至少应存入3980万元. 方法二:设第t 年取款后的余款是t y ,由题意知t y 满足方程1(10.05)(109)t t y y t -=+-+, 即 11.05(109)t t y y t --=-+ (1)(1)对应的齐次方程 11.050t t y y --=的通解为 (1.05)tt y C = 设(1)的通解为 *t y at b =+,代入(1)解得 180a =,3980b =所以(1)的通解为 (1.05)1803980tt y C t =++ 由0y A =,0t y ≥得 3980A C =+ 0C ≥故A 至少为3980万元.(20) 【详解】(I) 证法一:2222122121213210122122112221301240134(1)2(1)3231(1)0n n n a a aa a a a a a A r ar aaa aa a an a a n a r ar a n a n nn a n-=-=-+-=⋅⋅⋅=++证法二:记||n D A =,下面用数学归纳法证明(1)n n D n a =+.当1n =时,12D a =,结论成立. 当2n =时,2222132a D a a a==,结论成立. 假设结论对小于n 的情况成立.将n D 按第1行展开得221221221210212121222(1)(1)n n n n nn n a a a a D aD a aaD a D ana a n a n a -----=-=-=--=+故 ||(1)nA n a =+证法三:记||n D A =,将其按第一列展开得 2122n n n D aD a D --=-,所以 211212()n n n n n n D aD aD a D a D aD ------=-=-222321()()n n n n a D aD a D aD a ---=-==-=即 12122()2n n n n n n n n D a aD a a a aD a a D ----=+=++=++2121(2)(1)n n n n n a a D n a a D --==-+=-+ 1(1)2(1)n n n n a a a n a -=-+⋅=+(II) 因为方程组有唯一解,所以由Ax B =知0A ≠,又(1)n A n a =+,故0a ≠. 由克莱姆法则,将n D 的第1列换成b ,得行列式为2221122(1)(1)112102121221122n n n nn n a aa a a a a a D na a a a a --⨯-⨯-===所以 11(1)n n D nx D n a-==+ (III) 方程组有无穷多解,由0A =,有0a =,则方程组为12101101001000n n x x x x -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭此时方程组系数矩阵的秩和增广矩阵的秩均为1n -,所以方程组有无穷多解,其通解为()()10000100,TTk k + 为任意常数.(21)【详解】(I)证法一:假设123,,ααα线性相关.因为12,αα分别属于不同特征值的特征向量,故12,αα线性无关,则3α可由12,αα线性表出,不妨设31122l l ααα=+,其中12,l l 不全为零(若12,l l 同时为0,则3α为0,由323A ααα=+可知20α=,而特征向量都是非0向量,矛盾)11,A αα=-22A αα=∴32321122A l l αααααα=+=++,又311221122()A A l l l l ααααα=+=-+ ∴112221122l l l l ααααα-+=++,整理得:11220l αα+=则12,αα线性相关,矛盾. 所以,123,,ααα线性无关.证法二:设存在数123,,k k k ,使得1122330k k k ααα++= (1)用A 左乘(1)的两边并由11,A αα=-22A αα=得1123233()0k k k k ααα-+++= (2)(1)—(2)得 113220k k αα-= (3)因为12,αα是A 的属于不同特征值的特征向量,所以12,αα线性无关,从而130k k ==,代入(1)得220k α=,又由于20α≠,所以20k =,故123,,ααα线性无关.(II) 记123(,,)P ααα=,则P 可逆,123123(,,)(,,)AP A A A A αααααα==1223(,,)αααα=-+123100(,,)011001ααα-⎛⎫ ⎪= ⎪ ⎪⎝⎭100011001P -⎛⎫ ⎪= ⎪ ⎪⎝⎭所以 1100011001P AP --⎛⎫ ⎪= ⎪ ⎪⎝⎭.(22)【详解】(I) 1201(0,)11112(0)(0)()122(0)22P X Y P Z X P X Y X P Y dy P X =≤≤==+≤===≤===⎰ (II) (){}{}Z F z P Z z P X Y z =≤=+≤{,1}{,0}{,1}P X Y z X P X Y z X P X Y z X =+≤=-++≤=++≤= {1,1}{,0}{1,1}P Y z X P Y z X P Y z X =≤+=-+≤=+≤-= {1}{1}{}{0}{1}{1}P Y z P X P Y z P X P Y z P X =≤+=-+≤=+≤-=[]1{1}{}{1}3P Y z P Y z P Y z =≤++≤+≤- []1(1)()(1)3Y Y Y F z F z F z =+++- 所以 []1()(1)()(1)3Z Y Y Y f z f z f z f z =+++-1,1230,z ⎧-≤<⎪=⎨⎪⎩其它(23) 【详解】(I) 因为2(,)X N μσ ,所以2(,)X N nσμ ,从而2,E X DX nσμ= =.因为 221()()E T E X S n =-221()E X E S n =- 221()()DX E X E S n =+-222211n nσμσμ=+-=所以,T 是2μ的无偏估计(II)方法一:22()()D T ET ET =-,()0E T =,22()1E S σ==所以2()D T ET =442222()S E X X S n n=-⋅+4224221()()()()E X E X E S E S n n=-+ 因为(0,1)X N ,所以1(0,)X N n,有10,E X D X n ==,()221E X DX E X n=+=所以22422221()()()()()E X D X E X D n X D X E X n ⎛⎫⎡⎤=+=⋅++ ⎪⎣⎦⎝⎭()2221()D n XD X n⎡⎤=+⎣⎦2221132n n n⎛⎫=⋅+= ⎪⎝⎭ ()2422222()1ES E S DS ES DS ⎡⎤==+=+⎢⎥⎣⎦因为2222(1)(1)(1)n S W n S n χσ-==-- ,所以2(1)DW n =-,又因为22(1)DW n DS =-,所以22(1)DS n =-,所以4211(1)1n ES n n +=+=--所以 2223211111n ET n n n n n +=-⋅⋅+⋅-2(1)n n =-. 方法二:当0,1μσ==时221()()D T D X S n=- (注意X 和2S 独立)()222222221111(1)(1)DX DS DnXD n S n nn n ⎡⎤=+=+⋅-⎣⎦-。
历考研数学三真题及详细答案解析
2012年全国硕士研究生入学统一考试数学三试题选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.(1)曲线221x xyx+=-渐近线的条数为()(A)0 (B)1 (C)2 (D)3(2)设函数2()(1)(2)x x nxf x e e e n=--…(-),其中n为正整数,则(0)f'=()(A)1(1)(1)!n n---(B)(1)(1)!n n--(C)1(1)!n n--(D)(1)!n n-(3)设函数()f t连续,则二次积分22202cos()d f r rdrπθθ⎰⎰=()(A)222() dx f x y dy+⎰(B)222()dx f x y dy+⎰(C)2221() dx x y dy+⎰⎰(D)2221() dx x y dy+⎰⎰(4)已知级数11(1)inα∞=-∑绝对收敛,21(1)ninα∞-=-∑条件收敛,则α范围为()(A )0<α12≤(B )12<α≤1 (C )1<α≤32(D )32<α<2(5)设1234123400110,1,1,1c c c c αααα-⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪===-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭其中1234c c c c ,,,为任意常数,则下列向量组线性相关的是()(A )123ααα,, (B )124ααα,, (C )134ααα,,(D )234ααα,,(6)设A 为3阶矩阵,P 为3阶可逆矩阵,且P-1AP=112⎛⎫⎪ ⎪ ⎪⎝⎭, 123=P ααα(,,),1223=Q αααα(+,,)则1=Q AQ -()(A )121⎛⎫⎪ ⎪ ⎪⎝⎭(B )112⎛⎫⎪ ⎪ ⎪⎝⎭ (C )212⎛⎫ ⎪ ⎪ ⎪⎝⎭(D )221⎛⎫ ⎪ ⎪ ⎪⎝⎭ (7)设随机变量X 与Y 相互独立,且都服从区间(0,1)上的均匀分布,则+P X Y ≤22{1}()(A )14(B )12(C )8π(D )4π(8)设1234X X X X ,,,为来自总体N σσ>2(1,)(0)的简单随机样本,则统计量1234|+-2|X X X X -的分布()(A )N (0,1)(B )(1)t(C )2(1)χ (D )(1,1)F二、填空题:9~14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(9)1cos sin 4lim(tan )x xx x π-→(10)设函数ln 1(),(()),21,1x dy x f x y f f x dx x x =⎧≥⎪=⎨-<⎪⎩求___________.(11)函数(,)z f x y =满足010,x y →→=则(0,1)dz =_______.(12)由曲线4y x =和直线y x =及4y x =在第一象限中所围图形的面积为_______.(13)设A 为3阶矩阵,|A|=3,A*为A 的伴随矩阵,若交换A 的第一行与第二行得到矩阵B ,则|BA*|=________.(14)设A,B,C 是随机事件,A,C 互不相容,11(),(),23P AB P C ==则C P AB ()=_________.解答题:15~23小题,共94分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)计算222cos 40limx xx e e x -→-(16)(本题满分10分)计算二重积分x De xydxdy ⎰⎰,其中D为由曲线y y ==所围区域. (17)(本题满分10分)某企业为生产甲、乙两种型号的产品,投入的固定成本为10000(万元),设该企业生产甲、乙两种产品的产量分别为x(件)和y(件),且固定两种产品的边际成本分别为20+2x(万元/件)与6+y (万元/件).1)求生产甲乙两种产品的总成本函数(,)C x y (万元)2)当总产量为50件时,甲乙两种的产量各为多少时可以使总成本最小?求最小的成本.3)求总产量为50件时且总成本最小时甲产品的边际成本,并解释其经济意义. (18)(本题满分10分)证明:21ln cos 1,1 1.12x x x x x x ++≥+-<<-(19)(本题满分10分)已知函数()f x 满足方程()()2()0f x f x f x "'+-=及()()2x f x f x e '+=1)求表达式()f x2)求曲线的拐点220()()xy f x f t dt=-⎰(20)(本题满分10分)设1001010100100010aa Ab a a ⎛⎫⎛⎫⎪ ⎪-⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,(I )求|A|(II )已知线性方程组Ax b =有无穷多解,求a ,并求Ax b =的通解. (21)(本题满分10分)已知1010111001A a a ⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥-⎣⎦,二次型123(,,)()f x x x x x T T =A A 的秩为2,求实数a 的值;求正交变换x=Qy 将f 化为标准型. (22)(本题满分10分)已知随机变量X,Y 以及XY 的分布律如下表所示:求(1)P(X=2Y); (2)cov(,)XY XY Y -ρ与.(23)(本题满分10分)设随机变量X 和Y 相互独立,且均服从参数为1的指数分布,min(,),=max(,).V X Y U X Y =求(1)随机变量V 的概率密度; (2)()E U V +.2011年全国硕士研究生入学统一考试数学三试题一、选择题:1~8小题,每小题4分,共32分。
2008数学三答案解析
类似, z 对 y 在 P(x0 , y0 ) 点处的偏导数定义为:
∂z ∂y
P
= lim ∆y →0
f (x0 , y0 + ∆y) − ∆y
f (x0 , y0 ) = lim y→ y0
f (x0 , y) − f (x0 , y0 ) y − y0
—2—
文登考研 高质量 高水平 高信誉
∆x→0
f
(∆x, 0) −
∆x
f
( 0, 0)
= lim e ∆x −1 = ∆x→0 ∆x
lim
∆x→0
∆x ∆x
不存在,
f
′
y
(
0,
0
)
=
lim
∆y →0
f
(0, ∆y) −
∆y
f
( 0, 0)
= lim e(∆y)2 −1 = ∆y→0 ∆y
( ∆y )2
lim ∆x→0 ∆y
= 0 存在,
(C) E − A 可逆, E + A 可逆
(D) E − A 可逆, E + A 不可逆 [ ]
【分析】从 A3 = O 入手.
( ) 【详解】 A3 = O ⇒ A3 + E = E ⇒ ( A + E ) A2 − A + E = E ,所以 A + E 可逆,
( ) A3 = O ⇒ A3 − E = −E ⇒ ( E − A) A2 + A + E = E ,所以 E − A 可逆,
【详解】因为
A
=
⎡1 ⎢⎣2
2⎤ 1⎥⎦
为实对称矩阵,
A
的特征值为
−1,
2008年考研数学三真题及解析
2008年考研数学(三)真题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)设函数()f x 在区间[1,1]-上连续,则0x =是函数0()()xf t dtg x x=⎰的( )()A 跳跃间断点. ()B 可去间断点.()C 无穷间断点.()D 振荡间断点.(2)曲线段方程为()y f x =,函数()f x 在区间[0,]a 上有连续的导数,则定积分()at af x dx ⎰等于( )()A 曲边梯形ABCD 面积.()B 梯形ABCD 面积.()C 曲边三角形ACD 面积.()D 三角形ACD 面积.(3)已知24(,)x y f x y e+=,则(A )(0,0)x f ',(0,0)y f '都存在 (B )(0,0)x f '不存在,(0,0)y f '存在 (C )(0,0)x f '不存在,(0,0)y f '不存在 (D )(0,0)x f ',(0,0)y f '都不存在 (4)设函数f 连续,若2222()(,)uvD f x y f u v dxdy x y +=+⎰⎰,其中uv D 为图中阴影部分,则Fu∂=∂( ) (A )2()vf u (B )2()v f u u(C )()vf u (D )()vf u u(5)设A 为阶非0矩阵E 为阶单位矩阵若30A =,则( )()A E A -不可逆,E A +不可逆.()B E A -不可逆,E A +可逆.()C E A -可逆,E A +可逆.()D E A -可逆,E A +不可逆.(6)设1221A ⎛⎫=⎪⎝⎭则在实数域上域与A 合同矩阵为( ) ()A 2112-⎛⎫⎪-⎝⎭.()B 2112-⎛⎫⎪-⎝⎭.()C 2112⎛⎫ ⎪⎝⎭.()D 1221-⎛⎫⎪-⎝⎭.(7)随机变量,X Y 独立同分布且X 分布函数为()F x ,则{}max ,Z X Y =分布函数为( )()A ()2F x .()B ()()F x F y .()C ()211F x --⎡⎤⎣⎦.()D ()()11F x F y --⎡⎤⎡⎤⎣⎦⎣⎦.(8)随机变量()~0,1X N ,()~1,4Y N 且相关系数1XY ρ=,则( )()A {}211P Y X =--=. ()B {}211P Y X =-=. ()C {}211P Y X =-+=.()D {}211P Y X =+=.二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(9)设函数21,()2,x x cf x x c x ⎧+≤⎪=⎨>⎪⎩在(,)-∞+∞内连续,则c = .(10)设341()1x x f x x x ++=+,则222()______f x dx =⎰.(11)设22{(,)1}D x y x y =+≤,则2()Dxy dxdy -=⎰⎰ .(12)微分方程0xy y '+=满足条件(1)1y =的解y = .(13)设3阶矩阵A 的特征值为1,2,2,E 为3阶单位矩阵,则14_____A E --=.(14)设随机变量X 服从参数为1的泊松分布,则{}2P X EX == .三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15) (本题满分10分)求极限201sin limln x x x x→. (16) (本题满分10分)设(,)z z x y =是由方程()22x y z x y z ϕ+-=++所确定的函数,其中ϕ具有2阶导数且1ϕ'≠-时. (1)求dz (2)记()1,z z u x y x y x y ⎛⎫∂∂=- ⎪-∂∂⎝⎭,求u x ∂∂. (17) (本题满分11分)计算max(,1),Dxy dxdy ⎰⎰其中{(,)02,02}D x y x y =≤≤≤≤.(18) (本题满分10分)设()f x 是周期为2的连续函数,(1)证明对任意实数t ,有()()22t tf x dx f x dx +=⎰⎰;(2)证明()()()202xt t G x f t f s ds dt +⎡⎤=-⎢⎥⎣⎦⎰⎰是周期为2的周期函数.(19) (本题满分10分)设银行存款的年利率为0.05r =,并依年复利计算,某基金会希望通过存款A 万元,实现第一年提取19万元,第二年提取28万元,…,第n 年提取(10+9n )万元,并能按此规律一直提取下去,问A 至少应为多少万元?(20) (本题满分12分)设矩阵2221212n na a a A a a ⨯⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭ ,现矩阵A 满足方程A X B =,其中()1,,T n X x x = ,()1,0,,0B = ,(1)求证()1nA n a =+;(2)a 为何值,方程组有唯一解;(3)a 为何值,方程组有无穷多解. (21)(本题满分10分)设A 为3阶矩阵,12,a a 为A 的分别属于特征值1,1-特征向量,向量3a 满足323Aa a a =+, 证明(1)123,,a a a 线性无关;(2)令()123,,P a a a =,求1P AP -.(22)(本题满分11分)设随机变量X 与Y 相互独立,X 的概率分布为{}()11,0,13P X i i ===-,Y 的概率密度为()1010Y y f y ≤≤⎧=⎨⎩其它,记Z X Y =+ (1)求102P Z X ⎧⎫≤=⎨⎬⎩⎭; (2)求Z 的概率密度.(23) (本题满分11分)12,,,n X X X 是总体为2(,)N μσ的简单随机样本.记11n i i X X n ==∑,2211()1n i i S X X n ==--∑,221T X S n=-. (1)证 T 是2μ的无偏估计量.(2)当0,1μσ==时 ,求DT .2008年考研数学(三)真题解析一、选择题 (1)【答案】B【详解】 ()()0()lim ()limlim 0xx x x f t dt g x f x f x→→→===⎰,所以0x =是函数()g x 的可去间断点. (2)【答案】C 【详解】00()()()()()()aa a aaxf x dx xdf x xf x f x dx af a f x dx '==-=-⎰⎰⎰⎰其中()af a 是矩形ABOC 面积,0()af x dx ⎰为曲边梯形ABOD 的面积,所以0()axf x dx '⎰为曲边三角形的面积.(3)【答案】B【详解】240000(,0)(0,0)11(0,0)lim lim lim 0xx xx x x f x f e e f x xx+→→→---'===- 0011lim lim 1xx x x e e x x ++→→--==,0011lim lim 1xx x x e e x x---→→--==- 故(0,0)x f '不存在.242020000(0,)(0,0)11(0,0)lim limlim lim 00y y y y y y y f y f e e y f y yyy +→→→→---'=====- 所以(0,0)y f '存在.故选B . (4)【答案】A【详解】用极坐标得 ()()222()22211,()vu uf r r Df u v F u v dudv dv rdr v f r dr u v +===+⎰⎰⎰⎰⎰所以()2Fvf u u∂=∂. (5)【答案】C【详解】23()()E A E A A E A E -++=-=,23()()E A E A A E A E +-+=+=. 故,E A E A -+均可逆. (6)【答案】D【详解】记1221D -⎛⎫= ⎪-⎝⎭,则()2121421E D λλλλ--==---,又()2121421E A λλλλ---==----, 所以A 和D 有相同的特征多项式,所以A 和D 有相同的特征值.又A 和D 为同阶实对称矩阵,所以A 和D 相似.由于实对称矩阵相似必合同,故D 正确. (7)【答案】A【详解】()(){}{}()()()()()2max ,Z Z Z Z F z P Z z P X Y z P X z P Y z F z F z F z =≤=≤=≤≤==.(8)【答案】D【详解】 用排除法. 设Y aX b =+,由1XY ρ=,知道,X Y 正相关,得0a >,排除()A 、()C 由~(0,1),~(1,4)X N Y N ,得0,1,EX EY ==所以 ()()E Y E aX b aEX b =+=+01,a b =⨯+= 所以1b =. 排除()B . 故选择()D . 二、填空题 (9)【答案】1【详解】由题设知||0c x ≥≥,所以22,()1,2,x x c f x x c x c x x c >⎧⎪=+-≤≤⎨⎪-<-⎩因为 ()22lim lim(1)1x cx cf x x c --→→=+=+,()22lim lim x c x cf x x c++→→== 又因为()f x 在(,)-∞+∞内连续,()f x 必在x c =处连续所以 ()()lim lim ()x cx cf x f x f c +-→→==,即2211c c c+=⇒=. (10)【答案】1ln 32【详解】222111112x xx x f x x x x x x ++⎛⎫+== ⎪⎝⎭⎛⎫++- ⎪⎝⎭,令1t x x =+,得()22t f t t =- 所以()()()22222222222111ln 2ln 6ln 2ln 32222x f x dx dx x x ==-=-=-⎰⎰. (11)【答案】4π【详解】()22221()2DDDx y dxdy x dxdy x y dxdy -=+⎰⎰⎰⎰⎰⎰利用函数奇偶性 21200124d r rdr ππθ==⎰⎰.(12)【答案】1y x= 【详解】由dy y dx x -=,两端积分得1ln ln y x C -=+,所以1x C y=+,又(1)1y =,所以1y x =.(13)【答案】3【详解】A 的特征值为1,2,2,所以1A -的特征值为1,12,12, 所以14A E --的特征值为4113⨯-=,41211⨯-=,41211⨯-=所以143113B E --=⨯⨯=.(14)【答案】112e - 【详解】由22()DX EX EX =-,得22()EX DX EX =+,又因为X 服从参数为1的泊松分布,所以1DX EX ==,所以2112EX =+=,所以 {}21111222P X e e --===!.三、解答题(15) 【详解】 方法一:22001sin 1sin limln lim ln 11x x x x x x x x →→⎛⎫=+- ⎪⎝⎭32000sin cos 1sin 1limlim lim 366x x x x x x x x x x →→→--===-=-方法二:2230001sin cos sin cos sin lim ln lim lim 2sin 2x x x x x x x x x xx x x x x →→→--=洛必达法则20sin 1lim 66x x x x →-=-洛必达法则 (16) 【详解】(I) ()()22xdx ydy dz x y z dx dy dz ϕ'+-=++⋅++()()()122dz x dx y dy ϕϕϕ'''⇒+=-++-+ ()()221x dx y dy dz ϕϕϕ''-++-+⇒='+()1ϕ'≠-(II) 由上一问可知22,11z x z yx y ϕϕϕϕ''∂-+∂-+==''∂+∂+, 所以 ()11221222,()()1111z z x y y x u x y x y x y x y x y ϕϕϕϕϕϕ''∂∂-+-+-+=-=-=⋅=''''-∂∂-++-++所以 ()()()()223322(1)2(1)2(12)2(12)11111x z u x x x x ϕϕϕϕϕϕϕϕϕϕϕϕ'-∂''+''-+'''''''∂++-++∂==-=-=-∂''''++++. (17) 【详解】 曲线1xy =将区域分成两 个区域1D 和23D D +,为了便于计算继续对 区域分割,最后为()max ,1Dxy dxdy ⎰⎰123D D D xydxdy dxdy dxdy =++⎰⎰⎰⎰⎰⎰112222211102211x xdx dy dx dy dx xydy =++⎰⎰⎰⎰⎰⎰1512ln 2ln 24=++- 19ln 24=+ (18) 【详解】方法一:(I) 由积分的性质知对任意的实数t ,()()()()20222t t ttf x dx f x dx f x dx f x dx ++=++⎰⎰⎰⎰令2x u =+,则()()()()222t tttf x dx f u du f u du f x dx +=+==-⎰⎰⎰⎰所以()()()()()222t tttf x dx f x dx f x dx f x dx f x dx +=+-=⎰⎰⎰⎰⎰(II) 由(1)知,对任意的t 有()()222t f x dx f x dx +=⎰⎰,记()2a f x dx =⎰,则()0()2xG x f u du ax =-⎰. 所以,对任意的x ,()()2(2)()2(2)2x xG x G x f u du a x f u du ax ++-=-+-+⎰⎰()()22022220x xf u du a f u du a +=-=-=⎰⎰所以()G x 是周期为2的周期函数.方法二:(I) 设2()()t tF t f x dx +=⎰,由于()(2)()0F t f t f t '=+-=,所以()F t 为常数,从而有()(0)F t F =.而2(0)()F f x dx =⎰,所以2()()F t f x dx =⎰,即220()()t tf x dx f x dx +=⎰⎰.(II) 由(I)知,对任意的t 有()()222t f x dx f x dx +=⎰⎰,记()20a f x dx =⎰,则O 0.5 2 xD 1D 3 D 2()0()2x G x f u du ax =-⎰ , ()2(2)2(2)x G x f u du a x ++=-+⎰由于对任意x ,()(2)2(2)2()G x f x a f x a '+=+-=-,()()2()G x f x a '=- 所以 ()(2)()0G x G x '+-=,从而 (2)()G x G x +-是常数 即有 (2)()(2)(0)0G x G x G G +-=-= 所以()G x 是周期为2的周期函数.(19) 【详解】方法一:设n A 为用于第n 年提取(109)n +万元的贴现值,则(1)(109)n n A r n -=++故 1111110919102009(1)(1)(1)(1)n n n nnn n n n nn n nA A r r r r ∞∞∞∞∞=====+===+=+++++∑∑∑∑∑设 1()(1,1)n n S x n x x ∞==∈-∑因为 21()()()(1,1)1(1)nn x xS x x x xx x x ∞=''=== ∈---∑所以 11()()4201 1.05S S r ==+(万元) 故 2009420398A =+⨯=(万元),即至少应存入3980万元. 方法二:设第t 年取款后的余款是t y ,由题意知t y 满足方程1(10.05)(109)t t y y t -=+-+, 即 11.05(109)t t y y t --=-+ (1)(1)对应的齐次方程 11.050t t y y --=的通解为 (1.05)t t y C = 设(1)的通解为 *t y at b =+,代入(1)解得 180a =,3980b = 所以(1)的通解为 (1.05)1803980tt y C t =++ 由0y A =,0t y ≥得 3980A C =+ 0C ≥ 故A 至少为3980万元.(20) 【详解】(I) 证法一:2222122121213210122122112221301240134(1)2(1)3231(1)0n n n a a aa a a a a a A r ar aaa aa a an a a n a r ar a n a n nn a n-=-=-+-=⋅⋅⋅=++证法二:记||n D A =,下面用数学归纳法证明(1)n n D n a =+.当1n =时,12D a =,结论成立. 当2n =时,2222132a D a a a==,结论成立. 假设结论对小于n 的情况成立.将n D 按第1行展开得221221221210212121222(1)(1)n n n n nn n a a a a D aD a aaD a D ana a n a n a -----=-=-=--=+故 ||(1)nA n a =+证法三:记||n D A =,将其按第一列展开得 2122n n n D aD a D --=-,所以 211212()n n n n n n D aD aD a D a D aD ------=-=-222321()()n n n n a D aD a D aD a ---=-==-=即 12122()2n n n n n n n n D a aD a a a aD a a D ----=+=++=++2121(2)(1)n n n n n a a D n a a D --==-+=-+ 1(1)2(1)n n n n a a a n a -=-+⋅=+(II) 因为方程组有唯一解,所以由Ax B =知0A ≠,又(1)n A n a =+,故0a ≠. 由克莱姆法则,将n D 的第1列换成b ,得行列式为2221122(1)(1)112102121221122n n n nn n a aa a a a a a D na a a a a --⨯-⨯-===所以 11(1)n n D nx D n a-==+ (III) 方程组有无穷多解,由0A =,有0a =,则方程组为12101101001000n n x x x x -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭此时方程组系数矩阵的秩和增广矩阵的秩均为1n -,所以方程组有无穷多解,其通解为()()10000100,TTk k + 为任意常数.(21)【详解】(I)证法一:假设123,,ααα线性相关.因为12,αα分别属于不同特征值的特征向量,故12,αα线性无关,则3α可由12,αα线性表出,不妨设31122l l ααα=+,其中12,l l 不全为零(若12,l l 同时为0,则3α为0,由323A ααα=+可知20α=,而特征向量都是非0向量,矛盾)11,A αα=-22A αα=∴32321122A l l αααααα=+=++,又311221122()A A l l l l ααααα=+=-+ ∴112221122l l l l ααααα-+=++,整理得:11220l αα+=则12,αα线性相关,矛盾. 所以,123,,ααα线性无关.证法二:设存在数123,,k k k ,使得1122330k k k ααα++= (1)用A 左乘(1)的两边并由11,A αα=-22A αα=得1123233()0k k k k ααα-+++= (2)(1)—(2)得 113220k k αα-= (3)因为12,αα是A 的属于不同特征值的特征向量,所以12,αα线性无关,从而130k k ==,代入(1)得220k α=,又由于20α≠,所以20k =,故123,,ααα线性无关.(II) 记123(,,)P ααα=,则P 可逆,123123(,,)(,,)AP A A A A αααααα==1223(,,)αααα=-+123100(,,)011001ααα-⎛⎫ ⎪= ⎪ ⎪⎝⎭100011001P -⎛⎫ ⎪= ⎪ ⎪⎝⎭所以 1100011001P AP --⎛⎫⎪= ⎪ ⎪⎝⎭.(22)【详解】(I) 1201(0,)11112(0)(0)()122(0)22P X Y P Z X P X Y X P Y dy P X =≤≤==+≤===≤===⎰ (II) (){}{}Z F z P Z z P X Y z =≤=+≤{,1}{,0}{,1}P X Y z X P X Y z X P X Y z X =+≤=-++≤=++≤= {1,1}{,0}{1,1}P Y z X P Y z X P Y z X =≤+=-+≤=+≤-= {1}{1}{}{0}{1}{1}P Y z P X P Y z P X P Y z P X =≤+=-+≤=+≤-= []1{1}{}{1}3P Y z P Y z P Y z =≤++≤+≤- []1(1)()(1)3Y Y Y F z F z F z =+++-所以 []1()(1)()(1)3Z Y Y Y f z f z f z f z =+++-1,1230,z ⎧-≤<⎪=⎨⎪⎩其它(23) 【详解】(I) 因为2(,)X N μσ ,所以2(,)X N nσμ ,从而2,E X DX nσμ= =.因为 221()()E T E X S n =-221()E X E S n =-221()()DX E X E S n =+-222211n nσμσμ=+-=所以,T 是2μ的无偏估计(II)方法一:22()()D T ET ET =-,()0E T =,22()1E S σ==所以2()D T ET =442222()S E X X S n n=-⋅+4224221()()()()E X E X E S E S n n=-+ 因为(0,1)X N ,所以1(0,)X N n,有10,E X D X n ==,()221E X DX E X n=+=所以22422221()()()()()E X D X E X D n X D X E X n ⎛⎫⎡⎤=+=⋅++⎪⎣⎦⎝⎭()2221()D n XD X n⎡⎤=+⎣⎦2221132n n n ⎛⎫=⋅+= ⎪⎝⎭()2422222()1ES E S DS ES DS ⎡⎤==+=+⎢⎥⎣⎦因为2222(1)(1)(1)n S W n S n χσ-==-- ,所以2(1)DW n =-,又因为22(1)DW n DS =-,所以22(1)DS n =-,所以4211(1)1n ES n n +=+=--所以 2223211111n ET n n n n n +=-⋅⋅+⋅-2(1)n n =-. 方法二:当0,1μσ==时221()()D T D X S n=- (注意X 和2S 独立)()222222221111(1)(1)DX DS DnXD n S n nn n ⎡⎤=+=+⋅-⎣⎦-。
2008年考研数学三真题及答案
(13)设 3 阶矩阵 A 的特征值 1,2,2,E 为三阶单位矩阵,则 4 A − E = (14)设随机变量 X 服从参数为 1 的泊松分布,则 P X = EX
. .
{
2
}=
三、解答题:15-23 小题,共 94 分.请将解答写在答题纸指定的位置上.解答应写出文字说 明、证明过程或演算步骤. (15) (本题满分 9 分) 求极限 lim
( A)
F 2 ( x)
( B)
2
F ( x) F ( y)
(C )
1− ⎡ ⎣1 − F ( x ) ⎤ ⎦
( D)
⎡ ⎣1 − F ( x ) ⎤ ⎦⎡ ⎣1 − F ( y ) ⎤ ⎦.
)
(8)随机变量 X ∼ N ( 0,1) , Y ∼ N (1, 4 ) ,且相关系数 ρ XY = 1 ,则(
∫
2 2
2
f ( x ) dx = ∫
2 2
2
(11) 【答案】
π
2
2
2 x 1 dx = ln ( x 2 − 2 ) 2 x −2 2 2
2
=
1 1 ( ln 6 − ln 2 ) = ln 3 . 2 2
【解】 ( x − y )dxdy =
D
∫∫
2 ∫∫ x dxdy =
D
1 1 1 1 21 π 2 2 x + y dxdy = π = πr 0 = . 2 rdr ( ) ∫ 0 2 ∫∫ 2 2 2 D
λE − A =
λ −1
−2
−2 2 = ( λ − 1) − 4 = λ 2 − 2λ − 3 = ( λ + 1)( λ − 3) = 0 , λ −1 ⎛ 1 −2 ⎞ ⎟ ,则 ⎝ −2 1 ⎠
考研数三(2008-2017年)历年真题
(B) 2(xn x1)2 服从 x2 分布
n
(C) (xi X )2 服从 x2 分布 (D) n( X )2 服从 x2 分布 i 1
二、填空题:9 14 小题,每小题 4 分,共 24 分.
(9) (sin3 x 2 x2 )dx ________ .
(10)差分方程 yt1 2 yt 2t 通解为 yt =
(6)已知矩阵
A
0 0
2 0
1 1
,
B
0 0
2 0
10
,
C
0 0
2 0
0 2
,则(
)
(A) A 与 C 相似, B 与 C 相似
(B) A 与 C 相似, B 与 C 不相似
(C) A 与 C 不相似, B 与 C 相似
(D) A 与 C 不相似, B 与 C 不相似
(7)设 A , B ,C 为三个随机事件,且 A 与 C 相互独立, B 与 C 相互独立,则 A B 与 C 相互独立的充分必要条件
(C) ab 0
(D) ab 2
(2) 二元函数 z xy(3 x y) 的极值点是( )
(A)(0,0)
(B) (0,3)
(3) 设函数 f (x) 可导,且 f (x) f (x) 0 ,则(
(C) (3,0) )
(D) (1,1)
(A) f (1) f (1) (B) f (1) f (1) (C) f (1) f (1) (D) f (1) f (1)
2017 年全国硕士研究生入学统一考试数学(三)试题
一、选择题:1 8 小题,每小题 4 分,共 32 分.下列每题给出的四个选项中,只有一个选项符合题目要求的.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008年全国硕士研究生入学统一考试数学三试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)设函数()f x 在区间[1,1]-上连续,则0x =是函数0()()xf t dtg x x=⎰的( )()A 跳跃间断点. ()B 可去间断点. ()C 无穷间断点.()D 振荡间断点.【答案】()B【考点】可去间断点,积分上限函数及其导数【难易度】★★ 【详解】解析:()()0()lim ()limlim 0xx x x f t dt g x f x f x→→→===⎰,所以0x =是函数()g x 的可去间断点.(2)如图,曲线方程为()y f x =,函数()f x 在区间[0,]a 上有连续导 数,则定积分'()axf x dx ⎰等于( )()A 曲边梯形ABCD 面积.()B 梯形ABCD 面积.()C 曲边三角形ACD 面积.()D 三角形ACD 面积.【答案】()C【考点】定积分的分部积分法,定积分的几何应用—平面图形的面积【难易度】★★ 【详解】 解析:()()()()aa a xf x dx xdf x af a f x dx '==-⎰⎰⎰,其中()af a 是矩形面积,0()af x dx ⎰为曲边梯形的面积,所以0()axf x dx '⎰为曲边三角形ACD 的面积.(3)已知24(,)x y f x y e+=则 ( )()A (0,0),(0,0)x y f f ''都存在 ()B (0,0)x f '存在,(0,0)y f '不存在()C(0,0)x f '不存在,(0,0)y f '存在 ()D (0,0),(0,0)x y f f ''都不存在【答案】()C【考点】多元函数的偏导数 【难易度】★★★ 【详解】 解析:2400011(0,0)limlim 00xx x x x ee f x x +→→--'==-- 00011lim lim 100xx x x e e x x →+→+--==--,001lim 10x x e x -→--=-- 000011lim lim 00xx x x e e x x -→+→---≠--,所以偏导数不存在. 24200011(0,0)limlim 000y y y y y ee f y y +→→--'===-- 所以偏导数存在。
故选C . (4)设函数f 连续.若⎰⎰++=uvD y x yx y x f v u F d d )(),(2222,其中区域uv D 为图中阴影部分,则=∂∂uF( ) (A )2()vf u .(B )).(2u f u v(C )()vf u .(D )).(u f uv【答案】A【考点】利用极坐标计算二重积分 【难易度】★★★ 【详解】解析:用极坐标变换将二重积分F (u ,v )表为定积分.uv D 的极坐标表示为u r v ≤≤≤≤1,0θ,⇒.d )(d )(d ),(21120r r f v r rrr f v u F u uv ⎰⎰⎰==θ⇒)(2u vf uF=∂∂.选(A ). (5)设A 为n 阶非零矩阵,E 为n 阶单位矩阵.若30A =,则( )()A E A -不可逆,E A +不可逆.()B E A -不可逆,E A +可逆. ()C E A -可逆,E A +可逆.()D E A -可逆,E A +不可逆.【答案】()C 【考点】逆矩阵的概念 【难易度】★★ 【详解】解析:23()()E A E A A E A E -++=-=,23()()E A E A A E A E +-+=+= 故,E A E A -+均可逆.(6)设1221A ⎛⎫=⎪⎝⎭,则在实数域上与A 合同矩阵为( ) ()A 2112-⎛⎫⎪-⎝⎭.()B 2112-⎛⎫⎪-⎝⎭.()C 2112⎛⎫ ⎪⎝⎭.()D 1221-⎛⎫⎪-⎝⎭.【答案】()D【考点】矩阵合同的判定【难易度】★★ 【详解】 解析:()()()2212142313021E A λλλλλλλλ---==--=--=+-=--则121,3λλ=-=。
记1221D -⎛⎫=⎪-⎝⎭,则()()()2212142313021E D λλλλλλλλ--==--=--=+-=-则121,3λλ=-=,正、负惯性指数相同,故选()D(7)设随机变量,X Y 独立同分布,且X 的分布函数为()F x ,则{}max ,Z X Y =的分布函数为( )()A ()2F x .()B ()()F x F y .()C ()211F x --⎡⎤⎣⎦.()D ()()11F x F y --⎡⎤⎡⎤⎣⎦⎣⎦.【答案】()A【考点】两个及两个以上随机变量简单函数的分布,二维随机变量相互独立的性质 【难易度】★★★ 【详解】 解析:()(){}{}max ,F Z P Z x P X Y x =≤=≤()()()()()2P X x P Y x F x F x F x =≤≤==(8)设随机变量()0,1X N :,()1,4Y N :,且相关系数1XY ρ=,则( )()A {}211P Y X =--=. ()B {}211P Y X =-=. ()C {}211P Y X =-+=.()D {}211P Y X =+=.【答案】()D【考点】相关系数的概念、随机变量的数学期望的性质 【难易度】★★ 【详解】解析:用排除法设Y aX b =+,由1XY ρ=,知道,X Y 正相关,得0a >,排除()A 、()C 由~(0,1),~(1,4)X N Y N ,得0,1,()()EX EY E Y E aX b aEX b ===+=+ 10, 1a b b =⨯+=排除()B故选择()D二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(9)设函数21,()2,x x c f x x c x ⎧+≤⎪=⎨>⎪⎩在(,)-∞+∞内连续,则c = .【答案】1【考点】函数连续的概念 【难易度】★★ 【详解】解析:由()()22lim lim 11x cx cf x f x c c c+-→→=⇒+=⇒= (10)设3411x x f x x x +⎛⎫+= ⎪+⎝⎭,则()2f x dx =⎰ .【答案】1ln 32【考点】复合函数,定积分的换元积分法 【难易度】★★ 【详解】解析:222111112x xx x f x x x x x x ++⎛⎫+== ⎪⎝⎭⎛⎫++- ⎪⎝⎭所以()22t f t t =-()()()2222222211111(2)ln 2ln 6ln 2ln 3222222x f x dx dx d x x x x ==-=-=-=--⎰⎰⎰(11)设{}22(,)1D x y x y =+≤,则2()Dx y dxdy -=⎰⎰ . 【答案】4π【考点】二重积分的计算 【难易度】★★ 【详解】 解析:()222221()2DDDDDx y dxdy x dxdy ydxdy x dxdy x y dxdy -=-==+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰21200124d r rdr ππθ==⎰⎰ (12)微分方程0xy y '+=满足条件(1)1y =的解是y = . 【答案】1y x=【考点】变量可分离的微分方程 【难易度】★★【详解】由0xy y '+=⇒1,,ln ln dy y dy dxy x C dx x y x-==-=+-所以1x C y =+,又(1)1y =,所以1y x=.(13)设3阶矩阵A 的特征值1,2,2,E 为3阶单位矩阵,则14A E --= . 【答案】3【考点】矩阵的特征值的性质 【难易度】★★ 【详解】解析:A 的特征值为1,2,2,所以1A -的特征值为1,12,12,所以14A E --的特征值为4113⨯-=,41211⨯-=,41211⨯-= 所以143113B E --=⨯⨯=.(14)设随机变量X 服从参数为1的泊松分布,则{}2P X EX == . 【答案】112e - 【考点】泊松分布、随机变量方差的计算公式 【难易度】★★★ 【详解】解析:因为X 服从参数为1的泊松分布,所以=1,1EX DX =,又 22()DX EX EX =-,所以 22EX =所以 {}2P X EX=={}1122P X e -==三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (15) (本题满分10分)求极限21sin limln x xx x→. 【考点】洛必达法则,等价无穷小【难易度】★★ 【详解】 解析:22001sin 1sin limln lim ln 11x x x x x x x x →→⎛⎫=+- ⎪⎝⎭32000sin cos 1sin 1limlim lim 366x x x x x x x x x x →→→--===-=- (16) (本题满分10分)设(,)z z x y =是由方程()22x y z x y z ϕ+-=++所确定的函数,其中ϕ具有2阶导数且1ϕ'≠-.(Ⅰ)求dz ;(Ⅱ)记1(,)()z z u x y x y x y ∂∂=--∂∂,求.xu∂∂ 【考点】多元函数的全微分,全微分形式不变性,多元隐函数的求导法【难易度】★★★ 【详解】 解析:(Ⅰ)将方程两端求全微分,利用一阶全微分形式不变性可得)d d d ()(d d 2d 2z y x z y x z y y x x ++⨯++'=-+ϕ⇔.d )](1[d )(2[d )](2[z z y x y z y x y x z y x x ++'+=++'-+++'-ϕϕϕ由此解出 ⋅++'+++'-+++'+++'-=y z y x z y x y x z y x z y x x z d )(1)(2d )(1)(2d ϕϕϕϕ (1)(Ⅱ)由(1)得)(1)(2,)(1)(2z y x z y x y y z z y x z y x x x z ++'+++'-=∂∂++'+++'-=∂∂ϕϕϕϕ,从而 )(1),(yz x z y x y x u u ∂∂-∂∂-== ⋅++'+=++'+++'--++'+++'--=)(12))(1)(2)(1)(2(1z y x z y x z y x y z y x z y x x y x ϕϕϕϕϕ 故)1)(()](1[22xzz y x z y x x u ∂∂+++"++'+-=∂∂ϕϕ ⋅++'+++"+-=++'+++'-+++'+++"-=32)](1[)()21(2])(1)(21[)](1[)(2z y x z y x x z y x z y x x z u x z y x ϕϕϕϕϕϕ (17) (本题满分11分) 计算⎰⎰Dy x xy d d }1,max{,其中{}(,)02,02D x y x y =≤≤≤≤.【考点】二重积分的性质、二重积分的计算 【难易度】★★★ 【详解】解析:方法一:画出积分区域即可求解.()max ,1Dxy dxdy ⎰⎰112222211102215191112ln 2ln 2ln 244x xdx dy dx dy dx xydy =++=++-=+⎰⎰⎰⎰⎰⎰ 方法二:积分区域如右图.⎰⎰⎰⎰+=21.d d 1D D xy I σσ将第一个积分作如下分解⎰⎰⎰⎰⎰⎰-=21.d 1d 1d 1D DD σσσ⇒⎰⎰⎰⎰⎰⎰+--=+-=2212122212212122121d |21d )12(4d d d d 4x xy x x y xy x y x I xx xx x x x x x x d 121d 2d 1232422122121⎰⎰⎰-++⋅-=.2ln 419||ln 2112212221+=++=x x (18) (本题满分10分)设()f x 是周期为2的连续函数, (I )证明对任意实数t ,都有()()22t tf x dx f x dx +=⎰⎰;(II )证明()()()202xt t g x f t f s ds dt +⎡⎤=-⎢⎥⎣⎦⎰⎰是周期为2的周期函数.【考点】函数的周期性,定积分的基本性质【难易度】★★★ 【解析】 证明:(I )对于()22t f x dx +⎰,令2x u =+,则()()2202t tf x dx f u du +=+⎰⎰因为()f x 的周期为2,所以()()22t tf x dx f x dx +=⎰⎰所以()()()()()22222t t ttf x dx f x dx f x dx f x dx f x dx ++=++=⎰⎰⎰⎰⎰(II )()()()22022x t t g x f t f s ds dt ++⎡⎤+=-⎢⎥⎣⎦⎰⎰()()()()()()2220022220002220000202()22()()22()22()()()x x t t xx x t t xt t xxt t x t t f t dt f s ds dt f t dt f t dt f s ds dt f s ds dtf t dt f t dt f s ds dt f t dt f t f s ds dtg x ++++++++⎡⎤=-⎢⎥⎣⎦⎡⎤⎡⎤=+--⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤=+--⎢⎥⎣⎦⎡⎤=-=⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰所以()g x 是周期为2的周期函数.(19) (本题满分10分)设银行存款的年利率为r =0.05,并依年复利计算.某基金会希望通过存款A 万元实现第一年提取19万元,第二年提取28万元,…,第n 年提取(10+9n )万元,并能按此规律一直提取下去,问A 至少应为多少万元?【考点】幂级数的和函数 【难易度】★★★★ 【详解】解析:设开始时刻为t =0,记0.05=r .由题设知A (单位:万元)应满足:在第1年末时存款余额,119019)1(rA r A +>⇔>-+ 在第2年末时存款余额,)1(28119028)1](19)1([2r r A r r A +++>⇔>-+-+ 如此继续下去,在第n 年末时存款余额0)910()1(28)1(19)1(21>+--+-+-+--n r r r A n n n Λ⇔ .)1(910)1(281192nr nr r A +++++++>Λ 不难看出,能够使取款一直继续下去的A 应满足ΛΛ++++++++≥nr n r r A )1(910)1(281192 ⇔ ⋅+++=++≥∑∑∑∞=∞=∞=nn n n n n r nr r n A )1(9)1(110)1()910(111 在已知的幂级数和函数公式)1|(|)1(1),1|(|1121111<-=<-=-∞=-∞=∑∑x x nx x x xn n n n 中,令rx +=11即得 ,11)111(11)1(,111111)1(12211r r rr r n r r r r nn n n +=+-+=+=+-+=+∑∑∞=∞= 故 3980919)11(91022=+=++≥rr r r r A (万元),即A 至少应为3980万元.(20) (本题满分11分)设n 元线性方程组Ax b =,其中2221212n na a a A a a ⨯⎛⎫⎪⎪= ⎪ ⎪⎝⎭OO O ,()1,,T nx x x =L ,()1,0,,0Tb =L .(Ⅰ)证明行列式()1n A n a =+;(Ⅱ)当a 为何值时,该方程组有唯一解,求1x ; (Ⅲ)当a 为何值时,该方程组有无穷多解,求通解. 【考点】行列式的基本性质,非齐次线性方程组解的判定 【难易度】★★★ 【详解】解析:(Ⅰ)证明:消元法.记2222212121||212na a a a a A a a a a =OO O22122213121212212na a a ar ar a a a a -OO O 322222130124123321212naa a r ar a a a a a a -O OO=L Ln n na a a n r ar nn a n n a n 12130124113111----+O OO (1)n n a =+.(Ⅱ)由克莱姆法则,0A ≠时方程组有唯一解,故0a ≠时方程组有唯一解. 由克莱姆法则,将n D 得第一列换成b ,得行列式为22211222211121021212121212122n n nn a aa a a a a a D na a a a a a a a a ---===OO O OO O所以,11(1)n n D ax D n a-==+. (Ⅲ)当0a =时,方程组为12101101001000n n x x x x -⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪=⎪⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭M OM O此时方程组系数矩阵的秩和增广矩阵的秩均为1n -,所以方程组有无穷多组解,其通解为(0,1,0,,0)(1,0,0,0)T T x k =+L L ,其中k 为任意常数.(21)(本题满分11分)设A 为3阶矩阵,12,αα为A 的分别属于特征值1,1-特征向量,向量3α满足323A ααα=+,(Ⅰ)证明123,,ααα线性无关;(Ⅱ)令()123,,P ααα=,求1P AP -.【考点】向量组的线性无关的概念,矩阵的特征值的概念,矩阵的特征向量的概念,矩阵的 特征向量的性质 【难易度】★★★ 【详解】解析:(Ⅰ)设有一组数123,,k k k ,使得 122330k k k ααα++=. 用A 左乘上式,得112233()()()0k A k A k A ααα++=. 因为 11A αα=-, 22A αα=,321A ααα=+, 所以 1123233()0k k k k ααα-+++=, 即113220k k αα-=.由于12,αα是属于不同特征值的特征向量,所以线性无关,因此130k k ==,从而有20k =.故 123,,ααα线性无关.(Ⅱ)记123(,,),P ααα=则P 可逆,123123(,,)(,,)A A A A αααααα=1223(,,)αααα=-+123100(,,)011001ααα-⎛⎫ ⎪= ⎪ ⎪⎝⎭即100011001AP P -⎛⎫ ⎪= ⎪ ⎪⎝⎭ ∴1100011001P AP --⎛⎫⎪= ⎪ ⎪⎝⎭.(22)(本题满分11分)设随机变量X 与Y 相互独立,X 的概率分布为{}()11,0,13P X i i ===-,Y 的概率密度为()1010Y y f y ≤≤⎧=⎨⎩其它,记Z X Y =+(Ⅰ)求102P Z X ⎧⎫≤=⎨⎬⎩⎭(Ⅱ)求Z 的概率密度()Z f z .【考点】条件概率的计算,两个及两个以上随机变量简单函数的分布【难易度】★★★★ 【详解】解析:(Ⅰ)1201111(0)(0)()()2222Y P Z X P X Y X P Y f y dy ≤==+≤==≤==⎰(Ⅱ)当2z ≥时,()1F z = 当1z <-时,()0F z = 当12z -≤<时,()()()F z P Z z P X Y z =≤=+≤(1)(1)(0)(0)(1)(1)P X Y z X P X P X Y z X P X P X Y z X P X =+≤=-⋅=-++≤=⋅=++≤=⋅=[]1(1)()(1)3P Y z P Y z P Y z =≤++≤+≤- 当10z -≤<时,1011()1(1)33z F z dy z +==+⎰当01z ≤<时,011()110(1)33z F z dy z ⎡⎤=++=+⎢⎥⎣⎦⎰当12z ≤<时,1011()111(1)33z F z dy z -⎡⎤=++=+⎢⎥⎣⎦⎰所以 0 11()(1) 1231 z 2z F z z z <-⎧⎪⎪=+-≤<⎨⎪≥⎪⎩,则1,12()30,z f z ⎧-≤<⎪=⎨⎪⎩其它(23)(本题满分11分)设12,,,n X X X L 是总体为2(,)N μσ的简单随机样本.记11ni i X X n ==∑,2211()1n ii S X X n ==--∑,221T X S n=- (Ⅰ)证 T 是2μ的无偏估计量.(Ⅱ)当0,1μσ==时 ,求DT . 【考点】估计量的无偏性,样本方差【难易度】★★★★ 【详解】解析:(Ⅰ)221()()E T E X S n =-221()E X E S n =-221E X nσ=-因为:2(,)X N μσ:, 2(,)X N n σμ:,而 22()EX DX EX =+221nσμ=+ 222211()E T n nσμσμ=+-=,所以 T 是2μ的无偏估计(Ⅱ) 22()()D T ET ET =-,()0E T =, 4422222()S ET E X X S n n=-⋅+因为 1(0,)X N n:(0,1)1XN :令1X X = ()2242422233x x E X dx dx EX +∞+∞---∞-∞====⎰⎰所以 423E X n=222222()E X S E X ES n n ⋅=⋅22(())DX E X n=+ 21(0)n n =+22n=44221()S E ES n n= 42222()1ES DS ES DS =+=+因为 222(1)(1)n S W n χσ-=-: 且21σ=22(1)2(1)DW n DS n =-=-22(1)DS n =-,4211(1)1n ES n n +=+=--所以 222232111n ET n n n n +=-+⋅-2(1)n n =-。