ELECTROCHEMICAL COPOLYMERIZATION OF DIBENZOFURAN AND 3-METHYLTHIOPHENE IN BORON TRIFLUORIDE DIET

合集下载

γ-Al2O3

γ-Al2O3

化工进展Chemical Industry and Engineering Progress2024 年第 43 卷第 3 期γ-Al 2O 3/CuO-ACF 电吸附除盐的影响因素及反应动力学柴多生1,高峰2,吴友兵3,孙昕1,郝然1,杨宇2,焦翔飞1(1 西安建筑科技大学环境与市政工程学院,陕西 西安 710055;2内蒙古自治区水利科学研究院,内蒙古 呼和浩特 010011;3马鞍山市城乡规划设计院有限责任公司,安徽 马鞍山 243011)摘要:开发脱盐率高、寿命长的电极材料是电容去离子(CDI )水处理技术的研究热点之一。

通过一锅水热法将层状CuAl 双金属氧化物与活性碳纤维复合,成功制备了CDI 电极(γ-Al 2O 3/CuO-ACF )。

采用SEM 、XRD 、FTIR 和CV 测试对样品的形貌、结构和电极性能进行了表征。

当初始NaCl 浓度为500mg/L 时,随着电压从0.8V 逐渐增加到1.6V ,两种电极的比吸附量、脱盐效率、电流效率和电耗均有所增加,γ-Al 2O 3/CuO-ACF 的四项参数依次比ACF 提高23.4%~55.3%、44.8%~82.0%、65.5%~90.0%和降低15.0%~21.4%。

当腐殖酸浓度为5~10mg/L 时,ACF 脱盐效率下降明显,而γ-Al 2O 3/CuO-ACF 脱盐效率仅在腐殖酸浓度10mg/L 时略有下降。

在15次循环后,NaCl 溶液体系的脱盐效率保留率为96%;但由于腐殖酸的存在,该值下降为92%。

两种电极的电吸附除盐过程遵循Langmuir 等温吸附方程,表示盐离子在电极表面为单分子层物理吸附。

与传统ACF 电极相比,γ-Al 2O 3/CuO-ACF 电极具有优异的可回收性、稳定性和增强的电化学特性。

关键词:层状CuAl 双金属氧化物;活性碳纤维;脱盐;电吸附中图分类号:X52 文献标志码:A 文章编号:1000-6613(2024)03-1637-11Reaction dynamics and influencing factors of capacitive deionizationdesalination using γ-Al 2O 3 / CuO-ACFCHAI Duosheng 1, GAO Feng 2, WU Youbing 3, SUN Xin 1, HAO Ran 1, YANG Yu 2, JIAO Xiangfei 1(1 School of Environmental and Municipal Engineering, Xi ’an University of Architecture and Technology, Xi ’an 710055,Shaanxi, China ;2 Inner Mongolia Hydraulic Research Institute, Hohhot 010011, Inner Mongolia, China; 3 Urban & RuralPlanning & Design Institute of Ma ’anshan, Ma ’anshan 243011, Anhui, China)Abstract: Developing electrode materials with a high desalination rate and long life is one of the research hotspots in the field of capacitive deionization (CDI) water treatment technology. CDI electrode (γ-Al 2O 3/ CuO-ACF) was successfully produced by combining laminated CuAl-mixed metal oxide with activated carbon fibers with a one-pot hydrothermal method. The surface morphology, structure and electrode properties of the samples were characterized by SEM, XRD, FTIR and CV. When the voltage increased from 0.8V to 1.6V under NaCl concentration of 500mg/L, the specific electroabsorption capacity, desalination efficiency, current efficiency and energy consumption increased for both electrodes, while those four parameters for γ-Al 2O 3/ CuO-ACF were 23.4%—55.3% higher, 44.8%—82.0% higher, 65.5%—90.0% higher and 15.0%—21.4% lower than those for ACF. Under NaCl concentration of 500mg/L and humic acid concentrations of 5—10mg/L, desalination efficiency for ACF was decreased, but that for γ-Al 2O 3/CuO-ACF was only研究开发DOI :10.16085/j.issn.1000-6613.2023-1600收稿日期:2023-09-11;修改稿日期:2023-11-20。

单离子聚合物快离子导体

单离子聚合物快离子导体

物 理 化 学 学 报Acta Phys. -Chim. Sin. 2023, 39 (8), 2205012 (1 of 10)Received: May 6, 2022; Revised: May 26, 2022; Accepted: May 27, 2022; Published online: June 9, 2022. *Correspondingauthors.Emails:********************.cn(Y.S.);*******************.cn(L.C.).This project was supported by the National Key Research and Development Program of China (2021YFB3800300) and the National Natural Science Foundation of China (21733012, 22179143).国家重点研究发展项目(2021YFB3800300)和国家自然科学基金(21733012, 22179143)资助© Editorial office of Acta Physico-Chimica Sinica[Article] doi: 10.3866/PKU.WHXB202205012 A Single-Ion Polymer Superionic ConductorGuoyong Xue 1,2, Jing Li 2, Junchao Chen 3, Daiqian Chen 2, Chenji Hu 2,3, Lingfei Tang 1,2, Bowen Chen 1,2, Ruowei Yi 2, Yanbin Shen 1,2,*, Liwei Chen 2,3,*1 School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China.2 i-Lab, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Science,Suzhou 215123, Jiangsu Province, China.3School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, Shanghai 200240, China.Abstract: All-solid-state batteries (ASSBs) have been considered a promising candidate for the next-generation electrochemical energy storage because of their high theoretical energy density and inherent safety. Lithium superionic conductors with high lithium-ion transference number and good processability are imperative for the development of practical ASSBs. However, the lithium superionic conductors currently available are predominantly limited to hard ceramics. Practical lithium superionic conductors employing flexible polymers areyet to be realized. The rigid and brittle nature of inorganic ceramic electrolytes limits their application in high-performance ASSBs. In this study, we demonstrate a novel design of a ternary random copolymer single-ion superionic conductor (SISC) through the radical polymerization of three different organic monomers that uses an anion-trapping borate ester as a crosslinking agent to copolymerize with vinylene carbonate and methyl vinyl sulfone. The proposed SISC contains abundant solvation sites for lithium-ion transport and anion receptors to immobilize the corresponding anions. Furthermore, the copolymerization of the three different monomers results in a low crystallinity and low glass transition temperature, which facilitates superior chain segment motion and results in a small activation energy for lithium-ion transport. The ionic conductivity and lithium-ion transference number of the SISC are 1.29 mS·cm −1 and 0.94 at room temperature, respectively. The SISC exhibits versatile processability and favorable Young’s modulus (3.4 ± 0.4 GPa). The proposed SISC can be integrated into ASSBs through in situ polymerization, which facilitates the formation of suitable electrode/electrolyte contacts. Solid-state symmetric Li||Li cells employing in situ polymerized SISCs show excellent lithium stripping/plating reversibility for more than 1000 h at a current density of 0.25 mA·cm −2. This indicates that the interface between the SISC and lithium metal anode is electrochemically stable. The ASSBs that employ in situ polymerized SISCs coupled with a lithium metal anode and various cathodes, including LiFePO 4, LiCoO 2, and sulfurized polyacrylonitrile (SPAN), exhibit acceptable electrochemical stability, including high rate performance and good cyclability. In particular, the Li||LiFePO 4 ASSBs retained ~ 70% of the discharge capacity when the charge/discharge rate was increased from 1 to 8C . They also demonstrate long-term cycling stability (> 700 cycles at 0.5C rate) at room temperature. A capacity retention of 90% was achieved even at a high rate of 2C after 300 cycles at room temperature. Furthermore, the SISCs have been applied to Li||LiFePO 4 pouch cells and exhibit exceptional flexibility and safety. This work provides a novel design principle for the fabrication of polymer-based superionic conductors and is valuable for the development of practical ambient-temperature ASSBs.Key Words: All-solid-state lithium metal battery; Solid polymer electrolyte; Superionic conductor;Single-ion conductor; In situ polymerization; Rate performance单离子聚合物快离子导体薛国勇1,2,李静2,陈俊超3,陈代前2,胡晨吉2,3,唐凌飞1,2,陈博文1,2,易若玮2,沈炎宾1,2,*,陈立桅2,3,*1中国科学技术大学纳米技术与纳米仿生学院,合肥 2300262中国科学院苏州纳米技术与纳米仿生研究所,创新实验室卓越纳米科学中心,江苏苏州 2151233上海交通大学化学化工学院,上海 200240摘要:具有高锂离子迁移数和良好可加工性能的锂快离子导体对于全固态电池的发展非常重要。

二苯胺与邻氨基酚共聚的原位紫外-可见光谱电化学研究

二苯胺与邻氨基酚共聚的原位紫外-可见光谱电化学研究

二苯胺与邻氨基酚共聚的原位紫外-可见光谱电化学研究袁文娟;张雷【摘要】运用循环伏安法(CV)和原位紫外-可见光谱电化学法研究了二苯胺(DPA)和邻氨基酚(OAP)在4mol/L H2SO4中单独聚合及二者共聚的电化学过程.DPA和OAP单独聚合及二者共聚时不同的电化学行为表明DPA和OAP之间发生了共聚作用.原位紫外-可见光谱研究表明,在DPA与OAP的共聚过程中,DPA与OAP首先被氧化生成阳离子自由基,然后,两者的阳离子自由基与溶液中的DPA和OAP单体或其自由基发生交互反应产生混合二聚物中间体,其吸收峰位于508 nm处.进一步研究发现,DPA和OAP的共聚过程与溶液中各单体的浓度比有关.%The electrochemical copolymerization of diphenylamine(DPA) and o-aminophenol(OAP) was studied by using in situ ultraviolet -visible (UV -Vis) spectroelectrochemical and cyclic voltam-metric techniques. The different voltammetric characteristics between the homopolymerization and copolymerization processes exhibited the occurrence of the copolymerization of DPA and OAP in 4 mol/ L H2SO4. The in situ UV -Vis spectra showed that, during the copolymerization of DPA and OAP, DPA and OAP were firstly oxidized to generate their cation radicals, then a mixed oligomer intermediate was formed by the cross-reaction of the cation radicals of DPA and OAP with the DPA and OAP monomers or their cation radicals in solution, and the absorption peak located at 508 nm was assigned to this intermediate. Further studies showed the difference was existed between the copolymerization of DPA and OAP with differentconcentration ratios, indicating the dependence of the copolymerization on the concentrations of DPA and OAP.【期刊名称】《分析测试学报》【年(卷),期】2013(032)001【总页数】7页(P38-44)【关键词】二苯胺;邻氨基酚;共聚;原位紫外-可见光谱【作者】袁文娟;张雷【作者单位】上海师范大学生命与环境科学学院化学系,上海 200234;上海师范大学生命与环境科学学院化学系,上海 200234【正文语种】中文【中图分类】O657.3;O741.6聚苯胺(PAN)由于具有许多独特的物理学、化学、电学及光学性质而成为多年来的研究热点,其广泛应用于充电电池的电池材料[1]和化学及电化学传感器的制备[2]。

高分子词典

高分子词典
anti-corrosion coating|防腐蚀涂料|[kE5rEuVEn]\r\n
anticracking agent|抗龟裂剂\r\n
antidegradant|抗降解剂\r\n
anti-fatigue agent|抗疲劳剂\r\n
antifoaming agent|消泡剂\r\n
addition polymerization|加聚\r\n
additive|添加剂\r\n
adhesion|粘合\r\n
adhesive|粘合剂,又称“胶粘剂”\r\n
adjacent re-entry model|相邻再入模型\r\n
adsorption polymerization|吸附聚合\r\n
antistatic additive|抗静电添加剂\r\n
antistatic agent|抗静电剂\r\n
AP|(参见APK,EPM,EPR)Ethylene-Propylene Rubber 乙丙橡胶\r\n
APK|(参见AP,APT,EPM,EPR)Ethylene-Propylene Rubber 乙丙橡胶\r\n
abrasive|磨蚀的|\r\n
ABS|Acrylonitrile-Butadiene-Styrene Copolymer(GB,DIN,ASTM,ISO) 丙烯腈-丁二烯-苯乙烯共聚物\r\n
accelerated ageing|加速老化\r\n
accelerated sulfur vulcanization|促进硫化\r\n
active center|活性中心\r\n
activity of initiator|引发剂活性\r\n

超疏水性薄膜在QCM传感器中的应用

超疏水性薄膜在QCM传感器中的应用
罔3 QCM表面的电子显微镜罔 Fig·3 FE—SEM ima988 of Q‘:M surface
2.2 QCM传感器对水分子的吸附 采用图2系统,测量各不同QCM传感器的水分
万方数据
表1各样品的膜厚、租糙度及接触角
Tab.1 Thickness。roughness and water contact angle of the samples
1.2 QCM传感器的特性评价 图2为QCM传感器对不同气体吸附感应评价系
统的示意图。测试气室通过2个阀门与高纯氮气、外 界环境相通,通过注射器可以往气室内注入一定体积 的被检测物质。气室是一个500 mI,的聚四氟乙烯恒 温容器,气室内安装被检测QCM传感器和湿度计,外 接频率计用于测量由驱动电路所输出的频率差信号的 频率,并把测试数据通过串口传送给计算机,计算机实 时显示并保存测试结果。
表2列出了改变甲醛浓度时,QCM传感器的频率 响应。甲醛浓度为2.5×lO~mol/l。时,频移为238 Hz,随甲醛浓度的增加,频率移动呈类似线性增大;而 注入纯水时,频移仅27 Hz。这说明在高湿度测量环 境下,超疏水性TMMOS膜/QCM传感器对甲醛有较 好的选择性和线性应答。
表2 QCM对不同浓度的甲醛的响应 Tab.2 Results frequency shift of formaldehyde
灵敏度。该传感器能够应用于高湿度环境下有害有机物的检测。
[关键词]超疏水性膜;QCM;微波等离子CVD;化学传感器
[中图分类号]TGl74.442;0652.2
[文献标识码]A
[文章编号]1001—3660(2010)05—0111一04
The Application of Hydrophobic Thin Film to QCM Sensor

各专业检索常用英语集锦

各专业检索常用英语集锦

生物和环境1. 神经的凋亡Apoptosisi of Neuron2. 肌动蛋白myosin的构象及作用机制The Structure and Function of Myosin3. 钇激光器的发射特性Yb Llaser Radiation Character4. 胰酶分泌素的分泌机制The Secreting Mechanism of Cholecystokinin5. 钙离子在信号传导中的作用The Function of Calcium in Signal Transduction6. 1,5-二磷酸核酮糖羧化酶的进化过程The Evolution of Rubisco7. 质谱技术在生物学中的应用Application of Mass Spectrometry in Biology8. PHB的微生物合成The Synthesis of PHB in Bacteria9. HIV-1 的研究Research on HIV-110.STA T信号通路在人体免疫系统的作用The Function of STA T s (Signal Transducers and Activators of Transcription)Involving the Human Immunological System11.水处理中的反渗透膜Reverse Osmosis in Water Treatment12.水体富营养化研究Research on Water Eutrophication13.饮用水处理和生产Drinking Water Treatment and Production14.废水中重金属的去除Removal of Heavy Metal in Waste Water15.膜分离技术在废水处理中的应用Membrane T echnology in the Use of Waste Water Treatment16.废塑料的生物降解Biodegradation of Wasted Plastics17.有机化合物的生物降解能力的确定方法The Method for the Determination of the Biodegradability of Organic Compounds 18.TiO2光催化氧化技术在环境工程中应用Application of Titanium Dioxide Photocatalysis in Environmental Engineering 19.包装材料的回收利用Reuse (Recycle) of Packaging Materials20.水处理中氮的去除The Removal of Nitrogen in Water-treatment21.污水的生物处理Biological Treatment of Waste Water22.催化还原法去除废气中的氮氧化物(NOx)The Catalytic Processes to Reduce Nitrogen Oxide in Waste Gases23.大气质量模型Atmosphere Environmental Quality Model24.挥发性有机物的测量The Measurement of the V olatile Organic Chemicals25.UASB在废水处理中的应用Application of UASB (Upflow Anaerobic Sludge Blanket) Reactor for the Treatment of Waste Water26.纺织工业废水中染料的去除The Removal of the Dyes from Waste Water of T extile Industry27.复合PCR技术在基因重组中的应用Multiplex PCR in Genetic Rearrangement28.含多环芳香烃废水对环境的污染The Pollution of Waste Water Containing Polycyclic Aromatic Hydrocarbons29.高效生物反应器的发展Development of High Performance Biotreator30.应用高效液相色谱纯化生物分子Purification of Biomolecules by HPLC (High-performance Liquid Chromatography) 31.蓝藻中的膜脂成分分析Analysis of Membrane Lipids in Cyanobacteria32.b-amyloid 在老年痴呆症中对神经的作用Function of b-amyloid on Neuron in Alzheimer's Disease33.小鼠胚胎干细胞的培养Cultivation of Embryonic Stem Cells in Mice34.基质金属蛋白酶的抑制Inhibition of Matrix Metalloproteinase (MMP)35.生物医用亲合吸附剂的研究进展Progress in biomedical affinity adsorbent36.面向环境的土壤磷素测定与表征方法研究进展Review on environmental oriented soil phosphorus testing procedure andinterpreting method37.海水养殖对沿岸生态环境影响的研究进展Review on effects of mariculture on coastal environment38.造纸清洁生产的研究进展Recent studies on cleaning production in paper industry39.深度氧化技术处理有机废水的研究进展Progress on treatment of organic wastewater by advances oxidation processes 40.折流式厌氧反应器(ABR)的研究进展Research advances in anaerobic baffled reactor (ABR)41.膜生物反应器中膜污染研究进展Study progress on the fouling of membrane in membrane bioreactor42.用于水和废水处理的混凝剂和絮凝剂的研究进展Progress on development and application of coagulants and flocculent in water and wastewater treatment43.二氢异香豆素类天然物的研究进展Development of studies on 3,4-dihydroisocoumarins in nature44.天然二萜酚类化合物研究进展Recent advances in the research on natural phenolic diterpenoids45.大气污染化学研究进展Progress in atmospheric chemistry of air pollution46.砷形态分析方法研究进展Development of methods for arsenic speciation47.复合污染的研究进展Advance in the study on compounded pollutions48.生物处理含氯代脂肪烃废水的研究进展Progress in research on the biological treatment of wastewater containingchlorinated aliphatics49.重金属生物吸附剂的应用研究现状Application conditions of heavy metal biosorbent50.两液相培养中有机溶剂对细胞毒性的研究进展Advances in studies on effects of toxicity of organic solvents on cells化学和化工1. 纳米材料的进展及其在塑料中的应用rogress and application of nano-materials in plastics2. 聚硅氯化铝(PASC)混凝剂的混凝特性The Coagulation Property of Polyaluminum Silicate Chlorate (PASC)3. 碳纳米管的制备与研究Preparations and studies of carbon nanotubes4. 纳米材料的制备及其发展动态Synthesis and development of nanosized materials5. 铁(III)核苷酸配位化合物与转铁蛋白的相互作用The interaction between ferric nucleotide coordination compounds and transferrin 6. 原位时间分辨拉曼光谱研究电化学氧化还原和吸附过程In-situ time resolved Raman spectroscopic studied on electrochemical oxidation-reduction and adsorption7. 苯胺电化学聚合机理的研究Study on the mechanism of electrochemical polymerization of aniline8. 沸石新材料研究进展Evolution of novel zeolite materials9. 聚合物共混相容性研究进展Research progress in compatibility of polymer blends10.聚酰亚胺LB膜研究进展Recent advances in polymide langmuir-blodgett films11.聚胺酯液晶研究进展The advances in LC-polyurethanes12.热塑性IPN研究进展及相结构理论Advances in thermoplastic IPN and morphological studies13.酞菁类聚合物功能材料研究进展Progresses in functional materials of phthalocyanine polymers14.有机硒化学研究进展Study progress in organoselenium chemisty15.杯芳烃研究进展Research progress in calixarene chemistry16.木素生物降解的研究进展Research progresses on lignin biodegradation17.甲烷直接催化转化制取芳烃的研究进展Progress research on direct catalytic conversion of methane to aromatics 18.铝基复合材料连接研究进展Advance in joining aluminum metal matrix composites19.现代天然香料提取技术的研究进展New development of the extraction from natural fragrance and flavour20.电泳涂料的研究进展Progress of study on electrodeposition coatings21.防静电涂料研究进展Research progress in antistatic coatings22.壳聚糖开发与应用研究进展Progress in research on the application and production of chitosan23.塑料薄膜防雾化技术的研究进展Research progress of anti-fogging technologies for plastics films24.膜反应器在催化反应中的研究进展Progress in study of films reactors for catalytical reactions25.表面活性剂对结晶过程影响的研究进展The development of studies on the influence of surfactants on crystallization 26.液晶复合分离膜及其研究进展Advances in liquid crystal composite membrane for separation27.高倍吸水树脂研究进展Recent progress in super adsorbent resin28.聚合物光折变的研究进展Progress of the study on photorefractivity in polymers29.微生物聚酯的合成和应用研究进展Progress on the biosynthesis and application of microbial polyesters30.可降解塑料的研究进展Progress in study on degradable plastics31.金属氢研究进展Progress on metallic hydrogen research32.软磁性材料的最新进展Recent advances in hard and soft magnetic materials33.光敏聚酰亚胺的研究进展Development of studies on photosensitive polyimides34.高分子卟啉及其金属配合物的研究进展Advances in polymers of porphyrins and their complexes35.水性聚胺酯研究进展Recent development of waterborne polyurethanes36.C60的研究进展及其在含能材料方面的应用前景Application prospect of C60 in energetic materials37.滤膜溶解富集方法研究进展Progress in investigation of concentration by means of soluble-membrane filter 38.人工晶体研究进展及应用前景The research progress and application prospects of synthetic crystals39.钛硅催化材料的研究进展Development of titanium silicon catalytic materials40.环烯烃聚合物的合成和应用研究进展Progress of polymerization and copolymerization with ethylene of cyclooelfines 41.多孔炭的纳米结构及其解析Nanostructure and analysis of porous carbons42.羰化法合成a-芳基丙酸研究进展Progress in preparation of a-arylpropionic acids through catalytic carbonation 44.组织工程相关生物材料表面工程的研究进展Advances in research on surface engineering of biomaterials for tissueengineering45.表面波在表面活性剂流变学研究中的应用Surface rheological properties of surfactant studied by surface wave technique 46.水溶性高分子聚集行为荧光非辐射能量转移研究进展Development of Fluorescence Nonradiative Energy Transfer in the Research for Aggregation of Water-Soluble Polymers47.两相催化体系中长链烯烃氢甲酰化反应研究进展Advance in the Hydroformylation of Higher Olefin in Two-Phase Catalystic System 48.聚合物膜燃料电池用电催化剂研究进展Progress in the Study of Electrocatalyst for PEMFC49.纳米器件制备的新方法--微接触印刷术New nano-fabrication Method-Microcontact Printing50.智能型水凝胶结构及响应机理的研究进展Recent Development of the Research on the Structure Effects and ResponsiveMechanism of Intelligent Hydrogels51.甲醇蒸馏distillation of methanol电类1. Amplifiers 放大器2. Asynchronous transfer mode(A TM) 异步传输模式3. Aritificial reality 虚拟现实4. Bayesian classification 贝叶斯分类器5. Biped robot 两足机器人6. Cable modem 有线调制解调器7. CDMA mobile communication system 码分多址移动通信系统8. Chaotic neural network 混沌神经网络9. Code optimization 代码优化10. Communication switching 通信交换11. Computer aided design 计算机辅助设计12. Compiler optimisation techniques 编译优化技术13. Computer game design 计算机游戏设计14. Computer graphics 计算机图形学15. Computer network 计算机网络16. Computer simulation 计算机仿真17. Computer vision 计算机视觉18. Continuous speech recognition 连续语音识别19. Corner Detect Operator 边角检测算子20. Database application 数据库应用21. Design of operation system 操作系统设计22. Digital filter 数字滤波器23. Digital image processing 数字图像处理24. Digital integrated circuits 数字集成电路25. Digital satellite communication system 数字卫星通信系统26. Digital signal processing 数字信号处理27. Digital television technology 数字电视技术28. Discrete system simulator programming 离散系统仿真编程29. Distributed interactive learning environment 分布式交互性学习环境30. EDA 数字系统设计自动化31. Electrical vehicles 电动交通工具32. Electricity control system 电力控制系统33. Electromagenetic wave radiation 电磁波辐射34. Face recognition 人脸识别35. Family Automation 家庭自动化36. Fibre bragg gratings 光纤布拉格光栅37. FIR digital filters 有限冲击响应数字滤波器38. Firewall technology 防火墙技术39. Fuzzy control 模糊控制40. Genetic algorithm 遗传算法41. HDTV 高清晰度电视42. High capacity floppy disk 高密度软盘43. High quality speech communication 高质量语音通信44. Image compression 图像压缩45. Image processing and recognition 图像处理和识别46. Image registration 图像配准47. Information retrieval 信息检索48. Intelligent robot 智能机器人49. Intelligent transportation 智能交通50. Internet protocol 因特网协议51. ISDN 综合业务数字网52. Knowledge discovery and data mining 知识发现和数据挖掘53. LAN, MAN and W AN 局域网,城域网和广域网54. Large scale integrated circuits 大规模集成电路55. Laser diode 激光二极管56. Laser measurement 激光测量57. Liner programming 线性规划58. Liner system stability analysis 线性系统稳定性分析59. Local area network security 局域网安全60. Magnetic material and devices 磁介质与设备61. Mass storage systems 海量存储技术62. Microwave devices 微波器件63. Mobile communication systems 移动通信系统64. MOS circuits MOS电路65. Motion control of robot 机器人运动控制66. Multimedia network 多媒体网络67. Network computing and knowledge acquisition 网络计算和知识获取68. Network routing protocol test 网络路由协议测试69. Neural network 神经网络70. Non-linear control 非线性控制71. Optical communication 光通信72. Optical fiber amplifiers 光纤放大器73. Optical hologram storage 光全息存储74. Optical modification 光调制75. Optical sensors 光传感器76. Optical switches 光开关77. Optical waveguides 光波导78. Packet switching technology in networks 网络中的分组交换技术79. Parallel algorithms 并行算法80. Pattern recognition 模式识别81. Photoelectric devices 光电子器件82. Process identificaion 过程辨识83. Programmable DSP chips 可编程数字信号处理芯片84. Programmable logic device 可编程逻辑器件85. Radar antennas 雷达天线86. Radar theory and systems 雷达理论和系统87. RISC architecture 简单指令处理器结构88. Satellite broadcasting 卫星广播89. Self calibration of camera 摄像机自适应校准90. Semiconductor laser 半导体激光器91. Semiconductor quantum well superlattices 半导体量子阱超晶格92. Signal detection and analysis 信号检测和分析93. Signal processing 信号处理94. Software engineering 软件工程95. Solid lasers 固体激光器96. Sound synthesiser 声音合成器97. Speech processing 语音处理98. System architecture design 系统结构设计99. Telecommunication receiving equipment 通信接收设备100. Theory of remote sensing by radar 雷达遥感理论101. Time division multiple access 时分多路访问102. Unix operating system Unix操作系统103. Video encoding and decoding 视频编解码104. Video telecommunication system 视频通信系统105. Wavelength division multiplexing 波分复用106. Wavelet transform 小波变换机械、自动化、物理、力学1. 无电压力传感器Nonelectric Pressure Sensors2. 金属腐蚀Metal Corrosion3. 印刷电路板的设计与制造The Design and Manufactory of Printed Circuit Board4. 分布式操作系统Distributed Operating Systems5. 金属材料的微结构和纳米结构Micro and Nanostructures of metal materials6. 宇宙背景辐射Backgroud Cosmic Radiations7. 非线性规划中的库恩-塔克条件kuhn-Tucker condition in Non-liner Programming8. 气体激光器Gas Laser9. 能量的来源及转化Energy resources and conversion10. 微纳米摩擦学Micro/nano-tribology11. 噪声控制Noise Control12. 空间观测技术Astronomical observation techniques13. 原子钟Atomic Clocks14. 半导体的磁性研究Research for Magnetic of Semiconductors15. 光学图形处理Optical Image Processing16. 液体/气体激光器加工Liquid/Gas Laser Machining17. 太阳能应用Solar Energy Application18. 流动系统中的混沌现象Chaos in Flowing Systems19. 半导体材料及仪器Semiconductor material and devices20. 电场测量研究Electric Field Measurement21. 系统及控制理论Systems and Control Theory22. 机械参量的测试Mechanical variables Measurement23. 光纤Optical Fibres24. 机动目标跟踪Tracking of Maneuvering T argets25. 航天技术Aerospace T echnology26. 导弹跟踪控制系统Missile Tracking System27. 液晶显示器件Liquid Crystal Displays28. CMOS 门电路CMOS Gate Circuits29. 图象采样与处理Image Sampling and Processing30. 光逻辑器件Optical Logic Device31. 信号发生器Signal Generator32. 蛋白质晶体测量Measurement of Protein Crystal Growth33. 有线电视Cables T elevision34. 震动与控制系统Vibration and Control System35. 高压输电系统的安全性研究Stability of High-voltage Power TransmissionSystem36. 电荷Electric Charge37. 电子显微镜及电子光学应用Electron Microscopes an Optics Applications38. 辐射的影响The Effect of Radiation39. 电化学传感器测试装置Electronchemical Sensors T esting Equipment40. 爱因斯坦-麦克斯韦场Einstein-Maxwell Fields41. 柔性角度传感器在生物力学中的应用Biomechanical Application of Flesible Angular Sensor42. 压电材料及应用装置Piezoelectric Materials and Devices43. 超导材料及其应用Superconducting Materials and The Applications of Them44. 光学干涉Optical Interferometry45. 表面测量Surface Measurement46. 等离子体中的电磁波Electromagnetic Waves in Plasma47. 半导体激光器Semiconductor lasers48. 数字人脸辨识Digital Face Recognition49. 光波导Optical Waveguides Theory50. 机械波检测技术Mechanical Waves T esting technology51. 激光调制技术Laser beam Modulation T echnology52. 只读内存Read-only Memory53. 光学显微镜Optical Microscopy54. 光纤位移测量传感器F-O displacement sensors55. 激光扫描Laser Scanners56. 量子论与量子场论Quantum Theory and Quantum Field Theory57. 流体机械Fluid Mechanics58. 地球引力Earth Gravity59. 自动控制系统Automatic Control System60. 静电线性加速器Electrostatic and Linear Accelerators61. 专家系统与网络接口Expert Systems and Network Interface62. 计算机辅助制造Computer aided Manufacture63. 全息存储Holography Storage64. 核能在中国的前景The Future of Nuclear Energy in China65. 机器人运动学和动力学分析The Kinematics an Dynamics of Robots66. 合成材料制品Composite Materials Preparations67. 光的吸收Light Absorption68. 自适应控制系统Self-adjusting Control Systems69. 通信与信息系统Communication and Information Systems70. 数字信号处理芯片Digital Signal Processing Chips71. 虚拟制造Virtual Manufacturing72. 雷达遥感Remote Sensing by Radar73. 晶格理论与点阵统计学Lattice Theory and Statistics74. 面向对象程序设计Object-Oriented Program Development75. 单片机应用及其外围设备The Applications of SCP and Outer Equipment76. 生物医学工程Biomedical Engineering77. 彩色电视设备Color T elevision78. 陶瓷-金属复合材料Ceramics-metallisation Composite Metallisation79. 电子信号的检测与处理Electronic Signal Detection and Processing80. X射线望远镜X- ray T elescope81. 基于网络的分时控制系统Time-varying Control System Based on Network82. 收音机信号传输Radio Broadcasting83. 单壁炭纳米管合成Single-Walled Carbon Nanotube Synthesis84. 无损检测Nondestructive T esting85. 汽车工业Automobile Industry86. 半导体材料与身体健康Semiconductor Materials and Health Physics87. 热辐射Heat Radiation88. 网络拓扑学Network T opology89. 微波的应用The Application of Microwave90. 局域网的设计The Design of Local Area Networks91. 金属元素表面结构Surface Structure of Metallic Elements92. 多媒体系统网络集成Network Synthesis of Multimedia Systems93. 铁氧体微波吸收材料Ferrite Microwave Absorbing Materials94. 炭纤维增强塑料复合材料Carbon Fiber Reinforced Plastic Composite95. 超导材料Superconducting Materials96. 远程定位水质控制Remote and On-site System for Water Quality Control97. 太阳能电力系统Solar Energy Power System98. 卫星接收系统Satellite Broadcasting and Relay System99. 时空对称性与守恒定律Symmetry of Space-time and Conservation Laws 100.邮件系统的体系及应用Application and Schemas for Mailbox System。

多次聚合法制备多孔聚吡咯厚膜及其电化学容量性能

多次聚合法制备多孔聚吡咯厚膜及其电化学容量性能

[Article]物理化学学报(Wuli Huaxue Xuebao )Acta Phys.⁃Chim.Sin .,2007,23(6):877-882June Received:December 29,2006;Revised:February 7,2007;Published on Web:April 28,2007.∗Corresponding author.Email:ylxu@;Tel:+8629⁃82665161.国家自然科学基金(50473033)和高等学校博士学科点专项科研基金(20040698016)资助项目ⒸEditorial office of Acta Physico ⁃Chimica Sinica多次聚合法制备多孔聚吡咯厚膜及其电化学容量性能王杰徐友龙∗孙孝飞肖芳毛胜春(西安交通大学电信学院,西安710049)摘要:为了得到高面积比容量的聚吡咯(PPy)膜超级电容器电极材料,用多次聚合法合成了PPy 厚膜,聚合电量分别为8、10和12mAh ·cm -2,掺杂离子分别为氯离子和对甲基苯磺酸根离子(TOS -).PPy 膜的电化学性能采用恒电流充放电、循环伏安(CV)和电化学阻抗谱(EIS)等方法测试.研究表明,多次聚合法可以制备表面平整且内部均匀多孔的PPy 厚膜.在聚合电量为12mAh ·cm -2时,用Cl -、TOS -两种离子掺杂的PPy 厚膜的面积比容量高达5F ·cm -2,并表现出理想的电化学容量性能.同时PPy ⁃Cl 厚膜的质量比容量达到330F ·g -1,PPy ⁃TOS 厚膜的质量比容量略低(191F ·g -1),但具有更快的充放电速率.与一次聚合法合成的PPy 薄膜相比,多次聚合法合成的PPy 厚膜的质量比容量没有降低.通过场发射扫描电镜(SEM)观察了一次聚合法和多次聚合法制备的PPy 厚膜的截面形貌,并讨论了多次聚合法的合成机理.关键词:聚吡咯;超级电容器;容量;形貌;多孔中图分类号:O646Capacitance Properties of Porous Polypyrrole Thick Films PreparedElectrochemically by Multi 鄄step PolymerizationWANG Jie XU You ⁃Long ∗SUN Xiao ⁃Fei XIAO Fang MAO Sheng ⁃Chun(School of Electronic and Information Engineering,Xi ′an Jiaotong University,Xi ′an710049,P.R.China )Abstract :To obtain polypyrrole (PPy )films with high area specific capacitance as electrode material for supercapacitors,the multi ⁃step polymerization method was proposed for preparing PPy thick films with polymerization charge of 8,10,and 12mAh ·cm -2,doped with Cl -and p ⁃toluenesulfonate (TOS -),respectively.The capacitance properties of the PPy films were investigated by galvanostatic charge/discharge,cyclic voltammetry (CV),and electrochemical impedance spectrum (EIS)technologies.The section morphology of the PPy films was observed by using field emission electron scanning microscope (SEM).The results showed that two kinds of even porous PPy films with area specific capacitance up to 5F ·cm -2could be obtained by multi ⁃step method.Moreover,the mass specific capacitance (referring to the masses of polymer and doping ions)of PPy ⁃Cl could reach 330F ·g -1,and the value of PPy ⁃TOS could reach 191F ·g -1,which were similar with that of PPy thin films.However,the discharge rate of the PPy ⁃TOS film was more rapid than that of the PPy ⁃Cl film.In addition,the growth processes of PPy films from one ⁃step polymerization method and multi ⁃step polymerization method were discussed.Key Words :Polypyrrole;Supercapacitors;Capacitance;Morphology;Porous电子导电聚合物(ECP),尤其是聚吡咯(PPy)、聚苯胺(PANi)、聚噻吩(PTh)以及它们的衍生物,具有在氧化态(掺杂态、导电态)和还原态(脱掺杂态、非导电态)进行快速切换这一独特的性质,在电化学储能[1]、执行器[2]、传感器[3]等领域具有广泛的应用前景.其中最具有吸引力的是用之制备高能量密度和高功率密度的超级电容器(电化学电容器)的电极材料[4,5].导电聚吡咯由于具有优异的电性能和电化学性能,877Acta Phys.鄄Chim.Sin.,2007Vol.23并具有合成容易和环境友好[6]等优势,被认为是最具有实用价值的超级电容器材料之一.聚吡咯的充放电过程实际上是对离子(阴离子)的掺杂与脱掺杂过程,这里的对离子包括合成时现场掺杂的阴离子和充放电时电解液中的阴离子.因此制备和测试溶液中的阴离子对聚吡咯的电化学性能有决定性的影响[7].Hu等[8]制备的PPy⁃Cl的电化学容量性能接近理想电容器性能,其比容量高达260 F·g-1,但其聚合电量不超过1C·cm-2,比容量将随着膜厚度的进一步增加而降低.这是由于厚膜电极增加了充放电时离子的扩散路径,在快速充放电时电极内部形成了离子扩散不到的“死区”.因此膜厚的增加并不能提高电极的容量.这就导致电极材料的质量比容量(F·g-1)下降和面积比容量(F·cm-2,此处所提及的面积是指聚合物膜生长基片的几何面积)难以提高.尽管薄膜电极具有较高的质量比容量,但在实际运用中,薄膜电极会导致电容器的体积比容量过低,因此面积比容量更有实际意义.Hughes等[9]在多壁碳纳米管阵列(aligned arrays of MWNTs)上电化学被覆聚吡咯膜,可以制备聚合电量为40C·cm-2的具有多通道(channel)的PPy/MWNTs复合膜,內复合膜的通道有利于充放电时离子的扩散,其面积比容量可高达2.55F·cm-2.但聚合电量超过40 C·cm-2时,过量生长的聚吡咯膜将堵塞膜的通道而使其电化学性能降低.我们前期研究表明,通过在“羊角状”的聚吡咯膜(horn⁃like PPy)表面合成聚噻吩的衍生物,聚乙二氧噻吩(PEDOT),制备多孔结构的(PEDOT/h⁃PPy)复合物[10,11],及在优化的合成条件下制备多孔结构的分子链有序的Cl-或对甲基苯磺酸根离子(TOS-)掺杂的聚吡咯膜[12],可以得到高质量比容量的超级电容器电极材料.多孔电极的优势在于,一是可以缩短充放电时离子的扩散路径,增加电极的充放电速率而提高电极的功率密度;二是增加电极的比表面积,减少“死区”提高电极的能量密度.用文献[12]的方法可以制备面积比容量接近2F·cm-2的聚吡咯膜电极(聚合电量为4-6mAh·cm-2,1mAh=3.6C),但更长时间的聚合会形成内部致密而外表极粗糙的聚吡咯膜,难以得到具有更高面积比容量的聚吡咯膜.针对这一问题,本文提出用多次聚合法制备更高面积比容量的聚吡咯膜,并研究其电化学容量性能,探讨多次聚合法制备均匀多孔膜的生长机理.1实验1.1聚吡咯膜的制备与表征吡咯单体(Py,Aldrich)减压蒸馏后使用,浓度为0.1mol·L-1;电解液中支撑盐(分别为对甲基苯磺酸钠TOSNa,氯化钾KCl)浓度为0.3mol·L-1,分别用对甲基苯磺酸(TOSH)和盐酸(HCl)调节溶液的pH 为3;溶剂为去离子水;聚合时电解液温度为0-2℃;聚合电流密度(j p)为2mA·cm-2;聚吡咯膜的厚度通过聚合电量(Q p)来控制,鉴于Q p=j p×t,这里膜的厚度实际上用聚合时间(t)来控制.工作电极为1cm×1cm 钽皮,用金相砂纸打磨后,在超声波中用丙酮清洗,充分除去油脂后烘干备用.聚合完成后,用去离子水多次洗涤PPy膜,然后烘干备用.多次聚合法合成是聚合一定时间后(1h或2h)取出工作电极,依次用乙氰和去离子水洗涤电极表面的PPy膜,烘干,然后浸入聚合溶液进行下一次聚合.聚吡咯的形貌和厚度用JSM⁃6700F型场发射扫描电镜(日本电子株式会社,JEOL)观测;聚吡咯膜的质量用AG135型电子天平(瑞士梅特勒⁃托利多(Mettler⁃Toledo)公司,精度0.01mg)称量.1.2聚吡咯膜的电化学性能测试所有电化学测试均在联机的带阻抗测试功能的VMP2型电化学工作站(普林斯顿应用研究公司)上进行的.三电极测试时,聚吡咯膜作为工作电极,铂电极作为对电极,饱和甘汞电极(SCE)作为参比电极,以下所有的电位均相对于SCE.电解液为1 mol·L-1的KCl水溶液.循环伏安法测试的扫描速率为10mV·s-1;恒电流测试的电流密度为1mA·cm-2或控制放电速率在10C(放电时间6min),但实际放电速率通过实际放电时间计算所得;电化学阻抗测试在开路电位上加一个振幅为10mV的交流电位,频率范围为100kHz-10mHz.2结果与讨论2.1PPy厚膜的放电性能用一次聚合法合成的Q p分别为2、4和6mAh·cm-2的PPy⁃Cl膜,在电流密度为1mA·cm-2的直流放电曲线分别如图1(a)中的曲线1-3所示.从图1 (a)可以看出,在整个放电电位范围内,电位和时间近似呈线性关系,并且在放电的开始阶段电位没有明显的极化电压(IR降),表现出理想电化学电容器的性能.但当Q p达到8mAh·cm-2时,聚吡咯表面不再平整,在洗涤和测试过程中均会发生PPy的脱落.878No.6王杰等:多次聚合法制备多孔聚吡咯厚膜及其电化学容量性能这样的PPy 膜不能实用化.因此,提出用多次聚合法制备PPy 厚膜,制备了用Cl -或TOS -掺杂的Q p 分别为8mAh ·cm -2(聚合时间2h+2h)、10mAh ·cm -2(2h+2h+1h)和12mAh ·cm -2(2h+2h+2h)的PPy 厚膜.PPy ⁃Cl 厚膜在1mA ·cm -2时的恒电流放电曲线如图1(a)中的曲线4-6所示,均无明显的极化电压,并且曲线在整个电位范围内接近线性.三种PPy ⁃Cl 膜在接近10C (即放电时间为6min)的速率时放电曲线如图1(b)所示.从图1(b)可以看出,当Q p 为8mAh ·cm -2的PPy ⁃Cl 膜在电流密度为7mA ·cm -2时,出现了明显的极化电压(曲线1′);并且Q p 为10mAh ·cm -2的PPy ⁃Cl 膜在电流密度为8mA ·cm -2时的极化电压更加明显(曲线2′);然而,Q p 为12mAh ·cm -2的PPy ⁃Cl 膜在电流密度为9mA ·cm -2时的极化电压(曲线3′)低于前两者.这有两个原因,一是对于Q p 为12mAh ·cm -2的PPy ⁃Cl 膜,尽管其放电电流密度高于前两者,但其放电速率低于前两者,其放电时间为355.9s,实际放电速率为10.1C ,而前两者的实际放电速率分别为13.1C 和13.7C ;而且该PPy ⁃Cl 膜表面粗糙,因此掺杂离子容易进入PPy 膜,并且电荷转移电阻较低(将在2.3节详细讨论).多次聚合法合成的聚合电量为8、10和12mAh ·cm -2的PPy ⁃TOS 膜的恒电流放电曲线分别如图2(a)的曲线1-3所示,放电电流密度为1mA ·cm -2.从图中可以看出,这三种PPy 膜在放电时均无极化电压,并且在整个电位范围内电位与时间基本呈线性关系.进一步采用了相同的放电速率来考察其放电性能,如图2(b)所示,其放电电流密度分别为7.84、10.5和12.6mA ·cm -2,实际放电速率接近12C (放电时间为5min).从图中可以看出,在如此快速放电时,三种厚度的PPy ⁃TOS 膜的放电曲线仍然没有明显的极化电压,电位与时间近似呈线性关系.与三种同样聚合电量的PPy ⁃Cl 膜相比,PPy ⁃TOS 膜具有更快的放电速率特性.用循环伏安(CV)法进一步比较了多次聚合法合成的PPy ⁃Cl 和PPy ⁃TOS 厚膜的充放电性能.聚合电量为10mAh ·cm -2的两种PPy膜的循环伏安图11mol ·L -1KCl 溶液中PPy ⁃Cl 膜的恒电流放电曲线Fig.1Galvanostatic discharge curves of PPy ⁃Clfilms in 1mol ·L -1KCl solution(a)current density:1mA ·cm -2;PPy ⁃Cl films prepared by one ⁃stepmethod (curves 1-3)and by multi ⁃step method (curves 4-6);(b)discharge ratio near 10C ,PPy ⁃Cl films prepared by multi ⁃step method with polymerization charge:8mAh ·cm -2(curve 1′),10mAh ·cm -2(curve 2′),12mAh ·cm -2(curve 3′)图2多次聚合法合成的PPy ⁃TOS 膜的恒电流放电曲线Fig.2Galvanostatic discharge curves of PPy ⁃TOSfilms prepared by multi ⁃step method(a)discharge current density:1mA ·cm -2;(b)discharge ratio near 12C ,polymerization charge:8mAh ·cm -2(curve 1),10mAh ·cm -2(curve 2),12mAh ·cm -2(curve 3),in 1mol ·L -1KClsolution879Acta Phys.鄄Chim.Sin.,2007Vol.23曲线如图3所示,扫描速率为10mV ·s -1.从图中可以看出,PPy ⁃TOS 的CV 曲线比PPy ⁃Cl 的CV 曲线更加接近矩形,再次表明PPy ⁃TOS 具有更快的充放电速率[13].2.2PPy 厚膜的容量分析用公式C =it /ΔU (i 为电流,t 为放电时间,ΔU 为电位窗)计算了恒电流放电时几种聚吡咯膜的电化学容量(C ).图4为PPy ⁃Cl 厚膜(a)和PPy ⁃TOS 厚膜(b)的面积比容量与聚合电量(厚度)的关系图.从图4(a)曲线1可看出,一次聚合法合成的聚合电量分别为2、4和6mAh ·cm -2的PPy ⁃Cl 膜的面积比容量分别为0.71、1.38和2.14F ·cm -2.计算可得质量比容量(计掺杂离子,下同)分别为288、280和289F ·g -1.从图4(a)的曲线2看到,多次聚合法合成的PPy ⁃Cl 膜在1mA ·cm -2放电时的面积比容量分别为3.27、4.25和4.88F ·cm -2,计算可得质量比容量分别为332、345和330F ·g -1.在10C 放电速率下厚膜PPy ⁃Cl 的面积比容量分别为2.23、3.03和3.56F ·cm -2,计算可得质量比容量分别为220、246和226F ·g -1.从图4(b)曲线1可看出,多次聚合法合成的PPy ⁃TOS 膜在1mA ·cm -2放电时的面积比容量分别为3.07、4.20和5.06F ·cm -2,计算可得质量比容量分别为198、194和191F ·g -1.在12C 放电速率下厚膜PPy ⁃TOS 的面积比容量分别为2.59、3.50和4.43F ·cm -2,计算可得质量比容量分别为167、162和166F ·g -1.从上面的数据可以看出,用多次聚合法可以制备面积比容量分别为4.88和5.06F ·cm -2的PPy ⁃Cl 和PPy ⁃TOS 厚膜.并且,其质量比容量并未随膜厚的增加而明显降低.即使在10C 快速放电时,PPy ⁃Cl 膜的质量比容量仍然高达226F ·g -1,在12C 放电速率下,PPy ⁃TOS 膜的质量比容量也高达166F ·g -1.另外,PPy ⁃TOS 厚膜在12C 放电时容量仍具有1mA ·cm -2放电时的87%,而对于PPy ⁃Cl 厚膜,该值为73%.这说明尽管由于TOS -比Cl -具有更大的质量而导致PPy ⁃TOS 厚膜的质量比容量低于PPy ⁃Cl 厚膜,但PPy ⁃TOS 厚膜的放电倍率特性优于PPy ⁃Cl 厚膜.这是由于充放电时离子在PPy ⁃TOS 膜中更容易快速进出[12].需要说明的是,这里计算的质量比容量高于文献[12]中PPy 膜(聚合电量为2mAh ·cm -2)的值,这是由于文献[12]中的值是用循环伏安法计算所得.从图3中的循环伏安曲线也可以计算出聚合电量为10mAh ·cm -2PPy ⁃Cl 和PPy ⁃TOS 的质量比容量,分别为240和153F ·g -1,与文献[12]的值相当.2.3PPy 厚膜的EIS 分析电化学电容器的功率输出能力不仅依赖于离子在电极材料中的扩散速率,也依赖于与电化学电容器串连的电阻(R )的大小.其中电极材料的电荷转移图31mol ·L -1KCl 溶液中PPy ⁃Cl 和PPy ⁃TOS厚膜的循环伏安曲线Fig.3CV curves of PPy ⁃Cl and PPy ⁃TOS thick filmsin 1mol ·L -1KCl solutionpolymerization charge:10mAh ·cm -2,scanning rate:10mV ·s-1图4PPy ⁃Cl (a)和PPy ⁃TOS (b)厚膜的面积比容量与聚合电量(厚度)的关系图Fig.4Area specific capacitance of PPy ⁃Cl (a)and PPy ⁃TOS (b)thick films with different polymerizationcharges in 1mol ·L -1KCl solution880No.6王杰等:多次聚合法制备多孔聚吡咯厚膜及其电化学容量性能电阻(R ct )是其主要部分.电化学阻抗谱通常用来研究电极材料的电荷转移电阻和离子扩散机理.上面三种多次聚合法制备的PPy ⁃Cl 厚膜的电化学阻抗谱如图5(a)所示.阻抗谱主要由两部分组成,高频区的半圆的直径表示界面电荷转移的电化学电阻R ct ,低频的斜线表示与电化学电容有关的充电机理[14],低频曲线与阻抗的实轴成90°角表示理想的电容器型离子扩散,但由于“弥散效应”,理想的电容器的低频曲线的斜率会略低于90°[15].从图5(a)可以得出,随着聚合电量的增加,用多次聚合法制备的PPy ⁃Cl 的R ct 逐渐减小,从聚合电量8mAh ·cm -2时的1.25Ω减小到12mAh ·cm -2的0.25Ω.这是由于厚膜增加了电化学反应面积相当于增加了电荷转移电阻的并联数.但是,厚膜也会增加电子的传导路径而增加电荷转移电阻,在这里该效应并不明显,是因为PPy 膜具有高电子电导率.聚合电量为12mAh ·cm -2的PPy ⁃Cl 厚膜的R ct 值极低是其在恒电流放电时极化电压较低的原因之一.另一方面,它们的低频曲线均表现出接近理想电容器的离子扩散机理.上面三种多次聚合法制备的PPy ⁃TOS 厚膜的电化学阻抗谱如图5(b)所示.将图5(b)与图5(a)比较可以看出,PPy ⁃TOS 厚膜具有更低的R ct .三种PPy ⁃TOS 厚膜的R ct 均小于0.2Ω,因此在恒电流快速充放电时没有明显的极化电压(如图2(b)所示).并且PPy ⁃TOS 的低频曲线更加垂直于实轴,说明PPy ⁃TOS 厚膜具有更优异的电化学容量特性.2.4PPy 厚膜的SEM 表征用多次聚合法和一次聚合法制备的聚合电量为8mAh ·cm -2的PPy ⁃TOS 厚膜的截面的电镜照片如图6(a)和(b)所示.从图6可以看出,多次聚合法制备的样品膜厚超过200μm,呈现多孔形貌,并且内外均匀,因此有利于离子扩散而具有较低的电化学电阻和理想的电化学容量性能.一次聚合法合成PPy ⁃TOS 厚膜靠近溶液一侧的结构疏松多孔,但靠近电极一侧的结构相对致密.在本文的合成条件下,可以制备多孔的PPy 膜[12],但是长时间聚合时,不仅先生长的PPy 膜外表面能够接触聚合溶液而继续向外生长多孔结构,而且聚合液有足够的时间可以扩散到PPy 膜内部的多孔结构里,并在多孔结构内生长,因此逐渐把早期形成的多孔结构填充.因此就出现了内部致密而外部疏松多孔的结构.在采用多次聚合法时,聚合2h 后取出,洗涤,烘干.这种做法的优点在于,首先,可以有效地去除膜内的聚合液,其次当PPy 膜电极再次浸入溶液中聚合时,PPy 膜将优先向溶液一侧生长,聚合单体和掺杂离子在向膜图6多次聚合法(a)和一次聚合法(b)制备的PPy ⁃TOS 厚膜的扫描电镜照片Fig.6SEM images of PPy ⁃TOS thick films prepared by multi ⁃step method (a)and one ⁃step method(b)图5多次聚合法合成的PPy ⁃Cl (a)和PPy ⁃TOS (b)厚膜的电化学阻抗谱Fig.5EIS spectra of PPy ⁃Cl (a)andPPy ⁃TOS (b)thickfilms 881Acta Phys.⁃Chim.Sin.,2007Vol.23内扩散时首先需要浸润,然后扩散到内部的多孔结构内而发生电化学聚合,因此可以有效地避免内部的多孔结构被填充.当然,多次聚合法中每一步的聚合时间还可以进一步优化.3结论通过多次聚合法可以制备均匀多孔的PPy⁃Cl 和PPy⁃TOS厚膜,其面积比容量可以分别高达4.88和5.06F·cm-2.由于多孔结构有利于充放电时离子扩散和增加充放电的表面积,质量比容量并未随膜厚度的显著增加而明显降低,其值分别为330和191F·g-1(放电电流密度为1mA·cm-2).尽管PPy⁃TOS厚膜由于具有质量较大的掺杂离子TOS-而质量比容量较低,但是其倍率特性优于PPy⁃Cl厚膜,在12C放电(放电时间5min)时面积比容量和质量比容量仍高达4.43F·cm-2和166F·g-1.用多次聚合法可以制备具有高面积比容量的PPy厚膜,用其作为超级电容器电极材料,可以显著地减少集电极的面积和质量,不仅可以有效降低成本,并有利于器件小型化,而且还可以提高超级电容器的比能量和比功率.References1Ingram,M.D.;Staesche,H.;Ryder,K.S.J.Power Sources,2004, 129(1):1072Berdichevsky,Y.;Lo,Y.H.Adv.Mater.,2006,18(1):1223An,K.H.;Jeong,S.Y.;Hwang,H.R.;Lee,Y.H.Adv.Mater.,2004,16(12):10054Li,W.;Chen,J.;Zhao,J.;Zhang,J.;Zhu,J.Mater.Lett.,2005,59(7):8005Yang,H.S.;Zhou,X.;Zhang,Q.W.Acta Phys.⁃Chim.Sin.,2005, 21(4):414[杨红生,周啸,张庆武.物理化学学报,2005,21(4):414]6Groenendaal,L.;Jonas,F.;Freitag,D.;Pielartzik,H.;Reynolds,R.Adv.Mater.,2000,12(7):4817Weidlich,C.;Mangold,K.M.;Juttner,K.Electrochim.Acta,2005,50(7-8):15478Hu,C.C.;Lin,X.X.J.Electrochem.Soc.,2002,149(8):A1049 9Hughes,M.;Shaffer,M.S.P.;Renouf,A.C.;Singh,C.;Chen,G.Z.;Fray,D.J.;Windle,A.H.Adv.Mater.,2002,14(5):38210Xu,Y.L.;Wang,J.;Sun,W.;Wang,S.H.J.Power Sources,2006, 159(1):37011Wang,J.;Xu,Y.L.;Chen,X.;Du,X.F.J.Power Sources,2007, 163(2):112012Wang,J.;Xu,Y.L.;Chen,X.;Du,X.F.;Li,X.F.Acta Phys.⁃Chim.Sin.,2007,23(3):299[王杰,徐友龙,陈曦,杜显锋,李喜飞.物理化学学报,2007,23(3):299]13Ghosh,S.;Inganäs,O.Adv.Mater.,1999,11(14):121414Roland,H.;Jorge,G.C.;Germa,G.B.J.Electroanal.Chem., 2005,577(1):9915Cao,C.N.;Zhang,J.Q.Introduction to electrochemical impedance spectroscopy.Beijing:Science Press,2004:26[曹楚南,张鉴清.电化学阻抗谱导论.北京:科学出版社,2004:26]882。

电镀行业术语之欧阳化创编

电镀行业术语之欧阳化创编

常用名词1.化学腐蚀chemical corrosion金属在非电化学作用下的腐蚀(氧化)过程。

通常指在非电解质溶液及干燥气体中,纯化学作用引起的腐蚀。

2.双电层electric double layer电极与电解质溶液界面上存在的大小相等符号相反的电荷层。

3.双极性电极bipolar electrode一个不与外电源相连的,浸入阳极与阴极间电解液中的导体。

靠近阳极的那部分导体起着阴极的作用,而靠近阴极的部分起着阳极的作用。

4.分散能力throwing power在特定条件下,一定溶液使电极上(通常是阴极)镀层分布比初次电流分布所获得的结果更为均匀的能力。

此名词也可用于阳极过程,其定义与上述者类似。

5.分解电压decomposition voltage其定义与上述者类似。

能使电化学反应以明显速度持续进行的最小电压(溶液的欧姆电压降不包括在内)。

6.不溶性阳极(惰性阳极)inert anode在电流通过时,不发生阳极溶解反应的阳极。

7.电化学electrochemistry研究电子导体和离子导体的接触界面性质及其所发生变化的科学。

8.电化学极化(活化极化)activation polarization由于电化学反应在进行中遇到困难而引起的极化。

9.电化学腐蚀electrochemical corrosion在卑解质溶掖中或金属表面上的液膜中,服从于电化学反应规律的金属腐蚀(氧化)过程10.电化当量electrochemical equivalent在电极上通过单位电量(例如1安时,1库仑或1法拉第时),电极反应形成产物之理论重量。

通常以克/库仑或克/安时表示。

11 电导率(比电导)conductivity单位截面积和单位长度的导体之电导,通常以S/m表示。

12 电泳electrophoresis液体介质中带电的胶体微粒在外电场作用下相对液体的迁移现象。

13 电动势electromotive force原电池开路时两极间的电势差。

导电聚噻吩作为超级电容器电极材料的研究进展_袁美蓉

导电聚噻吩作为超级电容器电极材料的研究进展_袁美蓉
S
CN
CN
S
S
S
S
CH3
1
2
CH3
CN
CN
S
CN
O
O
S
S
S
3
4
5
图 2 低 聚 物 的 结 构 式 [13] Fig.2 Structure of the oligomers[13]
S
"
S+.
DMT
-e-
Ionicliquid
图3 TPT 的结构式[19] Fig.3 Schematic strcuture of TPT[19]
Electrochemical Polymerization
PDMT Sn
#
-e-
x
Ionicliquid
S+. +y S+.
Electrochemical Copolymerization
S Sn
Poly(DMT-co-3MT)
S 3MT
!
-eIonicliquid
S+. Electrochemical Polymerization
为主,而聚噻吩既可以 p型 掺 杂 又 可 以 n型 掺 杂 。 [1] 本 文 主 要对聚噻吩超级电容器电极材料的研究成果做简要概述。
1 噻 吩 均 聚 物 类 电 极 材 料
噻吩类聚 合 物 作 为 发 光 材 料 的 研 究 早 已 被 人 们 报 道。 1996年 Pasquier等 在 [10] 电化学电容进 展 国 际 会 议 上 报 道 了 一种Ⅱ型超级电容器,它的 2个电极分别由聚 3-氟苯噻吩和 聚噻 吩 构 成。 另 外,Mastragostino 等 也 [11] 在 会 议 上 报 道 了 另一种 既 可 以 p 型 掺 杂 又 可 以 n 型 掺 杂 的 聚 3,4-双 噻 吩 基 噻吩,并与传统的 活 性 炭 材 料 进 行 性 能 对 比。 随 后,人 们 开 始关注聚噻吩类超级电容器电极材料的研究。

电催化反应的英文

电催化反应的英文

电催化反应的英文Electrochemical Catalysis: Unlocking the Potential of Energy Conversion and StorageElectrochemical catalysis is a rapidly evolving field that has garnered significant attention in recent years due to its pivotal role in addressing the global energy and environmental challenges. This transformative technology harnesses the power of chemical reactions driven by electrical energy, enabling the efficient conversion and storage of various forms of energy, from renewable sources to fossil fuels.At the heart of electrochemical catalysis lies the concept of using specialized catalysts to facilitate and accelerate electrochemical reactions. These catalysts, often made of precious metals or advanced materials, play a crucial role in enhancing the kinetics and selectivity of the desired reactions, ultimately improving the overall efficiency and performance of electrochemical systems.One of the primary applications of electrochemical catalysis is in the field of energy conversion. Fuel cells, for instance, rely on electrochemical catalysts to facilitate the oxidation of fuels, such ashydrogen or methanol, and the reduction of oxygen, generating electricity in a clean and efficient manner. The development of highly active and durable electrocatalysts has been a driving force behind the advancement of fuel cell technology, enabling the widespread adoption of these clean energy devices in various sectors, including transportation, stationary power generation, and portable electronics.Similarly, electrochemical catalysis plays a pivotal role in the storage and conversion of energy from renewable sources. In the case of water electrolysis, catalysts are employed to split water molecules into hydrogen and oxygen, allowing for the storage of energy in the form of hydrogen, which can then be used as a clean fuel or converted back into electricity through fuel cells. This process is particularly important for the integration of renewable energy sources, such as solar and wind, into the energy grid, as it provides a means to store excess energy generated during periods of high production.Moreover, electrochemical catalysis is essential in the developmentof advanced energy storage technologies, such as rechargeable batteries and metal-air batteries. Catalysts are used to enhance the efficiency and durability of the electrochemical reactions that occur during charging and discharging, enabling the storage and retrieval of energy with improved performance and safety.Beyond energy applications, electrochemical catalysis has also found important uses in the fields of environmental remediation and chemical synthesis. In the former, catalysts are employed to facilitate the electrochemical treatment of wastewater, enabling the removal of harmful pollutants and the recovery of valuable resources. In the latter, electrochemical catalysis is used to drive selective chemical transformations, opening up new pathways for the production of various chemicals and pharmaceuticals.The success of electrochemical catalysis is heavily dependent on the development of advanced catalytic materials and the optimization of the catalytic processes. Researchers in academia and industry are continuously exploring new strategies to design and synthesize highly active, selective, and durable catalysts, drawing inspiration from fields such as materials science, nanotechnology, and computational chemistry.One promising approach is the use of nanostructured materials, which offer a large surface area-to-volume ratio and the ability to fine-tune the electronic and structural properties of the catalysts. The incorporation of transition metals, noble metals, and their alloys into these nanostructured materials has led to significant improvements in catalytic performance, with researchers exploring innovative synthesis methods and novel catalyst architectures to further enhance activity and stability.Another area of active research is the development of non-precious metal-based catalysts, which aim to reduce the reliance on scarce and expensive precious metals, such as platinum and iridium. The exploration of earth-abundant elements, including iron, nickel, and cobalt, has yielded promising results, with researchers investigating ways to improve the catalytic activity and durability of these alternative materials.Computational modeling and simulation have also played a crucial role in the advancement of electrochemical catalysis. By coupling advanced computational techniques with experimental data, researchers can gain deeper insights into the underlying mechanisms of electrochemical reactions, enabling the rational design of more efficient and selective catalysts.As the world continues to grapple with the pressing challenges of energy security, environmental sustainability, and resource scarcity, the importance of electrochemical catalysis cannot be overstated. This transformative technology holds the potential to revolutionize the way we produce, store, and utilize energy, while also contributing to the development of more sustainable chemical processes and environmental remediation strategies.Through continued research, innovation, and collaboration amongscientists, engineers, and policymakers, the field of electrochemical catalysis is poised to play a pivotal role in shaping a more sustainable and prosperous future for our planet.。

1,3-二甲基-2-咪唑啉酮

1,3-二甲基-2-咪唑啉酮

Trans.Nonferrous Met.Soc.China31(2021)832−841Physicochemical properties of1,3-dimethyl-2-imidazolinone−ZnCl2solvated ionic liquid and its application in zinc electrodepositionAi-min LIU1,Meng-xia GUO1,Zhong-ning SHI2,Yu-bao LIU3,Feng-guo LIU1,Xian-wei HU1,You-jian YANG1,Wen-ju TAO1,Zhao-wen WANG11.Key Laboratory for Ecological Metallurgy of Multimetallic Mineral(Ministry of Education),Northeastern University,Shenyang110819,China;2.State Key Laboratory of Rolling and Automation,Northeastern University,Shenyang110819,China;3.State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization,Baotou Research Institute of Rare Earths,Baotou014030,ChinaReceived12April2020;accepted10November2020Abstract:Zinc chloride(ZnCl2)was dissolved in the1,3-dimethyl-2-imidazolinone(DMI)solvent,and the metallic zinc coatings were obtained by electrodeposition in room-temperature ambient air.The conductivity(σ),viscosity(η), and density(ρ)of the DMI−ZnCl2solvated ionic liquid at various temperatures(T)were measured and fitted. Furthermore,cyclic voltammetry was used to study the electrochemical behavior of Zn(II)in the DMI−ZnCl2solvated ionic liquid,indicating that the reduction of Zn(II)on the tungsten electrode was a one-step two-electron transfer irreversible process.XRD and SEM−EDS analysis of the cathode product confirmed that the deposited coating was metallic zinc.Finally,the effects of deposition potential,temperature and duration on the morphology of zinc coatings were investigated.The results showed that a dense and uniform zinc coating was obtained by potentiostatic electro-deposition at−2V(vs Pt)and353K for1h.Key words:electrodeposition;zinc;1,3-dimethyl-2-imidazolinone;physicochemical properties;cyclic voltammetry1IntroductionZinc is usually deposited on the surface of steel materials to obtain a dense and uniform coating with excellent adhesion.Zinc,used as a sacrificial anode,can protect the steel materials against corrosion[1].Conditional production of zinc coatings was carried out with electrodeposition in the aqueous cyanide,basic non-cyanide,and chloride solutions.However,the electrodeposition of zinc in aqueous solutions has disadvantages such as hydrogen embrittlement,wastewater treatment, and low current efficiency[2,3].Thus,it is of significant direction to seek new solvents from which high-quality zinc coatings can be deposited without environmental pollution.In recent years,the electrodeposition of zinc and its alloys in ionic liquids have attracted increasing attention from pared with aqueous solutions,ionic liquids have better thermal stability,lower vapor pressure,and wider electrochemical windows[4−6].LIN and SUN[7] reported that zinc could be electrodeposited from the ZnCl2−1-methyl-3-ethylimidazolium chloride (ZnCl2−MEIC with molar ratio of1:1)and ZnCl2−AlCl3−MEIC ionic liquid at potential of −0.8V(vs Al).HSIU et al[8]investigated the influence of electrolyte composition on the electrochemical window of the ZnCl2−1-ethyl-3-methylimidazolium chloride(ZnCl2−EMIC)ionic liquid,indicating that the electrochemical windowCorresponding author:Zhong-ning SHI;Tel:+86-24-83686381;E-mail:************** DOI:10.1016/S1003-6326(21)65542-51003-6326/©2021The Nonferrous Metals Society of China.Published by Elsevier Ltd&Science PressAi-min LIU,et al/Trans.Nonferrous Met.Soc.China31(2021)832−841833was−2V when the ZnCl2−EMIC ionic liquid was acidic,and zinc coating was able to deposit at −0.05V(vs Zn)and383K.DENG et al[9] electrodeposited zinc in the N-butyl-N-methyl-pyrrolidinium dicyandiamide(BMP-DCA)ionic liquid containing ZnCl2at−2.4V(vs Fc/Fc+)and 323K.Zn and Zn−Au alloy were obtained on a Au electrode by electrodeposition in the ZnCl2−1-butyl-3-methylimidazolium chloride(ZnCl2−BMIC with molar ratio of3:2)ionic liquid,while Zn−Co alloy was produced from the ZnCl2−BMIC ionic liquid containing1.16wt.%CoCl2[10,11]. However,above ionic liquids are expensive,and electrodeposition experiments should be performed in a glove box filled with inert gas because these ionic liquids are sensitive to the air and water, which greatly limits their industrial application.Deep eutectic solvents(DES),which were first described by ABBOTT in2003,have been widely studied for electrochemical application due to their low cost.XU et al[12]obtained Zn−Ti alloy by electrodeposition in the ZnCl2−urea(molar ratio of 3:1)DES containing0.27mol/L TiCl4at353K. YANG et al[13]prepared Zn−Ni alloy coating from the choline chloride−urea(ChCl−urea with molar ratio of1:2)DES containing0.1mol/L NiCl2 and0.4mol/L ZnCl2at343K,while CHU et al[14] prepared Zn−Co alloy coating from the DES containing0.11mol/L ZnCl2and0.01mol/L CoCl2. LI et al[15]added0.10g/L GO(graphene oxide)to the ChCl−urea DES containing0.2mol/L ZnCl2, and successfully produced a novel Zn−GO composite coating by pulse electrodeposition. SANCHEZ et al[16]prepared Zn−Ce coating in the ChCl-urea DES containing0.3mol/L ZnCl2and 0.1mol/L CeCl3.LI et al[17]electrodeposited Zn−Ni alloy coatings with controllable components and excellent corrosion resistance by adding5wt.% water to the ChCl−urea DES containing0.08mol/L NiCl2and0.4mol/L ZnCl2.BAO et al[18] explored the electrochemical deposition of Zn from lactate−ChCl(molar ratio of2:1)at a constant current density of10mA/cm2.BAKKAR and NEUBERT[19]obtained bulk Zn layers from the ChCl−urea−EG(ethylene glycol)DES(molar ratio of1:1.5:0.5)at potential ranging from−1.2to −1.5V(vs Ag).VIEIRA et al[20]investigated the electrochemical behavior of zinc in the ChCl−EG (molar ratio of1:2)DES containing ZnCl2on different electrodes including glassy carbon,stainless steel,Au,Pt,Cu and Zn.PEREIRA et al[21]prepared zinc from the ChCl−EG DES containing5×10−4mol/mL ZnCl2,and found that the additive of dimethyl sulfoxide(DMSO)could achieve grain refinement and produce zinc with a minimum grain size of31.7nm.ALESARY et al[22]obtained a bright zinc coating by adding nicotinic acid,boric acid,and benzoquinone to the ChCl−EG DES containing6×10−4mol/mL ZnCl2.ENDO et al[23]found that a smooth aluminium film can be obtained by electrode-position in the1,3-dimethyl-2-imidazolidinone−AlCl3(DMI−AlCl3)ionic liquid at313K when the content of AlCl3was higher than50at.%.Recently, ZHANG et al[24]reported an exceptional organic solvent composed of DMI and LiNO3,and directly deposited a La film from LaCl3at−2.3V(vs Ag) and298K.It was found that the DMI solvent has good solubility and coordination ability for chlorides,and it has advantages including low cost, low melting point,being insensitive to water,and wide electrochemical window.In this work,ZnCl2 was dissolved in the DMI solvent for zinc electrodeposition.The conductivity,viscosity and density of the DMI−ZnCl2solvated ionic liquid at different temperatures were measured.Furthermore, the solubilities of ZnCl2in the DMI solvent at different temperatures were measured,and the electrochemical behavior of Zn(II)in DMI−ZnCl2 ionic liquid was investigated by cyclic voltammetry and potentiostatic electrodeposition.2ExperimentalZinc chloride(ZnCl2,98%)and1,3-dimethyl-2-imidazolidinone(DMI,99%)were purchased from Shanghai Aladdin Bio-Chem Technology Co., Ltd.,China.The DMI−ZnCl2solvated ionic liquid was prepared by adding0.29g/mL ZnCl2to the DMI solvent and stirring on a magnetic heating plate in ambient atmosphere.The conductivity, viscosity,and density of the ionic liquid were measured based on the fixed cell constant method, the rotation method,and the Archimede’s principle, respectively.Moreover,the solubilities of ZnCl2in the DMI solvent were measured by the equilibrium method.Cyclic voltammetry was performed using a three-electrode system by a electrochemical workstation(CHI600E,Shanghai ChenhuaAi-min LIU,et al/Trans.Nonferrous Met.Soc.China31(2021)832−841 834Instrument,Shanghai,China).A tungsten wire (99.99%,diameter of1mm)was used as the working electrode,while two platinum wires (99.99%,diameter of1mm)were used as the counter electrode and the reference electrode, respectively.The surface of electrodes were polished with sandpapers,cleaned with ethanol and deionized water,and then dried before the measurement of cyclic voltammogram.The working electrode was immersed in the ionic liquid with depth of1.4cm.Electrodeposition experiments were also carried out using a three-electrode system by the CHI600E electrochemical workstation.The working electrode was a tungsten sheet(99.99%, side area of1cm2),while the counter electrode and the reference electrode were platinum wires.After electrodeposition experiments,the surface of the working electrode was washed with acetone and distilled water,dried naturally and then stored in a glove box,in which the contents of water and oxygen were below1×10−6.X-ray diffraction(XRD, D8ADVANCE,Bruker,Germany)was used to analyze the phase structure of the zinc deposited on tungsten substrates.In addition,the surface morphology and elemental composition of zinc coatings were studied by a scanning electron microscope(SEM,ULTRA PLUS,Zeiss Microscope,Germany)combined with X-ray dispersive energy spectrometer(EDS).3Results and discussion3.1Physical and chemical properties of DMI−ZnCl2solvated ionic liquidThe relationship between the conductivities of the DMI−ZnCl2solvated ionic liquid and temperature(313−303K)is shown in Fig.1(a).It can be seen that the conductivity increased from 0.571to0.932mS/cm when the temperature increased from313to363K.This was because the increase of the temperature was beneficial to the diffusion of ions in the ionic liquid,which promoted the mass transfer rate and caused the increased of conductivity.However,the increase rate of conductivity was small at353−363K.Fig.1Conductivities of DMI−ZnCl2solvated ionic liquid as function of temperature(a),relationship between lnσand T−1(b),viscosities of DMI−ZnCl2solvated ionic liquid as function of temperature(c)and relationship between lnηand T−1(d)Ai-min LIU,et al/Trans.Nonferrous Met.Soc.China31(2021)832−841835The conductivity of the DMI−ZnCl2solvated ionic liquid was of the same order of magnitude as that of some conventional ionic liquids ranging from0.1to10mS/cm[25].For example,the conductivity of the EMIC ionic liquid at298K was reported to be 3.43−3.71mS/cm[26].In comparison,the conductivity of the DMI−ZnCl2 solvated ionic liquid was much smaller than that of the aqueous solution containing3.7mol/L ZnCl2at 298K(107mS/cm)[27].However,the conductivity of the DMI−ZnCl2solvated ionic liquid was larger than that of the urea−ZnCl2(molar ratio of3:1) DES at298K(0.051mS/cm)[12],and the urea−ZnCl2(molar ratio of3.5:1)and ChCl−ZnCl2 (molar ratio of1:2)DES at315K(0.18and 0.06mS/cm,respectively)[28].As we know,the DMI solvent is an organic liquid with small conductivity.Therefore,it can be indicated that the conductivity of the DMI solvent was modified by the Lewis acidic cation Zn(II),and the DMI−ZnCl2 solvated ionic liquid that has similar characteristics as conventional ionic liquid was obtained.In general,the relationship between the conductivity of ionic liquid and temperature can be expressed using the Arrehnius equation[25]:lnσ=lnσ0−Eσ/(RT)(1) whereσis the conductivity(mS/cm),σ0is a pre-factor(mS/cm),Eσis the conductivity activation energy(kJ/mol),R is the ideal gas constant(8.314J·K−1·mol−1),and T is the temperature(K).As shown in Fig.1(b),there was a good linear relationship between lnσand T−1. Through linear fitting,the relationship between the conductivity of DMI−ZnCl2solvated ionic liquid and temperature can be expressed by Eq.(2),and the activation energy of the conductivity was determined to be9.387kJ/mol:lnσ=3.095−1129.059/T(2) The high viscosity of ionic liquids is one of the bottlenecks preventing them from gaining large-scale industrial applications.In general,the viscosity of ionic liquid is determined by the internal van der WAALS force and the interaction of hydrogen bonds.Thus,suitable additives are added to the ionic liquid to reduce the viscosity.In this work,the viscosities of the DMI−ZnCl2 solvated ionic liquid at323−373K were measured by the rotation method.The relationship between the viscosities of the DMI−ZnCl2solvated ionic liquid and temperature is shown in Fig.1(c).The viscosity decreased with increasing temperature because the van der WAALS force and hydrogen bond strength within the system changed with temperature.Furthermore,the relationship between viscosity and temperature can be expressed by the Arrhenius formula[29]:lnη=lnη0+Eη/(RT)(3) whereηis viscosity(mPa·s),η0is a pre-factor (mPa·s),and Eηis the activation energy of viscosity (kJ/mol).As shown in Fig.1(d),there was a good linear relationship between lnηand T−1.By linear fitting,the relationship between the viscosity of DMI−ZnCl2solvated ionic liquid and temperature can be expressed by Eq.(4),and the activation energy of the viscosity was determined to be 8.364kJ/mol:lnη=−0.033+1006.014/T(4) The densities of the DMI−ZnCl2solvated ionic liquid at313−373K were measured by the Archimede’s principle.The relationship between the densities of the DMI−ZnCl2solvated ionic liquid and temperature is shown in Fig.2.Fig.2Densities of DMI−ZnCl2solvated ionic liquid as function of temperatureIt can be found from Fig.2that the density demonstrated a linear relationship with temperature. Besides,the density gradually decreased from1.205 to1.163g/cm3with temperature increasing from 313to373K,and the trend was relatively flat.This is because when the temperature increased,the migration rate and spacing of particles in the ionic liquid increased,which caused the expansion of volume.Since the number of particles per unit area was diminished at higher temperature,the density became smaller.Through linear fitting,the densitiesAi-min LIU,et al/Trans.Nonferrous Met.Soc.China31(2021)832−841 836of the DMI−ZnCl2solvated ionic liquid at differenttemperatures can be expressed using the followingequation:ρ=−6.464×10−4T+1.406(5)whereρis the density(g/cm3).The concentration of ZnCl2in the DMI−ZnCl2solvated ionic liquid is an important parameterduring the process of zinc electrodeposition.Hence,the effect of temperature on the solubilities of ZnCl2in the DMI solvent was explored.The solubilitiesof ZnCl2in the DMI solvent at313,333,353and373K were determined to be0.29,0.32,0.45,and 1.58g/mL,respectively.With temperatureincreasing from313to353K,the solubility ofZnCl2gradually increased from0.29to0.45g/mL.It was worth noting that when the temperatureincreased from353to373K,the solubilities ofZnCl2significantly increased from0.45to1.58g/mL.However,the ionic liquid at373Kbecame very viscous,and eventually turnedinto a transparent colloid which was no longersuitable for zinc electrodeposition.Therefore,it wasnot recommended to perform zinc electro-deposition experiments with saturated ZnCl2concentration,especially at temperature higher than 373K.Therefore,the measurement of physico-chemical properties and electrochemical experiments in this work were carried out in the DMI−ZnCl2 solvated ionic liquid containing0.29g/mL ZnCl2at 313−373K.3.2Electrochemical behavior of Zn(II)in DMI−ZnCl2solvated ionic liquidThe electrochemical behavior of Zn(II)ions in the DMI−ZnCl2solvated ionic liquid at313K was studied by cyclic voltammetry using a tungsten working electrode.It can be seen from Fig.3(a)that the cyclic voltammetry curve from1to−3V(vs Pt) was a straight line,and the current was almost zero, indicating that the DMI solvent was stable within this potential range.When0.29g/mL ZnCl2was dissolved in the DMI solvent,a pair of redox peaks were found within the electrochemical window of the DMI solvent.Obviously,the reduction peak corresponds to the reduction of Zn(II)ions to metallic zinc,while the oxidation peak was related to the peeling of metal zinc from the electrode surface.The onset potential of the reduction of Zn(II)ions was−1.13V(vs Pt),and the potential of the oxidation peak was−0.13V(vs Pt).Fig.3Cyclic voltammetry curves on tungsten electrode in DMI solvent and DMI−ZnCl2solvated ionic liquid at 313K(scan rate of40mV/s)(a)and in DMI−ZnCl2 solvated ionic liquid at353K and different scan rates(b) As seen in Fig.3(b),the current densities ofthe oxidation peaks increased as the scan rate increased from20to100mV/s,and the potential of the oxidation peaks shifted to the more positive values.However,the scan rate had no obvious influence on the current density and potential of the reduction peak,indicating that the reduction reaction was not controlled by diffusion.Besides, only one reduction signal was observed.Therefore, the reduction of Zn(II)was a one-step two-electron transfer irreversible reaction process.Moreover,it should be noted that a“nucleation loop”related to the nucleation of the deposited zinc was observed.3.3Effect of deposition potential,temperatureand duration on zinc coatingsThe process of metal electrodeposition includes the formation and growth of crystal nuclei, and overpotential is the driving force for nucleation. According to the analysis from the cyclicAi-min LIU,et al/Trans.Nonferrous Met.Soc.China 31(2021)832−841837voltammetry curve,different potentials were applied to the electrodeposition experiments performed at 353K for 1h.The XRD patterns of the cathode products obtained by deposition at potentials of −1.4,−1.6,−1.8and −2V (vs Pt)are shown in Fig.4(a).The characteristic peaks at 2θ=57.9°and 72.8°were corresponding to the tungsten substrate,while the other diffraction peaks in the XRD patterns matched well with the characteristic peaks of zinc (ICDD 00-004-0836),which confirmed that the cathode product was metallic zinc [30].As the applied potential shifted from −1.4V to more negative potential of −2V ,the intensity of the XRD diffraction peak for zinc became greater,indicating that the zinc coating deposited on the surface of tungsten substrate at −2V was thicker.Moreover,the preferred orientations for zinc crystal growth were the (002)and (101)planes.Fig.4XRD patterns of zinc coatings obtained by electrodeposition on tungsten electrode in DMI−ZnCl 2solvated ionic liquid for 1h:(a)At 353K and different potentials (from −1.4to −2V (vs Pt));(b)At −2V (vs Pt)and different temperatures (from 313to 373K)The effect of temperature on the zinc coating was studied by electrodeposition experiments performed at −2V (vs Pt)for 1h.The XRD patterns of the cathode products obtained by electrodeposition at temperatures of 313,333,353and 373K are shown in Fig.4(b).When the temperature increased from 313to 353K,the intensity of the XRD diffraction peak for zinc increased.However,when the electrodeposition temperature increased from 353to 373K,the intensity of the XRD diffraction peak for zinc did not continue to increase.Based on the analysis from XRD patterns,it could be concluded that a better zinc coating was obtained by electrodeposition at −2V (vs Pt)and 353K.As shown in the inset of Fig.5(a),a dark gray coating was obtained on the surface of the tungsten substrate by electrodepositing in the DMI−ZnCl 2solvated ionic liquid at −2V (vs Pt)and 353K.The SEM image (Fig.5(a))showed that the coating obtained by potentiostatic electrodeposition at −2V (vs Pt)and 353K was dense and uniform,whichFig.5SEM image (a)and EDS spectrum (b)of zinc coating obtained by electrodeposition on tungsten electrode in DMI−ZnCl 2solvated ionic liquid at −2V (vs Pt)and 353K for 1hAi-min LIU,et al/Trans.Nonferrous Met.Soc.China 31(2021)832−841838was in accordance with the results from XRD analysis.In addition,the EDS spectrum of the coating demonstrated that the elemental compositions of the coating were 99.51wt.%Zn and 0.49wt.%Cl.The small amount of Cl element came from the ionic liquid containing ZnCl 2.The SEM images of the cathode coatings obtained by potentiostatic electrodeposition at different potentials (vs Pt)and temperatures are shown in Figs.6and 7,respectively.From Fig.6,Fig.6SEM images of zinc coatings obtained by electrodeposition on tungsten electrodes in DMI−ZnCl 2solvated ionic liquid at 353K and various potentials (vs Pt)for 1h:(a)−1.4V;(b)−1.6V;(c)−1.8V;(d)−2VFig.7SEM images of zinc coatings obtained by electrodeposition on tungsten electrodes in DMI−ZnCl 2solvated ionic liquid at −2V (vs Pt)and different temperatures for 1h:(a)313K;(b)333K;(c)353K;(d)373KAi-min LIU,et al/Trans.Nonferrous Met.Soc.China31(2021)832−841839 when the potential changed from−1.4to−2V(vsPt),the grain size of the deposited metal zincbecame smaller because the nucleation density andnucleation rate increased as the applied potentialshifted to the more negative values.Moreover,thecrystal morphology changed from irregular tohexagonal particles,and a uniform zinc coating wasobtained by electrodeposition at−2V(vs Pt).LINand SUN[7]proposed similar results about theinfluence of potential on the micro-morphology ofzinc coating deposited from the AlCl3−MEIC−ZnCl2ionic liquid.From Fig.7,as the temperature increased from313to373K,the grain size of the deposited metalzinc became larger.It could be explained that withthe increase of temperature,the driving force of ionmigration and the growth of metal core wereaccelerated,which resulted in the increase of grainsize.XU et al[12]reported similar results about theinfluence of temperature on the micro-morphologyof Zn−Ti alloy prepared by electrodeposition in theurea−ZnCl2deep eutectic solvent.Figure8(a)exhibits the XRD patterns of zinccoatings obtained by electrodeposition on tungsten electrodes at−2V(vs Pt)and353K for different durations.The characteristic peaks of metallic zinc were observed on all of the XRD patterns.When the deposition time was0.5h,the characteristic peaks of the tungsten substrate were obvious.As the deposition time was extended,the intensity of the zinc characteristic peaks increased due to the changes of the thickness of zinc coatings,which was further confirmed by the cross-sectional SEM images as demonstrated in Fig.8(b).When the deposition time increased from0.5to2h,the thickness of zinc coatings increased approximately from6.7to32μm.4Conclusions(1)The conductivities of the DMI−ZnCl2 solvated ionic liquid at313−363K were in the range of0.571−0.932mS/cm,which can be expressed by lnσ=3.095−1129.059/T.(2)The viscosities and densities of the DMI−ZnCl2solvated ionic liquid were in the range of22.20−14.70mPa·s(323−373K)and1.205−1.163g/cm3(313−373K),which can be expressed by lnη=−0.033+1006.014/T andρ=−6.464×10−4T+ 1.406,respectively.Fig.8XRD patterns(a)and SEM images(b)for cross section of zinc coatings obtained by electrodeposition on tungsten electrodes in DMI−ZnCl2solvated ionic liquid at−2V(vs Pt)and353K for different durations(3)The solubilities of ZnCl2in the DMI solvent at313K was0.29g/mL,and ZnCl2was used as precursor to electrodeposite zinc coatings in the DMI−ZnCl2solvated ionic liquid at room temperature and ambient air.(4)Results from cyclic voltammetry showed that the onset reduction potential of zinc was −1.13V(vs Pt).XRD and SEM−EDS analysis confirmed that metallic zinc was obtained by electrodeposition for1h,while the preferred deposition potential and temperature were−2V(vs Pt)and353K.AcknowledgmentsThe authors are grateful for the financial supports from the Fundamental Research Funds for the Central Universities,China(N182503033, N172502003),Postdoctoral Research Foundation of China(2018M640258),the National Natural Science Foundation of China(51804070)and Guangxi Innovation-driven Development Program, China(GUIKE AA18118030).Ai-min LIU,et al/Trans.Nonferrous Met.Soc.China31(2021)832−841 840References[1]KRISHNAN R M,NATARAJAN S R,MURALIDHARANV S,SINGH G.Characteristics of a non-cyanide alkaline zinc plating bath[J].Plating and Surface Finishing,1992,79: 67−70.[2]RAMESH BAPU G N K,DEVARAJ G,AYYAPPARAJ J.Studies on non-cyanide alkaline zinc electrolytes[J].Journal of Solid State Electrochemistry,1998,3:48−51.[3]LIU Z,ZEIN El ABEDIN S,ENDRES F.Electrodepositionof zinc films from ionic liquids and ionic liquid/watermixtures[J].Electrochimica Acta,2013,89:635−643. [4]WELTON T.Room-temperature ionic liquids:Solvents forsynthesis and catalysis[J].Chemical Reviews,1999,99:2071−2083.[5]ENDRES F.Ionic liquids:Solvents for the electrodepositionof metals and semiconductors[J].Chem Phys Chem,2002,3: 144−154.[6]HUANG Jing-fang,SUN I W.Nonanomalous electrode-position of zinc−iron alloys in an acidic zinc chloride-1-ethyl-3-methylimidazolium chloride ionic liquid[J].Journalof The Electrochemical Society,2004,151:C8−C14.[7]LIN Yu-feng,SUN I W.Electrodeposition of zinc from amixture of zinc chloride and neutral aluminum chloride-1-methyl-3-ethylimidazolium chloride molten salt[J].Journal of The Electrochemical Society,1999,146:1054−1059. [8]HSIU S I,HUANG Jing-fang,SUN I W,YUAN Cheng-hui,SHIEA J.Lewis acidity dependency of the electrochemical window of zinc chloride-1-ethyl-3-methyl imidazoliumchloride ionic liquids[J].Electrochimica Acta,2002,47: 4367−4372.[9]DENG M J,LIN P C,CHANG J K,CHEN Jin-ming,LU KT.Electrochemistry of Zn(II)/Zn on Mg alloy from the N-butyl-N-methylpyrrolidinium dicyanamide ionic liquid[J].Electrochimica Acta,2011,56:6071−6077.[10]BORISSOV D,PAEEEK A,RENNER F U,ROHWERDERM.Electrodeposition of Zn and Au−Zn alloys at low temperature in an ionic liquid[J].Physical Chemistry Chemical Physics,2010,12:2059−2062.[11]CHEN Po-yu,SUN I W.Electrodeposition of cobalt and zinccobalt alloys from a Lewis acidic zinc chloride-1-ethyl-3-methylimidazolium chloride molten salt[J].Electrochimica Acta,2001,46:1169−1177.[12]XU Cun-ying,WU Qing,HUA Yi-xin,LI Jian.Theelectrodeposition of Zn−Ti alloys from ZnCl2−urea deep eutectic solvent[J].Journal of Solid State Electrochemistry, 2014,18:2149−2155.[13]YANG H Y,GUO X W,CHEN X B,WANG S H,WU G H,DING W J,BIRBILIS N.On the electrodeposition of nickel–zinc alloys from a eutectic-based ionic liquid[J].Electrochimica Acta,2012,63:131−138.[14]CHU Qing-wei,LIANG Jun,HAO Jing-cheng.Electrode-position of zinc−cobalt alloys from choline chloride–ureaionic liquid[J].Electrochimica Acta,2014,115:499−503. [15]LI Rui-qian,LIANG Jun,HOU Yuan-yuan,CHU Qing-wei.Enhanced corrosion performance of Zn coating byincorporating graphene oxide electrodeposited from deepeutectic solvent[J].The Royal Society of ChemistryAdvances,2015,5:60698−60707.[16]SANCHEZ M M,ESCOSA E G,CONDE A,PALACIO C,GARCIA I.Deposition of zinc–cerium coatings from deepeutectic ionic liquids[J].Materials,2018,11:2035−2053. [17]LI Rui-qian,DONG Qiu-jing,XIA Juan,LUO Chun-hua,SHENG Liang-quan,CHENG Feng,LIANG Jun.Electrodeposition of composition controllable Zn−Ni coatingfrom water modified deep eutectic solvent[J].Surface& Coatings Technology,2019,366:138−145.[18]BAO Quan-he,ZHAO Li-qing,JING He-ming,MAO Ang.Electrodeposition of zinc from low transition temperature mixture formed by choline chloride+lactic acid[J].Materials Today,2018,14:249−253.[19]BAKKAR A,NEUBERT V.Recycling of cupola furnacedust:Extraction and electrodeposition of zinc in deepeutectic solvents[J].Journal of Alloys and Compounds,2019, 771:424−432.[20]VIEIRA L,SCHENNACH R,GOLLAS B.The effect of theelectrode material on the electrodeposition of zinc from deepeutectic solvents[J].Electrochimica Acta,2016,197:344−352.[21]PEREIRA N M,PEREIRA C M,ARAUJO J P,SILV A A F.Zinc electrodeposition from deep eutectic solvent containingorganic additives[J].Journal of Electroanalytical Chemistry, 2017,801:545−551.[22]ALESARY H F,CIHANGIR S,BALLANTYNE A D,HARRIS R C,WESTON D P,ABBOTT A P,RYDER K S.Influence of additives on the electrodeposition of zinc from a deep eutectic solvent[J].Electrochimica Acta,2019,304: 118−130.[23]ENDO A,MIYAKE M,HIRATO T.Electrodeposition ofaluminum from1,3-dimethyl-2-imidazolidinone/AlCl3baths[J].Electrochimica Acta,2014,137:470−475.[24]ZHANG Bao-guo,YAO Yu,SHI Zhong-ning,XU Jun-li,LIU Yu-bao,WANG munication—Direct room-temperature electrodeposition of La from LaCl3in an organic solvent supported by LiNO3[J].Journal of theElectrochemical Society,2019,166:D218−D220.[25]KOEL M.Ionic liquids in chemical analysis[J].CriticalReviews in Analytical Chemistry,2005,35:177−192. [26]ZHANG Suo-jiang,SUN Ning,HE Xue-zhong,LUXing-mei,ZHANG Xian-ping.Physical properties of ionic liquids:Database and evaluation[J].Journal of Physical andChemical Reference Data,2006,35:1475−1517.[27]THOMAS B K,FRAY D J.The conductivity of aqueous zincchloride solutions[J].Journal of Applied Electrochemistry, 1982,12:1−5.[28]HAMAD A A,HAYYAN M,AISAADI M A,HASHIM M A.Potential applications of deep eutectic solvents innanotechnology[J].Chemical Engineering Journal,2015,273:551−567.[29]YOSHIZAWA M,XU Wu,ANGELL C A.Ionic liquids byproton transfer:Vapor pressure,conductivity,and therelevance ofΔp K a from aqueous solutions[J].Journal of theAmerican Chemical Society,2003,125:15411−15419. [30]YANG Hao-xing,REDDY R G.Electrochemical kinetics ofreduction of zinc oxide to zinc using2:1urea/ChCl ionicliquid[J].Electrochimica Acta,2015,178:617−623.。

电催化还原CO2生成多种产物催化剂研究进展

电催化还原CO2生成多种产物催化剂研究进展

化工进展Chemical Industry and Engineering Progress2022年第41卷第3期电催化还原CO 2生成多种产物催化剂研究进展郑元波,张前,石坚,李佳霖,梅苏宁,余秦伟,杨建明,吕剑(西安近代化学研究所,氟氮化工资源高效开发与利用国家重点实验室,陕西西安710065)摘要:电催化还原CO 2生成含碳产物技术,能有效解决CO 2过量导致的温室效应及能源短缺问题。

但是,电催化还原CO 2会生成多种产物,因此,研究制备催化活性较好的高选择性催化剂是研究重点。

本文简述了电催化还原CO 2的基本原理、不同还原产物的形成途径、活性中间体、速控步及活性催化剂,分析了电催化还原CO 2生成不同产物存在的问题。

并且针对催化剂催化活性及催化反应过程中的这些问题,提出了提高催化剂催化活性的方法,总结了催化剂发展趋势,一般策略包括制造纳米结构材料、催化剂负载在高比表面积的载体上、杂原子掺杂、合金化、引入缺陷等,分析了这些方法通过改变电子传输等因素对催化剂活性及选择性的影响。

关键词:电催化;二氧化碳;还原产物;催化剂;改性中图分类号:TQ035文献标志码:A文章编号:1000-6613(2022)03-1209-15Research progress of catalysts for electrocatalytic reduction of CO 2tovarious productsZHENG Yuanbo ,ZHANG Qian ,SHI Jian ,LI Jialin ,MEI Suning ,YU Qinwei ,YANG Jianming ,LYU Jian(State Key Laboratory of Fluorine &Nitrogen Chemicals,Xi ’an Modern Chemistry Research Institute,Xi ’an 710065,Shaanxi,China)Abstract:The electrocatalytic reduction of carbon dioxide (CO 2)to produce carbon-containing products can effectively relieve the greenhouse effect and energy shortage caused by excessive CO 2.However,the electrocatalytic reduction of CO 2could form a variety of products simultaneously,and thus catalysts with both high selectivity and catalytic activity is the focus of such researches.This review briefly describes the basic principles of electrocatalytic reduction of CO 2,the formation pathways of different reductionproducts,the active intermediates,the rate control steps,the active catalysts.The existing problems arealso analyzed,and a method to improve the catalytic activity is proposed.The development trend of the catalyst is summarized and the common strategies include manufacturing nanostructured materials,supporting catalysts on carriers with high specific surface areas,heteroatom doping,alloying,andintroducing defects.The effects of changing the factors such as electron transport by using these methods on the catalyst activity and selectivity are analyzed.Keywords:electrocatalytic;carbon dioxide;reduction product;catalyst;modification综述与专论DOI :10.16085/j.issn.1000-6613.2021-1936收稿日期:2021-09-09;修改稿日期:2021-12-16。

电镀工艺术语中英文对照

电镀工艺术语中英文对照

电镀工艺术语中英文对照化学腐蚀Chemicalcorrosion电泳Electrophoresis双电层Electricdoublelayer电动势Electromotiveforce双极性电极Bipolarelectrode电流密度Currentdensity分散能力Throwingpower电流密度范围Currentdensityrange分解电压Decompositionvoltage电流效率Currentefficiency不溶性阳极(惰性阳极)Inertanode电极Electrode电化学Electrochemistry电极电位Electrodepotential电化学极化(活化极化)Activationpolarization电解质Electrolyte 电化学腐蚀Electrochemicalcorrosion电解液Electrolyticsolution 电化当量Electrochemicalequivalent电离度Degreeofionization电导率(比电导)Conductivity半电池Half-CellStraycurrent去极化Depolarization导电盐Conductingsalt平衡电极电位Equilibriumelectrode-potential光亮电流密度范围Brightcurrentdensityrange正极Positiveelectrode体积电流密度Volumecurrentdensity负极Negativeelectrode沉积速度Depositionrate阴极Cathode初次电流分布Primarycurrentdistribution阴极极化Cathodepolarization局部腐蚀Localcorrosion阴极镀层Cathodiccoating极化Polarization阳极Anode极化度Polarizability阳极泥Anodeslime极化曲线Polarizability阳极极化Anodepolarization极间距Interelectrodedistance阳极镀层Anodecoating乳化Emulsification迁移数Transportnumber应力腐蚀Stresscorrosion过电位Overpotential析气Gassing扩散层Diffusionlayer活化Activation杂散电流Activity活度Basismaterial标准电极电位Standardelectrodepotential辅助阳极Auxiliaryanode 浓差极化Concentrationpolarization辅助阴极Auxiliarvcathode钝化Passivation接触电位Contactpotential点腐蚀Spotcorrosion晶间腐蚀Intercrystauinecorrosion络合物Complexcompound溶度积Solubilityproduct复盐Doublesalt溶解度Solubility氢脆Hydrogenembrittlement微观分散能力Microthrowingpower界面张力Interfacialtension槽电压Tankvoltage临界电流密度Criticalcurrentdensity静态电极电位Staticelectrodepotential原电池(自发电池)Galvaniccell鳌合物Chelatecompound盐桥Saltbridge整平作用LevelingactionPH值PHValue覆盖能力Coveringpower基体材料Basismaterial二、镀覆方法气相沉积Vapordeposition化学镀Electrolessplating化学钝化Chemicalpassivation化学氧化Chemicaloxidation闪镀Flash电化学氧化(阳极氧化)Anodizing电镀Electroplating电铸Electroforming叠加电流电镀Superimposedcurrent-elec-troplating光亮电镀Brightplating合金电镀Alloyplating多层电镀Multilayerplating冲击电流Strikingcurrent金属电沉积Metalelectrodeplsition金属喷镀Metalspraying刷镀Brushplating周期换向镀Periodicreverseplating 转化膜Conversioncoating挂镀Rackplating复合电镀(弥散电镀)Compositeplating 脉冲电镀Pulseplating钢铁发蓝(钢铁化学氧化)Blueing真空镀(真空蒸发镀)Vacuumdeposition 热浸镀Hotdipping离子镀Ionplating浸镀Immersionplating高速电镀HighSpeedelectrodeposition 滚镀Barrelplating塑料电镀Platingonplastics磷化Phosphating三、镀前处理、镀后处理和电镀材料化学镀光Chemicalpolishing化学除油Alkalinedegreasing电抛光Electropolshing电解除油Electrolyticdegreasing电解浸蚀Electrolyticpickling出光Brightdipping机械抛光Mechanicalpolishing有机溶剂除油Solventdegreasing光亮浸蚀Brightpickling汞齐化Bluedip刷光Brushing乳化除油Emulsiondegreasing除氢Removalofhydrogenembrittlement 逆流漂流Countercurrentrinsing封闭Sealing染着力Dyeingpower退镀Strip热扩散Diffusion热溶Flashmelting预镀Strike着色Colouring脱色Decolorization喷丸Gritblasting喷砂Sandblasting喷射清洗Sprayrinsing超声波清洗Ultrasoniccleaning 弱浸蚀Aciddiping缎面加工Satinfinish强浸蚀Pickling滚光Barrelburnishing磨光Grinding阳极袋Anldebag光亮剂Brighteningagent助滤剂Filteraid表面活性剂Surface-activeagent 乳化剂Emulsifyingagent络合剂Complexingagent绝缘层Resist挂具(夹具)Platingrack润湿剂Wettingagent离心干燥机Contrifugr添加剂Additionagent缓冲剂Buffer移动阴极Sweptcathode隔膜Diaphragm鳌合剂Chelatingagent整平剂levellingagent整流器Rectifier汇流排Busbar水的软化Softeningofwater大气暴露试验Atmosphericcorrosiontest中性盐雾试验Saltspraytest不连续水膜WaterbreakPH计PHmeter孔隙率Porosity内应力Internalstress甘汞电极Calomelelectrode电导仪Conductivitygauge库仑计(电量计)Coulombmeter泛点Spottingout针孔PoresCASS试验(铜加速盐雾试验)CASS-test参比电极Referenceelectrode变色Tarnish点滴腐蚀试验Droppingcorrosiontest 测厚仪Thicknessgauge玻璃电极Glasselectrode结合力Adhesion哈林槽Haringcell恒电位法Potentiostaticmethod恒电流法Galvanostaticmethod树枝状结晶Trees脆性Embrittlement超皮Peeling剥离Spalling桔皮Orangepeel离子选择性电极Ionselectiveelectrode 海绵状镀层Spongedeposit烧焦镀层Burntdeposit麻点Pits粗糙Stardusting晶须Whiskers腐蚀膏试验Corrldkotetest 霍尔槽Hullcell。

超分子相互作用鹅去氧胆酸增加基于钴电解质染料敏化太阳能电池效率

超分子相互作用鹅去氧胆酸增加基于钴电解质染料敏化太阳能电池效率
© 2013 American Chemical Society
The DSCs efficiency is the product of the short-circuit photocurrent density (Jsc), the open circuit voltage (Voc), and the cell fill-factor (FF) divided by the intensity of the incident light (Is):
Paolo Salvatori,†,‡ Gabriele Marotta,†,‡ Antonio Cinti,†,‡ Chiara Anselmi,† Edoardo Mosconi,*,† and Filippo De Angelis*,†

Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Molecolari (ISTM-CNR), Via elce di Sotto 8, I-06213, Perugia, Italy ‡ Department of Chemistry, University of Perugia, Via elce di Sotto 8, I-06213, Perugia, Italy
Article /JPCC
Supramolecular Interactions of Chenodeoxycholic Acid Increase the Efficiency of Dye-Sensitized Solar Cells Based on a Cobalt Electrolyte

电化学法英文

电化学法英文

电化学法英文Electrochemical method is a widely used technique in analytical chemistry, which involves the study of chemical reactions that occur in a solution by applying an electric field. The technique involves the transfer of electrons from one molecule to another within the solution through an electrode. Electrochemical methods have been used in a wide range of applications, including environmental monitoring, food safety, and pharmaceutical analysis. This article discusses the electrochemical method, the principles of electrochemistry, and its applications.Principles of ElectrochemistryElectrochemistry is the study of the chemical reactions that occur in a solution when an electric field is applied. The chemical reactions that occur during electrochemical analyses are divided into two halves termed oxidation and reduction reactions. In an oxidation reaction, a molecule loses electrons, leading to an increase in its oxidation state. Alternatively, in a reductionreaction, a molecule gains electrons, leading to a decrease in its oxidation state. These reactions can be described by an equation known as the half-cell reaction equation.During an electrochemical reaction, electrons are transferred between the two electrodes, and a current flows through the solution. This current can be measured using an instrument known as a potentiostat. A potentiostat is a device that applies a voltage to the electrodes, measures the current flowing through the solution, and controls the voltage during the analysis. The voltage that is applied to the electrodes allows the concentration of the target molecule in thesolution to be determined.Electrochemical MethodThe electrochemical method involvestransferring electrons from one molecule to another through an electrode. The molecules thatparticipate in this transfer can be either oxidized or reduced. The electrode used in electrochemical analyses is called an electrode. The electrode isimmersed in the solution, and an electric field is applied to it. This electric field causes the electrons to flow from one molecule to another through the electrode.One of the fundamental techniques used in electrochemical analyses is potentiometry. Potentiometry is the measurement of the potential difference between two electrodes immersed in a solution. This potential difference is proportional to the concentration of the target molecule in the solution. Potentiometry is a powerful technique for the determination of many chemical compounds, including ions and ionizable compounds, such as acids and bases.Another electrochemical technique is amperometry. Amperometry is the measurement of the current flowing through an electrode in response to the electrochemical reaction. This technique is used to investigate the kinetics of the electrochemical reaction and study the chemical reaction under different conditions.ApplicationsElectrochemical method has several applications in analytical chemistry. One of the primary applications of electrochemical methods is the analysis of environmental pollutants. Electrochemical methods can be used to measure the concentration of pollutants in air, water, and soil. These methods are sensitive, inexpensive, and easy to use, making them an attractive choice for environmental monitoring.Electrochemical methods have also been used in food safety analysis. For example, the electrochemical method has been used to detect antibiotics and pesticide residues in food samples. Additionally, electrochemical methods can be usedto analyze food composition and nutritional content, such as the determination of vitamins and minerals in food.Pharmaceutical analysis is another field in which the electrochemical method is used. Electrochemical methods have been used to analyze the concentration of active pharmaceutical ingredients in drugs, which is essential forquality control and regulatory compliance. Additionally, electrochemical methods have been used to study the metabolism of drugs in the body, drug interactions, and drug release in controlled-release formulations.ConclusionElectrochemical method is a powerful analytical technique that measures the electrical propertiesof chemical reactions. The principles of electrochemistry underlie a wide range ofanalytical techniques, including potentiometry and amperometry. Electrochemical methods have many applications in environmental monitoring, food safety, and pharmaceutical analysis. The high sensitivity, low cost, and ease of use of these methods make them an attractive choice for many analytical situations.。

氮化石墨烯二硫化钼HER

氮化石墨烯二硫化钼HER

ABSTRACT
A facile one–step synthetic strategy by combinating chemical and hydrothermal reduction of graphene oxide and Mo precursor is proposed to fabricate in–situ nitrogenated graphene–few layer MoS2 composite (MoS2/N–rGO–HA) for hydrogen evolution reaction (HER). The N–doping graphene nanosheets and highly dispersed MoS2 nanosheets by ammonia and hydrozine as co–reductant have greatly promoted the N content, concentrations of pyridinic and graphitic N, the electron transport in electrodes, and assure high catalytic efficiency. The MoS2/N–rGO–HA composite exhibits extremely high activity in acidic solutions with a small onset potential of 100 mV and Tafel slope of 45 mV/dec, as well as a current density about 32.4 mA cmÀ2 at overpotential about 0.2 V. Moreover, such MoS2/N–rGO–HA electroncatalyst also shows an excellent stability during 1000 cycles with negligible loss of the cathodic current. This facile hydrothermal method could provide a promising strategy for the synthesis of in–situ nitrogen–doping graphene sheets and few–layer MoS2 composites in large scale towards promising alternative catalyst for platinum–based HER electrocatalysts.

电化学脱合金的英文

电化学脱合金的英文

电化学脱合金的英文Electrochemical Dealloying: Principles, Applications, and Challenges.Introduction.Electrochemical dealloying is a process that involves the selective removal of one or more constituent metalsfrom a multicomponent metallic alloy by electrochemical means. This process, often referred to as "dealuminization" in the context of aluminum-based alloys, has found widespread applications in materials science, nanotechnology, and energy conversion and storage systems. The primary advantage of electrochemical dealloying lies in its ability to create nanostructured materials with unique physical and chemical properties, such as high surface area, porosity, and conductivity.Principles of Electrochemical Dealloying.The electrochemical dealloying process occurs when an alloy is immersed in an electrolyte solution and apotential is applied between the alloy and a counter-electrode. The applied potential drives the electrochemical reactions at the alloy surface, resulting in thedissolution of one or more constituent metals. The dissolution rate of each metal depends on its electrochemical properties, such as the redox potential and electrochemical activity in the given electrolyte.During the dealloying process, the alloy is typically the anode, and the counter-electrode is the cathode. The anode is connected to the positive terminal of the power source, while the cathode is connected to the negative terminal. When the potential is applied, the alloy begins to dissolve, and the dissolved metal ions migrate towards the cathode. At the cathode, the metal ions are reduced and deposited on the surface, forming a new metal layer.The rate of metal dissolution during electrochemical dealloying is controlled by several factors, including the electrolyte composition, applied potential, temperature,and alloy composition. By optimizing these parameters, researchers can precisely control the morphology, porosity, and composition of the resulting nanostructured materials.Applications of Electrochemical Dealloying.Electrochemical dealloying has found numerous applications in materials science and engineering. Some of the key applications are discussed below:1. Nanoporous Metals: Electrochemical dealloying is widely used to create nanoporous metals with high surface area and porosity. These materials exhibit unique physical and chemical properties that are beneficial in various applications, such as catalysis, sensors, and energy storage.2. Battery Materials: Nanoporous metals produced by electrochemical dealloying have been explored as anode materials for lithium-ion batteries. The high porosity and surface area of these materials enhance the lithium storage capacity and improve the battery's performance.3. Fuel Cells: Electrochemical dealloying has also been used to create nanostructured catalysts for fuel cells. These catalysts exhibit enhanced activity and durability, which are crucial for efficient fuel cell operation.4. Biomedical Applications: Nanoporous metals produced by electrochemical dealloying have potential applicationsin biomedicine, such as drug delivery, tissue engineering, and implant materials. The porous structure of these materials allows for controlled drug release and improved cell adhesion and growth.Challenges and Future Directions.Despite the significant progress made inelectrochemical dealloying, several challenges remain to be addressed. One of the primary challenges is the control of the dealloying process at the nanoscale, as it is crucialfor achieving the desired material properties. Additionally, the development of new electrolytes and optimization of dealloying parameters are ongoing research efforts.Future research in electrochemical dealloying could focus on exploring new alloy systems, optimizing the dealloying process for specific applications, and understanding the fundamental mechanisms underlying metal dissolution and nanostructure formation. Furthermore, the integration of electrochemical dealloying with other nanotechnology approaches, such as lithography and templating, could lead to the development of even more advanced materials with tailored properties.Conclusion.Electrochemical dealloying is a powerful technique for creating nanostructured materials with unique physical and chemical properties. Its applications span multiple fields, including materials science, energy conversion and storage, and biomedicine. While significant progress has been madein this field, there are still numerous challenges and opportunities for further research and development. With the advancement of nanotechnology and materials science, electrochemical dealloying holds promise for enabling thecreation of next-generation materials with improved performance and functionality.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档