欧拉公式的一些应用题目

合集下载

高二数学欧拉公式的发现、球例题解析试题

高二数学欧拉公式的发现、球例题解析试题

智才艺州攀枝花市创界学校高二数学欧拉公式的发现、球例题解析一.本周教学内容:欧拉公式的发现、球二.重点、难点1.简单多面概念:考虑一个多面体,例如正六面体,假定它的面是用橡胶薄膜做成的,假设充以气体,那么它会连续〔不破裂〕变形,最后可变成一个球面。

像这样,外表经过连续变形可变为球面的多面体,叫做简单多面体。

简单多面体分类〔如以下图〕2.欧拉公式:假设简单多面体的顶点数为V ,面数为F ,棱数为E ,那么V +F -E =2 设各面的边数为n 1,n 2,…,n F ,那么n 1+n 2+…+n F =2E设各顶点出发的棱分别为n 1,n 2,…,n V 那么n 1+n 2+…+n V =2E3.球定义:半圆以它的直径为轴旋转所成的曲面叫做球面,球面所围成的几何体叫做球体。

〔简称球〕 性质:〔1〕球心与截面圆心的连线垂直于截面。

〔2〕设球心到截面的间隔为d ,截面圆的半径为r ,球的半径为R ,那么:r =22d R 。

球面间隔:在球面上两点之间的最短间隔就是经过这两点的大圆在这两点间的一段劣弧的长度,这个弧长叫两点间球面间隔。

P 点的经度——经过P 点的经线NB 与地轴NO 确定的半平面NBO 与本初子午线NA 与地轴NO 确定的半平面NAO 所成二面角的度数,即角AOB 的度数。

P 点的纬度——经过P 点的球半径PO 与赤道面所成角的度数,即角POB 的度数。

同纬度两点的球面间隔的求法〔如图〕〔1〕作出以球心O 为顶点的三棱锥O -O ′MN.〔2〕计算球心角∠MON 的大小〔弧度数〕〔3〕求出大圆上M 、N 两点间的劣弧长。

2.面积和体积的计算公式球外表积:S 球=4πR 2球体积:V 球=34πR 3=61πd 3 【典型例题】例1.铜的单晶的外形是简单几何体,单晶铜有三角形和八边形两种晶面,假设铜的单晶有24个顶点,以每个顶点有一端都有三条棱,计算单晶铜的两种晶面的数目。

解:设三角形和八边形两种晶面的个数分别为x 、y 那么3x +9y =2E ①又24×3=2E ②x +y =F ③V =24④由欧拉公式F +V =E +2⑤联立解得x =9,y =5例2.有一个各面都是三角形的正多面体,设顶点数V 、面数F 、棱数E ,〔1〕求证:F E 23=,22+=F V 〔2〕假设过各顶点的棱数都相等,那么此多面体是几面体?〔1〕证明:因为此正多面体有F 个面,每个面有3条边,所以F 个面总一共有3F 条边,但由于各棱是两个面的交线且被计算过两次,所以实际棱数为F E23=; 由欧拉公式V +F -E =2得V =E -F +2=F 23-F +2=2F +2。

欧拉公式的应用

欧拉公式的应用

欧拉公式的应用一、欧拉公式的证明、特点、作用欧拉公式θθθsin cos i e i +=的证明方法:极限法.证明 令()1nf z i n θ⎛⎫=+⎪⎝⎭(),R n N θ∈∈. 首先证明()lim cos sin n f z i θθ→∞=+ 因为arg 1ni narctg n n θθ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭所以22211cos sin nni i narctg i narctg n n n n θθθθ⎛⎫⎡⎤⎛⎫⎛⎫⎛⎫+=++ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎝⎭ 从而222lim 1lim 1cos sin n nn n i narctg i narctg n n n nθθθθ→∞→∞⎛⎫⎡⎤⎛⎫⎛⎫⎛⎫+=++ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎝⎭ (i)令222(1)nn p n θ=+,则2ln ln 12n n p n θ⎡⎤⎛⎫=+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.把1nξ=视为连续变量,由洛必达法则有()2201lim ln lim ln 12n n p ξξθξ→∞→=+2220lim 01ξξθξθ→==+ 即0lim 1n n p e →∞==. (ii)令arg 1nn i n θϕ⎛⎫=+ ⎪⎝⎭narctg n θ=,则 ()0lim lim n n arctg ξξθϕθξ→∞→==. 故()lim lim 1cos sin nn n f z i i n θθθ→∞→∞⎛⎫=+=+ ⎪⎝⎭.其次证明()lim i n f z e θ→∞= 因为ln 11n n i n i e n θθ⎛⎫+ ⎪⎝⎭⎛⎫+= ⎪⎝⎭的主值支,所以ln 1arg 1ln 1lim 1lim lim nn i in i n i n n n n n n i e e n θθθθ⎡⎤⎛⎫⎛⎫++++ ⎪⎢⎥ ⎪⎝⎭⎝⎭⎣⎦→∞→∞→∞⎛⎫+== ⎪⎝⎭, 而,lim ln 10lim arg 1n n n i n i n nθθθ→∞→∞⎛⎫+=+= ⎪⎝⎭,故()lim lim 1ni n n f z i e nθθ→∞→∞⎛⎫=+= ⎪⎝⎭.于是便证得:cos sin i e i θθθ=+. 欧拉公式还可以推广到以下形式:已知欧拉公式θθθsin cos i e i +=其中θ为实数,则cos R θ∈ s i nR θ∈由()1式得cos sin i e i θθθ-=- ()2 则()()12+得:2cos cos 2i i i i e e e eθθθθθθ--++=⇒=()()12-得:2sin sin 2i i i i e e eei iθθθθθθ----=⇒=又因为()sin tan cos i i i i e e i e e θθθθθθθ---==+()3 ()cos cot sin i i i i i e e e eθθθθθθθ--+==-()4 由此便得出最重要的四个公式.这些公式具有以下特点:()1实质上,这些公式给出了三角函数的复指数形式,故代入三角变换中,便将三角运算化为指数函数的代数运算,使三角运算从多种思考方法化为单一思考方法,从而降低了三角变换的难度.()2观察这几个公式,i e θ与i e θ-互为倒数,积为1,这一过程常常在证明过程中被应用.()3在以上公式的推导过程中,分别令2,,,,22πθππππ=-- ,得到以下式子:221,1,,iiie e e i πππ==-=221,1,i iieeei πππ---==-=-.欧拉公式的桥梁作用:(1) 纯虚指数值可以通过三角函数值来计算例如 c o s 1s i n ie i=+,2cossin22iei i πππ=+=,cos sin 1ie i πππ=+=-,3233cossin 22i ei i πππ=+=-, ()2cos2sin210,1,2k i e k i k k πππ=+==±± .由欧拉公式可以看出,在复数域内,指数函数是周期函数,具有基本周期2i π.(2) 任何实数的三角函数可以用纯虚指数表示,从而通过指数函数来研究三角函数的性质.在欧拉公式中用θ-代替θ,则cos sin i e i θθθ-=-. 由cos sin i e i θθθ=+,cos sin i e i θθθ-=-得到cos ,sin 22i i i i e e e e iθθθθθθ--+-==,由上式容易看出正弦函数是奇函数,余弦函数是偶函数.(3) 引出复数的指数表示法,从而使得复数的表示法增加为代数形式、三角形式和指数形式三种形式,便于我们酌情使用.二.欧拉公式在三角函数中的应用(一) 倍角和半角的三角变换 在此类型的题目中,大都用到以下两个技巧:()2222iiii eee eθθθθ--+-=-及21i =-.例1 求证sin 21cos 2θθ-cot θ=证明:左式()2222i ii i e e i e e θθθθ---=-+2222sin 221cos 212i i i i e e i e e θθθθθθ---==+--()()()()()21i i i i i i i i i i e e e e i e e eei e eθθθθθθθθθθ------+-+==--cot θ==右式所以原式成立.(二) 积化和差与差化积的三角变换 例2 计算:1cos cos 2cos 2s x x nx =++++解:1cos cos 2cos 2s x x nx =++++ ()()120212n xi nxi xi xi xi xi nxie e e e e e e e -----=++++++++1222ix ix nix nixe e e e --++=++()1122112211221n xi n xi nix ix nix ix ix ix ee e e e e ee⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭--⎛⎫- ⎪- ⎪⎝⎭==--=1sin 212sin 2n xx⎛⎫+ ⎪⎝⎭ (三) 求三角表达式的值 例3 已知tgx a =,求3sin sin 33cos cos3x xx x++的值:解: 原式()()()()333331223122xi xi ix ixxi xi ix ixe e e ei i e e e e -----+-=+++ ()()()()()223113()3xi xi xi xi xi xi xi xi xi xi xi xi e e e e e e i e e e e e e ------⎡⎤-+-+-⎢⎥⎣⎦=⨯⎡⎤++++-⎢⎥⎣⎦由tgx a =()xi xi xi xi e e ai e e --⇒-=+代入上式消去xi xi e e -+原式()()222xi xi xi xi a e e e e --⎡⎤++⎢⎥⎣⎦=+ 2112cos a x ⎛⎫=+ ⎪⎝⎭对2222221cos 1cos cos 1x a tg x x x a -==⇒=+ 所以原式2112a a ⎛⎫+=+ ⎪⎝⎭ (四) 证明三角恒等式 例4 证明32sin 22cos cos 2x x xtgtg x x-=+为方便计算令2x θ=,原式变为2sin 23cos 2cos 4tg tg θθθθθ-=+证明:左边()()3333i i i ii i i i e e e e i e e i e e θθθθθθθθ------=-++()()()()()()3333331ii i i i i i i iiiiee e e e e e e ieeeeθθθθθθθθθθθθ------+--+=⨯++右边22224422i ii i i ie e e e e eθθθθθθ----=+++2242242i ii i i i e e i e e e eθθθθθθ----=⨯+++=左边 例5 求证:sin 21cos tgααα=+证明: 22222iii i e etg i e e ααααα---=⎛⎫+ ⎪⎝⎭而()sin 21cos 212i ii i i i i i e e e e i e e i e e αααααααααα-----+==+++++2222222i i i i i i e e e e i e e αααααα---⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭=⎛⎫+ ⎪⎝⎭2222iiii e ei e e αααα---=⎛⎫+ ⎪⎝⎭2tgα=(五) 解三角方程 例6 解方程120x y += ()1sin 2sin xy= ()2 解: 把120y x =- 代入()2得:()sin 2sin 120xx =-. 由欧拉公式得:223322i x i x ix ix ee e e iππ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭---=⨯,经整理得:222331212i i ix e e e ππ-⎛⎫-=+ ⎪⎝⎭,21xi e =-,xi e i =,cos sin x i x i +=,cos 0,sin 1x x ==.所以18090x k =+ ,代入()1式得到18030y k =-+ ,由此即得到方程的解.(六) 利用公式求三角级数的和在三角级数中,按常规方法求和常常是很麻烦的,有时甚至求不出结果.而欧拉公式:sin 2i i e e i θθθ--=,cos 2i i e e θθθ-+=很好的解决了这类问题.例7 求三角级数sin sin 2sin 3sin x x x nx ++++ 的前几项和.解: 1sin nn k s kx ==∑12ikx ikxnk e e i -=-=∑1112n n ikx ikx k k e e i -==⎡⎤=-⎢⎥⎣⎦∑∑ ()()11112121ix inx ix inxix ix e e e e i e i e----=⨯-⨯-- 22222212n n n i x i x i x ixx x x i i i e e e e i e e e --⎛⎫⨯- ⎪⎝⎭=⨯⎛⎫- ⎪⎝⎭22222212n n ni x i x i x ix x x xi i i e e e e i e e e ----⎛⎫- ⎪⎝⎭-⨯⎛⎫- ⎪⎝⎭22221122222211222222nx nx nx nx iiiin n i x i xx x x x iiiie e e e iie e iie e e e ii--++-----=⨯⨯-⨯⨯--1122sinsin 112222sin sin 22n n i x i x n n x x e e x x i i ++-=⨯⨯-⨯⨯ 1122sin22sin 2n n i x i xn x e e x i ++--=⨯1sin sin 22sin 2n n x x x +⨯=.(七) 探求一些复杂的三角关系式 例8 把2cos n θ和2sin n θ分别表示成1,cos 2,cos 4,,cos 2n θθθ 的线形组合.解:()222222201cos 22ni i ni n k nk nnk e e Ce θθθθ--=⎛⎫+== ⎪⎝⎭∑,注意到()()212222221nn i n k i n k k mnn k n m C eC e θθ----=+==∑∑,得到()()()12222222201cos 2n i n k i n k nn k n n nk C C e e θθθ----=⎡⎤=++⎢⎥⎣⎦∑故有 ()1222201cos 2cos 22n nn k n n nk C C n k θθ-=⎡⎤=+-⎢⎥⎣⎦∑ ()3在()3式中用2πθ-代替θ得到()()1222201sin 21cos 22n n k nn k n n nk C C n k θθ--=⎡⎤=+--⎢⎥⎣⎦∑ (八) 解决方程根的问题 例9 证明方程()cos arccos 0n t = ()0,1,2n = 至多有n 个根.证明: 令0ϕπ≤≤,设cos t ϕ=,则sin ϕ=()cos sin nin ei ϕϕϕ=+(nt =+,那么:()(cos cos cos Re nn naro t t ϕ==+()()222244211nn n nnt C ttC tt--=+-+-+故()cos arccos n t 是关于t 的n 次多项式,所以由代数学基本定理知:方程()cos arccos 0n t =至多有n 个根.例10 设1,2,3,,n a a a a 都是实常数,()()()()12111sin sin sin 22n n f a a a θθθθ-=++++++ ,若12,θθ是方程()0f θ=的两个根,1θ,2θ不全为零.证明:kπθθ21=-(k 为整数).证明:()()()()()()()11222222n n i a i a i a i a i a i a n e ee e e ef iiiθθθθθθθ+-++-++-+---=+++121222222222nnia ia ia ia ia ia i i nn e e e e e e i e i e θθ----⎛⎫⎛⎫=-+++++++ ⎪ ⎪⎝⎭⎝⎭令 122222nia ia ia ne e e i α⎛⎫=-+++ ⎪⎝⎭ ,122222nia ia ia n e e e i β---⎛⎫=+++ ⎪⎝⎭. 则()0f θ=化为0i i e e θθαβ-+=.由三角不等式知121222222222n nia ia ia ia ia ia n n e e e e e e α=+++≥--2111222n =---所以复常数0,α≠同理复常数0,β≠ 又12,θθ分别满足方程()0f θ=,即()1110i i f e e θθθαβ-=+=,()2220i i f e e θθθαβ-=+=.可见,αβ的系数行列式()()()1212122sin 0i i e e i θθθθθθ----=-=,从而必存在整数k 使得12k θθπ-=.(九) 欧拉公式大降幂在高等数学中常会遇到高次幂的正余弦函数,这些函数在计算上很不方便,欧拉公式可把高次幂的正余弦函数表示为一次幂函数的代数和,克服了高次幂函数在运算上的不方便.1 正弦大降幂:33sin 2ix ix e e x i -⎛⎫-= ⎪⎝⎭()322331332i x i x ix ix i x i x e e e e e e i ---⎡⎤=-⨯+⨯-⎣⎦()33213222i x i x ix ix e e e e i i i --⎡⎤--=-⎢⎥⎣⎦()()21sin3sin 2x x i =-.44sin 2ix ix e e x i -⎛⎫-= ⎪⎝⎭()432234414642i x i x ix i x i x ix i x i xe e e e e e e e i ----⎡⎤=-⨯+⨯-⨯+⎣⎦()421cos 44cos 2622x x i ⎡⎤=-+⨯⎢⎥⎣⎦.55sin 2ix ix e e x i -⎛⎫-= ⎪⎝⎭()54322345515101052i x i x ix i x i x i x i x ix i x i x e e e e e e e e e e i -----⎡⎤=-⨯+⨯-⨯+⨯-⎣⎦()[]41sin55sin310sin 2x x x i =-+.综上:正弦大降幂规则如下()1 括号前的系数视n 的奇偶而定;当2n m =时系数为22(2)mi ,当21n m =+时系数为()212m i . ()2 括号内符号正负相同; ()3当2n m=时括号内各项均为余弦,依次为()1122cos2,cos 22cos2,m m m mx C m x C x -- 212mm C . 当21n m =+时,括号内各项均为正弦,依次为()()()121212121sin 21,sin 21,sin 23,sin3m m m m m x C m x C m x C x -++++-- ,21sin m m C x +.2余弦大降幂33cos 2ix ix e e x -⎛⎫+= ⎪⎝⎭3331332i x ix ix i x e e e e --⎡⎤=+++⎣⎦[]21cos33cos 2x x =+. 44cos 2ix ix e e x -⎛⎫+= ⎪⎝⎭1244311cos 4cos 222x C x C ⎡⎤=++⨯⎢⎥⎣⎦55cos 2ix ix e e x -⎛⎫+= ⎪⎝⎭125541cos5cos3cos 2x C x C x ⎡⎤=++⎣⎦ 综上:余弦大降幂规则如下:()1括号前的系数为112n -;()2括号内全部是+号; ()3括号内各项均为余弦;当2n m =时,依次为()()12122221cos 2,cos 22,cos 24,cos 2,,2m m m m mm mx C m x C m x C x C --- 当21n m =+时,依次为()()()12212121cos 21,cos 21,cos 23,cos mm m m m x C m x C m x C x ++++-- .3 正余弦大降幂的应用 (1) 求傅里叶级数 例11 求12sin x 的傅立叶级数解:()112234561212121212121221sin cos12cos10cos8cos6cos 4cos 222x x x C x C x C x C x C i c ⎛⎫=-+-+-+ ⎪⎝⎭由于12sin x 是2π为周期的连续函数,所以它的傅立叶级数展开式唯一,即:12123412121212111111111111111sin cos12cos10cos8cos 6cos 422222x x C x C x C x C x =---+561212111111cos 222C x C -+. (2) 求n 阶导数 例12 求7cos x 的n 阶导数解 712377761cos cos 7cos5cos3cos 2x x C x C x C x ⎡⎤=+++⎣⎦ ()()()()71237776cos 1cos 7cos 5cos 3cos 2n n n n n n d x x C x C x C x dx ⎡⎤=+++⎣⎦ 123777617cos 75cos 53cos 3cos 22222n n n n n n n x C x C x C x ππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++++++ ⎪⎪⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦(3) 求积分 例13 求11sin xdx ⎰ 解: ()()11123451111111111101sin sin11sin9sin 7sin5sin3sin 2x x Cx C x C x C x C x i =-+-+-()123451111111111101sin11sin 9sin 7sin 5sin 3sin 2x C x C x C x C x C x =--+-+- 原式()123451111111111101sin11sin 9sin 7sin 5sin 3sin 2x Cx C x C x C x C x dx =--+-+-⎰123451111111111101cos11cos9cos7cos5cos3cos 2119753x x x x x C C C C C x c ⎛⎫=-+-+-+ ⎪⎝⎭例14 求0⎰解: 令sin x a t =,则:x a →,2t π→,662cos a tdtπ=⎰⎰612226665011cos6cos 4cos 222at C t C t C dt π⎛⎫=+++ ⎪⎝⎭⎰612665sin 6sin 4sin 2102642a t t t C C t ⎡⎤=+++⎢⎥⎣⎦在0,2π⎛⎫ ⎪⎝⎭上的值, 6100322a π⎡⎤⎛⎫=- ⎪⎢⎥⎝⎭⎣⎦6532a π=(十)三角函数的求积 例15 不查表,计算cos 20cos 40cos80P =解 24cos coscos 999P πππ=2244999999222ii i i i i e eee ee ππππππ---+++=⨯⨯7533579999999918ii i i i i i i e e e e e e e e ππππππππ----⎛⎫=+++++++ ⎪⎝⎭72799929181i i i i e e e e ππππ-⎛⎫⨯- ⎪= ⎪ ⎪-⎝⎭29291181i i i e e e πππ-⎛⎫--⨯ ⎪⎝⎭=⨯- 18=. (十一)条件等式的证明 例16 已知,αβ均为锐角且223sin 2sin 1αβ+=,3sin 22sin 20αβ-=.求证 22παβ+=.证明 由223sin 2sin 1αβ+=,得到2231222i i i i e e e e i i ααββ--⎛⎫⎛⎫--=- ⎪ ⎪⎝⎭⎝⎭()2221322i i i i e e e e i ααββ--⎛⎫-⇒=+ ⎪⎝⎭()122223sin 22sin 203222i i i ie e e e i iααββαβ-----=⇒⨯-⨯0=()()2232ii i i i ie e e e e e iiααααββ---+--⇒⨯=()2 ()()12÷得:()()2222i i i ii i i ii e e e e e e i e e ββααββαα----+-=-+. 由三角变换得:2tg ctg αβ=,因为,αβ均为锐角,所以2β也为锐角,即知22πβα+=,所以原式得证.结束语欧拉公式将定义和形式完全不同的指数函数和三角函数联系起来,为我们研究这两种函数的相关运算及其性质架起了一座桥梁.在求三角表达式的值、证明三角恒等式、解决一些方程根的问题、求三角级数的和、解决高次幂的三角函数时,都应用到了欧拉公式,从而避免了复杂的三角变换,在三角中的应用能够利用较为直观代数运算使得问题得到解决.在探求一些复杂的三角关系时,如果不借助欧拉公式,而试图通过纯三角运算直接推导这些关系是相当麻烦的.本文在介绍欧拉公式时给出了欧拉公式的证明,应用到了极限的方法,不同于其它的定义复变指数函数和复变三角函数进行证明的方法. 但不可避免的是:欧拉公式在证明某些恒等式时,却相对增加了计算量.因此,在证明三角恒等式时,要具体问题具体分析.。

七年级数学上册-考点训练:欧拉公式-课后练习

七年级数学上册-考点训练:欧拉公式-课后练习

智能一对一,解决作业难题,提高数学成绩【考点训练】欧拉公式-1一、选择题(共5小题)1.正方体的顶点数、面数和棱数分别是()A.8、6、12 B.6、8、12 C.8、12、6 D.6、8、102.一个棱柱有18条棱,那么它的底面一定是()A.十八边形B.八边形C.六边形D.四边形3.设长方体的顶点数为v,棱数为e,面数为f,则v+e+f等于()A.26 B.2C.14 D.104.一个直棱柱有12个顶点,那么它的面的个数是()A.10个B.9个C.8个D.7个5.正多面体的面数、棱数、顶点数之间存在着一个奇妙的关系,若用F,E,V分别表示正多面体的面数、棱数、顶点数,则有F+V﹣E=2,现有一个正多面体共有12条棱,6个顶点,则它的面数F等于()A.6B.8C.12 D.20二、填空题(共3小题)(除非特别说明,请填准确值)6.一个棱柱有18条棱,那么它的底面是_________边形.7.长方体有_________个面;有_________条棱.8.(2011•南海区模拟)十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(v)、面数(f )、棱数(e)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型:根据上面多面体模型,你发现顶点数(v)、面数(f )、棱数(e)之间存在的关系式是_________.三、解答题(共3小题)(选答题,不自动判卷)9.十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格:多面体顶点数(V)面数(F)棱数(E)四面体 4 4 _________长方体8 6 12正八面体_________8 12正十二面体20 12 30你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是_________.(2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是_________.(3)某个玻璃鉓品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表三角形的个数为x个,八边形的个数为y个,求x+y的值.10.(2010•宁波)十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格:多面体顶点数(V)面数(F)棱数(E)四面体 4 4长方体8 6 12正八面体8 12正十二面体20 12 30你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是_________.(2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是_________.(3)某个玻璃鉓品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表三角形的个数为x个,八边形的个数为y个,求x+y的值.11.(2009•凉山州)观察下列多面体,并把下表补充完整.观察上表中的结果,你能发现a、b、c之间有什么关系吗?请写出关系式.名称三棱柱四棱柱五棱柱六棱柱图形顶点数a 6 10 12棱数b 9 12 15面数c 5 8【考点训练】欧拉公式-1参考答案与试题解析一、选择题(共5小题)1.正方体的顶点数、面数和棱数分别是()A.8、6、12 B.6、8、12 C.8、12、6 D.6、8、10考点:欧拉公式.分析:根据正方体有8个顶点,6个面,12条棱即可作答.解答:解:正方体的顶点数是8个,有6个面,棱有12条.故选A.点评:本题考查了正方体的知识,正方体有几个顶点、几个面、几条棱是需要我们熟练记忆的内容.2.一个棱柱有18条棱,那么它的底面一定是()A.十八边形B.八边形C.六边形D.四边形考点:欧拉公式.分析:根据欧拉公式简单多面体的顶点数V、面数F及棱数E间的关系是V+F﹣E=2,然后把棱数18代入进行讨论即可求解.解答:解:根据欧拉公式有:V+F﹣E=2,∵E=18,∴V+F=2+18=20,①当棱柱是四棱柱时,V=8,F=6,V+F=14,②当棱柱是五棱柱时,V=10,F=7,V+F=17,③当棱柱是六棱柱时,V=12,F=8,V+F=20,∴有18条棱的棱柱是六棱柱,它的底面是六边形.故选C.点评:考查了欧拉公式的应用,需要对棱柱的顶点数与面数的关系有全面的认识并熟记欧拉公式方可进行解答.3.设长方体的顶点数为v,棱数为e,面数为f,则v+e+f等于()A.26 B.2C.14 D.10考点:欧拉公式.专题:计算题.分析:根据长方体的概念和特性进行分析计算即解.解答:解:长方体的顶点数v=8,棱数e=12,面数f=6.故v+e+f=8+12+6=26.故选A.点评:解决本题的关键是明白长方体的构造特征为:长方体有6个面,8个顶点,12条棱.4.一个直棱柱有12个顶点,那么它的面的个数是()A.10个B.9个C.8个D.7个考点:欧拉公式.分析:一个直棱柱有12个顶点,说明它的上下底面是两个六边形,从而可以确定它的面的个数.解答:解:直棱柱有12个顶点,一定是六棱柱,所以它的面的个数是8个.故选C.点评:n棱柱有2n个顶点,有(n+2)个面,有3n条棱.5.正多面体的面数、棱数、顶点数之间存在着一个奇妙的关系,若用F,E,V分别表示正多面体的面数、棱数、顶点数,则有F+V﹣E=2,现有一个正多面体共有12条棱,6个顶点,则它的面数F等于()A.6B.8C.12 D.20考点:欧拉公式.专题:计算题.分析:根据题意中的公式F+V﹣E=2,将E,V代入即解.解答:解:∵正多面体共有12条棱∴E=6∴F=2﹣V+E=2﹣6+12=8.故选B.点评:解决本题的关键是正确的审题,合理利用题目中给出的公式解答.二、填空题(共3小题)(除非特别说明,请填准确值)6.一个棱柱有18条棱,那么它的底面是六边形.考点:欧拉公式.分析:根据欧拉公式简单多面体的顶点数V、面数F及棱数E间的关系是V+F﹣E=2,然后把棱数18代入进行讨论即可求解.解答:解:根据欧拉公式有:V+F﹣E=2,∵E=18,∴V+F=2+18=20,①当棱柱是四棱柱时,V=8,F=6,V+F=14,②当棱柱是五棱柱时,V=10,F=7,V+F=17,③当棱柱是六棱柱时,V=12,F=8,V+F=20,∴有18条棱的棱柱是六棱柱,它的底面是六边形.故答案为:六.点评:本题考查了欧拉公式的应用,需要对棱柱的顶点数与面数的关系有全面的认识并熟记欧拉公式方可进行解答.7.长方体有6个面;有12条棱.考点:欧拉公式.分析:根据长方体属于四棱柱,结合四棱柱的特征进行填空.解答:解:长方体有6个面;有12条棱.故答案为6、12.点评:n棱柱有2n个顶点,有(n+2)个面,有3n条棱.8.(2011•南海区模拟)十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(v)、面数(f )、棱数(e)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型:根据上面多面体模型,你发现顶点数(v)、面数(f )、棱数(e)之间存在的关系式是v+f﹣e=2.考点:欧拉公式.分析:先根据四面体、长方体、正八面体,正十二面体的顶点数、面数和棱数,总结出顶点数(v)、面数(f )、棱数(e)之间存在的关系式即可.解答:解:四面体的顶点数为4、面数为4,棱数为6,则4+4﹣6=2;长方体的顶点数为8、面数为6,棱数为12,则8+6﹣12=2;正八面体的顶点数为6,面数为8,棱数为12,则8+6﹣12=2;则关系式为:v+f﹣e=2;故答案为v+f﹣e=2.点评:本题考是一个找规律的题目,查了欧拉公式,由特殊到一般的思想在数学教学中常用到.三、解答题(共3小题)(选答题,不自动判卷)9.十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格:多面体顶点数(V)面数(F)棱数(E)四面体 4 4 6长方体8 6 12正八面体68 12正十二面体20 12 30你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是V+F﹣E=2.(2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是20.(3)某个玻璃鉓品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表三角形的个数为x个,八边形的个数为y个,求x+y的值.考点:欧拉公式.专题:压轴题;图表型.分析:(1)观察可得顶点数+面数﹣棱数=2;(2)代入(1)中的式子即可得到面数;(3)得到多面体的棱数,求得面数即为x+y的值.解答:解:(1)四面体的棱数为6;正八面体的顶点数为6;关系式为:V+F﹣E=2;(2)由题意得:F﹣8+F﹣30=2,解得F=20;(3)∵有24个顶点,每个顶点处都有3条棱,两点确定一条直线;∴共有24×3÷2=36条棱,那么24+F﹣36=2,解得F=14,∴x+y=14.故答案为:6,6;E=V+F﹣2;20;14.点评:本题考查多面体的顶点数,面数,棱数之间的关系及灵活运用.10.(2010•宁波)十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格:多面体顶点数(V)面数(F)棱数(E)四面体 4 4长方体8 6 12正八面体8 12正十二面体20 12 30你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是V+F﹣E=2.(2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是20.(3)某个玻璃鉓品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表三角形的个数为x个,八边形的个数为y个,求x+y的值.考点:欧拉公式.专题:压轴题.分析:(1)观察可得顶点数+面数﹣棱数=2;(2)代入(1)中的式子即可得到面数;(3)得到多面体的棱数,求得面数即为x+y的值.解答:解:(1)四面体的棱数为6;正八面体的顶点数为6;关系式为:V+F﹣E=2;多面体顶点数(V)面数(F)棱数(E)四面体 4 4 6长方体8 6 12正八面体 6 8 12正十二面体20 12 30(2)由题意得:F﹣8+F﹣30=2,解得F=20;(3)∵有24个顶点,每个顶点处都有3条棱,两点确定一条直线;∴共有24×3÷2=36条棱,那么24+F﹣36=2,解得F=14,∴x+y=14.点评:本题考查多面体的顶点数,面数,棱数之间的关系及灵活运用.11.(2009•凉山州)观察下列多面体,并把下表补充完整.观察上表中的结果,你能发现a、b、c之间有什么关系吗?请写出关系式.名称三棱柱四棱柱五棱柱六棱柱图形顶点数a 6 10 12棱数b 9 12 15面数c 5 8考点:欧拉公式.专题:图表型.分析:三棱柱的顶点数为:3×2=6,棱数为:3×3=9,面数为:2+3=5;四棱柱的顶点数为:4×2=8,棱数为:4×3=12,面数为:2+4=6;五棱柱的顶点数为:5×2=10,棱数为:5×3=15,面数为:2+5=7;六棱柱的顶点数为:6×2=12,棱数为:6×3=18,面数为:2+6=8.∴a+c﹣b=2.解答:解:规律为a+c﹣b=2.名称三棱柱四棱柱五棱柱六棱柱图形顶点数a 6 8 10 12棱数b 9 12 15 18面数c 5 6 7 8点评:可先由简单图形得到解决问题的方法.。

七年级数学上册考点训练:欧拉公式课后练习

七年级数学上册考点训练:欧拉公式课后练习

七年级数学上册-考点训练:欧拉公式-课后练习————————————————————————————————作者:————————————————————————————————日期:【考点训练】欧拉公式-1一、选择题(共5小题)1.正方体的顶点数、面数和棱数分别是()A.8、6、12 B.6、8、12 C.8、12、6 D.6、8、102.一个棱柱有18条棱,那么它的底面一定是()A.十八边形B.八边形C.六边形D.四边形3.设长方体的顶点数为v,棱数为e,面数为f,则v+e+f等于()A.26 B.2C.14 D.104.一个直棱柱有12个顶点,那么它的面的个数是()A.10个B.9个C.8个D.7个5.正多面体的面数、棱数、顶点数之间存在着一个奇妙的关系,若用F,E,V分别表示正多面体的面数、棱数、顶点数,则有F+V﹣E=2,现有一个正多面体共有12条棱,6个顶点,则它的面数F等于()A.6B.8C.12 D.20二、填空题(共3小题)(除非特别说明,请填准确值)6.一个棱柱有18条棱,那么它的底面是_________边形.7.长方体有_________个面;有_________条棱.8.(2011•南海区模拟)十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(v)、面数(f )、棱数(e)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型:根据上面多面体模型,你发现顶点数(v)、面数(f )、棱数(e)之间存在的关系式是_________.三、解答题(共3小题)(选答题,不自动判卷)9.十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格:多面体顶点数(V)面数(F)棱数(E)四面体 4 4 _________长方体8 6 12正八面体_________8 12正十二面体20 12 30你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是_________.(2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是_________.(3)某个玻璃鉓品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表三角形的个数为x个,八边形的个数为y个,求x+y的值.10.(2010•宁波)十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格:多面体顶点数(V)面数(F)棱数(E)四面体 4 4长方体8 6 12正八面体8 12正十二面体20 12 30你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是_________.(2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是_________.(3)某个玻璃鉓品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表三角形的个数为x个,八边形的个数为y个,求x+y的值.11.(2009•凉山州)观察下列多面体,并把下表补充完整.观察上表中的结果,你能发现a、b、c之间有什么关系吗?请写出关系式.名称三棱柱四棱柱五棱柱六棱柱图形顶点数a 6 10 12棱数b 9 12 15面数c 5 8【考点训练】欧拉公式-1参考答案与试题解析一、选择题(共5小题)1.正方体的顶点数、面数和棱数分别是()A.8、6、12 B.6、8、12 C.8、12、6 D.6、8、10考点:欧拉公式.分析:根据正方体有8个顶点,6个面,12条棱即可作答.解答:解:正方体的顶点数是8个,有6个面,棱有12条.故选A.点评:本题考查了正方体的知识,正方体有几个顶点、几个面、几条棱是需要我们熟练记忆的内容.2.一个棱柱有18条棱,那么它的底面一定是()A.十八边形B.八边形C.六边形D.四边形考点:欧拉公式.分析:根据欧拉公式简单多面体的顶点数V、面数F及棱数E间的关系是V+F﹣E=2,然后把棱数18代入进行讨论即可求解.解答:解:根据欧拉公式有:V+F﹣E=2,∵E=18,∴V+F=2+18=20,①当棱柱是四棱柱时,V=8,F=6,V+F=14,②当棱柱是五棱柱时,V=10,F=7,V+F=17,③当棱柱是六棱柱时,V=12,F=8,V+F=20,∴有18条棱的棱柱是六棱柱,它的底面是六边形.故选C.点评:考查了欧拉公式的应用,需要对棱柱的顶点数与面数的关系有全面的认识并熟记欧拉公式方可进行解答.3.设长方体的顶点数为v,棱数为e,面数为f,则v+e+f等于()A.26 B.2C.14 D.10考点:欧拉公式.专题:计算题.分析:根据长方体的概念和特性进行分析计算即解.解答:解:长方体的顶点数v=8,棱数e=12,面数f=6.故v+e+f=8+12+6=26.故选A.点评:解决本题的关键是明白长方体的构造特征为:长方体有6个面,8个顶点,12条棱.4.一个直棱柱有12个顶点,那么它的面的个数是()A.10个B.9个C.8个D.7个考点:欧拉公式.分析:一个直棱柱有12个顶点,说明它的上下底面是两个六边形,从而可以确定它的面的个数.解答:解:直棱柱有12个顶点,一定是六棱柱,所以它的面的个数是8个.故选C.点评:n棱柱有2n个顶点,有(n+2)个面,有3n条棱.5.正多面体的面数、棱数、顶点数之间存在着一个奇妙的关系,若用F,E,V分别表示正多面体的面数、棱数、顶点数,则有F+V﹣E=2,现有一个正多面体共有12条棱,6个顶点,则它的面数F等于()A.6B.8C.12 D.20考点:欧拉公式.专题:计算题.分析:根据题意中的公式F+V﹣E=2,将E,V代入即解.解答:解:∵正多面体共有12条棱∴E=6∴F=2﹣V+E=2﹣6+12=8.故选B.点评:解决本题的关键是正确的审题,合理利用题目中给出的公式解答.二、填空题(共3小题)(除非特别说明,请填准确值)6.一个棱柱有18条棱,那么它的底面是六边形.考点:欧拉公式.分析:根据欧拉公式简单多面体的顶点数V、面数F及棱数E间的关系是V+F﹣E=2,然后把棱数18代入进行讨论即可求解.解答:解:根据欧拉公式有:V+F﹣E=2,∵E=18,∴V+F=2+18=20,①当棱柱是四棱柱时,V=8,F=6,V+F=14,②当棱柱是五棱柱时,V=10,F=7,V+F=17,③当棱柱是六棱柱时,V=12,F=8,V+F=20,∴有18条棱的棱柱是六棱柱,它的底面是六边形.故答案为:六.点评:本题考查了欧拉公式的应用,需要对棱柱的顶点数与面数的关系有全面的认识并熟记欧拉公式方可进行解答.7.长方体有6个面;有12条棱.考点:欧拉公式.分析:根据长方体属于四棱柱,结合四棱柱的特征进行填空.解答:解:长方体有6个面;有12条棱.故答案为6、12.点评:n棱柱有2n个顶点,有(n+2)个面,有3n条棱.8.(2011•南海区模拟)十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(v)、面数(f )、棱数(e)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型:根据上面多面体模型,你发现顶点数(v)、面数(f )、棱数(e)之间存在的关系式是v+f﹣e=2.考点:欧拉公式.分析:先根据四面体、长方体、正八面体,正十二面体的顶点数、面数和棱数,总结出顶点数(v)、面数(f )、棱数(e)之间存在的关系式即可.解答:解:四面体的顶点数为4、面数为4,棱数为6,则4+4﹣6=2;长方体的顶点数为8、面数为6,棱数为12,则8+6﹣12=2;正八面体的顶点数为6,面数为8,棱数为12,则8+6﹣12=2;则关系式为:v+f﹣e=2;故答案为v+f﹣e=2.点评:本题考是一个找规律的题目,查了欧拉公式,由特殊到一般的思想在数学教学中常用到.三、解答题(共3小题)(选答题,不自动判卷)9.十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格:多面体顶点数(V)面数(F)棱数(E)四面体 4 4 6长方体8 6 12正八面体68 12正十二面体20 12 30你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是V+F﹣E=2.(2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是20.(3)某个玻璃鉓品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表三角形的个数为x个,八边形的个数为y个,求x+y的值.考点:欧拉公式.专题:压轴题;图表型.分析:(1)观察可得顶点数+面数﹣棱数=2;(2)代入(1)中的式子即可得到面数;(3)得到多面体的棱数,求得面数即为x+y的值.解答:解:(1)四面体的棱数为6;正八面体的顶点数为6;关系式为:V+F﹣E=2;(2)由题意得:F﹣8+F﹣30=2,解得F=20;(3)∵有24个顶点,每个顶点处都有3条棱,两点确定一条直线;∴共有24×3÷2=36条棱,那么24+F﹣36=2,解得F=14,∴x+y=14.故答案为:6,6;E=V+F﹣2;20;14.点评:本题考查多面体的顶点数,面数,棱数之间的关系及灵活运用.10.(2010•宁波)十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格:多面体顶点数(V)面数(F)棱数(E)四面体 4 4长方体8 6 12正八面体8 12正十二面体20 12 30你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是V+F﹣E=2.(2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是20.(3)某个玻璃鉓品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表三角形的个数为x个,八边形的个数为y个,求x+y的值.考点:欧拉公式.专题:压轴题.分析:(1)观察可得顶点数+面数﹣棱数=2;(2)代入(1)中的式子即可得到面数;(3)得到多面体的棱数,求得面数即为x+y的值.解答:解:(1)四面体的棱数为6;正八面体的顶点数为6;关系式为:V+F﹣E=2;多面体顶点数(V)面数(F)棱数(E)四面体 4 4 6长方体8 6 12正八面体 6 8 12正十二面体20 12 30(2)由题意得:F﹣8+F﹣30=2,解得F=20;(3)∵有24个顶点,每个顶点处都有3条棱,两点确定一条直线;∴共有24×3÷2=36条棱,那么24+F﹣36=2,解得F=14,∴x+y=14.点评:本题考查多面体的顶点数,面数,棱数之间的关系及灵活运用.11.(2009•凉山州)观察下列多面体,并把下表补充完整.观察上表中的结果,你能发现a、b、c之间有什么关系吗?请写出关系式.名称三棱柱四棱柱五棱柱六棱柱图形顶点数a 6 10 12棱数b 9 12 15面数c 5 8考点:欧拉公式.专题:图表型.分析:三棱柱的顶点数为:3×2=6,棱数为:3×3=9,面数为:2+3=5;四棱柱的顶点数为:4×2=8,棱数为:4×3=12,面数为:2+4=6;五棱柱的顶点数为:5×2=10,棱数为:5×3=15,面数为:2+5=7;六棱柱的顶点数为:6×2=12,棱数为:6×3=18,面数为:2+6=8.∴a+c﹣b=2.解答:解:规律为a+c﹣b=2.名称三棱柱四棱柱五棱柱六棱柱图形顶点数a 6 8 10 12棱数b 9 12 15 18面数c 5 6 7 8点评:可先由简单图形得到解决问题的方法.。

知识点223欧拉公式(解答)

知识点223欧拉公式(解答)

1、(2009•凉山州)观察下列多面体,并把下表补充完整.观察上表中的结果,你能发现a、b、c之间有什么关系吗?请写出关系式.考点:欧拉公式。

专题:图表型。

分析:三棱柱的顶点数为:3×2=6,棱数为:3×3=9,面数为:2+3=5;四棱柱的顶点数为:4×2=8,棱数为:4×3=12,面数为:2+4=6;五棱柱的顶点数为:5×2=10,棱数为:5×3=15,面数为:2+5=7;六棱柱的顶点数为:6×2=12,棱数为:6×3=18,面数为:2+6=8.∴a+c﹣b=2.解答:解:规律为a+c﹣b=2.点评:可先由简单图形得到解决问题的方法.2、(2006•烟台)下列图形中,图(a)是正方体木块,把它切去一块,得到如图(b)(c)(d)(e)的(1)我们知道,图(a)的正方体木块有8个顶点、12条棱、6个面,请你将图(b)、(c)、(d)、(e)中木块的顶点数、棱数、面数填入下表;(2)上表,各种木块的顶点数、棱数、面数之间的数量关系可以归纳出一定的规律,请你试写出顶点数x、棱数y、面数z之间的数量关系式.考点:欧拉公式。

专题:规律型。

分析:(1)小题,只要将图(b)、(c)、(d)、(e)各个木块的顶点数、棱数、面数数一下就行;数的时候要注意:图中不能直接看到的那一部分不要遗漏,也不要重复,可通过想象计数,正确填入表内;(2)通过观察找出每个图中“顶点数、棱数、面数”之间隐藏着的数量关系,这个数量关系用公式表示出来即可.点评:命题立意:考查平均数的求法,搜集信息的能力(读表),作图能力及用样本估计总体的统计思想.3、(1)图①是正方体木块,把它切去一块,可能得到形如图②、③、④、⑤的木块.我们知道,图①的正方体木块有8个顶点,12条棱,6个面,请你将图②、③、④、⑤中木块的顶点数、棱数、面数填人下表:(2)观察此表,请你归纳上述各种木块的顶点数、棱数、面数之间的数虽关系是:顶点数+面数﹣棱数=2.(3)图⑥是用虚线画出的正方体木块,请你想象一种与图②~⑤不同的切法,把切去一块后得到的那一块的每条棱都改画成实线,则该木块的顶点数为8,棱数为6,面数为3.考点:欧拉公式。

知识点223 欧拉公式(填空)

知识点223 欧拉公式(填空)

知识点223 欧拉公式(填空)1、一个五棱柱有个7 面,15 条棱,10 个顶点.考点:欧拉公式。

分析:根据棱柱的特性:n棱柱有(n+2)个面,3n条棱,2n个顶点.解答:解:故五棱柱有7个面,15条棱,10个顶点.故答案为7,15,10.点评:本题主要考查n棱柱的构造特点:(n+2)个面,3n条棱,2n个顶点.2、伟大的数学家欧拉发现并证明的关于一个多面体的顶点(V)、棱数(E)、面数(F)之间关系的公式为V+F﹣E=2 .考点:欧拉公式。

分析:根据一个多面体的顶点、面数、棱数的关系:顶点+面数﹣棱数=2,列出公式即可.解答:解:伟大的数学家欧拉发现并证明的关于一个多面体的顶点(V)、棱数(E)、面数(F)之间关系的公式为V+F﹣E=2.点评:熟记一个多面体的顶点、面数、棱数的关系式:顶点+面数﹣棱数=2.3、正方体或长方体是一个立体图形,它是由 6 个面,12 条棱,8 个顶点组成的.考点:欧拉公式。

分析:正方体和长方体属于四棱柱.根据棱柱的特性即可解.n棱柱有(n+2)个面,3n条棱,2n个顶点.解答:解:根据以上分析:正方体或长方体是由6个面,12条棱,8个顶点组成.故答案为6,12,8.点评:本题需注意正方体或长方体可看作四棱柱,按照棱柱的构造特点来做.4、长方体由 6 个面12 条棱8 个顶点.考点:欧拉公式。

分析:长方体属于四棱柱根据四棱柱的概念及特性即可解.解答:解:长方体属于四棱柱,四棱柱有6个面,12条棱,8个顶点.故答案为6,12,8.点评:可把长方体看作四棱柱根据棱柱的构造特点来做.5、一个多面体有12条棱,6个顶点,则这个多面体是八面体.考点:欧拉公式。

分析:根据常见几何体的结构特征进行判断.解答:解:一个多面体有12条棱,6个顶点,为8面体,每个面都是三角形.故答案为八面体.点评:本题考查四棱柱的结构特征,是一道简单的基础题.6、长方体有8 个顶点,12 条棱, 6 个面.考点:欧拉公式。

初一数学图形认识初步棱、顶点、面间数量关系(欧拉公式)练习题(含答案)

初一数学图形认识初步棱、顶点、面间数量关系(欧拉公式)练习题(含答案)

初一数学图形认识初步棱、顶点、面间数量关系(欧拉公式)练习题欧拉公式:(1)简单多面体的顶点数V、面数F及棱数E间的关系为:V+F﹣E=2.这个公式叫欧拉公式.(2)V+F﹣E=X(P),V是多面体P的顶点个数,F是多面体P的面数,E是多面体P的棱的条数,X(P)是多面体P的欧拉示性数.一选择题1.将正方体的面数记为f,边数记为e,顶点数记为v,则f+v﹣e=()A.1 B.2 C.3 D.42.一个多面体,若顶点数为4,面数为4,则棱数是()A.2 B.4 C.6 D.83.设长方体的顶点数为v,棱数为e,面数为f,则v+e+f等于()A.26 B.2 C.14 D.104.正多面体的面数、棱数、顶点数之间存在着一个奇妙的关系,若用F,E,V分别表示正多面体的面数、棱数、顶点数,则有F+V﹣E=2,现有一个正多面体共有12条棱,6个顶点,则它的面数F等于()A.6 B.8 C.12 D.205.欧拉公式中,多面体的面数F,棱数E,顶点数V之间的正确关系是()A.F+V﹣E=2 B.F+E﹣V=2 C.E+V﹣F=2 D.E﹣V﹣F=2二填空题6.简单多面体是各个面都是多边形组成的几何体,十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)和棱数(E)之间存在一个有趣的关系式,称为欧拉公式.如表是根据左边的多面体模型列出的不完整的表.现在有一个多面体,它的每一个面都是三角形,它的面数(F)和棱数(E)的和为30,则这个多面体的顶点数V=.7.阅读下面的材料:1750年欧拉在写给哥德巴赫的信中列举了多面体的一些性质,其中一条是,如果用V,E,F分别表示凸多面体的顶点数、棱数、面数,则有V﹣E+F=2.这个发现就是著名的欧拉定理.根据所阅读的材料,完成:一个多面体的面数为12,棱数是80,则其顶点数为.8.阅读下面的材料:1750年欧拉在写给哥德巴赫的信中列举了多面体的一些性质,其中一条是:如果用V,E,F分别表示凸多面体的顶点数、棱数、面数,则有V﹣E+F=2.这个发现,就是著名的欧拉定理.根据所阅读的材料,完成:一个多面体的面数为12,棱数是30,则其顶点数为.9.一个多面体的顶点数为12,棱数是30,则这个多面体的面数是.10.任意一个多面体,它的面数记为a,顶点数记为b,棱的条数记为c,则a,b,c三者之间的关系式为.11.n棱柱的面数+顶点数﹣棱数=.12.从每个顶点出发的所有棱长相等,所有面形状、大小完全相同的正多边形的几何体称为正多面体、其面数+顶点数﹣棱数=.13.如图,正四面体的顶点数(4)+面数(4)﹣棱数(6)=2,仔细观察后计算,正八面体的顶点数+面数﹣棱数=.14.瑞士著名数学家欧拉发现:简单多面体的顶点数V、面数F及棱数E之间满足一种有趣的关系:V+F﹣E=2,这个关系式被称为欧拉公式.比如:正二十面体(如右图),是由20个等边三角形所组成的正多面体,已知每个顶点处有5条棱,则可以通过欧拉公式算出正二十面体的顶点为个.那么一个多面体的每个面都是五边形,每个顶点引出的棱都有3条,它是一个面体.15.一个多面体的面数为6,棱数是12,则其顶点数为.16.十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(v)、面数(f)、棱数(e)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型:根据上面多面体模型,你发现顶点数(v)、面数(f)、棱数(e)之间存在的关系式是.17.正多面体共有五种,它们是、、、、,它们的面数f,棱数e、顶点数v满足关系式.18.图1(1)、(2)、(3)依次表示四面体、八面体、正方体.它们各自的面积数F、棱数E与顶点数V如下表,观察这些数据,可以发现F、E、V之间的关系满足等式:.三解答题19.十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格.(2)你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是.(3)一个多面体的面数与顶点数相同,且有12条棱,则这个多面体的面数是.20.图1至图3是将正方体截去一部分后得到的多面体.(1)根据要求将表格补充完整:(2)猜想f、v、e三个数量间有何关系;(3)根据猜想计算,若一个多面体有顶点数2018个,棱数4035条,试求出它的面数.21.观察下列多面体,并把下表补充完整.观察上表中的结果,你能发现a、b、c之间有什么关系吗?请写出发现的关系式.22.十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格,你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是.(2)一个多面体的面数比顶点数小8,且有30条棱,则这个多面体的面数是.(3)某个玻璃饰品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表面三角形的个数为x个,八边形的个数为y个,求x+y的值.23.观察下列多面体,并把如表补充完整.观察表中的结果,你能发现a、b、c之间有什么关系吗?请写出关系式.24.回答下列问题:(1)如图所示的甲、乙两个平面图形能折什么几何体?(2)由多个平面围成的几何体叫做多面体.若一个多面体的面数为f,顶点个数为v,棱数为e,分别计算第(1)题中两个多面体的f+v﹣e的值?你发现什么规律?(3)应用上述规律解决问题:一个多面体的顶点数比面数大8,且有50条棱,求这个几何体的面数.25.设棱锥的顶点数为V,面数为F,棱数为E.(1)观察与发现:三棱锥中,V3=,F3=,E3=;五棱锥中,V5=,F5=,E5=;(2)猜想:①十棱锥中,V10=,F10=,E10=;②n棱锥中,Vn=,Fn=,En=;(用含有n的式子表示)(3)探究:①棱锥的顶点数(V)与面数(F)之间的等量关系:;②棱锥的顶点数(V)、面数(F)、棱数(E)之间的等量关系:E=;(4)拓展:棱柱的顶点数(V)、面数(F)、棱数(E)之间是否也存在某种等量关系?若存在,试写出相应的等式;若不存在,请说明理由.26.如图1至图3是将正方体截去一部分后得到的多面体.(1)根据要求填写表格.(2)猜想f、v、e三个数量间有何关系;(3)根据猜想计算,若一个多面体有顶点数2018个,棱数4036条,试求出它的面数.27.十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式,请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格;你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是.(2)正十二面体有12个面,那它有条棱;(3)一个多面体的面数比顶点数小8,且有30条棱,则这多面体的顶点数是;(4)某个玻璃饰品的外形是简单多面体,它的外表是由三角形和八边形两种多边形拼接而成,且有48个顶点,每个顶点处都有3条棱,设该多面体表面三角形的个数为x个,八边形的个数为y个,求x+y 的值.28.十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格:(2)你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是.(3)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是.29.在对第一章“丰富的图形世界”复习前,老师让学生整理正方体截面的形状并探究多面体(由若干个多边形所围成的几何体)的棱数、面数、顶点数之间的数量关系,如图是小颖用平面截正方体后剩余的多面体,请解答下列问题:(1)根据上图完成下表.(2)猜想:一个多面体的V(顶点数),F(面数),E(棱数)之间的数量关系是;(3)计算:已知一个多面体有20个面、30条棱,那么这个多面体有个顶点.30.观察下列多面体,并把表补充完整.(1)完成表中的数据;(2)若某个棱柱由28个面构成,则这个棱柱为棱柱;(3)根据表中的规律判断,n棱柱共有个面,共有个顶点,共有条棱;(4)观察表中的结果,你发现棱柱顶点数、棱数、面数之间有什么关系吗?请直接写出来.初一数学图形认识初步棱、顶点、面间数量关系(欧拉公式)练习题参考答案与解析1.分析:根据正方体的概念和特性进行分析计算即解.解:正方体的顶点数v =8,棱数e =12,面数f =6.故f+v ﹣e =8+6﹣12=2.故选B .2.分析:根据欧拉公式,简单多面体的顶点数V 、面数F 及棱数E 间的关系为:V+F ﹣E =2,代入求出棱数.解:根据欧拉公式:V+F ﹣E =2,可得4+4﹣E =2,解得E =6.故选C .3.分析:根据长方体的概念和特性进行分析计算即解.解:长方体的顶点数v =8,棱数e =12,面数f =6.故v+e+f =8+12+6=26.故选A .4.分析:根据题意中的公式F+V ﹣E =2,将E ,V 代入即解.解:∵正多面体共有12条棱,6个顶点,∴E =12,V =6,∴F =2﹣V+E =2﹣6+12=8.故选B .5.分析:根据欧拉公式进行解答即可.解:凸多面体的面数F 、顶点数V 和棱数E 满足如下关系:V+F ﹣E =2,故选A .6.分析:直接利用V ,E ,F 分别表示凸多面体的顶点数、棱数、面数,欧拉公式为V ﹣E+F =2,求出答案.解:∵现在有一个多面体,它的每一个面都是三角形,它的面数(F )和棱数(E )的和为30,∴这个多面体的顶点数V =2+E ﹣F ,∵每一个面都是三角形,∴每相邻两条边重合为一条棱,∴E =23F ,∵E+F =30,∴F =12,∴E =18,∴V =,2+E ﹣F =8,故答案为8. 7.分析:直接利用欧拉公式V ﹣E+F =2,求出答案.解:∵用V ,E ,F 分别表示凸多面体的顶点数、棱数、面数,则有V ﹣E+F =2.∴V =E ﹣F+2,∵一个多面体的面数为12,棱数是80,∴其顶点数为:80﹣12+2=70.故答案为:70.8.分析:直接把面数、棱数代入公式,即可求得顶点数.解:由题意可得,V ﹣30+12=2,解得V =20.故答案为:209分析:根据常见几何体的结构特征进行判断.解:∵顶点数记为V ,棱数记为E ,面数记为F ,V+F ﹣E =2,∴12+F ﹣30=2,解得:F =20.故答案为:20.10.分析:简单多面体的顶点数V 、面数F 及棱数E 间的关系为:V+F ﹣E =2,这个公式叫欧拉公式.解:由欧拉公式可得:a+b ﹣c =2.故答案为:a+b ﹣c =2.11.分析:根据欧拉公式,得出正多面体的面数+顶点数﹣棱数的结果.解:从每个顶点出发的所有棱长相等,所有面形状、大小完全相同的正多边形的几何体称为正多面体,其面数+顶点数﹣棱数=2.故答案为:2.12.分析:根据欧拉公式,得出正多面体的面数+顶点数﹣棱数的结果.解:从每个顶点出发的所有棱长相等,所有面形状、大小完全相同的正多边形的几何体称为正多面体,其面数+顶点数﹣棱数=2.故答案为2.13.分析:只需分别找出正八面体的顶点数,面数和棱数即可.解:正八面体有6个顶点,12条棱,8个面.∴正八面体的顶点数+面数﹣棱数=6+8﹣12=2.故答案为:2.14.分析:①设出正二十面体的顶点为n 个,则棱有25n 条.利用欧拉公式构建方程即可解决问题.②设顶点数V ,棱数E ,面数F ,每个点属于三个面,每条边属于两个面,利用欧拉公式构建方程即可解决问题.解:①设出正二十面体的顶点为n 个,则棱有25n 条.由题意F =20,∴n+20﹣25n =2,解得n =12.②设顶点数V ,棱数E ,面数F ,每个点属于三个面,每条边属于两个面,由每个面都是五边形,则就有E =25F ,V =35F ,由欧拉公式:F+V ﹣E =2,代入:F+35F ﹣25F =2,化简整理:F =12,所以:E =30,V =20,即多面体是12面体.棱数是30,面数是12,故答案为12,12.15.分析:因为多面体的面数为6,棱数是12,故多面体为四棱柱.解:根据四棱柱的概念,有8个顶点.故答案为8.16.分析:先根据四面体、长方体、正八面体,正十二面体的顶点数、面数和棱数,总结出顶点数(v )、面数(f )、棱数(e )之间存在的关系式即可.解:四面体的顶点数为4、面数为4,棱数为6,则4+4﹣6=2;长方体的顶点数为8、面数为6,棱数为12,则8+6﹣12=2;正八面体的顶点数为6,面数为8,棱数为12,则8+6﹣12=2;则关系式为:v+f ﹣e =2;故答案为:v+f ﹣e =2.17.分析:根据正多面体的面是正三角形,正方形,正五边形三种情况写出即可;再根据欧拉公式进行解答.解:正多面体只能有五种,用正三角形做面的正四面体、正八面体,正二十面体,用正方形做面的正六面体,用正五边形做面的正十二面体.f+v ﹣e =2.18.分析:根据题给图形中各图具体的面积数F 、棱数E 与顶点数V ,即可得出答案.解:根据表中所列可知:四面体有4﹣6+4=2;八面体有8﹣12+6=2;正方体有6﹣12+8=2;故有F ﹣E+V =2.故答案为:F ﹣E+V =2.19.分析:(1)依据多面体模型,即可得到棱数和顶点数;(2)依据表格中的数据,即可得出顶点数(V)、面数(F)、棱数(E)之间存在的关系式;(3)依据欧拉公式进行计算,即可得到这个多面体的面数.解:(1)四面体的棱数为6;正八面体的顶点数为6;故答案为:6,6;(2)顶点数(V)、面数(F)、棱数(E)之间存在的关系式是V+F﹣E=2,故答案为:V+F﹣E=2;(3)设这个多面体的面数是x,则2x﹣12=2,解得x=7,这个多面体的面数是7,故答案为:7.20.分析:(1)根据图形数出即可.(2)根据(1)中结果得出f+v﹣e=2.(3)把数值代入f+v﹣e=2求出即可.解:(1)填表如下:故答案为:7,8,15.(2)f+v﹣e=2.(3)∵v=2018,e=4035,f+v ﹣e=2,∴f+2018﹣4035=2,解得f=2019.故它的面数是2019.21.分析:只要将各个图形的顶点数、棱数、面数数一下就行;数的时候要注意:图中不能直接看到的那一部分不要遗漏,也不要重复,可通过想象计数,正确填入表内,通过观察找出每个图中“顶点数、棱数、面数”之间隐藏着的数量关系,这个数量关系用公式表示出来即可.解:填表如下,观察表中的结果,能发现a、b、c之间有的关系是:a+c﹣b=2.22.分析:(1)观察可得顶点数+面数﹣棱数=2;(2)代入(1)中的式子即可得到面数;(3)得到多面体的棱数,求得面数即为x+y的值.解:(1)四面体的棱数为6;正八面体的顶点数为6;关系式为:V+F﹣E=2;(2)由题意得:F+8+F﹣30=2,解得F=12;(3)∵有24个顶点,每个顶点处都有3条棱,两点确定一条直线;∴共有24×3÷2=36条棱,那么24+F﹣36=2,解得F=14,∴x+y=14.故答案为:(1)6;6;V+F﹣E=2.(2)12;(3)14.23.分析:结合三棱柱、四棱柱和五棱柱的特点,即可填表,根据已知的面、顶点和棱与几棱柱的关系,可知n棱柱一定有(n+2)个面,2n个顶点和3n条棱,进而得出答案,利用前面的规律得出a,b,c之间的关系.解:填表如下,根据上表中的规律判断,若一个棱柱的底面多边形的边数为n,则它有n个侧面,共有n+2个面,共有2n个顶点,共有3n条棱;故a,b,c之间的关系:a+c﹣b=2.24.分析:(1)由长方体与五棱锥的折叠及长方体与五棱锥的展开图解题.(2)列出几何体的面数,顶点数及棱数直接进行计算即可;(3)设这个多面体的面数为x,根据顶点数+面数﹣棱数=2,列出方程即可求解.解:(1)图甲折叠后底面和侧面都是长方形,所以是长方体;图乙折叠后底面是五边形,侧面是三角形,实际上是五棱锥的展开图,所以是五棱锥.(2)甲:f=6,e=12,v=8,f+v ﹣e=2;乙:f=6,e=10,v=6,f+v﹣e=2;规律:顶点数+面数﹣棱数=2.(3)设这个多面体的面数为x,则x+x+8﹣50=2,解得x=22.25.分析:(1)观察与发现:根据三棱锥、五棱锥的特征填写即可;(2)猜想:①根据十棱锥的特征填写即可;②根据n棱锥的特征的特征填写即可;(3)探究:①通过列举得到棱锥的顶点数(V)与面数(F)之间的等量关系;②通过列举得到棱锥的顶点数(V)、面数(F)、棱数(E)之间的等量关系;(4)拓展:根据棱柱的特征得到棱柱的顶点数(V)、面数(F)、棱数(E)之间的等量关系.解:(1)观察与发现:三棱锥中,V3=4,F3=4,E3=6;五棱锥中,V5=6,F5=6,E5=10;(2)猜想:①十棱锥中,V10=11,F10=11,E10=20;②n棱锥中,Vn=n+1,Fn=n+1,En=2n;(用含有n的式子表示)(3)探究:①棱锥的顶点数(V)与面数(F)之间的等量关系:V =F;②棱锥的顶点数(V)、面数(F)、棱数(E)之间的等量关系:E=V+F﹣2;(4)拓展:棱柱的顶点数(V)、面数(F)、棱数(E)之间也存在某种等量关系,相应的等式是:V+F﹣E =2.故答案为:4,4,6;6,6,10;11,11,20;n+1,n+1,2n;V=F,V+F﹣2.26.分析:(1)根据图形数出即可.(2)根据(1)中结果得出f+v﹣e=2.(3)代入f+v﹣e =2求出即可.解:(1)题1,面数f=7,顶点数v=9,棱数e=14,题2,面数f=6,顶点数v=8,棱数e=12,题3,面数f=7,顶点数v=10,棱数e=15,故答案为:7,9,14.6,8,12,7,10,15.(2)f+v﹣e=2.(3)∵v=2018,e=4036,f+v﹣e=2,∴f+2018﹣4036=2,f=2020,即它的面数是2020.27.分析:(1)观察表格可以看出:顶点数+面数﹣棱数=2,关系式为:V+F﹣E=2;(2)根据题意得出是十二面体,得出顶点数;(3)代入(1)中公式进行计算;(4)根据欧拉公式可得顶点数+面数﹣棱数=2,然后表示出棱数,进而可得面数.解:(1)根据题意得:四面体的棱数为6,正八面体顶点数为6,∵4+4﹣6=2,8+6﹣12=2,6+8﹣12=2,∴顶点数(V)、面数(F)、棱数(E)之间存在的关系式是V+F﹣E=2;故答案为:V+F﹣E=2;(2)正十二面体有十二个面,每个面都是正五边形,它的每个顶点处都有相同数目的棱.则它有30条棱,20个顶点;故答案是:30;(3)由(1)可知:V+F﹣E=2,∵一个多面体的面数比顶点数小8,且有30条棱,∴V+V﹣8﹣30=2,即V=20,故答案是:20;(4)∵有48个顶点,每个顶点处都有3条棱,两点确定一条直线;∴共有48×3÷2=72条棱,设总面数为F,48+F﹣72=2,解得F=26,∴x+y=26.28.分析:(1)观察图形即可得出结论;(2)观察可得顶点数+面数﹣棱数=2;(3)代入(2)中的式子即可得到面数.解:(1)观察图形,四面体的棱数为6;正八面体的顶点数为6;正十二面体的面数为12;(2)观察表格可以看出:顶点数+面数﹣棱数=2,关系式为:V+F﹣E=2;(3)由题意得:F﹣8+F ﹣30=2,解得F=20.故答案为:(1)6,6,12;(2)V+F﹣E=2;(3)20.29.分析:(1)观察图形即可得出结论;(2)观察可得顶点数+面数﹣棱数=2;(3)代入(2)中的式子即可得到面数.解:(1)观察图形,多面体(1)的顶点数为10;多面体(3)的面数为5;多面体(5)的棱数为12;故答案为:10,5,12;(2)观察表格可以看出:顶点数+面数﹣棱数=2,即关系式为:V+F﹣E=2;故答案为:V+F﹣E=2;(3)由题意得:V+20﹣30=2,解得V=12.故答案为:12.30.分析:(1)结合三棱柱、四棱柱、五棱柱和六棱柱的特点,即可填表:(2)(3)根据已知的面、顶点和棱与几棱柱的关系,可知n棱柱一定有(n+2)个面,2n个顶点和3n条棱,进而得出答案;(4)利用前面的规律得出a,b,c之间的关系.解:(1)填表如下.(2)若某个棱柱由28个面构成,则这个棱柱为26棱柱;(3)根据表中的规律判断,n棱柱共有(n+2)个面,共有 2n个顶点,共有 3n条棱;(4)a,b,c之间的关系:a+c﹣b=2故答案为:8;15,18;7;26;(n+2),2n,3n.- 11 -。

七年级数学上册-考点训练:欧拉公式-课后练习

七年级数学上册-考点训练:欧拉公式-课后练习

【考点训练】欧拉公式-1一、选择题(共5小题)1.正方体的顶点数、面数和棱数分别是()A.8、6、12 B.6、8、12 C.8、12、6 D.6、8、102.一个棱柱有18条棱,那么它的底面一定是()A.十八边形B.八边形C.六边形D.四边形3.设长方体的顶点数为v,棱数为e,面数为f,则v+e+f等于()A.26 B.2C.14 D.104.一个直棱柱有12个顶点,那么它的面的个数是()A.10个B.9个C.8个D.7个5.正多面体的面数、棱数、顶点数之间存在着一个奇妙的关系,若用F,E,V分别表示正多面体的面数、棱数、顶点数,则有F+V﹣E=2,现有一个正多面体共有12条棱,6个顶点,则它的面数F等于()A.6B.8C.12 D.20二、填空题(共3小题)(除非特别说明,请填准确值)6.一个棱柱有18条棱,那么它的底面是_________边形.7.长方体有_________个面;有_________条棱.8.(2011?南海区模拟)十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(v)、面数(f )、棱数(e)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型:根据上面多面体模型,你发现顶点数(v)、面数(f )、棱数(e)之间存在的关系式是_________.三、解答题(共3小题)(选答题,不自动判卷)9.十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格:多面体顶点数(V)面数(F)棱数(E)四面体 4 4 _________长方体8 6 12正八面体_________8 12正十二面体20 12 30你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是_________.(2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是_________.(3)某个玻璃鉓品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表三角形的个数为x个,八边形的个数为y个,求x+y的值.10.(2010?宁波)十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格:多面体顶点数(V)面数(F)棱数(E)四面体 4 4长方体8 6 12正八面体8 12正十二面体20 12 30你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是_________.(2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是_________.(3)某个玻璃鉓品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表三角形的个数为x个,八边形的个数为y个,求x+y的值.11.(2009?凉山州)观察下列多面体,并把下表补充完整.观察上表中的结果,你能发现a、b、c之间有什么关系吗?请写出关系式.名称三棱柱四棱柱五棱柱六棱柱图形顶点数 a 6 10 12棱数b 9 12 15面数c 5 8【考点训练】欧拉公式-1参考答案与试题解析一、选择题(共5小题)1.正方体的顶点数、面数和棱数分别是()A.8、6、12 B.6、8、12 C.8、12、6 D.6、8、10考点:欧拉公式.分析:根据正方体有8个顶点,6个面,12条棱即可作答.解答:解:正方体的顶点数是8个,有6个面,棱有12条.故选A.点评:本题考查了正方体的知识,正方体有几个顶点、几个面、几条棱是需要我们熟练记忆的内容.2.一个棱柱有18条棱,那么它的底面一定是()A.十八边形B.八边形C.六边形D.四边形考点:欧拉公式.分析:根据欧拉公式简单多面体的顶点数V、面数F及棱数E间的关系是V+F﹣E=2,然后把棱数18代入进行讨论即可求解.解答:解:根据欧拉公式有:V+F﹣E=2,∵E=18,∴V+F=2+18=20,①当棱柱是四棱柱时,V=8,F=6,V+F=14,②当棱柱是五棱柱时,V=10,F=7,V+F=17,③当棱柱是六棱柱时,V=12,F=8,V+F=20,∴有18条棱的棱柱是六棱柱,它的底面是六边形.故选C.点评:考查了欧拉公式的应用,需要对棱柱的顶点数与面数的关系有全面的认识并熟记欧拉公式方可进行解答.3.设长方体的顶点数为v,棱数为e,面数为f,则v+e+f等于()A.26 B.2C.14 D.10考点:欧拉公式.专题:计算题.分析:根据长方体的概念和特性进行分析计算即解.解答:解:长方体的顶点数v=8,棱数e=12,面数f=6.故v+e+f=8+12+6=26.故选A.点评:解决本题的关键是明白长方体的构造特征为:长方体有6个面,8个顶点,12条棱.4.一个直棱柱有12个顶点,那么它的面的个数是()A.10个B.9个C.8个D.7个考点:欧拉公式.分析:一个直棱柱有12个顶点,说明它的上下底面是两个六边形,从而可以确定它的面的个数.解答:解:直棱柱有12个顶点,一定是六棱柱,所以它的面的个数是8个.故选C.点评:n棱柱有2n个顶点,有(n+2)个面,有3n条棱.5.正多面体的面数、棱数、顶点数之间存在着一个奇妙的关系,若用F,E,V分别表示正多面体的面数、棱数、顶点数,则有F+V﹣E=2,现有一个正多面体共有12条棱,6个顶点,则它的面数F等于()A.6B.8C.12 D.20考点:欧拉公式.专题:计算题.分析:根据题意中的公式F+V﹣E=2,将E,V代入即解.解答:解:∵正多面体共有12条棱∴E=6∴F=2﹣V+E=2﹣6+12=8.故选B.点评:解决本题的关键是正确的审题,合理利用题目中给出的公式解答.二、填空题(共3小题)(除非特别说明,请填准确值)6.一个棱柱有18条棱,那么它的底面是六边形.考点:欧拉公式.分析:根据欧拉公式简单多面体的顶点数V、面数F及棱数E间的关系是V+F﹣E=2,然后把棱数18代入进行讨论即可求解.解答:解:根据欧拉公式有:V+F﹣E=2,∵E=18,∴V+F=2+18=20,①当棱柱是四棱柱时,V=8,F=6,V+F=14,②当棱柱是五棱柱时,V=10,F=7,V+F=17,③当棱柱是六棱柱时,V=12,F=8,V+F=20,∴有18条棱的棱柱是六棱柱,它的底面是六边形.故答案为:六.点评:本题考查了欧拉公式的应用,需要对棱柱的顶点数与面数的关系有全面的认识并熟记欧拉公式方可进行解答.7.长方体有6个面;有12条棱.考点:欧拉公式.分析:根据长方体属于四棱柱,结合四棱柱的特征进行填空.解答:解:长方体有6个面;有12条棱.故答案为6、12.点评:n棱柱有2n个顶点,有(n+2)个面,有3n条棱.8.(2011?南海区模拟)十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(v)、面数(f )、棱数(e)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型:根据上面多面体模型,你发现顶点数(v)、面数(f )、棱数(e)之间存在的关系式是v+f﹣e=2.考点:欧拉公式.分析:先根据四面体、长方体、正八面体,正十二面体的顶点数、面数和棱数,总结出顶点数(v)、面数(f )、棱数(e)之间存在的关系式即可.解答:解:四面体的顶点数为4、面数为4,棱数为6,则4+4﹣6=2;长方体的顶点数为8、面数为6,棱数为12,则8+6﹣12=2;正八面体的顶点数为6,面数为8,棱数为12,则8+6﹣12=2;则关系式为:v+f﹣e=2;故答案为v+f﹣e=2.点评:本题考是一个找规律的题目,查了欧拉公式,由特殊到一般的思想在数学教学中常用到.三、解答题(共3小题)(选答题,不自动判卷)9.十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格:多面体顶点数(V)面数(F)棱数(E)四面体 4 4 6长方体8 6 12正八面体68 12正十二面体20 12 30你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是V+F﹣E=2.(2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是20.(3)某个玻璃鉓品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表三角形的个数为x个,八边形的个数为y个,求x+y的值.考点:欧拉公式.专题:压轴题;图表型.分析:(1)观察可得顶点数+面数﹣棱数=2;(2)代入(1)中的式子即可得到面数;(3)得到多面体的棱数,求得面数即为x+y的值.解答:解:(1)四面体的棱数为6;正八面体的顶点数为6;关系式为:V+F﹣E=2;(2)由题意得:F﹣8+F﹣30=2,解得F=20;(3)∵有24个顶点,每个顶点处都有3条棱,两点确定一条直线;∴共有24×3÷2=36条棱,那么24+F﹣36=2,解得F=14,∴x+y=14.故答案为:6,6;E=V+F﹣2;20;14.点评:本题考查多面体的顶点数,面数,棱数之间的关系及灵活运用.10.(2010?宁波)十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格:多面体顶点数(V)面数(F)棱数(E)四面体 4 4长方体8 6 12正八面体8 12正十二面体20 12 30你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是V+F﹣E=2.(2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是20.(3)某个玻璃鉓品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表三角形的个数为x个,八边形的个数为y个,求x+y的值.考点:欧拉公式.专题:压轴题.分析:(1)观察可得顶点数+面数﹣棱数=2;(2)代入(1)中的式子即可得到面数;(3)得到多面体的棱数,求得面数即为x+y的值.解答:解:(1)四面体的棱数为6;正八面体的顶点数为6;关系式为:V+F﹣E=2;多面体顶点数(V)面数(F)棱数(E)四面体 4 4 6长方体8 6 12正八面体 6 8 12正十二面体20 12 30(2)由题意得:F﹣8+F﹣30=2,解得F=20;(3)∵有24个顶点,每个顶点处都有3条棱,两点确定一条直线;∴共有24×3÷2=36条棱,那么24+F﹣36=2,解得F=14,∴x+y=14.点评:本题考查多面体的顶点数,面数,棱数之间的关系及灵活运用.11.(2009?凉山州)观察下列多面体,并把下表补充完整.观察上表中的结果,你能发现a、b、c之间有什么关系吗?请写出关系式.名称三棱柱四棱柱五棱柱六棱柱图形顶点数 a 6 10 12棱数b 9 12 15面数c 5 8考点:欧拉公式.专题:图表型.分析:三棱柱的顶点数为:3×2=6,棱数为:3×3=9,面数为:2+3=5;四棱柱的顶点数为:4×2=8,棱数为:4×3=12,面数为:2+4=6;五棱柱的顶点数为:5×2=10,棱数为:5×3=15,面数为:2+5=7;六棱柱的顶点数为:6×2=12,棱数为:6×3=18,面数为:2+6=8.∴a+c﹣b=2.解答:解:规律为a+c﹣b=2.名称三棱柱四棱柱五棱柱六棱柱图形顶点数 a 6 8 10 12棱数 b 9 12 15 18面数 c 5 6 7 8点评:可先由简单图形得到解决问题的方法.。

欧拉图练习题(打印版)

欧拉图练习题(打印版)

欧拉图练习题(打印版)# 欧拉图练习题(打印版)## 一、选择题1. 在图论中,欧拉图是指存在一条欧拉路径的图,即:A. 所有顶点都至少被访问一次B. 所有边都至少被访问一次C. 所有顶点和边都被恰好访问一次D. 所有顶点和边都被至少访问一次2. 欧拉图的判定条件是:A. 图中至少有两个奇数度顶点B. 图中所有顶点的度都是偶数C. 图中至少有一个奇数度顶点D. 图中所有顶点的度都是奇数3. 下列哪个图不是欧拉图:A. 完全图B. 树形图C. 环形图D. 星形图## 二、简答题1. 解释什么是欧拉回路,并给出一个例子。

2. 描述如何判断一个图是否是欧拉图,并给出一个例子。

## 三、应用题1. 给定一个图,顶点集为 {A, B, C, D, E},边集为 {AB, AC, AD, BC, BD, CD}。

判断这个图是否是欧拉图,并解释原因。

2. 假设你有一个由城市组成的图,每条边代表两个城市之间的道路。

如果存在一条路线,使得你可以访问每个城市恰好一次,最后返回起点,这样的图被称为欧拉图。

现在你有一个由5个城市组成的图,顶点集为 {X, Y, Z, W, V},边集为 {XY, YZ, ZW, WZ, WV, VX}。

请找出一条欧拉路径,并说明为什么这个图是欧拉图。

## 四、证明题1. 证明:如果一个图是欧拉图,那么它一定有一个欧拉回路。

2. 证明:如果一个图的所有顶点的度都是偶数,那么它是一个欧拉图。

## 五、开放性问题1. 在现实世界中,欧拉图的概念可以应用于哪些场景?请给出至少两个例子,并简要说明如何应用。

2. 讨论欧拉图与哈密顿图的区别,并给出一个例子来说明它们之间的不同。

注意:请在答题纸上按照题目顺序作答,保持字迹清晰,排版整洁。

祝你答题愉快!。

欧拉公式(详细解析考点分析名师点评)

欧拉公式(详细解析考点分析名师点评)

一、选择题(共7小题)1、一个直棱柱有12个顶点,那么它的面的个数是()A、10个B、9个C、8个D、7个2、正多面体的面数、棱数、顶点数之间存在着一个奇妙的关系,若用F,E,V分别表示正多面体的面数、棱数、顶点数,则有F+V﹣E=2,现有一个正多面体共有12条棱,6个顶点,则它的面数F等于()A、6B、8C、12D、203、正四面体的顶点数和棱数分别是()A、3,4B、3,6C、4,4D、4,64、设长方体的顶点数为v,棱数为e,面数为f,则v+e+f等于()A、26B、2C、14D、105、一个多面体的顶点数为v,棱数为e,面数为f,下列4种情况中肯定不会出现的情况是()A、v,e,f都是奇数B、v,e,f都是偶数C、v,e,f中两奇一偶D、v,e,f中两偶一奇6、一个棱柱有18条棱,那么它的底面一定是()A、十八边形B、八边形C、六边形D、四边形7、在下列结论中,错误的是()A、棱柱的侧面数与侧棱数相同B、棱柱的棱数一定是3的倍数C、棱柱的面数一定是奇数D、棱柱的顶点一定是偶数二、填空题(共10小题)8、一个五棱柱有个_________面,_________条棱,_________个顶点.9、伟大的数学家欧拉发现并证明的关于一个多面体的顶点(V)、棱数(E)、面数(F)之间关系的公式为_________.10、长方体由_________个面_________条棱_________个顶点.11、正方体或长方体是一个立体图形,它是由_________个面,_________条棱,_________个顶点组成的.12、六棱柱有_________个顶点,_________条棱,_________个面.13、长方体有_________个顶点,_________条棱,_________个面.14、一个多面体有12条棱,6个顶点,则这个多面体是_________面体.15、一个多面体的面数为6,棱数是12,则其顶点数为_________.16、一个直棱柱有7个面,则它有_________个顶点,_________条棱,表面上至少有_________个直角.17、长方体有_________个面;有_________条棱.三、解答题(共13小题)18、观察下列多面体,并把下表补充完整.观察上表中的结果,你能发现a、b、c之间有什么关系吗?请写出关系式.名称三棱柱四棱柱五棱柱六棱柱图形顶点数a 6 10 12棱数b 9 12 15面数c 5 819、下列图形中,图(a)是正方体木块,把它切去一块,得到如图(b)(c)(d)(e)的木块.图号顶点数x 棱数y 面数z(a)8 12 6(b)(c)(d)(e)(1)我们知道,图(a)的正方体木块有8个顶点、12条棱、6个面,请你将图(b)、(c)、(d)、(e)中木块的顶点数、棱数、面数填入下表;(2)上表,各种木块的顶点数、棱数、面数之间的数量关系可以归纳出一定的规律,请你试写出顶点数x、棱数y、面数z之间的数量关系式.20、(1)图①是正方体木块,把它切去一块,可能得到形如图②、③、④、⑤的木块.我们知道,图①的正方体木块有8个顶点,12条棱,6个面,请你将图②、③、④、⑤中木块的顶点数、棱数、面数填人下表:(2)观察此表,请你归纳上述各种木块的顶点数、棱数、面数之间的数虽关系是:_________.(3)图⑥是用虚线画出的正方体木块,请你想象一种与图②~⑤不同的切法,把切去一块后得到的那一块的每条棱都改画成实线,则该木块的顶点数为_________,棱数为_________,面数为_________.21、如图,左面的几何体叫三棱柱,它有五个面,9条棱,6个顶点,中间和右边的几何体分别是四棱柱和五棱柱.(1)四棱柱有_________个顶点,_________条棱,_________个面;(2)五棱柱有_________个顶点,_________条棱,_________个面;(3)你能由此猜出,六棱柱、七棱柱各有几个顶点,几条棱,几个面吗?(4)n棱柱有几个顶点,几条棱,几个面吗?22、是否存在一个有10个面、24条棱和18个顶点构成的棱柱?若存在,请指出是几棱柱;如果不存在,请说明理由.23、每四年一次的世界杯足球赛吸引了众多的球迷,实际上国际足联规定的足球是由一块块正五边形、正六边形的皮缝制而成的.若将之视作一个多面体,则它的面数f、棱数e、顶点v之间存在着一个关系式f+v﹣e=2,若已知棱数为48,顶点数为24,则面数必为多少?24、已知一个多面体的各个面都是五边形,你能运用欧拉公式证明这个多面体的顶点数V,棱数E,面数F之间有2V=3F+4的关系吗?试试看吧!25、“每四年一次的世界杯足球赛吸引了众多的球迷,今年的世界杯西班牙队夺冠,不仅仅成就了西班牙足球的全新高度,也是足球世界的大事.自1998年以来,12年里,世界足坛再没有迎来新的霸主.此前,夺取过世界杯冠军的球队只有7支:巴西五次加冕(1958年、1962年、1970年、1994年、2002年)、意大利四次称雄(1934年、1938年、1982年、2006年)、德国三次登顶(1954年、1974年、1990年),阿根廷两次抡元(1978年、1986年),乌拉圭两次夺冠(1930年、1950年),法国(1998年)、英格兰(1966年)各自夺冠一次.如今,西班牙光荣的成为历史上第八支世界杯冠军球队.这意味着,世界杯的历史已被突破!”实际上国际足联规定的足球是由一块块正五边形、正六边形的皮缝制而成的.若将之视作一个多面体,则它的面数f、棱数e、顶点v之间存在着一个关系式f+v﹣e=2,若已知棱数为48,顶点数为24,则面数必为多少?26、仔细观察下面的正四面体、正六面体、正八面体,解决下列问题:(1)填空:①正四面体的顶点数V=_________,面数F=_________,棱数E= _________.②正六面体的顶点数V=_________,面数F=_________,棱数E=_________.③正八面体的顶点数V=_________,面数F=_________,棱数E=_________.(2)若将多面体的顶点数用V表示,面数用F表示,棱数用E表示,则V、F、E之间的数量关系可用一个公式来表示,这就是著名的欧拉公式,请写出欧拉公式:_________.(3)如果一个多面体的棱数为30,顶点数为20,那么它有多少个面?27、(1)三棱锥有6条棱,4个面,四棱锥有_________条棱,_________个面;(2)_________棱锥有30条棱;(3)有没有一个多棱锥,其棱数是2006,若有求出有多少个面;若没有,说明理由.28、根据多面体顶点数(V)、面数(F)和棱数(E)之间的关系(V+F﹣E=2),判断是否存在满足以下条件的多面体.(1)4个顶点,4个面,8条棱;(2)14个顶点,9个面,21个棱.29、多面体顶点数(V)面数(F)棱数(E)四面体 4 4 _________长方体8 _________12正八面体_________ 8 12正十二面体20 12 30…18世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格,你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是_________.(2)一个多面体的面数与顶点数相等,有12条棱,这个多面体是_________面体.30、新年晚会,是我们最欢乐的时候.会场上,悬挂着五彩缤纷的小装饰,其中有各种各样的立体图形.(1)数一下每一个多面体具有的顶点数(V)、棱数(E)和面数(F),并且把结果记入表多面体顶点数(V)面数(F)棱数(E)正四面体 4 4 6正方体正八面体正十二面体正二十面体12 20 30(2)观察表中数据,猜想多面体的顶点数(V)、棱数(E)和面数(F)之间的关系.(3)伟大的数学家欧拉(Euler 1707﹣1783)证明了这一令人惊叹的关系式,即欧拉公式.若已知一个多面体的顶点数V=196,棱的条数E=294.请你用欧拉公式求这个多面体的面数.。

欧拉计划1_50题中文

欧拉计划1_50题中文

欧拉计划1.10以下的自然数中,属于3和5的倍数的有3,5,6和9,它们之和是23。

找出1000以下的自然数中,属于3和5的倍数的数字之和。

public class Test1 {public static void main(String[] args) {beishu();}public static void beishu(){int sum = 0;for(int i = 3; i < 1000; i++){if(i % 3 == 0||i % 5 ==0){sum += i;}}System.out.println("1000以内3和5所有的倍数的和为:" + sum);}}2. 斐波那契数列中的每一项被定义为前两项之和。

从1和2开始,斐波那契数列的前十项为: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...public class Test2 {public static void main(String[] args) {int i = 1, j = 2,sum = 0;while(i < 4000000 && j < 4000000){if(j % 2 ==0)sum += j;i = i + j;if(i % 2 == 0)sum += i;j = i + j;}System.out.println(sum);}}考虑斐波那契数列中数值不超过4百万的项,找出这些项中偶数项之和。

3. 13195的质数因子有5,7,13和29。

600851475143的最大质数因子是多少?4. 一个回文数指的是从左向右和左右向左读都一样的数字。

最大的由两个两位数乘积构成的回文数是9009 = 91 * 99。

找出最大的由两个三位数乘积构成的回文数。

5. 2520是最小的能被1-10中每个数字整除的正整数。

最小的能被1-20中每个数整除的正整数是多少?6. 前十个自然数的平方和是:12 + 22 + ... + 102 = 385前十个自然数的和的平方是:(1 + 2 + ... + 10)2 = 552 = 3025所以平方和与和的平方的差是3025—385 = 2640。

逻辑学欧拉图形练习题

逻辑学欧拉图形练习题

逻辑学欧拉图形练习题2.已知a与b交叉,b与c交叉,a与c全异.请用欧拉图表示a、b.c、这三个概念之间的关系.3.请用欧拉图表示句子中画横线概念外延之间的关系。

“地球是行星,水星也是行星.”4.设S与P交叉,M真包含于S,用欧拉图表示S、M 和P之间的三种外延关系。

5.A.足球爱好者B.排球爱好者C.蓝球爱好者D.青年足球爱好者 ?6.动物园、动物、人、机器人8.人民、人民法院、司法机关表解题:1.请列出相容选言判断、充分条件假言判断、必要条件假言判断的真值表。

2.运用真值表判定A、B、C三个判断之间是否是等值关系 A:并非只有小李去,小王才去。

B:并非小李去或小王不去。

C.小李不去但小王去“小李去”为p,“小王去’为q。

则: A:p?qB :p?C:?q结论.A、B、c三个判断之间是等值关系。

3.用真值表判定A和B两个判断之间是否具有等值关系。

A.并非如果背熟了逻辑规则,就能解决逻辑问题。

B.背熟了逻辑规则,但不能解决逻辑问题。

A的逻辑形式为: B的逻辑形式为:代入真值表判定二者是否具有等值关系:以上真值表的情况表明。

A的逻辑形式 B的逻辑形式为:p代入真值表判定二者是否具有等值关系:以上真值表的情况表明两判断是等值判断。

.运用真值表判定A、B三个判断之间是否是等值关系 A:并非只有小王读一中,小张才读二中。

B.小王不读一中但小张读二中。

设:“小王读一中”为p,“小张读二中’为q:则:A: B:?q个判断之间是等值。

5.列出联言判断、相容选言判断和必要条件假言判断的真值表。

《逻辑学》模拟试题及参考答案一、填空题和2、表示对象不具有某种本质属性的概念,称为3、由“p??q”为假,可知p为,q为。

、对一真值形式的判定,就是确定它属于还是。

5、直言命题的和通称为词项。

6、一个直言命题的谓项周延,其质是。

7、如果把“新闻系毕业的学生不都当记者”整理成I 命题,则其谓项是。

8、如果SOP为假,则S与P的外延间具有9、“地球磁场发生磁暴的周期性经常与太阳黑子的周期性一致。

欧拉函数(汇总例题)

欧拉函数(汇总例题)

欧拉函数(汇总例题)定义欧拉函数φ(n)表⽰⼩于等于n的正整数中与n互质的数的数⽬。

性质1、积性函数()。

2、φ(1)=1(显然)3、对于质数n,φ(n)=n−1(显然)4、对于质数的幂n=p k(其中p为质数,k为正整数),φ(n)=p k−1⋅(p−1)证明:归纳法,在k=1时显然成⽴,假设当k为k−1时成⽴,那么对于将1,2,...p k中每⼀个数表⽰为x⋅p k−1+d,其中0≤x<p,1≤d≤p k−1,若某⼀个数对φ(n=p k)有贡献,则其d的部分⼀定不含质因⼦p,因⽽⼀定对φ(p k−1)有贡献,所以,恰好每⼀个对φ(p k−1)有贡献的数都会对φ(p k)有p次贡献,所以有φ(p k)=φ(p k−1)×p=p k−2×(p−1)×p=p k−1×(p−1),得证。

计算不妨设n=∏p t ii,其中p i是质数,t i为正整数。

则有φ(n)=n∏p i−1p i。

特别的,φ(1)=1。

证明的话,利⽤积性函数的性质和性质四组合即可证明。

反演利⽤欧拉函数本⾝定义和其⼀条重要性质n=∑d|nφ(d)(其证明涉及到了我的知识盲区)在莫⽐乌斯反演中,我们常利⽤莫⽐乌斯函数的性质把n ∑x=1n∑y=1[gcd(x,y)=1]转化为n ∑x=1n∑y=1∑d|x,d|yµ(d)然后进⼀步改变枚举项那么类似的,我们也可以利⽤欧拉函数的定义将其转化n ∑x=1n∑y=1[gcd(x,y)=1]⇒2(n∑i=1φ(i))−1这⾥两道利⽤欧拉函数进⾏反演的例题1、T组数据,给定n求n∑x=1n∑y=1φ(gcd(x,y)),(T≤5000,n≤107)和上⽂的⽅法类似n ∑x=1n∑y=1φ(gcd(x,y))⇓n∑d=1φ(d)⌊nd⌋∑x=1⌊nd⌋∑y=1[gcd(x,y)=1]⇓n∑d=1φ(d)(2(⌊nd⌋∑i=1φ(i))−1)这样只需要对前半部分数论分块,对后半部分线性筛预处理前缀和即可。

欧拉方程求解微分方程例题

欧拉方程求解微分方程例题

欧拉方程求解微分方程例题
欧拉方程求解微分方程是数学中常用的一种方法,用来求解常微分方程的解。

它是以著名的数学家埃及尔·欧拉(Leonhard Euler)命名的,他是18世纪末期和19世纪初期
最有影响力的数学家之
一。

欧拉方程求解微分方程的基本思想是,令微分方程的右边变为
0,然后解得相应的解。

欧拉方程求解微分方程的步骤如下:首先,将微分方程写成一阶形式,即把微分方程变形为y'=f(x,y)的形式,其中f(x,y)是一个已知函数。

然后,令f(x,y)=
0,得到新的微分方程,再用常规方法求解这个新的微分方程,即求解y'=0的微分方程,得到y=C1的解,其中C1是一个常数。

最后,再把y=C1的解代入原微分方程,得到解析解y=C1+C2x,其中C2也是一个常数,它可以由C1求得。

以下是一个关于欧拉方程求解微分方程的具体例题:求解如下微分方程:y'+2y=x首先,将微分方程变形为y'=f(x,y)的形式,即:y'=x-2y然后,令f(x,y)=
0,得到新的微分方程:x-2y=0
求解这个新的微分方程,得到y=C1的解,其中C1是一
个常数。

最后,将y=C1的解代入原微分方程,得到解析解:
y=C1+C2x其中C2也是一个常数,它可以由C1求得。

以上就是欧拉方程求解微分方程的具体步骤,它是一种非常实用的数学方法,在工程、物理等多个领域都得到广泛应用。

欧拉方程求解微分方程的步骤虽然简单,但它能够为我们提供一种很有效的求解常微分方程的方法,从而节省大量的时间和精力。

欧拉方程例题范文

欧拉方程例题范文

欧拉方程例题范文欧拉方程是数学中的一类特殊微分方程,通常形式为:F(x,y,y',y'',...,y^(n))=0其中,F是关于自变量x和依赖变量y及其导数y',y'',...,y^(n)的函数。

这个方程不仅在数学分析中具有重要地位,而且在物理学、工程学和经济学中也有广泛的应用。

为了更好地理解欧拉方程,我们来看一个例子:求解欧拉方程y^(4)-y''-2y=0。

首先,我们将这个方程转换为标准形式。

设y=x^r为方程的解,其中r为常数。

利用导数的定义,我们有:y' = rx^(r-1)y''=r(r-1)x^(r-2)y'''=r(r-1)(r-2)x^(r-3)y^(4)=r(r-1)(r-2)(r-3)x^(r-4)将以上导数代入方程中,我们得到:r(r-1)(r-2)(r-3)x^(r-4)-r(r-1)x^(r-2)-2x^r=0化简得:r(r-1)(r^2-4r+3)x^(r-4)-r(r-1)x^(r-2)-2x^r=0进一步整理得:r(r-1)(r^2-4r+3)x^(r-4)-r(r-1)x^r-2x^r=0将x^(r-4)提取出来,得:x^(r-4)[r(r-1)(r^2-4r+3)-r(r-1)-2]=0由于x^(r-4)不为零,则方程化为:r(r-1)(r^2-4r+3)-r(r-1)-2=0整理得:r^4-4r^3+3r^2-2=0这是一个关于r的代数方程,我们可以使用一些代数方法求解,得到r的四个根。

通过求解代数方程,我们求得r的四个根为1、1/2、-1、-2、这四个根构成了方程的一般解:y=C1x+C2x^(1/2)+C3e^(-x)+C4e^(-2x)其中,C1、C2、C3和C4是任意常数,代表了方程的待定系数。

这就是欧拉方程y^(4)-y''-2y=0的一般解。

欧拉公式计算

欧拉公式计算

欧拉公式计算【原创版】目录1.欧拉公式的概述2.欧拉公式的计算方法3.欧拉公式的应用案例4.总结正文1.欧拉公式的概述欧拉公式,又称欧拉恒等式,是由瑞士数学家欧拉在 18 世纪提出的一个数学公式。

该公式在数学领域具有极高的地位,被认为是数学中最美丽的公式之一。

欧拉公式的表述为:e^(ix) = cos(x) + i*sin(x),其中e 是自然对数的底数,i 是虚数单位,x 是实数。

2.欧拉公式的计算方法欧拉公式的推导过程相对简单。

首先,将复数指数函数 e^(ix) 按照欧拉公式展开,得到:e^(ix) = (cos(x) + i*sin(x)) * e^(ix)。

接着,两边取自然对数,得到:ln(e^(ix)) = ln(cos(x) + i*sin(x))。

由于ln(e^x) = x,所以 ln(e^(ix)) = ix。

将这个结果带回原式,得到:ix = ln(cos(x) + i*sin(x))。

最后,两边求指数,得到:e^(ix) = cos(x) + i*sin(x)。

3.欧拉公式的应用案例欧拉公式在数学、物理等科学领域具有广泛的应用。

以下是一个简单的应用案例:假设我们要求解函数 f(x) = e^(ix) 在 x = π/4处的函数值。

根据欧拉公式,我们可以直接将x = π/4代入公式,得到:f(π/4) = e^(i*π/4) = cos(π/4) + i*sin(π/4) = √2/2 + √2/2 * i。

4.总结欧拉公式是一个在数学领域具有重要意义的公式,它将复数指数函数与三角函数联系起来,展现了数学的统一性和美妙性。

欧拉函数及应用 Word版含解析

欧拉函数及应用 Word版含解析

欧拉函数的基本性质与应用一.基本原理1.定义:欧拉函数()m ϕ是一个定义在正整数集上的函数,()m ϕ的值等于1,2,,1m -中与m 互素的数的个数.2.计算公式:(1)若p 为素数,则1)(-=p p ϕ(2)若p 为素数,且1)1(1)(--=-⋅=⇒=k kk p p pp p n p n ϕ,形成了一个等比数列. 证明:即证1)(--=a a a pp p ϕ.由)(a ϕ的定义知)(ap ϕ等于从ap 减去ap ,,...1中与ap 不互质的数的个数;亦即等于从ap 减去a p ,,...1中与p 不互质的数的个数.由于p 是质数,故)(a p ϕ等于从ap 减去a p ,,...1中被p 整除的数的个数.由于a p ,,...1中被p 整除的数的个数是1-=⎥⎦⎤⎢⎣⎡a a p p p ,故1)(--=a a a p p p ϕ. (3)已知正整数n 的素因数分解式1212,s s n p p p ααα=其中素数12s p p p <<<, 1.i α≥证明:12111()(1)(1)(1).sn n p p p ϕ=---二.典例分析例1.若正整数m 、n 只有1为公约数,则称m 、n 互质.对于正整数n ,()n ϕ是小于或等于n 的正整数中与n 互质的数的个数.函数()n ϕ以其首名研究者欧拉命名,称为欧拉函数,例如:()32ϕ=,()76ϕ=,()96ϕ=,则下列说法正确的是( )A .()127ϕ=B .数列(){}3nϕ是等差数列C .()977log 79log 6ϕ=+ D .数列()2nnϕ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和为n S ,则4n S < 解析:对于A 选项,在不超过12的正整数中,与12互质的正整数有:1、5、7、11,故()412ϕ=,A 错;对于B 选项,因为()32ϕ=,()96ϕ=,()2718ϕ=,显然()3ϕ、()9ϕ、()27ϕ不成等差数列,B 错;或者用上面公式:132)311(3)3(-⋅=-⋅=n nnϕ,显然不是等差数列.对于C 选项,7为质数,在不超过97的所有正整数中,能被7整除的正整数的个数为87, 所有与97互质的正整数的个数为9877-,所以,()()9988877777167ϕ=-=-=⨯,因此,()()98777log 7log 678log 6ϕ=⨯=+,C 错;或者用上面公式:89976)711(7)7(⋅=-⋅=ϕ,因此,()()98777log 7log 678log 6ϕ=⨯=+,C 错;对于D 选项,因为2为质数,在不超过2n 的正整数中,所有偶数的个数为12n -,所以,()112222n n n n ϕ--=-=,所以,()122n nn n ϕ-=,则01211232222n n nS -++++=, 所以,121112122222n n nn nS --=++++,上述两个不等式作差可得2111111122121222222212n n n n n nn n n S --+=++++-=-=--,所以,12442n n n S -+=-<,D 对. 或者:若1)1(1)(--=-⋅=⇒=k kkp p pp p n p n ϕ,形成了一个等比数列.故选D. 例2.在数学和许多分支中都能见到很多以瑞士数学家欧拉命名的常数、公式和定理,如:欧拉函数)(n ϕ(n N *∈)的函数值等于所有不超过正整数n 且与n 互素的正整数的个数,(互素是指两个整数的公约数只有1),例如:()11ϕ=;()32ϕ=(与3互素有1、2);()96ϕ=(与9互素有1、2、4、5、7、8).记n S 为数列(){}3nn ϕ⋅的前n 项和,则10S =( )A .10191322⨯+ B .10211322⨯+ C .11193344⨯+ D .11211344⨯+ 解析:因为与3n 互素的数为1,2,4,5,7,8,10,11,,31n -,共有123n -⨯,所以()1323n n ϕ-=⨯,则()1323n n n n ϕ-⋅=⨯,于是012123436323n n S n -=⨯+⨯+⨯++⨯①,1232343n S =⨯+⨯+36323n n ⨯++⨯②,由①-②得0121132********2322313nn nn n S n n ---=⨯+⨯+⨯++⨯-⨯=⋅-⨯-,则211322n n n S -=⋅+.于是1010191322S =⨯+.故选:A . 例3.若正整数m ,n 只有1为公约数,则称m ,n 互质,对于正整数k ,()k ϕ是不大于k 的正整数中与k 互质的数的个数,函数()k ϕ以其首名研究者欧拉命名,称为欧拉函数,例如:()21ϕ=,()32ϕ=,()62ϕ=,()84ϕ=.已知欧拉函数是积性函数,即如果m ,n 互质,那么()()()mn m n ϕϕϕ=,例如:()()()623ϕϕϕ=,则( ) A .()()58ϕϕ=B .数列(){}2nϕ是等比数列C .数列(){}6nϕ不是递增数列D .数列()6nn ϕ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和小于1825 解析:()54ϕ=,()84ϕ=,∴()()58ϕϕ=,A 对;∵2为质数,∴在不超过2n 的正整数中,所有偶数的个数为12n -,∴()112222nnn n ϕ--=-=为等比数列,B 对;∵与3n 互质的数为1,2,4,5,7,8,10,11,…,32n -,31n -.共有()1131323n n ---⋅=⋅个,∴()1323n n ϕ-=⋅,又∵()()()162326n n n n ϕϕϕ-==⋅,∴(){}6n ϕ是递增数列,故C 错误;()1626nn ϕ-=⋅,()6n n ϕ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和为n S 设01112262626n n n S -=++⋅⋅⋅+⨯⨯⨯,则121116262626nnn S =++⋅⋅⋅+⨯⨯⨯,012215111162626262626n n nn S -=+++⋅⋅⋅+-⨯⨯⨯⨯⨯ 所以01215111162626262626n n nnS -=+++⋅⋅⋅++⨯⨯⨯⨯⨯,1115332616265562616nn n n nn nS ⎛⎫⨯- ⎪⎝⎭=-=--⨯⨯⨯-,所以1818318252565625nn n n S =--≤⨯⨯, 所以数列()6n n ϕ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和小于1825,故D 正确. 故选:ABD. 三.习题演练1.对于正整数(),n n ϕ是小于或等于n 的正整数中与n 互质的数的数目.函数()n ϕ以其首名研究者欧拉命名,称为欧拉函数,例如()96ϕ=,则( )A .()777log 75log 6ϕ=+ B .数列(){}3n ϕ为等比数列 C .数列(){}n ϕ不单调 D .数列()2nnϕ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和恒小于4 解析:因为7为质数,所以与77不互质的数为7,14,21,…,77,共有76777=个,所以()()776777log 7log 776log 6ϕ=-=+,故A 错误;因为与3n 互质的数为1,2,4,5,7,8,10,11,…,32n -,31n -,共有11(31)323n n ---⋅=⋅个,所以()1323n n ϕ-=⋅,则数列(){}3n ϕ为等比数列,故B 正确;因为()()62,54ϕϕ==,所以()()65ϕϕ<,故数列(){}n ϕ不单调递增,又因为()96ϕ=>2=()6ϕ,所以数列(){}n ϕ不单调递减,所以数列(){}n ϕ不单调,故C 正确; 因为()122nn ϕ-=,所以()11122222nn ni i ii i i i i iϕ=====∑∑∑. 设21122222nn i n i i n S ===+++∑,则231112122222nn n n nS +-=++++, 所以1231111111121222112222222212n n n n n n n n n S ++++-+=++++-=-=--,所以222n n n S +=-,从而数列()2nn ϕ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和为122442n n n S -+=-<,故D 正确.故选:BCD.2.若正整数m ,n 只有1为公约数,则称m ,n 互质,对于正整数n ,()n ϕ是小于或等于n 的正整数中与n 互质的数的个数,函数()n ϕ以其首名研究者欧拉命名,称为欧拉函数,例如:()32ϕ=,()76ϕ=,()96ϕ=,则( )A .数列(){}3nϕ为等比数列B .数列(){}2n ϕ单调递增C .()777log 76log6ϕ=+D .数列()2nnϕ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和为n S ,则n S 的最大值为4解析:与3n 互质的数为1,2,4,5,7,8,10,11,13,,32,31n n --,共有11(31)323n n ---⋅=⋅个,所以()1323nn ϕ-=⋅,因为()()113233233n n n n ϕϕ+-⋅==⋅,所以数列(){}3nϕ为等比数列,因此选项A正确;因为()()()21,42,62ϕϕϕ===,所以数列(){}2n ϕ不是单调递增的,因此选项B 不正确; 因为7是质数,所以与77不互质的数为77,14,21,28,,7,共有7667767-=⋅个,所以()76677777log 7log (67)log6log 7log 66ϕ=⋅=+=+,因此选项C 正确;同理()112222nnn n ϕ--=-=,()11()22n n n n ϕ-=⋅,2111112()3()()222n n n S -=+⋅+⋅++⋅,2311112()3()()222212n n S n =+⋅+⋅++⋅,两式相减,得231111111()()()()2222122n n n S n -=+++++-⋅, 111()122()441221212nn n n n n S n S --+=-⋅⇒=-<-⇒,因此选项D 不正确,故选:AC 3.已知欧拉函数()()*n n N ϕ∈的函数值等于所有不超过正整数n ,且与n 互素的正整数的个数.例如:()11ϕ=,()42ϕ=,设数列{}n a 中:()()*n a n n N ϕ=∈,则( )A .数列{}n a 是单调递增数列B .{}n a 的前8项中最大项为7aC .当n 为素数时,1n a n =-D .当n 为偶数时,2n n a =解析:由题知数列{}n a 前8项为:1,1,2,2,4,2,6,4,不是单调递增数列,故选项A 错误; 由选项A 可知,{}n a 的前8项中最大项为76a =,故选项B 正确; 当n 为素数时,n 与前n 1-个数互素,故1n a n =-,所以C 对正确; 因为62a =,故选项D 错误.附加题1.某软件研发公司计划对某软件进行升级,重要是对软件程序中的某序列{}123,,,A a a a =⋅⋅⋅重新编辑,编辑序列为*324123,,,a a a A a a a ⋅⋅⋅⎧⎫=⎨⎬⎩⎭,它的第n 项为1n na a +,若序列()**A 的所有项均为1,且216a =,312a =,则4a =_________;记数列{}n a 的前n 项之积为n S .则使n S 取得最大值的n 值为_________.(参考数据:lg 20.301≈,lg30.477≈)2.用()g n 表示自然数n 的所有正因数中最大的那个奇数,例如:9的正因数有1、3、9,()99g =,10的正因数有1、2、5、10,()105g =.记()()()()()1232n S n g g g g =++++,则(1)()4S =______.(2)()S n =______.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档