微臣GRE数学自编题目(最新版)
新GRE数学11道练习题及答案解析
新GRE数学11道练习题及答案解析导读:本文新GRE数学11道练习题及答案解析,仅供参考,如果觉得很不错,欢迎点评和分享。
1:还有数列题:a1=2,a2=6,an=an-1/an-2,求a150.解答: an=an-1/an-2,所以an-1=an-2/an-3,带入前式得an=1/an-3,然后再拆一遍得到an=an-6,也就是说,这个数列是以6为周期的,则a150=a144=...=a6,利用a1,a2可以计算出a6=1/3.如果实在想不到这个方法,可以写几项看看很快就会发现a150=a144,大胆推测该数列是以6为周期得,然后写出a1-a13(也就是写到你能看出来规律),不难发现a6=a12,a7=a13,然后那,稍微数数,就可以知道a150=a6了,同样计算得1/3.2:问摄氏升高30度华氏升高的度数与62比大小.key:F=30*9/5=543:那道费波拉契数列的题:已知,a1=1 a2=1 an=an-1+an-2 ,问a1,a2,a3,a6四项的平均数和a1,a3,a4,a5四项的平均数大小比较。
解答:费波契那数列就是第三项是前两项的和,依此类推得到a1-a6为:1 123 5 8 13 21 a1+a2+a3+a6=12, a1+a3+a4+a5=11,所以为大于.4:满足x^2+y^2key: 按照X的可能情况顺序写出:X= Y=1 1-92 1-93 1-94 1-95 1-86 1-87 1-78 1-9 1-4 =>Myanswer:加起来=695:24,36,90,100四个数中,该数除以它的所有的质因子,最后的结果是质数的是那个:Key:906:0.123456789101112….,这个小数无限不循环地把所有整数都列出来.请问小数点后第100位的数字是多少?Key: 位数0 1 2 3 4 5 6 7 8 9 1010 11 12 ………………………19 2020 21……………………………29 2030………………………………39 2040………………………………49 2050 51 52 53 54 55 56 ――――――第101位=5??7:2904x=y2(y的平方),x、y都是正整数,求x的最小值。
GRE数学模拟题目
GRE数学模拟题目近年来,GRE数学部分在考题的设计上越来越注重考察考生的逻辑推理能力和问题解决能力。
下面将为大家提供一些模拟GRE数学题目,并对这些题目进行详细的解析。
题目一:某公司的年度销售额从1997年的50万美元增加到2000年的80万美元。
如果假设年销售额以4%的年增长率递增,那么请推算出该公司在1997年的年度销售额是多少?解析:假设1997年的年销售额为x万美元。
根据题意,该公司的年销售额从1997年到2000年增长了80 - 50 = 30 万美元。
根据题设,年增长率为4%,可得以下等式:x * (1 + 0.04)^3 = x + 30化简得:1.04^3 * x = x + 301.1259 * x = x + 300.1259 * x = 30x = 30 / 0.1259 ≈ 238.39因此,该公司在1997年的年度销售额约为238.39 万美元。
题目二:将一个名为A的集合中的元素逐个地添加到一个名为B的集合中,每次添加时,元素个数增加的量以等比数列递增,首项为1,公比为2。
如果操作6次后,集合B中的元素个数为121个,请问集合A原本有多少个元素?解析:设集合A原本有n个元素。
根据题设,我们可以列出公式:1 +2 + 2^2 + 2^3 + 2^4 + 2^5 = n + 1212^6 - 1 = n + 12164 - 1 = n + 12163 = n + 121n = 63 - 121 = -58由于集合中元素个数不能为负数,所以集合A原本的元素个数不能为-58。
因此,这道题目是不符合实际情况的,解不存在。
题目三:已知一组数据为 {2,4,6,8,10},若要将该组数据的每个元素都除以相同的正整数x,使得得到的结果仍然构成一个等差数列,求x的最小值。
解析:首先计算原数据元素间的差值为2。
如果要将这组数据除以x得到一个等差数列,那么除数x应该满足以下条件:2 / x = 4 / x - 2 / x = 6 / x - 4 / x = 8 / x - 6 / x = 10 / x - 8 / x化简得:2 / x = 2 / x = 2 / x = 2 / x = 2 / x由此可得x的最小值为2。
GRE考试数学部分真题汇编
GRE考试数学部分真题汇编在GRE考试的数学部分,你将会面对各种各样的数学问题和真题。
这些题目旨在考察你对基本数学概念和解题方法的理解和应用能力。
为了帮助你更好地准备数学部分,下面是一些GRE数学部分的真题汇编,供你练习和参考。
1. 问题描述:在一个矩形房间中,地板被铺上了方形瓷砖,每块瓷砖的边长为1英尺。
如果房间的长度是15英尺,宽度是10英尺,那么需要多少块砖来铺满整个房间?解题思路:矩形房间的面积等于瓷砖的总面积。
通过计算可知,房间的面积为15英尺乘以10英尺,等于150平方英尺。
而每块瓷砖的面积为1平方英尺,所以需要150块瓷砖来铺满整个房间。
2. 问题描述:某家电商在一次促销活动中,将一台原价200美元的电脑打折出售,折扣幅度为20%。
这台电脑的促销价是多少美元?解题思路:首先,计算折扣金额,即200美元乘以20%。
将200乘以0.2,得到40美元。
然后,将原价200美元减去折扣金额40美元,得到促销价为160美元。
3. 问题描述:一名体育运动员在一次跳高比赛中,首次跳高1.5米未能成功。
随后,他每次都比前一次跳高的高度多0.2米。
他第5次成功跳高后,跳高的高度是多少米?解题思路:根据题意,运动员每次跳高的高度为1.5米加上前一次跳高的高度增加值。
所以,第2次跳高高度为1.5米加上0.2米,第3次跳高高度为1.7米加上0.2米,以此类推。
根据题意,可以得知第5次跳高高度是1.5米加上4个0.2米的和,等于1.5米加上0.2米乘以4,等于1.5米加上0.8米,结果为2.3米。
4. 问题描述:某公司的年度销售额为1000万美元,其中70%来自国内市场,30%来自国际市场。
如果公司在国际市场上的年度销售额是多少美元?解题思路:根据题意,国际市场销售额占年度销售额的30%。
将1000万美元乘以30%,得到国际市场的年度销售额为300万美元。
以上是一些GRE数学部分的真题汇编,通过解答这些真题,你可以提高自己的数学解题能力和思维灵活性。
gre考试数学真题试卷
gre考试数学真题试卷GRE考试数学真题试卷一、选择题(每题1分,共20分)1. If the function f(x) = 3x^2 - 2x + 1, what is the value of f(1)?A. 0B. 2C. 3D. 4E. 52. What is the derivative of the function g(x) = 4x^3 - x^2 + 7?A. 12x^2 - 2xB. 12x^2 + 2xC. 12x^3 - 2xD. 12x^3 + 2xE. 12x^3 - 2x^23. The area under the curve of y = x^2 from x = 0 to x = 2 is:A. 2B. 4C. 8D. 10E. 124. If a and b are the roots of the quadratic equation x^2 +5x + 6 = 0, what is the value of a + b?A. -3B. -2C. -1D. 0E. 15. The slope of the line passing through the points (2, 3) and (4, 7) is:A. 1B. 2C. 3D. 4E. 56. What is the value of sin(30°)?A. 1/2B. √2/2C. √3/2D. 2/√3E. 1/√27. The integral of the function h(x) = 3x + 2 is:A. x^3 + 2x + CB. x^3 + 2x^2 + CC. x^2 + 2x + CD. 3x^2 + 2x + CE. 3x^2 + 2x^3 + C8. The equation of a circle with center (3, 4) and radius 5 is:A. (x - 3)^2 + (y - 4)^2 = 25B. (x - 3)^2 + (y - 4)^2 = 1C. (x - 3)^2 + (y - 4)^2 = 100D. (x - 3)^2 + (y - 4)^2 = 625E. (x - 3)^2 + (y - 4)^2 = 09. The volume of a sphere with radius 4 is:A. 256πB. 512πC. 1024πD. 2048πE. 4096π10. If the sequence 2, 6, 18, 54, ... is a geometric sequence, what is the common ratio?A. 2B. 3C. 4D. 5E. 6二、填空题(每题2分,共20分)11. If the sum of the first n terms of an arithmetic sequence is given by S_n = n^2, then the 5th term of the sequence is__________.12. The equation of the line perpendicular to y = 2x - 1 and passing through the point (1, 3) is __________.13. The value of the definite integral ∫(0 to 1) x^2 dx is__________.14. If the function f(x) = sin(x) + cos(x), then f''(x) is__________.15. The area of a triangle with vertices at (0,0), (3,0), and (0,4) is __________.16. The limit of the function (1 + 1/n)^n as n approaches infinity is __________.17. The value of e^(iπ) is __________.18. The standard deviation of the data set {2, 4, 6, 8, 10} is __________.19. If a fair coin is tossed 5 times, the probability of getting exactly 3 heads is __________.20. The value of the binomial coefficient C(n, k) when。
2024 GRE考试必备数学历年真题练习
2024 GRE考试必备数学历年真题练习在GRE数学部分的备考过程中,历年真题的练习是非常重要的一环。
通过针对性的练习,考生可以熟悉考试题型,了解考点,提升解题速度和准确性。
本文将为大家提供2024年GRE考试的数学历年真题练习,帮助考生更好地备考。
1. 整数1.1 题目选择下列哪个数是正偶数?(A) -12(B) -5(C) 0(D) 9(E) 271.2 解析正偶数是指能够被2整除的正整数。
从选项中排除负数,在0和正数中,只有0能够被2整除,因此答案选(C)。
2. 几何2.1 题目下图中,正方形ABCD的边长为3。
点E是线段BC的中点,点F是线段BD上的一点,且AF的长度为3。
求射线AF与线段CE的交点P到点E的距离。
[图片描述:一个正方形ABCD,边长为3,线段BC的中点为E,线段BD上的一点为F,AF的长度为3]2.2 解析首先,可以得出正方形ABCD的对角线AC的长度为3的开平方乘以2,即AC=3乘以根号2。
由于AE与CF平行且等长,射线AF可以看作与线段BE平行且等长。
因此,三角形BEP是等腰直角三角形,所以BP = EP = EC的一半。
又因为BC=3,所以EC=3/2。
因此,点P到点E的距离为1.5个单位。
3. 概率与统计3.1 题目某次测试的成绩服从正态分布,平均成绩为80分,标准差为5分。
已知一个学生的成绩在85分以上的概率为0.841,求这个学生的成绩。
3.2 解析根据正态分布的性质,均值加上标准差得到的分数对应的概率是大约0.841。
因此,这个学生的成绩应该在平均成绩80分加上标准差5分的位置,即85分。
通过以上三个部分的例题,希望能够帮助到考生更好地了解2024年GRE考试数学部分的题型和解题思路。
在备考过程中,考生还需深入学习数学知识,掌握解题技巧,并进行大量真题练习,提升解题能力。
祝愿各位考生在考试中取得好成绩!。
gre考试例题
gre考试例题GRE考试的全称为Graduate Record Examination,是一项针对研究生和商学院申请者的标准化考试,主要测试英语语言能力、数学推理能力和批判性思维能力。
以下是GRE数学考试的一些经典例题:1.如果一组数据包含3个数:2,4,9,那么这组数据的第40百分位数是:A. 2B. 4C. 5D. 9E. 202.函数y = f(x)在x = c处的导数f'(c)表示函数在c点的切线斜率。
如果f'(c) = 0,则c可能是函数的拐点。
已知函数y = x^3在x = c处的导数为1,则c等于:A. -1B. 0C. 1D. 2E. -2/33.在等差数列{a_n} 中,a_3 + a_8 > 0,则一定有:A. a_1 + a_10 > 0B. a_6 > -a_7C. a_6 > a_5D. a_1 + a_11 > 0E. a_2 + a_9 > 04.一个箱子中有大小相同的红球、白球和黄球,已知红球10个,白球8个,黄球若干个。
某人闭着眼睛从中随机取出8个球,取出红球和白球的个数刚好和取出黄球的个数相等,则箱子里黄球的个数为:A. 8B. 10C. 12D. 14E. 165.一个正整数N的所有因数中,只有两个是素数,则称N为“半素数”。
例如,28的所有因数是1、2、4、7、14和28,其中素数有2和7,因此28是一个“半素数”。
小于30的所有“半素数”之和为:A. 206B. 273C. 359D. 431E. 453。
新GRE数学代数模拟考试练习题
新GRE数学代数模拟考试练习题1.正整数x,下面哪个选项不和3x相等我选的是E:7-x(sure)2.X~3 * y = 10 ~6 (y > 1), 问X 与 10~2比大小解:x=10~2/y~1/3y>1则y~1/3>1 所以还是10~2大选B3.数列:a1=3, a2=6, a(n)= a(n-1)/a(n-2),问:a(150)=?解:3, 6, 2, 1/3, 1/6, 1/2, 3, 6, (每6次一个循环,答案应该是1/2吧)另一版本:前人几经有误,我的是:a1=2, a2=6, an=a(n-1)/a(n-2), 求a1502, 6, 3, 1/2, 1/6, 1/3 , 2, 6, 3, …所以我的答案是1/3 (大家看清楚A1的值,自己判断吧)4. 125w+25x+5y+z=264,x,y,z,w,are nonnegative integrate,and no more than 5,what is w+x+y+z?解:用短除法把256写成五进制就是2024,则得到x+y+z+w=2+0+2+4=85.a * x平方+B*X+k=0(a和b已知,k未知),给出一个X的值,问另一个。
简单,解出K后,再解出X26.a,b,c,-5,-10的平均数和a,b,c,5,10的平均数之差是多少?解:在考场遇到时看清楚谁在前。
答案是-6 ,也许是6。
7. F(X)=2的2X-1方,求F(3+X)F(3-X)解:2的10次方8.-7<=x<=5-5<=y<=3问x^2-y^2的值?(转载自http://,请保留此信息。
)解:当X= -7 ,Y= 0 时,49。
9.有个公式很重要。
求M到N之间是Q的倍数的数有多少个?公式是: [(该范围内Q的倍数-该范围内Q的最小倍数)/Q ] +1今天我碰到两个这样的题,多亏有这个公式,要不然就费劲了10.一个数,被9整除得x1+x2+x3,被12整除得x2+x3,则这个数至少为?能被x1整除?答案:369(x1+x2+x3)=12(x2+x3) x1=3(x2+x3)……..11.数列a1,a2,...a10.除了第一项外的各项都是其前一项的1/2。
GRE考试数学部分试题库及答案
GRE考试数学部分试题库及答案GRE(研究生入学考试)是全球范围内广泛接受且广泛使用的标准化考试之一,用于评估申请者在数学、阅读和写作等领域的能力。
数学部分是GRE考试的核心部分之一,它旨在测试考生的数学推理能力和解决实际问题的能力。
为了帮助考生更好地准备数学部分,以下是一些GRE数学部分的试题库及答案:1. 题目:如果x + 4 = 8,那么x的值是多少?答案:x = 42. 题目:如果12x = 36,那么x的值是多少?答案:x = 33. 题目:A、B、C三个人一起完成一项工作,A单独完成该工作需要5小时,B单独完成需要8小时,C单独完成需要10小时。
如果他们三个人一起工作,那么完成该工作需要多少小时?答案:A、B、C三个人一起工作的效率为1/5 + 1/8 + 1/10 = 37/40。
完成整个工作需要的时间为1 / (37/40) = 40/37小时。
4. 题目:本金为P的债券到期后,变为金额为A的债券,经过了n 年。
如果利率为r,那么本金P可以用以下公式计算:P = A / (1 + r)^n。
如果一笔本金为$5000的债券到期后变为$6500的债券,经过了5年,且利率为4%,那么最初的本金P是多少?答案:P = 6500 / (1 + 0.04)^5 = $5654.975. 题目:已知两条直线的斜率分别为m1和m2,那么这两条直线的夹角θ可以通过以下公式计算:θ = arctan((m2 - m1) / (1 + m1 * m2))。
如果直线1的斜率m1为1/2,直线2的斜率m2为2/3,那么这两条直线的夹角θ是多少?答案:θ = arctan((2/3 - 1/2) / (1 + 1/2 * 2/3)) = arctan(1/7) ≈ 8.13°以上是一些GRE数学部分试题库及答案的示例。
考生们可以通过解题练习和模拟考试来提高数学推理和解题能力,从而在GRE数学部分取得良好的成绩。
GRE数学题练习
GRE数学题练习GRE数学题练习1、f函数定义为不大于x的最大整数,02, y=ax+b与y=bx-a相垂直,ab与1比大小3, 3块匹萨有n个学生分,前2块n个学生都参与分配,第3块有2个学生不参与分配,A全参与分配,问该同学分到一块的比例、4, 4^16于64^4比大小5、267 9 比大小 a6、1-400中4,6,7的倍数问题 47、/ key )8、k^2=4k-5 与 5比大小 d9、/2 与 /2 比大小 d新GRE数学复习方法两方面注意:第一个方面是对于GRE数学试题常见词语的记忆。
即便是再简单的数学题目,如果看不懂题意,还是照样不会做。
这个主要体现在很长的'应用题上面,而几乎每年都会出现这一类纯粹是考理解的题目,题目本身的数学知识极其简单,关键是需要考生能够把题目抽象成数学模型。
鉴于市面上数学资料本身就不多,在这里还是推荐一下陈向东的那本数学辅导书,出的,里面的附录里面有数学常见词语的总结,考前多看一下就没有问题了。
当然网络上面的资料也有很多,找一些词语的总结方面的东西背一下也就没有问题了。
第二个方面是需要细心。
就我个人的经验来说,对于GRE数学部分出错的题目,有90%以上是因为粗心造成的,剩下的10%才是因为原因诸如看不懂题意或者题意理解错误导致的。
ETS总会在数学题目里面设有很多陷阱,做的时候要很小心,尤其是对于前15个题目,因为都有一个无法比较的选项,所以尤其要小心。
还有一个经典的陷阱是题目给出的图形是否是按照比例,即是否有 draw to scale的字样,这样的陷阱也考过了很多次。
做题的时候不要光求快,如果有时间的话适当检查一下就会好很多。
我个人比较推荐数学在15-20分钟之内做完,然后检查1-2遍,当然前提是你没有跨区的打算。
2024 GRE考试专题数学历年真题集锦
2024 GRE考试专题数学历年真题集锦GRE考试是对申请美国研究生院的学生进行综合能力测试的重要方式之一。
其中,数学部分是考生必须重点准备和应对的内容之一。
为了帮助考生更好地备考,本文整理了2024年GRE考试数学部分的历年真题集锦,供考生参考和复习使用。
一、整数和1. 如果a和b都是正整数,且a + b = 8,那么a和b可能的取值有哪些?答案:(1, 7), (2, 6), (3, 5), (4, 4)2. 如果m和n都是正整数,且m - n = 14,那么m和n的最小公倍数是多少?答案:28二、几何1. 一根长为10英尺的绳子被剪成两段,使得其中一段的长度是另外一段的2倍。
求较短一段的长度。
答案:4英尺2. 一个半径为5的圆与一个半径为8的圆相切于一点,并且两个圆的圆心之间的距离为13。
求两个圆相切点之间的距离。
答案:12三、代数1. 如果a是一个正整数,并且a^2 - 5a + 6 = 0,那么a的值是多少?答案:2或32. 设a、b、c是正整数,且满足a + b = c。
若a能被5整除,c能被9整除,那么b能被几整除?答案:4四、概率与统计1. 在一个有10个数字的集合中,每一个数字都是从1到10中随机选取的,那么从这个集合中选取一个数字,并且这个数字是偶数的概率是多少?答案:1/22. 一张标准扑克牌中红桃的数量为13,黑桃的数量为13。
从扑克牌中随机抽取一张牌,那么这张牌为红桃或黑桃的概率是多少?答案:26/52 = 1/2通过以上历年真题的集锦,考生可以更好地理解GRE数学部分的题目类型和解题思路。
每个题目的解答都提供了详细的答案,考生可以通过演算来验证答案的正确性,并进行自我评估。
为了顺利完成GRE考试,考生需要做到以下几点:首先,掌握基础知识。
GRE数学部分主要考察考生对数学基本概念和方法的理解和运用能力。
因此,考生需要熟悉数学基本概念和公式,同时要能够快速准确地运用这些概念和公式解题。
2023年GRE数学考试题目及解析(完整打印版)
2023年GRE数学考试题目及解析(完整打印版)第一部分:数学基础1. 题目:求解方程给定方程:2x + 5 = 11,求解x的值。
解析:将方程重写为:2x = 11 - 5。
计算得出:2x = 6。
继续计算得出:x = 6 / 2。
最终解得:x = 3。
2. 题目:求解等差数列的和已知等差数列的首项为3,公差为2,共有10个项,求该等差数列的和。
解析:首先,可以使用公式求解等差数列的和:Sn = n/2 * [2a + (n-1)d]。
代入已知值:n = 10,a = 3,d = 2。
计算得出:Sn = 10/2 * [2*3 + (10-1)*2]。
继续计算得出:Sn = 5 * (6 + 18)。
最终解得:Sn = 120。
第二部分:几何图形3. 题目:计算三角形面积已知三角形的底边长为5,高为8,求三角形的面积。
解析:三角形的面积可以通过公式计算:A = 1/2 * 底边长 * 高。
代入已知值:底边长 = 5,高 = 8。
计算得出:A = 1/2 * 5 * 8。
最终解得:A = 20。
4. 题目:计算圆的周长已知圆的半径为4,求圆的周长。
解析:圆的周长可以通过公式计算:C = 2 * π * 半径。
代入已知值:半径 = 4,π取3.14。
计算得出:C = 2 * 3.14 * 4。
最终解得:C = 25.12。
第三部分:数据分析5. 题目:计算平均数已知一组数据为:5, 8, 6, 12, 9,求这组数据的平均数。
解析:计算平均数的公式为:平均数 = 数据总和 / 数据个数。
代入已知值:数据总和 = 5 + 8 + 6 + 12 + 9,数据个数 = 5。
计算得出:平均数 = (5 + 8 + 6 + 12 + 9) / 5。
最终解得:平均数 = 8。
6. 题目:计算中位数已知一组数据为:2, 5, 8, 11, 15,求这组数据的中位数。
解析:首先对数据进行排序:2, 5, 8, 11, 15。
新GRE数学考试算术题试题及答案
新GRE数学考试算术题试题及答案新GRE数学考试算术题精选试题及答案1.A,B,C,D,E五个人的薪水的median是20000,range不超过50000,其中A,B,C的薪水分别是20000, 40000, 50000,问五个人薪水的平均值可能是多少?(A) 20000(B) 32000(C) 18000(D) 23000(E) 310002. 一个样本在一个标准方差内的概率是0.68,两个标准方差内的概率是0.95. 一样本,mean=18.6,标准方差是6,求:该样本在6.6-12.6内占多少?(A) 0(B) 0.68(C) 0.27(D) 0.36(E) 0.1353. 一组数平均值9,标准方差2,另外一组数平均值3,标准方差1,问第一组数在(5,11)中的数占总数的比例和第二组数在(1,4)中的数占总数的比例哪个大?4. 有100个人都对A,B两个人进行评价,每个人只有两种选择,即好或不好,说A不好的.有59个,说B不好的有65个,问:同时说AB都好的人数和35比较,哪个大?5. 两个集合: A=[-1,-2,-3,-4] B=[-2,3,4,5],问B的A次方有多大的概率是正数?(A) 0(B) 0.5(C) 0.625(D) 0.875(E) 0.135参考答案:1.解:median为20000,range为50000,则本题剩下两数的最小值为0,0,最大值为20000,2000,则平均值最小值为:(0+0+20000+40000+50000)/5 =22000。
平均最大值为:(20000+20000+20000+40000+50000)/5=30000。
所以五人薪水平均值应在 22000和30000之间。
2.解:本题应加入限制条件:应在正态分布中,否则无解。
Weight指平均值,6.6-12.6 指-2个方差与-1个方差之间的概率,所以算发为:(0.95-0.68)/2=0.1353.解:本题同上题,需在正态分布中讨论,(5,11)中的数是1.5个方差中的数,同样(1,4)中的数也是1.5个方差中的数,所以两组数占总数的比例一样大。
GRE数学模拟的练习题
GRE数学模拟的练习题
GRE数学模拟的练习题
GRE数学模拟的练习题
1、n个数从小到大排列,求/4,设商为i,余数为j,则可求得1st Quartile为:/4+j/4
2、4个,2个?的排列方式 15
3、 5双袜子,同时去2只,刚好配对的概率。
4、40人说French,60人说Russian,80人说Italy,说两种语言的有50人,说三种语言的有10人. 共有125人,问不说这些语言的`有几人. Key:125-=15
5、等腰直角三角形边长2加2倍根号2,求面积。
6、某种溶液浓度为125gram per liter, 转换成 ounce per gallon,求表达式。
已知 1 ounce=28.xxx gram and 1 gallon=3.875 liter
7、x,y,z 均方差为d, 求x+10,y+10,z+10的均方差
8、1的概率是0.8,2的概率是0,6,问是1或是2或是both的概率,1-0.60.8=0.92.
9、还有一组测量数据中,12.1比mean低1.5个标准差,17.5比mean高3.0个标准方差.问mean是多少.13.9
10、图表题,1992年总和是50,96年是60,每年至少增长1,问最大的年增长:7.0。
新GRE数学模拟练习题(2)
新GRE数学模拟练习题(2)下面是新GRE数学模拟练习题,参加GRE考试的考生能够好好的练习一下这些GRE模拟题。
GRE考试中,虽说考生在GRE数学部分有着很大的优势,但对于复习也不能轻视,要把这个优势发挥的作用,提升GRE成绩,下面是GRE 数学模拟练习题。
1. A,B,C,D,E,F排在1,2,3,4,5,6六个位置上,问A不在1, B不在2, C不在3的情况下,共有多少种排法?(A) 720(B) 450(C) 180(D) 216(E) 3202. 一直线L过点A(5,0), B(0,2), 坐标原点为O, 点P(X,Y)为三角形OAB中一点, 问:Y(A) 1/4(B) 3/8(C) 1/2(D) 5/8(E) 3/43. In an insurance company, each policy has a paper record and an electric record. For those policies having incorrect paper record, 60% also having incorrect electricrecord; For policies having incorrect electric record, 75% also having incorrect paper record. 3% of all policies have both incorrect paper and incorrect electric records. If we randomly pick out one policy,what’s the probability that the one having both correct paper and correct electric records?(A) 0.80(B) 0.94(C) 0.75(D) 0.88(E) 0.924. If Bob can do a job in 20 days and Jane can do the job in 30 days, they work together to do this job and in this period, Bob stop work for 2.5 days and Jane stop work for x days, and the job be finished for 14 days, what is x?(A) 1.6(B) 3.2(C) 1.5(D) 1.25(E) 1.155. The probability of A is 60% and the probability of Bis 50%, what is the most possible probability that neither A nor B would happen?(A) 0.80(B) 0.40(C) 0.75(D) 0.55(E) 0.686. There are 1200 respondents to a poll, each favoringtheir preference for candidates A,B, and C. 54% favored A, 48% favored B, and 42% favored C, and there is 30% favored both A and B. what’s the largest possible number of respondents favoring C, but not C&B, nor C&A?(A) 25%(B) 30%(C) 28%(D) 38%(E) 40%参考答案:1.解:首先考虑总的可能性为,再考虑A在1,B在2,C在3的可能性分别为,中重复计算了三者交集,分别为AB在1,2,AC在1,3,BC在2,3,所需将三种情况加回,即,但考虑这三种加回的交集又重复计算了ABC在1,2,3的情况,所以应减去P332.解:在平面直角坐标系中,T3.解:设总数为x,设incorrect paper record有y, incorrect electric record有z,则:x·y·60%=3%·x y=5%x·z·75%=3%·x z=4%则,两者至少有一个错误的百分比为5%+4%-3%=6%,所准确答案为94%4.解:1/20(14-2.5)+1/30(14-x)=1,得出x=1.255.解:划出图表来能够一目了然:A, B均不发生的概率为40%,最小概率为0.6.解:A和B的并集为:54%+48%-30%=72%,所C为28%.以上就是小编给大家整理的新GRE数学模拟练习题资料,参加GRE 考试的考生,能够来看看这些GRE模拟题,在此小编预祝广大考生能够在GRE考试中考出好成绩。
GRE最新数学机经400题
A.
B.
C.
D.
E.
Y
Frequency
0
10
9
12
20
15
30
22
40
17
18
20
22
24
30
20. ABCD is a rectangle
B
A
E
C
D
Quantity A: The combined areas of the triangular regions ABE and ECD
on each side. What fraction of the garden plot area is not part of the flower bed?
A.
B.
C.
D.
E.
2!3
"
3!"
"
2!3
)
2!3
2
3!"
-
40. For x=97, which of the following fractions has the least value?
Quantity A: The length of a diagonal of S
Quantity B:The length of a diameter of C
33. S is the set of all integers x such that 2x<15.
T is the set of all integers y such that 3y>10.
D. (3, 5)
E. (7, 1)
新GRE数学样题解析
最新:新 gre 数学样题及解析GRE Revised General Test:Quantitative Reasoning Sample Questions®FiguresThis document includes figures, which appear on screen. Following each figure on screen is text describing that figure. Readers using visual presentations of the figures may choose to skip parts of the text describing the figure that begin with“Begin skippable figure description”an d end with“End skippable figure description.”Mathematical Equations and ExpressionsThis document includes mathematical equations and expressions. Some of the mathematical equations and expressions are presented as graphics. In cases where a mathematical equation or expression is presented as a graphic, a verbal presentation is also given and the verbal presentation comes directly after the graphic presentation. The verbal presentation is in green font to assist readers in telling the two presentation-modes apart. Readers using audio alone can safely ignore the graphical presentations, and readers using visual presentations may ignore the verbal presentations.IntroductionThe revised Quantitative Reasoning section contains four types of questions:Multiple-choice Questions — Select One Answer ChoiceMultiple-choice Questions — Select One or More Answer ChoicesNumeric Entry QuestionsQuantitative Comparison QuestionsEach question appears either independently as a discrete question or as part of a set of questions called a Data Interpretation set. All of the questions in a Data Interpretation set are based on the same data presented in tables, graphs, or other displays of data. Below are descriptions, directions, and samples of each type of question.Multiple-Choice Questions—Select One Answer ChoiceThese questions are multiple-choice questions that ask you to select only one answer choice from a list of five choices.Sample QuestionsDirections: Select a single answer choice.Sample question 1 below is based on figure 1.Figure 1Begin skippable figure description.Figure 1 is a circle with center C.Two diameters of the circle are drawn, dividing the circle into 4 sectors. Two nonadjacent sectors are shaded, and the central angle of one of the unshaded sectors measures 160 degrees.End skippable figure description.1. Figure 1 above shows a circle with center C and radius 6. What is the sum of the areas of the two shaded regions?Sample question 2 below is based on figure 2.Answer: D ( 4 pi)E. 3 piD. 4 pi4.5 pi . B. 6 pi 7.5 pi . A CFigure 2Begin skippable figure description.Figure 2 shows the graph in the x y plane of the function f of x = the absolute value of 2x, end absolute value, + 4. There are equally spaced tick marks along the x axis and along the y axis. The first tick mark to the right of the origin, and the first tick mark above the origin, are both labeled 1.The graph of the function f is in the shape of the letter V. It is above the x axis and is symmetric with respect to the y axis.The lowest point on the graph of f is the point 0 comma 4 on the y axis.Going leftward from the point 0 comma 4 the graph of fis a line that slants upward, passing through the point negative 2 comma 8.Going rightward from the point 0 comma 4 the graph of f is a line that slants upward, passing through the point 2 comma 8.End skippable figure description.= the absolute value of 2x, end absolute value, + 4 for all numbers x . For which of the following functions g defined for all numbers x does the graph of g intersect the graph of f?g of x = 2x minus 2g of x = 2x + 3g of x = x + 3 . g of x = x minus 2 . 2. Figure 2 above shows the graph of a function f, defined by f of x ABC D . .Answer: E ( g of x = 3x minus 2)Multiple-Choice Questions — Select One or More Answer ChoicesThese questions are multiple-choice questions that ask you to select one or more answer choices from a list of choices. A question may or may not specify the number of choices to select.Sample QuestionsDirections: Select one or more answer choices according to the specific question directions.If the question does not specify how many answer choices to select , select all that apply.The correct answer may be just one of the choices or may be as many as all of the choices, depending on the question.No credit is given unless you select all of the correct choices and no others.If the question specifies how many answer choices to select, select exactly that number of choices.1. Each employee of a certain company is in either Department X or Department Y, and there are more than twice as many employees in Department X as in Department Y. The average (arithmetic mean) salary is $25,000 for the employees in Department X and is $35,000 for the employees in Department Y. Which of the following amounts could be the average salary for all of the employees in the company?Indicate all such amounts.A. $26,000B. $28,000C. $29,000g of x = 3x minus 2. ED. $30,000E. $31,000F. $32,000G. $34,000Answer: A ($26,000) and B ($28,000)2. If f, g, and h are positive integers, f is a factor of g, and g is a factor of h, which of the following statements must be true?Indicate all such statements.A. f is a factor ofB. f is a factor of gh.C. f is a factor of Numeric Entry QuestionsQuestions of this type ask you either to enter the answer as an integer or a decimal in a single answer box or to enter it as a fraction in two separate boxes — one for the numerator and one for the denominator. In the computer-administered test, the computer mouse and keyboard are used to enter the answer.Sample QuestionsDirections: Enter your answer in the answer box(es) below the question.Equivalent forms of the correct answer, such as 2.5 and 2.50, are all correct. Fractions do not need to be reduced to lowest terms.Enter the exact answer unless the question asks you to round your answer .1, what negative x = 10 power value 1. If the the to ofis h minus g)A (f is a factor of squared),B (f is a factor of gh.), andC (f is a factor ofg squared.h minus g.Answer: gparenthesis, 1 over x, close parenthesis?Answer BoxAnswer: 1012. A university admitted 100 students who transferred from other institutions. Of these students, 34 transferred from two-year community colleges, 25 transferred from private four-year institutions, and the rest transferred from public four-year institutions. If two different students are to be selected at random from the 100 students, what is the probability that both students selected will be students who transferred from two-year community colleges?Give your answer as a fraction.Fraction answer boxesAnswer: 17 over 150 (or any equivalent fraction).Quantitative Comparison QuestionsQuestions of this type ask the examinee to compare two quantities — Quantity A and Quantity B — and then determine which of four statements describes the comparison.Sample QuestionsDirections: Compare Quantity A and Quantity B, using the additional information given, if any. Select one of the following four answer choices.1 over x, close parenthesis, times, openx + the fraction parenthesis, openA.Quantity A is greater.B.Quantity B is greater.C.The two quantities are equal.D.The relationship cannot be determined from the information given.A symbol that appears more than once in a question has the same meaning throughout the question.1.Quantity A: x squared + 1Quantity B: 2x, minus 1A. Quantity A is greater.B. Quantity B is greater.C. The two quantities are equal.D. The relationship cannot be determined from the information given.Answer: A (Quantity A is greater.)Sample question 2 below is based on figure 3.Figure 3Begin skippable figure description.Figure 3 shows parallelogram RSTU. Sides R U and S T are horizontal, with S T above, and slightly to the left of side R U. Diagonal S U, which extends from vertex S at the upper left of theparallelogram to vertex U at the lower right of the parallelogram, divides the parallelogram into two triangles, R S U and U S T; and the angle at vertex S into 2 adjacent angles R S U and U S T. The measure of angle R S U is x degrees, and the measure of angle U S T is y degrees.End skippable figure description.2.It is given that RSTU is a parallelogram.Quantity A: xQuantity B: yA. Quantity A is greater.B. Quantity B is greater.C. The two quantities are equal.D. The relationship cannot be determined from the information given.Answer: D (The relationship cannot be determined from the information given.)Data Interpretation SetsData Interpretation questions are grouped together and refer to the same table, graph, or other data presentation. These questions ask you to interpret or analyze the given data. The types of questions may be Multiple-choice (both types) or Numeric Entry.Sample QuestionsDirections: Questions 1 to 3 are based on the data in the following table.The table shows the percent change in monthly value of inventory at six businesses from April to June.Note: Inventory values are determined at the end of each month.1. If the value of inventory at Business K was $30,000 for April, what was the value of inventory at Business K for June?A. $22,500Percent Change from April Percent Change from Mayto June +8 minus 5 +12 minus 5 0 minus 10 +6 +5 +2 +8 +14 +2 GKMRVZ Business to MayB. $29,925C. $30,000D. $33,000E. $33,075Answer: B ($29,925)2. At Business M, the value of inventory for May was what percent of the value of inventory for June?Give your answer to the nearest 0.1 percent.% Answer box followed by percent signAnswer: 89.33. For which of the six businesses shown was the percent change in value of inventory from April to June greatest?A. GB. KC. MD. RE. VAnswer: A (Business G)Directions:Questions4to6are based on the data shown in figure4.Figure 4Begin skippable figure description.The title of the data in figure 4 is “Workforce of Country X.” The data consists of a pie chart and a bar graph .The title of the pie chart is “Percent Distribution of Workforce by Employment Sector” and the title of the bar graph is “Workforce in the Service Sector by Area and Gender.”The percent distribution of the workforce by employment sector in the pie chart is as follows: Professional Sector 20%.Service Sector 15%Construction and Maintenance Sector 10%Production and Transportation Sector 15%Other Sector 15%Sales Sector 10%Management Sector 15%The bar graph shows the number of males and females in each of the five service sectors .The bar graph has horizontal bars.The graph has a horizontal axis labeled Millions of People,with vertical gridlines in multiples of 0.5 million, from 0.5 million to 4 million. Five Service Sector areas are listed along the vertical axis. The data in the bar graph is as follows:Health Care Sector, 0.5 million males and 2.75 femalesProtective Service Sector, a little under 2 million males and 0.5 million femalesFood Service Sector, a little under 3 million males and a little under 4 million femalesPersonal Care Sector, a little over 0.5 million males and about 2.75 million femalesOther Sector, a little under 3 milllion males and a little under 2 million females End skippable figure description.4. Approximately how many people are in the production and transportation sector of the workforce?A. 9 millionB. 12 millionC. 15 millionD. 18 millionE. 21 millionAnswer: E (21 million)5. In the workforce, the ratio of the number of males to the number of females is the same for the sales sector as it is for the protective service area of the service sector. Which of the following is closest to the number of females in the sales sector?A. 2.9 millionB. 3.6 millionC. 10.4 millionD. 11.1 millionE. 14.0 millionAnswer: A (2.9 million)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Bo Wang (UVA)
GRE Math
Aug 2015
9 / 106
Example
x 3=1 Quantity A x Solution: x = 4 §±quantity Aåß¿A Quantity B 3
Bo Wang (UVA)
GRE Math
Aug 2015
10 / 106
¸ë¿JK
Bo Wang (UVA)
GRE Math
Aug 2015
16 / 106
Integers)Í
Integers)ÍßPositive Integers')ÍßNegative IntegersK)Í ÿ% ":µ '+' ='ß '*'='ßK +K=KßK *K='
Example 1
a,b,c are all integers, suppose a3 b 4 c 5 is negative then which of the following CANNOT be true? A a+b >0 B b+c >0 C a+c >0 D ac > 0 E abc > 0
Example 6
M If N 2 and 5 are both integers, which of the following expression must also be an integer? M A N+ 7 NM B 7
C D E
2 N +M 10 NM 10
N +M 2 5
Bo Wang (UVA)
GRE Quantitative Reasoning (Step 2)
Bo Wang
University of Virginia
Aug 2015
Bo Wang (UVA)
GRE Math
Aug 2015
1 / 106
Overview
1
Arithmetic Algebra Geometry Data Analysis Problem-solving Techniques
GRE Math
Aug 2015
23 / 106
decimals õ?õÍ
á†Íßõ†Íßz†ÍßZ†Íß... õ©†Íßz©†ÍßZ©† Íß... ones/units, tens, hundreds, thousands, ... tenths, hundredths, thousandths ÿ%":µ©Í)Í!pÜ
GREÍ!{0
2011cETSÈGRE?1"°UÄßGREJ›ååO\ •Iå'kòå")3#GREÍ!‹©vk˛162.Èú“¥162ú UÄ'!GREÍ!‹©ßO\!o©†Íßz©†ÍßáÇ„ßIO' $©Ÿ'pJ›SNß3V«⁄Oê°J›åO ETS—á!OG•ßkòå!üÃ¥30)Í!%£: &ı&%˜˜!")‡"GREÍ!ß(J...
Example 8
Which of the following fractions is equal to the repeating decimal 0.36363636 · · · 1 A 275 2 B 55 4 C 99 4 D 11 E 4 9
Bo Wang (UVA)
GRE Math
Aug 2015
Bo Wang (UVA)
GRE Math
Aug 2015
21 / 106
fractions©Í
fraction©Íßrational numbers knÍßirrational numbers *nÍß© fnumerator;©1denominatorßcommon denominator œ©ßreciprocal/ Í ÿ%":µ©Í!z{Üœ©
Bo Wang (UVA)
GRE Math
Aug 2015
7 / 106
K.0)
#GREÍ!"¡‹©ß¨ë)4´K.ß©O¥µ
1 2 3
Ͳ'%Kquantitative comparison questions ¸ë¿JKMultiple-choice questions-select one answer choice ÿ*ë¿JKMultiple-choice questions-select one or more answer choices ÍiWòKnumeric entry questions
24 / 106
©ÍÜ)ÍpÜ
©Íz§)Íû^OéÏ kÅ)Íz§©Í£˛e”û¶±1000 · · · ¶%˛eC§)ͧ *ÅÃÇ)Í£ê?ÿ0. · · · !ú$§µÃÇ!kA†“3©1,A á9ßkA†v\\ÃÇ“,Aá0ß2^1'áÃÇ!±c!)Í‹© |§!ÍÜ)Í‹©•ÿÃÇ‹©|§!Í!'â©fßXµ 4 39 13 0. 4¯ 3 = 43 90 = 90 = 30 145 14 131 0.14¯ 5 = 900 = 900 5 544 272 0.549 = 549 990 = 990 = 495 *ÅÿÃÇ)Ívç{zè©Í
GREÍ!ES6ß
1 2 3 4 5
"°ESÍ!%£: ŸGÍ!cÆ⁄=ä•!LàS. ŸGâKE| o(8B¥Ü: å˛ˆS˝%
Bo Wang (UVA)
GRE Math
Aug 2015
5 / 106
"Ç!8I¥
Í!˜©170!
Bo Wang (UVA)
GRE Math
Aug 2015
6 / 106
~ÑÜÿ
1 2 3 4
K8wÿ+£A^Kn)ÿÈßÍ!cÆÿ@£§ ":¢# "KkØK£vwÑ^á%ˆM÷%(!^᧠%À¿Ü!
Bo Wang (UVA)
GRE Math
Aug 2015
15 / 106
Arithmetic
1 2 3 4 5 6 7 8 9 10 11
Integers Factors and multiples quotients and reminders odd and even number prime and composite number fractions exponents and roots decimals real number ratio percent
GRE Math
Aug 2015
22 / 106
exponent and rootsçÍ⁄ä
.base,çÍexponent,square root $êä ÿ%":µçÍ!z{
Example 7
Quantity A 9 18 Quantity B 1 12 ( 27 )
Bo Wang (UVA)
Bo Wang (UVA)
GRE Math
Aug 2015
18 / 106
Quotients and Remainders)Íë{ÿ{
a divided by b is q remainder r , a=bq+r where (0 r < b ) aÿ±b' uq{r quotient˚; remainder{Í ÿ%":µ¶{Í
Example 2
Let S be the set of all positive integers n such that n2 is a multiple of both 24 and 108. Which of the following integers are divisor of every integer n in S? Indicate all such integers A 12 B 24 C 36 D 72
Bo Wang (UVA)
GRE Math
Aug 2015
17 / 106
Factors and Multiplesœf⁄0Í
factors (divisors)œf, multiple 0Í, least common multipleÅ)˙0Í, greatest common divisorÅå˙%Í ÿ%":µœÍ©)ßÅå˙%ÍßÅ)˙0Í
GRE Math
Aug 2015
13 / 106
OéÏ
OéÏ!¶^
1 2
åıÍOéÿIáOéÏ {¸O鶲ÿá^Oé ÏßL§ûm kûˇå±|©!£;Oé Xk7á^OéÏßû5ø o. \ ¶˛3'Ö⁄(û¶^Oé Ï
3 4
5
Bo Wang (UVA)
GRE Math
Aug 2015
14 / 106
2
3
4
5
Bo Wang (UVA)
GRE Math
Aug 2015
2 / 106
ëß{0
ëßSN
"°!Í!ÿ%cÆG˘ #GREÿ%":8B à´K.âKE|!o( å˛SK
"^Èñ
!§!GREÍ!rzò#„!!) ÈuGREÍ!º%˜©kr#I¶!!) K8¨â%$~âÜ!!)
Üò#„!´O
ç5"ÿ%":⁄âKE|!o( ~K⁄ˆSKJ›%å('”u$ñ—puGREÍ!!ÅpJ›)
Bo Wang (UVA)
GRE Math
Aug 2015
19 / 106
odd and even number¤ÛÍ
odd number¤Í, even numberÛÍ ÿ%":µXJòÊ)ÍÉ»¥¤Íß@o§k—¥¤Í XJòÊ)ÍÉ»¥ÛÍß@oñ0kòáÛÍ