同济高等数学第六版-D9_1二重积分概念
(完整版)同济第六版《高等数学》教案WORD版-第09章重积分
第九章 重积分教学目的:1. 理解二重积分、三重积分的概念,了解重积分的性质,知道二重积分的中值定理。
2. 掌握二重积分的(直角坐标、极坐标)计算方法。
3. 掌握计算三重积分的(直角坐标、柱面坐标、球面坐标)计算方法。
8、会用重积分求一些几何量与物理量(平面图形的面积、体积、重心、转动惯量、引力等)。
教学重点:1、 二重积分的计算(直角坐标、极坐标);2、 三重积分的(直角坐标、柱面坐标、球面坐标)计算。
3、二、三重积分的几何应用及物理应用。
教学难点:1、 利用极坐标计算二重积分;2、 利用球坐标计算三重积分;3、 物理应用中的引力问题。
§9. 1 二重积分的概念与性质一、二重积分的概念 1. 曲顶柱体的体积设有一立体, 它的底是xOy 面上的闭区域D , 它的侧面是以D 的边界曲线为准线而母线平行于z 轴的柱面, 它的顶是曲面z =f (x , y ), 这里f (x , y )≥0且在D 上连续. 这种立体叫做曲顶柱体. 现在我们来讨论如何计算曲顶柱体的体积. 首先, 用一组曲线网把D 分成n 个小区域 ∆σ 1, ∆σ 2, ⋅ ⋅ ⋅ , ∆σ n .分别以这些小闭区域的边界曲线为准线, 作母线平行于z 轴的柱面, 这些柱面把原来的曲顶柱体分为n 个细曲顶柱体. 在每个∆σ i 中任取一点(ξ i , η i ), 以f (ξ i , η i )为 高而底为∆σ i 的平顶柱体的体积为 f (ξ i , η i ) ∆σi (i =1, 2, ⋅ ⋅ ⋅ , n ). 这个平顶柱体体积之和 i i i ni f V σηξ∆≈=∑),(1.可以认为是整个曲顶柱体体积的近似值. 为求得曲顶柱体体积的精确值, 将分割加密, 只需取极限, 即i i i ni f V σηξλ∆==→∑),(lim 10.其中λ是个小区域的直径中的最大值. 2. 平面薄片的质量.设有一平面薄片占有xOy 面上的闭区域D , 它在点(x , y )处的面密度为ρ(x , y ), 这里ρ(x , y )>0且在D 上连续. 现在要计算该薄片的质量M .用一组曲线网把D 分成n 个小区域 ∆σ 1, ∆σ 2, ⋅ ⋅ ⋅ , ∆σ n .把各小块的质量近似地看作均匀薄片的质量: ρ(ξ i , η i )∆σ i .各小块质量的和作为平面薄片的质量的近似值: i i i ni M σηξρ∆≈=∑),(1.将分割加细, 取极限, 得到平面薄片的质量 i i i ni M σηξρλ∆==→∑),(lim 10.其中λ是个小区域的直径中的最大值.定义 设f (x , y )是有界闭区域D 上的有界函数. 将闭区域D 任意分成n 个小闭区域 ∆σ 1, ∆σ 2, ⋅ ⋅ ⋅ , ∆σ n .其中∆σ i 表示第i 个小区域, 也表示它的面积. 在每个∆σ i 上任取一点(ξ i , ηi ), 作和i i i ni f σηξ∆=∑),(1.如果当各小闭区域的直径中的最大值λ趋于零时, 这和的极限总存在, 则称此极限为函数f (x , y )在闭区域D 上的二重积分, 记作σd y x f D⎰⎰),(, 即i i i ni Df d y x f σηξσλ∆==→∑⎰⎰),(lim ),(10. f (x , y )被积函数, f (x , y )d σ被积表达式, d σ面积元素, x , y 积分变量, D 积分区域, 积分和. 直角坐标系中的面积元素:如果在直角坐标系中用平行于坐标轴的直线网来划分D , 那么除了包含边界点的一些小闭区域外, 其余的小闭区域都是矩形闭区域. 设矩形闭区域∆σi 的边长为∆x i 和∆y i , 则∆σi =∆x i ∆y i , 因此在直角坐标系中, 有时也把面积元素d σ 记作dxdy , 而把二重积分记作dxdy y x f D⎰⎰),(其中dxdy 叫做直角坐标系中的面积元素.二重积分的存在性: 当f (x , y )在闭区域D 上连续时, 积分和的极限是存在的, 也就是说函数f (x , y )在D 上的二重积分必定存在. 我们总假定函数f (x , y )在闭区域D 上连续, 所以f (x , y )在D 上的二重积分都是存在的.二重积分的几何意义: 如果f (x , y )≥0, 被积函数f (x , y )可解释为曲顶柱体的在点(x , y )处的竖坐标, 所以二重积分的几何意义就是柱体的体积. 如果f (x , y )是负的, 柱体就在xOy 面的下方, 二重积分的绝对值仍等于柱体的体积, 但二重积分的值是负的.二. 二重积分的性质 性质1 设c 1、c 2为常数, 则σσσd y x g c d y x f c d y x g c y x f c DDD⎰⎰⎰⎰⎰⎰+=+),(),()],(),([2121.性质2如果闭区域D 被有限条曲线分为有限个部分闭区域, 则在D 上的二重积分等于在各部分闭区域上的二重积分的和. 例如D 分为两个闭区域D 1与D 2, 则σσσd y x f d y x f d y x f D D D⎰⎰⎰⎰⎰⎰+=21),(),(),(.性质3σσσ==⋅⎰⎰⎰⎰DDd d 1(σ为D 的面积).性质4 如果在D 上, f (x , y )≤g (x , y ), 则有不等式σσd y x g d y x f DD⎰⎰⎰⎰≤),(),(.特殊地有σσd y x f d y x f DD⎰⎰⎰⎰≤|),(||),(|.性质5 设M 、m 分别是f (x , y )在闭区域D 上的最大值和最小值, σ为D 的面积, 则有 σσσM d y x f m D≤≤⎰⎰),(.性质6(二重积分的中值定理) 设函数f (x , y )在闭区域D 上连续, σ 为D 的面积, 则在D 上至少存在一点(ξ, η)使得 σηξσ),(),(f d y x f D=⎰⎰.§9. 2 二重积分的计算法一、利用直角坐标计算二重积分 X --型区域:D : ϕ1(x )≤y ≤ϕ2(x ), a ≤x ≤b . Y --型区域:D : ψ1(x )≤y ≤ψ2(x ), c ≤y ≤d . 混合型区域:设f (x , y )≥0, D ={(x , y )| ϕ1(x )≤y ≤ϕ2(x ), a ≤x ≤b }. 此时二重积分σd y x f D⎰⎰),(在几何上表示以曲面z =f (x , y )为顶, 以区域D 为底的曲顶柱体的体积.对于x 0∈[a , b ], 曲顶柱体在x =x 0的截面面积为以区间[ϕ1(x 0), ϕ2(x 0)]为底、以曲线z =f (x 0, y )为曲边的曲边梯形, 所以这截面的面积为 ⎰=)()(000201),()(x x dy y x f x A ϕϕ.根据平行截面面积为已知的立体体积的方法, 得曲顶柱体体积为 ⎰=badx x A V )(dx dy y x f b a x x ⎰⎰=]),([)()(21ϕϕ.即 V =dx dy y x f d y x f b a x x D⎰⎰⎰⎰=]),([),()()(21ϕϕσ.可记为⎰⎰⎰⎰=bax x Ddy y x f dx d y x f )()(21),(),(ϕϕσ.类似地, 如果区域D 为Y --型区域: D : ψ1(x )≤y ≤ψ2(x ), c ≤y ≤d , 则有⎰⎰⎰⎰=dc y y Ddx y x f dy d y x f )()(21),(),(ψψσ.例1. 计算σd xy D⎰⎰, 其中D 是由直线y =1、x =2及y =x 所围成的闭区域.解: 画出区域D .方法一. 可把D 看成是X --型区域: 1≤x ≤2, 1≤y ≤x . 于是⎰⎰⎰⎰=211][xDdx xydy d xy σ⎰⎰-=⋅=2132112)(21]2[dx x x dx y x x 89]24[212124=-=x x .注: 积分还可以写成⎰⎰⎰⎰⎰⎰==211211xx Dydy xdx xydy dx d xy σ.解法2. 也可把D 看成是Y --型区域: 1≤y ≤2, y ≤x ≤2 . 于是⎰⎰⎰⎰=212][y Ddy xydx d xy σ⎰⎰-=⋅=2132122)22(]2[dy y y dy x y y 89]8[2142=-=y y . 例2. 计算σd y x yD⎰⎰-+221, 其中D 是由直线y =1、x =-1及y =x 所围成的闭区域.解 画出区域D , 可把D 看成是X --型区域: -1≤x ≤1, x ≤y ≤1. 于是⎰⎰⎰⎰-+=-+-122112211xDdy y x y dx d y x y σ⎰⎰----=-+-=1131112322)1|(|31])1[(31dx x dx y x x 21)1(32103=--=⎰dx x . 也可D 看成是Y --型区域:-1≤y ≤1, -1≤x <y . 于是⎰⎰⎰⎰---+=-+111222211yDdx y x ydy d y x y σ.例3 计算σd xy D⎰⎰, 其中D 是由直线y =x -2及抛物线y 2=x 所围成的闭区域.解 积分区域可以表示为D =D 1+D 2,其中x y x x D ≤≤-≤≤ ,10 :1; x y x D ≤≤≤≤2 ,41 :2. 于是⎰⎰⎰⎰⎰⎰--+=41210xx xxDxydy dx xydy dx d xy σ.积分区域也可以表示为D : -1≤y ≤2, y 2≤x ≤y +2. 于是⎰⎰⎰⎰-+=2122y yDxydx dy d xy σ⎰-+=21222]2[dy y x y y ⎰--+=2152])2([21dy y y y 855]62344[21216234=-++=-y y y y .讨论积分次序的选择.例4 求两个底圆半径都等于ρ的直交圆柱面所围成的立体的体积. 解 设这两个圆柱面的方程分别为 x 2+y 2=ρ 2及x 2+z 2=ρ 2.利用立体关于坐标平面的对称性, 只要算出它在第一卦限部分的体积V 1, 然后再乘以8就行了.第一卦限部分是以D ={(x , y )| 0≤y ≤22x R -, 0≤x ≤ρ}为底, 以22x R z -=顶的曲顶柱体. 于是σd x R V D⎰⎰-=228⎰⎰--=R x R dy x R dx 022228⎰--=Rx Rdx y x R 002222][83022316)(8R dx x R R=-=⎰.二. 利用极坐标计算二重积分有些二重积分, 积分区域D 的边界曲线用极坐标方程来表示比较方便, 且被积函数用极坐标变量ρ 、θ 表达比较简单. 这时我们就可以考虑利用极坐标来计算二重积分σd y x f D⎰⎰),(.按二重积分的定义i ni i i Df d y x f σηξσλ∆=∑⎰⎰=→1),(lim ),(. 下面我们来研究这个和的极限在极坐标系中的形式.以从极点O 出发的一族射线及以极点为中心的一族同心圆构成的网将区域D 分为n 个小闭区域, 小闭区域的面积为:i i i i i i θρθρρσ∆⋅⋅-∆⋅∆+=∆2221)(21i i i i θρρρ∆⋅∆∆+=)2(21i i i i i θρρρρ∆⋅∆⋅∆++=2)(i i i θρρ∆∆=,其中i ρ表示相邻两圆弧的半径的平均值.在∆σi 内取点) , (i i θρ, 设其直角坐标为(ξ i , η i ), 则有 i i i θρξcos =, i i i θρηsin =. 于是 i i ni i i i i i i n i i i f f θρρθρθρσηξλλ∆∆=∆∑∑=→=→11)sin ,cos (lim ),(lim , 即θρρθρθρσd d f d y x f DD)sin ,cos (),(⎰⎰⎰⎰=.若积分区域D 可表示为ϕ 1(θ)≤ρ≤ϕ 2(θ), α≤θ≤β,则ρρθρθρθθρρθρθρθϕθϕβαd f d d d f D⎰⎰⎰⎰=)()(21)sin ,cos ()sin ,cos (.讨论:如何确定积分限?ρρθρθρθθρρθρθρθϕβαd f d d d f D⎰⎰⎰⎰=)(0)sin ,cos ()sin ,cos (.ρρθρθρθθρρθρθρθϕπd f d d d f D⎰⎰⎰⎰=)(020)sin ,cos ()sin ,cos (.例5. 计算⎰⎰--Dy xdxdy e 22, 其中D 是由中心在原点、半径为a 的圆周所围成的闭区域.解 在极坐标系中, 闭区域D 可表示为 0≤ρ≤a , 0≤θ ≤2π . 于是⎰⎰⎰⎰---=DDy xd de dxdy e θρρρ222θθρρπρπρd e d d e a a020200]21[ ][22⎰⎰⎰---==)1()1(212220a a e d e ---=-=⎰πθπ.注: 此处积分⎰⎰--Dy xdxdy e 22也常写成⎰⎰≤+--22222a y x y xdxdy e .利用)1(222222a a y x y x edxdy e-≤+---=⎰⎰π计算广义积分dx e x 2-+∞⎰:设D 1={(x , y )|x 2+y 2≤R 2, x ≥0, y ≥0}, D 2={(x , y )|x 2+y 2≤2R 2, x ≥0, y ≥0}, S ={(x , y )|0≤x ≤R , 0≤y ≤R }. 显然D 1⊂S ⊂D 2. 由于022>--y x e , 从则在这些闭区域上的二重积分之间有不等式⎰⎰⎰⎰⎰⎰------<<22222122D y xSy xD y xdxdy e dxdy e dxdy e .因为20)(22222⎰⎰⎰⎰⎰-----=⋅=Rx Ry Rx Sy x dx e dy edx edxdy e,又应用上面已得的结果有)1(42122R D y xe dxdy e ----=⎰⎰π,)1(422222R D y xe dxdy e ----=⎰⎰π,于是上面的不等式可写成)1(4)()1(4222220R R x R e dx e e ----<<-⎰ππ.令R →+∞, 上式两端趋于同一极限4π, 从而220 π=-∞+⎰dx e x .例6 求球体x 2+y 2+z 2≤4a 2被圆柱面x 2+y 2=2ax 所截得的(含在圆柱面内的部分)立体的体积.解 由对称性, 立体体积为第一卦限部分的四倍.⎰⎰--=Ddxdy y x a V 22244,其中D 为半圆周22x ax y -=及x 轴所围成的闭区域. 在极坐标系中D 可表示为 0≤ρ≤2a cos θ , 20πθ≤≤.于是 ⎰⎰⎰⎰-=-=20cos 2022224444πθρρρθθρρρa Dd a d d d a V)322(332)sin 1(33222032-=-=⎰πθθπa d a .§9.3 三重积分一、三重积分的概念定义 设f (x , y , z )是空间有界闭区域Ω上的有界函数. 将Ω任意分成n 个小闭区域 ∆v 1, ∆v 2, ⋅ ⋅ ⋅ , ∆v n其中∆v i 表示第i 个小闭区域, 也表示它的体积. 在每个∆v i 上任取一点(ξi , ηi , ζi ), 作乘积f (ξi , η i , ζ i )∆v i (i =1, 2, ⋅ ⋅ ⋅, n )并作和i i i i ni v f ∆=∑),,(1ζηξ. 如果当各小闭区域的直径中的最大值λ趋于零时, 这和的极限总存在, 则称此极限为函数f (x , y , z )在闭区域Ω上的三重积分, 记作dv z y x f ⎰⎰⎰Ω),,(. 即i i i i ni v f dv z y x f ∆==→Ω∑⎰⎰⎰),,(lim ),,(10ζηξλ. 三重积分中的有关术语:⎰⎰⎰Ω——积分号, f (x , y , z )——被积函数, f (x , y , z )dv ——被积表达式, dv 体积元素, x , y , z ——积分变量, Ω——积分区域.在直角坐标系中, 如果用平行于坐标面的平面来划分Ω, 则∆v i =∆x i ∆y i ∆z i , 因此也把体积元素记为dv =dxdydz , 三重积分记作⎰⎰⎰⎰⎰⎰ΩΩ=dxdydz z y x f dv z y x f ),,(),,(.当函数f (x , y , z )在闭区域Ω上连续时, 极限i i i i ni v f ∆=→∑),,(lim 10ζηξλ是存在的,因此f (x , y , z )在Ω上的三重积分是存在的, 以后也总假定f (x , y , z )在闭区域Ω上是连续的. 三重积分的性质: 与二重积分类似. 比如dv z y x g c dv z y x f c dv z y x g c z y x f c ⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ±=±),,(),,()],,(),,([2121;dv z y x f dv z y x f dv z y x f ⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ+Ω+=2121),,(),,(),,(;V dv =⎰⎰⎰Ω, 其中V 为区域Ω的体积.二、三重积分的计算1. 利用直角坐标计算三重积分三重积分的计算: 三重积分也可化为三次积分来计算. 设空间闭区域Ω可表为 z 1(x , y )≤z ≤z 2(x , y ), y 1(x )≤y ≤y 2(x ), a ≤x ≤b , 则σd dz z y x f dv z y x f Dy x z y x z ⎰⎰⎰⎰⎰⎰=Ω]),,([),,(),(),(21⎰⎰⎰=ba x y x y y x z y x z dy dz z y x f dx)()(),(),(2121]),,([ ⎰⎰⎰=ba y x z y x z x y x y dz z y x f dy dx ),(),()()(2121),,(,即⎰⎰⎰⎰⎰⎰=Ωb ay x z y x z x y x y dz z y x f dy dx dv z y x f ),(),()()(2121),,(),,(.其中D : y 1(x )≤ y ≤ y 2(x ), a ≤x ≤b . 它是闭区域Ω在xOy 面上的投影区域. 提示:设空间闭区域Ω可表为z 1(x , y )≤z ≤z 2(x , y ), y 1(x )≤y ≤y 2(x ), a ≤x ≤b , 计算⎰⎰⎰Ωdv z y x f ),,(.基本思想:对于平面区域D : y 1(x )≤y ≤y 2(x ), a ≤x ≤b 内任意一点(x , y ), 将f (x , y , z )只看作z 的函数, 在区间[z 1(x , y ), z 2(x , y )]上对z 积分, 得到一个二元函数F (x , y ), ⎰=),(),(21),,(),(y x z y x z dz z y x f y x F ,然后计算F (x , y )在闭区域D 上的二重积分, 这就完成了f (x , y , z )在空间闭区域Ω上的三重积分.⎰⎰⎰⎰⎰=Dy x z y x z Dd dz z y x f d y x F σσ]),,([),(),(),(21⎰⎰⎰=bax y x y y x z y x z dy dz z y x f dx )()(),(),(2121]),,([,则σd dz z y x f dv z y x f Dy x z y x z ⎰⎰⎰⎰⎰⎰=Ω]),,([),,(),(),(21⎰⎰⎰=ba x y x y y x z y x z dy dz z y x f dx)()(),(),(2121]),,([ ⎰⎰⎰=ba y x z y x z x y x y dz z y x f dy dx ),(),()()(2121),,(.即⎰⎰⎰⎰⎰⎰=Ωb ay x z y x z x y x y dz z y x f dy dx dv z y x f ),(),()()(2121),,(),,(.其中D : y 1(x )≤ y ≤ y 2(x ), a ≤x ≤b . 它是闭区域Ω在xOy 面上的投影区域. 例1 计算三重积分dxdydz x ⎰⎰⎰Ω, 其中Ω为三个坐标面及平面x +2y +z =1所围成的闭区域.解 作图, 区域Ω可表示为:0≤z ≤1-x -2y , )1(210x y -≤≤, 0≤x ≤1. 于是⎰⎰⎰⎰⎰⎰---Ω=10210210x y x xdz dy dx dxdydz x ⎰⎰---=1210)21(xdy y x xdx⎰=+-=1032481)2(41dx x x x . 讨论: 其它类型区域呢?有时, 我们计算一个三重积分也可以化为先计算一个二重积分、再计算一个定积分. 设空间闭区域Ω={(x , y , z )|(x , y )∈D z , c 1≤ z ≤c 2}, 其中D z 是竖坐标为z 的平面截空间闭区域Ω所得到的一个平面闭区域, 则有⎰⎰⎰⎰⎰⎰=ΩzD c c dxdy z y x f dz dv z y x f ),,(),,(21.例2 计算三重积分dxdydz z ⎰⎰⎰Ω2, 其中Ω是由椭球面1222222=++c z b y a x 所围成的空间闭区域.解 空间区域Ω可表为:2222221cz b y a x -≤+, -c ≤ z ≤c .于是⎰⎰⎰⎰⎰⎰-Ω=cc Dzdxdy dz z dxdydz z 223222154)1(abc dz z c z ab cc ππ=-=⎰-.练习1. 将三重积分dxdydz z y x f I ⎰⎰⎰Ω=),,(化为三次积分, 其中(1)Ω是由曲面z =1-x 2-y 2, z =0所围成的闭区域.(2)Ω是双曲抛物面xy =z 及平面x +y -1=0, z =0所围成的闭区域. (3)其中Ω是由曲面z =x 2+2y 2及z =2-x 2所围成的闭区域. 2. 将三重积分dxdydz z y x f I ⎰⎰⎰Ω=),,(化为先进行二重积分再进行定积分的形式, 其中Ω由曲面z =1-x 2-y 2, z =0所围成的闭区域. 2. 利用柱面坐标计算三重积分设M (x , y , z )为空间内一点, 并设点M 在xOy 面上的投影P 的极坐标为P (ρ, θ ), 则这样的三个数ρ、θ 、z 就叫做点M 的柱面坐标, 这里规定ρ、θ 、z 的变化范围为: 0≤ρ<+∞, 0≤θ ≤2π , -∞<z <+∞. 坐标面ρ=ρ0, θ =θ 0, z =z 0的意义: 点M 的直角坐标与柱面坐标的关系:x =ρcos θ, y =ρsin θ, z =z . ⎪⎩⎪⎨⎧===zz y x θρθρsin cos柱面坐标系中的体积元素: dv =ρd ρd θdz . 简单来说, dxdy =ρd ρd θ , dxdydz =dxdy ⋅dz =ρd ρd θ dz .柱面坐标系中的三重积分:⎰⎰⎰⎰⎰⎰ΩΩ=dz d d z f dxdydz z y x f θρρθρθρ),sin ,cos (),,(.例3 利用柱面坐标计算三重积分⎰⎰⎰Ωzdxdydz , 其中Ω是由曲面z =x 2+y 2与平面z =4所围成的闭区域.解 闭区域Ω可表示为: ρ2≤z ≤4, 0≤ρ≤2, 0≤θ≤2π. 于是⎰⎰⎰⎰⎰⎰ΩΩ=dz d d z zdxdydz θρρ⎰⎰⎰=πρρρθ202042zdz d d ⎰⎰-=πρρρθ20204)16(21d d πρρπ364]618[2212062=-⋅=.3. 利用球面坐标计算三重积分设M (x , y , z )为空间内一点, 则点M 也可用这样三个有次序的数r 、ϕ、θ 来确定, 其中 r 为原点O 与点M 间的距离, ϕ为→OM 与z 轴正向所夹的角, θ为从正z 轴来看自x 轴按逆时针方向转到有向线段→OP 的角, 这里P 为点M 在xOy 面上的投影, 这样的三个数r 、ϕ 、θ 叫做点M 的球面坐标, 这里r 、ϕ、θ 的变化范围为0≤r <+∞, 0≤ϕ<π, 0≤θ ≤2π. 坐标面r =r 0, ϕ=ϕ0, θ=θ0的意义: 点M 的直角坐标与球面坐标的关系:x =r sin ϕcos θ, y =r sin ϕsin θ, z =r cos ϕ . ⎪⎩⎪⎨⎧===ϕθϕθϕcos sin sin cos sin r z r y r x球面坐标系中的体积元素: dv =r 2sin ϕdrd ϕd θ . 球面坐标系中的三重积分:θϕϕϕθϕθϕd drd r r r r f dv z y x f sin )cos ,sin sin ,cos sin (),,(2⎰⎰⎰⎰⎰⎰ΩΩ=. 例4 求半径为a 的球面与半顶角α为的内接锥面所围成的立体的体积. 解 该立体所占区域Ω可表示为: 0≤r ≤2a cos ϕ, 0≤ϕ≤α, 0≤θ≤2π.于是所求立体的体积为 ⎰⎰⎰⎰⎰⎰ΩΩ==θϕϕd drd r dxdydz V sin 2⎰⎰⎰=παϕϕϕθ20cos 202sin a dr r d d⎰⎰=αϕϕϕπcos 202sin 2a dr r d⎰=αϕϕϕπ033sin cos 316d a )cos 1(3443a a -=π. 提示: 球面的方程为x 2+y 2+(z -a )2=a 2, 即x 2+y 2+z 2=2az . 在球面坐标下此球面的方程为r 2=2ar cos ϕ, 即r =2a cos ϕ.§9. 4 重积分的应用元素法的推广:有许多求总量的问题可以用定积分的元素法来处理. 这种元素法也可推广到二重积分的应用中. 如果所要计算的某个量U 对于闭区域D 具有可加性(就是说, 当闭区域D 分成许多小闭区域时, 所求量U 相应地分成许多部分量, 且U 等于部分量之和), 并且在闭区域D 内任取一个直径很小的闭区域d σ时, 相应的部分量可近似地表示为f (x , y )d σ 的形式, 其中(x , y )在d σ内, 则称f (x , y )d σ 为所求量U 的元素, 记为dU , 以它为被积表达式, 在闭区域D 上积分: ⎰⎰=Dd y x f U σ),(,这就是所求量的积分表达式. 一、曲面的面积设曲面S 由方程 z =f (x , y )给出, D 为曲面S 在xOy 面上的投影区域, 函数f (x , y )在D 上具有连续偏导数f x (x , y )和f y (x , y ). 现求曲面的面积A .在区域D 内任取一点P (x , y ), 并在区域D 内取一包含点P (x , y )的小闭区域d σ, 其面积也记为d σ. 在曲面S 上点M (x , y , f (x , y ))处做曲面S 的切平面T , 再做以小区域d σ的边界曲线为准线、母线平行于z 轴的柱面. 将含于柱面内的小块切平面的面积作为含于柱面内的小块曲面面积的近似值, 记为dA . 又设切平面T 的法向量与z 轴所成的角为γ , 则 σγσd y x f y x f d dA yx ),(),(1cos 22++==,这就是曲面S 的面积元素.于是曲面S 的面积为 σd y x f y x f A y x D),(),(122++=⎰⎰,或 dxdy yz x z A D22)()(1∂∂+∂∂+=⎰⎰.设dA 为曲面S 上点M 处的面积元素, dA 在xOy 面上的投影为小闭区域d σ, M 在xOy 面上的投影为点P (x , y ), 因为曲面上点M 处的法向量为n =(-f x , -f y , 1), 所以 σσd y x f y x f d dA y x ),(),(1||22++==n . 提示: dA 与xOy 面的夹角为(n ,^ k ), dA cos(n ,^ k )=d σ, n ⋅k =|n |cos(n ,^ k )=1, cos(n ,^ k )=|n |-1.讨论: 若曲面方程为x =g (y , z )或y =h (z , x ), 则曲面的面积如何求? dydz z x y x A yzD ⎰⎰∂∂+∂∂+=22)()(1, 或 dzdx xy z y A zxD ⎰⎰∂∂+∂∂+=22)()(1. 其中D yz 是曲面在yOz 面上的投影区域, D zx 是曲面在zOx 面上的投影区域. 例1 求半径为R 的球的表面积.解 上半球面方程为222y x R z --=, x 2+y 2≤R 2.因为z 对x 和对y 的偏导数在D : x 2+y 2≤R 2上无界, 所以上半球面面积不能直接求出. 因此先求在区域D 1: x 2+y 2≤a 2 (a <R )上的部分球面面积, 然后取极限.dxdy y x R R a y x 222222--⎰⎰≤+⎰⎰-=πθ20022a r R rdr d R)(222a R R R --=π.于是上半球面面积为2222)(2lim R a R R R Ra ππ=--→.整个球面面积为 A =2A 1=4πR 2. 提示:222y x R x x z ---=∂∂, 222yx R y y z ---=∂∂, 22222)()(1y x R R y z x z --=∂∂+∂∂+.解 球面的面积A 为上半球面面积的两倍. 上半球面的方程为222y x R z --=, 而222y x R x x z ---=∂∂, 222yx R y y z ---=∂∂,所以 22)()(12222yz x z A R y x ∂∂+∂∂+=⎰⎰≤+dxdy yx R R R y x 2222222--=⎰⎰≤+⎰⎰-=πρρρθ200222R R d d R 20224 4R R R Rπρπ=--=.例2设有一颗地球同步轨道通讯卫星, 距地面的高度为h =36000km , 运行的角速度与地球自转的角速度相同. 试计算该通讯卫星的覆盖面积与地球表面积的比值(地球半径R =6400km).解 取地心为坐标原点, 地心到通讯卫星中心的连线为z 轴, 建立坐标系. 通讯卫星覆盖的曲面∑是上半球面被半顶角为α的圆锥面所截得的部分. ∑的方程为 222y x R z --=, x 2+y 2≤R 2sin 2α. 于是通讯卫星的覆盖面积为 ⎰⎰⎰⎰--=∂∂+∂∂+=xy xyD D dxdy yx R R dxdy yz x z A 22222)()(1.其中D xy ={(x , y )| x 2+y 2≤R 2sin 2α}是曲面∑在xOy 面上的投影区域. 利用极坐标, 得 )cos 1(222sin 022sin 02220απρρρπρρρθααπ-=-=-=⎰⎰⎰R d R R d R R d A R R . 由于hR R +=αcos , 代入上式得hR h R h R R R A +=+-=222)1(2ππ.由此得这颗通讯卫星的覆盖面积与地球表面积之比为%5.4210)4.636(21036)(24662≈⋅+⋅=+=h R h R A π. 由以上结果可知, 卫星覆盖了全球三分之一以上的面积, 故使用三颗相隔π32角度的通讯卫星就可以覆盖几乎地球全部表面. 二、质心设有一平面薄片, 占有xOy 面上的闭区域D , 在点P (x , y )处的面密度为ρ(x , y ), 假定μ(x , y )在D 上连续. 现在要求该薄片的质心坐标.在闭区域D 上任取一点P (x , y ), 及包含点P (x , y )的一直径很小的闭区域d σ(其面积也记为d σ), 则平面薄片对x 轴和对y 轴的力矩(仅考虑大小)元素分别为 dM x =y μ(x , y )d σ, dM y =x μ(x , y )d σ. 平面薄片对x 轴和对y 轴的力矩分别为 ⎰⎰=Dx d y x y M σμ),(, ⎰⎰=Dy d y x x M σμ),(.设平面薄片的质心坐标为) ,(y x , 平面薄片的质量为M , 则有 y M M x =⋅, x M M y =⋅ . 于是⎰⎰⎰⎰==DDy d y x d y x x M M x σμσμ),(),(, ⎰⎰⎰⎰==DD x d y x d y x y MMy σμσμ),(),(. 在闭区域D 上任取包含点P (x , y )小的闭区域d σ(其面积也记为d σ), 则 平面薄片对x 轴和对y 轴的力矩元素分别为 dM x =y μ(x , y )d σ, dM y =x μ(x , y )d σ. 平面薄片对x 轴和对y 轴的力矩分别为 ⎰⎰=Dx d y x y M σμ),(, ⎰⎰=Dy d y x x M σμ),(.设平面薄片的质心坐标为) ,(y x , 平面薄片的质量为M , 则有 y M M x =⋅, x M M y =⋅ .于是⎰⎰⎰⎰==DDyd y x d y x x MM x σμσμ),(),(, ⎰⎰⎰⎰==DDxd y x d y x y MM y σμσμ),(),(.提示: 将P (x , y )点处的面积元素d σ看成是包含点P 的直径得小的闭区域. D 上任取一点P (x , y ), 及包含的一直径很小的闭区域d σ(其面积也记为d σ), 则平面薄片对x 轴和对y 轴的力矩(仅考虑大小)元素分别为讨论: 如果平面薄片是均匀的, 即面密度是常数, 则平面薄片的质心(称为形心)如何求?求平面图形的形心公式为⎰⎰⎰⎰=DDd xd x σσ, ⎰⎰⎰⎰=DDd yd y σσ.例3 求位于两圆ρ=2sin θ 和ρ=4sin θ 之间的均匀薄片的质心.解 因为闭区域D 对称于y 轴, 所以质心) ,(y x C 必位于y 轴上, 于是0=x . 因为⎰⎰⎰⎰=DDd d yd θρθρσsin 2πρρθθθθπ7sin sin 4sin 220==⎰⎰d d ,πππσ31222=⋅-⋅=⎰⎰d D,所以3737===⎰⎰⎰⎰ππσσDD d yd y . 所求形心是)37 ,0(C .类似地, 占有空间闭区域Ω、在点(x , y , z )处的密度为ρ(x , y , z )(假宽ρ(x , y , z )在Ω上连续)的物体的质心坐标是 ⎰⎰⎰Ω=dv z y x x M x ),,(1ρ, ⎰⎰⎰Ω=dv z y x y My ),,(1ρ, ⎰⎰⎰Ω=dv z y x z Mz ),,(1ρ,其中⎰⎰⎰Ω=dv z y x M ),,(ρ.例4 求均匀半球体的质心.解 取半球体的对称轴为z 轴, 原点取在球心上, 又设球半径为a , 则半球体所占空间闭区可表示为Ω={(x , y , z )| x 2+y 2+z 2≤a 2, z ≥0} 显然, 质心在z 轴上, 故0==y x .⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩΩ==dv zdvdvdv z z ρρ83a =.故质心为)83,0 ,0(a . 提示: Ω: 0≤r ≤a , 20πϕ≤≤, 0≤θ≤2π.⎰⎰⎰⎰⎰⎰=Ωadr r d d dv 022020sin ϕθϕππ⎰⎰⎰=adr r d d 022020sin ππθϕϕ323a π=,⎰⎰⎰⎰⎰⎰⋅=Ωadr r r d d dv z 022020sin cos ϕϕθϕππ⎰⎰⎰=a dr r d d 0320202sin 21ππθϕϕ42214a ⋅⋅=π.三、转动惯量设有一平面薄片, 占有xOy 面上的闭区域D , 在点P (x , y )处的面密度为μ(x , y ), 假定ρ(x , y )在D 上连续. 现在要求该薄片对于x 轴的转动惯量和y 轴的转动惯量.在闭区域D 上任取一点P (x , y ), 及包含点P (x , y )的一直径很小的闭区域d σ(其面积也记为d σ), 则平面薄片对于x 轴的转动惯量和y 轴的转动惯量的元素分别为 dI x =y 2μ(x , y )d σ , dI y =x 2μ(x , y )d σ .整片平面薄片对于x 轴的转动惯量和y 轴的转动惯量分别为 σμd y x y I Dx ),(2⎰⎰=, σμd y x x I Dy ),(2⎰⎰=.例5 求半径为a 的均匀半圆薄片(面密度为常量μ)对于其直径边的转动惯量. 解 取坐标系如图, 则薄片所占闭区域D 可表示为 D ={(x , y )| x 2+y 2≤a 2, y ≥0}而所求转动惯量即半圆薄片对于x 轴的转动惯量I x ,⎰⎰⎰⎰⋅==DDx d d d y I θρρθρμσμ222sin⎰⎰⎰⋅==ππθθμρρθθμ0240032sin 4 sin d a d d a2441241Ma a =⋅=πμ, 其中μπ221a M =为半圆薄片的质量. 类似地, 占有空间有界闭区域Ω、在点(x , y , z )处的密度为ρ(x , y , z )的物体对于x 、y 、z 轴的转动惯量为 ⎰⎰⎰Ω+=dv z y x z y I x ),,()(22ρ,⎰⎰⎰Ω+=dv z y x x z I y ),,()(22ρ, ⎰⎰⎰Ω+=dv z y x y x I z ),,()(22ρ.例6 求密度为ρ的均匀球体对于过球心的一条轴l 的转动惯量.解 取球心为坐标原点, z 轴与轴l 重合, 又设球的半径为a , 则球体所占空间闭区域 Ω={(x , y , z )| x 2+y 2+z 2≤a 2}.所求转动惯量即球体对于z 轴的转动惯量I z . ⎰⎰⎰Ω+=dv y x I z )(22ρθϕϕθϕθϕρd drd r r r sin )sin sin cos sin (2222222+=⎰⎰⎰Ωθϕϕρd drd r 34sin ⎰⎰⎰Ω=dr r d d a ⎰⎰⎰=ππϕϕθρ200043 sin ρπ5158a =M a 252=, 其中ρπ334a M =为球体的质量.提示: x 2+y 2=r 2sin 2ϕcos 2θ+r 2sin 2ϕ sin 2θ=r 2sin 2ϕ.四、引力我们讨论空间一物体对于物体外一点P 0(x 0, y 0, z 0)处的单位质量的质点的引力问题. 设物体占有空间有界闭区域Ω, 它在点(x , y , z )处的密度为ρ(x , y , z ), 并假定ρ(x , y , z )在Ω上连续.在物体内任取一点(x , y , z )及包含该点的一直径很小的闭区域dv (其体积也记为dv ). 把这一小块物体的质量ρdv 近似地看作集中在点(x , y , z )处. 这一小块物体对位于P 0(x 0, y 0, z 0)处的单位质量的质点的引力近似地为),,(z y x dF dF dF d =F)))(,,(,))(,,(,))(,,((303030dv r z z z y x G dv r y y z y x G dv r x x z y x G---=ρρρ, 其中dF x 、dF y 、dF z 为引力元素d F 在三个坐标轴上的分量, 202020)()()(z z y y x x r -+-+-=, G 为引力常数. 将dF x 、dF y 、dF z 在Ω上分别积分, 即可得F x 、F y 、F z , 从而得F =(F x 、F y 、F z ).例7设半径为R 的匀质球占有空间闭区域Ω={(x , y , z )|x 2+y 2+z 2≤R 2). 求它对于位于点M 0(0, 0, a ) (a >R )处的单位质量的质点的引力.解 设球的密度为ρ0, 由球体的对称性及质量分布的均匀性知F x =F y =0, 所求引力沿z 轴的分量为dv a z y x a z G F z 2/32220])([-++-=⎰⎰⎰Ωρ ⎰⎰⎰--≤+-++-=R Rz R y x a z y x dxdy dz a z G 22222/32220])([)(ρ ⎰⎰⎰---+-=2202/322200])([)(z R R R a z d d dz a z G ρρρθρπ⎰-+----=RR dz a az R z a a z G )211)((2220ρπ ]2)(12[2220⎰-+--+-=R Ra az R d a z a R G ρπ )3222(2230aR R R G -+-=πρ 2203134a M G a R G -=⋅⋅-=ρπ, 其中0334ρπR M =为球的质量.上述结果表明:匀质球对球外一质点的引力如同球的质量集中于球心时两质点间的引力.。
同济大学高数第六版基本概念及公式总结(土木数学兴趣小组)
四川建院土木1301(数学兴趣小组)目录第一章函数与极限薚……………………………………………………………………第一节函数……………………………………………………………………………….. 第二节数列的极限………………………………………………………………………………….. 第三节函数的极限…………………………………………………………………………………第四节无穷小与无穷大…………………………………………………………………………….. 第五节极限四则运算法则……………………………………………………………………………第六节极限存在准则、两个重要极限………………………………………………………………第七节无穷小的比较…………………………………………………………………………………第八节函数的连续性与间断点………………………………………………………………………第九节连续函数的运算与初等函数的连续性…………………………………………………….. 第十节闭区间上连续函数的性质……………………………………………………………………第二章导数与微分………………………………………………………………………. 第一节导数的概念……………………………………………………………………………………. 第二节函数的求导法则………………………………………………………………………………第三节初等函数的求导问题…………………………………………………………………………. 双曲函数与反双曲函数的导数…………………………………………………………………………第四节高阶导数………………………………………………………………………………………第五节隐函数的导数、由参数方程所确定的函数的导数相关辩化率……………………………第六节函数的微分…………………………………………………………………………………….第三章中值定理与导数的应用…………………………………………………………第一节中值定理………………………………………………………………………………….. 第二节洛必达法则……………………………………………………………………………………第三节泰勒公式………………………………………………………………………………………第四节函数单调性的判定法…………………………………………………………………………第五节函数的极值与最值……………………………………………………………………………第六节曲线的凹凸与拐点……………………………………………………………………………第七节曲率……………………………………………………………………………………………第八节方程的近似解…………………………………………………………………………………第四章不定积分……………………………………………………………………….. 第一节不定积分的概念及其性质………………………………………………………………第二节不定积分的换元积分………………………………………………………………………第三节不定积分的分部积分法…………………………………………………………………….. 第四节几种特殊类型函数的积分……………………………………………………………………第五章定积分…………………………………………………………………………. 第一节定积分概念与性质…………………………………………………………………………第二节微积分基本定理………………………………………………………………………….. 第三节定积分换元积分法与分部积分法……………………………………………………..第四节广义积分……………………………………………………………………………..第六章定积分的应用……………………………………………………………….定积分的元素法……………………………………………………………………………………功水压力和引力…………………………………………………………………………………. 平均值……………………………………………………………………………………………..第七章空间解析几何与向量代数…………………………………………………. 第一节空间直角坐标系…………………………………………………………………………. 第二节向量及其加减法向量与数的乘法………………………………………………………第三节向量的坐标………………………………………………………………………………第四节数量积向量积混合积…………………………………………………………………. 第五节曲面及其方程……………………………………………………………………………第六节空间曲线及其方程………………………………………………………………………. 第七节平面及其方程…………………………………………………………………………….. 第八节空间直线及其方程………………………………………………………………………. 第九节二次曲面…………………………………………………………………………………第八章多元函数微分法及其应用…………………………………………………第一节多元函数的基本概念………………………………………………………………….第二节偏导数………………………………………………………………………………….第三节全微分………………………………………………………………………………….第四节多元复合函数的求导法则……………………………………………………………. 第五节隐函数的求导法则……………………………………………………………………第六节微分法在几何上的应用………………………………………………………………..第七节方向导数与梯度………………………………………………………………………..第八节多元函数的极值及其求法……………………………………………………………….第九章重积分………………………………………………………………………第一节二重积分的概念与性质…………………………………………………………….第二节二重积分的计算…………………………………………………………………………第三节二重积分的应用…………………………………………………………………………第四节三重积分的概念及其计算法……………………………………………………………. 第五节利用柱面坐标和球面坐标计算三重积分………………………………………………第十章曲线积分与曲面积分………………………………………………………第一节对弧长的曲线积分…………………………………………………………………….第二节对坐标的曲线积分…………………………………………………………………….第三节格林公式及其应用……………………………………………………………………. 第四节对面积的曲面积分……………………………………………………………………. 第五节对坐标的曲面积分……………………………………………………………………. 第六节高斯公式通量与散度………………………………………………………………第七节斯托克斯公式环流量与旋度………………………………………………………第十一章无穷级数………………………………………………………………第一节常数项级数的概念和性质………………………………………………………….. 第二节常数项级数的申敛法…………………………………………………………………. 第三节幂级数…………………………………………………………………………………. 第四节函数展开成幂级数……………………………………………………………………第五节函数的幂级数展开式的应用…………………………………………………………第七节傅里叶级数……………………………………………………………………………. 第八节正弦级数与余弦级数…………………………………………………………………. 第九节周期为2l的周期函数的傅里叶级数………………………………………………...第十二章微分方程……………………………………………………………….. 第一节微分方程的基本概念……………………………………………………………….. 第二节可分离变量的微分方程………………………………………………………………第三节齐次方程……………………………………………………………………………第四节一阶线性微分方程…………………………………………………………………第五节全微分方程……………………………………………………………………………第六节可降阶的高阶微分方程………………………………………………………………第七节高阶线性微分方程……………………………………………………………………第八节二阶常系数齐次线性微分方程………………………………………………….. 第九节二阶常系数非齐次线性微分方程……………………………………………………第十节欧拉方程………………………………………………………………………………第十一节微分方程的幂级数解法……………………………………………………………. 第十二节常系数线性微分方程组解法举例…………………………………………………第一章 函数与极限第一节 函 数教学目的:本节主要是复习高中阶段学过的集合以及函数的概念、性质;介绍邻域、分段函数、复合函数、初等函数的概念。
二重积分的概念及几何意义
若函数$f(x,y)$和$g(x,y)$在区域$D$ 上均可积,则有 $iint_{D}[f(x,y)+g(x,y)]dsigma=iint_ {D}f(x,y)dsigma+iint_{D}g(x,y)dsig ma$。
积分区域的可加性
简单区域的叠加
若复杂区域$D$可以划分为有限个简单区域(如矩形、三角形等)的并集,且函数在每个简单区域上 均可积,则二重积分可以通过在这些简单区域上分别进行积分并求和得到。
复杂区域的分解
对于复杂的不规则区域,可以通过引入辅助线将其划分为几个较简单的子区域,然后在每个子区域上 分别进行积分,最后将结果相加。这种方法在处理具有复杂边界或包含多个不同部分的积分区域时特 别有用。
03
二重积分的计算
直角坐标系下的二重积分
积分区域为矩形区域
通过对矩形区域进行划分,将二重积分转化为累次积分进行计算。
对于环形区域,可以通过对内外圆的极径 进行划分,将环形区域划分为若干个小扇 形区域,然后对每个小扇形区域进行积分 ,最后将结果相加得到二重积分的值。
二重积分的换元法
直角坐标与极坐标的互化
通过直角坐标与极坐标之间的互化公式,可以将直角坐标系下的二重积分转化为极坐标 系下的二重积分进行计算。
一般变换
对于一般的二重积分,可以通过变量代换的方法将其转化为更简单的形式进行计算。常 用的变量代换方法有极坐标代换、广义极坐标代换等。
积分的数乘性质
若函数$f(x,y)$在区域$D$上可积,则对于任意常数$k$,有 $iint_{D}kf(x,y)dsigma=kiint_{D}f(x,y)dsigma$。
可加性质
积分区域的可加性
若区域$D$可分成两个不相交的区域$D_1$和 $D_2$,且函数$f(x,y)$在$D_1$和$D_2$上均 可积,则有 $iint_{D}f(x,y)dsigma=iint_{D_1}f(x,y)dsigm a+iint_{D_2}f(x,y)dsigma$。
二重积分的概念及性质
二重积分的概念及性质前面我们已经知道了,定积分与曲边梯形的面积有关。
下面我们通过曲顶柱体的体积来引出二重积分的概念,在此我们不作详述,请大家参考有关书籍。
二重积分的定义设z=f(x,y)为有界闭区域(σ)上的有界函数:(1)把区域(σ)任意划分成n个子域(△σk)(k=1,2,3,…,n),其面积记作△σk(k=1,2,3,…,n);(2)在每一个子域(△σk)上任取一点,作乘积;(3)把所有这些乘积相加,即作出和数(4)记子域的最大直径d.如果不论子域怎样划分以及怎样选取,上述和数当n→+∞且d→0时的极限存在,那末称此极限为函数f(x,y)在区域(σ)上的二重积分.记作:即:=其中x与y称为积分变量,函数f(x,y)称为被积函数,f(x,y)dσ称为被积表达式,(σ)称为积分区域.关于二重积分的问题对于二重积分的定义,我们并没有f(x,y)≥0的限.容易看出,当f(x,y)≥0时,二重积分在几何上就是以z=f(x,y)为曲顶,以(σ)为底且母线平行于z轴的曲顶柱体的体积。
上述就是二重积分的几何意义。
如果被积函数f(x,y)在积分区域(σ)上连续,那末二重积分必定存在。
二重积分的性质(1).被积函数中的常数因子可以提到二重积分符号外面去.(2).有限个函数代数和的二重积分等于各函数二重积分的代数和.(3).如果把积分区域(σ)分成两个子域(σ1)与(σ2),即(σ)=(σ1)+(σ2),那末:(4).如果在(σ)上有f(x,y)≤g(x,y),那末:≤(5).设f(x,y)在闭域(σ)上连续,则在(σ)上至少存在一点(ξ,η),使其中σ是区域(σ)的面积.二重积分的计算法直角坐标系中的计算方法这里我们采取的方法是累次积分法。
也就是先把x看成常量,对y进行积分,然后在对x进行积分,或者是先把y看成常量,对x进行积分,然后在对y进行积分。
为此我们有积分公式,如下:或在这里我们可能会有这个问题:累次积分的上下限是怎么确定的呢?累次积分上下限的确定方法我们先来对区域作些补充说明:如果经过区域(σ)内任意一点(即不是区域边界上的点)作平行于y轴(或x 轴)的直线,且此直线交(σ)的边界不超过两点,那末称(σ)为沿y轴(x轴)方向的正规区域.如果(σ)即是沿y轴方向也是沿x轴方向的正规区域,那末(σ)就称为正规区域.下图所示的即为正规区域:关于累次积分上下限的取法如下所述:(1).如果(σ)为沿y轴方向的正规区域,那末二重积分可化为先对y再对x的累次积分.其中对y的积分下限是(σ)的下部边界曲线所对应的函数y1(x),积分上限是上部边界曲线所对应的函数y2(x).对x的积分下限与上限分别是(σ)的最左与最右点的横坐标a与b.(2).如果(σ)为沿x轴方向的正规区域,那末二重积分可化为先对x再对y的累次积分.其中对x的积分下限是(σ)的左部边界曲线所对应的函数x1(y),积分上限是右部边界曲线所对应的函数x2(y).对y的积分下限与上限分别是(σ)的最低与最高点的横坐标c与d.(3).如果(σ)为正规区域,那末累次积分可以交换积分次序。
高等教育出版社高等数学同济第六版下册第九章PPTD91基本概念
思考与练习
P61 题 2; 4; 5 (3), (5) ( 画图 ) ; 8 P129 题 3; *4
解答提示: P61 题 2. P61 题 4. P61 题 5(3).
定义域
P61 题 5(5). 定义域
称为二次齐次函数 .
P62 题 8. 间断点集 P129 题 3. 定义域
P129 题 *4. 令 y= k x ,
高等教育出版社高等数 学同济第六版下册第九
章PPTD91基本概念
2020年4月23日星期四
第一节
第九章
多元函数的基本概念
一、区域 二、多元函数的概念 三、多元函数的极限 四、多元函数的连续性
一、 区域
1. 邻域 点集
例如,在平面上,
在空间中,
称为点 P0 的 邻域.
(圆邻域)
(球邻域)
说明:若不需要强调邻域半径 ,也可写成
点 P0 的去心邻域记为
在讨论实际问题中也常使用方邻域, 因为方邻域与圆 邻域可以互相包含.
。
平面上的方邻域为
2. 区域 (1) 内点、外点、边界点
设有点集 E 及一点 P : • 若存在点 P 的某邻域 U(P) E ,
则称 P 为 E 的内点; • 若存在点 P 的某邻域 U(P)∩ E = ,
称 P 是 E 的聚点.
聚点可以属于 E , 也可以不属于 E (因为聚点可以为
E 的边界点 )
所有聚点所成的点集成为 E 的导集 .
(3) 开区域及闭区域
• 若点集 E 的点都是内点,则称 E 为开集;
• E 的边界点的全体称为 E 的边界, 记作E ;
• 若点集 E E , 则称 E 为闭集;
k 值不同极限不同 ! 在 (0,0) 点极限不存在 .
高等数学同济第六版上册课件10-1二重积分的概念
四、曲顶柱体体积的计算
z
设曲顶柱的底为
y 2(x)
D
(
x,
y)
1
(
x) a
y x
b
2
(
x)
y
D
任取 截面积为
平面
截柱体的
o a x0 b x y 1(x)
z y 2(x)
故曲顶柱体体积为
y
b
V D f (x, y) d a A(x)d x
c 1( y)
d
x 1(y)
y c
o
x 2(y)
x
内容小结
1. 二重积分的定义
n
D
f (x, y) d
lim
0 i1
f (i ,i ) i
(d dxdy)
2. 二重积分的性质 (与定积分性质相似)
3. 曲顶柱体体积的计算
二次积分法
思考与练习
1. 比较下列积分值的大小关系:
I2 xy d x d y
为D 的面积, 则
D1 d D d
5. 若在D上 f (x, y) (x, y) , 则
D f (x, y) d D (x, y) d
特别, 由于 f (x, y) f (x, y) f (x, y)
D f (x, y)d D f (x, y) d
6. 设
D 的面积为 ,
则有
cos y sin y 2
0
2
作业
• P136.
•
4(1,2),5(3,4)
D
b
[
2 (x) f (x,y) dy ]d x
a 1( x)
o a x0 b x y 1(x)
高数(同济第六版)下册多元函数的积分学及其应用知识点
第十章多元函数的积分学及其应用一、二重积分1.二重积分的概念�定义:设(,)f x y 是有界闭区域D 上的有界函数,“分割、近似、求和、取极限”:01(,)lim (,)n i iii D f x y d f λσξησ→==∆∑∫∫其中:D 为积分区域,(,)f x y 称为被积函数,d σ为面积元素。
�几何意义:当(,)0f x y ≥,(,)D f x y d σ∫∫表示以区域D 为底、以曲面(,)z f x y =为顶的曲顶柱体的体积。
�非均匀平面薄片的质量:(,)DM x y d µσ=∫∫。
2.二重积分的性质�性质1(线性性质).),(),()],(),([∫∫∫∫∫∫±=±DD D d y x g d y x f d y x g y x f σβσασβα�性质2(区域具有可加性)如果闭区域D 可被曲线分为两个没有公共内点的闭子区域1D 和2D ,则.),(),(),(21∫∫∫∫∫∫+=D D Dd y x f d y x f d y x f σσσ�性质3如果在闭区域D 上,σ,1),(=y x f 为D 的面积,则.1σσσ==⋅∫∫∫∫DD d d 几何意义:以D 为底、高为1的平顶柱体的体积在数值上等于柱体的底面积。
�性质4(单调性)如果在闭区域D 上,有),,(),(y x g y x f ≤则.),(),(∫∫∫∫≤DD d y x g d y x f σσ推论1.|),(|),(∫∫∫∫≤DD d y x f d y x f σσ推论2设m M ,分别是),(y x f 在闭区域D 上的最大值和最小值,σ为D 的面积,则.),(σσσM d y x f m D≤≤∫∫这个不等式称为二重积分的估值不等式。
�性质5(积分中值定理)如果函数(,)f x y D 上连续,σ是D 的面积,那么在D 上至少存在一点(,)ξη,使得(,)(,)Df x y d f σξησ=⋅∫∫。
二重积分的概念及性质
积分区域的可加性
该性质可以用于简 化复杂的积分区域, 将复杂区域分解为 简单区域进行计算。
如果D1和D2是平面上互不相交的可积区域,则 它们分别上的二重积分之和等于它们并集上的二 重积分。即,如果D=D1∪D2,则 ∫∫Df(x,y)dσ=∫∫D1f(x,y)dσ+∫∫D2f(x,y)dσ。
二重积分的概念
二重积分的计算方法是通过将区域划分为一系列小的矩形或平行四边 形,然后计算每个小区域的面积并求和。 二重积分是定积分的一种扩展,它涉及到两个自变量的积分。在二维 平面中,二重积分表示一个函数在某个区域上的面积。
二重积分的几何意义
如果函数在某个区域上取负值,那么二重积分表示该函数与该区 域围成的区域的面积的负值。 二重积分的几何意义是二维平面上的面积。具体来说,如果一个 函数在某个区域上非负,那么二重积分表示该函数与该区域围成 的面积。
得出结果
将所有小矩形的积分结果相加,得到整个矩形区 域上的二重积分值。
转换坐标 将被积函数从直角坐标转换为极坐标形式,即$x = rhocostheta$,$y = rhosintheta$。 分层积分 将极坐标下的二重积分拆分成两个累次积分,即先对角度积分再对极径积分。 逐个计算 对每个角度范围,计算其在极径上的积分值,并求和。 得出结果 将所有角度范围的积分结果相加,得到整个极坐标区域上的二重积分值。 极坐标下的二重积分计算
任意形状区域
对于任意形状的平面区域,可以通过分割成若干 个小区域,对每个小区域进行积分,然后将结果 相加得到总面积。
平面曲线段的长度计算
直线段
对于直线段,其长度即为该直线的方程在给定区间上的积分。
圆弧
高等数学第六版(同济版)第九章复习资料
高等数学第六版(同济版)第九章复习资料LT第九章 多元函数微分法及其应用引入:在上册书中,我们学习了一元函数微积分学,所讨论的对象都只有一个自变量的函数,而在实际应用中,研究的问题往往要涉及多方面的因素,反映在数量上就是一个变量要依赖几个自变量,即数学上的多元函数,从这节课开始,我们进入多元函数微积分学的学习阶段.先来学习多元函数微分学.由于从一元函数到二元函数,单与多的差异已能充分体现,我们由二元函数入手来研究多元函数微分学,然后把相关概念及性质推广到三元、四元直至n 元函数上去.第一节 多元函数的基本概念一、平面点集的相关概念1. 平面点集:),|}(),{(y x y x E =具有性质}P},|}),{(2R y R x y x R R R E ∈∈=⨯=⊂例如:}|||{}|}),{(222r OP P r y x y x C <=<+=,其中点P 表示点),(y x . 2. 邻域:2000),(R y x P ∈.(1). 邻域:})()()(),{(}||{),(20202000δδδ<-+-+-=<=z z y y x x y x P P P P U (2). 去心邻域:)(}||0{),(000P U P P P P U oo∧=<<=δδ 3. 坐标面上的点P 与平面点集E 的关系:22,R E R P ⊂∈ (1). 内点:若0>∃δ,使E P U ⊂),(δ,则称P 为E 的内点. (2). 外点:若0>∃δ,使Φδ=⋂E P U ),(,则称P 为E 的外点.(3). 边界点:若0>∀δ,Φδ≠⋂E P U ),(,且E P U ⊄),(δ,则称P 为E 的边界点.边界:E 的边界点的全体称为它的边界,记作E ∂. (4). 聚点:若0>∀δ,Φδ≠⋂E P U o),(,则称P 为E 的聚点.导集:E 的聚点的全体称为它的导集.注:1°. 若P 为E 的聚点,则P 可以属于E ,也可以不属于E .2°. 内点一定是聚点;外点一定不是聚点;边界点也不总是聚点,如孤立的边界点. 例如:}21),{(221≤+<=y x y x E ;)}0,0{(}21),{(222⋃≤+<=y x y x E . 4. 一些常用的平面点集:(1). 开集:若点集E 的点都是其内点,则称E 为开集.(2). 闭集:若点集E 的边界E E ⊂∂,则称E 为闭集. (开集加边界)(3). 连通集:若E 中任何两点都可用属于E 的折线连接,则称E 为连通集. (4). 开区域:连通的开集称为开区域,也称为区域. (5). 闭区域:开区域加上其边界称为闭区域.例如:}21),{(221≤+<=y x y x E 为区域. }21),{(222≤+≤=y x y x E 为闭区域. (6). 有界集:若0>∃r ,使),(r O U E ⊂,则称E 为有界集. (7). 无界集:若0>∀r ,使),(r O U E ⊄,则称E 为无界集.二、n 维空间:对取定的自然数n ,称n 元数组),,,(21n x x x 的全体为n 维空间,记为n R . 注:前述的邻域、区域等相关概念可推广到n 维空间. 三、多元函数的概念 1. 定义:.y x f z ↓↓↓=),(,或)(P f z =,其中D y x P ∈),(.因 映 自 变 变 量 射 量定义域:D .值 域:R D y x y x f z z D f ⊂∈==}),(),,({)(.注:可推广:n 元函数:),,,(21n x x x f u =,n n R D x x x ⊂∈),,,(21 . 例: 1.)arcsin(22y x z +=,}1),{(22≤+=y x y x D .2.)ln(y x z +=,}0),{(>+=y x y x D .2. 几何表示:函数),(y x f z =对应空间直角坐标系中的一张曲面:0),(),,(=-=y x f z z y x F . 四、二元函数的极限1.定义:设函数),(y x f 的定义域为D ,点),(000y x P 为D 的聚点,若R A ∈∃,0>∀ε,0>∃δ,),(),(0δP U D y x P o⋂∈∀,满足ε<-|),(|A y x f ,则称A 为),(y x f 当),(),(000y x P y x P →时的极限,记作A y x f y x y x =→),(lim ),(),(00,称之为),(y x f 的二重极限.例1. 设22221sin )(),(y x y x y x f ++=,求证0),(lim )0,0(),(=→y x f y x .证明:0>∀ε,要使不等式第二节 偏导数引入:在一元函数微分学中,我们研究了一元函数的变化率—导数,并利用导数研究了函数的性态.对于多元函数,我们也要讨论它的变化率,但由于多元函数的自变量不止一个,所以多元函数的变化率要比一元函数的变化率复杂得多.我们还是以二元函数为例来研究多元函数的变化率,先把二元函数中某一自变量暂时固定,再讨论二元函数关于另一个自变量的变化率,这就是数学上的偏导数. 一、偏导数的相关概念1. 偏导数:设函数),(y x f z =在点),(000y x P 的某邻域内有定义,把y 暂时固定在0y ,而x 在0x 处有增量x ∆时,z 相应地有增量),(),(0000y x f y x x f -+∆.若极限xy x f y x x f x ∆∆∆),(),(lim00000-+→存在,则称此极限值为函数),(y x f z =在点),(000y x P 处对x 的偏导数,记为00y y x x xz ==∂∂;0y y x x xf ==∂∂;00y y x x xz ==或),(00y x f x .注: 1°. 0),(),(),(lim),(00000000x x x x y x f x d dx y x f y x x f y x f =→=-+=∆∆∆.2°. 0),(),(),(lim),(00000000y y y y y x f yd dy y x f y y x f y x f =→=-+=∆∆∆.2. 偏导函数:若函数),(y x f z =在区域D 内每一点),(y x 处对x 或y 偏导数存在,则该偏导数称为偏导函数,也简称为偏导数,记为x z x f x z ,,∂∂∂∂或),(y x f x ;y z yfy z ,,∂∂∂∂或),(y x f y .注:可推广:三元函数),,(z y x f u =在点),,(z y x 处对x 的偏导数定义为xz y x f z y x x f z y x f x x ∆∆∆),,(),,(lim),,(0-+=→.例1. 求223y xy x z ++=在)2,1(处的偏导数. 解:先求偏导函数:y x x z 32+=∂∂,y x yz 23+=∂∂. 再求偏导数:821=∂∂==y x xz ,721=∂∂==y x yz .例2. 求y x z 2sin 2=的偏导数. 解:y x x z 2sin 2=∂∂,y x yz 2cos 22=∂∂. 例3. 求222z y x r ++=的偏导数. 解:rxz y x x x r =++=∂∂22222.由轮换对称性可知r y y r =∂∂,r z z r =∂∂. 3. 偏导数的几何意义(1). 偏导数),(00y x f x 是曲线⎩⎨⎧==0),(y y y x f z 在点)),(,,(00000y x f y x M 处的切线关于x 轴的斜率.(2). 偏导数),(00y x f y 是曲线⎩⎨⎧==0),(x x y x f z 在点)),(,,(00000y x f y x M 处的切线关于y 轴的斜率.4. 函数偏导数存在与函数连续的关系:函数偏导数存在与函数连续之间无必然的蕴含关系. (1). 函数),(y x f z =在点),(000y x P 处偏导数存在,但它在点),(000y x P 却未必连续.例如:函数⎪⎩⎪⎨⎧=+≠++==0,00,),(222222y x y x y x xy y x f z 在点)0,0(的两个偏导数都存在,即00lim )0,0()0,0(lim)0,0(00==-+=→→x x x x f x f f ∆∆∆∆, 00lim )0,0()0,0(lim)0,0(00==-+=→→y y y yf y f f ∆∆∆∆. 但二重极限),(lim )0,0(),(y x f y x →不存在,故),(y x f z =在点)0,0(不连续.(2). 函数),(y x f z =在点),(000y x P 连续,但它在点),(000y x P 处却未必存在偏导数.例如:函数22),(y x y x f z +==在点)0,0(连续,但它在点)0,0(对x 及y 的偏导数都不存在,这是因为:⎩⎨⎧<->==-+→→0,10,1||lim )0,0()0,0(lim00x x x x x f x f x x ∆∆∆∆∆∆∆∆, ⎩⎨⎧<->==-+→→0,10,1||lim )0,0()0,0(lim00y y y y y f y f x y ∆∆∆∆∆∆∆∆, 即),(y x f z =在点)0,0(对x 及y 的偏导数都不存在. 二、高阶导数1.二阶偏导数:若函数),(y x f z =对x 及y 的偏导数),(y x f x 及),(y x f y 对x 及y 的偏导数也存在,则称它们是函数),(y x f z =的二阶偏导数.记作:),(22y x f x z x z x xx =∂∂=⎪⎪⎭⎫ ⎝⎛∂∂∂∂; ),(22y x f y zy z y yy =∂∂=⎪⎪⎭⎫ ⎝⎛∂∂∂∂ ;(二阶纯偏导数) ),(2y x f y x z x z y xy =∂∂∂=⎪⎪⎭⎫ ⎝⎛∂∂∂∂;),(2y x f x y z y z x yx =∂∂∂=⎪⎪⎭⎫ ⎝⎛∂∂∂∂. (二阶混合偏导数) (二阶纯偏导数)注:1°. 一般地,二元函数),(y x f z =的1-n 阶偏导数的偏导数称为它的n 阶偏导数.2°. 二阶以及二阶以上的偏导数统称为高阶导数. 3°. 二元函数),(y x f z =的n 阶偏导数至多有n 2个. 例4. 设13323+--=xy xy y x z ,求它的二阶偏导数. 解:y y y x x z --=∂∂32233;x xy y x yz --=∂∂2392; 2226xy x z =∂∂;xy x yz 182322-=∂∂;196222--=∂∂∂y y x yx z;196222--=∂∂∂y y x xy z.总结:从这一例题,我们看到:x y zy x z ∂∂∂=∂∂∂22,即两个二阶混合偏导数相等,与求导顺序无关.那是不是每个二元函数都有这样的相等的二阶混合偏导数呢?我们说不是的,例如:⎪⎩⎪⎨⎧=+≠++-==0,00,),(22222222y x y x y x y x xy y x f z ,在点)0,0(,有)0,0()0,0(yx xy f f ≠,事实上,yf y f f x x y xy ∆∆∆)0,0()0,0(lim)0,0(0-+=→;xf x f f y y x yx ∆∆∆)0,0()0,0(lim)0,0(0-+=→.而0)0,0()0,0(lim)0,0(0=-+=→xf x f f x x ∆∆∆,0)0,0()0,0(lim)0,0(0=-+=→y f y f f y y ∆∆∆, y xy x y x yx x y f y x f y f x x x -=+-⋅=-+=→→∆∆∆∆∆∆∆∆222200)()(lim ),0(),0(lim ),0(,x y y x y x x y y x f y x f x f y y y =+-⋅=-+=→→∆∆∆∆∆∆∆∆222200)()(lim )0,()0,(lim )0,(.于是,1lim )0,0()0,0(lim)0,0(00-=-=-+=→→yyy f y f f y x x y xy ∆∆∆∆∆∆, 1lim)0,0()0,0(lim)0,0(00==-+=→→xxxf x f f x y y x yx ∆∆∆∆∆∆,即)0,0()0,0(yx xy f f ≠.那么满足什么条件得二元函数的两个二阶混合偏导数与求导顺序无关呢?有下面的定理: 2. 二阶混合偏导数的性质定理:若函数),(y x f z =的两个二阶混合偏导数),(y x f xy 与),(y x f yx 在区域D 内连续,则它们在D 内必相等,即),(),(y x f y x f yx xy =.注:1°. 可推广:高阶混合偏导数在连续的条件下与求导顺序无关.2°. 一般地,若二元函数),(y x f z =的高阶混合偏导数都连续,则),(y x f z =的n 阶偏导数只有1+n 个.第三节 全微分一、全微分的相关概念1. 偏增量:称),(),(y x f y x x f z x -+=∆∆为函数),(y x f z =对x 的偏增量;称),(),(y x f y y x f z y -+=∆∆为函数),(y x f z =对y 的偏增量.2. 偏微分:称x y x f x ∆),(与y y x f y ∆),(为),(y x f z =对x 及y 的偏微分. 注:x y x f y x f y x x f x ∆∆),(),(),(≈-+,y y x f y x f y y x f y ∆∆),(),(),(≈-+.但在实际应用中,往往要知道函数的全面的变化情况,即当自变量有微小增量x ∆、y ∆时,相应的函数增量z ∆与自变量的增量x ∆、y ∆之间的依赖关系,这涉及到函数的全增量. 3. 全增量:称),(),(y x f y y x x f z -++=∆∆∆为函数),(y x f z =在点),(y x P 对应于自变量增量x ∆、y ∆的全增量.一般来讲,计算全增量z ∆是比较困难的,我们总希望像一元函数那样,利用x ∆、y ∆的线性函数来近似代替函数的全增量z ∆,为此,引入了全微分.4. 全微分:若函数),(y x f z =在点),(y x P 的某领域内有定义,且在),(y x P 的全增量),(),(y x f y y x x f z -++=∆∆∆可表示为)(ρ∆∆∆o y B x A z ++=,其中A 、B 不依赖于x ∆、y ∆,而仅与x 、y 有关,22)()(y x ∆∆ρ+=,则称),(y x f z =在点),(y x P 可微分,而称y B x A ∆∆+ 为),(y x f z =在点),(y x P 的全微分,记作dz ,即y B x A dz ∆∆+=.若),(y x f z =在区域D 内每一点都可微分,则称),(y x f z =在D 内可微分. 注:)(ρ∆o z dz -=.我们知道,当一元函数)(x f y =在点x 的微分x A dy ∆=存在时,)('x f A =,那么,当二元函数),(y x f z =在点),(y x P 的全微分y B x A dz ∆∆+=存在时,A 、B 又为何值呢?下面讨论二元函数可微分与连续、可微分与偏导数存在的关系,从中得到A 、B 的值.二、二元函数可微分与偏导数存在、可微分与连续的关系 1.函数可微分的必要条件定理1.若函数),(y x f z =在点),(y x P 可微分,则它在点),(y x P 的两个偏导数),(y x f x 及),(y x f y 必定存在,且),(y x f z =在点),(y x P 的全微分dy y x f dx y x f dz y x ),(),(+=.证明:由于),(y x f z =在点),(y x P 可微分,则有)(ρ∆∆∆o y B x A z ++=,其中22)()(y x ∆∆ρ+=,当0=y ∆时,有|)(|),(),(x o x A y x f y x x f z x ∆∆∆∆+=-+=,从而A xx o x A x y x f y x x f x x =+=-+→→∆∆∆∆∆∆∆|)(|lim ),(),(lim00, 即),(y x f A x =,同理可得),(y x f B y =,于是y y x f x y x f dz y x ∆∆),(),(+=.特殊地,令x y x f =),(,有1),(=y x f x ,0),(=y x f y ,从而有x dx ∆=,同理令y y x f =),(,有0),(=y x f x ,1),(=y x f y ,从而有y dy ∆=.于是有dy y x f dx y x f dz y x ),(),(+=,也称之为二元函数微分学的叠加原理.注:定理说明:函数),(y x f z =可微分,),(y x f z =一定可偏导,且全微分可用偏导数表示. 但反之未必,即偏导数存在,函数),(y x f z =未必可微分.例如:⎪⎩⎪⎨⎧=+≠++==0,00,),(222222y x y x y x xy y x f z 在点)0,0(处两个偏导数都存在,且)0,0()0,0(y x f f =,但),(y x f z =在点)0,0(却不可微分.事实上,假设),(y x f z =在点)0,0(可微分,则y y x f x y x f dz y x ∆∆),(),(+=,又)(ρ∆o dz z +=,从而0→-ρ∆dzz ,当0→ρ时. 而22)()(0)0,0()0,0(y x yx f y x f dz z ∆∆∆∆∆∆∆+⋅=-+++=-,有222)0,0(),(0))()((lim),(),(limy x yx x y x f y x x f y x x ∆∆∆∆∆∆∆∆∆+⋅=-+→→不存在,更谈不上等于0,从而假设不成立,即),(y x f z =在点)0,0(不可微分. 2. 函数可微分的必要条件定理2若函数),(y x f z =在点),(y x P 可微分,则它在点),(y x P 连续.证明:由于),(y x f z =在点),(y x P 可微分,有)(ρ∆∆∆o y B x A z ++=,其中22)()(y x ∆∆ρ+=,于是有,0lim 0=→z ∆ρ.又),(y x f z =的全增量为),(),(y x f y y x x f z -++=∆∆∆,从而0),(),(lim )0,0(),(=-++→y x f y y x x f y x ∆∆∆∆,即),(),(lim)0,0(),(y x f y y x x f y x =++→∆∆∆∆,这说明),(y x f z =在点),(y x P 连续.注:函数连续,未必可微分.例如:函数22),(y x y x f z +==在点)0,0(连续,但由于偏导数不存在,从而不可微分. 3. 函数可微分的充分条件定理3若函数),(y x f z =的偏导数),(y x f x 与),(y x f y 在点),(y x 都连续,则),(y x f z =在点),(y x 可微分.注:反之未必.例如:⎪⎩⎪⎨⎧=+≠+++==0,00,1sin )(),(22222222y x y x y x y x y x f z 在点)0,0(可微分,但),(y x f x 与),(y x f y 在点)0,0(都不连续.(1).先说明),(y x f z =在点)0,0(可微分. 设0)0,0()0,0(),(=+=y f x f y x y x ∆∆∆∆ϕ,因为01sin lim )0,0()0,(lim)0,0(2200==-=→→xx x xf x f f x x x ,01sinlim )0,0(),0(lim)0,0(2200==-=→→yy y yf y f f y y y , 令2222)()(1sin])()[()0,0()0,0(y x y x f y x f u ∆∆∆∆∆∆∆++=-++=,由于01sinlim ),(lim2200==-→→ρρρρ∆∆ϕ∆ρρy x u ,其中22)()(y x ∆∆ρ+=,于是)()0,0()0,0()(),(ρ∆∆ρ∆∆ϕ∆o y f x f o y x u y x ++=+=,由全微分的定义知),(y x f z =在)0,0(可微分.(2). 再说明偏导数),(y x f x 及),(y x f y 在点)0,0(不连续. 易知 0,1cos 21sin2),(22222222≠+++-+=y x yx y x x y x x y x f x , 由于⎪⎭⎫ ⎝⎛-==→→=→2200)0,0(),(21cos 121sin 2lim ),(lim ),(limx x x x x x f y x f x x x x xy y x 不存在,从而),(y x f x 在点)0,0(不连续.同理可知)0(1cos 21sin2),(22222222≠+++-+=y x yx y x y y x y y x f y 在点)0,0(也不连续. 例1. 计算函数22y y x z +=的全微分. 解:dy y x xydx dy yzdx x z dz )2(22++=∂∂+∂∂=. 例2. 计算函数xy e z =在点)1,2(处的全微分. 解:由于xy xy xe y z ye x z =∂∂=∂∂,,有2122122,e yz e xz y x y x =∂∂=∂∂====,所以dy e dx e dz y x 22122+===.例3. 计算yz e yx u ++=2sin 的全微分. 解: dz ye dy ze y dx dz z u dy y u dx x u du yz yz +⎪⎭⎫ ⎝⎛++=∂∂+∂∂+∂∂=2cos 21.第四节 多元复合函数的求导法则一、一元函数与多元函数复合的情形定理1.若函数)(t u ϕ=及)(t v ψ=在点t 都可导,函数),(v u f z =在对应点),(v u 具有连续偏导数,则复合函数)](),([t t f z ψϕ=在点t 可导,且dtdv v z dt du u z dt dz ⋅∂∂+⋅∂∂=.(全导数公式) 注:可推广:),,(ωv u f z =,)(t u ϕ=,)(t v ψ=,)(t ωω=复合而成的函数)](),(),([t t t f z ωψϕ=在点t 可导,且dtd z dt dv v z dt du u z dt dz ωω⋅∂∂+⋅∂∂+⋅∂∂=. 二、多元函数与多元函数复合的情形定理2. 若函数),(y x u ϕ=及),(y x v ψ=在点),(y x 具有对x 及y 的偏导数,函数),(v u f z =在对应点),(v u 具有连续偏导数,则复合函数)],(),,([y x y x f z ψϕ=在点),(y x 的两个偏导数都存在,且xvv z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂;y v v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂. 注:可推广:由),,(ωv u f z =,),(y x u ϕ=,),(y x v ψ=,),(y x ωω=复合而成的函数)],(),,(),,([y x y x y x f z ωψϕ=在点),(y x 两个偏导数都存在,且xz x v v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂+∂∂⋅∂∂=∂∂ωω;y z y v v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂+∂∂⋅∂∂=∂∂ωω. 三、其它情形1. 函数),(y x u ϕ=在点),(y x 对x 及y 的偏导数都存在,函数及)(y v ψ=在点t 可导,),(v u f z =在点),(v u 具有连续偏导数,则复合函数]),,([y y x f z ϕ=在点),(y x 的两个偏导数都存在,且xuu z v z x u u z dx dv v z x u u z x z ∂∂⋅∂∂=⋅∂∂+∂∂⋅∂∂=⋅∂∂+∂∂⋅∂∂=∂∂0; dydvv z y u u z y z ⋅∂∂+∂∂⋅∂∂=∂∂. 2. 函数),(y x u ϕ=在点),(y x 具有对x 及y 的偏导数,),,(y x u f z =在点),,(y x u 具有连续偏导数,则复合函数],),,([y x y x f z ϕ=在点),(y x 的两个偏导数都存在,且1⋅∂∂+∂∂⋅∂∂=⋅∂∂+⋅∂∂+∂∂⋅∂∂=∂∂xf x u u f dx dy y f dx dx x f x u u f x z ; 1⋅∂∂+∂∂⋅∂∂=⋅∂∂+⋅∂∂+∂∂⋅∂∂=∂∂yf y u u f dy dy y f dy dx x f y u u f y z . 例1. 设v e z u sin =,而xy u =,y x v +=,求xz∂∂及y z ∂∂.解:)]cos()sin([1cos sin y x y x y e v e y v e xv v z x u u z x z xy u u +++=⋅+⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂; )]cos()sin([1cos sin y x y x x e v e x v e yv v z y u u z y z xy u u +++=⋅+⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂. 例2.设222),,(z y xe z y xf u ++==,而y x z sin 2=,求xu ∂∂及y u ∂∂. 解:xzz f dx dy y f dx dx x f x u ∂∂⋅∂∂+⋅∂∂+⋅∂∂=∂∂ yx y xz y xz y xe y x x y x ze xe 2422222222sin 22)sin 21(2sin 222+++++++=⋅+=;yz z f dy dx x f dx dy y f y u ∂∂⋅∂∂+⋅∂∂+⋅∂∂=∂∂ yx y xz y xz y xe y y x y y x ze ye 2422222222sin 42)cos sin (2cos 22+++++++=⋅+=.例3. 设t uv z sin +=,而t e u =,t v cos =,求求导数dtdz . 解:t t u ve dtdt t z dt dv v z dt du u z dt dz t cos sin +-=⋅∂∂+⋅∂∂+⋅∂∂= tt t e t t e t e t t t cos )sin (cos cos sin cos +-=+-=.四、全微分形式不变性:若函数),(v u f z =具有连续偏导数,则有全微分dv vz du u z dt dz ∂∂+∂∂=.若函数),(y x u ϕ=及),(y x v ψ=也具有连续偏导数,则复合函数)],(),,([y x y x f z ψϕ=的全微分为dy y z dx x z dt dz ∂∂+∂∂=,有dy yzdx x z dv v z du u z dt dz ∂∂+∂∂=∂∂+∂∂=,称此性质为全微分形式不变性. 事实上:dy y z dx x z dt dz ∂∂+∂∂=dy y v v z y u u z dx x v v z x u u z ⎪⎪⎭⎫ ⎝⎛∂∂⋅∂∂+∂∂⋅∂∂+⎪⎭⎫⎝⎛∂∂⋅∂∂+∂∂⋅∂∂= ⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂∂=dy y v dx x u v z dy y u dx x u u z dv v z du uz∂∂+∂∂=. 例4. 利用全微分形式不变性求xu∂∂与y u ∂∂,其中v e z u sin =,xy u =,y x v +=. 解:由于vdv e vdu e v e d dz u u u cos sin )sin (+==, 而 xdy ydx xy d du +==)(,dy dx y x d dv +=+=)(, 于是dy v e x v e dx v e y v e dz u u u u )cos sin ()cos sin (+⋅++⋅=,即dy y x y x x e dx y x y x y e dy yzdx x z xy xy )]cos()sin([)]cos()sin([+++++++=∂∂+∂∂, 比较两端dx 、dy 的系数得:)]cos()sin([y x y x y e xzxy +++=∂∂,)]cos()sin([y x y x x e xzxy +++=∂∂.第五节 隐函数的求导公式一、隐函数:称对应关系不明显,而是隐含在方程(方程组)中的函数(函数组)为由方程(方程组)确定的隐函数(隐函数组).注:并不是每一个方程都能确定一个隐函数,例如:01242=+++z y x . 二、隐函数存在定理定理1.若函数),(y x F 在点),(00y x P 的某一邻域内具有连续偏导数,且0),(00=y x F ,0),(00≠y x F y ,则方程0),(=y x F 在点),(00y x P 的某一邻域内恒能唯一确定一个连续可导的函数)(x f y =,满足)(00x f y =,且yx F F dx dy -=. 注:若),(y x F 的二阶偏导数也连续,则有 dxdy F F y dx dx F F x dx y d y x y x ⎪⎪⎭⎫ ⎝⎛-∂∂+⎪⎪⎭⎫ ⎝⎛-∂∂=22---=xyy xyx y xx F F F F F F 2322y y x xy y xx F F F F F F +--=.定理2. 若函数),,(z y x F 在点),,(000z y x P 的某一邻域内具有连续偏导数,且0),,(000=z y x F ,0),,(000≠z y x F z ,则方程0),,(=z y x F 在点),,(000z y x P 的某一邻域内恒能唯一确定一个连续且具有连续偏导数的函数),(y x f z =,满足),(000y x f z =,且zx F Fx z -=∂∂,z y F F y z -=∂∂. 例1. 设0122=-+y x ,求dxdy及22dx y d .解:令1),(22-+=y x y x F ,则x F x 2=,y F y 2=,从而yxF F dx dy y x -=-=. 33222221'yy x y y xy y y x dx d dx y d -=+-=--=⎪⎪⎭⎫ ⎝⎛-=. 例2.设04222=-++z z y x ,求22xz∂∂.解:设z z y x z y x F 4),,(222-++=,则x F x 2=,42-=z F z ,于是zx F F x z z x -=-=∂∂2,从而 3222222)2()2()2(2)2()2()2(z x z z z x x z z x z x z x z -+-=--⋅+-=-⎪⎭⎫ ⎝⎛∂∂---=∂∂.定理3. 若函数),,,(v u y x F 与),,,(v u y x G 在点),,,(0000v u y x P 的某一邻域内具有对各个变量的连续偏导数,又0),,,(0000=v u y x F ,0),,,(0000=v u y x G ,且函数行列式vu v uG G F F v u G F J =∂∂=),(),(在点),,,(0000v u y x P 不等于零,则方程组⎩⎨⎧==0),,,(0),,,(v u y x G v u y x F 在点),,,(0000v u y x P 的某一邻域内恒能确定唯一一组连续且具有连续偏导数的函数组⎩⎨⎧==),(),(y x v v y x u u ,且v u v u v xvxG G F F G G F F v x G F J x u -=∂∂-=∂∂),(),(1,vuv u xu x uG G F F G G F F x u G F J x v -=∂∂-=∂∂),(),(1; vuv u v y v yG G F F G G F F v y G F J y u -=∂∂-=∂∂),(),(1,vuv u y uy u G G F F G G F F y u G F J y v -=∂∂-=∂∂),(),(1.例3. 设0=-yv xu ,1=+xv yu ,求xu ∂∂、y u ∂∂、xv∂∂、和y v ∂∂.解:设方程组⎩⎨⎧=+=-1xv yu yv xu ,两端对x 求导得:⎪⎪⎩⎪⎪⎨⎧=+∂∂+∂∂=∂∂-∂∂+00v x v x x u y x v y x u x u 或⎪⎪⎩⎪⎪⎨⎧-=∂∂+∂∂-=∂∂-∂∂v x v x xu y u xv y x u x , 在022≠+=-=y x xyy x J 的条件下,有22y x yv xu x y y x x v yu x u ++-=-----=∂∂,22y x xvyu xy y x v y ux x v +--=----=∂∂;同理可得22y x yu xv y u +-=∂∂,22y x yvxu y v ++-=∂∂.第六节 多元函数微分学的几何应用一、一元向量值函数及其导数1. 一元向量值函数的定义: )(t f r =,D t ∈(数集),n R r ∈. 注:1°. 在3R 中,))(),(),(()()()()(321321t f t f t f k t f j t f i t f t f r =++==.2°. 向量值函数)())(),(),(()(321D t t f t f t f t f r ∈==称为曲线⎪⎩⎪⎨⎧===)()()(:321t f z t f y t f x Γ的向量方程.2. 一元向量值函数的极限:设向量值函数)(t f 在点0t 的某一去心邻域内有定义,若存在常向量0r ,0>∀ε,0>∃δ,t ∀:满足δ<-<||00t t ,总有ε<-|)(|0r t f ,则称0r 为)(t f 当0t t → 时的极限,记作0)(lim 0r t f t t =→.注:)(lim 0t f t t →存在⇔)(lim 10t f t t →、)(lim 20t f t t →、)(lim 30t f t t →都存在.⎪⎭⎫ ⎝⎛=→→→→)(lim ),(lim ),(lim )(lim 3210000t f t f t f t f t t t t t t t t . 3. 一元向量值函数的连续性:设向量值函数)(t f 在点0t 的某一邻域内有定义,若)()(lim 00t f t f t t =→,则称向量值函数)(t f 在点0t 连续.注:)(t f 在点0t 连续⇔)(1t f 、)(2t f 、)(3t f 点0t 连续.4.一元向量值函数的导数(导向量):设向量值函数)(t f r =在点0t 的某一邻域内有定义,若tt f t t f t r t t ∆∆∆∆∆∆)()(lim lim0000-+=→→存在,则称此极限值为)(t f 在点0t 的导数或导向量,记作)('t f 或x t dtr d =.注:1°. )(t f 在点0t 可导⇔)(1t f 、)(2t f 、)(3t f 点0t 都可导.k t f j t f i t f t f )()()()(''3'2'1++=.2°. 一元向量值函数的导向量的几何意义:trt f t ∆∆∆00lim)('→=是向量值函数)(t f r =的终端曲线Γ在点)(0t M 处的一个切向量,其指向与t 的增长方向一致.例1.设k t j t i t t f ++=)(sin )(cos )(,求)(lim 4/t f t π→.解:k t j t i t t f t t t t )lim ()sin lim ()cos lim ()(lim 4/4/4/4/ππππ→→→→++=k j i 42222π++=. 例2.设空间曲线Γ的向量方程为R t t t t t t f r ∈--+==),62,34,1()(22,求曲线Γ在点20=t 相应的点处的单位切向量.解:由于)64,4,2()('-=t t t f ,有)2,4,4()2('=f ,进而6244|)2('|222=++=f ,于是⎪⎭⎫⎝⎛==31,32,32)2,4,4(611n 为指向与t 的增长方向一致的单位切向量.⎪⎭⎫⎝⎛---=31,32,322n 为指向与t 的增长方向相反的单位切向量.二、空间曲线的切线与法平面1. 参数式情形:设空间曲线Γ的参数方程为⎪⎩⎪⎨⎧===)()()(t z t y t x ωψϕ,],[βα∈t ,假设)(t ϕ、)(t ψ以及)(t ω在],[βα上可导,且三个导数不同时为零.(1). 切线:曲线Γ上的一点),,(000z y x M 处的切线方程为:)(')(')('000t z z t y y t x x ωψϕ-=-=-,参数0t 对应点),,(000z y x M .推导:由于曲线Γ的参数方程为⎪⎩⎪⎨⎧===)()()(t z t y t x ωψϕ,记向量值函数))(),(),(()(t t t t f ωψϕ=,由向量值函数导数的几何意义知:向量)('),('),('()('0000t t t t f T ωψϕ==即为曲线Γ在其上的点),,(000z y x M 处的一个切向量,从而曲线Γ在其上的点),,(000z y x M 处的切线方程为:)(')(')('000000t z z t y y t x x ωψϕ-=-=-. (2). 法平面:通过曲线Γ上的点),,(000z y x M 而与曲线Γ在点M 处的切线垂直的平面方程称为曲线Γ在点M 处的法平面,方程为0))(('))(('))(('000000=-+-+-z z t y y t x x t ωψϕ.其中法向量为))('),('),('()('0000t t t t f T ωψϕ==.2. 特殊式情形:设空间曲线Γ的方程为⎩⎨⎧==)()(x z x y ψϕ,且)(x ϕ、)(x ψ在点0x x =处可导,曲线Γ的方程可改写为⎪⎩⎪⎨⎧===)()(x z x y x x ψϕ,x 为参数,从而曲线Γ在点),,(000z y x M 处的切线与法平面方程分别为: (1). 切线方程:)(')('100000x z z x y y x x ψϕ-=-=-. (2). 法平面方程:0))(('))((')(00000=-+-+-z z x y y x x x ψϕ.3. 一般式(隐函数)情形:设曲线Γ的方程为⎩⎨⎧==0),,(0),,(z y x G z y x F ,),,(000z y x M 为曲线Γ上的一点,又设F 、G 有对各个变量的连续偏导数,且0),(),(≠∂∂Mz y G F ,这时方程组在点),,(000z y x M 的某一邻域内确定了一组隐函数⎩⎨⎧==)()(x z x y ψϕ,从而曲线Γ的参数方程为⎪⎩⎪⎨⎧===)()(x z x y xx ψϕ,x 为参数,于是切向量为))('),(',1(00x x T ψϕ=⎪⎪⎭⎫ ⎝⎛=M z yzy Myxy x Mzyz y Mx z x z G G F F G G F F G G F F G G F F ,,1 ⎪⎪⎭⎫ ⎝⎛=M yxy x M x zxzM z y z y Mzyzy G G F F G G F FG G F F G G F F ,,1. (1). 切线方程:)(')('100000x z z x y y x x ψϕ-=-=-. (2). 法平面方程:0))(('))((')(00000=-+-+-z z x y y x x x ψϕ.例3. 求曲线⎩⎨⎧=++=++06222z y x z y x 在点)1,2,1(-处的切线与法平面方程.解:在方程组⎩⎨⎧=++=++06222z y x z y x 两端对x 求导,得⎪⎪⎩⎪⎪⎨⎧=++=++010222dx dz dx dy dx dz z dx dy y x ,整理得⎪⎪⎩⎪⎪⎨⎧-=+-=+1dxdz dx dy x dxdz z dx dyy , 于是z y xz z y z x dx dy --=--=1111,0)1,2,1(=-dxdy;z y y x z y xy dx dz --=--=1111,1)1,2,1(=-dxdz ,故切向量为)1,0,1(=T ,从而所求切线方程为:110211--=+=-z y x ,或⎪⎩⎪⎨⎧-=--=-21111y z x .法平面方程为0)1()2(0)1(=--++-z y x 或0=-z x .三、曲面的切平面与法线 1.定义(1). 切平面:若曲面∑上通过点M 的一切曲线在点M 的切线都在同一个平面上,则称此平面为曲面∑在点M 的切平面.(2). 法线:通过点M 且与切平面垂直的直线称为曲面∑在点M 的法线. 2. 切平面与法线方程(1). 一般式情形:设曲面∑的方程为0),,(=z y x F ,点),,(000z y x M 为其上一点,且函数),,(z y x F 的偏导数在点M 连续.切平面方程:0))(())(())((000=-+-+-z z M F y y M F x x M F z y x ; 法线方程:)()()(000M F z z M F y y M F x x z y x -=-=-. 推导:在曲面∑上过点M 任意引一条曲线Γ,设其参数方程为⎪⎩⎪⎨⎧===)()()(t z t y t x ωψϕ,且函数)(t x ϕ=、)(t y ψ=以及)(t z ω=在0t t =都可导,0t t =对应点),,(000z y x M ,有方程0))(),(),((=t t t F ωψϕ, 两端对x 求导,在0t t =处,有0)('),,()('),,,()('),,(000000000000=++t z y x F t z y x F t z y x F z y x ωψϕ. 记()),,(),,,(),,,(000000000z y x F z y x F z y x F N z y x =.又))('),('),('(000t t t T ωψϕ=为曲线Γ在点),,(000z y x M 处的切向量,由上式可知0=⋅T N ,即曲面∑上通过点),,(000z y x M 的任意一条曲线的切向量都垂直于同一个向量,从而这些切线都在同一平面上,即曲面∑在点),,(000z y x M 的且平面存在,该切平面以向量()),,(),,,(),,,(000000000z y x F z y x F z y x F N z y x =为一法线向量.(2). 特殊式 (显函数) 情形:曲面∑:),(y x f z =,且函数),(y x f 的偏导数在点),(00y x 连续. 切平面方程:0)())(,())(,(0000000=---+-z z y y y x f x x y x f y x .法线方程:1),(),(0000000--=-=-z z y x f y y y x f x x •y x .推导:记0),(),,(=-=z y x f z y x F ,有),(),,(y x f z y x F x x =,),(),,(y x f z y x F y y =,1),,(-=z y x F z ,故有法向量()1),,(),,(0000-=y x f y x f N y x .例4. 求球面14222=++z y x 在点)3,2,1(处的且平面及法线方程.解:设14),,(222-++=z y x z y x F ,有x z y x F x 2),,(=,y z y x F y 2),,(=,z z y x F z 2),,(=,故所求切平面的法向量为())6,4,2(2,2,2)3,2,1(==z y x N ,于是所求切平面方程为:0)3(6)2(4)1(2=-+-+-z y x ,即01432=-++z y x ,法线方程为:332211-=-=-z y x •,即321zy x •==. 例5. 求旋转抛物面122-+=y x z 在点)4,1,2(处的切平面即法线方程.解:设1),(22-+=y x y x f ,有x y x f x 2),(=,y y x f y 2),(=,于是所求切平面的法向量为())1,2,4(1,2,2)4,1,2(-=-=y x N .从而所求切平面方程为0)4()1(2)2(4=---+-z y x ,即0624=--+z y x ,法线方程为142142--=-=-z y x •.第七节 方向导数与梯度引入:由函数),(y x f 在点),(000y x P 的偏导数的几何意义可知:偏导数),(00y x f x 、),(00y x f y 只是函数),(y x f 过点),(000y x P 沿平行坐标轴法线的变化率.但在实际应用中,往往要求我们知道函数),(y x f 在点),(000y x P 沿任意确定的方向的变化率,以及沿什么方向函数的变化率最大,这就涉及到函数的方向导数和梯度. 一、方向导数1. 定义:设函数),(y x f 在点),(000y x P 的某个邻域)(0P U 内有定义,)sin ,cos (000ααt y t x P ++为过点),(000y x P 的射线l ()sin ,(cos αα=l e )上另一点,且)(0P U P ∈.若极限ty x f t y t x f t ),()sin ,cos (lim 00000-+++→αα存在,则称此极限为函数),(y x f z =在点),(000y x P 沿方向l 的方向导数,记作),(00y x lf ∂∂.注:若函数),(y x f 在点),(000y x P 的偏导数存在,且i e l ==)0,1(,则),(),(),(lim 0000000),(00y x f ty x f y t x f lf x t y x =-+=∂∂+→.若函数),(y x f 在点),(000y x P 的偏导数存在,且j e l ==)1,0(,则),(),(),(lim 0000000),(00y x f ty x f t y x f lf y t y x =-+=∂∂+→.2. 方向导数的存在性定理:若函数),(y x f 在点),(000y x P 可微分,则函数),(y x f 在点),(000y x P 沿任意方向l 的方向导数都存在,且有βαcos ),(cos ),(0000),(00y x f y x f lf y x y x +=∂∂,其中αcos 、βcos 的方向余弦.注:1°. 可推广:若函数),,(z y x f 在点),,(0000z y x P 可微分,则),,(z y x f 在点0P 沿方向)cos ,cos ,(cos γβα=l e 的方向导数为γβαcos ),,(cos ),,(cos ),,(000000000),,(000z y x f z y x f z y x f lfz y x z y x ++=∂∂.2°. 方向导数存在,函数未必可微分.例如:22),(y x y x f +=在点)0,0(沿方向)cos ,(cos βα=l e 的方向导数都存在,但),(y x f 在点)0,0(不可微分.事实上:由于1lim )0,0()cos 0,cos 0(lim 00==-++++→→t ttf t t f t t βα,从而22),(y x y x f +=在点)0,0(沿方向l e 的方向导数都存在.但22),(y x y x f +=在点)0,0(的两个偏导数都不存在,从而不可微分. 例1. 求函数y xe z 2=在点)0,1(P 处从点)0,1(P 到)1,2(-Q 方向的方向导数.解:由题可知方向l 就是向量)1,1(-=PQ 的方向,有⎪⎭⎫ ⎝⎛-=21,21l e .又1)0,1(2)0,1(==∂∂ye xz,22)0,1(2)0,1(==∂∂yxe yz ,故所求方向导数为22212211)0,1(-=⎪⎭⎫ ⎝⎛-⋅+⋅=∂∂lz . 例2.求zx yz xy z y x f ++=),,(在点)2,1,1(沿方向l 的方向导数,其中l 的方向角分别为o o o 60,45,60.解:由题可知与方向l 同向的单位向量为⎪⎪⎭⎫⎝⎛==21,22,21)60cos ,45cos ,60(cos o o o l e ,又3)()2,1,1()2,1,1(=+=z y f x ,3)()2,1,1()2,1,1(=+=z x f y ,2)()2,1,1()2,1,1(=+=x y f z , 故所求方向导数为)235(21212223213)2,1,1(+=⋅+⋅+⋅=∂∂lf.二、梯度1.梯度的定义:设函数),(y x f 在平面区域D 内具有一阶连续偏导数,对每一个点D y x P ∈),(000,称向量j y x f i y x f y x ),(),(0000+为函数),(y x f 在点),(000y x P 的梯度,记作),(00y x f grad ,或),(00y x f ∇,即j y x f i y x f y x f y x f grad y x ),(),(),(),(00000000+=∇=. 注:可推广:k z y x f j z y x f i z y x f z y x f z y x f grad z y x ),,(),,(),,(),,(),,(000000000000000++=∇=. 2.梯度与方向导数的关系(1).沿梯度方向,方向导数达到最大值; (2).梯度的模为方向导数的最大值.推导:设)cos ,(cos βα=l e ,若函数),(y x f 在点),(000y x P 可微分,则),(y x f 在点0P 沿方向l 的方向导数为βαcos ),(cos ),(0000),(00y x f y x f lfy x y x +=∂∂)),,((cos |||),(|),(000000∧⋅⋅=⋅=l l l e y x f grad e y x f grad e y x f gradθ∆cos |||),(|00⋅⋅=l e y x f grad .1. 当0=θ时,|),(|00),(00y x f grad lf y x =∂∂.这说明函数),(y x f 在一点),(y x 的梯度),(y x f grad 是这样一个向量,它的方向是),(y x f 在这点的方向导数取得最大值的方向,它的模等于方向导数的最大值.2. 当πθ=时,有l e 与),(00y x f grad 的方向相反,函数),(y x f 减小最快,),(y x f 在这个方向上的方向导数达到最小值,|),(|00),(00y x f grad lfy x -=∂∂.3. 当2πθ=时,有l e 与),(00y x f grad 的方向正交,函数),(y x f 的变化率为零,即0cos |),(|00),(00==∂∂θy x f grad lf y x .例3. 求221y x grad+.解:令221),(y x y x f +=,有222)(2),(y x x y x f x +-=,222)(2),(y x yy x f x +-=,于是 j y x yi y x x y x grad22222222)(2)(21+-++-=+.例4.设)(21),(22y x y x f +=,)1,1(0P ,求(1). ),(y x f 在0P 处增加最快的方向以及),(y x f 沿这个方向的方向导数; (2). ),(y x f 在0P 处减少最快的方向以及),(y x f 沿这个方向的方向导数; (3). ),(y x f 在0P 处变化率为零的方向.解:(1). ),(y x f 在点)1,1(0P 处沿)1,1(f ∇的方向增加最快,由于j i j y i x f +=+=∇)1,1()()1,1(,故所求方向可取为j i f n 2121)1,1(+=∇∇=2|)1,1(|)1,1(=∇=∂∂f n f . (2). ),(y x f 在点)1,1(0P 处沿)1,1(f ∇-的方向减少最快,故所求方向可取为j i n n 21211--=-=2|)1,1(|)1,1-=∇-=∂∂f nf.(3). ),(y x f 在点)1,1(0P 处沿垂直于)1,1(f ∇的方向变化率为零,故所求方向为j i n 21212+-=或j i n 21213-=.第八节 多元函数的极值及其求法引入:在一元函数微分学中,我们讨论了一元函数的极值和最值问题,但在许多实际问题中,往往会遇到多元函数的极值和最值问题,我们以二元函数为例来讨论多元函数的极值与最值问题.一、二元函数的极值与最值1. 极值:二元函数),(y x f 的定义域为D ,),(000y x P 为D 的内点,若存在0P 的某个邻域DP U ⊂)(0,)(),(0P U y x P ∈∀,且),(),(0y x P y x P ≠,都有),(),(00y x f y x f <(),(),(00y x f y x f >),则称),(y x f 在点0P 有极大值(极小值).点),(000y x P 称为函数),(y x f 的极大值点(极小值点). 统称极大值、极小值为极值;使函数取得极值的点称为函数的极值点.2. 最值:设函数),(y x f 的定义域为D ,若存在D y x P ∈),(000,D y x P ∈∀),(,都有),(),(00y x f y x f ≤(),(),(00y x f y x f ≥),则称),(00y x f 为),(y x f 在D 上的最大值(最小值). 注:1°. 极值是一个局部概念,最值是一个整体概念.2°. 极值与最值的关系:极值可以是最值,但最值未必是极值. 例1. 函数2243y x z +=在点)0,0(取得极小值,也是最小值.例2. 函数22y x z +-=在点)0,0(取得极大值,也是最大值. 例3.函数xy z =在点)0,0(既不取得极大值,也不取得极小值.由此可见,并不是每一个函数在其定义域上都有极值点,那么什么样的点可能是函数的极值点呢?又如何判断函数在该极值点处取得极大值还是极小值呢?下面我们来学习极值点的必要条件和充分条件,从中得到这些问题的答案. 二、极值点的条件定理1. 若函数),(y x f z =在点),(000y x P 具有偏导数,且在点),(000y x P 处取得极值,则有0),(00=y x f x ,0),(00=y x f y .注:1°.称使⎩⎨⎧==0),(0),(0000y x f y x f y x 成立的点),(00y x 为),(y x f 的驻点或稳定点.2°. 可偏导函数的极值点一定是其驻点,但反之未必.例如:函数xy z =,在点)0,0(是其驻点,但xy z =在点)0,0(却不取得极值.那么什么样的驻点才能是极值点呢?下面的极值点的充分条件回答这一问题,并给出求极值的方法.定理2. 设函数),(y x f z =在点),(00y x 的某一邻域内连续且具有一阶以及二阶连续偏导数,又0),(00=y x f x ,0),(00=y x f y ,令A y x f xx =),(00,B y x f xy =),(00,C y x f yy =),(00,则),(y x f 在),(00y x 处是否取得极值的条件如下:(1). 02>-B AC 时具有极值,且当0<A 时有极大值,当0>A 时有极小值. (2). 02<-B AC 时没有极值.(3). 02=-B AC 时是否取得极值不定,需另行讨论. 3.求极值的步骤第一步:求偏导数,解方程组⎩⎨⎧==0),(0),(y x f y x f y x ,得),(y x f z =的所有驻点.第二步:对每一驻点),(i i y x ,求二阶偏导数的值A 、B 、C .第三步:考察2B AC -的符号,判断),(i i y x f 是否为极值,若是极值,判断出是极大值还是极小值.例4.求函数x y x y x y x f 933),(2233-++-=的极值.解:解方程组⎪⎩⎪⎨⎧=+-==-+=063),(0963),(22y y y x f x x y x f y x ,得驻点)0,1(,)2,1(,)0,3(-,)2,3(-. 又66),(+=x y x f xx ,0),(=y x f xy ,66),(+-=y y x f yy .(1). 在点)0,1(处,0726122>=⨯=-B AC ,且012>=A ,故),(y x f 在)0,1(处取得极小值5)0,1(-=f .(2). 在点)2,1(处,0726122<-=⨯-=-B AC ,故)2,1(f 不是极值. (3). 在点)0,3(-处,072)6(122>=-⨯-=-B AC ,故)0,3(-f 不是极值.(4). 在点)2,3(-处,0726122>=⨯=-B AC ,且012<-=A ,故),(y x f 在)0,1(处取得极大值31)2,3(=-f .例5. 求函数27227)(2),(y x x y y x f ---=的极值.解:由方程组⎪⎩⎪⎨⎧=--==---=02)(4),(0)(8),(262y x y y x f x x y x y x f y x 得两个驻点)8,2(-,)0,0( . 又526248),(x x y y x f xx -+-=;x y x f xy 8),(-=;2),(=y x f yy ;(1). 在点)8,2(-处,0224)8,2(>=-=xx f A , 16)8,2(=-=xy f B ,2)8,2(=-=yy f C ,有01922>=-B AC ,故),(y x f 在点)8,2(-取极小值7/352)8,2(-=-f .(2). 在点)0,0(处,0)0,0(==xx f A ,0)0,0(==xy f B ,2)0,0(==yy f C ,有02=-B AC ,由于0)0,0(=f ,而),(y x f 在)0,0(的某个邻域内既有大于0的值,也有小于0的值,例如0),(<y y f ,而0),0(>y f .故),(y x f 在)0,0(取不到极值.注:可偏导函数的极值点一定是其驻点,但函数的极值点也可以在其不可偏导点处取得, 例如:22y x z +-=在)0,0(取得极大值0,但)0,0(不是22y x z +-=的驻点. 三、函数最值的求法在一元函数微分学中,我们利用函数极值求函数的最值,这一方法仍然适用于多元函数. 设函数),(y x f 在有界闭区域D 上连续,在D 内可微且有有限多个驻点,则),(y x f 在D 上具有最大值和最小值,将),(y x f 在D 内的所有驻点的函数值与D 边界上的最大值和最小值。
二重积分的概念与性质word资料6页
第九章 重积分Chapter 9 Multiple Integrals9.1 二重积分的概念与性质 (The Concept of Double Integrals and ItsProperties)一、二重积分的概念 (Double Integrals)定义 ( 二重积分的定义 ) 设 D 是xy 平面的有界闭区域 ,f 是定义在 D 上的函数。
将 D 任意分成 n 个小区域i σ,它们的面 积用(1,2,)ii n σ∆=L 表示。
在每个(1,2,)i i n σ=L 上任取一点(,)i i ξη,并作和1(,)n i i i i f ξησ=∆∑。
假设存在一个确定的数I 满足:任给0ε>,存在0δ>,使得当各小区域i σ的直径中的最大值λ小于δ时,就有 1(,)ni i i i f I ξησε=∆-<∑ 不管区域D 的分法如何,(,)i i ξη的取法如何。
这样就称f 在D 上可积,I 称为f 在D 上的二重积分,记作(,)D f x y d I σ=⎰⎰或01(,)lim (,)λσξησ→==∆∑⎰⎰n i i i i D f x y d f Definition (The Double Integral) Let D be a bounded closed region in the 巧 1 plane and f a function defined on D. Partition D arbitrarily into nsubregions i σ,whose area is denoted by(1,2,)i i n σ∆=L Choose arbitrarily a point (,)i i ξη in (1,2,)i i n σ=L and then form the sum 1(,)n i i i i f ξησ=∆∑。
Supposethat there exists a fixed number I such that for any 0ε>, thereexists a 0δ>such that if the length λ of the longest diameter of those subregions i σ in a partition of D is less than δ, then 1(,)n i i i i f I ξησε=∆-<∑,no matter how the partition is and how those points (,)i i ξηare chosen from (1,2,)i i n σ=L Then f is said to be integrable over D and I is the double integral of f over D ,written (,)D f x y d I σ=⎰⎰,or 01(,)lim (,)λσξησ→==∆∑⎰⎰n i i i i D f x y d f 二、二重积分的性质 (Properties of Double Integrals)性质 1 两个函数和 ( 或差 ) 的二重积分等于它们二重积分的和 ( 或差 ), 即((,)(,))(,)(,)D D D f x y g x y d f x y d g x y d σσσ±=±⎰⎰⎰⎰⎰⎰.Property 1 The double integral of the sum(or difference) of two functions is equal to the sum( or difference) of their double integrals, that is((,)(,))(,)(,)D D D f x y g x y d f x y d g x y d σσσ±=±⎰⎰⎰⎰⎰⎰ 性质 2 被积函数前面的常数因子可以提到积分号前面 , 即(,)(,)D D kf x y d k f x y d σσ=⎰⎰⎰⎰,若k 为常数。
高等数学课件D91二重积分概念
转动惯量是描述刚体转动时惯性大小 的物理量,二重积分可用于计算平面 薄片对于某轴的转动惯量。
概率论中期望值、方差等统计量求解
期望值求解
在概率论中,二重积分可用于计算二维随机变量的期望值,通过对联合概率密度函数进 行积分,得到期望值的数学表达式。
方差求解
方差是衡量随机变量取值分散程度的统计量,二重积分可用于计算二维随机变量的方差。
确定极径和极角的积分范围和 顺序,注意极径和极角的取值 范围。
根据被积函数的性质和积分区 域的形状,选择合适的积分方 法,如凑微分、分部积分等。
换元法在二重积分中应用
01 通过变量代换将复杂的被积函数或积分区域简化 为易于计算的形式。
02 常用的换元方法包括极坐标代换、广义极坐标代 换、三角代换等。
判断函数$f(x,y)=begin{cases}
典型例题分析与解答
01
1, (x,y)neq(0,0) n0, (x,y)=(0,0)
02
end{cases}$在闭区域$D={(x,y)|x^2+y^2leq1}$上是否 可积,并说明理由。
03
解答:该函数在点(0,0)处不连续,但该点是一个孤立的不连续点, 其集合是零面积集。因此,根据可积性条件,该函数在闭区域D 上仍可能可积。实际上,通过计算可以发现该函数在D上的二重 积分为$pi$,说明该函数在D上确实可积。
实际应用问题举例
01
02
03
物理学中的应用
计算电场强度、磁场强度 等物理量在曲线或曲面上 的积分。
工程学中的应用
计算流体在管道中的流量、 物体表面的压力分布等。
经济学中的应用
计算某一区域内的经济总 量、人口分布等。
二重积分概念
二重积分概念
二重积分是多元函数微积分学应用的一个主要内容,是在解决实际问题的实践中不断抽象出来的,是一元函数定积分、多元函数曲线积分的推广。
二重积分指的是一种特殊的积分形式,它分为两个次积分,把原来的一维函数转换成为二维函数,即把一维的积分转换成为二维的积分。
二重积分可以解决许多有关实际问题的求解,比如说,用它求解空间面积、体积、重力场的积分、电磁场的积分、动力学方程的积分等。
其概念与性质在物理学、力学、工程以及金融等学科领域都有广泛应用。
D9_1二重积分概念
3. ∫∫ f (x, y)dσ = ∫∫
D
D1
f (x, y) dσ + ∫∫
D2
f (x, y) dσ
σ 为D 的面积, 则
σ = ∫∫D1 dσ = ∫∫D dσ
机动 目录 上页 下页 返回 结束
5. 若在D上 f (x, y)≤ (x, y) , 则
∫∫D f (x, y) dσ ≤ ∫∫D (x, y) dσ
特别, 由于 f (x, y) ≤ f (x, y) ≤ f (x, y)
∴
6. 设 则有
∫∫D f (x, y)dσ ≤ ∫∫D
f (x, y) dσ
D 的面积为σ ,
mσ ≤ ∫∫ f (x, y) dσ ≤ Mσ
D
机动
目录
上页
下页
返回
结束
7.(二重积分的中值定理) 连续, σ 为D 的面积 , 则至少存在一点
V = ∫∫ f (x, y) dσ = ∫∫ f (x, y) d x d y
D D
引例2中平面薄板的质量:
M = ∫∫ (x, y) dσ = ∫∫ (x, y) d x d y
D D
机动
目录
上页
下页
返回
结束
对二重积分定义的说明: 对二重积分定义的说明:
(1) 在二重积分的定义中, 对闭区域的划分是 在二重积分的定义中, 任意的. 任意的 (2)当 f ( x , y ) 在闭区域上连续时,定义中和式 在闭区域上连续时, 当 的极限必存在,即二重积分必存在. 的极限必存在,即二重积分必存在
D
机动
目录
上页
下页
返回
结束
1)“大化小” 用任意曲线网分D为 n 个区域
高等数学同济第六版第10章公式总结
高等数学同济第六版(下册)(第10章)第10章重积分10.1 二重积分的概念与性质一、二重积分的概念二、二重积分的性质1 性质 1 设、为常数,则2 性质 2 如果闭区域被有限条曲线分为有限个部分闭区域,则在上的二重积分等于在各部分闭区域上的二重积分的和。
(可加性)3 性质 3 如果在上,,为的面积,则4 性质 4 如果在上,,则有特殊地,由于又有5 性质 5 设、为分别是在闭区域上的最大值和最小值,是的面积,则有6 性质 6(二重积分的中值定理) 设函数在闭区域上连续,是的面积,则在上至少存在一点,使得10.2 二重积分的计算法一、利用直角坐标计算二重积分7 型(先后)型(先后)例 4 求两个底圆半径都等于的直交圆柱面所围成的立体的体积。
解设这两个圆柱面的方程分别为及由对称性,将其分为8部分在第一卦限中,所求立体的顶为柱面又积分区域则即所求立体的体积为二、利用极坐标计算二重积分8例 5 计算其中是由中心在原点、半径为的圆周所围成的闭区域。
解在极坐标系中,闭区域则例 6 求球体被圆柱面所截得的(含在圆柱面内的部分) 立体的体积。
解由对称性,有在极坐标系中,闭区域则*三、二重积分的换元法10.3 三重积分一、三重积分的概念二、三重积分的计算1 利用直角坐标计算三重积分9 (先一后二)其中,例 1 计算三重积分其中为三个坐标面及平面所围成的闭区域。
解闭区域则(先二后一)其中,是竖坐标为的平面截闭区域所得到的一个平面闭区域。
例 2 计算三重积分其中是由椭球面所围成的空间闭区域。
解闭区域则2 利用柱面坐标计算三重积分10 点的直角坐标与柱面坐标的关系为例 3 利用柱面坐标计算三重积分其中是由曲面与平面所围成的闭区域。
解闭区域则*3 利用球面坐标计算三重积分11 点的直角坐标与球面坐标的关系为例 4 求半径为的球面与半顶角为的内接锥面所围成的立体的体积。
解设球面通过原点,球心在轴上,又内接锥面的顶点在原点,其轴与轴重合,则球面方程为,锥面方程为。
9-1二重积分的概念与性质
d ab e
.
高等数学(下)
例 2
估计 I
D
d x y 2 xy 16
2 2
的值,
其 中 D : 0 x 1,
0 y 2.
解 f ( x, y)
1 ( x y ) 16
2
, 区 域 面 积 2,
1 4 ( x y 0)
D
f ( x , y ) d .
高等数学(下)
性质 5 设 M
m
、m 分 别 是 f ( x, y) 在 有 界 闭 区 域 D
上 的 最 大 值 和 最 小 值 , 为 D 的 面 积 , 则
D
f ( x , y ) d M (二重积分估值定理)
性质 6 设 函 数 f ( x , y ) 在 有 界 闭 区 域 D 上 连 续 ,
2
1
D
o
1
2
x
因此
ln(
D
x y ) d [ln( x y )] d .
2 D
高等数学(下)
例5 设D是第二象限中的有界闭区域,且 0<y<1
记 I 1
D
yx dxdy , I 2
3 1
D
y x dxdy ,
2
3
I3
D
y x dxdy
2
3
则I1,I2,I3 的大小顺序是
i1
高等数学(下)
如果当各小闭区域的直径中的最大值 趋近于零 时 , 和式的极限存在 , 称此极限为 函数 f ( x, y) 这 则 在闭区域 D 上的二重积分, 记为 即
D二重积分概念同济大学高等数学
则其体积可按如下两次积分计算
y
V f (x, y) d
D
d
[
2 ( y) f (x, y) dx ]d y
c 1( y)
d
x 1(y)
y c
o
x 2(y)
x
第18页/共28页
机动 目录 上页 下页 返回 结束
例4. 求两个底圆半径为R 的直角圆柱面所围的
解体: 设积两.个直圆柱方程为
z
x2 y2 R2, x2 z2 R2
第25页/共28页
第二节 目录 上页 下页 返回 结束
备用题
1. 估计
I
d
的值, 其中 D 为
D x2 y2 2xy 16
y
0 x 1, 0 y 2.
解: 被积函数
f (x, y)
1
(x y)2 16
2
D
D 的面积 2
在D上 f (x, y) 的最大值
o 1x
f (x, y) 的最小值 故 2 I 2 , 0.4 I 0.5
而域 D 位
于直线的上方, 故在 D 上
x y 1, 从而
(x y)2 (x y)3
D (x y)2 d D (x y)3 d
第13页/共28页
机动 目录 上页 下页 返回 结束
例2. 判断积分
解: 分积分域为
D1, D2 , D3, 则
原式 =
3 1 x2 y2 d xd y
第10页/共28页
机动 目录 上页 下页 返回 结束
5. 若在D上 f (x, y) (x, y) , 则
D f (x, y) d D (x, y) d
特别, 由于 f (x, y) f (x, y) f (x, y)
高等数学课件D91二重积分概念
实际应用背景:二重积分在物理、工程、经 济等领域有广泛应用,如计算面积、体积、 质量等
添加 标题限制条件:二重积源自的计算需要满足一定的 条件,如函数在积分区域上连续、可积等
添加 标题
积分区域:二重积分的计算需要确定积分区 域,积分区域可以是平面区域、曲面区域等
添加 标题
积分顺序:二重积分的计算需要确定积分顺 序,积分顺序可以是先对x积分,再对y积分, 也可以是先对y积分,再对x积分
添加 标题
积分方法:二重积分的计算可以使用不同的 积分方法,如直接积分法、换元积分法、分 部积分法等
添加 标题
积分技巧:二重积分的计算需要掌握一些积 分技巧,如对称性、周期性、奇偶性等
感谢您的观看
汇报人:
二重积分在几何上的应用
计算曲面的面积
计算曲面的体积
计算曲面的旋转体 体积
计算曲面的旋转体 表面积
二重积分在物理上的应用
计算曲面的面积和体积
计算流体的压力和流量
计算电场的强度和分布
计算热传导和扩散问题
二重积分在经济学上的应用
计算边际成本:二重积分可以用来计算边际成本,从而帮助企业进行成本控制和优化。
注意二重积分的计算精度和误差控制
计算精度:选择合适的积分方法,如矩形法、梯形法、辛普森法等 误差控制:通过增加积分区间的划分,提高计算精度 数值稳定性:避免在积分过程中出现数值不稳定的情况 计算结果验证:通过与其他方法或已知结果进行比较,验证计算结果的准确性
注意二重积分的实际应用背景和限制条件
添加 标题
极坐标变换法:适用于积 分区域为圆形或扇形的情 况
换元积分法:适用于积分 区域为圆环或椭圆的情况
分部积分法:适用于积分 区域为不规则图形的情况
高等数学二重积分总结
第九章二重积分【本章逻辑框架】【本章学习目标】⒈理解二重积分的概念与性质,了解二重积分的几何意义以及二重积分与定积分之间的联系,会用性质比较二重积分的大小,估计二重积分的取值范围。
⒉领会将二重积分化为二次积分时如何确定积分次序和积分限,如何改换二次积分的积分次序,并且如何根据被积函数和积分区域的特征选择坐标系。
熟练掌握直角坐标系和极坐标系下重积分的计算方法。
⒊掌握曲顶柱体体积的求法,会求由曲面围成的空间区域的体积。
9.1 二重积分的概念与性质【学习方法导引】1.二重积分定义为了更好地理解二重积分的定义,必须首先引入二重积分的两个“原型”,一个是几何的“原型”-曲顶柱体的体积如何计算,另一个是物理的“原型”—平面薄片的质量如何求。
从这两个“原型”出发,对所抽象出来的二重积分的定义就易于理解了。
在二重积分的定义中,必须要特别注意其中的两个“任意”,一是将区域D 成n 个小区域12,,,n σσσ∆∆∆的分法要任意,二是在每个小区域i σ∆上的点(,)i i i ξησ∈∆的取法也要任意。
有了这两个“任意”,如果所对应的积分和当各小区域的直径中的最大值0λ→时总有同一个极限,才能称二元函数(,)f x y 在区域D 上的二重积分存在。
2.明确二重积分的几何意义。
(1) 若在D 上(,)f x y ≥0,则(,)d Df x y σ⎰⎰表示以区域D 为底,以(,)f x y 为曲顶的曲顶柱体的体积。
特别地,当(,)f x y =1时,(,)d Df x y σ⎰⎰表示平面区域D 的面积。
(2) 若在D 上(,)f x y ≤0,则上述曲顶柱体在Oxy 面的下方,二重积分(,)d Df x y σ⎰⎰的值是负的,其绝对值为该曲顶柱体的体积(3)若(,)f x y 在D 的某些子区域上为正的,在D 的另一些子区域上为负的,则(,)d Df x y σ⎰⎰表示在这些子区域上曲顶柱体体积的代数和(即在Oxy 平面之上的曲顶柱体体积减去Oxy 平面之下的曲顶柱体的体积).3.二重积分的性质,即线性、区域可加性、有序性、估值不等式、二重积分中值定理都与一元定积分类似。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
引例2中平面薄板的质量:
MD (x,y)dD (x,y)dxdy
机动 目录 上页 下页 返回 结束
二重积分存在定理: (证明略)
定理1. 若函数 f (x,y)在有界闭区域 D上连续, 则
f (x,y)在D上可积.
定理2. 若有界函数 f (x,y)在有界闭区域 D 上除去有
限个点或有限个光滑曲线外都连续 , 则f(x,y)在D上可
积.
例如, f (x, y) x2 y2 在D : xy
0x1 y 1
0y1
上二重积分存在 ; 但f(x,y) 1 在D 上 xy
D o 1x
二重积分不存在 .
机动 目录 上页 下页 返回 结束
三、二重积分的性质
1.D kf(x,y)dkD f(x,y)d ( k 为常数) 2 .D [f(x,y)g(x,y)d ]
D
D
则有
m D f(x,y)dM
机动 目录 上页 下页 返回 结束
7.(二重积分的中值定理) 设函f数 (x,y)在闭区域D上
连续, 为D 的面积 , 则至少存在一点 (,)D,使
D f(x ,y )d f(,)
证: 由性质6 可知,
m 1D f(x,y)dM
由连续函数介值定理, 至少有一点 (,)D使
2)“常代变”
在每个 k中任取一点 (k,k),则第 k 小块的质量 M k ( k ,k ) k ( k 1 , 2 , , n )
3)“近似和”
y
n
n
M Mk(k,k)k
k1
k1
4)“取极限”
令 1 m k n a ( x k)
n
Ml i0m k 1(k,k)k
( 1 )f(x , y ) f(x ,y )则,
Df(x,y)d2D 1f(x,y)d
D1
oD x
( 2 )f( x , y ) f( x ,y )则,Df(x,y)d0
当区域关于 y 轴对称, 函数关于变量 x 有奇偶性时, 仍
有类似结果.
如 ,D 1为D 圆 :x2y 域 2 1 在第一象限部分, 则有
二、二重积分的定义及可积性
定义: 设f(x,y)是定义在有界区域 D上的有界函数 ,
将区域 D 任意分成 n 个小区域 k( k 1 ,2 , ,n ),
任取一点 (k,k) k,若存在一个常数 I , 使
Il i0m kn1f(k,k)k记作 Df(x,y)d
则称 f(x,y)可积 , 称 I为 f(x,y)在D上的二重积分.
机动 目录 上页 下页 返回 结束
5. 若在D上 f (x,y)(x,y),则
Df (x, y)d D(x,y)d
特别, 由于 f( x ,y ) f( x ,y ) f( x ,y )
Df(x,y)d Df(x,y)d
6. 设 M m f( x a ,y )m x , m f( x , iy ) n D,的面积为 ,
积分和
积分表达式
Df(x,y)d x, y称为积分变量
积分域 被积函数 面积元素
机动 目录 上页 下页 返回 结束
如果 f (x,y)在D上可积, 可用平行坐标轴的直线来划
分区域D , 这时 k xk yk,因此面积元素 d 也常
记作 dxdy, 二重积分记作
D f(x,y)dxdy.
引例1中曲顶柱体体积:
D f(x ,y )d D g (x ,y )d
3 .D f ( x ,y ) d D 1 f ( x ,y ) d D 2 f( x ,y ) d
(D D 1 D 2,D 1,D 2 无公 ) 共内 4 .若 D 上 在 f(x ,y ) 1 , 为D 的面积, 则
D 1dD d
10
由于
1 102
100co21sxco2sy1001
D
10 o 10 x
10
积分性质5
Байду номын сангаас
200I200 即: 1.96 I 2 102 100
机动 目录 上页 下页 返回 结束
8. 设函数 f (x,y)在闭区域上连续, 域D 关于x 轴对称,
D 位于 x 轴上方的部分为D1 , 在 D 上
y
x
(k,k) k
机动 目录 上页 下页 返回 结束
两个问题的共性: (1) 解决问题的步骤相同 “大化小, 常代变, 近似和,取极限” (2) 所求量的结构式相同 曲顶柱体体积:
n
Vl i0 m k1f(k,k)k
平面薄片的质量:
n
Ml i0m k 1(k,k)k
机动 目录 上页 下页 返回 结束
D3 D2 o 1 3 2x
D1 舍去此项
猜想结果为负
D1dxdyD 3331dxdy 但不好估计 .
32(43)(132)0
机动 目录 上页 下页 返回 结束
例3. 估计下列积分之值
ID 1 0cd 0 x 2 o d xy s c2 o ysD :xy y10
解: D 的面积为 (102)2200
D (x2y2)dxdy4
(x2y2)dxdy
D 1
D(xy)dxdy0
机动 目录 上页 下页 返回 结束
四、曲顶柱体体积的计算
设曲顶柱的底为
y2(x) z
D (x,y)1(xa ) y x b2(x) y
D
任取 x0[a,b],平面 xx0截柱体的
截面积为 A(x0)12((xx00))f(x0,y)dy
于直线的上方, 故在 D 上 xy1,从而
(xy)2(xy)3
D ( x y )2 d D ( x y )3 d
机动 目录 上页 下页 返回 结束
例2. 判断积分 31x2y2dxdy的正负号.
x2y24
y
解: 分积分域为 D1,D2,D3,则
原式 = 31x2y2dxdy D 1 D 23x2y21dxdy D 33 x2y21dxdy
故曲顶柱体体积为
VDf(x,y)d
b
a A(x)d
x
b
[
2(x) f(x,y)dy]dx
a 1(x)
o a x 0 bx
y1(x)
f(,) 1D f(x,y)d
因此
D f(x,y)df(,)
机动 目录 上页 下页 返回 结束
例1. 比较下列积分的大小:
D (x y )2d , D (x y )3d
y
其中 D :(x 2 )2 (y 1 )22
1
D
解: 积分域 D 的边界为圆周
(x2)2(y1)22
o1 2 3 x xy1
它与 x 轴交于点 (1,0) , 与直 xy线 1相.切 而域 D 位