2017年秋八年级数学上册 12.2 一次函数(3)练习题
八年级上册数学一次函数测试题及答案
八年级上册数学一次函数测试题及答案填空题.
(1)点A在y轴右侧,距y轴6个单位长度,距x轴8个单位长度,则A点的坐标是,A点离开原点的距离是.
(2)点(-3,2),(a,a+1)在函数y=kx-1的图像上,则k=a= (3)正比例函数的图像经过点(-3,5),则函数的关系式是.
(4)函数y=-5x+2与x轴的交点是,与y轴的交点是,与两坐标轴围成的三角形面积是.
(5)已知y与4x-1成正比例,且当x=3时,y=6,写出y与x的函数关系式.
(6)写出下列函数关系式
①速度60千米的匀速运动中,路程S与时间t的关系
②等腰三角形顶角y与底角x之间的关系
③汽车油箱中原有油100升,汽车每行驶50千米耗油9升,油箱剩余油量y(升)与汽车行驶路程x(千米)之间的关系
④矩形周长30,则面积y与一条边长x之间的关系
在上述各式中,是一次函数,是正比例函数(只填序号)
(7)正比例函数的图像一定经过点.
(8)若点(3,a)在一次函数y=3x+1的图像上,则.
(9)一次函数y=kx-1的图像经过点(-3,0),则k=.
(10)已知y与2x+1成正比例,且当x=3时,y=6,写出y与x的函数关系式.
(11)函数y=-x+m^2与y=4x-1的图像交于轴,则m=.
答案:
(1)、(6,+8)和(6,-8)、10(2)、-1、-1(3)、y=-x
(4)、(0.4,0)、(0,2)、0.4(5)、y=(4x-1)
(6)、s=60t、y=180-2x、y=100-0.18x、y=x(x-15)、①②③、①
(7)、(0,0)(8)、10(9)、-(10)、y=(2x+1)
(11)、正负。
沪科版数学八年级上册专题训练12.2 一次函数
12.2 一次函数1.下列函数,y随x增大而减小的是()A.y=10xB.y=x﹣1C.y=﹣3+11xD.y=﹣2x+12.如图,三个正比例函数的图象对应的解析式为①y=ax,②y=bx,③y=cx,则a,b,c的大小关系是()A.a>b>cB.c>b>aC.b>a>cD.b>c>a3.一次函数y=3x﹣2的图象不经过第()象限.A.一B.二C.三D.四4.如图是一次函数y=kx+b的图象,当y<﹣2时,x的取值范围是()A.x<3B.x>3C.x<﹣1D.x>﹣15.在平面直角坐标系中,将直线y=﹣20x+16向右平移1单位长度得到直线的解析式是()A.y=﹣20x+36B.y=﹣20x﹣4C.y=﹣20x+17D.y=﹣20x+156.关于函数y=﹣x﹣2的图象,有如下说法:①图象过点(0,﹣2);②图象与x轴的交点是(﹣2,0);③由图象可知y随x的增大而增大;④图象不经过第一象限;⑤图象是与y=﹣x+2平行的直线,其中正确说法有()A.5个B.4个C.3个D.2个7.写出一个一次函数的解析式:________,使它经过点A(2,4)且y随x的增大而减小.8.已知函数y= x﹣1,如果函数值y>2,那么相应的自变量x的取值范围是________.9.一次函数y=mx+8的图象经过一、二、三象限,则m的取值范围是________.10.如图,已知直线l:y=2kx+2﹣4k(k为实数),直线l与x轴正半轴、y轴的正半轴交于A、B两点,则△AOB面积的最小值是________.11.设y﹣5与x+3成正比例,且当x=﹣2时,y=8.求y与x之间函数关系式.12.已知一次函数y=kx+b的图象经过点(﹣1,﹣5)和(2,1),求一次函数的解析式.参考答案1.D解析:A.∵y=10x中,k=10>0,∴y随x的增大而增大,故本选项错误;B.∵y=x﹣1中,k=1>0,∴y随x的增大而增大,故本选项错误;C.∵y=﹣3+11x中,k=11>0,∴y随x的增大而增大,故本选项错误;D.∵y=﹣2x+1中,k=﹣2<0,∴y随x的增大而减小,故本选项正确.故选D.2.B解析:∵y=ax,y=bx,y=cx的图象都在第一、三象限,∴a>0,b>0,c>0.∵直线越陡,则|k|越大,∴c>b>a,故选B.3. B解析:∵一次函数y=3x﹣2中,k=3>0,b=﹣2<0,∴此函数的图象经过一、三、四象限,不经过第二象限.故选B.4.C解析:如图,当y=﹣2时,x=﹣1,则当y<﹣2时,x的取值范围是x<﹣1.故选C.5.A解析:由“左加右减”的原则可知:将直线y=﹣20x+16向右平移1单位长度,得到直线的解析式为y=﹣20(x﹣1)+16,即y=﹣20x+36.故选A.6.B解析:①将(0,﹣2)代入解析式得,左边=﹣2,右边=﹣2,故图象过(0,﹣2)点,正确;②当y=0时,y=﹣x﹣2中,x=﹣2,故图象过(﹣2,0),正确;③因为k=﹣1<0,所以y 随x的增大而减小,错误;④因为k=﹣1<0,b=﹣2<0,所以图象过二、三、四象限,正确;⑤因为y=﹣x﹣2与y=﹣x的k值(斜率)相同,故两图象平行,正确.故选B.7. y=﹣x+6解析:设一次函数的解析式为y=kx+b(k<0),将点A(2,4)代入y=kx+b,得4=2k+b.∴b=4﹣2k.当k=﹣1时,b=4﹣2×(﹣1)=6.故答案为y=﹣x+6.8.x>4解析:函数y= x﹣1,当函数值y>2时,x﹣1>2,∴x>4.9.m>0解析:∵一次函数y=mx+8的图象经过一、二、三象限,∴m>0.10.8解析:在y=2kx+2﹣4k中,令y=0可得,0=2kx+2﹣4k,解得x= ,令x=0可得,y=2﹣4k,∴A(,0),B(0,2﹣4k),∴OA= ,OB=2﹣4k,= OA•OB=× ×(2﹣4k)=﹣ =﹣ =﹣4k﹣ +4.∴S∵k<0,∴﹣4k>0,﹣>0,且﹣4k×(﹣)=4,∴﹣4k﹣≥2 =4,≥8,∴﹣4k﹣+4≥8,即S即△AOB面积的最小值是8.11. 解:∵y﹣5与x+3成正比例,∴设y﹣5=k(x+3),将x=﹣2,y=8代入,得3=k,解得k=3,∴y﹣5=3(x+3),即y=3x+14.12. 解:∵一次函数y=kx+b经过点(﹣1,﹣5)和(2,1),则,解得,∴这个一次函数的解析式为y=2x﹣3.。
(完整版)八年级上册数学一次函数测试题及答案(3),推荐文档
答案 一、填空 1、y=-2x 2、-1 3、3 4、6 5、三 6、y=6x-2 7、a>b 8、t=-0.06h+20 9、y=2x+10 10、y=-3x 或 y=-2x-1 等。 二、选择题 11、B 12、C 13、B 14、D 15、D 16、C 17、D 18、C
三、计算题
19(1)y=4x,y=x+3,(2)略
10、点 P(a,b)在第二象限,则直线 y=ax+b 不经过第
象限。
三、计算题
11、已知一次函数 y=kx-k+4 的图象与 y 轴的交点坐标是(0,-2),那么这个一次函数的表达
19、已知一个正比例函数和一个一次函数的图象相交于点 A(1,4),且一次函数的图象与 x 轴
式是______我____去____。人也就有人!为UR扼腕入站内信不存交在于点向B(3,你0) 偶同意调剖沙龙课反倒是龙卷风前一天
(1)求 y 与 x 之间的函数关系式
(2)若点(a,2)在这个函数图象上,求 a 的值
1 21、已知一次函数 y=kx+b 的图象经过点(-1, -5),且与正比例函数 y= 2x 的图象相交于点 (2,a),求 (1)a 的值 (2)k,b 的值 (3)这两个函数图象与 x 轴所围成的三角形的面积。
收费 1.8 元,超计划部分每吨按 2.0 元收费。
(1)写出该单位水费 y(元)与每月用水量 x(吨)之间的函数关系式:_________________
①当用水量小于等于 3000 吨
;②当用水量大于 3000 吨
。
(2)某月该单位用水 3200 吨,水费是
元;若用水 2800 吨,水费
元。
(3)若某月该单位缴纳水费 9400 元,则该单位用水多少吨?
八年级一次函数练习题及答案
八年级一次函数练习题及答案一次函数是初中数学中的重要内容之一,它在实际生活中的应用非常广泛。
下面,我将为大家提供一些八年级一次函数练习题及答案,希望能帮助大家更好地理解和掌握这一知识点。
1. 已知一次函数y = 2x + 3,求当x = 4时,y的值。
解答:将x = 4代入函数中,得到y = 2(4) + 3 = 11。
所以当x = 4时,y的值为11。
2. 已知一次函数y = 3x - 2,求当y = 10时,x的值。
解答:将y = 10代入函数中,得到10 = 3x - 2。
移项得到3x = 12,再除以3得到x = 4。
所以当y = 10时,x的值为4。
3. 已知一次函数y = -2x + 5,求函数的斜率和截距。
解答:斜率即为函数的系数,所以斜率为-2。
截距即为函数的常数项,所以截距为5。
4. 已知一次函数y = kx + 3,当x = 2时,y = 7。
求函数的斜率和截距。
解答:将x = 2和y = 7代入函数中,得到7 = 2k + 3。
移项得到2k = 4,再除以2得到k = 2。
所以函数的斜率为2,截距为3。
5. 已知一次函数经过点(1, 4)和(3, 10),求函数的表达式。
解答:设函数的表达式为y = mx + b。
将点(1, 4)代入函数中,得到4 = m(1) + b,即m + b = 4。
将点(3, 10)代入函数中,得到10 = m(3) + b,即3m + b = 10。
解这个方程组,可以得到m = 3,b = 1。
所以函数的表达式为y = 3x + 1。
通过以上的练习题,我们可以看到一次函数的特点和求解方法。
一次函数的表达式可以写成y = kx + b的形式,其中k为斜率,b为截距。
我们可以通过给定的点或已知条件来求解函数的表达式。
除了以上的练习题,我们还可以通过一些实际问题来应用一次函数的知识。
例如,假设小明每天骑自行车去上学,他发现骑行20分钟可以骑行5公里,那么他骑行1小时可以骑行多少公里呢?我们可以通过建立一次函数来解决这个问题。
初二上册一次函数练习题
初二上册一次函数练习题一. 选择题(每题4分,共40分)1. 下列不属于一次函数的是:A. y = 5x - 3B. y = -2x^2 + 4x - 1C. y = 0.5x + 2D. y = -22. 若函数y = 2x - 1,那么当x = 3时,对应的y值是:A. -4B. 4C. 5D. -53. 函数y = -0.5x + 3图像与x轴交于点:A. (6, 0)B. (0, -3)C. (3, 0)D. (-3, 0)4. 若平行于y轴的直线与函数y = kx + 4相交于点(2,6),则k的值为:B. 3C. -2D. -35. 函数y = -x + 2的图像在x轴上的截距为:A. 1B. 2C. -1D. -26. 已知直线y = 3x + b与x轴的交点为(4, 0),则常数b的值为:A. -3B. 3C. -4D. 47. 若直线y = mx + 4与函数y = x + 5的图像相交于点(-3, 2),则直线的斜率m为:A. -1B. 1C. 28. 函数y = -2x + 4与x轴的交点为:A. (4, 0)B. (0, 2)C. (-4, 0)D. (0, -4)9. 若函数y = kx + 2过点(3, 5),则k的值为:A. 1B. 2C. -1D. -210. 函数y = 0.5x - 3与y轴的交点为:A. (-3, 0)B. (0, -3)C. (3, 0)D. (0, 3)二. 解答题1. 画出函数y = 2x - 3的图像,并通过图像求出它与x轴的交点坐标。
解:(请在此处画出函数图像,并标出交点坐标)解答:函数y = 2x - 3的图像如上所示。
通过图像可知,该函数与x 轴的交点坐标为(-1.5, 0)。
2. 求函数y = 3x + 2与函数y = -2x + 1的交点坐标。
解:(请在此处书写计算过程,并给出交点坐标)解答:我们需要求解方程3x + 2 = -2x + 1。
初二数学一次函数练习题(附答案)
初二数学一次函数练习题(附答案)查字典数学网小编为大家整理了初二数学一次函数练习题(附答案),希望能对大家的学习带来帮助!一次函数的图象和性质选择题1.已知一次函数 ,若随着的增大而减小,则该函数图象经过:(A)第一,二,三象限(B)第一,二,四象限(C)第二,三,四象限(D)第一,三,四象限2.某市的出租车的收费标准如下:3千米以内的收费6元;3千米到10千米部分每千米加收1.3元;10千米以上的部分每千米加收1.9元。
那么出租车收费y(元)与行驶的路程x(千米)之间的函数关系用图象表示为3.阻值为和的两个电阻,其两端电压关于电流强度的函数图象如图,则阻值(A) (B) (C) = (D)以上均有可能4.若函数 ( 为常数)的图象如图所示,那么当时,的取值范围是A、 B、 C、 D、5.下列函数中,一次函数是().(A) (B) (C) (D)6.一次函数y=x+1的图象在().(A)第一、二、三象限(B)第一、三、四象限(C)第一、二、四象限(D)第二、三、四象限7.将直线y=2x向上平移两个单位,所得的直线是A.y=2x+2B.y=2x-2C.y=2(x-2)D.y=2(x+2)8.如图,已知点A的坐标为(1,0),点B在直线上运动,当线段AB最短时,点B的坐标为A.(0,0)B.C.D.9.如图,把直线l沿x轴正方向向右平移2个单位得到直线l,则直线l/的解析式为A.y=2x+4B.y=-2x+2C.y=2x-4D.y=-2x-210.直线y=kx+1一定经过点()A.(1,0)B.(1,k)C.(0,k)D.(0,1)11.如图,在△ABC中,点D在AB上,点E在AC上,若ADE=C,且AB=5,AC=4,AD=x,AE=y,则y与x的关系式是()A.y=5xB.y= xC.y= xD.y= x12.下列函数中,是正比例函数的为A.y=B.y=C.y=5x-3D.y=6x2-2x-113如图,△ABC和△DEF是两个形状大小完全相同的等腰直角三角形,DEF=90,点B、C、E、F在同一直线上.现从点C、E重合的位置出发,让△ABC在直线EF上向右作匀速运动,而△DEF的位置不动.设两个三角形重合部分的面积为,运动的距离为 .下面表示与的函数关系式的图象大致是()三、填空题1.若正比例函数y=mx(m0)和反比例函数y= (n0)的图象都经过点(2,3),则m=______,n=_________.2.如果函数,那么3.点A(2,4)在正比例函数的图象上,这个正比例函数的解析式是4.若函数的图象经过点(1,2),则函数的表达式可能是(写出一个即可).5.如图,表示甲骑电动自行车和乙驾驶汽车均行驶90km的过程中,行使的路程与经过的时间之间的函数关系.请根据图象填空:出发的早,早了小时,先到达,先到小时,电动自行车的速度为km/h,汽车的速度为km/h.6.某电信公司推出手机两种收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网内打出电话时间t(分钟)与打出电话费s(元)的函数关系如图3,当打出电话150分钟时,这两种方式电话费相差元.7.若一次函数y=ax+1―a中,y随x的增大而增大,且它的图像与y轴交于正半轴,则|a―1|+ =。
沪科版八年级上册数学12.2一次函数图像与性质-同步练习-(含解析)
2018—2019学年度八年级数学《一次函数图像与性质》一、选择题(本大题共10小题,共40.0分)1.一次函数y=yy−6(y<0)的图象大致是()A. B. C. D.2.若直线y=yy+y经过第一、二、四象限,则直线y=yy+y的图象大致是()A. B.C. D.3.若一次函数y=yy+2经过点(1,1),则下面说法正确的是()@A. y随x的增大而增大B. 图象经过点(3,−1)C. 图象不经过第二象限D. 图象与函数y=−y图象有一个交点4.y关于x的一次函数y=2y+y2+1的图象不可能经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限5.函数y=(y−4)y+2y−3的图象经过一、二、四象限,那么m的取值范围是()A. m<4B. 1.5<m<4C. −1.5<m<4D. m>46.如图,两个不同的一次函数y=ax+b与y=bx+a的图象在同一平面直角坐标系的位置可能是()A. B. C. D.7.若一次函数y=kx+b的图象与直线y=−x+1平行,且过点(8,2),则此一次函数的解析式为()、A. y=−x−2B. y=−x−6C. y=−x−1D. y=−x+108.已知点(−2,y1),(−1,y2),(1,y3)都在直线y=−x+b上,则y1,y2,y3的值的大小关系是()A. y1>y2>y3B. y1<y2<y3C. y3>y1>y2D. y3>y1>y29.若kb>0,则函数y=kx+b的图象可能是()A. B. C. D.10.已知下列函数:①y=−2x +3②y=3(3−x)③y=3x−x2④y=−x3⑤y=5,其中是一次函数的是()A. ①②③④⑤B. ②④C. ①③⑤D. ②④⑤二、填空题(本大题共5小题,共20.0分)11.(12.如果直线y=−2x+b与两坐标轴所围成的三角形面积是9,则b的值为______ .13.已知一次函数y=(k−1)x|k|+3,则k=______.14.已知一次函数y=(−3a+1)x+a的图象经过一、二、三象限,不经过第四象限,则a的取值范围是______ .15.一次函数y=2x−3与x轴的交点坐标为______ .16.若函数y=(a−3)x|a|−2+2a+1是一次函数,则a=______ .三、计算题(本大题共5小题,共40.0分)17.已知一次函数y=kx+b的图象经过点A(0,3),B(−4,0).18.(1)求此函数的解析式.19.(2)若点(a,6)在此函数的图象上,求a的值为多少?20.(3)求原点到直线AB的距离.21.22.23.24.25.26.27.28.如图,已知一次函数y=kx+b的图象经过A(−2,−1),B(1,3)两点,并且交x轴于点C,交y轴于点D.29.(1)求该一次函数的解析式;30.(2)求△AOB的面积.~31.如图,已知直线l经过点A(1,1)和点B(−1,−3).试求:32.(1)直线l的解析式;33.(2)直线l与坐标轴的交点坐标;34.(3)直线l与坐标轴围成的三角形面积.35.36.37.38.39.40.41.如图,一次函数y=−x+m的图象和y轴交于点B,与x图象交于点P(2,n).正比例函数y=3242.(1)求m和n的值;43.(2)求△POB的面积.44.45.46.47.已知一次函数的图象经过A(−2,−3),B(1,3)两点.48.(1)求这个一次函数的解析式;49.(2)试判断点P(−1,1)是否在这个一次函数的图象上;50.(3)求此函数与x轴、y轴围成的三角形的面积.51.52.53.54.55.56.?答案和解析【答案】1. D2. D3. B4. D5. B6. C7. D8. A9. A10. B 11. ±612. −113. 0<a <1314. (32,0)15. −3《16. 解:(1)把A(0,3),B(−4,0)代入y =kx +b 得{b =3−4k +b =0,解得{k =34b =3. 所以一次函数解析式为y =34x +3;(2)把(a,6)代入y =34x +3得34a +3=6,解得a =4;(3)AB =√32+42=5,设原点到直线AB 的距离为h ,则12⋅ℎ⋅5=12⋅3⋅4,解得ℎ=125,所以原点到直线AB 的距离为125.17. 解:(1)把A(−2,−1),B(1,3)代入y =kx +b 得{−2k +b =−1k +b =3, 解得{k =43b =53. 所以一次函数解析式为y =43x +53;(2)把x =0代入y =43x +53得y =53,所以D 点坐标为(0,53),所以△AOB 的面积=S △AOD +S △BOD=12×53×2+12×53×1=52. 18. 解:(1)设直线l 的解析式为y =kx +b ,根据题意得{k +b =1−k +b =−3,解得{k =2b =−1, 所以直线l 的解析式为y =2x −1;(2)当x =0时,y =2x −1=−1,则直线l 与y 轴的交点坐标为(0,−1);当y =0时,2x −1=0,解得x =12,则直线l 与x 轴的交点坐标为(12,0);(3)直线l 与坐标轴围成的三角形面积=12×1×12=14. 19. 解:(1)把P(2,n)代入y =32x 得n =3,所以P 点坐标为(2,3),把P(2,3)代入y =−x +m 得−2+m =3,解得m =5,即m 和n 的值分别为5,3;(2)把x =0代入y =−x +5得y =5,所以B 点坐标为(0,5),所以△POB 的面积=12×5×2=5. 20. 解:(1)设一次函数的表达式为y =kx +b ,则{−3=−2k +b 3=k +b,解得:k =2,b =1. ∴函数的解析式为:y =2x +1.(2)将点P(−1,1)代入函数解析式,1≠−2+1,∴点P 不在这个一次函数的图象上.(3)当x =0,y =1,当y =0,x =−12,此函数与x 轴、y 轴围成的三角形的面积为:12×1×|−12|=14.【解析】 1. 解:∵一次函数y =kx −6中,k <0∴直线从左往右下降又∵常数项−6<0∴直线与y 轴交于负半轴∴直线经过第二、三、四象限故选(D)一次函数y =kx +b 中,k 的符号决定了直线的方向,b 的符号决定了直线与y 轴的交点位置,据此判断即可.本题主要考查了一次函数的图象,解决问题的关键是掌握:一次函数y =kx +b 中,当k >0时,直线从左往右上升,当k <0时,直线从左往右下降;当b >0时,直线与y 轴正半轴相交,当b <0时,直线与y 轴负半轴相交.2. 解:∵直线y =kx +b 经过第一、二、四象限,∴k <0,b >0,∴直线y =bx +k 的图象经过第一、三、四象限,故选:D .首先根据线y =kx +b 经过第一、二、四象限,可得k <0,b >0,再根据k <0,b >0判断出直线y =bx +k 的图象所过象限即可.此题主要考查了一次函数y =kx +b 图象所过象限与系数的关系:①k >0,b >0⇔y =kx +b 的图象在一、二、三象限;②k >0,b <0⇔y =kx +b 的图象在一、三、四象限;③k <0,b >0⇔y =kx +b 的图象在一、二、四象限;④k <0,b <0⇔y =kx +b 的图象在二、三、四象限.¥3. 解:将(1,1)代入y =kx +2中,1=k +2,解得:k =−1,∴一次函数解析式为y =−x +2.A 、∵−1<0,∴一次函数y =−x +2中y 随x 的增大而减小,A 结论不正确;B 、当x =3时,y =−3+2=−1,∴一次函数y =−x +2的图象经过点(3,−1),B 结论正确;C 、∵k =−1<0,b =2>0,∴一次函数y =−x +2的图象经过第一、二、四象限,C 结论不正确;D 、∵直线y =−x +2与y =−x 平行,∴一次函数y =−x +2的图象与函数y =x 图象没有交点,D 结论不正确.故选B .根据点的坐标利用待定系数法求出一次函数解析式,再逐一分析四个选项的正误,由此即可得出结论.本题考查了待定系数法求一次函数解析式、一次函数的性质、两直线相交或平行以及一次函数图象与系数的关系,根据点的坐标利用待定系数法求出一次函数解析式是解题的关键.4. 解:∵m 2+1≥1,2>0,∴此函数的图象经过第一、二、三象限,一定不经过第四象限.故选D .先判断出m 2+1的符号,再由一次函数的图象与系数的关系即可得出结论.本题考查的是一次函数的图象与系数的关系,熟知当k >0,b >0时,函数y =kx +b 的图象经过第一、二、三象限是解答此题的关键.5. 解:∵函数y =(m −4)x +2m −3的图象经过一、二、四象限,∴{2m −3>0m−4<0,解得32<m <4.故选B .先根据函数y =(m −4)x +2m −3的图象经过一、二、四象限列出关于m 的不等式组,求出m 的取值范围即可.本题考查的是一次函数的图象与系数的关系,熟知一次函数y =kx +b(k ≠0)中,当k <0,b >0时,函数的图象在一、二、四象限是解答此题的关键.6. 解:A、若经过第一、二、三象限的直线为y=ax+b,则a>0,b>0,所以直线y=bx+a经过第一、二、三象限,所以A选项错误;B、若经过第一、二、四象限的直线为y=ax+b,则a<0,b>0,所以直线y=bx+a 经过第一、三、四象限,所以B选项错误;C、若经过第一、三、四象限的直线为y=ax+b,则a>0,b<0,所以直线y=bx+a 经过第一、二、四象限,所以C选项正确;D、若经过第一、二、三象限的直线为y=ax+b,则a>0,b>0,所以直线y=bx+a 经过第一、二、三象限,所以D选项错误;故选C.对于各选项,先确定一条直线的位置得到a和b的符号,然后根据此符号判断另一条直线的位置是否符号要求.,0).注意:使用两本题考查了一次函数图象:一次函数y=kx+b经过两点(0,b)、(−bk点法画一次函数的图象,不一定就选择上面的两点,而要根据具体情况,所选取的点的横、纵坐标尽量取整数,以便于描点准确.7. 解:∵一次函数y=kx+b的图象与直线y=−x+1平行,∴k=−1,∵一次函数过点(8,2),∴2=−8+b解得b=10,∴一次函数解析式为y=−x+10.故选D.根据平行直线的解析式的k值相等求出k,然后把点P(8,2)的坐标代入一次函数解析式计算即可得解.本题考查了两直线平行的问题,根据平行直线的解析式的k值相等求出一次函数解析式的k值是解题的关键.8. 解:∵直线y=−x+b,k=−1<0,∴y随x的增大而减小,又∵−2<−1<1,∴y1>y2>y3.故选A先根据直线y=−x+b判断出函数图象的增减性,再根据各点横坐标的大小进行判断即可.本题考查的是一次函数的增减性,即一次函数y=kx+b(k≠0)中,当k>0,y随x的增大而增大;当k<0,y随x的增大而减小.9. 解:由题意可知:可知k>0,b>0或k<0,b<0,当k>0,b>0时,直线经过一、二、三象限,当k<0,b<0直线经过二、三、四象限,故选(A)根据kb>0,可知k>0,b>0或k<0,b<0,然后分情况讨论直线的位置关系.本题考查一次函数的图象性质,解题的关键是正确理解k与b的对直线位置的影响,本题属于基础题型.10. 解:①y=−2x+3是由反比例函数平移得到的,不是一次函数;②y=3(3−x)=−3x+9,符合一次函数的定义;③y=3x−x2属于二次函数;④y=−x3属于正比例函数,是特殊的一次函数;⑤y=5不是一次函数;综上所述,其中是一次函数的是②④,故选:B.根据一次函数的定义进行判断.本题考查了一次函数的定义.一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数.—11. 解:当x=0时,y=b,当y=0时,x=b2,则根据三角形的面积公式:12·|b|·|b2|=9,解得b=±6.故答案为±6.先求出直线y=−2x+b与两坐标轴的交点,再根据三角形的面积公式列出关于b的方程,求出b的值即可.本题考查了一次函数图象上点的坐标特征,求出函数与x轴、y轴的交点是解题的关键.12. 解:根据题意得k−1≠0,|k|=1则k≠1,k=±1,即k=−1.故答案为:−1根据一次函数的定义,令k−1≠0,|k|=1即可.解题关键是掌握一次函数的定义条件:一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.13. 解:∵一次函数y=(−3a+1)x+a的图象经过第一、二、三象限,∴{a>0−3a+1>0,解得0<a<13.故答案为:0<a<13.根据一次函数的性质列出关于a的不等式,求出k的取值范围即可.本题考查的是一次函数的图象与系数的关系,熟知一次函数y=kx+b(k≠0)中,当k> 0,b>0时函数图象经过第一、二、三象限是解答此题的关键.14. 解:当y=0时,x=3;2,0).故一次函数y=2x−3与x轴交点坐标为(32,0).故答案为:(32分别把y=0,x=0代入y=2x−3,求出对应的x及y的值,进而得出一次函数y=2x−3与x轴及与y轴的交点坐标.本题考查了一次函数图象上点的坐标特征,难度不大,注意掌握一次函数与y轴的交点的横坐标为0;一次函数与x轴的交点的纵坐标为0.15. 解:∵函数y=(a−3)x|a|−2+2a+1是一次函数,∴a=±3,又∵a≠3,∴a=−3.故答案为:−3.根据一次函数的定义得到a=±3,且a≠3即可得到答案.本题考查了一次函数的定义:对于y=kx+b(k、b为常数,k≠0),y称为x的一次函数.16. (1)把A、B两点坐标代入y=kx+b中得到关于k、b的方程组,然后解方程组求出k、b即可得到一次函数解析式;(2)根据一次函数图象上点的坐标特征,把(a,6)代入一次函数解析式中可求出a的值;(3)先利用勾股计算出AB的长,然后利用面积法求原点到直线AB的距离.本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;再将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;然后解方程或方程组,求出待定系数的值,进而写出函数解析式.17. (1)先把A点和B点坐标代入y=kx+b得到关于k、b的方程组,解方程组得到k、b的值,从而得到一次函数的解析式;(2)先确定D点坐标,然后根据三角形面积公式和△AOB的面积=S△AOD+S△BOD进行计算.本题考查了待定系数法求一次函数解析式:(1)先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;(2)将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;(3)解方程或方程组,求出待定系数的值,进而写出函数解析式.18. (1)利用待定系数求直线解析式;(2)利用坐标轴上点的坐标特征求直线l与坐标轴的交点坐标;(3)根据三角形面积公式求解.本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.x即可得到n的值,从而得到P点坐标为(2,3),然后把P 19. (1)先把P(2,n)代入y=32点坐标代入y=−x+m可计算出m的值;(2)先利用一次函数解析式确定B点坐标,然后根据三角形面积公式求解.本题考查了两条直线相交或平行问题:若直线y=k1x+b1与直线y=k2x+b2平行,则k1=k2;若直线y=k1x+b1与直线y=k2x+b2相交,则由两解析式所组成的方程组的解为交点坐标.20. 本题考查了待定系数法求一次函数解析式及一次函数图象上点的坐标特征,难度不大,属于基础题,注意细心运算即可.(1)用待定系数法求解函数解析式;(2)将点P坐标代入即可判断;(3)求出函数与x轴、y轴的交点坐标,后根据三角形的面积公式即可求解.。
12.2一次函数(第3课时)
比较这两个函数的解析式,容易得出: 一次函数y=kx+b的图象是一条直线,我们称它为直线 y=kx+b,它可以看作由直线y=kx平移∣b∣个单位长度 而得到(当b>0时,向___平移;当b<0时,向___平 上 下 移)。 直线y=kx+b与y轴相交于点(0, b), b叫做 直线y=kx+b在y轴上的截距,简称截距 注意: 截距b不是距离,它可以是正数,也可以是负数或零.
y
0
0 (A )
x y
x
y 0 x (B)
0
Hale Waihona Puke x(C)(D)
y
5 4 3 2 1 -5 -4 -3 -2 -1 0 12345 1 2 3 4 5
x
(1)下列函数中,y的值随x值的增大而 增大的函数是________. C A.y=-2x B.y=-2x+1 C.y=x-2 D.y=-x-2 (2)直线y=3x-2可由直线y=3x向 下 平 移 2 单位得到。 (3)直线y=x+2可由直线y=x-1向 移 3 单位得到。
12.2一次函数 第3课时
学习目标:
1.能熟练地画出一次函数的图像 2理解一次函数的性质 3.了解k、b与一次函数的图像之间的联系. 4.能根据一次函数的图像与k、b的关系解决简 单的问题.
自学提纲:
阅读课本35---37页内容思考下列问题: 1、一次函数有什么性质? 2、一次函数与正比例函数有什么关系? 3、一次函数y=kx+b的图象与k、b之间有什 么关系?
(五)课堂小结
这节课我们都有哪些收获呢?
一次函数的图象的画法与性质: 1.画法:过点(0,b)和 (-b/k ,0)连线; 2.性质:一般地,y=kx+b(k≠0) 有下列性质: (1)当k>0时,y随x的增大而增大; (2)当k<0时,y随x的增大而减小。
专题12.2 一次函数与正比例函数【七大题型】(举一反三)(沪科版)(原卷版)
专题12.2 一次函数与正比例函数【七大题型】【沪科版】【题型1 一次函数、正比例函数的识别】 (1)【题型2 利用一次函数、正比例函数的概念求值或取值范围】 (2)【题型3 用待定系数法求一次函数解析式】 (3)【题型4 用待定系数法求正比例函数解析式】 (4)【题型5 一次函数解析式与三角形面积问题】 (5)【题型6 求实际问题中的一次函数表达式】 (6)【题型7 与求函数表达式相关的探究性问题】 (8)【题型1 一次函数、正比例函数的识别】;(3)y=2x2;(4)y=﹣【例1】(2022春•麻城市校级月考)下列函数:(1)y=﹣2x;(2)y=−8xx+1;(5)y=x2+1,(6)y=kx+b(k是常数),其中一次函数的个数是()A.0个B.1个C.2个D.3个【变式1-1】(2022•市北区期中)下列语句中,y与x是一次函数关系的有()个(1)汽车以60千米/时的速度匀速行驶,行驶路程y(千米)与行驶时间x(时)之间的关系(2)圆的面积y(厘米2)与它的半径x(厘米)之间的关系;(3)一棵树现在高50厘米,每个月长高2厘米,x月后这棵树的高度为y厘米,y与x的关系;(4)某种大米的单价是2.2元/千克,当购买x千克大米时,花费y元,y与x的关系.A.1B.4C.3D.2【变式1-2】(2015春•盱眙县校级期末)下列问题中,是正比例函数的关系的是()A.矩形面积一定,长与宽的关系B.正方形面积和边长的关系C.三角形面积一定,底边和底边上的高的关系D.匀速运动中,速度固定时,路程和时间的关系(2022春•北京期末)如图,有一个装水的容器,容器内的水面高度是10cm,水面面积是100cm2.现【变式1-3】向容器内注水,并同时开始计时.在注水过程中,水面高度以每秒0.2cm的速度匀速增加.容器注满水之前,容器内水面的高度h,注水量V随对应的注水时间t的变化而变化,则h与t,V与t满足的函数关系分别是()A.正比例函数关系,正比例函数关系B.正比例函数关系,一次函数关系C.一次函数关系,一次函数关系D.一次函数关系,正比例函数关系【题型2 利用一次函数、正比例函数的概念求值或取值范围】【例2】(2022•平川区校级月考)当m,n为何值时,y=(m﹣1)x m2+n.(1)是一次函数;(2)是正比例函数.【变式2-1】(2022春•新抚区期末)已知函数y=(m+1)x2﹣|m|+4,y是x的一次函数,则m的值是()A.1B.﹣1C.1或﹣1D.任意实数【变式2-2】(2021春•萝北县期末)若y=(m+2)x+m2﹣4是关于x的正比例函数,则常数m=.【变式2-3】(2022•金牛区校级期中)当m,n为何值时,y=(m﹣3)x|m|﹣2+n﹣2.(1)是一次函数;(2)是正比例函数.【例3】(2021春•雄县期末)已知y是z的一次函数,z是x的正比例函数,问:(1)y是x的一次函数吗?(2)若当x=5时,y=﹣2;当x=﹣3时,y=6.则当x=1时,y的值是什么?【变式3-1】(2022春•柳州期末)已知一次函数图象经过点A(1,3)和B(2,5).求:(1)这个一次函数的解析式.(2)当x=﹣3时,y的值.【变式3-2】(2022•广陵区校级期末)已知y﹣1与x+2成正比例,且x=﹣1时,y=3.(1)求y与x之间的关系式;(2)它的图象经过点(m﹣1,m+1),求m的值.【变式3-3】(2022•宜兴市校级月考)已知y=y1+y2,其中y1与x成正比例,y2与x﹣2成正比例.当x=﹣1时,y=2;当x=3时,y=﹣2.求y与x的函数关系式,并画出该函数的图象.【题型4 用待定系数法求正比例函数解析式】【例4】(2022•嘉定区期末)正比例函数的图象经过点(2,﹣4)、(a,4),求这个函数的解析式和a 的值.【变式4-1】(2022•泰兴市期末)已知一个函数的图象是经过原点的直线,并且经过点(﹣3,9),求此4函数的关系式.【变式4-2】(2022春•衡阳县期中)已知y是x的正比例函数,且函数图象经过点A(﹣3,6).(1)求y与x的函数关系式;(2)当x=﹣6时,求对应的函数值y;.(3)当x取何值时,y=23【变式4-3】(2022•黄浦区期中)若正比例函数图象上一点到y轴与到x轴距离之比是3:1,则此函数的解析式为.【题型5 一次函数解析式与三角形面积问题】【例5】(2022春•江夏区校级月考)已知一次函数y=kx+b的图象交x轴于点A(4,0),交y轴于点B (0,2).(1)求这个函数的解析式;(2)若在第一象限有一点C(2,m),且△ACB的面积为4,求m的值.【变式5-1】(2022春•鞍山期末)如图,一次函数y=x+2与x轴,y轴分别交于点A,B,点M(1,m)是直线AB上一点,直线MC交x轴于点C(5,0);2(1)求直线MC的函数解析式;(2)若点P是线段AC上一动点,连接BP,MP,若△ABP的面积是△MPC面积的2倍,求P点坐标.【变式5-2】(2022春•凤庆县期末)如图,直线AB过点A(﹣1,5),P(2,a),B(4,﹣5).(1)求直线AB的函数解析式和a的值;(2)求△AOP的面积.【变式5-3】(2022•肃州区校级期中)如图,直线y=kx+6与x轴、y轴分别交于点E、F,点E的坐标为(﹣8,0),点A的坐标为(﹣6,0).(1)求直线EF的关系式;(2)求△OEF的面积;(3)若点P(x,y)是第二象限内的直线上的一个动点,在点P的运动过程中,当点P运动到什么位置时,△OP A的面积为12,并说明理由.【题型6 求实际问题中的一次函数表达式】【例6】(2022•东方校级期末)为了保护学生的视力,课桌的高度)ycm与椅子的高度xcm(不含靠背)都是按y是x的一次函数关系配套设计的,如表列出了两套课桌椅的高度:第一套第二套椅子高度xcm40.038.0课桌高度ycm75.071.8(1)请确定y与x的函数关系式(不要求写出x的取值范围);(2)现有一把高42.0cm的椅子和一张高79.8cm的课桌,它们是否配套?请通过计算说明理由.【变式6-1】(2022•嘉定区二模)某种型号的家用车在高速公路上匀速行驶时,测得部分数据如下表:行驶路程x(千米)…100150…油箱内剩余油量y(升)…5248…(1)如果该车的油箱内剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,求y关于x的函数解析式(不需要写出它的定义域);(2)张老师租赁该型号的家用车也在该高速公路的相同路段以相同的速度匀速行驶300千米(不考虑小轿车载客的人数以及堵车等因素).假如不在高速公路上的服务区加油,那么在上高速公路之前,张老师这辆车的油箱内至少需要有多少升汽油?请根据题目中提供的相关信息简要说明理由.【变式6-2】(2022•崇明县二模)温度通常有两种表示方法:华氏度(单位:℉)与摄氏度(单位:℃),已知华氏度数y 与摄氏度数x 之间是一次函数关系,下表列出了部分华氏度与摄氏度之间的对应关系: 摄氏度数x (℃) … 0 … 35 … 100 … 华氏度数y (℉)…32…95…212…(1)选用表格中给出的数据,求y 关于x 的函数解析式;(2)有一种温度计上有两个刻度,即测量某一温度时左边是摄氏度,右边是华氏度,那么在多少摄氏度时,温度计上右边华氏度的刻度正好比左边摄氏度的刻度大56?【变式6-3】(2022•河南模拟)某种计时“香篆”在0:00时刻点燃,若“香篆”剩余的长度h (cm )与燃烧的时间x (h )之间是一次函数关系,h 与x 的一组对应数值如表所示: 燃烧的时间x(h ) …3456…剩余的长度h (cm )…210 200 190 180…(1)写出“香篆”在0:00时刻点然后,其剩余的长度h (cm )与燃烧时间x (h )的函数关系式,并解释函数表达式中x 的系数及常数项的实际意义;(2)通过计算说明当“香篆”剩余的长度为125cm 时的时刻.【题型7 与求函数表达式相关的探究性问题】【例7】(2022春•成华区期末)将长为20cm ,宽为10cm的长方形白纸,按如图所示的方法粘合起来,粘合部分宽为2cm.(1)根据题意,将表格补充完整.白纸张数12345…纸条长度205674…(2)设x张白纸粘合后的总长度为ycm,则y与x之间的关系式是什么?请求出50张白纸粘合后的总长度;(3)若粘合后的总长度为2018cm,问需要多少张白纸?【变式7-1】(2022春•玉门市期末)如图,自行车每节链条的长度为2.5cm,交叉重叠部分的圆的直径为0.8cm.(1)观察图形,填写下表:链条的节数/节234…链条的长度/cm…(2)如果x节链条的长度为y,那么y与x之间的关系式是什么?(3)如果一辆某种型号自行车的链条(安装前)由60节这样的链条组成,那么这辆自行车上的链条(安装后)总长度是多少?【变式7-2】(2022蚌山区校级月考)用大小相同的黑白两种颜色的菱形纸片按照黑色纸片逐渐增加1的规律拼成如图图案.(1)第4个图案中白色纸片的个数是;(2)如果第n(n为正整数)个图案中有y个白色纸片,写出y与n的函数关系式.【变式7-3】(2022春•巴中期末)如图,直线l1:y=x+1与直线l2:y=x2+12相交于点P,直线l1与y轴交于点A,一动点C从点A出发,先沿平行于x轴的方向运动,到达直线l2上的点B1处后,改为垂直于x轴的方向运动,到达直线l1上的点A1处后,再沿平行于x轴的方向运动,到达直线l2上的点B2处后,又改为垂直于x轴的方向运动,到达直线l1上的点A2处后,仍沿平行于x轴的方向运动…照此规律运动,动点C依次经过点B1,A1,B2,A2,B3,A3,B2020,A2020……则A2022B2022的长度为()A.22021B.22022C.2022D.4044。
初二上册数学一次函数单元测试题及答案(K12教育文档)
(直打版)初二上册数学一次函数单元测试题及答案(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)初二上册数学一次函数单元测试题及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)初二上册数学一次函数单元测试题及答案(word版可编辑修改)的全部内容。
初二上册数学一次函数单元测试题一、填空题(每小题5分,共25分)1、若函数28y m x-=-是正比例函数,则常数m的值是。
(3)m2、已知一次函数2=-,请你补充一个条件 ,使y随x的增大而减小。
y kx3、从A地向B地打长途电话,按时收费,3分钟内收费2.4元,以后每超过1分钟加收1元,若通话t分钟(t≥3),则需付电话费y(元)与t(分钟)之间的函数关系式是 .4、某市自来水公司为了鼓励市民节约用水,采取分段收费标准,某市居民每月交水费y(元)与水量x(吨)的函数关系如图所示,请你通过观察函数图象,回答自来水公司收费标准:若用水不超过5吨,水费为元/吨;若用水超过5吨,超过部分的水费为元/吨。
5、学校阅览室有能坐4 人的方桌,如果多于4 人,就把方桌拼成一行,2张方桌拼成一行能坐6 人,如图所示,请你结合这个规律,填写下表:拼成一行的桌子1234……n人数468……二、选择题(每小题5分,共25分,每小题只有一个正确答案)6、下列各曲线中不能表示y是x的函数的是………………………………………( )A. B. C. D.7、若点A(2,4)在函数2=-的图象上,则下列各点在此函数图象上的是()y kxA .(0,—2)B .(错误!,0)C .(8,20)D .(错误!,错误!)8、右图是温度计的示意图,左边的刻度表示摄氏温度,右边的刻度表示华氏温度,华氏温度y (°F )与摄氏温度(°C )x 之间的函数关系式为………( )A .9325y x =+ B .40y x =+C .5329y x =+D .5319y x =+9、“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟先到了终点。
12.2一次函数(3)-待定系数法
创设情境 提出问题
1、复习:
3 画出 y 2 x 和 y x 3 的图象 2
2、反思:
你在作这两个数图象时,分别描了几个点?
可以有不同取法吗?
从数到形
函数解析 式y=kx+b
选取
满足条件的两定点
画出 一次函数的 图象直线 l
( x1, y1 )与(x2 , y2 )
b=2
k•4+b=6 解得 k=1
{b=2
所以该一次函数的表达式为 y=x+2
已知一次函数的图象, 如何求函数 的解析式?
y=kx+b
-4
y 5
(3,5) 3 x
0
(-4,-9)
-9
例3、已知一次函数的图像经过点A(-2,-1), 且与直线y=2x-3平行,求此函数的表达式? 解:设一次函数的解析式是y=kx+b, 已知一次函数的图像与直线y=2x-3平行,则k=2, ∴y=2x+b ∵一次函数的图像经过点A(-2,-1), ∴-4+b=-1 b=3 ∴此函数的表达式是y=2x+3
(0,-4) , 5、直线y=2x+b过点(1,-2),则它与y轴交点坐标为:
6、已知一次函数y= 2x+b图象经过点A 3 (-1,1),则b=_____;该函数图象经 5 过B(1,___)和C(-1.5 ,0) 7、直线l是一次函数y=kx+b的图象, y 2 (1)k=-0.5,b=__ (2)当x=30时,
提出问题 形成思路
1.利用图像求函数的解析式
y=2x
3 y x +3 2
图1
2.分析与思考
图2
确定正比例 函数的表达 式需要几个 一 条件?确定 一次函数的 表达式需要 两 几个条件?
沪科版八年级数学上册《12.2 一次函数》同步练习题及答案
沪科版八年级数学上册《12.2 一次函数》同步练习题及答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.已知正比例函数y=(k﹣2)x+k+2的k的取值正确的是( )A.k=2B.k≠2C.k=﹣2D.k≠﹣22.下列函数:(1)y=πx;(2)y=2x﹣1;(3)y=1x;(4)y=2﹣3x;(5)y=x2﹣1中,是一次函数的有( )A.4个B.3个C.2个D.1个3.在直角坐标系中,点M,N在同一个正比例函数图象上的是( )A.M(2,-3),N(-4,6)B.M(-2,3),N(4,6)C.M(-2,-3),N(4,-6)D.M(2,3),N(-4,6)4.若某正比例函数过(2,-3),则关于此函数的叙述不正确的是( ).A.函数值随自变量x的增大而增大B.函数值随自变量x的增大而减小C.函数图象关于原点对称D.函数图象过二、四象限5.关于直线y=-2x,下列结论正确的是( )A.图象必过点(1,2)B.图象经过第一、三象限C.与y=-2x+1平行D.y随x的增大而增大6.在平面直角坐标系中,若直线y=kx+b经过第一、三、四象限,则直线y=bx+k不经过的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限7.若一次函数y=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围是( )A.k>3B.0<k≤3C.0≤k<3D.0<k<38.若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式中总是成立的是( )A.ab>0B.a﹣b>0C.a2+b>0D.a+b>09.在平面直角坐标系中,将直线l1:y=﹣3x﹣1平移后,得到直线l2:y=﹣3x+2,则下列平移方式正确的是( )A.将l1向左平移1个单位 B.将l1向右平移1个单位C.将l1向上平移2个单位 D.将l1向上平移1个单位10.把直线y=-x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是( )A.1<m<7B.3<m<4C.m>1D.m<4二、填空题11.当m=___________时,函数y=(m+3)x2m+1+4x﹣5(x≠0)是一次函数.12.若正比例函数y=(m﹣2)x∣m∣﹣2的图象在第一、三象限内,则m=_______.13.若一次函数y=(m﹣1)x﹣m+4的图象与y轴的交点在x轴的上方,则m的取值范围是________.14.如果一次函数y=mx+n的图象经过第一、二、四象限,则一次函数y=nx+m不经过第________象限.15.将直线y=2x﹣4向上平移5个单位后,所得直线的表达式是.那么将直线y=2x﹣4沿x轴向右平移3个单位得到的直线方程是.16.如图,把Rt△ABC放在平面直角坐标系内,其中∠CAB=90°,BC=5,点A(1,0),B(4,0).将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC 扫过的面积为____cm2.三、解答题17.已知y-3与x成正比例,且当x=2时,y=7.(1)求y与x之间的函数表达式.(2)当x=-2时,求y的值.(3)当y=-3时,求x的值.18.已知正比例函数y=kx经过点A,点A在第四象限,过点A作AH⊥x轴,垂足为点H,点A的横坐标为3,且△AOH的面积为3.(1)求正比例函数的解析式;(2)在x轴上能否找到一点P,使△AOP的面积为5?若存在,求点P的坐标;若不存在,请说明理由.19.已知函数y=(2m+1)x+m﹣3.(1)若函数图象经过原点,求m的值;(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围;(3)若这个函数是一次函数,且图象不经过第四象限,求m的取值范围.20.已知一次函数y=kx﹣4,当x=2时,y=﹣3.(1)求一次函数的解析式;(2)将该函数的图象向上平移6个单位,求平移后的图象与x轴交点的坐标.21.如图,已知四边形ABCD是正方形,点B,C分别在直线y=2x和y=kx上,点A,D是x轴上两点.(1)若此正方形边长为2,k=_______.(2)若此正方形边长为a,k的值是否会发生变化?若不会发生变化,请说明理由;若会发生变化,求出a的值.22.已知直线y=23x-2分别交x轴,y轴于A,B两点,O是原点.(1)求△AOB的面积.(2)过△AOB的顶点能不能画出直线把△AOB的面积分成相等的两部分?如果能,可以画出几条?写出这样的直线所对应的函数表达式;如果不能,请说明理由.答案1.C2.B.3.A4.A5.C6.C7.A.8.C.9.B10.C11.答案为:﹣3,0,﹣1 2 .12.答案为:3.13.答案为:m<4且m≠114.答案为:二.15.答案为:y=2x+1;y=2x﹣7.16.答案为:16.17.解:(1)设y-3=kx.∵当x=2时,y=7∴7-3=2k,∴k=2.∴y=2x+3.(2)当x=-2时,y=-2×2+3=-1.(3)当y=-3时,-3=2x+3,∴x=-3.18.解:(1)∵点A的横坐标为3,且△AOH的面积为3 ∴点A的纵坐标为-2∴点A的坐标为(3,-2).∵正比例函数y=kx经过点A∴3k=-2,解得k=-2 3 .∴正比例函数的解析式为y=-23 x.(2)存在.∵△AOP的面积为5,点A的坐标为(3,-2) ∴OP=5.∴点P的坐标为(5,0)或(-5,0).19.解:(1)把(0,0)代入得m﹣3=0,m=3;(2)根据y随x的增大而减小说明k<0即2m+1<0,m<﹣1 2;(3)若图象经过第一、三象限,得m=3.若图象经过第一、二、三象限则,解得m>3综上所述:m≥3.20.解:(1)将x=2,y=﹣3代入y=kx﹣4得﹣3=2k﹣4,解得k=1 2 .故一次函数的解析式为y=12x-4.(2)将y=12x-4的图象向上平移6个单位得y=12x+2,当y=0时,x=﹣4故平移后的图象与x轴交点的坐标为(﹣4,0).21.解:(1)2 3∵正方形边长为2∴AB=2.在直线y=2x中当y=2时,x=1∴OA=1,OD=1+2=3∴C(3,2),将C(3,2)代入y=kx中得2=3k ,解得k=3. (2)k 的值不会发生变化理由:∵正方形边长为a∴AB=a在直线y=2x 中,当y=a 时,x=12a ∴OA=12a,OD=32a ∴C(32a,a). 将C(32a,a)代入y=kx 中,得a=k ×32a 解得k=23∴k 值不会发生变化.22.解:(1)令x =0,得y =-2;令y =0,得x =3.∴该直线与x 轴,y 轴的交点分别是A(3,0),B(0,-2)∴S △AOB =12×3×2=3. (2)过顶点能画出把△AOB 的面积分成相等两部分的直线,这样的直线共有3条. ①过点A(3,0)且过OB 的中点(0,-1)的直线.设此直线的函数表达式为y =k 1x +b 1(k 1≠0).把点(3,0),(0,-1)的坐标分别代入y =k 1x +b 1得⎩⎨⎧3k 1+b 1=0,b 1=-1,解得⎩⎨⎧k 1=13,b 1=-1.∴y =13x -1. ②过点B(0,-2)且过OA 的中点(32,0)的直线. 设此直线的函数表达式为y =k 2x +b 2(k 2≠0).把点(0,-2),(2,0)的坐标分别代入y =k 2x +b 2,得 ⎩⎨⎧b 2=-2,32k 2+b 2=0,解得⎩⎨⎧k 2=43,b 2=-2.∴y =43x -2. ③过点O 且过AB 的中点(32,-1)的直线. 设此直线的函数表达式为y =k 3x(k 3≠0).把点(32,-1)的坐标代入y =k 3x ,得 32k 3=-1,解得k 3=-23.∴y =-23x.。
八年级数学沪科版上册【能力培优】专题训练:12.2 一次函数(含答案)
212.2 一次函数专题一 一次函数解析式的确定 1.如图,在平面直角坐标系中,线段AB 的端点坐标为A (-2,4),B (4,2),直线y =kx -2与线段AB 有交点,则k 的值可能是( ) A.-5 B.-2 C.3 D. 52.小明受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如下操作:请根据图中给出的信息,解答下列问题:(1)放入一个小球量筒中水面升高_______cm ;(2)求放入小球后量筒中水面的高度y (cm )与小球个数x (个)•之间的一次函数关系式(不要求写出自变量的取值范围);(3)量筒中至少放入几个小球时有水溢出?专题二 一次函数中的开放性问题3. “一根弹簧原长10cm,在弹性限度内最多可挂质量为5kg 的物体,挂上物体后弹簧伸长的长度与所挂物体的质量成正比, ,则弹簧的总长度y (cm )与所挂物体质量x (kg)之间的函数关系式是y =10+0.5x (0≤x ≤5).”王刚同学在阅读上面材料时就发现部分内容被墨迹污染,被污染部分是确定函数关系式的一个条件,你认为该条件可以是: (只需写出一个).4.阅读函数图象,并根据你所获得的信息回答问题:(1)折线OAB 表示某个实际问题的函数图象,请你编写一道符合图象意义的应用题;(2)根据你所给出的应用题分别指出x 轴,y 轴所表示的意义,并写出A ,B 两点的坐标;(3)求出图象AB 的函数解析式,并注明自变量x 的取值范围.y x B专题三 一次函数中的实验操作题5.在平面直角坐标系中,点P 从原点O 出发,每次向上平移2个单位长度或向右平移1个单位长度.(1)实验操作:在平面直角坐标系中描出点P 从点O 出发,平移1次后,2次后,3次后可能到达的点,并把相应点的坐标填写在表格中:(2)观察发现:任一次平移,点P 可能到达的点在我们学过的一种函数的图象上,如:平移1次后在函数 的图象上;平移2次后在函数 的图象上……由此我们知道,平移n 次后在函数 的图象上.(请填写相应的解析式)(3)探索运用:点P 从点O 出发经过n 次平移后,到达直线x y 上的点Q ,且平移的路径长不小于50,不超过56,求点Q 的坐标.【知识要点】1.函数y =kx +b (k ≠0)叫做一次函数,当b =0时,叫做正比例函数.2.一次函数y =kx +b 的图象是一条直线,其位置是由k 和b 来确定的.只要知道一次函数图象两个点的坐标,就可以画出该函数的图象.3.一次函数y =kx +b 有下列性质:当k >0时,y 随着x 的增大而增大(图象是自左向右上升的).当k <0时,y 随着x 的增大而减小(图象是自左向右下降的).4.求一次函数的解析式常用的方法是待定系数法.【温馨提示】1.弄清一次函数和正比例函数的关系,正比例函数是一次函数的特殊情形,即正比例函数是一次函数,但一次函数不一定是正比例函数.2.一次函数的性质可借助函数的图象直观得到,注意“数形结合”思想的合理利用.3.确定一次函数解析式的基本方法是待定系数法,其实质是二元一次方程组知识的应用.除此以外,还可以根据题目所给基本数量关系或数学公式列出一次函数的解析式.【方法技巧】1.直线y =kx +b 的位置是由k 和b 的符号决定的,其中k 决定直线从左到右是呈上升趋势还是下降趋势,b 决定直线与y 轴的交点位置.2.用待定系数法求函数解析式的一般步骤是:(1)设含有待定系数的函数解析式;(2)把已知条件代入解析式,得到关于待定系数的方程(组);(3)解方程(组),得到待定系数;(4)将求得的待定系数的值代回所设的解析式.参考答案1.B 提示:将A (-2,4)代入y =kx -2,得k =-3,将B (4,2)代入y =kx -2得k =1,从而得k 值在-3与1之间,因此只有B 符合条件.2.(1)(36-30)÷3=2;即放入一个小球量筒中水面升高2cm .(2)放入小球后量筒中水面的高度y (cm)与小球个数x (个)之间的一次函数关系式y =30+2x .(3)当y =49时,30+2x =49,解得x =9.5,所以至少放入10个小球时有水溢出.3.如果悬挂2kg 物体弹簧总长度为11cm. (答案不唯一).4.答案一:(1)小明从家跑步去离家800米的学校,用了5分钟,立即又用了10分钟步行回到家中;(2)x 轴表示时间,y 轴表示距离,A (5,800),B (15,0);(3)图象AB 的解析式为y =-80x +1200(5≤x ≤15).答案二:一容器深8米,往里注满水用去5分钟,接着打开底部的排水管放完全部水用去10分钟.此时,x 轴表示时间(分),y 轴表示容器内水面的高(米),A (5,8),B (15,0);图象AB 的解析式为y =412(515)5x x -+≤≤). 答案三:小明用5分钟把一杯冰水混合物加热道50℃后,立即把它放入冰柜中,又经过10分钟,杯中的水又降到0℃,此时,x ,y 轴分别表示时间与温度,A (5,50),B (15,0);图象AB 的解析式及自变量的取值范围,由同学们完成.(2)22+-=x y ;42+-=x y ;n x y 22+-=.(3)设点Q 的坐标为),(y x ,依题意,⎩⎨⎧=+-=.,22x y n x y解这个方程组,得到点Q 的坐标为)32,32(n n . ∵平移的路径长为y x +,∴50≤34n ≤56. ∴37.5≤n ≤42. 而点Q 的坐标为正整数,因此点Q 的坐标为)26,26(,)28,28(.。
数学八年级上册一次函数练习题
数学八年级上册一次函数练习题一、试试你的身手(每小题3分,共24分)1.正比例函数12y x=-中,y值随x的增大而.2.已知y=(k-1)x+k2-1是正比例函数,则k=.3.若y+3与x成正比例,且x=2时,y=5,则x=5时,y= .4.直线y=7x+5,过点(,0),(0,).5.已知直线y=ax-2经过点(-3,-8)和12b⎛⎫⎪⎝⎭,两点,那么a= ,b= .6.写出经过点(1,2)的一次函数的解析式为 (写出一个即可).7.在同一坐标系内函数112y x=+,112y x=-,12y x=的图象有什么特点.8.下表中,y是x的一次函数,则该函数解析式为,并补全下表.x2-1-012y26二、相信你的选择(每小题3分,共24分)1.下列函数中是正比例函数的是()A.8yx=B.28y=C.2(1)y x=-D.(21)3xy+=-2.下列说法中的两个变量成正比例的是()A.少年儿童的身高与年龄B.圆柱体的体积与它的高C.长方形的面积一定时,它的长与宽D.圆的周长C与它的半径r3.下列说法中错误的是()A.一次函数是正比例函数B.正比例函数是一次函数C.函数y=|x|+3不是一次函数D.在y=kx+b(k、b都是不为零的常数)中, y-b与x成正比例4.一次函数y=-x-1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限5.函数y=kx-2中,y随x的增大而减小,则它的图象可以是()6.如图1,一次函数的图象经过A、B两点,则这个一次函数的解析式为()A.322y x=-B.122y x=-C.122y x=+D.322y x=+7.若函数y=kx+b(k、b都是不为零的常数)的图象如图2所示,那么当y>0时,x的取值范围为()A.x>1 B.x>2 C.x<1 D.x<28.已知一次函数y=kx-k,若y随x的增大而减小,则该函数的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限三、挑战你的技能(共30分)1.(10分)某函数具有下列两条性质:(1) 它的图象是经过原点(0,0)的一条直线;(2) y的值随x的值增大而减小.请你写出一个满足上述两个条件的函数解析式.2.(10分)已知一次函数y=kx+b的图象经过A(2,4)、B(0,2)两点,且与x轴相交于C点.(1)求直线的解析式.(2)求△AOC的面积.3.(10分)已知一个正比例函数和一个一次函数的图象交于点P(-2,2),且一次函数的图象与y轴相交于点Q(0,4).(1)求这两个函数的解析式.(2)在同一坐标系内,分别画出这两个函数的图象.(3)求出△POQ的面积.四、拓广探索(共22分)1.(11分)如图3,在边长为2的正方形ABCD的一边BC上的点P从B点运动到C点,设PB=x,梯形APCD的面积为S.(1)写出S与x的函数关系式;(2)求自变量x的取值范围;(3)画出函数图象.2.(11分)小明在暑期社会实践活动中,以每千克0.8元的价格从批发市场购进若干千克西瓜到市场上去销售,在销售了40千克西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与售出西瓜的千克数之间的关系如图4所示.请你根据图象提供的信息完成以下问题:(1)求降价前销售金额y(元)与售出西瓜x(千克)之间的函数关系式.(2)小明从批发市场共购进多少千克西瓜?(3)小明这次卖瓜赚了多少钱?参考答案一、1.减小 2.1- 3.17 4.57-,5 5.2,1-6.略(答案不惟一) 7.三条直线互相平行8.22y x =+,表格从左到右依次填2-,0,4二、1.D 2.D 3.A 4.A5.D 6.A 7.D 8.B 三、1.y x =-(答案不惟一)2.(1)2y x =+(2)43.(1)正比例函数的解析式为y x =-.一次函数的解析式为4y x =+(2)图略;(3)4四、1.(1)4S x =-;(2)02x <<;(3)图略2.(1)8(040)5y x x =≤≤; (2)50千克;(3)36元。
初二上册一次函数练习题及答案
初二上册一次函数练习题及答案2013-12-11字体大小T|T摘要:以下是初二上册一次函数练习题及答案,希望大家通过学习,理解一次函数和正比例函数的概念以及它们之间的关系;能根据根据具体情境所给的信息确定一次函数的表达式。
4.4 确定一次函数的表达式专题利用数形求一次函数的表达式1.如图,在△ABC中,∠ACB=90°,AC=,斜边AB在x轴上,点C在y轴的正半轴上,点A的坐标为(2,0).则直角边BC所在直线的表达式为____________.2. 如图,已知一条直线经过A(0,4)、点B(2,0),将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC.求直线CD的函数表达式.3.平面直角坐标系中,点A的坐标是(4,0),点P在直线y=-x+m 上,且AP=OP=4.求m的值.答案:1.y=x+4 【解析】点A的坐标为(2,0),则OA=2,又AC=,OC AO,所以OC=4,即C(0,4).在△ABC中,∠ACB=90°,AC=,OC⊥AB与O,则AB=10,则OB=8,因而B的坐标是(-8,0),直线BC的表达式是y=x+4.2.解:设直线AB的表达式为y=kx+b,把A(0,4)、点B(2,0)代入得k=-2,b=4,故直线AB的表达式为y=-2x+4.将这直线向左平移与x 轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC时,因为平移后的图形与原图形平行,故平移以后的函数表达式为:y=-2x-4.3.解:由已知AP=OP,点P在线段OA的垂直平分线PM上,M为垂足.∵A(4,0),∴OA=AP=OP=4,∴△AOP是等边三角形.如图,当点P在第一象限时,OM=2,OP=4.在Rt△OPM中,PM=,∴P(2,).∵点P在y=-x+m上,∴m=2+.当点P在第四象限时,根据对称性,得P′(2,﹣).∵点P′在y=-x+m上,∴m=2﹣.则m的值为2+或2-.4.5 一次函数图象的应用专题一次函数图象的应用1.(2012湖北武汉)甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123,其中正确的是()A.①②③ B. 仅有①②C.仅有①③D. 仅有②③2. 如图,点A的坐标为(4,0),点P在第一象限且在直线x+y=6上.(1)设点P坐标为(x,y),写出△OPA的面积S与x之间的关系式(其中P点横坐标在O与A点之间变化);(2)当S=10时,求点P坐标;(3)若△OPA是以OA为底边的等腰三角形,你能求出P 的坐标吗?若能,请求出坐标;若不能,请说明理由.3.如图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中放有一圆柱形铁块(圆柱形铁块的下底面完全落在水槽底面上),现将甲槽中的水匀速注入乙槽,甲、乙两个水槽中水的深度y(厘米)与注水时间x(分钟)之间的关系如图2所示.根据图象提供的信息,解答下列问题:(1)图2中折线ABC表示槽中水的深度与注水时间之间的关系,线段DE表示槽中水的深度与注水时间之间的关系(以上两空选填“甲”或“乙”),点B的纵坐标表示的实际意义是;(2)注水多长时间时,甲、乙两个水槽中的水的深度相同?(3)若乙槽底面积为36平方厘米(壁厚不计),求乙槽中铁块的体积;(4)若乙槽中铁块的体积为112立方厘米(壁厚不计),求甲槽底面积(直接写结果).答案:1.A【解析】∵乙出发时甲行了2秒,相距8m,∴甲的速度为8÷2=4m/s.∵100秒后乙开始休息,∴乙的速度是500÷100=5m/ s,∵a秒后甲乙相遇,∴a=8÷(5-4)=8,即①正确;100秒后乙到达终点,甲走了,4×(100+2)=408米∴b=500-408=92米即②正确,甲走到终点一共需耗时500÷4=125(秒),∴c=125-2=123,即③正确.故选A.2.解:(1).(2)P点坐标为(1,5).(3)P点坐标为(2,4).3.解:(1)乙甲铁块的高度w(2)设线段AB、DE的解析式分别为:y1=k1x+b,y2=k2x+b,∵AB经过点(0,2,)和(4,14),DC经过(0,12)和(6,0),分别代入得b=12,k=-2,∴解析式为y=3x+2和y=﹣2x+12,令3x+2=﹣2x+12,解得x=2,∴当注水2分钟时两个水槽中的水的深度相同.(3)由图象知:当水面没有没过铁块时4分钟水面上升了12cm,即1分钟上升3cm,当水面没过铁块时,2分钟上升了5cm,即1分钟上升2.5cm,设铁块的底面积为xcm,则3×(36﹣x)=2.5×36,解得x=6,∴铁块的体积为:6×14=84(cm3).(4)60cm2.4.3 一次函数的图象专题一根据k、b确定一次函数图象1. 如图,在同一直角坐标系内,直线l1:y=(k-2)x+k,和l2:y=kx 的位置可能是()A B C D2.下列函数图象不可能是一次函数y=ax-(a-2)图象的是()A B CD已知a、b、c为非零实数,且满足,则一次函数y=kx+(1+k)的图象一定经过第二___________象限.专题二一次函数图象的综合应用4.春节期间,某批发商欲将一批海产品由A地运往B地,汽车货运公司和铁路货运公司均开展海产品的运输业务,两货运公司的收费项目及收费标准如下表所示.已知运输路程为120千米,汽车和火车的速度分别为60千米/小时,100千米/小时,以下说法正确的是()运输工具运输费(元/吨•千米)冷藏费(元/吨•小时)过路费(元)装卸及管理费(元)汽车 2 5 200 0火车 1.8 5 0 1600 A.当运输货物重量为60吨,选择汽车B.当运输货物重量大于50吨,选择汽车C.当运输货物重量小于50吨,选择火车D.当运输货物重量大于50吨,选择火车5.(2012四川绵阳) 某种子商店销售”黄金一号”玉米种子,为惠民促销,推出两种销售方案供采购者选择.方案一:每千克种子价格为4元,无论购买多少均不打折;方案二:购买3千克以内(含3千克)的价格为每千克5元,若一次性购买超过3千克的,则超过3千克的部分的种子价格打7折.(1)请分别求出方案一和方案二中购买的种子数量(千克)和付款金额(元)之间的函数关系式;(2)若你去购买一定量的种子,你会怎样选择方案?说明理由.6.(2012新疆)库尔勒某乡A、B两村盛产香梨,A村有香梨200吨,B村有香梨300吨,现将这批香梨运到C、D两个冷藏仓库,已知C仓库可储存240吨,D仓库可储存260吨;从A村运往C、D两处的费用分别为每吨40元和45元,从B村运往C、D两处的费用分别为每吨25元和32元.设从A村运往C仓库的香梨为x吨,A、B两村运往两仓库的香梨运输费用分别为yA和yB元.(1)请填写下表,并求出y A、y B与x之间的函数关系式;C D 总计运地收地A x吨200吨B 300吨总计240吨260吨500吨(2)当x为何值时,A村的运费较少?(3)请问怎样调运,才能使两村运费之和最小?求出最小值.答案:1.B【解析】由题意知,分三种情况:(1)当k>2时,y=(k-2)x+k的图象经过第一、二、三象限,y=kx 的图象y随x的增大而增大,并且l2比l1倾斜程度大,故C选项错误;(2)当0<k<2时,y=(k-2)x+k的图象经过第一、二、四象限,y=kx的图象y随x的增大而增大,B选项正确;(3)当k<0时,y=(k-2)x+k的图象经过第二、三、四象限,y=kx 的图象y随x的增大而减小,但l1比l2倾斜程度大,故A、D选项错误.故选B.2.B【解析】根据图象知:A.a>0,-(a-2)>0.解得0<a<2,所以有可能;B.a<0,-(a-2)<0.两不等式的解没有公共部分,所以不可能;C.a<0,-(a-2)>0.解得a<0,所以有可能;D.a>0,-(a-2)<0.解得a>2,所以有可能.故选B.3.二【解析】由,化简得.分两种情况讨论:当a+b+c≠0时,得k=2,此时直线是y=2x+3,过第一、二、三象限;当a+b+c=0时,即a+b=-c,则k=-1,此时直线是y=-x,过第二、四象限.综上所述,该直线必经过第二象限.4.D【解析】设运输x吨货物,根据题意,汽车运费:y=2x×120+5x×+200=250x+200,火车运费:y=1.8x×120+5x×+1600=222x+1600,①250x+200=222x+1600,解得x=50,∴运输货物为50吨时,选择汽车与火车一样;②250x+200<222x+1600,解得x<50,∴运输货物小于50吨时,选择汽车运输;③250x+200>222x+1600,解得x>50,∴运输货物大于50吨时,选择火车运输.综上所述,D选项符合.故选D.5.解:(1)方案一:y=4x;方案二:当0≤x≤3时,y=5x ;当x>3时,y=3×5+(x-3)×5×70%=3.5x+4.5.(2)设购买x千克的种子时,两种方案所付金额一样,则4x=3.5x+4.5,解这个方程得x=9,∴当购买9千克种子时,两种方案所付金额相同;当购买种子0<x <3时,方案一所付金额少,选择方案一;当购买种子3≤x<9时,方案一所付金额少,选择方案一;当购买种子质量超过9千克时,方案二所付金额少,应选择方案二.6.解:(1)填写表格如下:C D 总计运地收地A x吨(200-x)吨 200吨B (240-x)吨(60+x)吨300吨总计240吨260吨500吨由题意得y A=40x+45(200-x)=-5x+9000 (0≤x≤200),y B=25(240-x)+32(60+x)=7x+7920 (0≤x≤200),(2)若y A<y B</y,则-5x+9000<7x+7920,x>90.∴当90<x< span="">≤200时, yA<yB,</y即A村的运费较少.</x<>(3)设两村运费之和为y,则y=yA+yB,∴y=-5x+9000+7x+7920,即y=2x+16920.又∵0≤x≤200时,y随x的增大而增大.∴当x=0时,y有最小值,y最小值=16920(元).因此,由A村调往C仓库的香梨为0吨,调往D仓库为200吨,B村调往C仓库为240吨,调往D仓库60吨时,两村的运费之和最小,最小费用为16920元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12.2一次函数(3)
一、选择题
1、已知直线y=kx 经过(2,-6),则k 值是( )
A 、3
B 、-3
C 、1/3
D 、-1/3
2、把直线y=-3x 向下平移5个单位,得到直线所对应函数解析式是( )
A 、y=-3x+5
B 、y=3x+5
C 、y=3x-5
D 、y=-3X-5
3、在圆周长公式C=2πr 中,变量个数是( )
A 、1个
B 、2个
C 、3个
D 、4个
4、不论b 取什么值,直线y=3x+b 必经过( )
A 、第一、二象限
B 、第一、三象限
C 、第二、三象限
D 、第二、四象限
5、若点A (2,4)在函数y=kx-2图象上,则下列各点在此函数图象上是( )
A 、(0,-2)
B 、(3/2,0)
C 、(8,20)
D 、(1/2,1/2)
6、若函数y=kx-4,y 随x 增大而减小图象大致是( ) A B C D
7、已知一次函数y=kx+b 图象如图所示,则k,b 符号是( )
(A)k>0,b>0 (B)k>0,b<0 (C)k<0,b>0 (D)k<0,b<0
8、已知一次函数y=kx+b,y 随着x 增大而减小,且kb<0,则在直角坐标系内它大致图象是( ) (A) (B) (C ) (D )
9、已知一次函数y=ax+4与y=bx-2图象在x 轴上相交于同一点,则
b a
值是( ) (A)4 (B)-2 (C) 12 (D)- 12 10、无论m 为何值时,直线y=x+2m 与y=-x+4交点不可能在( )
A 、第一象限
B 、第二象限
C 、第三象限
D 、第四象限
二、填空题
1.已知一个正比例函数图象经过点(-2,4),则这个正比例函数表达式是( ).
2.已知一次函数y=kx+5图象经过点(-1,2),则k=( ).一次函数y= -2x+4图象与x 轴交点坐标是( ),与y 轴交点坐标是( )。
3。
下列三个函数y= -2x, y= - 14 x, y=( 2 - 3 )x 共同点是(1)( ); (2)( );(3)( ).
4.某种储蓄月利率为0.15%,现存入1000元,则本息和y (元)与所存月数x 之间函数关系式是( ).
5.写出同时具备下列两个条件一次函数表达式(写出一个即可)( ).(1)y 随着x 增大而减小。
(2)图象经过点(1,-3)
三、计算题
1. 求直线y=2x-1与两坐标轴所围成三角形面积。
2.点P(x ,y)在第一象限,且x+y=10,点A 坐标为(8,0),设△OPA 面积为S 。
(1)用含x 解析式表示S ,写出x 取值范围,画出函数S 图象。
(2)当S=12 时点P 坐标。