数学乙大纲

合集下载

高考数学全国统一考试大纲

高考数学全国统一考试大纲

高考数学全国统一考试大纲高考数学全国统一考试大纲Ⅰ。

考试性质全国统一考试是选拔性考试,由合格的高中毕业生和具有同等学力的考生参加,高等学校依照考生的成绩,按照招生计划进行综合评估,以德、智、体、全面衡量,择优录取。

因此,考试应具有较高的信度、效度、必要的区分度和适当的难度。

Ⅱ。

考试能力要求1.平面向量考试内容包括向量、向量的加法与减法、实数与向量的积、平面向量的坐标表示、线段的定比分点、平面向量的数量积、平面两点间的距离和平移。

考生需要:1) 理解向量的概念,掌握向量的几何表示,了解共线向量的概念。

2) 掌握向量的加法和减法。

3) 掌握实数与向量的积,了解两个向量共线的充要条件。

4) 了解平面向量的差不多定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算。

5) 掌握平面向量的数量积及其几何意义,了解用平面向量的数量积能够处理有关长度、角度和垂直的问题,掌握向量垂直的条件。

6) 掌握平面两点间的距离公式,以及线段的定比分点和中点坐标公式,同时能够熟练运用平移公式。

2.集合、简易逻辑考试内容包括集合、子集、补集、交集、并集、逻辑联结词、四种命题、充分条件和必要条件。

考生需要:1) 理解集合、子集、补集、交集、并集的概念。

了解空集和全集的意义。

了解属于、包含、相等关系的意义。

掌握有关的术语和符号,并能正确表示一些简单的集合。

2) 理解逻辑联结词“或”、“且”、“非”的含义。

理解四种命题及其相互关系。

掌握充分条件、必要条件及充要条件的意义。

3.函数考试内容包括映射、函数、函数的单调性、奇偶性、反函数、互为反函数的函数图像间的关系、指数概念的扩充、有理指数幂的运算性质、指数函数、对数、对数的运算性质、对数函数和函数的应用。

考生需要:1) 了解映射的概念,理解函数的概念。

2) 了解函数单调性、奇偶性的概念,掌握判定一些简单函数的单调性、奇偶性的方法。

3) 了解反函数的概念及互为反函数的函数图像间的关系,能够求一些简单函数的反函数。

考研数学一大纲完整版

考研数学一大纲完整版

考研数学一大纲完整版一、线性代数部分1.1 矩阵与行列式•矩阵的定义和基本运算•线性方程组及其求解•行列式及其性质•特征值与特征向量1.2 向量空间•向量空间的概念和性质•子空间及其判定•基与维数1.3 线性变换•线性变换的定义与性质•线性变换的矩阵表示•线性变换的相似性二、概率统计部分2.1 随机事件与概率•随机试验与样本空间•随机事件及其概率•分类求概率法•条件概率与乘法定理2.2 随机变量与分布律•随机变量与分布函数•离散型随机变量及其概率分布•连续型随机变量及其概率密度函数•边缘分布和条件分布2.3 数理统计•抽样与抽样分布•参数估计与点估计•区间估计与假设检验•正态总体的统计推断三、高等代数部分3.1 线性方程组•线性方程组的解的存在唯一性•线性方程组的参数表示与齐次线性方程组•等价方程组与初等变换•向量方程组与矩阵方程3.2 线性空间•线性空间的概念与性质•子空间与线性子空间•基与维数•对偶空间与线性映射3.3 线性变换•线性变换的定义与性质•标准和矩阵表示•相似矩阵与对角化四、高等数学(第一册、第二册)部分4.1 极限与连续•数列极限•函数极限•连续与间断点•无穷小与无穷大4.2 导数与微分•函数的导数及其计算•高阶导数与导数的应用•微分与微分中值定理•函数的连续性4.3 积分与应用•不定积分和定积分•牛顿—莱布尼茨公式•反常积分•定积分的应用五、数学分析部分5.1 实数与数列函数•数列极限和函数极限•函数的连续性•实数的完备性与相关定理•紧致性与连续函数的性质5.2 导数与微分•函数的导数与微分•导数与函数的几何应用•函数的高阶导数•泰勒公式与函数的局部性质5.3 积分与应用•不定积分和定积分•回顾微积分基本公式•牛顿—莱布尼茨公式•表达式与变量替换法以上为考研数学一大纲的完整内容,包括线性代数、概率统计、高等代数、高等数学和数学分析的各个知识点。

通过学习这些内容,将有助于考生全面掌握数学知识,提高考试的综合能力。

(整理)考研数学大纲内容 数一

(整理)考研数学大纲内容 数一

考研数学大纲内容数一一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:,函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L’Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值和最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数。

数学教学大纲(一年级上册)-人教版

数学教学大纲(一年级上册)-人教版

数学教学大纲(一年级上册)-人教版目标- 帮助学生建立对数学的兴趣和信心- 掌握基本的数学概念和运算技巧- 培养学生的逻辑思维和问题解决能力教学内容1. 数的认识- 数的读法和写法- 数的比较和排序- 数的分类和归纳2. 数的运算- 加法和减法的概念和运算规则- 加法和减法的口算技巧- 加法和减法的应用问题3. 数的应用- 数的表示和分解- 数的计数和测量- 数的时间和日期4. 图形认识- 基本图形的认识和命名- 图形的属性和特征- 图形的组合和分类5. 图形的应用- 图形的绘制和构造- 图形的变换和对称- 图形的应用问题教学方法- 情境教学:通过生活中的实际情境引导学生学习数学知识和技能。

- 合作学习:通过小组活动和合作探究,培养学生的合作意识和团队精神。

- 游戏教学:通过游戏和竞赛等活动,激发学生的学习兴趣和积极性。

- 创设情境:通过创设情境和问题解决,培养学生的逻辑思维和创新能力。

教学评价- 日常评价:通过观察学生的学习情况和作业完成情况,及时发现问题并给予指导和反馈。

- 期中评价:通过小测验和课堂测试,检查学生对教学内容的掌握情况并及时调整教学进度。

- 期末评价:通过考试和综合评价,全面评估学生对整个学期教学内容的掌握情况和综合能力。

教学资源- 人教版一年级上册数学教材- 数学教具:计数棒、计数球、几何模型等- 多媒体教学软件和课件参考文献- 人教版数学教材(一年级上册)- 人教版数学教学大纲指导意见(一年级上册)。

考研数学一考试大纲

考研数学一考试大纲

考研数学一考试大纲一、考试性质考研数学一是全国硕士研究生招生考试的重要组成部分,旨在考查考生对高等数学、线性代数、概率论与数理统计等数学知识的掌握程度,以及运用这些知识解决实际问题的能力。

二、考试目标通过考查考生对高等数学、线性代数、概率论与数理统计等数学知识的理解与运用,重点检测考生的运算能力、逻辑推理能力、空间想象能力以及运用数学知识解决实际问题的能力。

三、考试内容1、高等数学:函数、极限、连续;一元函数微积分学;多元函数微积分学;常微分方程;无穷级数;向量代数与空间解析几何等。

2、线性代数:行列式;矩阵;向量;线性方程组;矩阵的特征值和特征向量;二次型等。

3、概率论与数理统计:随机事件及其概率;随机变量及其分布;随机变量的数字特征;大数定律与中心极限定理;数理统计的基本概念;参数估计等。

四、考试形式与试卷结构1、考试形式:笔试,考试时间为180分钟,满分150分。

2、试卷结构:题型包括选择题、填空题和解答题。

其中,选择题和填空题分值约占40%,解答题分值约占60%。

五、考试难度与要求1、考试难度:考研数学一的考试难度较大,主要表现在对知识点的综合运用能力和解题技巧的要求较高。

2、考试要求:考生应全面掌握考试大纲所要求的知识点,并能够灵活运用,具备综合分析问题和解决问题的能力。

在解题过程中,要求思路清晰、运算准确、表达规范。

六、备考建议1、系统复习:考生应首先对考试大纲所涉及的知识点进行系统复习,建立完整的知识体系,不留死角。

2、强化训练:通过大量的练习题和模拟试题进行强化训练,提高解题能力和速度。

3、注重方法:在复习和解题过程中,要注重方法和思路,善于总结和归纳。

4、合理安排时间:在备考过程中,要合理安排时间,尤其是对于知识点较多、难度较大的章节,要适当增加复习时间。

5、多交流:可以参加考研辅导班或者与其他考生进行交流,分享经验和心得。

七、总结考研数学一是硕士研究生招生考试中重要的一环,对于想要继续深造的学子来说至关重要。

数学一考试大纲

数学一考试大纲

数学一考试大纲
数学一考试大纲通常包括以下几个方面的内容:
1. 几何学:包括平面几何和空间几何的基本概念、定理和证明方法,如点、直线、平面的性质、相交关系,三角形、四边形和多边形的性质,圆的性质等。

2. 代数学:包括代数运算、方程和不等式的解法,如多项式的加减乘除、因式分解、根与系数的关系,一次、二次和高次方程的解法,一元和多元不等式的解法等。

3. 函数与分析:包括函数的基本概念和性质,如函数的定义域、值域、奇偶性、周期性等,常见函数的图像、性质和变换,函数的极限和连续性,导数和微分的概念和计算方法等。

4. 数学推理与证明:包括数学证明的基本方法和技巧,如数学归纳法、反证法、逆否命题等,以及利用这些方法证明问题的正确性和推理过程的严谨性。

考生需要熟悉并掌握以上内容,并在考试中能够灵活应用所学的知识解决各类数学问题。

此外,还需要培养良好的数学思维能力、逻辑推理能力和问题解决能力,以及良好的数学模型建立和问题抽象能力。

2024考研数一 大纲

2024考研数一 大纲

2024考研数一大纲2024年考研数学一专业的大纲如下:一、高等数学1. 极限与连续- 极限的概念与性质- 无穷小量与无穷大量的比较- 函数的连续性与间断点- 闭区间上连续函数的性质- 导数的概念与性质- 微分中值定理及其应用2. 一元函数微积分- 微积分基本定理与不定积分- 函数的定积分与不定积分的关系- 一元函数的积分学- 定积分的计算与应用3. 多元函数微积分- 多元函数的极限与连续- 偏导数与全微分- 多元函数的求导法则- 多元函数的极值与条件极值- 重积分的概念与计算4. 常微分方程- 常微分方程的基本概念与初值问题- 一阶常微分方程的解法与应用- 高阶常微分方程的一般理论- 常系数线性微分方程5. 线性代数- 行列式的定义与性质- 矩阵的基本概念与运算- 线性方程组的解法与应用- 矩阵的特征值与特征向量- 正交变换与对称矩阵的对角化二、概率论与数理统计1. 随机变量及其分布- 随机变量的概念与分布函数- 常见离散型分布与连续型分布- 二维随机变量及其分布- 边缘分布与条件分布2. 随机变量的数字特征- 数学期望与方差- 矩母函数与特征函数- 大数定律与中心极限定理3. 多维随机变量及其分布- 二维随机变量的分布函数与密度函数- 边缘分布与条件分布- 相互独立与不相关4. 参数估计- 点估计与区间估计- 常见参数估计方法- 最小二乘估计与极大似然估计5. 假设检验与方差分析- 假设检验的基本原理- 单侧与双侧假设检验- 方差分析与卡方检验- 相关分析与回归分析以上就是2024年考研数学一专业的大纲,考生可以根据大纲内容有针对性地进行复习和准备。

高等数学一大纲教材

高等数学一大纲教材

高等数学一大纲教材高等数学一是大部分理工科类专业的必修课程之一,这门课程的核心目标是帮助学生建立起完整的数学体系,培养他们分析问题、解决问题的能力。

本文将以高等数学一大纲教材为题,对该教材的内容进行分析和评价。

一、教材概述高等数学一大纲教材作为高等教育教材中的一员,其编写目的是为了满足大多数高校理工科类专业学生的学习需求。

该教材内容的难度适中,结构合理,旨在帮助学生建立起数学的基本概念和运算技能,并能够运用所学数学知识解决实际问题。

二、教材内容高等数学一大纲教材主要包括以下几个方面的内容:1. 数列与极限数列与极限是高等数学一中的重要内容之一。

教材中详细介绍了数列的定义、性质以及收敛性的判定方法。

此外,还对数列的极限进行了深入的研究,包括极限的性质、极限存在性的判定以及一些常见函数的极限计算方法等。

2. 函数与图像函数与图像是高等数学一中的另一个重要概念。

教材中系统性地介绍了函数的定义、基本性质以及一些常见函数的性质和图像特征。

通过学习这部分内容,学生能够更加深入地理解函数与图像之间的关系,并能够应用函数概念解决各种实际问题。

3. 一元函数微分学一元函数微分学是高等数学一中的核心内容之一。

教材中详细介绍了导数的定义、求导法则以及一些基本函数的导数和微分计算方法。

此外,还介绍了一元函数的单调性、极值以及曲线的凹凸性等概念与判定方法。

4. 一元函数积分学一元函数积分学是高等数学一中的重要内容之一。

教材中系统地介绍了定积分的概念、性质以及一些基本积分计算方法。

此外,还介绍了定积分与不定积分之间的关系以及变上限积分等概念。

5. 微分方程微分方程作为高等数学一中的扩展内容,教材中对常微分方程进行了简要的介绍。

重点介绍了一阶常微分方程和二阶常微分方程的求解方法,并通过一些实际问题进行了应用示例。

三、教学优势高等数学一大纲教材具有以下几个教学优势:1. 理论与实践结合教材中既涵盖了高等数学一的基础理论知识,又通过大量的习题和实例结合实际问题的解决,使学生能够真正将所学知识应用到实际中去。

2023数学一考研大纲

2023数学一考研大纲

2023数学一考研大纲
一、考试性质
数学一是全国硕士研究生招生考试中的重要科目,主要考察数学的基本概念、原理和方法,以及数学在实际问题中的应用。

二、考试内容
1. 函数、极限、连续
2. 一元函数微分学
3. 一元函数积分学
4. 多元函数微积分学
5. 常微分方程
6. 线性代数
7. 概率论与数理统计
三、考试要求
1. 掌握数学的基本概念和原理,理解数学的本质和思想方法。

2. 具备一定的数学分析和解决问题的能力,能够运用数学知识解决实际问题。

3. 掌握基本的数学技巧和方法,能够进行数学运算和推理。

4. 具备运用数学软件进行数值计算和数据分析的能力。

5. 了解数学在各领域的应用,能够运用数学语言进行科学表达和交流。

四、考试形式与试卷结构
1. 考试时间:180分钟。

2. 试卷满分:150分。

3. 试题结构:选择题、填空题、解答题。

4. 试题难度:基础题、中等题、难题。

五、考试范围
具体考试范围详见附件。

2024数学一考研大纲

2024数学一考研大纲

2024数学一考研大纲一、总述数学一考试是为招收工学类硕士研究生而设置的具有选拔功能的水平考试。

它的主要目的是测试考生的数学基础知识、基本思想和方法的掌握程度,以及运用数学知识和方法分析问题和解决问题的能力。

二、考试内容1. 高等数学函数、极限、连续ㆍ函数的概念及性质ㆍ极限的概念与性质ㆍ无穷小与无穷大ㆍ函数的连续性一元函数微分学ㆍ导数的概念ㆍ导数的计算ㆍ微分及其应用ㆍ中值定理及其应用一元函数积分学ㆍ不定积分的概念与性质ㆍ定积分的概念与性质ㆍ积分计算与应用向量代数与空间解析几何ㆍ向量的概念与运算ㆍ平面与直线ㆍ空间曲面与曲线2. 线性代数行列式ㆍ行列式的概念与性质ㆍ行列式的计算矩阵ㆍ矩阵的概念与运算ㆍ逆矩阵ㆍ矩阵的秩线性方程组ㆍ线性方程组的解的结构ㆍ齐次线性方程组ㆍ非齐次线性方程组向量空间ㆍ向量空间的基与维数ㆍ向量的线性相关性特征值与特征向量ㆍ特征值与特征向量的概念与性质ㆍ矩阵的对角化二次型ㆍ二次型的概念与性质ㆍ二次型的标准形与规范形3. 概率论与数理统计随机事件与概率ㆍ随机事件的概念与运算ㆍ概率的定义与性质ㆍ条件概率与独立性随机变量及其分布ㆍ随机变量的概念与分类ㆍ分布函数与概率密度函数ㆍ常见分布及其性质随机变量的数字特征ㆍ数学期望与方差ㆍ协方差与相关系数大数定律与中心极限定理ㆍ大数定律ㆍ中心极限定理数理统计的基本概念ㆍ总体与样本ㆍ统计量与抽样分布参数估计ㆍ点估计ㆍ区间估计假设检验ㆍ基本概念与原理ㆍ常见假设检验方法三、考试要求1. 考生应掌握数学的基础知识、基本思想和基本方法,并能够运用所学知识分析和解决实际问题。

2. 考生应具备抽象思维能力、逻辑推理能力、空间想象能力、运算能力和综合运用所学知识解决实际问题的能力。

3. 考试形式为闭卷、笔试,考试时间为180分钟,试卷满分为150分。

2023考研高数数学一考试大纲

2023考研高数数学一考试大纲

2023考研高数数学一考试大纲2023考研高数数学一考试大纲相关参考内容:第一部分:数列和数学归纳法数列:1. 数列的定义与性质,如等差数列、等比数列等;2. 求解数列的通项公式以及根据数列的通项公式计算数列的和;3. 数列的极限概念,极限存在的判定条件;4. 数列的极限性质,如夹逼定理、最值定理等。

数学归纳法:1. 数学归纳法的基本思想和步骤;2. 数学归纳法的证明方法和技巧;3. 利用数学归纳法证明数学命题的正确性。

第二部分:函数与极限函数:1. 函数的定义与性质,如奇偶性、周期性等;2. 常见初等函数的性质,如幂函数、指数函数、对数函数、三角函数等;3. 复合函数的概念和性质,链式法则的应用;4. 反函数的概念和性质,求解反函数的方法。

极限:1. 函数极限的定义与性质,极限存在与不存在的判定条件;2. 无穷小与无穷大的概念及其性质;3. 极限计算方法,如夹逼定理、洛必达法则、泰勒展开等;4. 函数的连续性概念及其判定条件。

第三部分:导数与微分导数:1. 导数的定义与性质,如可导性、连续性等;2. 常用函数的导数公式和性质,如幂函数的导函数、指数函数的导函数、对数函数的导函数等;3. 高阶导数的概念和应用;4. 参数方程的导数计算,隐函数的导数计算。

微分:1. 微分的概念与性质,微分的几何意义;2. 微分中值定理及其应用;3. 泰勒公式及其应用;4. 极值问题的求解,如最大值、最小值的判定条件等。

第四部分:定积分与不定积分定积分:1. 定积分的概念与性质;2. 定积分的计算方法,如换元法、分部积分法等;3. 定积分的应用,如曲线长度、曲线面积、体积等。

不定积分:1. 不定积分的概念与性质;2. 基本积分表及运算法则;3. 特殊函数的不定积分,如三角函数的不定积分、指数函数的不定积分等;4. 定积分与不定积分的关系。

以上是2023考研高数数学一考试大纲的相关参考内容,涵盖了数列和数学归纳法、函数与极限、导数与微分以及定积分与不定积分等内容,希望对您的学习有所帮助。

成人高考高等数学一考试大纲

成人高考高等数学一考试大纲

成人高考高等数学一考试大纲
一、《高等数学(一)》科目考试内容及要求
1.适用科目
本大纲适用于工学、理学(生物科学类、地理科学类、环境科学类、心理学类四个一级学科除外)专业的考生.
2.总要求
①考生应按本大纲的要求,了解或理解高等数学中极限和连续、一元函数微分学、一元函数积分学、空间解析几何、多元函数微积分学、无穷级数、常微分方程的基本概念与基本理论;
②学会、掌握或熟练掌握上述各部分的基本方法.应注意各部分知识的结构及知识的内在联系;
③应具有一定的抽象思维能力、逻辑推理能力、运算能力、空间想象能力;能运用基本概念、基本理论和基本方法正确地推理证明,准确地计算;
④能综合运用所学知识分析并解决简单的实际问题.
⑤本大纲对内容的要求由低到高,对概念和理论分为“了解”和“理解”两个层次;对方法和运算分为“会”“掌握”和“熟练掌握”三个层次.
二、《高等数学(二)》科目考试形式及试卷结构
1.试卷总分:150分。

2.考试时间:150分钟。

3.考试方式:闭卷考试,纸笔作答。

高一的数学知识点大纲

高一的数学知识点大纲

高一的数学知识点大纲一、代数与函数1. 有理数与整式a. 有理数的性质与运算b. 整式的概念与运算2. 一元一次方程与不等式a. 解一元一次方程b. 解一元一次不等式3. 一元二次函数与一次函数a. 一元二次函数的概念与性质b. 一次函数的概念与性质4. 复数与多项式a. 复数的概念与运算b. 多项式的概念与运算二、几何与图形1. 平面与向量a. 平面上点的坐标与图象b. 平面向量的概念与运算2. 线性函数与线段a. 斜率与截距的概念与性质b. 线段的定义与计算3. 三角函数与平面几何初步a. 常用三角函数的定义与性质b. 平面几何的基本概念与定理4. 空间与立体图形a. 空间中点的坐标与图象b. 空间图形的计算与性质三、数据与统计1. 统计量与图表a. 数据的收集与整理b. 统计量的计算与分析2. 概率与随机事件a. 基本概率原理与概率计算b. 随机事件的性质与分析四、数学思想方法1. 数学建模与解决实际问题a. 数学建模的基本思路与方法b. 利用数学方法解决实际问题2. 探究与证明a. 探索问题与提出猜想b. 利用证明方法验证与推理五、数学计算与工具1. 数学计算规则与技巧a. 四则运算的基本规则与计算技巧b. 利用计算器辅助计算与验证2. 动态几何软件的应用a. 利用动态几何软件绘制图形与进行分析b. 利用动态几何软件解决几何问题以上是高一数学知识点的大纲,涵盖了代数与函数、几何与图形、数据与统计、数学思想方法以及数学计算与工具等内容。

这些知识点是学习高一数学所必备的基础,对于建立数学思维能力和解决实际问题具有重要意义。

通过系统地学习与掌握这些知识,学生将能够更好地应对高一数学学习的挑战,为之后的学习打下坚实的基础。

希望同学们在高一数学学习中能够认真对待,积极参与课堂与自主学习,不断提高自己的数学水平。

数学一考试大纲2024

数学一考试大纲2024

数学一考试大纲2024如下:
1. 函数与极限
- 函数的概念、性质和分类
- 极限的概念、性质和计算方法
- 连续函数、间断点和导数的概念
- 导数的计算方法和应用
2. 微分学
- 微分的概念、性质和计算方法
- 高阶导数的计算方法和应用
- 微分中值定理和泰勒公式的应用
- 洛必达法则和夹逼定理的应用
3. 积分学
- 不定积分和定积分的概念、性质和计算方法
- 牛顿-莱布尼茨公式的应用
- 换元积分法、分部积分法和有理化根式法的应用
- 定积分的应用,如曲线长度、曲线面积、旋转体的体积等
4. 多元函数微分学
- 多元函数的概念、性质和偏导数的计算方法
- 隐函数的求导和全微分的计算方法
- 多元复合函数的求导法则和应用
- 梯度、散度和旋度的概念、性质和计算方法
5. 多元函数积分学
- 二重积分和三重积分的概念、性质和计算方法
- 曲线积分和曲面积分的概念、性质和计算方法
- Green公式、Gauss公式和Stokes公式的应用
- 重积分的应用,如质量、质心、转动惯量等
6. 常微分方程
- 常微分方程的基本概念和解的存在唯一性条件
- 一阶常微分方程的解法,如可分离变量、齐次方程、线性方程等
- 二阶常微分方程的解法,如特征方程、常系数非齐次方程等
- 高阶常微分方程的解法,如幂级数解法等
7. 概率论与数理统计
- 随机事件与概率的基本概念、性质和运算法则
- 随机变量及其分布函数、密度函数和期望值等概念和性质
- 多维随机变量及其联合分布函数、边缘分布函数和条件分布函数等概念和性质- 参数估计和假设检验的基本思想和方法。

全国硕士研究生入学统一考试数学一考试大纲

全国硕士研究生入学统一考试数学一考试大纲

全国硕士研究生入学统一考试数学一考试大纲标准化管理部编码-[99968T-6889628-J68568-1689N]全国硕士研究生入学统一考试数学一考试大纲高等数学一、函数、极限、连续考试内容:函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:,函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容:导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值和最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容:原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿一莱布尼茨公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、向量代数和空间解析几何考试内容:向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程、直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程考试要求1.理解空间直角坐标系,理解向量的概念及其表示.2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法.5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题.6.会求点到直线以及点到平面的距离.7.了解曲面方程和空间曲线方程的概念.8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.五、多元函数微分学考试内容:多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用考试要求1.理解多元函数的概念,理解二元函数的几何意义.2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.4.理解方向导数与梯度的概念,并掌握其计算方法.5.掌握多元复合函数一阶、二阶偏导数的求法.6.了解隐函数存在定理,会求多元隐函数的偏导数.7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.8.了解二元函数的二阶泰勒公式.9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.六、多元函数积分学考试内容:二重积分与三重积分的概念、性质、计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林公式平面曲线积分与路径无关的条件二元函数全微分的原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯公式斯托克斯公式散度、旋度的概念及计算曲线积分和曲面积分的应用考试要求1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理.2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标). 3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.4.掌握计算两类曲线积分的方法.5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.7.了解散度与旋度的概念,并会计算.8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、形心、转动惯量、引力、功及流量等).七、无穷级数考试内容:常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法交错级数与莱布尼茨定理任意项级数的绝对收敛与条件收敛函数项级数的收敛域与和函数的概念幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式函数的傅里叶系数与傅里叶级数狄利克雷定理函数的傅里叶级数函数的正弦级数和余弦级数考试要求1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.2.掌握几何级数与p级数的收敛与发散的条件. 3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.4.掌握交错级数的莱布尼茨判别法.5. 了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.6.了解函数项级数的收敛域及和函数的概念.7.理解幂级数收敛半径的概念、并掌握幂级数的收敛半径、收敛区间及收敛域的求法.8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.9.了解函数展开为泰勒级数的充分必要条件.10.掌握e x,sinx, cosx,ln(1+x) 及(1+x)α的麦克劳林展开式,会用它们将一些简单函数间接展开成幂级数.11.了解傅里叶级数的概念和狄利克雷收敛定理,会将函数展开为傅里叶级数,会将函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.八、常微分方程考试内容:常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程伯努利(Bernoulli)方程全微分方程可用简单的变量代换求解的某些微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程欧拉(Euler)方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解概念. 2.掌握变量可分离的微分方程及一阶线性微分方程解法.3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程4.会用降阶法解下列形式的微分方程:.5.理解线性微分方程解的性质及解的结构.6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.8.会解欧拉方程.9.会用微分方程解决一些简单的应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容:矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵,以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质. 3.理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容:向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量空间及其相关概念维向量空间的基变换和坐标变换过渡矩阵向量的内积线性无关向量组的正交规范化方法规范正交基正交矩阵及其性质考试要求1.理解维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解维向量空间、子空间、基底、维数、坐标等概念.6.了解基变换和坐标变换公式,会求过渡矩阵.7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.8.了解规范正交基、正交矩阵的概念以及它们的性质.四、线性方程组考试内容: 线性方程组的克莱姆法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解考试要求l.会用克莱姆法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容:矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求:1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容:二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理.2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.考研老师私人扣扣:概率论与数理统计一、随机事件和概率考试内容:随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式,以及贝叶斯公式.3.理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量随机变量分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松分布及其应用.3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用,5.会求随机变量函数的分布.三、多维随机变量及其分布考试内容:多维随机变量及其分布二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常用二维随机变量的分布两个及两个以上随机变量简单函数的分布考试要求1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质. 理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率.2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.3.掌握二维均匀分布,了解二维正态分布的概率密度,理解其中参数的概率意义.4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征2.会求随机变量函数的数学期望.五、大数定律和中心极限定理考试内容切比雪夫不等式切比雪夫大数定律伯努利大数定律辛钦大数定律棣莫弗-拉普拉斯定理列维-林德伯格定理考试要求1.了解切比雪夫不等式.2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律) .3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理) .六、数理统计的基本概念考试内容:总体个体简单随机样本统计量样本均值样本方差和样本矩卡方分布 T分布 F分布分位数正态总体的常用抽样分布考试要求1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为:2.了解卡方分布、T分布 F分布的概念及性质,了解上侧分位数的概念并会查表计算.3.了解正态总体的常用抽样分布.七、参数估计考试内容:点估计的概念估计量与估计值矩估计法最大似然估计法估计量的评选标准区间估计的概念单个正态总体的均值和方差的区间估计两个正态总体的均值差和方差比的区间估计考试要求1.理解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.3.了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.4.理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间.八、假设检验考试内容:显着性检验假设检验的两类错误单个及两个正态总体的均值和方差的假设检验考试要求1.理解显着性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误.2.掌握单个及两个正态总体的均值和方差的假设检验.考研老师私人扣扣:。

数学一考试大纲

数学一考试大纲

高 等 数 学一、函数、极限、连续考试内容函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:0sin lim 1x xx →= 1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭ 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L ’Hospital )法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值和最小值 弧微分 曲率的概念 曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间(,)a b 内,设函数()f x 具有二阶导数。

小学数学教学大纲1至6年级

小学数学教学大纲1至6年级

小学数学教学大纲1至6年级第一年级:一、数的认识与比较1. 认识0~10的数字和数量关系。

2. 能够辨认0~10的数字并正确书写。

3. 学习使用大于、小于和等于的符号进行简单的数的比较。

4. 能够在10以内进行简单的数的排序和分类。

二、加减法初步1. 认识加法和减法的符号及其运算法则。

2. 能够口算0~10以内的简单加法和减法。

3. 学习使用算式表示简单的加减法问题。

三、简单的几何图形1. 认识圆形、正方形和三角形。

2. 能够正确观察、辨认和绘制这些几何图形。

四、日常计量1. 认识长度、质量和容量的基本计量单位。

2. 学习使用相应的计量工具进行简单的测量。

3. 能够进行简单的长度、质量和容量的比较。

五、数的分解和组合1. 学习将给定的数进行各种加法分解,并进行简单的组合。

2. 能够用简单的算式表示分解和组合过程。

六、数的关系1. 认识数轴上的正数和负数。

2. 能够判断数的大小关系,并用符号表示。

第二年级:一、数的加减法深化1. 学习0~100以内的加法和减法。

2. 能够进行简单的进位与退位计算。

3. 掌握两位数加减一位数的计算方法。

二、简单的乘法和除法1. 认识乘法和除法的符号及其运算法则。

2. 能够口算0~10的乘法表。

3. 学习通过乘法和除法运算解决简单问题。

三、分数初步1. 认识分数的概念和分子、分母的含义。

2. 能够在日常生活中初步运用分数的知识。

四、形状和图形的认识1. 认识长方形、平行四边形、梯形等几何图形。

2. 学习观察、辨认和绘制这些几何图形。

五、时间和日历1. 认识时钟的读法,能够读懂整点和半点的表达。

2. 学习使用日历进行日期的计算和表示。

第三年级:一、整数概念1. 认识正整数和负整数的概念。

2. 能够在数轴上表示正整数和负整数。

二、加减法运算1. 学习整数的加法和减法运算法则。

2. 能够运用整数的加减法解决简单问题。

三、分数运算1. 学习分数的加减法运算法则。

2. 能够进行简单的分数加减法计算。

《高等数学(一)》考试大纲

《高等数学(一)》考试大纲

《高等数学(一)》考试大纲第一章函数1.考核的知识点(1)一元函数的概念及其图形.(2)函数的表示法(包括分段函数).(3)函数的几个基本特性.(4)反函数及其图形.(5)复合函数.(6)初等函数.2.自学要求函数是数学中最基本的概念之一,它反映变量之间的某种对应关系,是微积分的主要研究对象.本章总的要求是:掌握一元函数的概念及函数与图形之间的关系;了解函数的几种常用表示法;理解函数的几个基本特性;了解反函数的概念及函数与其反函数图形之间的关系;掌握函数的复合与分解;掌握基本初等函数及其图形的性态;了解初等函数的概念;了解几种常见的经济函数.本章重点:函数的概念和基本初等函数.本章难点:函数的复合.3.考核要求(1)一元函数的定义及其图形,要求达到“领会”层次.①清楚一元函数的定义,理解确定函数的两个基本要素——定义域和对应法则,知道什么是函数的值域.②清楚函数及其图形之间的关系.③会求简单函数的自然定义域.(2)函数的表示法,要求达到“识记”层次.①知道函数的三种表示法——解析法、表格法、图像法.②清楚分段函数的概念.(3)函数的几个基本特性,要求达到“简单应用”层次.清楚函数的有界性、单调性、奇偶性、周期性的含义,并会判定简单函数是否具有这些特性.(4)反函数及其图形,要求达到“领会”层次.①知道函数的反函数的概念,清楚单调函数必有反函数.②会求简单函数的反函数.③知道函数与其反函数的定义域、值域和图形之间的关系.(5)复合函数,要求达到“简单应用”层次.①清楚复合函数运算的含义,会求简单复合函数的定义域.②会做几个函数按一定顺序的复合,并会把一个函数分解成简单函数的复合.(6)初等函数,要求达到“简单应用”层次.①知道什么是基本初等函数,熟悉其定义域、基本特性和图形(不含余切、正割、余割及其反函数的图形).②知道反正弦、反余弦和反正切函数的主值范围.③知道初等函数的概念.(7)经济学中几种常见的函数,要求达到“简单应用”层次.了解经济学中几种常见的函数:成本函数,收益函数,利润函数,需求函数和供给函数.第二章极限和连续1.考核的知识点(1)函数极限.(2)函数极限的性质.(3)极限的运算法则.(4)两个重要极限.(5)无穷小量及其性质、无穷大量.(6)无穷小量的比较.(7)函数的连续性和连续函数的运算.(8)函数的间断点.(9)闭区间上连续函数的性质.2.自学要求极限理论是微积分学的基础,微积分中的基本概念都是运用极限的思想与方法阐述的.连续函数是应用最为广泛的函数.学好本章内容将为以后的学习打下坚实的基础.本章总的要求是:理解函数极限的概念;理解极限的简单性质;掌握极限的运算法则;熟练掌握两个重要极限;理解无穷小量的概念;掌握无穷小量的基本性质;清楚无穷大量的概念及其与无穷小量的关系;理解无穷小量的阶的比较;理解函数的连续性和间断点;知道初等函数的连续性;清楚闭区间上连续函数的性质.本章重点:极限的概念和性质,极限的运算法则,两个重要极限,无穷小量的概念及其阶的比较,函数的连续性和闭区间上连续函数的性质.本章难点:极限概念.3.考核要求(1)函数极限,要求达到“领会”层次.①理解函数极限的定义(不要求,描述).②理解函数的单侧极限,知道函数极限与单侧极限之间的关系.(2)极限的性质,要求达到“识记”层次.①清楚极限的唯一性.②清楚有极限的函数的局部有界性.③清楚极限的保号性.(3)极限的运算法则,要求达到“简单应用”层次.①熟知极限的四则运算法则,并能熟练运用.②清楚复合函数的极限.(4)两个重要极限,要求达到“综合应用”层次.熟知两个重要极限,并能熟练运用.(5)无穷小量及其性质、无穷大量,要求达到“简单应用”层次.①理解无穷小量的定义并熟知其性质.②清楚无穷大量的定义及其与无穷小量之间的关系.③会判别一个简单变量是否是无穷小量或无穷大量.(6)无穷小量的比较,要求达到“简单应用”层次.①清楚一个无穷小量相对于另一个无穷小量是高阶、同阶、等价的含义.②会判别两个无穷小量的阶的高低或是否等价.③极限运算中乘除因子会用等价无穷小量代替.(7)函数的连续性和连续函数的运算,要求达到“简单应用”层次.①清楚函数在一点处连续和单侧连续的定义,并知道它们之间的关系.②会判别分段函数在分段点处的连续性.③知道函数在区间上连续的定义.④知道连续函数经四则运算和复合运算仍是连续函数.⑤知道单调的连续函数必有单调并连续的反函数.⑥知道初等函数的连续性.(8)函数的间断点,要求达到“简单应用”层次.①清楚函数在一点间断的含义和产生间断的几种情况.②会找简单函数的间断点.(9)闭区间上连续函数的性质,要求达到“识记”层次.①知道闭区间上的连续函数必有界并有最大值和最小值.②知道连续函数的介值定理和零点存在定理.③会用零点存在定理判断简单的函数方程在给定区间上实根的存在性.第三章导数与微分1.考核的知识点(1)导数的定义及其几何意义.(2)函数可导与连续的关系.(3)微分定义、微分与导数的关系.(4)函数的求导法则.(5)基本初等函数的导数.(6)高阶导数.2.自学要求函数在一点处的导数和微分是微分学中两个最重要的概念.它们的产生是由于广泛而迫切的实际需要(如求曲线的切线、运动物体的瞬时速度等),在科学和工程技术中有极为广泛的应用.导数也是研究函数性质的有效工具.本章总的要求是:理解导数和微分的定义,清楚它们之间的关系;知道导数的几何意义;知道平面曲线的切线方程与法线方程的求法;理解函数可导与连续之间的关系;熟练掌握函数和、差、积、商的求导法则与复合函数的链式求导法则;会求反函数的导数;熟记基本初等函数的求导公式;会求简单隐函数的导数;会用对数求导法;会求函数的高阶导数.本章重点:导数的概念及其几何意义和作为变化率的实际意义,各种求导法则和基本初等函数的导数及微分公式.本章难点:复合函数的求导法则,隐函数求导法.3.考核要求(1)导数的定义及其几何意义,要求达到“领会”层次.①熟知函数在一点处的导数和左、右导数的定义及它们的关系.②知道函数在一点处的导数的几何意义,并会求曲线在一点的切线方程和法线方程.③知道导数作为变化率在物理中可以表示做直线运动物体的瞬时速度.④知道函数在.区间上可导的含义.(2)函数可导与连续的关系,要求达到“领会”层次.清楚函数在一点处连续是函数在一点处可导的必要条件.(3)微分的定义和微分的运算,要求达到“领会”层次.①理解微分作为函数增量的线性主部的含义.②清楚函数可微与可导的关系.③熟知函数的微分与导数的关系.(4)函数的各种求导法则,要求达到“综合应用”层次.①熟练掌握可导函数和、差、积、商的求导法则.②准确理解复合函数的求导法则(链式法则),并能在计算中熟练运用.③清楚反函数的求导法则.④会求简单隐函数的导数.⑤对于由多个函数的积、商、方幂所构成的函数,会用取对数求导的方法计算其导数.(5)基本初等函数的导数,要求达到“综合应用”层次.熟记基本初等函数的求导公式,并能熟练运用.(6)高阶导数,要求达到“简单应用”层次.清楚高阶导数的定义,会求函数的二阶导数.第四章微分中值定理和导数的应用1.考核的知识点(1)微分中值定理.(2)洛必达法则.(3)函数单调性的判定.(4)函数的极值及其求法.(5)函数的最值及其应用.(6)曲线的凹凸性和拐点.(7)曲线的渐近线.(8)导数在经济分析中的应用.2.自学要求本章主要介绍导数在研究函数性态和有关实际问题中的应用,这些应用的理论基础是微分中值定理.本章总的要求是:能准确陈述微分中值定理;熟练掌握洛必达法则;会用导数的符号判定函数的单调性;理解函数极值的概念,掌握函数极值的求法;清楚函数的最值及其求法,并能解决简单的应用问题;了解曲线的凹凸性和拐点的概念,会用二阶导数判定曲线的凹凸性和计算拐点的坐标;会求曲线的水平渐近线和铅直渐近线;理解函数的边际函数与弹性函数及其意义.本章重点:拉格朗日中值定理,洛必达法则,函数单调性的判定,函数极值、最值的求法和实际应用.本章难点:函数最值的应用,弹性函数.3.考核要求(1)微分中值定理,要求达到“领会”层次.①能准确陈述罗尔定理,并清楚其几何意义.②能准确陈述拉格朗日微分中值定理,并清楚其几何意义.③知道导数恒等于零的函数必为常数,导数处处相等的两个函数只能相差一个常数.(2)洛必达法则,要求达到“综合应用”层次.①准确理解洛必达法则.②能识别各种类型的未定式,并会运用洛必达法则求极限.(3)函数单调性的判定,要求达到“简单应用”层次.①清楚导数的符号与函数单调性之间的关系.②会判别函数在给定区间上的单调性,并会求函数的单调区间.③会用函数的单调性证明简单的不等式.(4)函数的极值及其求法,要求达到“综合应用”层次.①清楚函数极值的定义,知道这是函数的一种局部性态.②知道什么叫函数的驻点,清楚函数的极值点与驻点之间的关系.③掌握函数在一点取极值的两种判别法,并会求函数的极值.(5)函数的最值及其应用,要求达到“综合应用”层次.①知道函数最值的定义及其与极值的区别.②清楚最值的求法.③能用最值解决简单的应用问题.(6)曲线的凹凸性和拐点,要求达到“简单应用”层次.①清楚曲线在给定区间上“凹”、“凸”的定义.②会判别曲线在给定区间上的凹凸性和求出曲线的凹凸区间.③知道曲线拐点的定义,会求曲线的拐点或判定一个点是否是拐点.(7)曲线的渐近线,要求达到“领会”层次.知道曲线的水平渐近线和铅直渐近线的定义,会求曲线的水平渐近线和铅直渐近线.(8)经济学中的边际函数和弹性函数,要求达到“简单应用”层次.①清楚边际函数的概念及其实际意义.②清楚弹性函数的概念,会求经济函数的弹性,并说明其实际意义.第五章一元函数积分学1.考核的知识点(1)原函数与不定积分的概念,不定积分的基本性质.(2)基本积分公式.(3)不定积分的换元积分法.(4)不定积分的分部积分法.(5)微分方程初步.(6)定积分的概念及其基本性质.(7)变上限积分和牛顿一莱布尼茨公式.(8)定积分的换元积分法和分部积分法.(9)无穷限反常积分.(10)定积分的简单应用.2.自学要求一元函数积分学是微积分的重要内容之一.求原函数的运算可看成是微分的逆运算,属于微分学的范畴.定积分的出现则源于求曲边图形的面积和求运动物体的行走路程等实际问题,积分学的思想与方法有着十分广泛的应用.微分方程是刻画许多实际问题中变量之间相互关系的主要方式,其理论和方法是与微积分同时发展起来的,具有广泛的实际应用.本章总的要求是:理解原函数和不定积分的概念;清楚定积分的概念及其几何意义;熟悉不定积分和定积分的基本性质;理解变上限积分函数的求导公式;掌握牛顿一莱布尼茨公式熟记基本积分公式;掌握不定积分和定积分的换元积分法、分部积分法;掌握微分方程的基本概念,并能求解可分离变量微分方程和一阶线性微分方程;清楚无穷限反常积分的概念,并会依据定义判别简单反常积分是否收敛;会用定积分解决简单的几何问题.本章重点:不定积分的概念,不定积分的运算,定积分的概念和性质,变上限积分求导公式和牛顿一莱布尼茨公式,定积分的应用.本章难点:求不定积分,定积分的应用.3.考核要求(1)原函数与不定积分的概念,不定积分的基本性质,要求达到“领会”层次.①了解原函数和不定积分的定义.②理解微分运算和不定积分运算互为逆运算.③知道不定积分的基本性质.(2)基本积分公式,要求达到“简单应用”层次.熟记基本积分公式,并能熟练运用.(3)不定积分的换元积分法,要求达到“简单应用”层次.①能熟练地运用第一类换元积分法(即凑微分法)求不定积分.②掌握几种常见的第二类换元类型.(4)不定积分的分部积分法,要求达到“简单应用”层次.掌握分部积分法,会求常见类型的不定积分.(5)微分方程初步,要求达到“简单应用”层次.①知道微分方程的阶、解、初始条件、特解的含义.②能识别可分离变量微分方程和一阶线性微分方程,并会求这两类微分方程的解.(6)定积分的概念及其基本性质,要求达到“领会”层次.①理解定积分的概念,并了解其几何意义.②清楚定积分与不定积分的区别,知道定积分的值仅依赖于被积函数和积分区间,与积分变量的记号无关.③知道定积分的基本性质.④能正确叙述定积分的中值定理,了解其几何意义.(7)变上限积分和牛顿—莱布尼茨公式,要求达到“综合应用”层次.①理解变上限积分是积分上限的函数,并会求其导数.②掌握牛顿—莱布尼茨公式.(8)定积分的换元积分法和分部积分法,要求达到“简单应用”层次.①掌握定积分的第一换元积分法和第二换元积分法.②清楚对称区间上奇函数或偶函数的定积分的有关结果.③掌握定积分的分部积分法.(9)无穷限反常积分,要求达到“领会”层次.①清楚无穷限反常积分的定义及其敛散性概念.②会依据定义判断简单无穷限反常积分的敛散性,并在收敛时求出其值.(10)定积分的几何应用,要求达到“简单应用”层次.①会在直角坐标系中利用定积分计算平面图形的面积.②会利用定积分计算简单平面图形绕坐标轴旋转所得旋转体的体积.第六章多元函数微积分1.考核的知识点(1)多元函数的概念.(2)偏导数和全微分.(3)复合函数的求导法则.(4)隐函数及其求导法则.(5)二阶偏导数.(6)二元函数的极值及其求法.(7)二重积分的概念和计算.2.自学要求多元函数微积分是一元函数微积分的自然发展,它的许多重要概念和处理问题的思想、方法与一元函数微积分的情形十分相似.但随着自变量的增多,多元函数与一元函数也有一些本质的差别,这是学习多元微积分时需要特别注意的.由于实际问题中常常会涉及多个变量,所以多元函数微积分有着更加广泛的应用.本章总的要求是:理解二元函数的概念和二元函数的几何意义;清楚偏导数和全微分的定义;了解二阶偏导数的定义;了解二阶混合偏导数的值与求导次序无关的条件;掌握复合函数和隐函数的求导法则;理解二元函数极值的概念,掌握二元函数极值的求法;理解二重积分的定义及其几何意义;掌握二重积分的计算方法.本章重点:偏导数和全微分的概念及其计算,复合函数求导法则,二重积分的计算.本章难点:复合函数求导,二重积分的计算.3.考核要求(1)多元函数的概念,要求达到“领会”层次.①知道二元函数的定义及二元函数的几何意义.②会求简单二元函数的定义区域.(2)偏导数和全微分,要求达到“简单应用”层次.①清楚偏导数的定义及其与一元函数导数的关系.②清楚全微分及多元函数可微的定义.③清楚全微分与偏导数的关系及函数可微的充分条件.(3)复合函数的求导法则,要求达到“简单应用”层次.掌握以下三种类型的复合函数的求导法则:(4)隐函数及其求导法则,要求达到“简单应用”层次.了解隐函数的概念,掌握由一个函数方程所确定的一元隐函数或二元隐函数的求导法则.(5)二阶偏导数,要求达到“简单应用”层次.①知道二阶偏导数的定义,会计算初等函数的二阶偏导数.②知道二阶混合偏导数的值与求导次序无关的条件.(6)二元函数的极值及其求法,要求达到“简单应用”层次.①清楚二元函数极值的定义.②清楚极值点和驻点的关系,知道二元函数取极值的充分条件.③会求函数的极值,并会解决简单的应用问题.(7)二重积分的概念和计算,要求达到“简单应用”层次.①清楚二重积分的定义及其几何意义.②了解二重积分的基本性质.③会在直角坐标系下计算二重积分(不要求会交换二次积分的积分次序).。

[整理]考研数学一大纲

[整理]考研数学一大纲

考试科目:高等数学、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等教学约56%线性代数约22%概率论与数理统计约22%四、试卷题型结构单选题8小题,每小题4分,共32分填空题6小题,每小题4分,共24分解答题(包括证明题)9小题,共94分高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L’Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、向量代数和空间解析几何考试内容向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程考试要求1.理解空间直角坐标系,理解向量的概念及其表示.2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法.5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题.6.会求点到直线以及点到平面的距离.7.了解曲面方程和空间曲线方程的概念.8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.五、多元函数微分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用考试要求1.理解多元函数的概念,理解二元函数的几何意义.2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.4.理解方向导数与梯度的概念,并掌握其计算方法.5.掌握多元复合函数一阶、二阶偏导数的求法.6.了解隐函数存在定理,会求多元隐函数的偏导数.7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.8.了解二元函数的二阶泰勒公式.9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.六、多元函数积分学考试内容二重积分与三重积分的概念、性质、计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林(Green)公式平面曲线积分与路径无关的条件二元函数全微分的原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯(Gauss)公式斯托克斯(Stokes)公式散度、旋度的概念及计算曲线积分和曲面积分的应用考试要求1.理解二重积分、三重积分的概念,了解重积分的性质,,了解二重积分的中值定理.2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.4.掌握计算两类曲线积分的方法.5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.7.了解散度与旋度的概念,并会计算.8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、、形心、转动惯量、引力、功及流量等).七、无穷级数考试内容常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法交错级数与莱布尼茨定理任意项级数的绝对收敛与条件收敛函数项级数的收敛域与和函数的概念幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式函数的傅里叶(Fourier)系数与傅里叶级数狄利克雷(Dirichlet)定理函数在上的傅里叶级数函数在上的正弦级数和余弦级数考试要求1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.2.掌握几何级数与级数的收敛与发散的条件.3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.4.掌握交错级数的莱布尼茨判别法.5.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.6.了解函数项级数的收敛域及和函数的概念.7.理解幂级数收敛半径的概念、并掌握幂级数的收敛半径、收敛区间及收敛域的求法.8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.9.了解函数展开为泰勒级数的充分必要条件.10.掌握,,,及的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数.11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在上的函数展开为傅里叶级数,会将定义在上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.八、常微分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程伯努利(Bernoulli)方程全微分方程可用简单的变量代换求解的某些微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程欧拉(Euler)方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法.3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.4.会用降阶法解下列形式的微分方程:和.5.理解线性微分方程解的性质及解的结构.6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.8.会解欧拉方程.9.会用微分方程解决一些简单的应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量空间及其相关概念维向量空间的基变换和坐标变换过渡矩阵向量的内积线性无关向量组的正交规范化方法规范正交基正交矩阵及其性质考试要求1.理解维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解维向量空间、子空间、基底、维数、坐标等概念.6.了解基变换和坐标变换公式,会求过渡矩阵.7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.8.了解规范正交基、正交矩阵的概念以及它们的性质.四、线性方程组考试内容线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解考试要求l.会用克拉默法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理.2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式,以及贝叶斯(Bayes)公式.3.理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量随机变量分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布及其应用.3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用,其中参数为的指数分布的概率密度为5.会求随机变量函数的分布.三、多维随机变量及其分布考试内容多维随机变量及其分布二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常用二维随机变量的分布两个及两个以上随机变量简单函数的分布考试要求1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率.2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.3.掌握二维均匀分布,了解二维正态分布的概率密度,理解其中参数的概率意义.4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.五、大数定律和中心极限定理考试内容切比雪夫(Chebyshev)不等式切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗-拉普拉斯(De Moivre-Laplace)定理列维-林德伯格(Levy-Lindberg)定理考试要求1.了解切比雪夫不等式.2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理).六、数理统计的基本概念考试内容总体个体简单随机样本统计量样本均值样本方差和样本矩分布分布分布分位数正态总体的常用抽样分布考试要求1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为2.了解分布、分布和分布的概念及性质,了解上侧分位数的概念并会查表计算.3.了解正态总体的常用抽样分布.七、参数估计考试内容点估计的概念估计量与估计值矩估计法最大似然估计法估计量的评选标准区间估计的概念单个正态总体的均值和方差的区间估计两个正态总体的均值差和方差比的区间估计考试要求1.理解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.3.了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.4、理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间.八、假设检验考试内容显著性检验假设检验的两类错误单个及两个正态总体的均值和方差的假设检验考试要求1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误.2.掌握单个及两个正态总体的均值和方差的假设检验.来源:万学教育。

数学一考试大纲

数学一考试大纲

数学一考试大纲
数学一考试大纲。

一、考试内容。

1、古典数学:算术、平面几何、立体几何等。

2、基础数学:数学分析、微积分、线性代数等。

二、考试形式。

1、单选题:客观题,要求学生熟练掌握考查的知识点,明确选择的答案。

2、应用题:主观题。

考查学生运用知识点解决问题的能力、步骤是否正确,结果是否正确等。

三、复习要求。

1、注重基础知识的掌握,要重点复习书本中考查的知识点。

2、注重法则、技巧的掌握,复习书本中的例题,掌握解题方法。

3、坚持刷题,将书本中的例题练习,完成真题。

四、时间安排。

1、通过课堂学习及认真复习,巩固基础知识,掌握知识点要点。

2、多练习,做题,记住知识,掌握答题技巧和步骤。

3、最后一周,复习好真题,熟悉考试大纲,准备考试。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中国科学院大学硕士研究生入学考试高等数学(乙)考试大纲一、 考 试 性 质中国科学院大学硕士研究生入学高等数学(乙)考试是为招收理学非数学专业硕士研究生而设置的选拔考试。

它的主要目的是测试考生的数学素质,包括对高等数学各项内容的掌握程度和应用相关知识解决问题的能力。

考试对象为参加全国硕士研究生入学考试、并报考大气物理学与大气环境、气象学、天文技术与方法、地球流体力学、固体地球物理学、矿物学、岩石学、矿床学、构造地质学、第四纪地质学、地图学与地理信息系统、自然地理学、人文地理学、古生物学与地层学、生物物理学、生物化学与分子生物学、物理化学、无机化学、分析化学、高分子化学与物理、地球化学、海洋化学、海洋生物学、植物学、生态学、环境科学、环境工程、土壤学等专业的考生。

二、考试的基本要求要求考生比较系统地理解高等数学的基本概念和基本理论,掌握高等数学的基本方法。

要求考生具有抽象思维能力、逻辑推理能力、空间想象能力、数学运算能力和综合运用所学的知识分析问题和解决问题的能力。

三、考试方式和考试时间高等数学(乙)考试采用闭卷笔试形式,试卷满分为150分,考试时间为180分钟。

四、考试内容和考试要求(一)函数、极限、连续考试内容函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形数列极限与函数极限的概念 无穷小和无穷大的概念及其关系 无穷小的性质及无穷小的比较 极限的四则运算 极限存在的单调有界准则和夹逼准则 两个重要极限:0sin lim 1x x x →=, e xx x =+∞→)11(lim 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质 函数的一致连续性概念考试要求1. 理解函数的概念,掌握函数的表示法,并会建立简单应用问题中的函数关系式。

2. 理解函数的有界性、单调性、周期性和奇偶性。

掌握判断函数这些性质的方法。

3. 理解复合函数的概念,了解反函数及隐函数的概念。

会求给定函数的复合函数和反函数。

4. 掌握基本初等函数的性质及其图形。

5. 理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系。

6. 掌握极限的性质及四则运算法则,会运用它们进行一些基本的判断和计算。

7. 掌握极限存在的两个准则,并会利用它们求极限。

掌握利用两个重要极限求极限的方法。

8. 理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。

9. 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。

10. 掌握连续函数的运算性质和初等函数的连续性,熟悉闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理等),并会应用这些性质。

(二)一元函数微分学考试内容导数的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线基本初等函数的导数导数的四则运算复合函数、反函数、隐函数的导数的求法参数方程所确定的函数的求导方法高阶导数的概念高阶导数的求法微分的概念和微分的几何意义函数可微与可导的关系微分的运算法则及函数微分的求法一阶微分形式的不变性微分在近似计算中的应用微分中值定理洛必达(L’Hospital)法则泰勒(Taylor)公式函数的极值函数最大值和最小值函数单调性函数图形的凹凸性、拐点及渐近线函数图形的描绘考试要求1. 理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,掌握函数的可导性与连续性之间的关系。

2. 掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的求导公式。

了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。

3. 了解高阶导数的概念,会求简单函数的n阶导数。

4. 会求分段函数的一阶、二阶导数。

5. 会求隐函数和由参数方程所确定的函数的一阶、二阶导数6. 会求反函数的导数。

7. 理解并会用罗尔定理、拉格朗日中值定理和泰勒定理。

8. 理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用。

9. 会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。

10. 掌握用洛必达法则求未定式极限的方法。

(三)一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理变上限定积分定义的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分广义积分(无穷限积分、瑕积分)定积分的应用考试要求1. 理解原函数的概念,理解不定积分和定积分的概念。

2. 熟练掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理。

掌握牛顿-莱布尼茨公式。

掌握不定积分和定积分的换元积分法与分部积分法。

3. 会求有理函数、三角函数有理式和简单无理函数的积分。

4. 理解变上限定积分定义的函数,会求它的导数。

5. 理解广义积分(无穷限积分、瑕积分)的概念,掌握无穷限积分、瑕积分的收敛性判别法,会计算一些简单的广义积分。

6. 掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、截面面积为已知的立体体积、功、引力、压力)及函数的平均值。

(四)向量代数和空间解析几何考试内容向量的概念向量的线性运算向量的数量积、向量积和混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程、直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离球面母线平行于坐标轴的柱面旋转轴为坐标轴的旋转曲面的方程常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程考试要求1. 熟悉空间直角坐标系,理解向量及其模的概念。

2. 熟悉向量的运算(线性运算、数量积、向量积),掌握两个向量垂直、平行的条件。

3. 理解方向数与方向余弦、向量的坐标表达式,会用坐标表达式进行向量的运算。

4. 熟悉平面方程和空间直线方程的各种形式,熟练掌握平面方程和空间直线方程的求法。

5. 会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题。

6. 会求空间两点间的距离、点到直线的距离以及点到平面的距离。

7. 了解空间曲线方程和曲面方程的概念。

8. 了解空间曲线的参数方程和一般方程。

了解空间曲线在坐标平面上的投影,并会求其方程。

9. 了解常用二次曲面的方程、图形及其截痕,会求以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程。

(五)多元函数微分学考试内容多元函数的概念二元函数的几何意义二元函数的极限和连续有界闭区域上多元连续函数的性质多元函数偏导数和全微分的概念及求法多元复合函数、隐函数的求导法高阶偏导数的求法空间曲线的切线和法平面曲面的切平面和法线方向导数和梯度二元函数的泰勒公式多元函数的极值和条件极值拉格朗日乘数法多元函数的最大值、最小值及其简单应用考试要求1. 理解多元函数的概念、理解二元函数的几何意义。

2. 理解二元函数的极限与连续性的概念及基本运算性质,了解有界闭区域上连续函数的性质,会判断二元函数在已知点处极限的存在性和连续性。

3. 理解多元函数偏导数和全微分的概念了解二元函数可微、偏导数存在及连续的关系,会求偏导数和全微分。

4. 熟练掌握多元复合函数偏导数的求法。

5. 掌握隐函数的求导法则。

6. 理解方向导数与梯度的概念并掌握其计算方法。

7. 理解曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程。

8. 了解二元函数的二阶泰勒公式。

9. 理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值、最小值,并会解决一些简单的应用问题。

(六)多元函数积分学考试内容二重积分、三重积分的概念及性质二重积分与三重积分的计算和应用两类曲线积分的概念、性质及计算两类曲线积分之间的关系格林(Green)公式平面曲线积分与路径无关的条件已知全微分求原函数两类曲面积分的概念、性质及计算两类曲面积分之间的关系高斯(Gauss)公式斯托克斯(Stokes)公式散度、旋度的概念及计算曲线积分和曲面积分的应用考试要求1. 理解二重积分、三重积分的概念,掌握重积分的性质。

2. 熟练掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标),掌握二重积分的换元法。

3. 理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。

熟练掌握计算两类曲线积分的方法。

4. 熟练掌握格林公式,会利用它求曲线积分。

掌握平面曲线积分与路径无关的条件。

会求全微分的原函数。

5. 理解两类曲面积分的概念,了解两类曲面积分的性质及两类曲面积分的关系。

熟练掌握计算两类曲面积分的方法。

6. 掌握高斯公式和斯托克斯公式,会利用它们计算曲面积分和曲线积分。

7. 了解散度、旋度的概念,并会计算。

8. 会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、曲面的面积、物体的体积、曲线的弧长、物体的质量、重心、转动惯量、引力、功及流量等)。

(七)无穷级数考试内容常数项级数及其收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与p级数及其收敛性正项级数收敛性的判别法交错级数与莱布尼茨定理任意项级数的绝对收敛与条件收敛函数项级数的收敛域、和函数的概念幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法泰勒级数初等函数的幂级数展开式函数的幂级数展开式在近似计算中的应用函数的傅里叶(Fourier)系数与傅里叶级数狄利克雷(Dirichlet)定理函数在[-l,l]上的傅里叶级数函数在[0,l]上的正弦级数和余弦级数。

考试要求1. 理解常数项级数的收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件2. 掌握几何级数与p级数的收敛与发散情况。

3. 熟练掌握正项级数收敛性的各种判别法。

4. 熟练掌握交错级数的莱布尼茨判别法。

5. 理解任意项级数的绝对收敛与条件收敛的概念,以及绝对收敛与条件收敛的关系。

6. 了解函数项级数的收敛域及和函数的概念。

7. 理解幂级数的收敛域、收敛半径的概念,掌握幂级数的收敛半径及收敛域的求法。

相关文档
最新文档