人教B版高中数学高二选修2-3导学案 (1)组合与组合数
2018新人教B版高中数学选修2-3全册学案精编
目录✧ 1.1.1基本计数原理学案✧ 1.1.2基本计数原理的应用学案✧ 1.2.1.1排列及排列数公式学案✧ 1.2.1.2排列的综合应用学案✧ 1.2.2.1组合及组合数公式学案✧ 1.2.2.2组合的综合应用学案✧ 1.3.1二项式定理学案✧ 1.3.2杨辉三角学案✧第1章计数原理章末分层突破学案✧ 2.1.1离散型随机变量学案✧ 2.1.2离散型随机变量的分布列学案✧ 2.1.3超几何分布学案✧ 2.2.1条件概率学案✧ 2.2.2事件的独立性学案✧ 2.2.3独立重复试验与二项分布学案✧ 2.3.1离散型随机变量的数学期望学案✧ 2.3.2离散型随机变量的方差学案✧ 2.4正态分布学案✧第2章概率章末分层突破学案✧ 3.1独立性检验学案✧ 3.2回归分析学案✧统计案例章末分层突破学案基本计数原理1.通过实例,能总结出分类加法计数原理、分步乘法计数原理.(重点)2.正确地理解“完成一件事情”的含义,能根据具体问题的特征,选择“分类”或“分步”.(易混点)3.能利用两个原理解决一些简单的实际问题.(难点)[基础·初探]教材整理1 分类加法计数原理阅读教材P3中间部分,完成下列问题.做一件事,完成它有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法……在第n类办法中有m n种不同的方法.那么完成这件事共有N=m1+m2+…+m n种不同的方法.判断(正确的打“√”,错误的打“×”)(1)在分类加法计数原理中,两类不同方案中的方法可以相同.( )(2)在分类加法计数原理中,每类方案中的方法都能完成这件事.( )(3)从甲地到乙地有两类交通方式:坐飞机和乘轮船,其中飞机每天有3班,轮船有4班.若李先生从甲地去乙地,则不同的交通方式共有7种.( )(4)某校高一年级共8个班,高二年级共6个班,从中选一个班级担任星期一早晨升旗任务,安排方法共有14种.( )【解析】(1)×在分类加法计数原理中,分类标准是统一的,两类不同方案中的方法是不能相同的.(2)√在分类加法计数原理中,是把能完成这件事的所有方法按某一标准分类的,故每类方案中的每种方法都能完成这些事.(3)√由分类加法计数原理,从甲地去乙地共3+4=7(种)不同的交通方式.(4)√根据分类加法计数原理,担任星期一早晨升旗任务可以是高一年级,也可以是高二年级,因此安排方法共有8+6=14(种).【答案】(1)×(2)√(3)√(4)√教材整理2 分步乘法计数原理阅读教材P3后半部分内容,完成下列问题.做一件事,完成它需要分成n个步骤,做第一个步骤有m1种不同的方法,做第二个步骤有m2种不同的方法……做第n个步骤有m n种不同的方法.那么完成这件事共有N=m1×m2×…×m n种不同的方法.判断(正确的打“√”,错误的打“×”)(1)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.( )(2)在分步乘法计数原理中,事情是分两步完成的,其中任何一个单独的步骤都能完成这件事.( )(3)已知x∈{2,3,7},y∈{-3,-4,8},则x·y可表示不同的值的个数为9个.( )(4)在一次运动会上有四项比赛,冠军在甲、乙、丙三人中产生,那么不同的夺冠情况共有43种.( )【解析】(1)√因为在分步乘法计数原理中的每一步都有多种方法,而每种方法各不相同.(2)×因为在分步乘法计数原理中,要完成这件事需分两步,而每步都不能完成这件事,只有各步都完成了,这件事才算完成.(3)√因为x从集合{2,3,7}中任取一个值共有3个不同的值,y从集合{-3,-4,8}中任取一个值共有3个不同的值,故x·y可表示3×3=9个不同的值.(4)×因为每个项目中的冠军都有3种可能的情况,根据分步乘法计数原理共有34种不同的夺冠情况.【答案】(1)√(2)×(3)√(4)×[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:解惑:疑问2:解惑:疑问3:解惑:[小组合作型]分类加法计数原理的应用(1)从高三年级的四个班中共抽出22人,其中一、二、三、四班分别为4人,5人,6人,7人,他们自愿组成数学课外小组,选其中一人为组长,有多少种不同的选法?(2)在所有的两位数中,个位数字大于十位数字的两位数共有多少个?【精彩点拨】(1)按所选组长来自不同年级为分类标准.(2)按个位(或十位)取0~9不同的数字进行分类.【自主解答】(1)分四类:从一班中选一人,有4种选法;从二班中选一人,有5种选法;从三班中选一人,有6种选法;从四班中选一人,有7种选法.共有不同选法N=4+5+6+7=22种.(2)法一按十位上的数字分别是1,2,3,4,5,6,7,8的情况分成8类,在每一类中满足题目条件的两位数分别是8个,7个,6个,5个,4个,3个,2个,1个.由分类加法计数原理知,符合题意的两位数共有8+7+6+5+4+3+2+1=36(个).法二按个位上的数字是2,3,4,5,6,7,8,9分成8类,在每一类中满足条件的两位数分别是1个,2个,3个,4个,5个,6个,7个,8个,所以按分类加法计数原理知,满足条件的两位数共有1+2+3+4+5+6+7+8=36(个).1.应用分类加法计数原理解题的策略(1)标准明确:明确分类标准,依次确定完成这件事的各类方法.(2)不重不漏:完成这件事的各类方法必须满足不能重复,又不能遗漏.(3)方法独立:确定的每一类方法必须能独立地完成这件事.2.利用分类加法计数原理解题的一般思路[再练一题]1.(1)某学生去书店,发现2本好书,决定至少买其中一本,则购买方式共有( )A.1种B.2种C.3种D.4种(2)有三个袋子,分别装有不同编号的红色小球6个,白色小球5个,黄色小球4个.若从三个袋子中任取1个小球,有________种不同的取法.【导学号:62980000】【解析】(1)分两类:买1本或买2本书,各类购买方式依次有2种、1种,故购买方式共有2+1=3种.故选C.(2)有3类不同方案:第1类,从第1个袋子中任取1个红色小球,有6种不同的取法;第2类,从第2个袋子中任取1个白色小球,有5种不同的取法;第3类,从第3个袋子中任取1个黄色小球,有4种不同的取法.其中,从这三个袋子的任意一个袋子中取1个小球都能独立地完成“任取1个小球”这件事,根据分类加法计数原理,不同的取法共有6+5+4=15种.【答案】(1)C (2)15分步乘法计数原理的应用一种号码锁有4个拨号盘,每个拨号盘上有从0到9共十个数字,这4个拨号盘可以组成多少个四位数的号码(各位上的数字允许重复)?【精彩点拨】根据题意,必须依次在每个拨号盘上拨号,全部拨号完毕后,才拨出一个四位数号码,所以应用分步乘法计数原理.【自主解答】按从左到右的顺序拨号可以分四步完成:第一步,有10种拨号方式,所以m1=10;第二步,有10种拨号方式,所以m2=10;第三步,有10种拨号方式,所以m3=10;第四步,有10种拨号方式,所以m4=10.根据分步乘法计数原理,共可以组成N=10×10×10×10=10 000个四位数的号码.1.应用分步乘法计数原理时,完成这件事情要分几个步骤,只有每个步骤都完成了,才算完成这件事情,每个步骤缺一不可.2.利用分步乘法计数原理解题的一般思路(1)分步:将完成这件事的过程分成若干步;(2)计数:求出每一步中的方法数;(3)结论:将每一步中的方法数相乘得最终结果.[再练一题]2.张涛大学毕业参加工作后,把每月工资中结余的钱分为两部分,其中一部分用来定期储蓄,另一部分用来购买国债.人民币储蓄可以从一年期、二年期两种中选择一种,购买国债则可以从一年期、二年期和三年期中选择一种.问:张涛共有多少种不同的理财方式?【解】由题意知,张涛要完成理财目标应分步完成.第1步,将一部分钱用来定期储蓄,从一年期和二年期中任意选择一种理财方式;第2步,用另一部分钱购买国债,从一年期、二年期和三年期三种国债中任意选择一种理财方式.由分步乘法计数原理,得2×3=6种.[探究共研型]两个计数原理的辨析探究1 某大学食堂备有6种荤菜,5种素菜,3种汤,现要配成一荤一素一汤的套餐,试问要“完成的这件事”指的是什么?若配成“一荤一素”是否“完成了这件事”?【提示】“完成这件事”是指从6种荤菜中选出一种,再从5种素菜中选出一种,最后从3种汤中选出一种,这时这件事才算完成.而只选出“一荤一素”不能算“完成这件事”.探究2 在探究1中,要“完成配成套餐”这件事需分类,还是分步?为什么?【提示】要配成一荤一素一汤的套餐,需分步完成.只配荤菜、素菜、汤中的一种或两种都不能达到“一荤一素一汤”的要求,即都不能完成“配套餐”这件事.探究3 在探究1中若要配成“一素一汤套餐”试问可配成多少种不同的套餐?你能分别用分类加法计数原理和分步乘法计数原理求解吗?你能说明分类加法计数原理与分步乘法计数原理的主要区别吗?【提示】5种素菜分别记为A,B,C,D,E.3种汤分别记为a,b,c.利用分类加法计数原理求解:以选用5种不同的素菜分类:选素菜A时,汤有3种选法;选素菜B时,汤有3种选法;选素菜C时,汤有3种选法;选素菜D时,汤有3种选法;选素菜E时,汤有3种选法.故由加法计数原理,配成“一素一汤”的套餐共有3+3+3+3+3=15(种)不同的套餐.利用分步乘法计数原理求解:第一步:从5种素菜中,任选一种共5种不同的选法;第二步:从3种汤中,任选一种共3种不同的选法.由分步乘法计数原理,配成“一素一汤”的套餐共有5×3=15(种)不同套餐.两个计数原理的主要区别在于分类加法计数原理是将一件事分类完成,每类中的每种方法都能完成这件事,而分步乘法计数原理是将一件事分步完成,每步中的每种方法都不能完成这件事.有A,B,C型高级电脑各一台,甲、乙、丙、丁4个操作人员的技术等级不同,甲、乙会操作三种型号的电脑,丙不会操作C型电脑,而丁只会操作A型电脑.从这4个操作人员中选3人分别去操作这三种型号的电脑,则不同的选派方法有多少种?【精彩点拨】从这4个操作人员中选3人分别去操作这三种型号的电脑,首先将问题分类,可分为4类,然后每一类再分步完成.即解答本题可“先分类,后分步”.【自主解答】第1类,选甲、乙、丙3人,由于丙不会操作C型电脑,分2步安排这3人操作电脑,有2×2=4种方法;第2类,选甲、乙、丁3人,由于丁只会操作A型电脑,这时安排3人操作电脑,有2种方法;第3类,选甲、丙、丁3人,这时安排3人操作电脑只有1种方法;第4类,选乙、丙、丁3人,同样也只有1种方法.根据分类加法计数原理,共有4+2+1+1=8种选派方法.1.能用分步乘法计数原理解决的问题具有如下特点:(1)完成一件事需要经过n个步骤,缺一不可;(2)完成每一步有若干种方法;(3)把各个步骤的方法数相乘,就可以得到完成这件事的所有方法数.2.利用分步乘法计数原理应注意:(1)要按事件发生的过程合理分步,即分步是有先后顺序的.(2)“步”与“步”之间是连续的、不间断的、缺一不可的,但也不能重复、交叉.(3)若完成某件事情需n步,则必须依次完成这n个步骤后,这件事情才算完成.[再练一题]3.一个袋子里有10张不同的中国移动手机卡,另一个袋子里有12张不同的中国联通手机卡.(1)某人要从两个袋子中任取一张自己使用的手机卡,共有多少种不同的取法?(2)某人手机是双卡双待机,想得到一张移动和一张联通卡供自己使用,问一共有多少种不同的取法?【解】(1)第一类:从第一个袋子取一张移动卡,共有10种取法;第二类:从第二个袋子取一张联通卡,共有12种取法.根据分类加法计数原理,共有10+12=22种取法.(2)第一步,从第一个袋子取一张移动卡,共有10种取法;第二步,从第二个袋子取一张联通卡,共有12种取法.根据分步乘法计数原理,共有10×12=120种取法.[构建·体系]1.现有4件不同款式的上衣和3条不同颜色的长裤,如果一条长裤与一件上衣配成一套,则不同的配法种数为( )【导学号:62980001】A.7B.12C.64D.81【解析】先从4件上衣中任取一件共4种选法,再从3条长裤中任选一条共3种选法,由分步乘法计数原理,上衣与长裤配成一套共4×3=12(种)不同配法.故选B.【答案】 B2.从A地到B地,可乘汽车、火车、轮船三种交通工具,如果一天内汽车发3次,火车发4次,轮船发2次,那么一天内乘坐这三种交通工具的不同走法数为( )A.1+1+1=3B.3+4+2=9C.3×4×2=24D.以上都不对【解析】分三类:第一类,乘汽车,从3次中选1次有3种走法;第二类,乘火车,从4次中选1次有4种走法;第三类,乘轮船,从2次中选1次有2种走法.所以,共有3+4+2=9种不同的走法.【答案】 B3.从2,3,5,7,11中每次选出两个不同的数作为分数的分子、分母,则可产生不同的分数的个数是________,其中真分数的个数是________.【解析】产生分数可分两步:第一步,产生分子有5种方法;第二步,产生分母有4种方法,共有5×4=20个分数.产生真分数,可分四类:第一类,当分子是2时,有4个真分数,同理,当分子分别是3,5,7时,真分数的个数分别是3,2,1,共有4+3+2+1=10个真分数.【答案】20 104.十字路口来往的车辆,如果不允许回头,不同的行车路线有________条.【解析】经过一次十字路口可分两步:第一步确定入口,共有4种选法;第二步确定出口,从剩余3个路口任选一个共3种,由分步乘法计数原理知不同的路线有4×3=12条.【答案】125.某公园休息处东面有8个空闲的凳子,西面有6个空闲的凳子,小明与爸爸来这里休息.(1)若小明爸爸任选一个凳子坐下(小明不坐),有几种坐法?(2)若小明与爸爸分别就坐,有多少种坐法?【解】(1)小明爸爸选凳子可以分两类:第一类:选东面的空闲凳子,有8种坐法;第二类:选西面的空闲凳子,有6种坐法.根据分类加法计数原理,小明爸爸共有8+6=14(种)坐法.(2)小明与爸爸分别就坐,可以分两步完成:第一步,小明先就坐,从东西面共8+6=14(个)凳子中选一个坐下,共有14种坐法;(小明坐下后,空闲凳子数变成13)第二步,小明爸爸再就坐,从东西面共13个空闲凳子中选一个坐下,共13种坐法.由分步乘法计数原理,小明与爸爸分别就坐共有14×13=182(种)坐法.我还有这些不足:(1)(2)我的课下提升方案:(1)(2)学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.如图111所示为一个电路图,从左到右可通电的线路共有( )图111A.6条B.5条C.9条D.4条【解析】从左到右通电线路可分为两类:从上面有3条;从下面有2条.由分类加法计数原理知,从左到右通电的线路共有3+2=5条.【答案】 B2.有5列火车停在某车站并排的5条轨道上,若火车A 不能停在第1道上,则5列火车的停车方法共有( )A.96种B.24种C.120种D.12种【解析】 先排第1道,有4种排法,第2,3,4,5道各有4,3,2,1种,由分步乘法计数原理知共有4×4×3×2×1=96种.【答案】 A3.将5封信投入3个邮筒,不同的投法共有( )【导学号:62980002】A.53种B.35种 C.8种 D.15种 【解析】 每封信均有3种不同的投法,所以依次把5封信投完,共有3×3×3×3×3=35种投法.【答案】 B4.如果x ,y ∈N ,且1≤x ≤3,x +y <7,则满足条件的不同的有序自然数对的个数是( )A.15B.12C.5D.4 【解析】 利用分类加法计数原理.当x =1时,y =0,1,2,3,4,5,有6个;当x =2时,y =0,1,2,3,4,有5个;当x =3时,y =0,1,2,3,有4个.据分类加法计数原理可得,共有6+5+4=15个.【答案】 A5.从集合{1,2,3,4,5}中任取2个不同的数,作为方程Ax +By =0的系数A ,B 的值,则形成的不同直线有( )A.18条B.20条C.25条D.10条【解析】 第一步,取A 的值,有5种取法;第二步,取B 的值,有4种取法,其中当A =1,B =2时与A =2,B =4时是相同的方程;当A =2,B =1时与A =4,B =2时是相同的方程,故共有5×4-2=18条.【答案】 A二、填空题6.椭圆x 2m +y 2n=1的焦点在y 轴上,且m ∈{1,2,3,4,5},n ∈{1,2,3,4,5,6,7},则满足题意的椭圆的个数为________.【解析】因为焦点在y轴上,所以0<m<n,考虑m依次取1,2,3,4,5时,符合条件的n值分别有6,5,4,3,2个,由分类加法计数原理知,满足题意的椭圆的个数为6+5+4+3+2=20个.【答案】207.某班2016年元旦晚会原定的5个节目已排成节目单,开演前又增加了2个新节目,如果将这两个节目插入原节目单中,那么不同的插法的种数为________.【解析】将第一个新节目插入5个节目排成的节目单中有6种插入方法,再将第二个新节目插入到刚排好的6个节目排成的节目单中有7种插入方法,利用分步乘法计数原理,共有插入方法:6×7=42(种).【答案】428.如图112,小圆圈表示网络的结点,结点之间的连线表示它们有网线相连,连线标注的数字表示该段网线单位时间内可以通过的最大信息量,现从结点B向结点A传递信息,信息可以分开沿不同的路线同时传递,则单位时间内传递的最大信息量为________.图112【解析】依题意,首先找出B到A的路线,一共有4条,分别是BCDA,信息量最大为3;BEDA,信息量最大为4;BFGA,信息量最大为6;BHGA,信息量最大为6.由分类加法计数原理,单位时间内传递的最大信息量为3+4+6+6=19.【答案】19三、解答题9.有不同的红球8个,不同的白球7个.(1)从中任意取出一个球,有多少种不同的取法?(2)从中任意取出两个不同颜色的球,有多少种不同的取法?【解】(1)由分类加法计数原理,从中任取一个球共有8+7=15(种).(2)由分步乘法计数原理,从中任取两个不同颜色的球共有8×7=56(种).10.某单位职工义务献血,在体检合格的人中,O型血的共有28人,A型血的共有7人,B型血的共有9人,AB型血的共有3人.(1)从中任选1人去献血,有多少种不同的选法;(2)从四种血型的人中各选1人去献血,有多少种不同的选法?【解】从O型血的人中选1人有28种不同的选法;从A型血的人中选1人有7种不同的选法;从B型血的人中选1人有9种不同的选法;从AB型血的人中选1人有3种不同的选法.(1)任选1人去献血,即无论选哪种血型的哪一个人,“任选1人去献血”这件事情都可以完成,所以用分类加法计数原理.有28+7+9+3=47种不同的选法.(2)要从四种血型的人中各选1人,即从每种血型的人中各选出1人后,“各选1人去献血”这件事情才完成,所以用分步乘法计数原理.有28×7×9×3=5 292种不同的选法.[能力提升]1.一植物园参观路径如图113所示,若要全部参观并且路线不重复,则不同的参观路线种数共有( )图113A.6种B.8种C.36种D.48种【解析】由题意知在A点可先参观区域1,也可先参观区域2或3,每种选法中可以按逆时针参观,也可以按顺时针参观,所以第一步可以从6个路口任选一个,有6种走法,参观完第一个区域后,选择下一步走法,有4种走法,参观完第二个区域后,只剩下最后一个区域,有2种走法,根据分步乘法计数原理,共有6×4×2=48种不同的参观路线.【答案】 D2.某市汽车牌照号码(由4个数字和1个字母组成)可以上网自编,但规定从左到右第二个号码只能从字母B,C,D中选择,其他四个号码可以从0~9这十个数字中选择(数字可以重复).某车主第一个号码(从左到右)只想在数字3,5,6,8,9中选择,其他号码只想在1,3,6,9中选择,则他的车牌号码所有可能的情况有( )【导学号:62980003】A.180种B.360种C.720种D.960种【解析】分五步完成,第i步取第i个号码(i=1,2,3,4,5).由分步乘法计数原理,可得车牌号码共有5×3×4×4×4=960种.【答案】 D3.直线方程Ax+By=0,若从0,1,3,5,7,8这6个数字中每次取两个不同的数作为A,B 的值,则可表示________条不同的直线.【解析】若A或B中有一个为零时,有2条;当AB≠0时有5×4=20条,故共有20+2=22条不同的直线.【答案】224.已知集合M={-3,-2,-1,0,1,2},P(a,b)表示平面上的点(a,b∈M),(1)P可以表示平面上的多少个不同点?(2)P可以表示平面上的多少个第二象限的点?(3)P可以表示多少个不在直线y=x上的点?【解】(1)完成这件事分为两个步骤:a的取法有6种,b的取法有6种.由分步乘法计数原理知,P可以表示平面上的6×6=36(个)不同点.(2)根据条件需满足a<0,b>0.完成这件事分两个步骤:a的取法有3种,b的取法有2种,由分步乘法计数原理知,P 可以表示平面上的3×2=6(个)第二象限的点.(3)因为点P不在直线y=x上,所以第一步a的取法有6种,第二步b的取法有5种,根据分步乘法计数原理可知,P可以表示6×5=30(个)不在直线y=x上的点.基本计数原理的应用1.熟练应用两个计数原理.(重点)2.能运用两个计数原理解决一些综合性的问题.(难点)[基础·初探]教材整理分类加法计数原理与分步乘法计数原理的联系与区别阅读教材P4~P5,完成下列问题.分类加法计数原理和分步乘法计数原理的联系与区别1.由1,2,3,4组成没有重复数字的三位数的个数为________.【解析】由题意知可以组成没有重复数字的三位数的个数为4×3×2=24.【答案】242.(a1+a2+a3)(b1+b2+b3)(c1+c2+c3+c4)展开后共有________项.【导学号:62980004】【解析】该展开式中每一项的因式分别来自a1+a2+a3,b1+b2+b3,c1+c2+c3+c4中的各一项.由a1,a2,a3中取一项共3种取法,从b1,b2,b3中取一项有3种不同取法,从c1,c2,c3,c4中任取一项共4种不同的取法.由分步乘法计数原理知,该展开式共3×3×4=36(项).【答案】363.5名班委进行分工,其中A不适合当班长,B只适合当学习委员,则不同的分工方案种数为________.【解析】根据题意,B只适合当学习委员,有1种情况,A不适合当班长,也不能当学习委员,有3种安排方法,剩余的3人担任剩余的工作,有3×2×1=6种情况,由分步乘法计数原理,可得共有1×3×6=18种分工方案.【答案】184.用1,2,3三个数字组成一个四位数,规定这三个数必须全部使用,且同一数字不能相邻,这样的四位数有________个.【解析】分三步完成,第1步,确定哪一个数字被使用2次,有3种方法;第2步,把这2个相同的数字排在四位数不相邻的两个位置上,有3种方法;第3步,将余下的2个数字排在四位数余下的两个位置上,有2种方法.故有3×3×2=18个不同的四位数.【答案】18[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:解惑:疑问2:解惑:疑问3:解惑:[小组合作型]抽取(分配)问题(1)高三年级的三个班到甲、乙、丙、丁四个工厂进行社会实践,其中工厂甲必须有班级去,每班去何工厂可自由选择,则不同的分配方案有( )A.16种B.18种C.37种D.48种(2)甲、乙、丙、丁四人各写一张贺卡,放在一起,再各取一张不是自己的贺卡,则不同取法的种数有________.【精彩点拨】(1)由于去甲工厂的班级分配情况较多,而其对立面较少,可考虑间接法求解.(2)先让一人去抽,然后再让被抽到贺卡所写人去抽.【自主解答】(1)高三年级的三个班到甲、乙、丙、丁四个工厂进行社会实践有43种不同的分配方案,若三个班都不去工厂甲则有33种不同的分配方案.则满足条件的不同的分配方案有43-33=37(种).故选C.(2)不妨由甲先来取,共3种取法,而甲取到谁的将由谁在甲取后第二个来取,共3种取法,余下来的人,都只有1种选择,所以不同取法共有3×3×1×1=9(种).【答案】(1)C (2)9求解抽取(分配)问题的方法1.当涉及对象数目不大时,一般选用枚举法、树状图法、框图法或者图表法.2.当涉及对象数目很大时,一般有两种方法:①直接法:直接使用分类加法计数原理或分步乘法计数原理.②间接法:去掉限制条件,计算所有的抽取方法数,然后减去所有不符合条件的抽取方法数即可.[再练一题]1.3个不同的小球放入5个不同的盒子,每个盒子至多放一个小球,共有多少种方法?【解】法一(以小球为研究对象)分三步来完成:第一步:放第一个小球有5种选择;第二步:放第二个小球有4种选择;第三步:放第三个小球有3种选择.根据分步乘法计数原理得:共有方法数N=5×4×3=60.法二(以盒子为研究对象)盒子标上序号1,2,3,4,5,分成以下10类:第一类:空盒子标号为(1,2):选法有3×2×1=6(种);第二类:空盒子标号为(1,3):选法有3×2×1=6(种);第三类:空盒子标号为(1,4):选法有3×2×1=6(种);分类还有以下几种情况:空盒子标号分别为(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10类,每一类都有6种方法.根据分类加法计数原理得,共有方法数N=6+6+…+6=60(种).组数问题用0,1,2,3,4,5可以组成多少个无重复数字的(1)银行存折的四位密码;(2)四位整数;。
新人教B版高中数学(选修2-3)1.2.2《组合》word教案
1.2.2组合课标要求:知识与技能:理解组合的意义,能写出一些简单问题的所有组合。
明确组合与排列的联系与区别,能判断一个问题是排列问题还是组合问题。
过程与方法:了解组合数的意义,理解排列数m n A 与组合数之间的联系,掌握组合数公式,能运用组合数公式进行计算。
情感、态度与价值观:能运用组合要领分析简单的实际问题,提高分析问题的能力。
教学重点:组合的概念和组合数公式教学难点:组合的概念和组合数公式授课类型:新授课课时安排:2课时教 具:多媒体、实物投影仪内容分析:排列与组合都是研究从一些不同元素中任取元素,或排成一排或并成一组,并求有多少种不同方法的问题.排列与组合的区别在于问题是否与顺序有关.与顺序有关的是排列问题,与顺序无关是组合问题,顺序对排列、组合问题的求解特别重要.排列与组合的区别,从定义上来说是简单的,但在具体求解过程中学生往往感到困惑,分不清到底与顺序有无关系.指导学生根据生活经验和问题的内涵领悟其中体现出来的顺序.教的秘诀在于度,学的真谛在于悟,只有学生真正理解了,才能举一反三、融会贯通.能列举出某种方法时,让学生通过交换元素位置的办法加以鉴别.学生易于辨别组合、全排列问题,而排列问题就是先组合后全排列.在求解排列、组合问题时,可引导学生找出两定义的关系后,按以下两步思考:首先要考虑如何选出符合题意要求的元素来,选出元素后再去考虑是否要对元素进行排队,即第一步仅从组合的角度考虑,第二步则考虑元素是否需全排列,如果不需要,是组合问题;否则是排列问题.排列、组合问题大都来源于同学们生活和学习中所熟悉的情景,解题思路通常是依据具体做事的过程,用数学的原理和语言加以表述.也可以说解排列、组合题就是从生活经验、知识经验、具体情景的出发,正确领会问题的实质,抽象出“按部就班”的处理问题的过程.据笔者观察,有些同学之所以学习中感到抽象,不知如何思考,并不是因为数学知识跟不上,而是因为平时做事、考虑问题就缺乏条理性,或解题思路是自己主观想象的做法(很可能是有悖于常理或常规的做法).要解决这个问题,需要师生一道在分析问题时要根据实际情况,怎么做事就怎么分析,若能借助适当的工具,模拟做事的过程,则更能说明问题.久而久之,学生的逻辑思维能力将会大大提高.教学过程:一、复习引入:1分类加法计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有 12n N m m m =+++ 种不同的方法2.分步乘法计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同m n C的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有12n N m m m =⨯⨯⨯ 种不同的方法3.排列的概念:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的顺序.....排成一列,叫做从n 个不同元素中取出m 个元素的一个排列....4.排列数的定义:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出m 元素的排列数,用符号m n A 表示5.排列数公式:(1)(2)(1)m n A n n n n m =---+ (,,m n N m n *∈≤)6阶乘:!n 表示正整数1到n 的连乘积,叫做n 的阶乘规定0!1=.7.排列数的另一个计算公式:m n A =!()!n n m - 8.提出问题:示例1:从甲、乙、丙3名同学中选出2名去参加某天的一项活动,其中1名同学参加上午的活动,1名同学参加下午的活动,有多少种不同的选法?示例2:从甲、乙、丙3名同学中选出2名去参加一项活动,有多少种不同的选法? 引导观察:示例1中不但要求选出2名同学,而且还要按照一定的顺序“排列”,而示例2只要求选出2名同学,是与顺序无关的引出课题:组合... 二、讲解新课:1组合的概念:一般地,从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合说明:⑴不同元素;⑵“只取不排”——无序性;⑶相同组合:元素相同例1.判断下列问题是组合还是排列(1)在北京、上海、广州三个民航站之间的直达航线上,有多少种不同的飞机票?有多少种不同的飞机票价?(2)高中部11个班进行篮球单循环比赛,需要进行多少场比赛?(3)从全班23人中选出3人分别担任班长、副班长、学习委员三个职务,有多少种不同的选法?选出三人参加某项劳动,有多少种不同的选法?(4)10个人互相通信一次,共写了多少封信?(5)10个人互通电话一次,共多少个电话?问题:(1)1、2、3和3、1、2是相同的组合吗?(2)什么样的两个组合就叫相同的组合 2.组合数的概念:从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数....用符号mn C 表示. 3.组合数公式的推导:(1)从4个不同元素,,,a b c d 中取出3个元素的组合数34C 是多少呢?启发:由于排列是先组合再排列.........,而从4个不同元素中取出3个元素的排列数34A 可以求得,故我们可以考察一下34C 和34A 的关系,如下:组 合 排列dcbcdb bdc dbc cbd bcd bcd dca cda adc dac cad acd acd dba bda adb dab bad abd abd cba bca acb cab bac abc abc ,,,,,,,,,,,,,,,,,,,,→→→→ 由此可知,每一个组合都对应着6个不同的排列,因此,求从4个不同元素中取出3个元素的排列数34A ,可以分如下两步:① 考虑从4个不同元素中取出3个元素的组合,共有34C 个;② 对每一个组合的3个不同元素进行全排列,各有33A 种方法.由分步计数原理得:34A =⋅34C 33A ,所以,333434A A C =. (2)推广:一般地,求从n 个不同元素中取出m 个元素的排列数m n A ,可以分如下两步:① 先求从n 个不同元素中取出m 个元素的组合数m n C ;② 求每一个组合中m 个元素全排列数m m A ,根据分步计数原理得:m n A =m n C m mA ⋅. (3)组合数的公式:(1)(2)(1)!m mn nm m A n n n n m C A m ---+== 或)!(!!m n m n C m n -=,,(n m N m n ≤∈*且 规定: 01n C =.三、讲解范例:例2.用计算器计算710C .解:由计算器可得例3.计算:(1)47C ; (2)710C ; (1)解: 4776544!C ⨯⨯⨯==35; (2)解法1:710109876547!C ⨯⨯⨯⨯⨯⨯==120.解法2:71010!10987!3!3!C ⨯⨯===120. 例4.求证:11+⋅-+=m n m n C m n m C . 证明:∵)!(!!m n m n C m n -= 111!(1)!(1)!m n m m n C n m n m m n m +++⋅=⋅--+-- =1!(1)!()(1)!m n m n m n m +⋅+--- =!!()!n m n m - ∴11+⋅-+=m n m n C mn m C 例5.设,+∈N x 求321132-+--+x x x x C C 的值解:由题意可得:⎩⎨⎧-≥+-≥-321132x x x x ,解得24x ≤≤, ∵x N +∈, ∴2x =或3x =或4x =,当2x =时原式值为7;当3x =时原式值为7;当4x =时原式值为11.∴所求值为4或7或11.例6. 一位教练的足球队共有 17 名初级学员,他们中以前没有一人参加过比赛.按照足球比赛规则,比赛时一个足球队的上场队员是11人.问:(l)这位教练从这 17 名学员中可以形成多少种学员上场方案?(2)如果在选出11名上场队员时,还要确定其中的守门员,那么教练员有多少种方式做这件事情?分析:对于(1),根据题意,17名学员没有角色差异,地位完全一样,因此这是一个从 17 个不同元素中选出11个元素的组合问题;对于( 2 ) ,守门员的位置是特殊的,其余上场学员的地位没有差异,因此这是一个分步完成的组合问题.解: (1)由于上场学员没有角色差异,所以可以形成的学员上场方案有 C }手= 12 376 (种) .(2)教练员可以分两步完成这件事情:第1步,从17名学员中选出 n 人组成上场小组,共有1117C 种选法;第2步,从选出的 n 人中选出 1 名守门员,共有111C 种选法.所以教练员做这件事情的方法数有1111711C C ⨯=136136(种).例7.(1)平面内有10 个点,以其中每2 个点为端点的线段共有多少条?(2)平面内有 10 个点,以其中每 2 个点为端点的有向线段共有多少条?解:(1)以平面内 10 个点中每 2 个点为端点的线段的条数,就是从10个不同的元素中取出2个元素的组合数,即线段共有 2101094512C ⨯==⨯(条). (2)由于有向线段的两个端点中一个是起点、另一个是终点,以平面内10个点中每 2 个点为端点的有向线段的条数,就是从10个不同元素中取出2个元素的排列数,即有向线段共有21010990A =⨯=(条).例8.在 100 件产品中,有 98 件合格品,2 件次品.从这 100 件产品中任意抽出 3 件 .(1)有多少种不同的抽法?(2)抽出的 3 件中恰好有 1 件是次品的抽法有多少种?(3)抽出的 3 件中至少有 1 件是次品的抽法有多少种?解:(1)所求的不同抽法的种数,就是从100件产品中取出3件的组合数,所以共有 31001009998123C ⨯⨯=⨯⨯= 161700 (种). (2)从2 件次品中抽出 1 件次品的抽法有12C 种,从 98 件合格品中抽出 2 件合格品的抽法有298C 种,因此抽出的 3 件中恰好有 1 件次品的抽法有12298C C ⋅=9506(种). (3)解法 1 从 100 件产品抽出的 3 件中至少有 1 件是次品,包括有1件次品和有 2件次品两种情况.在第(2)小题中已求得其中1件是次品的抽法有12298C C ⋅种,因此根据分类加法计数原理,抽出的3 件中至少有一件是次品的抽法有12298C C ⋅+21298C C ⋅=9 604 (种) .解法2 抽出的3 件产品中至少有 1 件是次品的抽法的种数,也就是从100件中抽出3 件的抽法种数减去3 件中都是合格品的抽法的种数,即3310098C C -=161 700-152 096 = 9 604 (种). 说明:“至少”“至多”的问题,通常用分类法或间接法求解。
人教新课标版数学高二-人教选修2-3学案设计 组合
1.2.2 组合问题导学一、组合概念的理解与应用活动与探究1判断下列问题是排列问题还是组合问题,并分别求出对应的方法数.(1)把当日动物园的4张门票分给5个人,每人至多分一张,而且票必须分完,有多少种分配方法?(2)从2,3,5,7,11这5个质数中,每次取2个数分别作为分子和分母构成一个分数,共能构成多少个不同的分数?(3)从9名学生中选出4名参加一个联欢会,有多少种不同选法?迁移与应用1.若已知集合P={1,2,3,4,5,6},则集合P的子集中含有3个元素的子集数为__________.2.中国、日本、韩国、朝鲜四国举行女足邀请赛,赛制采取单循环赛方式,请列举出所有各场比赛的双方.区分排列与组合的办法是首先弄清楚事件是什么,区分的标志是有无顺序,而区分有无顺序的方法是:把问题的一个选择结果写出来,然后交换这个结果中任意两个元素的位置,看是否会产生新的变化,若有新变化,即说明有顺序,是排列问题;若无新变化,即说明无顺序,是组合问题.二、与组合数有关的计算与证明活动与探究21.计算:(1)3C38-2C25+C88;(2)C98100+C199200;(3)C16+C26+C37.2.证明:m C m n=n C m-1n-1.迁移与应用1.计算:C22+C23+C24+…+C210=__________.2.若C x15=C2x-615,则x=__________.3.证明下列各等式:(1)C m n=nm Cm-1n-1;(2)C m n=m+1n+1C m+1n+1;(3)C0n+C1n+1+C2n+2+…+C m-1n+m-1=C m-1n+m.(1)组合数公式的选取:涉及具体数字的可以用展开式计算,涉及字母的可以用阶乘式计算.(2)性质1:C m n=C n-mn 主要应用于简化运算.性质2:C m n+1=C m n+C m-1n从右到左两个组合数合为一个,实现了由繁到简的化简过程,主要应用于组合数的化简.三、简单组合问题活动与探究3现有10名教师,其中男教师6名,女教师4名.(1)现要从中选2名去参加会议,有多少种不同的选法?(2)选出2名男教师或2名女教师去外地学习的选法有多少种?(3)现要从中选出男、女老师各2名去参加会议,有多少种不同的选法?迁移与应用1.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有()A.60种B.63种C.65种D.66种2.一个口袋中装有大小相同的6个白球和4个黑球,从中取2个球,则这两个球同色的不同取法有__________种.解简单的组合应用题时,要先判断它是不是组合问题,取出元素只是组成一组,与顺序无关则是组合问题;取出元素排成一列,与顺序有关则是排列问题.只有当该问题能构成组合模型时,才能运用组合数公式求出其种数.在解题时还应注意两个计数原理的运用,在分类和分步时,注意有无重复或遗漏.四、有限制条件的组合问题活动与探究41.某校开设A类选修课3门,B类选修课4门,一位同学从中共选3门.若要求两类课程中各至少选一门,则不同的选法共有()A.30种B.35种C.42种D.48种2.某龙舟队有9名队员,其中3人只会划左舷,4人只会划右舷,2人既会划左舷又会划右舷.现要选派划左舷的3人、右舷的3人共6人去参加比赛,且既会划左舷又会划右舷的最多选1人,则不同的选法有( )A .4种B .36种C .40种D .92种迁移与应用1.某班班会准备从甲、乙等7名学生中选派4名学生发言,要求甲、乙两名同学至少有一人参加,且若甲、乙同时参加,则他们发言时不能相邻,那么不同的发言顺序的种数为( )A .360B .520C .600D .7202.(2013辽宁大连模拟)有8名男生和5名女生,从中任选6人. (1)有多少种不同的选法?(2)其中有3名女生,有多少种不同的选法? (3)其中至多有3名女生,有多少种不同的选法?(4)其中有2名女生,4名男生,分别负责6种不同的工作,共有多少种不同的分工方法? (5)其中既有男生又有女生,有多少种不同的选法?(1)解有约束条件的组合问题与解有约束条件的排列问题的方法一样,都是遵循“谁特殊谁优先”的原则,在此前提下,或分类或分步或用间接法.(2)要正确理解题中的关键词(如“都”与“不都”,“至少”与“至多”,“含”与“不含”等)的确切含义,正确分类,合理分步.(3)分配问题的一般思路是先选取,再分配. 答案: 课前·预习导学 【预习导引】 1.组合预习交流1 提示:联系:二者都是从n 个不同的元素中取m (m ≤n )个元素. 区别:排列与元素的顺序有关,组合与元素的顺序无关,只有元素相同且顺序也相同的两个排列才是相同的排列.只要两个组合的元素相同,不论元素的顺序如何,都是相同的组合.2.(1)组合数 C m n (2)n (n -1)(n -2)…(n -m +1)m ! n !m !(n -m )! 预习交流2 (1)提示:C(2)提示:D 3.C n -mnC m n +C m -1n预习交流3 提示:(1)C 220 (2)C 39课堂·合作探究 【问题导学】活动与探究1 思路分析:明确组合、排列的定义是解题的关键.若问题是否与顺序有关不明显,可以尝试写出其中的一个结果进行判断,再运用排列数与组合数公式求值.解:(1)是组合问题.由于4张票是相同的(都是当日动物园的门票),不同的分配方法取决于从5人中选择哪4人,这和顺序无关.分配方法有C 45=5种.(2)是排列问题,选出的2个数有角色差异(作分子与作分母).不同的分数有A 25=20个. (3)是组合问题,选出的4人无角色差异,不需要排列他们的顺序.不同的选法有C 49=126种.迁移与应用 1.20 解析:由于集合中的元素具有无序性,因此含3个元素的子集个数与元素顺序无关,是组合问题,共有C 36=20种.2.解:单循环赛,指双方只赛一场, 因此所有各场比赛双方为 中国——日本;中国——韩国; 中国——朝鲜;日本——韩国; 日本——朝鲜;韩国——朝鲜.活动与探究2 1.思路分析:先考虑利用组合数的性质对原式进行化简,然后利用组合数公式展开计算.解:(1)3C 38-2C 25+C 88=3×8×7×63×2×1-2×5×42×1+1=149. (2)C 98100+C 199200=C 2100+C 1200=100×992×1+200=5 150. (3)C 16+C 26+C 37=C 27+C 37=C 38=8×7×63×2×1=56. 2.思路分析:式子中涉及字母,可以用阶乘式证明.证明:左边=m ·n !m !(n -m )!=n ·(n -1)!(m -1)!(n -m )!=n (n -1)!(m -1)!(n -m )!=n C m -1n -1=右边, ∴m C m n =n C m -1n -1.迁移与应用 1.165 解析:∵C 22=C 33=1, ∴原式=C 33+C 23+C 24+…+C 210=C 311=11×10×93×2=165. 2.6或7 解析:由已知x =2x -6或x +2x -6=15,∴x =6或x =7. 3.证明:(1)右边=nm ·(n -1)!(m -1)![(n -1)-(m -1)]!=n ![m ·(m -1)!](n -m )!=n !m !(n -m )!=C m n =左边, ∴原式成立.(2)右边=m +1n +1·(n +1)!(m +1)![(n +1)-(m +1)]!=m +1n +1·(n +1)!(m +1)!(n -m )!=n !m !(n -m )!=C m n =左边, ∴原式成立.(3)左边=(C 0n +1+C 1n +1)+C 2n +2+C 3n +3+…+C m -1n +m -1 =(C 1n +2+C 2n +2)+C 3n +3+…+C m -1n +m -1 =(C 2n +3+C 3n +3)+…+C m -1n +m -1 =C 3n +4+C 4n +4+…+C m -1n +m -1…=C m -2n +m -1+C m -1n +m -1=C m -1n +m =右边,∴原式成立.活动与探究3 思路分析:首先确定是否是组合问题,再确定完成事情是分步,还是分类.解:(1)从10名教师中选2名去参加会议的选法种数,就是从10个不同元素中取出2个元素的组合数,即C 210=10×92×1=45. (2)可把问题分两类:第1类,选出的2名是男教师有C 26种方法;第2类,选出的2名是女教师有C 24种方法,即C 26+C 24=21种.(3)从6名男教师中选2名的选法有C 26种,从4名女教师中选2名的选法有C 24种,根据分步乘法计数原理,共有选法C 26×C 24=6×52×1×4×32×1=90种. 迁移与应用 1.D 解析:和为偶数共有3种情况,取4个数均为偶数的取法有C 44=1种,取2奇数2偶数的取法有C 24·C 25=60种,取4个数均为奇数的取法有C 45=5种,故不同的取法共有1+60+5=66种.2.21 解析:分两类:一类是2个白球有C 26=15种取法,另一类是2个黑球有C 24=6种取法,所以共有15+6=21种取法.活动与探究4 1.思路分析:两类选修课选3门,依据A 类选修课选1门或2门进行分类,每类需要利用分步乘法计数原理解决.A 解析:分两类,A 类选修课选1门,B 类选修课选2门,或者A 类选修课选2门,B 类选修课选1门,因此,共有C 13·C 24+C 23·C 14=30种选法. 2.思路分析:既会划左舷又会划右舷是多面手,是特殊元素,可以从他们的参与情况入手分类讨论.C 解析:第一类:无既会划左舷又会划右舷的有C 33·C 34=4种选法.第二类:只有一名既会划左舷又会划右舷的有C 12(C 23C 34+C 33C 24)=2(3×4+6)=36种选法.∴共有40种选法.迁移与应用 1.C 解析:分两类:第一类,甲、乙中只有一人参加,则有C 12C 35A 44=2×10×24=480种选法.第二类,甲、乙都参加时,则有C 25(A 44-A 22A 33)=10(24-12)=120种选法.∴共有480+120=600种选法.2.解:(1)是无限制条件的组合问题.适合题意的选法有C 613=1 716种. (2)是有限制条件的组合问题.第1步,选出女生,有C 35种;第2步,选出男生,有C 38种.由分步乘法计数原理,适合题意的选法有C 35·C 38=560种. (3)是有限制条件的组合问题.至多有3名女生包括:没有女生,1名女生,2名女生,3名女生四类情况.第1类没有女生,有C 68种;第2类1名女生,有C 58·C 15种; 第3类2名女生,有C 48·C 25种;第4类3名女生,有C 38·C 35种.由分类加法计数原理,适合题意的选法共有C 68+C 58·C 15+C 48·C 25+C 38·C 35=1 568种.(4)是有限制条件的组合与排列问题.第1步,选出适合题意的6名学生,有C 25·C 48种; 第2步,给这6名学生安排6种不同的工作,有A 66种.由分步乘法计数原理,适合题意的分工方法共有C 25·C 48·A 66=504 000种.(5)是有限制条件的组合问题.用间接法,排除掉全是男生的情况和全是女生的情况即是符合题意的选法.而由题意知不可能6人全是女生,所以只需排除全是男生的情况,C 613-C 68=1 716-28=1 688种. 当堂检测1.2973100100101(C C )A +÷的值为( )A .6B .101C .16 D .1101答案:C 解析:329732333331011001001011001001011011011013333A 11(C C )A(CC )ACAA A A 6÷=+÷=÷=÷==+. 2.从6名女生、4名男生中,按性别采用分层抽样的方法抽取5名学生组成课外小组,则不同的抽取方法种数为( )A .3264C C ⋅ B .2364C C ⋅ C .510C D .3264A A ⋅答案:A 解析:由已知女生抽取3人,男生抽取2人,则抽取方法有3264C C ⋅种. 3.从4名男生和3名女生中选出4人担任奥运志愿者,若选出的4人中既有男生又有女生,则不同的选法共有__________种.答案:34 解析:(间接法)共有4474C C 34-=种不同的选法.4.6条网线并联,它们能通过的最大信息量分别为1,1,2,2,3,4,现从中任取三条网线且使三条网线通过最大信息量的和大于等于6的方法共有__________种.答案:15 解析:当选用信息量为4的网线时有25C 种;当选用信息量为3的网线时有112222(C C +C )种,共有21125222C +C C C 15+=种.5.计算: (1)383321C C nnnn -++;解:由题意知,原式中的自然数n 必须满足不等式组3380, 2130, n n n n ≥-≥⎧⎨+≥≥⎩①②由①,得380,338,n n n -≥⎧⎨≥-⎩解此不等式组得192≤n ≤38;由②,得30,213,n n n ≥⎧⎨+≥⎩解此不等式组得0≤n ≤212.又∵n ∈N *,∴n =10,38328303213031C +C C +C 466n n n n -+∴==.(2)33132171312112C +C +C C n n n nn n n n ---++++…+.答案:由原式知,n 需满足0≤3n ≤13+n 且0≤17-n ≤2n ,即满足不等式组*0313,0172,,n n n n n ⎧≤≤+⎪≤-≤⎨⎪∈⎩N即130,21717,3*.n n n ⎧≤≤⎪⎪⎪≤≤⎨⎪∈⎪⎪⎩N ∴可得n =6,∴原式=1817161111111918171219181712C +C +C C C +C +C C 124+=+=…+…+.。
人教新课标B版高中数学高二选修2-3学案 第1课时 组合及组合数公式
1.2.2组合第1课时组合及组合数公式学习目标 1.理解组合及组合数的概念.2.能利用计数原理推导组合数公式,并会应用公式解决简单的组合问题.知识点一组合的定义思考①从3,5,7,11中任取两个数相除;②从3,5,7,11中任取两个数相乘.以上两个问题中哪个是排列?①与②有何不同特点?梳理组合的概念一般地,从n个不同的元素中,任意取出m(m≤n)个元素并成______,叫做从n个不同元素中任取m个元素的一个组合.知识点二组合数与组合数公式从3,5,7,11中任取两个数相除,思考1可以得到多少个不同的商?思考2如何用分步乘法计数原理求商的个数?思考3你能得出C24的计算公式吗?梳理(1)组合数的概念从n个不同元素中任意取出m(m≤n)个元素的________的个数,叫做从n个不同元素中,任意取出m个元素的组合数,用符号________表示.(2)组合数公式及其性质组合数公式C m n=__________________=__________性质①C m n=________;=________;②C m n+C m-1n③C0n=____类型一组合的有关概念例1给出下列问题:(1)从a,b,c,d四名学生中选两名学生完成一件工作,有多少种不同的安排方法?(2)从a,b,c,d四名学生中选两名学生完成两件不同的工作,有多少种不同的安排方法?(3)a,b,c,d四支足球队之间进行单循环比赛,共需赛多少场?(4)a,b,c,d四支足球队争夺冠、亚军,有多少种不同的结果?在上述问题中,哪些是组合问题,哪些是排列问题?反思与感悟区分一个问题是排列问题还是组合问题,关键是看它有无“顺序”,有顺序就是排列问题,无顺序就是组合问题,要判定它是否有顺序的方法是先将元素取出来,看交换元素的顺序对结果有无影响,有影响就是“有序”,也就是排列问题;没有影响就是“无序”,也就是组合问题.跟踪训练1判断下列各事件是排列问题还是组合问题.(1)8个朋友聚会,每两人握手一次,一共握手多少次?(2)8个朋友相互各写一封信,一共写了多少封信?(3)从1,2,3,…,9这九个数字中任取3个,组成一个三位数,这样的三位数共有多少个?(4)从1,2,3,…,9这九个数字中任取3个,组成一个集合,这样的集合有多少个?类型二组合数公式与性质的应用命题角度1有关组合数的计算与证明例2(1)计算:C410-C37·A33;+C3n21+n的值;(2)求C38-n3n(3)证明:m C m n=n C m-1.n-1反思与感悟(1)涉及具体数字的可以直接用公式C m n=A m nA m m=n(n-1)(n-2)…(n-m+1)m!计算.(2)涉及字母的可以用阶乘式C m n=n!m!(n-m)!计算.(3)计算时应注意利用组合数的两个性质:①C m n=C n-mn ;②C m n+1=C m n+C m-1n.跟踪训练2(1)计算C98100+C199200=________.(2)计算C34+C35+C36+…+C32 015的值为() A.C42 015B.C52 015C.C42 016-1 D.C52 015-1命题角度2含组合数的方程或不等式例3(1)已知1C m5-1C m6=710C m7,求Cm8+C5-m8;(2)解不等式:C4n>C6n.反思与感悟(1)解题过程中应避免忽略根的检验而产生增根的错误,注意不要忽略n∈N+.(2)与排列组合有关的方程或不等式问题要用到排列数、组合数公式,以及组合数的性质,求解时,要注意由C m n中的m∈N+,n∈N+,且n≥m确定m、n的范围,因此求解后要验证所得结果是否适合题意.跟踪训练3(1)若1C3n-1C4n<2C5n,则n的集合为______.(2)解方程C x-2x+2+C x-3x+2=110A3x+3.1.给出下列问题:①从甲、乙、丙3名同学中选出2名分别去参加2个乡镇的社会调查,有多少种不同的选法?②有4张电影票,要在7人中选出4人去观看,有多少种不同的选法?③某人射击8枪,击中4枪,且命中的4枪均为2枪连中,则不同的结果有多少种?其中组合问题的个数是()A.0 B.1 C.2 D.32.集合M={x|x=C n4,n≥0且n∈N},集合Q={1,2,3,4},则下列结论正确的是() A.M∪Q={0,1,2,3,4} B.Q⊆MC.M⊆Q D.M∩Q={1,4}3.若C2n=21,则n!3!(n-3)!的值为()A.6 B.7 C.35 D.704.不等式C2n-n<5的解集为________.5.从1,2,3,6,9中任取两个不同的数相乘.(1)列出所有的取法,并分别指出乘积为偶数与奇数的取法;(2)不同的乘积结果有多少个?1.排列与组合的联系与区别(1)联系:二者都是从n个不同的元素中取m(m≤n)个元素.(2)区别:排列问题中元素有序,组合问题中元素无序.2.巧用组合数公式解题(1)涉及具体数字的可以直接用nn-mC m n-1=nn-m·(n-1)!m!(n-1-m)!=n!m!(n-m)!=C m n进行计算.(2)涉及字母的可以用C m n=n!m!(n-m)!计算.(3)计算时应注意利用组合数的性质C m n=C n-mn简化运算.答案精析问题导学知识点一思考 ①是排列,①中选取的两个数是有序的,②中选取的两个数无需排列.梳理 一组知识点二思考1 A 24=4×3=12.思考2 第1步,从这四个数中任取两个数,有C 24种方法;第2步,将每个组合中的两个数排列,有A 22种排法.由分步乘法计数原理,可得商的个数为C 24A 22=12.思考3 因为A 24=C 24A 22,所以C 24=A 24A 22=6. 梳理 (1)所有组合 C m n(2)n (n -1)(n -2)…(n -m +1)m !n !m !(n -m )!C n -m n C m n +1 1 题型探究例1 解 (1)两名学生完成的是同一件工作,没有顺序,是组合问题.(2)两名学生完成两件不同的工作,有顺序,是排列问题.(3)单循环比赛要求每两支球队之间只打一场比赛,没有顺序,是组合问题.(4)冠亚军是有顺序的,是排列问题.跟踪训练1 解 (1)每两人握手一次,无顺序之分,是组合问题.(2)每两人相互写一封信,是排列问题,因为发信人与收信人是有顺序区别的.(3)是排列问题,因为取出3个数字后,如果改变这3个数字的顺序,便会得到不同的三位数.(4)是组合问题,因为取出3个数字后,无论怎样改变这3个数字的顺序,其构成的集合都不变.例2 (1)解 原式=C 410-A 37=10×9×8×74×3×2×1-7×6×5=210-210=0.(2)解 ∵⎩⎪⎨⎪⎧ 38-n ≤3n ,3n ≤21+n ,∴9.5≤n ≤10.5, ∵n ∈N ,∴n =10,∴C 38-n 3n +C 3n 21+n =C 2830+C 3031=30!28!·2!+31!30!·1!=466.(3)证明 m C m n =m ·n !m !(n -m )!=n ·(n -1)!(m -1)!(n -m )!=n ·(n -1)!(m -1)!(n -m )!=n C m -1n -1.跟踪训练2 (1)5 150 (2)C例3 解 (1)∵1C m 5-1C m 6=710C m 7,∴m !(5-m )!5!-m !(6-m )!6!=7×(7-m )!m !10×7!,即m !(5-m )!5!-m !(6-m )(5-m )!6×5!=7×m !(7-m )(6-m )(5-m )!10×7×6×5!.∴1-6-m 6=(7-m )(6-m )60,即m 2-23m +42=0,解得m =2或21.∵0≤m ≤5,∴m =2,∴C m 8+C 5-m 8=C 28+C 38=C 39=84.(2)由C 4n >C 6n ,得⎩⎨⎧ n !4!(n -4)!>n !6!(n -6)!,n ≥6⇒⎩⎨⎧ n 2-9n -10<0,n ≥6 ⇒⎩⎪⎨⎪⎧-1<n <10,n ≥6, 又n ∈N +,∴该不等式的解集为{6,7,8,9}.跟踪训练3 (1){5,6,7,8,9,10,11}(2)解 原方程可化为C x -2x +3=110A 3x +3, 即C 5x +3=110A 3x +3, ∴(x +3)!5!(x -2)!=110·(x +3)!x !, ∴1120(x -2)!=110·1x (x -1)(x -2)!, ∴x 2-x -12=0,解得x =4或x =-3.又∵0≤x -3≤x +2且x +3≥3,x ∈N +,∴x ≥3且x ∈N +,∴x =4.当堂训练1.C 2.D 3.C 4.{2,3,4}5.解 (1)由于乘法满足交换律,所以本题与次序无关,是组合问题,现规定用数对(a ,b )表示每一种取法,并且(a ,b )与(b ,a )是同一种取法.从1,2,3,6,9中任取两个不同的数,不同的取法有(1,2),(1,3),(1,6),(1,9),(2,3),(2,6),(2,9),(3,6),(3,9),(6,9).其中乘积为偶数的取法有(1,2),(1,6),(2,3),(2,6),(2,9),(3,6),(6,9),乘积为奇数的取法有(1,3),(1,9),(3,9).(2)1×2=2,1×3=3,1×6=2×3=6,1×9=9,2×6=12,2×9=3×6=18,3×9=27,6×9=54,所以不同的乘积结果有8个.。
高中数学选修2-3优质三段式学案1:1.2.2 组合(2)
高中数学选修2-3学案1.2.2组合(2)一、学习目标:1.掌握带有较复杂限制条件的组合问题的处理方法;2.掌握分组分配问题的处理方法.学习重点:带有较复杂限制条件的组合问题的处理方法;分组分配问题的处理方法.二、基本知识:1、组合的定义:2、组合数公式:3、组合与排列的区别:4、组合数的两个计算性质:三、典型例题例1、在一次数学竞赛中,某学校有12人通过了初试,学校要从中选出5人去参加市级培训,在下列条件下,有多少种不同的选法?(1)任意选5人;(2)甲、乙、丙三人必须参加;(3)甲、乙、丙三人不能参加;(4)甲、乙、丙三人只能有1人参加;(5)甲、乙、丙三人至少1人参加.例2、(1)平面内有10个点,以其中每2个点为端点的线段共有多少条?(2)平面内有10个点,以其中每2个点为端点的有向线段共有多少条?四、课堂练习1.从4名男生,2名女生中,选2人参加某项活动,至少有一名女生参加的选法有________种.2.从正方体ABCD-A′B′C′D′的8个顶点中选取4个作为四面体的顶点,可得到的不同的四面体的个数为________.3.(2013·课标全国卷)从n个正整数1,2,…,n中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n=________.学习笔记高中数学选修2-3学案学习笔记4.12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有________.5.“抗震救灾,众志成城”,在我国“四川5·12”抗震救灾中,某医院从10名医疗专家中抽调6名奔赴赈灾前线,其中这10名医疗专家中有4名是外科专家.问:(1)抽调的6名专家中恰有2名是外科专家的抽调方法有多少种?(2)至少有2名外科专家的抽调方法有多少种?(3)至多有2名外科专家的抽调方法有多少种?——★参考答案★——例1.解:(1)512C =792(种)不同的选法.(2)甲、乙、丙三人必须参加,只需从另外的9人中选2人,共有29C =36(种)不同的选法.(3)甲、乙、丙三人不能参加,只需从另外的9人中选5人,共有59C =126(种)不同的选法.(4)甲、乙、丙三人只能有1人参加,分两步,先从甲、乙、丙中选1人,有13C =3(种)选法,再从另外的9人中选4人有49C 种选法,共有1439C C =378(种)不同的选法. (5)方法一 (直接法)可分为三类:第一类:甲、乙、丙中有1人参加,共有1439C C 种; 第二类:甲、乙、丙中有2人参加,共有2339C C 种; 第三类:甲、乙、丙3人均参加,共有3239C C 种. 共有1439C C +2339C C +3239C C =666(种)不同的选法. 方法二 (间接法)12人中任意选5人共有512C 种,甲、乙、丙三人不能参加的有59C 种,所以,共有512C -59C =666(种)不同的选法.例2.解 (1)以平面内10个点中每2个点为端点的线段的条数,就是从10个不同的元素中取出2个元素的组合数,即线段共有C 210=10×91×2=45(条). (2)由于有向线段的两个端点中一个是起点、另一个是终点,以平面内10个点中每 2 个点为端点的有向线段的条数,就是从10个不同元素中取出2个元素的排列数,即有向线段共有A 210=10×9=90(条). 课堂练习1.[[解析]] 法一 分两类, ①一男一女,共有4×2=8种; ②两女,只有1种,共有8+1=9种.法二 间接法C 26-C 24=15-6=9种.[[答案]] 92.[[解析]] 从8个顶点中任取4个有C 48种方法,从中去掉6个面和6个对角面,所以有C 48-12=58个不同的四面体.[[答案]] 583.[[解析]] 由题意知n >4,取出的两数之和等于5的有两种情况:1,4和2,3,所以P =2C 2n =114,即n 2-n -56=0,解得n =-7(舍去)或n =8.[[答案]]84.[[解析]]先从12名同学选4个上第一个路口,再从剩下的8名同学选4个上第二个路口,那么剩下的4名同学上第三个路口,则不同的分配方案共有C412C48C44=34 650种.[[答案]]34 6505.解(1)分步:首先从4名外科专家中任选2名,有C24种选法,再从除外科专家的6人中选取4人,有C46种选法,所以共有C24·C46=90(种)抽调方法.(2)“至少”的含义是不低于,有两种解答方法.方法一(直接法)按选取的外科专家的人数分类:①选2名外科专家,共有C24·C46种选法;②选3名外科专家,共有C34·C36种选法;③选4名外科专家,共有C44·C26种选法;根据分类加法计数原理,共有C24·C46+C34·C36+C44·C26=185(种)抽调方法.方法二(间接法)不考虑是否有外科专家,共有C610种选法,考虑选取1名外科专家参加,有C14·C56种选法;没有外科专家参加,有C66种选法,所以共有:C610-C14·C56-C66=185(种)抽调方法.(3)“至多2名”包括“没有”、“有1名”、“有2名”三种情况,分类解答.①没有外科专家参加,有C66种选法;②有1名外科专家参加,有C14·C56种选法;③有2名外科专家参加,有C24·C46种选法.所以共有C66+C14·C56+C24·C46=115(种)抽调方法.。
高二数学选修2-3导学案2.2组合
§1.2.2组合(一)【三维目标】知识与技能:理解组合与组合数概念,对于一个实际问题,能区别是排列问题还是组合问题过程与方法:通过实例体会组合与排列的联系与区别,进而推导出组合数公式情感态度价值观:通过学习,培养学生分析问题、解决问题的能力,同时渗透等价转化的思想方法【学习重点】:对组合与组合数概念的理解与简单应用【学习难点】:对组合数公式的推导与理解【学法指导】类比排列与排列数学习组合与组合数【知识链接】1分类加法计数原理定义:2.分步乘法计数原理定义:3.排列的概念:4.排列数的定义:A=5.排列数公式:mn6阶乘:A=7.排列数的另一个计算公式:mn【学习过程】A问题1:从甲、乙、丙3名同学中选出2名去参加某天的一项活动,其中1名同学参加上午的活动,1名同学参加下午的活动,有多少种不同的选法?一一列出来?B问题2:从甲、乙、丙3名同学中选出2名去参加一项活动,有多少种不同的选法?一一列出来?A问题3:问题1与问题2有什么区别?A 问题4:试归纳组合的概念?B 问题5:判断下列问题是组合还是排列(1)在北京、上海、广州三个民航站之间的直达航线上,有多少种不同的飞机票?有多少种不同的飞机票价? ( ) ( )(2)高中部11个班进行篮球单循环比赛,需要进行多少场比赛? ( ) (3)从全班23人中选出3人分别担任班长、副班长、学习委员三个职务,有多少种不同的选法?选出三人参加某项劳动,有多少种不同的选法? ( ) ( )(4)10个人互相通信一次,共写了多少封信? ( ) B 问题6:1、2、3和3、1、2是相同的组合吗?B 问题7:什么样的两个组合叫相同的组合?B 问题8:排列与组合的相同点与不同点:B 问题9:给出组合数定义?C 问题10、组合数公式的推导:Ⅰ、从4个不同元素,,,a b c d 中取出3个元素的组合数34C 是多少呢?(排列是先组合再排........列)..Ⅱ、从4个不同元素,,,a b c d 中取出3个元素的排列数34A 是多少呢?Ⅲ、对3个不同元素进行全排列33A 是多少?Ⅳ、试归纳34C ,34A ,33A 之间的关系?Ⅴ、推广:试归纳一般地,求从n 个不同元素中取出m 个元素的排列数mn A ,从n 个不同元素中取出m 个元素的组合数m n C ,每一个组合中m 个元素全排列数mm A 之间的关系?Ⅵ、组合数的公式:m n C = = =),,(n m N m n ≤∈*且规定: 01n C =.A 例1、不使用计算器计算(1)37C(2)410C(3)46464645A A A A +(4)310131002100A C C +【达标检测】B1.下面几个说法中,正确的是个数是…………………………………………………( )① 组合数就是一个组合中元素的个数; ② 两个组合中的元素完全相同也可能是不同的组合; ③ 从n 个元素中抽取m(m ≦n)个元素的排列,可以看作先从n 个元素中抽取m 个进行组合,再对m 个元素进行全排列.A.0B.1C.2D.3B2.下面各式中,不正确的是……………………………………………………………( )A.0!=1B.1n A =nC.1=n n CD.1C 1n =C3.计算24582A C +的值是…………………………………………………………………( )A.64B.80C.13464D.40 C4.已知a,b,c,d,e 五个元素,试写出每次取出3个元素的所有组合为: C5.判断下列各命题是排列问题还是组合问题: (1)从五种不同的水稻良种中,选出3种:①分别种在土质一样的三块田里作试验,有多少种方法? 是 问题. ②分别种在土质不同的三块田里作试验,有多少种方法? 是 问题. (2)从50件不同的产品中抽出5件来检查,有多少种不同的抽法? 是 问题. (3)五个人中互送照片一张,共送了多少张照片? 是 问题. (4)平面内有不共线的三点:①过其中任意两点作直线,一共可以作多少条直线? 是 问题. ②以其中一点为端点,并过另一点的射线有多少条? 是 问题. (6) ①从5本不同的书中选出2本借给某人,有多少种不同的借法? 是 问题.②若从5本不同的书中选出2本分别借给甲、乙两人,又有多少种不同的借法?是 问题.C6.用排列数或组合数表示下列问题,并计算出结果. (1) 从3、4、5、7四个数字中每次取出两个.①构成多少个不同的分数? 答案 ②可以构成多少个不同的真分数? 答案 (2) 从10名同学在任选出3名同学.①担任三种不同的职务,有多少种不同的选法? 答案 ②组成一个代表队参加数学竞赛,有多少种不同的选法? 答案 (3) 从10本不同的书中任选3本.①3个同学每人一本,有多少种不同的借法? 答案 ②借给一个同学,有多少种不同的借法? 答案7计算:(1)315C = ;(2)3468C C = .【课后小结】:【课后反思】:漠河县高机中学高二数学选修2-3导学案 备课人:杨艳民 备课日期: 备课组长:§1.2.2组合 (二)【三维目标】知识与技能:熟记组合数公式,掌握组合数的两个性质,能运用组合数公式及性质进行计算与证明过程与方法:通过典型习题的训练,对组合数公式和性质的使用更加熟练情感态度价值观:通过学习,培养运算能力及抽象思维能力 【学习重点】:运用组合数公式及性质进行计算与证明 【学习难点】:运用组合数公式及性质进行计算与证明 【学法指导】:熟记组合数公式及组合数的两个性质,一般情况下,第一个公式熟记侧重计算,第二个公式侧重于证明【知识链接】:1.下面的问题中属于组合的是(在括号内打√)(1) 集合{0,1,2,3,4}的含两个元素的子集的个数是多少?…………………( ) (2) 五个足球队进行单循环赛,共要比赛多少场?……………………………… ( ) (3) 从1~9中取2个相加,有多少个不同的和?……………………………… ( )如果相减,有多少个不同的差?…………………………………………… ( ) (4) 某小组有9位同学,从中选出正副班长各一人,有多少种不同的选法?… ( )若从中选出2名代表参加一个会议,有多少种不同的选法?…………… …( )2.=mn A = .0!= .3.=m n C = = 、=0n C . =1n C 4. 47C = ; (2)37C = ; (3)410C = ; (4)610C = ; 【学习过程】A 问题1:计算:(1)=26C 、=46C 、=+3727C C 、=38C 、=197100C .B 问题2:证明下列恒等式: (1)mn nmn C C -=; (2)1m nm n m 1n C C C -++=A 问题3:小结:组合数的性质:① ② 性质①常用来简化运算,性质②通常用来证明组合恒等式.A 问题4:=+299399C C 、若x2172x 17C C =+,则x 的值是 .B 问题5:(1)计算:69584737C C C C +++; (2)求证:n m C 2+=n m C +12-n m C +2-n m C .C 问题6:解方程:(1)3213113-+=x x C C ; (2)333222101+-+-+=+x x x x x A C C .B 问题7:求下列各题中的n 的值. (1)34n nA C = ; (2)nn n C C C 76510711=-小结:①注意约简,②用排列数和组合数公式将等式转化为n 的一元方程解之.【达标训练】A1.若2312n n C A =,则n 等于( )A.8B.7C.6D.4 B2.已知m 、n 、x ∈N 且nx m x C C =,那么m,n 间的关系是( )A.m=nB.m+n=xC.m=n 或m+n=xD.m=n 或m-n=x B3.899989100C C - =( )A.89100CB.9099CC.8899CD.88100C B4.已知,C C 3m 15m 15-=则m= . C5.根据条件,求x 的值.(1)若27x 7C C =,则x= ;(2)若x1618x 218C C -=,则x= ;(3)若3:44C :C 2x 3x =,则x= ;(4)若8x 12x C C =,则x= ;C6.利用组合数的性质进行计算(1)=+-+4m 51m 5m C C C ;(2)=+++9799969895979496C C C C ; (3)=++++210242322C C C C ;(4)=++++1720251403C C C C .C7、求证:11+⋅-+=m n mn C mn m C .【课后小结】:【学习反思】:漠河县高机中学高二数学选修2-3导学案 备课人:杨艳民 备课日期: 备课组长: §1.2.2组合 (三)【三维目标】知识与技能:深刻理解组合的概念,能应用所学知识分析、解决简单的实际问题 过程与方法:通过对典型例题的分析,掌握解决问题的方法和策略,提高分析问题解决问题的能力情感态度价值观:通过学习,明确组合是又一类特殊而重要的计数问题 【学习重点】根据组合要领分析简单的实际问题,提高分析问题的能力。
高中数学选修2-3第一章 排列组合二项式定理导学案
§1.1分类加法计数原理与分步乘法计数原理(一)【学习要求】1.理解分类加法计数原理与分步乘法计数原理.2.会用这两个原理分析和解决一些简单的实际计数问题【学法指导】两个计数原理是推导排列数、组合数计算公式的依据,其基本思想贯穿本章始终,理解两个原理的关键是分清分类与分步.【知识要点】两个计数原理1.分类加法计数原理:完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=种不同的方法.2.分步乘法计数原理:完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=种不同的方法.【问题探究】探究点一分类加法计数原理问题1用一个大写的英文字母或一个阿拉伯数字给教室里的座位编号,总共能编出多少种不同的号码?问题2问题1中最重要的特征是什么?问题3由问题1你能归纳出一般结论吗?问题4分类加法计数原理中的“各种方法”与“完成这件事”有什么关系?例1在填写高考志愿表时,一名高中毕业生了解到A、B两所大学各有一些自己感兴趣的强项专业,具体情况如下:如果这名同学只能选一个专业,那么他共有多少种选择呢?问题5若还有C大学,其中强项专业为:新闻学、金融学、人力资源学,那么,这名同学可能的专业选择共有多少种?小结如果完成一件事有n类不同方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,……,在第n类方案中有m n种不同的方法,那么完成这件事共有m1+m2+m3+…+m n种不同的方法.跟踪训练1某校高三共有三个班,其各班人数如下表:(1)从三个班中选一名学生会主席,有多少种不同的选法?(2)从(1)班、(2)班男生中或从(3)班女生中选一名学生任学生会生活部部长,有多少种不同的选法?探究点二分步乘法计数原理问题1如图,从丽水经杭州到上海的途径有多少种?问题2用前6个大写英文字母和1~9九个阿拉伯数字,以A1,A2,…,B1,B2,…的方式给教室里的座位编号,总共能编出多少个不同的号码?问题3由上述问题1,2,你能归纳猜想出一般结论吗?问题4分步乘法计数原理中的“各步方法”与“完成这件事”有什么关系?问题5如果完成一件事需要三个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,做第3步有m3种不同的方法,那么完成这件事共有多少种不同的方法?如果完成一件事需要n个步骤,做每一步中都有若干种不同的方法,那么应当如何计数呢?例2某商店现有甲种型号电视机10台,乙种型号电视机8台,丙种型号电视机12台,从这三种型号的电视机中各选一台检验,有多少种不同的选法?小结利用分步乘法计数原理解决问题时,一定要正确设计“分步”的程序,即完成这件事共分几步,每一步的具体内容是什么,各步的方法、种数是多少,最后用分步乘法计数原理求解.跟踪训练2已知a∈{3,4,6},b∈{1,2,7,8},r∈{8,9},则方程(x-a)2+(y-b)2=r2可表示不同的圆的个数是多少?探究点三两个计数原理的综合应用问题比较分类加法计数原理和分步乘法计数原理,你能找出它们的区别与联系吗?例3书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书.(1)从书架上任取1本书,有多少种不同的取法?(2)从书架的第1、2、3层各取1本书,有多少种不同的取法?(3)从书架上任取两本不同学科的书,有多少种不同的取法?小结解两个计数原理的综合应用题时,最容易出现不知道应用哪个原理解题的情况,其思维障碍在于没有区分该问题是“分类”还是“分步”,突破方法在于认真审题,明确“完成一件事”的含义.具体应用时灵活性很大,要在做题过程中不断体会和思考,基本原则是“化繁为简”.跟踪训练3现有5幅不同的国画,2幅不同的油画,7幅不同的水彩画.(1)从中任选一幅画布置房间,有几种不同的选法?(2)从这些国画、油画、水彩画中各选一幅布置房间,有几种不同的选法?(3)从这些画中选出两幅不同种类的画布置房间,有几种不同的选法?(4)要从甲、乙、丙3幅不同的画中选出2幅,分别挂在左、右两边墙上的指定位置,问共有多少种不同的挂法?【当堂检测】1.现有4件不同款式的上衣和3条不同颜色的长裤,如果一条长裤与一件上衣配成一套,则不同的配法种数为( )A .7B .12C .64D .812.从A 地到B 地,可乘汽车、火车、轮船三种交通工具,如果一天内汽车发3次,火车发4次,轮船发2次,那么一天内乘坐这三种交通工具的不同走法为 ( ) A .1+1+1=3 B .3+4+2=9 C .3×4×2=24 D .以上都不对 3.十字路口来往的车辆,如果不允许回头,共有不同的行车路线 ( ) A .24种 B .16种 C .12种 D .10种4.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a ,b 组成复数a +b i ,其中虚数有________个. 5.将3封信投入6个信箱内,不同的投法有________种.【课堂小结】1.本课主要学习了两个重要的计数原理,应用两个原理时,要仔细区分原理的不同,加法原理关键在于分类,不同类之间互相排斥,互相独立;乘法原理关键在于分步,各步之间互相依存,互相联系. 2.通过对这两个原理的学习,要进一步体会分类讨论思想及等价转化思想在解题中的应用.【拓展提高】1.用前六个大写的英文字母和1~9九个阿拉伯数字,以,,,,,2121B B A A ⋅⋅⋅…的方式给教室的座位编号,总共能编出多少种不同的号码?2.一种号码拨号锁有4个拨号盘,每个拨号盘上有从0到9共10个数字,这4个拨号盘可以组成 个四位数号码.3.现有高一年级的学生3名,高二年级的学生5名,高三年级的学生4名. (1)从中任选1人参加接待外宾的活动,有多少种不同的选法?(2)从3个年级的学生中各选1人参加接待外宾的活动,有多少种不同的选法?【课后作业】§1.1分类加法计数原理与分步乘法计数原理(二)【学习要求】巩固分类加法计数原理和分步乘法计数原理,并能应用两个原理解决实际问题.【学法指导】用两个计数原理解决具体问题时,首先要分清是“分类”还是“分步”,其次要清楚“分类”或“分步”的具体标准,在“分类”时要做到“不重不漏”,在“分步”时要正确设计“分步”的程序,注意步与步之间的连续性.【双基检测】1.如图所示,在由开关组A 与B 所组成的并联电路中,接通电源,则只闭合一个开关能使电灯发光的方法种数为 ()A .6B .5C .30D .12.用4种不同的颜色涂入如图所示的矩形A ,B ,C ,D 中,每个矩形只涂入一种,要求相邻的矩形涂色不同,则不同的涂色方法共有 ( ) A .72种 B .48种 C .24种 D .12种3.在夏季,一个女孩有红、绿、黄3件上衣,红、绿、黄、白、黑5种裙子,这位女孩夏季某一天去学校上学,有________种不同的穿法.【题型解法】题型一 两个计数原理在排数中的应用 例1 数字不重复的四位偶数共有多少个?小结 排数问题实际就是分步问题,需要用乘法原理解决.此题中,由于数字0的出现,又进行了分类讨论,即在解决相关的排数问题时,要注意两个原理的综合应用. 跟踪训练1 用0,1,…,9这十个数字,可以组成多少个: (1)三位整数?(2)无重复数字的三位整数?(3)小于500的无重复数字的三位整数?题型二 两个计数原理的实际应用 例2 (1)给程序模块命名,需要用3个字符,其中首字符要求用字母A ~G 或U ~Z ,后两个要求用数字1~9,最多可以给多少个程序命名?(2)核糖核酸(RNA)分子是在生物细胞中发现的化学成分.一个RNA 分子是一个有着数百个甚至数千个位置的长链,长链中每个位置上都有一个称为碱基的化学成分所占据.总共有4种不同的碱基,分别用A 、C 、G 、U 表示(如图所示).在一个RNA 分子中,各种碱基能以任意次序出现,所以在任意一个位置上的碱基与其他位置上的碱基无关.假设有一类RNA 分子由100个碱基组成,那么能有多少种不同的RNA 分子?小结 以上两个问题分别表示两个原理在计算机字节与生物学中的应用,要解决好实际问题,首先要将问题与学习过的两个原理联系,确定用分类还是分步,或是分类和分步综合应用.跟踪训练2 电子元件很容易实现电路的通与断、电位的高与低等两种状态,而这也是最容易控制的两种状态,因此计算机内部就采用了每一位只有0或1两种数字的记数法,即二进制.为了使计算机能够识别字符,需要对字符进行编码,每个字符可以用一个或多个字节来表示,其中字节是计算机中数据存储的最小计量单位,每个字节由8个二进制位构成.问:(1)一个字节(8位)最多可以表示多少个不同的字符?(2)计算机汉字国标码(GB 码)包含了6 763个汉字,一个汉字为一个字符,要对这些汉字进行编码,每个汉字至少要用多少个字节表示?【当堂检测】1.某小组有8名男生,6名女生,从中任选男生、女生各一人去参加座谈会,则不同的选法有() A.48种B.24种C.14种D.12种2.已知函数y=ax2+bx+c为二次函数,其中a,b,c∈{0,1,2,3,4},则不同的二次函数的个数为() A.125 B.15 C.100 D.103.(a1+a2)·(b1+b2+b3)·(c1+c2+c3+c4)的展开式中有________项.4.由0,1,2,3这四个数字,可组成多少个:(1)无重复数字的三位数?(2)可以有重复数字的三位数?5.随着人们生活水平的提高,某城市家庭汽车拥有量迅速增长,汽车牌照号码需要扩容.交通管理部门出台了一种汽车牌照号码组成办法,每一个汽车牌照都必须有3个不重复的英文字母和3个不重复的阿拉伯数字,并且3个字母必须合成一组出现,3个数字也必须合成一组出现.那么按照这种办法共能给多少辆汽车上牌照?【课堂小结】本课时主要讲解了两个基本原理的应用,通过不同类型的题目,要仔细体会两个计数原理的具体用法,尤其是在自然科学、现代科技中处处都离不开两个计数原理的应用,从而深刻体会数学本身的重要性,进一步坚定学好数学的信念.【拓展提高】1.某商场有6个门,如果某人从其中的任意一个门进入商场,并且要求从其他的门出去,共有多少种不同的进出商场的方式?2.在在平面直角坐标系内,斜率在集合B={1,3,5,7}, y轴上的截距在集合C={2,4,6,8}内取值的不同直线共有条.3.将三封信投入4个邮箱,不同的投法有种.4.自然数2520有多少个约数?5.现要排一份5天的值班表,每天有1人值班,共有5个人,每个人都可以值多天或不值班,但相邻两天不准同一个人值班,问此值班表共有多少种不同的选法?6.用1,2,3三个数字,可组成个无重复数字的自然数.【课后作业】§1.1习题课分类加法计数原理与分步乘法计数原理【学习要求】1.进一步理解和掌握分类加法计数原理和分步乘法计数原理.2.能根据实际问题特征,正确选择原理解决实际问题.【知识要点】两个计数原理在解决计数问题中的用法在利用两个计数原理解决计数问题时,最重要的是在开始计算之前要进行仔细分析,是分类还是分步.【题型解法】题型一抽取(分配)问题例1高三年级的三个班到甲、乙、丙、丁四个工厂进行社会实践,其中工厂甲必须有班级去,每班去何工厂可自由选择,则不同的分配方案有()A.16种B.18种C.37种D.48种小结解决抽取(分配)问题的方法(1)当涉及对象数目不大时,一般选用枚举法、树状图法、框图法或者图表法.(2)当涉及对象数目很大时,一般有两种方法:①直接使用分类加法计数原理或分步乘法计数原理.一般地,若抽取是有顺序的就按分步进行;若是按对象特征抽取的,则按分类进行.②间接法:去掉限制条件,计算所有的抽取方法数,然后减去所有不符合条件的抽取方法数即可.跟踪训练13个不同的小球放入5个不同的盒子,每个盒子至多放一个小球,共有多少种方法?题型二涂色问题例2一个同心圆形花坛,分为两部分,中间小圆部分种植草坪和绿色灌木,周围的圆环分为n(n≥3,n∈N)等份,种植红、黄、蓝三色不同的花,要求相邻两部分种植不同颜色的花.(1)如图1,圆环分成的3等份为a1,a2,a3,有多少种不同的种植方法?(2)如图2,圆环分成的4等份为a1,a2,a3,a4,有多少种不同的种植方法?小结(1)涂色问题的基本要求是相邻区域不同色,但是不相邻的区域可以同色.因此一般以不相邻区域同色,不同色为分类依据,相邻区域可用分步涂色的办法涂色.(2)涂色问题往往涉及分类、分步计数原理的综合应用,因此,要找准分类标准,兼顾条件的情况下分步涂色.跟踪训练2如图所示的几何体是由一个正三棱锥P-ABC与正三棱柱ABC-A1B1C1组合而成的,现用3种不同颜色对这个几何体的表面染色(底面A1B1C1不涂色),要求相邻的面均不同色,则不同的染色方案共有________种.题型三 种植问题例3 从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,求有多少种不同的种植方法.小结 按元素性质分类,按事件发生过程分步是计数问题的基本思想方法,区分“分类”与“分步”的关键,是验证所提供的某一种方法是否完成了这件事情,分类中的每一种方法都完成了这件事情,而分步中的每一种方法不能完成这件事情,只是向事情的完成迈进了一步.跟踪训练3 将3种作物种植在如图所示的5块试验田里,每块种植一种作物且相邻的试验田不能种植同一种作物,不同的种植方法共有________种(以数字作答).【当堂检测】1.某电话局的电话号码为168*****,若后面的五位数字是由6或8组成的,则这样的电话号码一共有 ( ) A .20个 B .25个 C .32个 D .48个2.从集合{1,2,3,4,5}中任取2个不同的数,作为直线Ax +By =0的系数,则形成不同的直线最多有 ( ) A .18条 B .20条 C .25条 D .10条3.如图是5个相同的正方形,用红、黄、蓝、白、黑5种颜色涂这些正方形,使每个正方形涂一种颜色,且相邻正方形涂不同的颜色.如果颜色可反复使用,那么共有________种涂色方法.4.由0,1,2,3这四个数字,可组成多少个: (1)无重复数字的三位数? (2)可以有重复数字的三位数?【课堂小结】1.分类加法计数原理与分步乘法计数原理是两个最基本、也是最重要的原理,是解答排列、组合问题,尤其是较复杂的排列、组合问题的基础.2.应用分类加法计数原理要求分类的每一种方法都能把事件独立完成;应用分步乘法计数原理要求各步均是完成事件必须经过的若干彼此独立的步骤.3.一般是先分类再分步,分类时要设计好标准,设计好分类方案,防止重复和遗漏. 4.若正面分类,种类比较多,而问题的反面种类比较少时,则使用间接法会简单一些.【拓展提高】1.有4名同学分别报名参加学校的足球队,篮球队,乒乓球队,每人限报其中的一个运动队,不同的报名种数是2.如图6个扇形区域F E D C B A 、、、、、,现给这6个区域着色,要求同一区域涂同一种颜色,相邻的两个区域不得使用同一种颜色,现有4种不同的颜色可供选择,有多少种染色方法?3.将一个四棱锥S ABCD 的每个顶点染上一种颜色,并使同一条棱的两端点异色,如果只有5种颜色可供使用,那么不同的染色方法的总数是多少?§1.2.1排列(一)【学习要求】1.理解并掌握排列的概念.2.理解并掌握排列数公式,能应用排列知识解决简单的实际问题.【学法指导】排列是分步乘法计数原理的一个重要应用,学习中要理解排列数公式的推导过程,从中体会“化归”的数学思想.【知识要点】1.排列:一般地,从n 个不同元素中取出m (m ≤n )个元素,按照 排成一列,叫做从n 个不同元素中取出m 个元素的一个排列(arrangement).2.排列数:从n 个不同元素中取出m (m ≤n )个元素的 叫做从n 个不同元素中取出m 个元素的排列数,用符号 表示.3.排列数公式:A mn = (n ,m ∈N *,m ≤n )= .【问题探究】探究点一 排列(数)的概念问题1 从甲、乙、丙3名同学中选出2名参加一项活动,其中1名同学参加上午的活动,另1名同学参加下午的活动,有多少种不同的安排方法?问题2 从1,2,3,4这4个数字中,每次取出3个排成一个三位数,共可得到多少个不同的三位数? 问题3 怎样判断一个具体问题是否为排列问题? 例1 判断下列问题是否是排列问题.(1)从1、2、3、4四个数字中,任选两个做加法,其结果有多少种不同的可能? (2)从1、2、3、4四个数字中,任选两个做除法,其结果有多少种不同的可能? (3)会场有50个座位,要求选出3个座位安排3位客人就座,有多少种不同的方法?小结 判断一个问题是否为排列问题的依据是否是有顺序,有顺序且是从n 个不同的元素中任取m (m ≤n )个不同的元素的问题就是排列,否则就不是排列. 跟踪训练1 判断下列问题是否是排列问题:(1)某班共有50名同学,现要投票选举正、副班长各一人,共有多少种可能的选举结果? (2)从2,3,5,7,9中任取两数分别作对数的底数和真数,有多少不同对数值?(3)从1到10十个自然数中任取两个数组成点的坐标,可得多少个不同的点的坐标?探究点二 排列的列举问题问题 对于简单的排列问题,怎样写出从n 个不同元素中取出m 个元素的所有排列? 例2 写出下列问题的所有排列:(1)从1,2,3,4四个数字中任取两个数字组成两位数,共有多少个不同的两位数? (2)写出从4个元素a ,b ,c ,d 中任取3个元素的所有排列.小结 在写出所要求的排列时,可采用“树形”图或“框”图一一列出,一定保证不遗漏.跟踪训练2 写出下列问题的所有排列:(1)北京、广州、南京、天津4个城市相互通航,应该有多少种机票?(2)A 、B 、C 、D 四名同学排成一排照相,要求自左向右,A 不排第一,B 不排第四,共有多少种不同的排列方法?探究点三 排列数公式的推导及应用问题1 由例2中两个问题知:A 24=4×3=12,A 34=4×3×2=24,你能否得出A 2n 的意义和A 2n 的值? 问题2 由以上规律,你能写出A m n 吗?有什么特征?若m =n 呢?例3 (1)计算:2A 58+7A 48A 88-A 59. (2)求证:A m n +1=m ·A m -1n +A m n .小结 利用排列数公式进行运算时,要注意排列数之间的关系,两种形式中,一种形式用于化简,证明等,而另一种形式常用于求解.跟踪训练3 (1)某年全国足球甲级(A 组)联赛共有10个队参加,每队要与其余各队在主、客场分别比赛一次,共进行多少场比赛?(2)解不等式:2996->x X A A【当堂检测】1.下列问题属于排列问题的是 ( ) ①从10个人中选2人分别去种树和扫地; ②从10个人中选2人去扫地;③从班上30名男生中选出5人组成一个篮球队; ④从数字5,6,7,8中任取两个不同的数作幂运算. A .①④ B .①② C .④ D .①③④2.从甲、乙、丙三人中选两人站成一排的所有站法为( )A .甲乙,乙甲,甲丙,丙甲B .甲乙丙,乙丙甲C .甲乙,甲丙,乙甲,乙丙,丙甲,丙乙D .甲乙,甲丙,乙丙 3.设m ∈N *,且m <15,则(15-m )(16-m )…(20-m )等于( )A .A 615-mB .A 15-m 20-mC .A 620-m D .A 520-m4.8种不同的菜种,任选4种种在不同土质的4块地上,有________种不同的种法(用数字作答).【课堂小结】1.排列有两层含义:一是“取出元素”,二是“按照一定顺序排成一列”.这里“一定的顺序”是指每次取出的元素与它所排的“位置”有关,所以,取出的元素与“顺序”有无关系就成为判断问题是否为排列问题的标准.2.排列数公式有两种形式,可以根据要求灵活选用.【拓展提高】1.(1)215A;(2)66A(3)28382AA -;(4)6688A A .2.某年全国足球甲级(A 组)联赛共有14队参加,每队都要与其余各队在主客场分别比赛1次,共进行 场比赛;3.一个火车站有8股岔道,停放4列不同的火车,有多少种不同的停放方法(假设每股道只能停放1列火车)?【课后作业】§1.2.1排列(二)【学习要求】1.进一步加深对排列概念的理解.2.掌握几种有限制条件的排列,能应用排列数公式解决简单的实际问题.【双基检测】1.4×5×6×…×(n -1)×n 等于( )A .A 4nB .A n -4nC .n !-4!D .A n -3n2.6名学生排成两排,每排3人,则不同的排法种数为( ) A .36 B .120 C .720 D .2403.从集合M ={1,2,…,9}中,任取两个元素作为a ,b , ①可以得到多少个焦点在x 轴上的椭圆方程x 2a 2+y 2b 2=1?②可以得到多少个焦点在x 轴上的双曲线方程x 2a 2-y 2b2=1?其中属于排列问题的是________,其结果为________.4.有5名男生和3名女生,从中选出5人分别担任语文、数学、英语、物理、化学学科的科代表,若某女生必须担任语文科代表,则不同的选法共有________种(用数字作答).【题型解法】题型一 无限制条件的排列问题例1 (1)有5本不同的书,从中选3本送给3名同学,每人各1本,共有多少种不同的送法? (2)有5种不同的书,要买3本送给3名同学,每人各1本,共有多少种不同的送法?小结 本题两小题的区别在于:第(1)小题是从5本不同的书中选出3本分别送给3名同学,各人得到的书不同,属于求排列数问题;而第(2)小题中,给每人的书均可以从5种不同的书中任选1本,各人得到哪本书相互之间没有联系,要用分步乘法计数原理进行计算.跟踪训练1 (1)某信号兵用红、黄、蓝3面旗从上到下挂在竖直的旗杆上表示信号,每次可以任意挂1面、2面或3面,并且不同的顺序表示不同的信号,一共可以表示多少种不同的 信号?(2)将4位司机、4位售票员分配到四辆不同班次的公共汽车上,每一辆汽车分别有一位司机和一位售票员,共有多少种不同的分配方案?题型二 元素“在”与“不在”问题例2 用0到9这10个数字,可以组成多少个没有重复数字的三位数?小结解决排列应用题,常用的思考方法有直接法和间接法.排列问题的实质是“元素”占“位子”问题,有限制条件的排列问题的限制条件主要表现在某元素不排在某个位子上或某个位子不排某些元素,解决该类排列问题的方法主要是按“优先”原则,即优先排特殊元素或优先满足特殊位子.跟踪训练2五个学生和一个老师站成一排照相,问老师不排在两端的排法有多少种?题型三元素“相邻”与“不相邻”问题例37人站成一排.(1)甲、乙两人相邻的排法有多少种?(2)甲、乙两人不相邻的排法有多少种?(3)甲、乙、丙三人必相邻的排法有多少种?(4)甲、乙、丙三人两两不相邻的排法有多少种?小结处理元素“相邻”“不相邻”问题应遵循“先整体,后局部”的原则.元素相邻问题,一般用“捆绑法”,先把相邻的若干个元素“捆绑”为一个大元素与其余元素全排列,然后再松绑,将这若干个元素内部全排列.元素不相邻问题,一般用“插空法”,先将不相邻元素以外的“普通”元素全排列,然后在“普通”元素之间及两端插入不相邻元素.跟踪训练3对于本例中的7人,(1)甲、乙两人之间只有1人的排法有多少种?(2)甲、乙、丙排序一定时,有多少种排法?(3)甲在乙的左边(不一定相邻)有多少种不同的排法?【当堂检测】1.用1,2,3,4,5这5个数字,组成无重复数字的三位数,其中奇数共有()A.30个B.36个C.40个 D.60个2.6人站成一排,甲、乙、丙3个人不能都站在一起的排法种数为()A.720 B.144 C.576 D.6843.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目,如果将这两个节目插入原节目单中,那么不同的插法种数为()A.42 B.30 C.20 D.124.将红、黄、蓝、白、黑5种颜色的小球,分别放入红、黄、蓝、白、黑5种颜色的小口袋中,若不允许有空袋,且红口袋中不能装入红球,则有________种不同的放法.【课堂小结】1.对有特殊限制的排列问题,优先安排特殊元素或特殊位置.2.对从正面分类繁杂的排列问题,可考虑使用间接法.3.对要求某些元素相邻或不相邻的排列问题,可使用“捆绑法”、“插空法”.【拓展提高】1.(1)6男2女排成一排,2女相邻,有多少种不同的站法?(2)6男2女排成一排,2女不能相邻,有多少种不同的站法?(3)4男4女排成一排,同性者相邻,有多少种不同的站法?(4)4男4女排成一排,同性者不能相邻,有多少种不同的站法?2.用0到9这10个数字,可以组成多少个没有重复数字的三位数?3.用0,1,2,3,4,5六个数字,能排成多少个满足条件的四位数.(1)没有重复数字的四位偶数?(2)比1325大的没有重复数字四位数?4.有4位男学生3位女学生排队拍照,根据下列要求,各有多少种不同的排列结果?(1)4个男学生必须连在一起;(2)其中甲、乙两人之间必须间隔2人.(3)若三女生互不相邻(4)若甲、乙两位同学必须排两端(5)若甲、乙两位同学不得排两端(6)若甲、乙两女生相邻且不与第三女生相邻5.学校要安排一场文艺晚会的11个节目的演出顺序.除第一个节目和最后一个节目已确定外,4个音乐节目要求排在第2,5,7,10的位置,3个舞蹈节目要求排在第3,6,9的位置,2个曲艺节目要求排在第4,8的位置,求共有多少种不同的排法?6.一条铁路原有n个车站,为适应客运需要新增)1(mm个车站,客运车票增加62种,问原有多少个车站,现有多少个?【课后作业】§1.2.2组合(一)【学习要求】1.理解组合及组合数的概念.2.能利用计数原理推导组合数公式,并会应用公式解决简单的组合问题.【学法指导】组合研究的问题与排列是平行的,两者的区别是有无“顺序”.学习中可和排列相比较,领悟概念的本质,组合数公式推导中要研究组合与排列的关系.【知识要点】1.组合:一般地,从n个不同元素中,叫做从n个不同元素中取出m个元素的一个组合(combination).2.组合数:从n个不同元素中取出m (m≤n)个元素的的个数,叫做从n个不同元素中取出m个元素的组合数,用符号表示.3.组合数公式:C m n=A m nA m m==(n,m∈N*,m≤n).【问题探究】探究点一组合的概念问题1从3名同学甲、乙、丙中选2名去参加一项活动,有多少种不同选法?问题2问题1和“从3名同学中选出2名去参加一项活动,其中1名参加上午的活动,1名参加下午的活动”有何区别?问题3排列与组合有什么联系和区别?例1判断下列各事件是排列问题,还是组合问题.(1)10个人相互各写一封信,共写了多少封信?(2)10个人规定相互通一次电话,共通了多少次电话?(3)10支球队以单循环进行比赛(每两队比赛一次),这次比赛需要进行多少场次?。
高二数学北师大版选修2-3同步导学案:1.3.1 组合与组合数公式
§3 组合第1课时 组合与组合数公式1.理解组合的定义,正确认识组合与排列的区别与联系.(易混点)2.理解排列数与组合数之间的联系,掌握组合数公式,能运用组合数公式进行计算.(重点)3.会解决一些简单的组合问题.(难点)[基础·初探]教材整理1 组合的概念阅读教材P 12~P 13“练习1”以上部分,完成下列问题.一般地,从n 个不同的元素中,任取m(m≤n)个元素________,叫作从n 个不同元素中取出m 个元素的一个组合.【答案】 为一组下面几个问题中属于组合问题的是( )①由1,2,3,4构成的双元素集合;②5个队进行单循环足球比赛的分组情况;③由1,2,3构成两位数的方法;④由1,2,3组合无重复数字的两位数的方法.A .①③B .②④C .①②D .①②④【解析】 ①②为组合问题,与顺序无关,③④为排列问题,与顺序有关.【答案】 C教材整理2 组合数的概念、公式、性质阅读教材P 13“练习1”以下至P 16部分,完成下列问题.组合数定义从n 个不同元素中取出m(m≤n)个元素的________的个数,叫作从n 个不同元素中取出m 个元素的组合数表示法________乘积式C =________=________mn 组合数公式阶乘式C =________mn 性质C =________,C =________mn m n +1备注①n,m∈N +且m≤n;②规定:C =10n 【答案】 所有组合 C mn Am nAm m C n n -1 n -2 … n -m +1 m !n !m ! n -m !n -m n C +C mn m -1n1.甲、乙、丙三地之间有直达的火车,相互之间的距离均不相等,则车票票价的种数是________.【解析】 甲、乙、丙三地之间的距离不等,故票价不同,同距离两地票价相同,故该问题为组合问题,不同票价的种数为C ==3.233×22【答案】 32.C =________,C =________.261718【解析】 C ==15,266×52C =C =18.1718118【答案】 15 18[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1: 解惑: 疑问2: 解惑: 疑问3: 解惑: [小组合作型]组合的概念 判断下列各事件是排列问题还是组合问题.(1)10支球队以单循环进行比赛(每两队比赛一次),这次比赛需要进行多少场次?(2)10支球队以单循环进行比赛,这次比赛冠、亚军获得者有多少种可能?(3)从10个人里选3个代表去开会,有多少种选法?(4)从10个人里选出3个不同学科的课代表,有多少种选法?【精彩点拨】 要确定是组合还是排列问题,只需确定取出的元素是否与顺序有关.【自主解答】 (1)是组合问题,因为每两个队比赛一次并不需要考虑谁先谁后,没有顺序的区别.(2)是排列问题,因为甲队得冠军、乙队得亚军与甲队得亚军、乙队得冠军是不一样的,是有顺序的区别.(3)是组合问题,因为3个代表之间没有顺序的区别.(4)是排列问题,因为3个人中,担任哪一科的课代表是有顺序的区别.1.根据排列与组合的定义进行判断,区分排列与组合问题,先确定完成的是什么事件,然后看问题是否与顺序有关,与顺序有关的是排列,与顺序无关的是组合.2.区分有无顺序的方法把问题的一个选择结果写出来,然后交换这个结果中任意两个元素的位置,看是否会产生新的变化,若有新变化,即说明有顺序,是排列问题;若无新变化,即说明无顺序,是组合问题.[再练一题]1.从5个不同的元素a ,b ,c ,d ,e 中取出2个,写出所有不同的组合.【解】 要想写出所有组合,就要先将元素按照一定顺序排好,然后按顺序用图示的方法将各个组合逐个标出来,如图所示:由此可得所有的组合为ab ,ac ,ad ,ae ,bc ,bd ,be ,cd ,ce ,de.组合数公式的应用 (1)式子可表示为( )n n +1 n +2 … n +100100!A .A B .C 100n +100100n +100C .101C D .101C 100n +100101n +100(2)求值:C +C .5-n n 9-n n +1【精彩点拨】 根据题目的特点,选择适当的组合数公式进行求值或证明.【自主解答】 (1)分式的分母是100!,分子是101个连续自然数的乘积,最大的为n +100,最小的为n ,故n n +1 n +2 … n +100 100!=101·n n +1 n +2 … n +100101!=101C .101n +100【答案】 D (2)由组合数定义知:Error!所以4≤n≤5,又因为n∈N +,所以n =4或5.当n =4时,C +C =C +C =5;5-n n 9-n n +1145当n =5时,C +C =C +C =16.5-n n 9-n n +10546关于组合数计算公式的选取1.涉及具体数字的可以直接用公式C ==计m n Am n Am m n n -1 n -2 … n -m +1m !算.2.涉及字母的可以用阶乘式C =计算.mn n !m ! n -m !3.计算时应注意利用组合数的性质C =C 简化运算.mn n -m n[再练一题]2.求等式=中的n 值.C 5n -1+C 3n -3C 3n -3195【解】 原方程可变形为+1=,C =C ,C 5n -1C 3n -31955n -11453n -3即n -1 n -2 n -3 n -4 n -5 5!=·,化简整理,得n 2-3n -54=0.解此二次方程,得145 n -3 n -4 n -5 3!n =9或n =-6(不合题意,舍去),所以n =9为所求.[探究共研型]组合的性质探究1 试用两种方法求:从a ,b ,c ,d ,e 5人中选出3人参加数学竞赛,2人参加英语竞赛,共有多少种选法?你有什么发现?你能得到一般结论吗?【提示】 法一:从5人中选出3人参加数学竞赛,剩余2人参加英语竞赛,共C =35=10(种)选法.5×4×33×2×1法二:从5人中选出2人参加英语竞赛,剩余3人参加数学竞赛,共C ==10(种)不同选法.255×42经求解发现C =C .推广到一般结论有C =C .3525m n n -m n 探究2 从含有队长的10名排球队员中选出6人参加比赛,共有多少种选法?【提示】 共有C ==210(种)选法.61010×9×8×7×6×56×5×4×3×2×1探究3 在探究2中,若队长必须参加,有多少种选法?若队长不能参加有多少种选法?由探究2、3,你发现什么结论?你能推广到一般结论吗?【提示】 若队长必须参加,共C =126(种)选法.若队长不能参加,共C =84(种)5969选法.由探究2、3发现从10名队员中选出6人可分为队长参赛与队长不参赛两类,由分类加法计数原理可得:C =C +C .6105969一般地:C =C +C .m n +1m n m -1n (1)计算C +C +C +…+C 的值为( )34353632 016A .C B .C 42 01752 017C .C -1D .C -142 01752 017(2)解方程3C =5A ;7x -32x -4(3)解不等式C >C .4n 6n 【精彩点拨】 恰当选择组合数的性质进行求值、解方程与解不等式.【自主解答】 (1)C +C +C +…+C 34353632 016=C +C +C +…+C 2 016-C 4343534=C +C +...+C -1= (4)53532 016=C +C -1=C -1.42 01632 01642 017【答案】 C(2)由排列数和组合数公式,原方程可化为3·=5·, x -3 ! x -7 !4! x -4 ! x -6 !则=,即为(x -3)(x -6)=40.3 x -3 4!5x -6∴x 2-9x -22=0,解得x =11或x =-2.经检验知x =11是原方程的根,x =-2是原方程的增根.∴方程的根为x =11.(3)由C >C ,得4n 6n Error!⇒Error!⇒Error!又n∈N +,∴该不等式的解集为{6,7,8,9}.1.性质“C =C ”的意义及作用mn n -m n2.与排列组合有关的方程或不等式问题要用到排列数、组合数公式,以及组合数的性质,求解时,要注意由C 中的m∈N +,n∈N +,且n≥m 确定m ,n 的范围,因此求解后要m n 验证所得结果是否符合题意.[再练一题]3.(1)化简:C -C +C =________;9m 9m +18m (2)已知C -C =C ,求n 的值.7n +17n 8n 【解析】 (1)原式=(C +C )-C =C -C =0.9m 8m 9m +19m +19m +1【答案】 0(2)根据题意,C -C =C ,7n +17n 8n 变形可得C =C +C ,7n +18n 7n由组合数的性质,可得C =C ,故8+7=n +1,7n +18n +1解得n =14.[构建·体系]1.下列四个问题属于组合问题的是( )A .从4名志愿者中选出2人分别参加导游和翻译的工作B .从0,1,2,3,4这5个数字中选取3个不同的数字,组成一个三位数C .从全班同学中选出3名同学出席深圳世界大学生运动会开幕式D .从全班同学中选出3名同学分别担任班长、副班长和学习委员【解析】 A ,B ,D 项均为排列问题,只有C 项是组合问题.【答案】 C2.若A =12C ,则n 等于( )3n 2n A .8 B .5或6C . 3或4D .4【解析】 A =n(n -1)(n -2),C =n(n -1),3n 2n 12所以n(n -1)(n -2)=12×n(n -1).12由n∈N +,且n≥3,解得n =8.【答案】 A3.C +C 的值为________. 【导学号:62690012】5868【解析】 C +C =C ===84.5868699!6!×3!9×8×73×2×1【答案】 844.6个朋友聚会,每两人握手1次,一共握手______次.【解析】 每两人握手1次,无顺序之分,是组合问题,故一共握手C =15次.26【答案】 155.已知C ,C ,C 成等差数列,求C 的值.4n 5n 6n 12n 【解】 由已知得2C =C +C ,5n 4n 6n 所以2·=+,n !5! n -5 !n !4! n -4 !n !6! n -6 !整理得n 2-21n +98=0,解得n =7或n =14,要求C 的值,故n≥12,所以n =14,12n 于是C =C ==91.121421414×132×1我还有这些不足:(1) (2) 我的课下提升方案:(1) (2) 学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.以下四个命题,属于组合问题的是( )A .从3个不同的小球中,取出2个排成一列B .老师在排座次时将甲、乙两位同学安排为同桌C .在电视节目中,主持人从100位幸运观众中选出2名幸运之星D .从13位司机中任选出两位开同一辆车往返甲、乙两地【解析】 从100位幸运观众中选出2名幸运之星,与顺序无关,是组合问题.【答案】 C2.某新农村社区共包括8个自然村,且这些村庄分布零散,没有任何三个村庄在一条直线上,现要在该社区内建“村村通”工程,共需建公路的条数为( )A .4B .8C .28D .64【解析】 由于“村村通”公路的修建,是组合问题.故共需要建C =28条公路.28【答案】 C3.组合数C (n>r≥1,n ,r∈N +)恒等于( )r n A.C B .(n +1)(r +1)C r +1n +1r n -1r n -1C .nrC D.C r n-1nr r n-1【解析】 C =·==C .n r r n -1n r n -1 ! r -1 ! n -r !n !r ! n -r !r n 【答案】 D4.满足方程Cx 2-x 16=C 的x 值为( )5x -516A .1,3,5,-7B .1,3C .1,3,5D .3,5【解析】 依题意,有x 2-x =5x -5或x 2-x +5x -5=16,解得x =1或x =5;x =-7或x =3,经检验知,只有x =1或x =3符合题意.【答案】 B5.异面直线a ,b 上分别有4个点和5个点,由这9个点可以确定的平面个数是( )A .20B .9 C .C D .C C +C C 3924152514【解析】 分两类:第1类,在直线a 上任取一点,与直线b 可确定C 个平面;第214类,在直线b 上任取一点,与直线a 可确定C 个平面.故可确定C +C =9个不同的平151415面.【答案】 B 二、填空题6.C +C +C +…+C 的值等于________.0314251821【解析】 原式=C +C +C +…+C =C +C +…+C =C +C =C =C =7 041425182115251821172118211822422315.【答案】 7 3157.设集合A ={a 1,a 2,a 3,a 4,a 5},则集合A 中含有3个元素的子集共有________个.【导学号:62690013】【解析】 从5个元素中取出3个元素组成一组就是集合A 的子集,则共有C =10个35子集.【答案】 108.10个人分成甲、乙两组,甲组4人,乙组6人,则不同的分组种数为________.(用数字作答)【解析】 从10人中任选出4人作为甲组,则剩下的人即为乙组,这是组合问题,共有C =210种分法.410【答案】 210三、解答题9.从1,2,3,4,5,6六个数字中任选3个后得到一个由这三个数组成的最小三位数,则可以得到多少个不同的这样的最小三位数?【解】 从6个不同数字中任选3个组成最小三位数,相当于从6个不同元素中任选3个元素的一个组合,故所有不同的最小三位数共有C ==20个.366×5×43×2×110.(1)求式子-=中的x ;1Cx 51Cx 6710Cx 7(2)解不等式C >3C .m -18m 8【解】 (1)原式可化为:-=,∵0≤x≤5,∴x 2-23x +42=0,x ! 5-x !5!x ! 6-x !6!7·x ! 7-x !10·7!∴x=21(舍去)或x =2,即x =2为原方程的解.(2)由>,8! m -1 ! 9-m !3×8!m ! 8-m !得>,∴m>27-3m ,19-m 3m ∴m>=7-.27414又∵0≤m-1≤8,且0≤m≤8,m∈N,即7≤m≤8,∴m=7或8.[能力提升]1.已知圆上有9个点,每两点连一线段,若任意两条线的交点不同,则所有线段在圆内的交点有( )A .36个B .72个C .63个D .126个【解析】 此题可化归为圆上9个点可组成多少个四边形,所有四边形的对角线交点23个数即为所求,所以交点为C =126个.49【答案】 D2.从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型和乙型电视机各1台,则不同的取法共有( ) 【导学号:62690014】A .140种B .84种C .70种D .35种【解析】 可分两类:第一类,甲型1台、乙型2台,有C ·C =4×10=40(种)取1425法,第二类,甲型2台、乙型1台,有C ·C =6×5=30(种)取法,共有70种不同的取2415法.【答案】 C3.对所有满足1≤m<n≤5的自然数m ,n ,方程x 2+C y 2=1所表示的不同椭圆的个数mn 为________.【解析】 ∵1≤m<n≤5,所以C 可以是mn C ,C ,C ,C ,C ,C ,C ,C ,C ,C ,其中C =C ,C =C ,C =C ,C =C ,∴121323142434152535451323143415452535方程x 2+C y 2=1能表示的不同椭圆有6个.mn 【答案】 64.证明:C =C .mn nn -m m n -1【证明】 C =·n n -m m n -1n n -m n -1 !m ! n -1-m !=n !m ! n -m !=C .mn。
【B版】人教课标版高中数学选修2-3《组合》教案1
1.2.2组合教学目标:1.理解组合的意义,掌握组合数的计算公式;2.能正确认识组合与排列的联系与区别教学重点:理解组合的意义,掌握组合数的计算公式教学过程[学。
科。
网Z 。
X 。
X 。
K]一、复习引入:1.排列的概念:说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列;(2)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同。
2.排列数的定义:注意区别排列和排列数的不同:“一个排列”是指:从n 个不同元素中,任取m 个元素按照一定的顺序.....排成一列,不是数;“排列数”是指从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数,是一个数所以符号m n A 只表示排列数,而不表示具体的排列。
3.排列数公式:(1)(2)(1m n A n n n n m =---+(,,m n N m n *∈≤)二、阅读自学:1.组合的概念:一般地,从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合。
说明:⑴不同元素;⑵“只取不排”——无序性;⑶相同组合:元素相同。
2.组合数的概念:从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数...。
用符号m n C 表示。
3.组合数公式的推导:(1)一般地,求从n 个不同元素中取出m 个元素的排列数m n A ,可以分如下两步:① 先求从n 个不同元素中取出m 个元素的组合数m n C ;② 求每一个组合中m 个元素全排列数m m A ,根据分步计数原理得:m n A =m n C m mA ⋅。
(2)组合数的公式:(1)(2)(1)!m mn nm m A n n n n m C A m ---+==或)!(!!m n m n C m n -=),,(n m N m n ≤∈*且 三、典例分析例1、计算:(1)47C ; (2)710C 。
高二数学选修2-3《组合数的性质》导学案
组合数的性质使用时间:5.4 班级: 姓名:【学习目标】1.掌握组合数的两个性质;2.进一步熟练组合数的计算公式,能够运用公式解决一些简单的应用问题;【知识链接】(预习教材P 24~ P 25,找出疑惑之处)复习1:从 个 元素中取出()m n ≤个元素 一组,叫做从n 个不同元素中取出m 个元素的一个组合;从 个 元素中取出()m n ≤个元素的 组合的个数,叫做从n 个不同元素中取出m 个元素的组合数....用符号 表示.复习2: 组合数公式:m n C = =【学习过程】组合数的性质1:m n nm n C C -=. 一般地,从n 个不同元素中取出m 个元素后,剩下n m -个元素.因为从n 个不同元素中取出m 个元素的每一个组合,与剩下的n - m 个元素的每一个组合一一对应....,所以从n 个不同元素中取出m 个元素的组合数,等于从这n 个元素中取出n - m 个元素的组合数,即:m n n m nC C -= 试试:计算:1820C反思:⑴若y x =,一定有y n x n C C =?⑵若y n x nC C =,一定有y x =吗?⑶y n x n C C =⇔ . 作用:该性质反应了组合数的对称性,主要用于当2n m>时,通常不直接计算m n C ,转而计算n m n C -。
问题1: 从121,,,n a a a +L 这1n +个不同元素中取出m 个元素的组合数是 ,这些组合可以分为两类:一类含有元素1a ,一类是不含有1a .含有1a 的组合是从231,,,n a a a +L 这 个元素中取出 个元素与1a 组成的,共有 个;不含有1a 的组合是从231,,,n a a a +L 这 个元素中取出 个元素组成的,共有 个.从中你能得到什么结论?组合数性质2 m n C 1+=m n C +1-m nC (1) 形式特点:下标相同,上标相差1的两个组合数相加等于下标加1,上标取大的组合数。
高中数学新人教版B版精品教案《人教版B高中数学选修2-3 1.2.2 组合》
组 合(第一课时)学习目标导航:1理解组合与组合数的概念,正确认识组合与排列的区别与联系易混点 2会推导组合数公式,并能解决简单的排列组合应用题重点 教学过程 复习提问:1概念提问:①排列的定义 ②排列数公式 2应用提问:分析下列事件,说出完成每个事件的结果数14支球队以单循环进行比赛,这次比赛冠、亚军获得者有多少种可能? 24支球队以单循环进行比赛每两队比赛一次,这次比赛需要进行多少场次? 3从4个人里选出3个不同学科的课代表,有多少种选法? 4从4个人里选3个代表去开会,有多少种选法?设计目的:从概念和设计例子出发,感受排列与组合的联系与区别,引出课题知识点1组合的概念1.组合1一般地,从n 个不同元素中,任意取出mm≤n 个元素并成一组,叫做从n 个不同元素中任取m 个元素的一个组合.2如果两个组合中的元素完全相同,那么不管元素的顺序如何,都是相同组合.知识点2组合数公式2.组合数从n 个不同元素中,任意取出mm≤n 个元素的所有组合的个数,叫做从n 个不同元素中,任意取出m 个元素的组合数,用符号C 错误!表示[探究一]:组合数公式的推导过程设计目的:学生在例子中感受到排列是可以分步进行的,得出组合数的推导过程一般地,求从n 个不同元素中取出m 个元素的排列数,可以分为2步: 第一步,先求从这n 个不同元素中取出m 个元素的组合数C 错误!,第二步,求每个组合中m 个元素的全排列数mm A根据分步乘法计数原理,得 mm m n m n A C A =由此得到组合数公式+∈∈=N n N m AA Cm mm nmn,其中,探究:计算①4737C C +,4626C C -多少种不同取法?)其中不含红球,共有(共有多少种不同取法?)其中恰有一个红球,(?)共有多少种不同取法(个球:从口袋中任取个红球,个不同白球和②一个口袋中有321517设计目的:学生在计算过程中发现组合数两个性质(易错题:忽略n ∈N 的范围而错解为-1<n <12)7式子 的值的个数为( ) A 1 B 2 D 48 =______ 9设集合A ={a ,b ,c ,d ,e},则集合A 的子集中含有3个元素的有____个 在下列条件下,有多少种不同的选法? 1任意选5人;2甲、乙、丙三人必需参加; 3甲、乙、丙三人不能参加; 4甲、乙、丙三人只能有1人参加.2现有10名教师,其中男教师6名,女教师4名.____,3____,12(2)C )1(.187712327101001057==-==-+n C C C n C A A C C n n n n n 则)已知(则解方程:若计算:练习543211)4(n n n C C C <解不等式:-221111342522565-++-++++++==x x x x x x x x x x C C C C C C )解方程:()解方程:()(*1710210N m C C m m ∈+-+nn 13n 172n C C 3+-+1现要从中选2名去参加会议,有多少种不同的选法?2现要从中选出男、女教师各2名去参加会议,有多少种不同的选法? 3从中选4名去参加会议,恰好有一名男老师,有多少种选法? 4从中选3名去参加会议,至少有一名男老师,有多少种选法?设计目的:感受特殊元素法,分类列举法,理解“至多、至少、恰好”的数学含义,选择合适的方法练习21要从6男4女中选出5人参加一项活动,按下列要求,各有多少种不同的选法? 1甲当选且乙不当选; 2至多有3男当选.2某科技小组有女同学2名、男同学名,现从中选出3人去参观展览. 若恰有1名女生入选时的不同选法有2021求该科技小组中男生的人数. )(___6,5,4,3,2,1.3用数字作答个有之和为偶数的四位数共和百位上的数字位数,其中个位、十位组成没有重复数字的四用数字 高考链接1(2021年江西高考适应性测试)学校组织同学参加社会调查,某小组共有5名男同学,4名女同学,现从该小组中选出3位 同学分别到A,B,C 三地进行社会调查,若选出的同学男女均有,则不同的安排方法有 ( )种 种 种 种 种 2(2021·全国‖卷)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由一人完成,则不同的安排方式 有 ( )种种 种 种 种 3(广东省茂名市2021届高三第一次综合测试)学校计划利用周五下午第一、二、三节课举办语文、数学、英语、理综4科的专题讲座,每科 一节课,每节至少有一科,且数学、理综不安排在同一节,则不同的安排方式有 ( )种 种 种 种 种 4(2021江西省南昌市十九中高二月考)两人进行乒乓球比赛,先赢三局者获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次数不同视为不同情形)共有( )种种 种 种 种设计目的:直击高考题,感受题型和方法本节收获小结1排列与组合的异同:24应用:直接法,间接法特殊元素,特殊位置,捆绑,插空,定序等。
高中数学高二理科选修2-3排列组合导学案
《排列(1)》导学案【学习目标】1. 理解排列、排列数的概念;2. 了解排列数公式的推导.【重点难点】1. 理解排列、排列数的概念;2. 了解排列数公式的推导.【学法指导】(预习教材P14~ P18,找出疑惑之处)复习1:交通管理部门出台了一种汽车牌照组成办法,每一个汽车牌照都必须有2个不重复的英文字母和4个不重复的阿拉伯数字,并且2个字母必须合成一组出现,4个数字也必须合成一组出现.那么这种办法共能给多少辆汽车上牌照?复习2:从甲,乙,丙3名同学中选出2名参加一项活动,其中1名同学参加上午的活动,另一名参加下午的活动,有多少种不同的选法?【教学过程】(一)导入探究任务一:排列问题1:上面复习1,复习2中的问题,用分步计数原理解决显得繁琐,能否对这一类计数问题给出一种简捷的方法呢?新知1:排列的定义一般地,从n个元素中取出m()个元素,按照一定的排成一排,叫做从个不同元素中取出个元素的一个排列.试试:写出从4个不同元素中任取2个元素的所有排列. 反思:排列问题有何特点?什么条件下是排列问题?探究任务二:排列数及其排列数公式新知2 排列数的定义从个元素中取出(nm≤)个元素的的个数,叫做从n个不同元素取出m元素的排列数,用符合表示.试试:从4个不同元素a,b, c,d中任取2个,然后按照一定的顺序排成一列,共有多少种不同的排列方法?问题:⑴从n个不同元素中取出2个元素的排列数是多少?⑵从n个不同元素中取出3个元素的排列数是少?⑶从n个不同元素中取出m(nm≤)个元素的排列数是多少?新知3 排列数公式从n个不同元素中取出m(nm≤)个元素的排列数=mnA新知4 全排列从n个不同元素中取出的一个排列,叫做n个元素的一个全排列,用公式表示为=nnA(二)深入学习例1计算:⑴410A;⑵218A; ⑶441010AA÷.变式:计算下列各式:⑴215A; ⑵66A⑶28382AA-; ⑷6688AA.例2若17161554mn A =⨯⨯⨯⨯⨯,则n = ,m = .变式:乘积(55)(56)(68)(69)n n n n ----用排列数符号表示 .(,n N ∈)例3 求证: 11--=m n m n nA A变式 求证: 7766778878A A A A =+-小结:排列数m n A 可以用阶乘表示为mn A =※ 动手试试 n 2 3 4 5 6 7n !练2. 从2,3,5,7,11这五个数字中,任取2个数字组成分数,不同值的分数共有多少个? .【当堂检测 】1. 计算:=+243545A A ;2.. 计算:=+++44342414A A A A ;3. 某年全国足球甲级(A 组)联赛共有14队参加,每队都要与其余各队在主客场分别比赛1次,共进行 场比赛;4. 5人站成一排照相,共有 种不同的站法;5. 从1,2,3,4这4个数字中,每次取出3个排成一个3位数,共可得到 个不同的三位数.1. 求证:11211--++=-n n n n n n A n A A2. 一个火车站有8股岔道,停放4列不同的火车,有多少种不同的停放方法(假设每股道只能停放1列火车)?3.一部记录片在4个单位轮映,每一单位放映1场,有多少种轮映次序?【反思 】1. 排列数的定义2. 排列数公式及其全排列公式《排列(2)》导学案【学习目标 】1熟练掌握排列数公式; 2. 能运用排列数公式解决一些简单的应用问题. 【重点难点 】 1熟练掌握排列数公式; 2. 能运用排列数公式解决一些简单的应用问题. 【学法指导 】 (预习教材P 5~ P 10,找出疑惑之处) 复习1:.什么叫排列?排列的定义包括两个方面分别是 和 ;两个排列相同的条件是 相同, 也复习2:排列数公式:mn A = (,,m n N m n *∈≤)全排列数:nn A = = . 复习3 从5个不同元素中任取2个元素的排列数是 ,全部取出的排列数是【教学过程 】 (一)导入 探究任务一:排列数公式应用的条件 问题1:⑴ 从5本不同的书中选3本送给3名同学,每人各1本,共有多少种不同的送法?⑵ 从5种不同的书中买3本送给3名同学,每人各1本,共有多少种不同的送法? 新知:排列数公式只能用在从n 个不同元素中取出m 个元素的的排列数,对元素可能相同的情况不能使用.探究任务二:解决排列问题的基本方法问题2:用0到9这10个数字,可以组成多少个没有重复数字的三位数?新知:解排列问题时,当问题分成互斥各类时,根据加法原理,可用分类法;当问题考虑先后次序时,根据乘法原理,可用位置法;这两种方法又称作直接法.当问题的反面简单明了时,可通过求差采用间接法求解;另外,排列中“相邻”问题可以用“捆绑法”;“分离”问题可能用“插空法”等. (二)深入学习 例1 (1)6男2女排成一排,2女相邻,有多少种不同的站法? (2)6男2女排成一排,2女不能相邻,有多少种不同的站法? (3)4男4女排成一排,同性者相邻,有多少种不同的站法? (4)4男4女排成一排,同性者不能相邻,有多少种不同的站法?变式::某小组6个人排队照相留念.(1) 若排成一排照相,甲、乙两人必须在一起,有多少种不同的排法? (2) 若排成一排照相,其中甲必在乙的右边,有多少种不同的排法? (3) 若排成一排照相,其中有3名男生3名女生,且男生不能相邻有多少种排法? (4) 若排成一排照相,且甲不站排头乙不站排尾,有多少种不同的排法? (5) 若分成两排照相,前排2人,后排4人,有多少种不同的排法?小结:对比较复杂的排列问题,应该仔细分析,选择正确的方法.例2 用0,1,2,3,4,5六个数字,能排成多少个满足条件的四位数.(1)没有重复数字的四位偶数?(2)比1325大的没有重复数字四位数?变式:用0,1,2,3,4,5,6七个数字,⑴能组成多少个没有重复数字的四位奇数?⑵能被5整除的没有重复数字四位数共有多少个?※动手试试练1.从4种蔬菜品种中选出3种,分别种植在不同土质的3块土地上进行实验,有多少种不同的种植方法?练2.在3000至8000之间有多少个无重复数字的奇数?【当堂检测】1. 某农场为了考察3个水稻品种和5个小麦品种的质量,要在土质相同的土地上进行试验,应该安排的试验区共有块.2. 某人要将4封不同的信投入3个信箱中,不同的投寄方法有种.3. 用1,2,3,4,5,6可组成比500000大、且没有重复数字的自然数的个数是.4. 现有4个男生和2个女生排成一排,两端不能排女生,共有种不同的方法.5. 在5天内安排3次不同的考试,若每天至多安排一次考试,则不同的排法有种.1..一个学生有20本不同的书.所有这些书能够以多少种不同的方式排在一个单层的书架上?2.学校要安排一场文艺晚会的11个节目的演出顺序.除第一个节目和最后一个节目已确定外,4个音乐节目要求排在第2,5,7,10的位置,3个舞蹈节目要求排在第3,6,9的位置,2个曲艺节目要求排在第4,8的位置,求共有多少种不同的排法?【反思 】1. 正确选择是分类还是分步的方法,分类要做到“不重不漏”,分步要做到“步骤完整.2..正确分清是否为排列问题满足两个条件:从不同元素中取出元素,然后排顺序.《组合(1)》导学案【学习目标 】1. 正确理解组合与组合数的概念;2. 弄清组合与排列之间的关系;3. 会做组合数的简单运算;. 【重点难点 】1. 正确理解组合与组合数的概念;2. 弄清组合与排列之间的关系;3. 会做组合数的简单运算; 【学法指导】(预习教材P 21~ P 23,找出疑惑之处)复习1:什么叫排列?排列的定义包括两个方面,分别是 和 . 复习2:排列数的定义:从 个不同元素中,任取 个元素的 排列的个数叫做从n 个元素中取出m 元素的排列数,用符号 表示复习3:排列数公式:mn A = (,,m n N m n *∈≤)【教学过程 】 (一)导入探究任务一:组合的概念问题:从甲,乙,丙3名同学中选出2名去参加一项活动,有多少种不同的选法?新知:一般地,从 个 元素中取出 ()m n ≤个元素 一组,叫做从n 个不同元素中取出m 个元素的一个组合.试试:试写出集合{}a,b,c,d,e 的所有含有2个元素的子集.反思:组合与元素的顺序 关,两个相同的组合需要 个条件,是 ;排列与组合有何关系? 探究任务二.组合数的概念:从n 个 元素中取出m ()m n ≤个元素的 组合的个数,叫做从n 个不同元素中取出m 个元素的组合数....用符号 表示. 探究任务三 组合数公式 m n C = =我们规定:=0nC (二)深入学习例1 甲、乙、丙、丁4个人,(1)从中选3个人组成一组,有多少种不同的方法?列出所有可能情况; (2)从中选3个人排成一排,有多少种不同的方法?变式: 甲、乙、丙、丁4个足球队举行单循环赛: (1)列出所有各场比赛的双方; (2)列出所有冠亚军的可能情况.小结:排列不仅与元素有关,而且与元素的排列顺序有关,组合只与元素有关,与顺序无关,要正确区分排列与组合.例2 计算:(1)47C ; (2)710C变式:求证:11+⋅-+=m n m nC mn m C※ 动手试试 练1.计算:⑴ 26C ; ⑵ 38C ;⑶ 2637C C -; ⑷ 253823C C -.练2. 已知平面内A ,B ,C ,D 这4个点中任何3个点都不在一条直线上,写出由其中每3点为顶点的所有三角形.练3. 学校开设了6门任意选修课,要求每个学生从中选学3门,共有多少种选法?【当堂检测 】1. 若8名学生每2人互通一次电话,共通 次电话.2. 设集合{}A a,b,c,d,e ,B A =⊂,已知a B ∈,且B 中含有3个元素,则集合B 有个. 3. 计算:310C = .4. 从2,3,5,7四个数字中任取两个不同的数相乘,有m 个不同的积;任取两个不同的数相除,有n 个不同的商,则m :n = .5.写出从a,b,c,d,e 中每次取3个元素且包含字母a ,不包含字母b 的所有组合 1.计算:⑴ 215C ; ⑵ 2836C C ÷;2. 圆上有10个点:⑴ 过每2个点画一条弦,一共可以画多少条弦?⑵ 过每3点画一个圆内接三角形,一共有多少个圆内接三角形? 、【反思 】1. 正确理解组合和组合数的概念2.组合数公式:(1)(2)(1)!m m n nm m A n n n n m C A m ---+==或者:)!(!!m n m n C mn -=),,(n m N m n ≤∈*且《 组合(2)》导学案【学习目标 】1.2. 进一步熟练组合数的计算公式,能够运用公式解决一些简单的应用问题; 【重点难点 】1.2. 进一步熟练组合数的计算公式,能够运用公式解决一些简单的应用问题; 【学法指导 】(预习教材P 24~ P 25,找出疑惑之处)复习1:从 个 元素中取出 ()m n ≤个元素 一组,叫做从n 个不同元素中取出m 个元素的一个组合;从 个 元素中取出 ()m n ≤个元素的 组合的个数,叫做从n 个不同元素中取出m 个元素的组合数....用符号 表示.复习2: 组合数公式: m n C = =【教学过程 】 (一)导入探究任务一:组合数的性质问题1:高二(6)班有42个同学⑴ 从中选出1名同学参加学校篮球队有多少种选法? ⑵ 从中选出41名同学不参加学校篮球队有多少种选法? ⑶ 上面两个问题有何关系?新知1:组合数的性质1:mn n m n C C -=.一般地,从n 个不同元素中取出m 个元素后,剩下n m -个元素.因为从n 个不同元素中取出m 个元素的每一个组合,与剩下的n - m 个元素的每一个组合一一对应....,所以从n 个不同元素中取出m 个元素的组合数,等于从这n 个元素中取出n - m 个元素的组合数,即:mn n m n C C -=试试:计算:1820C反思:⑴若y x =,一定有yn x n C C =?⑵若yn x n C C =,一定有y x =吗?问题2 从121,,,+n a a a 这n +1个不同元素中取出m 个元素的组合数是 ,这些组合可以分为两类:一类含有元素1a ,一类是不含有1a .含有1a 的组合是从132,,,+n a a a 这 个元素中取出 个元素与1a 组成的,共有 个;不含有1a 的组合是从132,,,+n a a a 这 个元素中取出 个元素组成的,共有 个.从中你能得到什么结论?新知2 组合数性质2 m n C 1+=m n C +1-m n C(二)深入学习例1(1)计算:69584737C C C C +++;变式1:计算2222345100C C C C ++++例2 求证:n m C 2+=n m C +12-n m C +2-n m C变式2:证明:111m m m n n n C C C ++++=小结:组合数的两个性质对化简和计算组合数中用用处广泛,但在使用时要看清公式的形式.例3解不等式()321010n n-C n -<∈+C N .练3 :解不等式:46n nC C <※ 动手试试练1.若542216444x x C -C C C -=+,求x 的值练2. 解方程: (1)3213113-+=x x C C(2)333222101+-+-+=+x x x x x A C C【当堂检测 】1. 908910099C -C =2. 若231212n n-C C =,则n =3.有3张参观券,要在5人中确定3人去参观,不同方法的种数是 ;4. 若7781n n n C C C +=+,则n = ;5. 化简:9981m m m C -C C ++= .1. 计算:⑴ 197200C ; ⑵ 21-+•n n n n C C2. 壹圆,贰圆,伍圆,拾圆的人民币各1张,一共可以组成多少种币值?3. 若128n n C C =,求21n C 的值【反思 】1. 组合数的性质1:mn n m n C C -=2. 组合数性质2:m n C 1+=m n C +1-m n C《组合(3)》导学案 【学习目标 】 1. 进一步理解组合的意义,区分排列与组合;2. 进一步巩固组合、组合数的概念及其性质;3. 熟练运用排列与组合,解较简单的应用问题.【重点难点 】1. 进一步理解组合的意义,区分排列与组合;2. 进一步巩固组合、组合数的概念及其性质;3. 熟练运用排列与组合,解较简单的应用问题.【学法指导 】(预习教材P 27~ P 28,找出疑惑之处)复习1:⑴ 从 个 元素中取出 ()m n ≤个元素的 组合的个数,叫做从n 个不同元素中取出m 个元素的组合数...,用符号 表示;从 个 元素中取出 (n m ≤)个元素的 的个数,叫做从n 个不同元素取出m 元素的排列数,用符合 表示. ⑵ mn A =mn C = =m n A 与mn C 关系公式是 复习2:组合数的性质1: .组合数的性质2: .【教学过程 】 (一)导入探究任务一:排列组合的应用问题:一位教练的足球队共有17名初级学员,他们中以前没有一人参加过比赛.按照足球比赛规则,比赛时一个足球队的上场队员是11人.问: ⑴ 这位教练从17位学员中可以形成多少种学员上场方案?⑵ 如果在选出11名上场队员时,还要确定其中的守门员,那么教练员有多少种方式做这件事?新知:排列组合在实际运用中,可以同时使用,但要分清他们的使用条件:排列与元素的顺序有关,而组合只要选出元素即可,不要考虑元素的顺序.试试:⑴平面内有10个点,以其中每2个点为端点的线段共有多少条? ⑵平面内有10个点,以其中每2个点为端点的有向线段多少条? 反思:排列组合在一个问题中能同时使用吗? (二)深入学习 例1 在100件产品中,有98件合格品,2件次品.从这100件产品中任意抽出3件.⑴ 有多少种不同的抽法?⑵ 抽出的3件中恰好有1件是次品的抽法有多少种?⑶ 抽出的3件中至少有1件是次品的抽法有多少种?变式:在200件产品中有2件次品,从中任取5件: ⑴ 其中恰有2件次品的抽法有多少种?⑵ 其中恰有1件次品的抽法有多少种?⑶ 其中没有次品的抽法有多少种? ⑷ 其中至少有1件次品的抽法有多少种?小结:对综合应用两个计数原理以及组合知识问题,思路是:先分类,后分步.例2 现有6本不同书,分别求下列分法种数:⑴分成三堆,一堆3本,一堆2本,一堆1本;⑵分给3个人,一人3本,一人2本,一人1本;⑶平均分成三堆.变式:6本不同的书全部送给5人,每人至少1本,有多少种不同的送书方法?例 3 现有五种不同颜色要对如图中的四个部分进行着色,要求有公共边的两块不能用一种颜色,问共有几种不同的着色方法?变式:某同学邀请10位同学中的6位参加一项活动,其中两位同学要么都请,要么都不请,共有多少种邀请方法?※动手试试练1. 甲、乙、丙三人值周,从周一至周六,每人值两天,但甲不值周一,乙不值周六,问可以排出多少种不同的值周表?练2. 高二(1)班共有35名同学,其中男生20名,女生15名,今从中取出3名同学参加活动, (1)其中某一女生必须在内,不同的取法有多少种?(2)其中某一女生不能在内, 不同的取法有多少种?(3)恰有2名女生在内,不同的取法有多少种?(4)至少有2名女生在内,不同的取法有多少种?(5)至多有2名女生在内,不同的取法有多少种?【当堂检测】1. 凸五边形对角线有条;2. 以正方体的顶点为顶点作三棱锥,可得不同的三棱锥有个;3.要从5件不同的礼物中选出3件送给3个同学,不同方法的种数是;4.有5名工人要在3天中各自选择1天休息,不同方法的种数是;5. 从1,3,5,7,9中任取3个数字,从2,4,6,8中任取2个数字,一共可以组成没有重复数字的五位数?1. 在一次考试的选做题部分,要求在第1题的4个小题中选做3个小题,在第2题的3个小题中选做2个小题,在第3题的2个小题中选做1个小题.有多少种不同的选法?路漫漫其修远兮,吾将上下而求索 - 百度文库2. 从5名男生和4名女生中选出4人去参加辩论比赛.⑴如果4人中男生和女生各选2名,有多少种选法?⑵如果男生中的甲和女生中的乙必须在内,有多少种选法?⑶如果男生中的甲和女生中的乙至少有1人在内,有多少种选法?⑷如果4人中必须既有男生又有女生,有多少种选法?【反思】1. 正确区分排列组合问题2. 对综合问题,要“先分类,后分步”,对特别元素,应优先考虑.1111。
人教课标版高中数学选修2-3:《组合(第1课时)》教案-新版
1.2.2 组合一、教学目标 【核心素养】通过学习组合与组合数公式,更进一步的提高了学生的数学运算能力和逻辑推理能力. 【学习目标】(1)判断具体问题是组合还是排列 (2)组合数公式的推导 (3)组合数公式的应用 【学习重点】1明确组合与排列的联系与区别,能判断一个问题是排列问题还是组合问题. 2理解组合的概念,组合数公式,组合数公式的简单应用. 【学习难点】组合数公式的推导,组合数公式的简单应用.二、教学设计 (一)课前设计 1.预习任务任务1 阅读教材P21-P26,思考:组合的内容是什么?组合数有哪些应用? 任务2 默写组合数公式的具体内容 2.预习自测 1.组合的概念①从全班40人中选出5人组成班委会.②从全班40人中选出5人分别担任班委中的5个不同职务. 以上两个问题中哪个是排列?①与②有何不同特点?解:②是排列,①中选出的5人无需排列,②中选出的5人有顺序. 2.组合数公式与性质①计算组合数=37C ;②计算=+3626C C .解:35 35 (二)课堂设计1.知识回顾(1)分类加法计数原理;(2)分步乘法计数原理; (3)排列的概念; (4)排列数的定义. 2.问题探究问题探究一 排列与组合的区别和联系引导学生通过实例,辨析“有序(排列)”与“无序(组合)”. 引入:判断下列问题是组合还是排列①设集合A ={a ,b ,c ,d ,e},则集合A 的子集中含有3个元素的有多少个? ②某铁路线上有5个车站,则这条线上共需准备多少种车票?多少种票价?③2017年元旦期间,某班10名同学互送贺年卡,表示新年的祝福,贺年卡共有多少张? 答案:①因为本问题与元素顺序无关,故是组合问题.②因为甲站到乙站与乙站到甲站车票是不同的,故是排列问题,但票价与顺序无关,甲站到乙站与乙站到甲站是同一种票价,故是组合问题.③甲写给乙贺卡,与乙写给甲贺卡是不同的,所以与顺序有关,是排列问题. 说明:⑴不同元素;⑵“只取不排”——无序性;⑶相同组合:元素相同 问题探究二 组合数公式的推导引例:从4个不同元素,,,a b c d 中取出3个元素的组合数34C 是多少呢?启发:由于排列..是先组合再排列.......,而从4个不同元素中取出3个元素的排列数34A 可以求得,故我们可以考察一下34C 和34A 的关系,如下:组 合 排列dcbcdb bdc dbc cbd bcd bcddca cda adc dac cad acd acd dba bda adb dab bad abd abdcba bca acb cab bac abc abc ,,,,,,,,,,,,,,,,,,,,→→→→ 由此可知,每一个组合都对应着6个不同的排列,因此,求从4个不同元素中取出3个元素的排列数34A ,可以分如下两步:① 考虑从4个不同元素中取出3个元素的组合,共有34C 个;② 对每一个组合的3个不同元素进行全排列,各有33A 种方法.由分步计数原理得:34A =⋅34C 33A ,所以,333434A A C =.(2)推广:一般地,求从n 个不同元素中取出m 个元素的排列数mn A ,可以分如下两步:① 先求从n 个不同元素中取出m 个元素的组合数mn C ;② 求每一个组合中m 个元素全排列数m m A ,根据分步计数原理得:m n A =m n C m mA ⋅. (3)组合数的公式:(1)(2)(1)!m m n nm m A n n n n m C A m ---+==或)!(!!m n m n C m n -=),,(n m N m n ≤∈*且规定: 01n C =.例1.计算:(1)47C ;(2)710C ;【知识点:组合数公式】 详解:(1) 4776544!C ⨯⨯⨯==35; (2)解法1:710109876547!C ⨯⨯⨯⨯⨯⨯==120. 解法2:71010!10987!3!3!C ⨯⨯===120. 点拨:正确运用组合数公式.例2.求证:11+⋅-+=m n m n C mn m C . 【知识点:组合数公式】证明:∵)!(!!m n m n C m n -=111!(1)!(1)!m nm m n C n m n m m n m +++⋅=⋅--+--=1!(1)!()(1)!m n m n m n m +⋅+---=!!()!n m n m - ∴11+⋅-+=m nm n C m n m C点拨:做组合类证明题一定要准确使用组合数公式.例3.设,+∈N x 求321132-+--+x x x x CC的值【知识点:组合数公式】解:由题意可得:⎩⎨⎧-≥+-≥-321132x x x x ,解得24x ≤≤, ∵x N +∈, ∴2x =或3x =或4x =,当2x =时原式值为7;当3x =时原式值为7;当4x =时原式值为11.∴所求值为4或7或11.点拨:含参数的组合题,明确参数范围.问题探究三 组合数公式的应用 例4 一位教练的足球队共有 17 名初级学员,他们中以前没有一人参加过比赛.按照足球比赛规则,比赛时一个足球队的上场队员是11人.问:(l)这位教练从这 17 名学员中可以形成多少种学员上场方案?(2)如果在选出11名上场队员时,还要确定其中的守门员,那么教练员有多少种方式做这件事情? 【知识点:排列组合,分步计数原理;数学思想:分类讨论】解:(1)由于上场学员没有角色差异,所以可以形成的学员上场方案有1117C = 12 376 (种) .(2)教练员可以分两步完成这件事情:第1步,从17名学员中选出 n 人组成上场小组,共有1117C 种选法; 第2步,从选出的 n 人中选出 1 名守门员,共有111C 种选法.所以教练员做这件事情的方法数有1111711C C ⨯=136136(种). 点拨:对于(1),根据题意,17名学员没有角色差异,地位完全一样,因此这是一个从 17 个不同元素中选出11个元素的组合问题;对于(2),守门员的位置是特殊的,其余上场学员的地位没有差异,因此这是一个分步完成的组合问题.例5.(1)平面内有10个点,以其中每2个点为端点的线段共有多少条?(2)平面内有10个点,以其中每2个点为端点的有向线段共有多少条? 【知识点:排列组合;数学思想:分类讨论】解:(1)以平面内10个点中每2个点为端点的线段的条数,就是从10个不同的元素中取出2个元素的组合数,即线段共有2101094512C⨯==⨯(条). (2)由于有向线段的两个端点中一个是起点、另一个是终点,以平面内10个点中每2个点为端点的有向线段的条数,就是从10个不同元素中取出2个元素的排列数,即有向线段共有21010990A =⨯=(条)点拨:与其他数学问题结合的组合问题,需要对空间点线和面的准确认识 3.课堂总结 【知识梳理】1. 区分排列与组合的关键是看结果是否与元素的顺序有关,若交换某两个元素的位置对结果产生影响,则是排列问题,否则是组合问题.也就是说排列问题与选取元素的顺序有关,组合问题与选取元素的顺序无关.2.写组合时,一般先将元素按一定的顺序排好,然后按照顺序用图示的方法逐个地将各个组合表示出来,如本题的作图法,这样做直观、明了、清楚,可防重复和遗漏. 【重难点突破】1.组合数公式的推导过程体现了众多数学思想方法的应用,教学的关键是引导学生研究组合与排列的关系,发现排列可以分为“先取元素,再作全排列”两个步骤,即A C A =m m m n n m,从而化解难点.2.通过对具体实例的对比分析,亲身经历组合概念的形成过程,明确排列与组合的关系;在用列举法列出组合、排列的过程中体会组合数与排列数、计数原理的关系,并参与体验组合数的应用,体会将实际问题化归为组合问题的方法. 4.随堂检测1.判断下列问题是排列问题还是组合问题:①把当日动物园的4张门票分给5个人,每人至多分一张,而且票必须分完,有多少种分配方法?②从2,3,5,7,11这5个质数中,每次取2个数分别作为分子和分母构成一个分数,共能构成多少个不同的分数?③从9名学生中选出4名参加一个联欢会,有多少种不同的选法? 【知识点:排列组合】解:(1)①是组合问题.由于4张票是相同的(都是当日动物园的门票),不同的分配方法取决于从5人中选择哪4人,这和顺序无关.②是排列问题,选出的2个数作分子或分母,结果是不同的. ③是组合问题,选出的4人无角色差异,不需要排列他们的顺序.2.若266x C C =,则x 的值为( )A .2B .4C .4或2D .3 【知识点:组合数公式】解:由组合数性质知x =2或x =6-2=4,故选C.3.甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有( )A .36种B .48种C .96种D .192种 【知识点:排列组合,分步计数原理】解:甲选修2门有24C =6种选法,乙、丙各有34C =4种选法.由分步乘法原理可知,共有6×4×4=96种选法4.某校一年级有5个班,二年级有8个班,三年级有3个班,分年级举行班与班之间的篮球单循环赛,总共需进行比赛的场数是( )A .222583C C C ++B .222323C C C C .222583A A A ++D .216C 【知识点:排列组合】 解:A (三)课后作业 基础型 自主突破1.①从甲、乙、丙3名同学中选出2名分别去参加两个乡镇的社会调查,有多少种不同的选法?②有4张电影票,要在7人中确定4个去观看,有多少种不同的选法?③某人射击8枪,击中4枪,且命中的4枪均为2枪连中,则不同的结果有多少种? 其中组合问题的个数是( )A .0个B .1个C .2个D .3个 【知识点:排列组合】解:选C.①与顺序有关,是排列问题;②③均与顺序无关,是组合问题.故选C.2.若266x C C =,则x 的值为( )A .2B .4C .4或2D .3 【知识点:组合数公式】解:由组合数性质知x =2或x =6-2=4,故选C.3.正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有( )A .20条B .15条C .12条D .10条 【知识点:排列组合】 解:D4.按ABO 血型系统学说,每个人的血型为A 、B 、O 、AB 四种之一,依血型遗传学,当且仅当父母中至少有一人的血型是AB 型时,子女一定不是O 型,若某人的血型为O 型,则父母血型所有可能情况有______种. 【知识点:排列组合】 解:9能力型 师生共研5.集合M ={x |4n x C =,n ≥0且n ∈N },集合Q ={1,2,3,4},则下列结论正确的是( )A .M ∪Q ={0,1,2,3,4}B .Q ⊆MC .M ⊆QD .M ∩Q ={1,4} 【知识点:排列组合】解:D 由4n x C =知,n =0,1,2,3,4,又041C =,144C =,2443621C ⨯==⨯,31444C C ==,441C =.∴M ={1,4,6}.故M ∩Q ={1,4}.6.从6名男生和2名女生中选出3名志愿者,其中至少有1名女生的选法共有( ) A .36种 B .30种 C .42种 D .60种 【知识点:排列组合,分步计数原理】解:A 法1(直接法):选出的3名志愿者中含1名女生有1226C C 种选法,含2名女生有2226C C 种选法,∴共有12222626C C C C +=36种选法. 法2(间接法):若选出的3名全是男生,则有36C 种选法,∴至少有一名女生的选法数为38C -36C =36种.7.方程22171616x x x C C C +-=的解集是________. 【知识点:组合数公式】解:{5} 因为1171616x x x C C C -=+,所以1221616x x C C -+=,由组合数公式的性质,得x -1=2x +2或x -1+2x +2=16,得x 1=-3(舍去),x 2=5.8.从一组学生中选出4名学生当代表的选法种数为A ,从这组学生中选出2人担任正、副组长的选法种数为B ,若213B A =,则这组学生共有________人. 【知识点:排列组合】解:15 设有学生n 人,则24213n n A C =,解之得n =15.9.解不等式211123x x x x C C --++<【知识点:组合数公式】解:因为211123x x x x C C --++<,所以321123x x C C ++<,所以2(1)(1)3(1)32121x x x x x⨯+-⨯+⨯⨯⨯<,所以1332x -<,所以112x <,因为1312x x +⎧⎨+⎩≥,≥,所以x ≥2,所以2≤x <112,又x ∈N *,所以x =2,3,4,5. 所以不等式的解集为{2,3,4,5}.探究型 多维突破10.(1)6本不同的书分给甲、乙、丙3同学,每人各得2本,有多少种不同的分法? (2)从5个男生和4个女生中选出4名学生参加一次会议,要求至少有2名男生和1名女生参加,有多少种选法?【知识点:排列组合,分步计数原理,数学思想:分类讨论】解:(1)解:90222426=⋅⋅C C C . (2)解:问题可以分成2类:第一类 2名男生和2名女生参加,有225460C C =中选法; 第二类 3名男生和1名女生参加,有315440C C =中选法依据分类计数原理,共有100种选法11.4名男生和6名女生组成至少有1个男生参加的三人社会实践活动小组,问组成方法共有多少种?【知识点:排列组合,分步计数原理,数学思想:分类讨论】解:解法一:(直接法)小组构成有三种情形:3男,2男1女,1男2女,分别有34C ,1624C C ⋅,2614C C ⋅,所以,一共有34C +1624C C ⋅+2614C C ⋅=100种方法. 解法二:(间接法)10036310=-C C 自助餐1.一个口袋中装有大小相同的6个白球和4个黑球,从中取2个球,则这两个球同色的不同取法有( )A .27种B .24种C .21种D .18种 【知识点:排列组合,数学思想:分类讨论】解:C 分两类:一类是2个白球有26C =15种取法,另一类是2个黑球有24C =6种取法,所以共有15+6=21种取法.故选C.2.4位同学每人从甲、乙、丙三门课程中选修1门,则恰有2人选修课程甲的不同选法共有( )A .12种B .24种C .30种D .36种【知识点:排列组合,分步计数原理】解:B 依题意,满足题意的选法共有24C ×2×2=24(种). 3.计算:34567789C C C C +++=( ) A .120 B .150 C .180D .210 【知识点:组合数公式】解:D 根据公式111n n n m m m C C C ++++=知,原式=456889C C C ++=5699C C +=610C =410C =210.4.北京市某中学要把9台型号相同的电脑送给西部地区的三所希望小学,每所小学至少得到2台,共有________种不同送法. 【知识点:排列组合,分步计数原理】解:10 每校先各得一台,再将剩余6台分成3份,用插板法解,共有25C =10种5.将4个颜色互不相同的球全部收入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有( )A .10种B .20种C .36种D .52种【知识点:排列组合,分步计数原理,数学思想:分类讨论】解:A 根据2号盒子里放球的个数分类:第一类,2号盒子里放2个球,有24C 种放法,第二类,2号盒子里放3个球,有34C 种放法,剩下的小球放入1号盒中,共有不同放球方法2344C C +=10种. 6.某校开设A 类选修课3门,B 类选修课4门,一位同学从中共选3门.若要求两类课程中各至少选一门,则不同的选法共有( )A .30种B .35种C .42种D .48种【知识点:排列组合,分步计数原理,数学思想:分类讨论】解:A 分两类,A 类选修课选1门,B 类选修课选2门,或者A 类选修课选2门,B 类选修课选1门,因此,共有12213434C C C C +=30 种选法.7.正六边形的中心和顶点共7个点,以其中三个点为顶点的三角形共有_______个. 【知识点:排列组合,分步计数原理】 解:328.有6名同学参加两项课外活动,每位同学必须参加一项活动且不能同时参加两项,每项活动最多安排4人,则不同的安排方法有__________种(用数字作答).【知识点:排列组合,分步计数原理,数学思想:分类讨论】解:50 把6名同学分成两组,一组最多4人,有分法223362631252C C C C += (种),每一种分法对应着两种安排方案,因此共有不同的安排方案2×25=50(种).9.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有__________个 【知识点:排列组合,分步计数原理,数学思想:分类讨论】解:当五位数的万位为4时,个位可以是0,2,此进满足条件的偶数共有3412A C =48(个);当五位数的万位为5时,个位可以是0,2,4,此时满足条件的偶数共有3413A C =72(个),所以比40 000大的偶数共有48+72=120(个)10.已知平面M 内有4个点,平面N 内有5个点,则这九个点最多能确定: (1)多少个平面?(2)多少个四面体?【知识点:空间点线面基本关系,排列组合,分步计数原理,数学思想:分类讨论,数形结合】 解:(1)可分三类.第一类:平面M 中取一点,N 中取两点,最多可确定1245C C 个; 第二类:平面M 中取两点,N 中取一点,最多可确定2145C C 个;第三类:平面M 和平面N ,共2个.故最多可确定平面12214545C C C C ++2=72(个).(2)法一(直接分类法):分三类.第一类:平面M 内取一个点,N 内取三个点,最多可确定1345C C 个. 第二类:平面M 内取两个点,N 内取两个点,最多可确定2245C C 个. 第三类:平面M 内取三个点,N 内取一个点,最多可确定3145C C 个. 故最多可确定平面1345C C +2245C C +3145C C =120(个). 法二(间接法):49C -45C -44C =120(个).11.为了提高学生参加体育锻炼的热情,宏达中学组织篮球比赛,共24个班参加,第一轮比赛是先分四组进行单循环赛,然后各组取前两名再进行第二轮单循环赛(在第一轮中相遇过的两个队不再进行比赛),问要进行多少场比赛?【知识点:排列组合,分步计数原理,数学思想:分类讨论】解:第一轮每组6个队进行单循环赛,共有26C 场比赛,4个组共计426C 场.第二轮每组取前两名,共计8个组,应比赛28C 场,由于第一轮中在同一组的两队不再比赛,故应减少4场,因此第二轮应比赛28C -4场.综上,两轮比赛共进行426C +28C -4=84场.12.有6本不同的书按下列分配方式分配,问共有多少种不同的分配方式? (1)分成1本、2本、3本三组;(2)分给甲、乙、丙三人,其中一人1本,一人2本,一人3本; (3)分成每组都是2本的三组; (4)分给甲、乙、丙三人,每人2本.【知识点:排列组合,分步计数原理,数学思想:分类讨论】解:(1)分三步:先选一本有16C 种选法;再从余下的5本中选2本有25C 种选法;对于余下的三本全选有35C 种选法,由分步乘法计数原理知有16C 25C 35C =60(种)选法.(2)由于甲、乙、丙是不同的三人,在(1)的基础上,还应考虑再分配的问题,因此共有16C 25C 33C 33A =360(种)选法.(3)先分三步,则应是222426C C C 种选法,但是这里面出现了重复,不妨记6本书分别为A 、B 、C 、D 、E 、F ,若第一步取了(AB ,CD ,EF),则222426C C C 种分法中还有(AB 、EF 、CD),(CD 、AB 、EF)、(CD 、EF 、AB)、(EF 、CD 、AB)、(EF 、AB 、CD)共有33A 种情况,而且这33A 种情况仅是AB 、CD 、EF 的顺序不同,因此,只算作一种情况,故分配方式有33222426A C C C =15(种). (4)在问题(3)的基础上再分配,故分配方式有33222426A C C C 33A =90(种).。
高中数学选修2-3导学案 组合(包含3个课时)
组合(第1课时)【教学目标】1.理解组合意义;能判断一个问题是组合问题还是排列问题;2.明确排列与组合的区别和联系,了解组合数C n m的意义,理解排列数A n m和组合数C n m的联系.会用组合数公式进行计算或求值. 【问题情境】问题1:从甲、乙、丙三人中选出两人分别担任班长和副班长,共有多少种选法? 2:从甲、乙、丙三人中选出两人作为学生代表,共有多少种选法?思考:两个问题有什么联系和区别?定义:①一般地,从,叫做从n 个元素中取出m 个元素的一个;②从n 个不同的元素中取出m 个(m≤n)个元素的所有,叫做组合数;记作. 问题3:从a 、b 、c 、d 四个元素中任选三个元素,填表:(1)试写出所有选出的三个元素的组合;(2)写出所有选出的三个元素的排列.思考:(1)34C 与34A 在数量上有什么关系?(2)分析选出的三个元素的组合与排列有什么关系?推广到一般情形,m n C 与m n A 有什么关系?【合作探究】一般地,从n 个不同元素中取出m 个元素的排列数m n A ,可以分为两步:第一步:; 第二步:;根据分步计数原理,m n A =,因此可以可到组合数公式:mnC ==.【展示点拨】例1.指出下列问题是排列问题还是组合问题?为什么?(1)从甲乙丙丁四个旅游景点选出三个去游览,有多少种选法?(2)从26个英文字母中选出10个按照字母顺序排成一排,有多少种选法? (3)从5人中选出两人去参加两个会议有多少种选法? (4)10人见面,每两人握一次手,共握手多少次?(5)空间5个点(任意3点不共线),最多能构成多少个平面?例2.利用组合数公式计算:(1)29C (2)58C (3) 1344C C + (4)233556C C C +-例3. (1)若3212n nA C =,求n. (2)若345112n n nC C C -<,求不等式的解集.例4.(1)凸五边形有多少条对角线? (2)凸n(n>3)边形有多少条对角线?【学以致用】1.判断下列问题是排列问题还是组合问题?(1)从正方体的顶点中任选2个作直线,能作多少条直线?(2)从集合{2,3,4,5,6}中任选两个数分别作为log a b 的底数和真数,有多少种选法?(3)从集合{2,3,4,5,6}中任选两个数分别作为a,b 2. 以一个正方体顶点为顶点的四面体共有个. 3.集合{0,1,2,3,4}共有子集.4. (1)平面内有10个点,以其中2个点为端点的线段共有条; (2)平面内有10个点,以其中2个点为端点的有向线段共有条.5.(1)解方程:723435x x x C A ---=; (2)46n n C C >.组合(第1课时练习)【基础训练】1.在10名学生中选出3名学生参加数学竞赛,不同的选法有种.2.有下列问题:①在北京、上海、南京3个民航站之间的直达航线,共有多少种不同的飞机票?②3名同学相聚后,每2人握1次手,一共握手多少次?③学校图书馆有10本不同的数学竞赛参考书,任取4本借给甲同学,共有多少种不同的取法?④高二(1)班的45名同学,在春节时互相通电话问候1次,他们之间一共通话多少次?其中属于组合问题的是_____(填序号).3.在10名女生和15名男生中,选2名性别相同的学生参加一个活动,不同的选法有____种.4.有下列式子:①!C ;!()!m n n m n m =-②11C C ;m m n n n m --=③A !C ;m mn n m = ④!(1)!C !.m n m m n -=其中一定成立的是.5.设集合A {,,,},B A,a b c d =?如果B a ,且B 中有3个元素,那么满足条件的集合B 共有_______个.6.已知甲、乙两组各有8人,现从每组抽取4人进行计算机知识竞赛,比赛人员的组成共有种可能. 【思考应用】7.现有4名男生和5名女生,从中选出5名代表,要求男生不少于3名,共有多少种不同的选法?8.已知456C ,C ,C n n n 成等差数列,求12C n 的值.9.解下列方程或不等式:(1)421212121;x x x C C C ---<< (2)46135n n n C C --=10.正方体六个表面的中心所确定的直线中,异面直线共有多少对?【拓展提升】11.6本不同的书分给甲、乙、丙3位同学.(1)若甲、乙、丙每人各得2本,则有多少种不同的分法? (2)若甲得1本,乙得2本,丙得3本,则有多少种不同的分法?12.某餐厅供应饭菜,每位顾客可在餐厅提供的菜肴中任意选择2荤2素共4种不同的品种,现在餐厅准备了5种不同的荤菜,若要保证每位顾客有200种以上的不同选择,则餐厅至少还要准备多少种不同的素菜?组合(第2课时)【教学目标】1.理解并掌握组合数的两个重要性质;会用组合数公式及其性质进行计算、求值;2.能运用组合知识分析简单的实际问题,提高分析问题的能力。
人教B版2019年高中数学选修2-3教学案:1.2.2 组合与组合数公式及组合数的两个性质_含解析
第一课时组合与组合数公式及组合数的两个性质[对应学生用书P11][例1](1) 10支球队以单循环进行比赛(每两队比赛一次),这次比赛需要进行多少场次?(2)10支球队以单循环进行比赛,这次比赛冠、亚军获得者有多少种可能?(3)从10个人里选3个代表去开会,有多少种选法?(4)从10个人里选出3个不同学科的课代表,有多少种选法?[思路点拨]要确定是组合还是排列问题,只需确定取出的元素是否与顺序有关.[精解详析](1)是组合问题,因为每两个队比赛一次并不需要考虑谁先谁后,没有顺序的区别.(2)是排列问题,因为甲队得冠军、乙队得亚军与甲队得亚军、乙队得冠军是不一样的,是有顺序区别的.(3)是组合问题,因为3个代表之间没有顺序的区别.(4)是排列问题,因为3个人中,担任哪一科的课代表是有顺序区别的.[一点通]要区分排列与组合问题,先确定完成的是什么事件,然后看问题是否与顺序有关,与顺序有关的是排列,与顺序无关的是组合.1.求从2,3,4,5四个数中任取2个数作为对数式log a b的底数与真数,得到的对数的个数有多少,是________问题;若把两个数相乘得到的积有几种,则是________问题.(用“排列”“组合”填空)解析:从2,3,4,5四个数中任取2个数作为对数式log a b的底数与真数,交换a,b的位置后所得对数值不同,应为排列问题;取两个数相乘,如2×3与3×2的积是相等的,没有顺序,故为组合问题.答案:排列组合2.判断下列问题是组合问题还是排列问题:(1)设集合A={a,b,c,d,e},则集合A的子集中含有3个元素的有多少个?(2)某铁路线上有5个车站,则这条线上共需准备多少种车票?多少种票价?(3)3人去干5种不同的工作,每人干一种,有多少种分工方法?(4)把3本相同的书分给5个学生,每人最多得1本,有几种分配方法?解:(1)因为本问题与元素顺序无关,故是组合问题.(2)因为甲站到乙站的车票与乙站到甲站的车票是不同的,故是排列问题,但票价与顺序无关,甲站到乙站与乙站到甲站是同一种票价,故是组合问题.(3)因为分工方法是从5种不同的工作中选出3种,按一定顺序分给3个人去干,故是排列问题.(4)因为3本书是相同的,无论把3本书分给哪三人,都不需考虑他们的顺序,故是组合问题.[例2] (1)1073(2)证明:m C m n =n C m -1n -1;(3)已知1C m 5-1C m 6=710C m 7,求C m 8+C 5-m 8. [思路点拨] (1)(2)运用公式进行化简即可,(3)先求出m 的值,再进行计算.[精解详析] (1)原式=C 410-A 37=10×9×8×74×3×2×1-7×6×5=210-210=0.(2)证明:m C m n =m ·n !m !(n -m )!=n ·(n -1)!(m -1)!(n -m )! =n ·(n -1)!(m -1)!(n -m )!=n C m -1n -1.(3)∵1C m 5-1C m 6=m !(5-m )!5!-m !(6-m )!6!, 710C m 7=7×(7-m )!m !10×7!, ∴m !(5-m )!5!-m !(6-m )(5-m )!6×5!=7×m !(7-m )(6-m )(5-m )!10×7×6×5!,∴1-6-m 6=(7-m )(6-m )60,即m 2-23m +42=0,解得m =2或21. 而0≤m ≤5,∴m =2.∴C m 8+C 5-m8=C 28+C 38=C 39=84.[一点通] 1.组合数公式C m n =n (n -1)(n -2)…(n -m +1)m !体现了组合数与相应排列数的关系,一般在计算具体的组合数时会用到.2.组合数公式C m n =n !m !(n -m )!的主要作用:一是计算m ,n 较大时的组合数;二是对含有字母的组合数的式子进行变形和证明.另外,当m >n 2时,计算C m n 可用性质C m n =C n -mn转化,减少运算量.3.C410-C37·A33=________.解析:原式=C410-A37=10×9×8×74×3×2×1-7×6×5=210-210=0.答案:04.若A3n=12C2n,则n=________.解析:∵A3n=n(n-1)·(n-2),C2n=12n(n-1),∴n(n-1)(n-2)=6n(n-1).又n∈N+,且n≥3,∴n=8. 答案:85.解不等式1C3n-1C4n<2C5n.解:n的取值范围是{n|n≥5,n∈N+}.∵1C3n-1C4n<2C5n,∴6n(n-1)(n-2)-24n(n-1)(n-2)(n-3)<240n(n-1)(n-2)(n-3)(n-4).又∵n(n-1)(n-2)>0.∴原不等式化简得n2-11n-12<0,解得-1<n<12.结合n的取值范围,得n=5,6,7,8,9,10,11,∴原不等式的解集为{5,6,7,8,9,10,11}.[例3](10分)5人参加市级培训.在下列条件下,有多少种不同的选法?(1)任意选5人;(2)甲、乙、丙三人必需参加;(3)甲、乙、丙三人不能参加;(4)甲、乙、丙三人只能有1人参加.[思路点拨]本题属于组合问题中的最基本的问题,可根据题意分别对不同问题中的“含”与“不含”作出正确分析和判断.[精解详析](1)从中任取5人是组合问题,共有C512=792种不同的选法.(2)甲、乙、丙三人必需参加,则只需要从另外9人中选2人,是组合问题,共有C29=36种不同的选法.(3)甲、乙、丙三人不能参加,则只需从另外的9人中选5人,共有C59=126种不同的选法.(4)甲、乙、丙三人只能有1人参加,可分两步:先从甲、乙、丙中选1人,有C13=3种选法;再从另外9人中选4人,有C49种选法.共有C13C49=378种不同的选法.[一点通]解简单的组合应用题时,要先判断它是不是组合问题,只有当该问题能构成组合模型时,才能运用组合数公式求解.解题时还应注意两个计数原理的运用,在分类和分步时,应注意有无重复或遗漏.6.设集合A={a1,a2,a3,a4,a5},则集合A的含有3个元素的子集共有________个.解析:从5个元素中取出3个元素组成一组就是集合A的含有3个元素的子集,则共有C35=10个.答案:107.现有10名教师,其中男教师6名,女教师4名.(1)现要从中选2名去参加会议,有多少种不同的选法?(2)现要从中选出男、女教师各2名去参加会议,有多少种不同的选法?解:(1)从10名教师中选出2名去参加会议的选法数就是从10个不同的元素中取出2个元素的组合数,即C210=10×92×1=45种.(2)从6名男教师中选2名,有C26种选法,从4名女教师中选2名,有C24种选法.根据分步乘法计数原理可知,共有不同的选法C26C24=90种.1.排列与组合的异同:[对应课时跟踪训练(五)] 1.从7人中选出3人参加座谈会,则不同的选法有()A.210种B.42种C.35种D.6种解析:参加座谈会与顺序无关,是组合问题,共有C37=35种不同的选法.答案:C2.若A3m=6C4m,则m的值为()A.6 B.7C.8 D.9解析:由A3m=6×C4m得m!(m-3)!=6·m!4!(m-4)!,即1m-3=14,解得m=7.答案:B3.某单位有15名成员,其中男性10人,女性5人,现需要从中选出6名成员组成考察团外出参观学习,如果按性别分层,并在各层按比例随机抽样,则此考察团的组成方法种数是()A.C310C35B.C410C25C.C515D.A410A25解析:按性别分层,并在各层按比例随机抽样,则需从10名男性中抽取4人,5名女性中抽取2人,共有C410C25种抽法.答案:B4.异面直线a,b上分别有4个点和5个点,由这9个点可以确定的平面个数是() A.20 B.9C.C39D.C24C15+C25C14解析:分两类:第一类,在直线a上任取一点,与直线b可确定C14个平面;第二类,在直线b上任取一点,与直线a可确定C15个平面.故可确定C14+C15=9个不同的平面.答案:B5.若C13n=C7n,则C18n=________.解析:∵C13n=C7n,∴13=n-7,∴n=20.∴C1820=C220=190.答案:1906.10个人分成甲、乙两组,甲组4人、乙组6人,则不同的分组种数为________.(用数字作答)解析:先给甲组选4人,有C410种选法,余下的6人为乙组,故共有C410=210种选法.答案:2107.某科技小组有女同学2名、男同学x名,现从中选出3人去参观展览.若恰有1名女生入选时的不同选法有20种,求该科技小组中男生的人数.解:由题意得C12·C2x=20.解得x=5.故该科技小组有5名男生.8.要从6男4女中选出5人参加一项活动,按下列要求,各有多少种不同的选法?(1)甲当选且乙不当选;(2)至多有3男当选.解:(1)甲当选且乙不当选,只需从余下的8人中任选4人,有C48=70种选法.(2)至多有3男当选时,应分三类:第一类是3男2女,有C36C24种选法;第二类是2男3女,有C26C34种选法;第三类是1男4女,有C16C44种选法.由分类加法计数原理知,共有C36C24+C26C34+C16C44=186种选法.。
人教B版高中同步学案数学选择性必修第二册精品课件 第3章 第1课时 组合及组合数公式
+1
2.要注意公式C +1 + C = C+1
的正用、逆用、变形.尤其是当 m,n 都是具
+1
体自然数时的应用.正用时是“合二为一”,即将C +1 + C 化为C+1
;逆用则
+1
+1
+1
是将组合数C+1
拆开;变形则为C = C+1
− C +1 或C +1 = C+1
≠
= C A
,故 C 正确;
(+1)!
,故
(-)!
D 不正确.故选 D.
3.某地将医院按其功能、任务不同划分为三个等级:一级医院、二级医院、
三级医院.某地有9家医院,其中3家一级医院,4家二级医院,2家三级医院.现
在要从中抽出4家医院进行药品抽检,则抽出的医院中至少有2家一级医院
的抽法有( C )
C21
×
98×97
2
C98 =2×
=9
2!
506.
(3)方法一 从100件产品中抽出的3件中至少有1件是次品,包括有1件次品
和有2件次品两种情况,因此根据分类加法计数原理,抽出的3件中至少有1
2
1
+ C22 × C98
=9 506+98=9 604.
件是次品的抽法种数为C21 × C98
方法二 抽出的3件中至少有1件是次品的抽法种数,就是从100件产品中
(1)弄清要做的这件事是什么事;
(2)看选出的元素是否与顺序有关,也就是看是不是组合问题;
(3)结合两计数原理,利用组合数公式求出结果.
变式训练3在一次数学竞赛中,某学校有12人通过了初试,学校要从中选出5
人教B版高中数学选择性必修第二册精品课件 第三章 第1课时 组合与组合数、组合数的性质
答案:C
3.若C12
=
2-3
C12 ,则
n 的值为(
A.3或5
B.3或4
C.5
D.15
)
解析:由题意及组合数的性质,得n=2n-3或n+2n-3=12,解得n=3或n=5.故选
A.
答案:A
48
49
4.计算:C50
+ C50
=
48
解析:C50
49
+ C50
答案:1 275
=
49
C51
.
=
2
(2)从3,5,7,11中任取两个数相乘,不同的积有多少种?
以上两个问题中哪个是排列?(1)与(2)有何不同特点?
提示:(1)是排列.(1)中选取的两个数是有序的,(2)中选取的两个数是无序的.
2.(1)一般地,从n个不同对象中取出m(m≤n)个对象并成一组,称为从n个不
同对象中取出m个对象的一个组合.
成:
第一步,从 n 个不同对象中选出 m 个,有C 种选法;
第二步,将选出的 m 个对象做全排列,有A
种排法.
由分步乘法计数原理可知A
=
C
A
,因此C
=
A
.
A
2.组合数及其性质
组合数 m
n
公式
性质
备注
m
n(n-1)…[n-(m-1)]
n!
n
= m=
=
m m × (m-1) × … × 2 × 1 (n-m)!m!
A29 =72 种.因为选 2 名同学参加某项比赛不用考虑顺序,所以是组合问题,所以
人教B版选修23高中数学1.2.2组合word教案
组合【教学目标】①了解组合和组合数的意义,能运用所学的组合知识,正确地解决实际问题;②培育归纳归纳能力;③从中体会“化归”的数学思想【教学重点】组合、组合数的概念【教学难点】排列问题与组合问题的区分一、课前预习1.从n 个______的元素中,____________个元素________,叫做从n 个不同元素中掏出m 个元素的一个组合..... 两个组合相同的含义为:________________________________. 2.从n 个______的元素中______________个元素的所有组合的_______,叫做从n 个不同元素中掏出m 个元素的组合数,....用符号______表示.且组合数公式为)*,,.(___________n m N m n C m n ≤∈=排列数与组合数的关系:________=m n A . 组合数公式为.________________________===m n C 规定 0n C =______.3.组合数的性质:(1)__________________(2)__________________4.[试探] 如何区分排列问题与组合问题?二、课上学习例1、 (1)写出从甲、乙、丙三个元素种任取两个元素的所有组合:(请比较组合与排列的关系)(2) 写出从A,B,C,D,E 五个元素中任取3个元素的所有组合:例二、计算:(1)28310C C + (2)1010063858)(C C C C ++例3、计算(1)21025242322C C C C C ++++ (2)31019710098100)(A C C ÷+例4、此刻有4名女生,5名男生.(1)从当选2名同窗去参加会议,有多少种不同的选法?(2)从当选男、女生各2名去参加会议,有多少中不同的选法?(3)从当选2名同窗去参加会议,其中至少有1名女生,有多少种不同的选法?例五、车间有11名工人,其中5名男工是钳工,4名女工是车工,另外两名教师傅既能当车工又能当钳工.此刻要在这11名工人里选派4名钳工,4名车工修理一台机床,有多少种选派方式?例六、有6本不同的书按以下分派方式分派,问共有多少种不同的分派方式?(1)分成1本,2本,3本三组;(2)分给甲、乙、丙三人,其中一个人1本,一个人2本,一个人3本;(3)分成每组都是2本的三个组;(4)分给甲、乙、丙三个人,每一个人2本.三、课后练习1.平面上有5个点,其中任何3个点都不共线,那么能够连成的三角形的个数是().A8 .B7 .C6 .D102.从4台A型笔记本电脑和5台B型笔记本电脑中任意选取3台,其中至少要有A型和B 型笔记本电脑各一台,那么不同的选取方式共有().A140种.B84种.C70种.D35种3.从1,2,3,…,10这10个数字中任取四个数,使它们的和为奇数,共有_____种取法.4.将6种不同的礼物,平均分成3份,有多少种不同的分法?5.按以下条件,从12人当选出5人,有多少种不同的选法?(1)甲、乙、丙三人必需被选;(2)甲、乙、丙三人不能被选;(3)甲必需被选,乙、丙不能被选;(4)甲、乙、丙三人只有1人被选;(5)甲、乙、丙三人最多2人被选;(6)甲、乙、丙三人至少1人被选.6.有10名同窗,其中6名男生,4名女生去参加夏令营活动,为了活动需要,要从这10名学生中任意选取3名同窗去搜集自然标本.(1)共有多少种不同的选法?(2)恰有1名女生的选法有多少种?(3)恰有2名女生的选法有多少种?(4)至少有1名女生的选法有多少种?(5)最多有1名女生的选法有多少种?(6)恰有1名女生,再分派这3名同窗别离去三个不同的区域搜集标本,有多少种不同的选法?7.把四个不同的小球放入三个别离标有1~3号的盒子中:(1)不准有空盒子的放法有多少种?(2)许诺有空盒子的放法有多少种?(3)假设把四个小球别离标上1~4的标号,不准有空盒子且任意一个小球都不能放入标有相同标号的盒子中,共有多少种不同的放法?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1.2.2(1)组合与组合数
学习目标
1. 通过具体问题的分析学会区别排列与组合的问题;
学习过程
【任务一】示例问题分析
示例1:从甲、乙、丙3名同学中选出2名去参加某天的一项活动,其中1名同学参加上午的活动,1名同学参加下午的活动,有多少种不同的选法?
示例2:从甲、乙、丙3名同学中选出2名去参加一项活动,有多少种不同的选法?
【任务二】新课探究
1组合的概念:一般地,从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合
说明:⑴不同元素;⑵“只取不排”——无序性;⑶相同组合:元素相同 练一练:
判断下列问题是组合还是排列
(1)在北京、上海、广州三个民航站之间的直达航线上,有多少种不同的飞机票?有多少种不同的飞机票价?
(2)高中部11个班进行篮球单循环比赛,需要进行多少场比赛?
(3)从全班23人中选出3人分别担任班长、副班长、学习委员三个职务,有多少种不同的选法?选出三人参加某项劳动,有多少种不同的选法?
(4)10个人互相通信一次,共写了多少封信?(5)10个人互通电话一次,共多少个电话?
2.组合数的概念:从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,
叫做从n 个不同元素中取出m 个元素的组合数...
.用符号m n C 表示. 3.组合数公式的推导:
(1)从4个不同元素,,,a b c d 中取出3个元素的组合数34C 是多少呢?
【任务三】典型例题分析
例1:计算:(1)47C ; (2)710C ;
例2:证明(1)m n n m n C C -= (2) 11-++=m n
m n m n C C C 并用计数原理说明上述等式成立
例3:设,+∈N x 求321132-+--+x x x x C C 的值
【任务四】课后作业:
1.计算:(1)315C ; (2)3468C C ÷ (3)计算:69584737C C C C +++
2.求证:n m C 2+=n m C +12-n m C +2-n m C .
3.解方程:(1)3213113-+=x x C C ;(2)解方程:33322210
1+-+-+=+x x x x x A C C .。