高等数学专升本模拟试题2

合集下载

湖北省专升本(高等数学)模拟试卷2(题后含答案及解析)

湖北省专升本(高等数学)模拟试卷2(题后含答案及解析)

湖北省专升本(高等数学)模拟试卷2(题后含答案及解析) 题型有:1. 选择题 2. 填空题 4. 解答题 5. 综合题 6. 证明题选择题在每小题给出的四个选项中,只有一项是符合要求的。

1.函数y=lnx+arcsinx的定义域为( )A.(0,+∞)B.(0,1]C.[-1,1]D.[-1,0)正确答案:B解析:要使函数有意义,须,求解得:0<x≤1.选B2.函数f(x)=x是( )A.偶函数B.奇函数C.非奇非偶D.可能是奇函数也可能是偶函数正确答案:A解析:因f(-x)=-x=f(x).3.极限=( )A.2/3B.3/2C.0D.∞正确答案:B解析:用等价无穷小代换简单些,4.已知=6,则a,b取值为( )A.a=-2,b=-3B.a=0,b=-9C.a=-4,b=3D.a=-1,b=-6正确答案:B解析:因为当x→3时,分母→0必有分子→0,否则一定无极限,即有9+3a+b=0,应用洛必达法则,左端=(2x+a)=6+a=6,所以a=0,这时b=-9.5.要使函数f(x)(n为自然数)在x=0处的导函数连续,则n=( )A.0B.1C.2D.n≥3正确答案:D解析:A错,因函数在x=0处不连续;B错,虽然函数在x=0处连续,但不可导;C也错,函数在x=0处可导,进而函数在(-∞,+∞)上均可导,但导函数在x=0处不连续,下面证明所以当x→0时,f’(x)不存在,所以f’(x)在x=0处不连续;仅D正确,当n≥3时,f’(x)=当x≠0时,f’(x)=nxn-1sin,此时有f’(x)→f’(0)=0x→0所以导函数f’(x)在x=0处连续.6.曲线y=的渐近线有( )A.1条B.2条C.3条D.4条正确答案:B解析:当x→0时,y→∞,所以x=0为垂直渐近线,当x→∞时,y→π/4,所以y=π/4为水平渐近线,当x→1或x→-22时,y∞,所以在x=1,x=2处无渐近线.7.函数f(x)=(x2-x-2)|x3-x|不可导点个数是( )A.0B.1C.2D.3正确答案:C解析:因f(x)=(x-2)(x-1)|x||x+1||x-1|,可知函数在x=0,x=-1处不可导,而在x=1处函数可导,原因是函数g(x)=(x-1)|x-1|在x=1处左、右导数存在且相等,即g’(1)=0.8.函数f(x)在[a,b]上连续是积分∫abf(x)dx存在的( )A.充分条件B.必要条件C.充要条件D.既不充分又不必要正确答案:A解析:连续为条件,积分存在为结论,显然由|f(x)dx存在连续,肯定不是必要条件,但成立,所以连续为可积的充分条件,不是必要条件.9.若f(x)=∫0xsin(t-x)dt,则必有( )A.f(x)=-sinxB.f(x)=-1+cosxC.f(x)=sinxD.f(x)=1-sinx正确答案:A解析:令t-x=u,dt=du,t=0,u=-x,t=x,u=0所以f(x)=[-∫0-xsinudu]=-sin(-x).(-1)=-sinx.10.已知f’(x)连续,且f(0)=0,设φ(x)=则φ’(0)=( )A.f’(0)B.f’(0)C.1D.1/3正确答案:B解析:为求φ’(0),先判断φ(x)在x=0处连续,考虑=f(0)=0=φ(0),所以φ(x)在x=0处连续,而11.已知向量a、b的夹角为π/4,且|a|=1,|b|=则|a+b|=( )A.B.C.D.正确答案:D解析:因为|a+b|2=(a+b)2=a2+b2+2a.b=12+12.曲面x2+y2=1+2x2表示( )A.旋转单叶双曲面B.旋转双叶双曲面C.圆锥面D.椭球面正确答案:A解析:该曲面可看做由双曲线绕x轴旋转而成.13.极限=( )A.e-1B.eC.1D.0正确答案:A解析:14.设z=f(x,y)可微,且当y=x2时,f(x,y)=1及=x,则当y=x2(x≠0)时( ) A.1/2B.-C.0D.1正确答案:B解析:15.利用变量替换u=x,v=y/x,一定可把方程x=z化成( )A.B.C.D.正确答案:A解析:16.曲面xy+yz+zx=1在点P(1,-2,-3)处的切平面方程为( )A.5x+2y+z+2=0B.5x-2y+z+2=0C.5x+2y-z+2=0D.5x+2y-z-4=0正确答案:A解析:令F(x,y,z)=xy+yz+zx-1,则曲面上任一点处的切平面的法向量为:n=(Fx,Fy,Fz}={y+z,x+z,y+x}于是点P(1,-2,-3)处的切平面的法向量为:n1={-5,-2,-1}故切平面方程为:-5(x-1)-2(y+2)-(z+3)=0即5x+2y+z+2=0.17.设D由y2=x,y=x围成,则xydxdy=( )A.B.C.D.正确答案:C解析:观察被积函数先积谁都一样,再看积分区域D,应先积x,否则,会出现根号18.设D由x≥0,y≥0及x2+y2≤1所围成,则xy2dxdy=( )A.B.C.D.正确答案:C解析:用极坐标19.L为y=x3,y=x所围边界线第一象限部分,f(x,y)连续,则∫Lf(x,y)ds=( )A.B.C.D.正确答案:C解析:因为I=∫L=+∫AO=+∫OA当沿y=x3从O到A时,y’=3x2这时ds=dx当沿y=x从O到A时,y’=1,这时ds=dx所以∫Lf(x,y)dx=∫01f(x,x3)20.L是沿y=1-|1-x|从点O(0,0)到点B(2,0)的折线段,则曲线积分∫L(x2+y2)dx-(x2-y2)dy=( )A.5/3B.2/3C.4/3D.1正确答案:C解析:∫L=∫OA+∫AB=∫012x2dx+∫12[(x2+(2-x)2-(x2-(2-x)2]dx=21.A.收敛于0B.收敛于C.发散D.敛散性无法确定正确答案:B解析:22.已知幂级数在点x=2处收敛,则实数“的取值范围为( ) A.1<a≤3B.1≤a<3C.1<a<3D.1≤a≤3正确答案:A解析:由幂级数的系数可得其收敛半径为1,所以其收敛域为[a-1,a+1],因为2∈[a-1,a+1),即a-1≤2,2<a+1,所以1<a≤3.23.已知anx2n的收敛域是( ) A.[-1,3]B.[-2,2]C.D.[-4,4]正确答案:C解析:由已知条件知,幂级数的收敛半径为2,且在端点处收敛,所以级数antn收敛域为[-2,23,即-2≤t≤2,令t=x2,则-24.设连续函数f(x)满足f(x)=∫02xf(t/2)dt+ln2,则f(x)=( )A.exln2B.e2xln2C.ex+ln2D.e2x+ln2正确答案:B解析:f’(x)=f(x).2,即y’=2y,所以y=Ce2x,当x=0时,y=ln2,所以C=ln2,所以f(x)=e2xln2.25.微分方程y”+y’=2x2ex的特解应设为y*=( )A.(Ax2+Bx+C)exB.(Ax3+Bx2+Cx)exC.(Ax2+Bx+C)e-xD.(Ax3+Bx2+Cx)e-x正确答案:B解析:因为与方程对应的齐次方程y”+y’=0的通解为Y=C1+C2e-x,由于齐次方程中不含有ex,且原方程缺函数y,于是特解应设为:y*=(Ax2+Bx+C).x.ex.26.求极限=( )A.1B.0C.1/2D.2正确答案:C解析:(其中当x→1时,lnx~x-1).27.若un满足( )A.收敛B.发散C.敛散性不确定D.收敛于0正确答案:A解析:28.微分方程y”+xy’=1的通解为( )A.y=-x+C1ln|x|B.y=x+C1ln|x|+C2C.y=x+C2D.y=C1ln|x|+C2正确答案:B解析:微分方程变形(xy’)’=1,所以xy’=x+C,即y’=1+,所以通解为y=x+C1ln|x|+C2.29.函数f(x)在点x=1处可导,且,则f’(1)=( )A.B.C.D.正确答案:B解析:∴f’(1)=1/4.30.函数f(x)是连续函数,则∫-aax2[f(x)-f(-x)]dx=( )A.1B.2C.-1D.0正确答案:D解析:被积函数x2[f(x)-f(-x)]是奇函数,故∫-aax2[f(x)-f(-x)3dx=0.填空题31.设f(x)+f()=2x,其中x≠0,x≠1,则f(x)=_______.正确答案:解析:32.极限=8,则a=_______,b=_______.正确答案:-1;-4解析:联立①,②得a=-1,b=-4.33.曲线y=1/x上的切线斜率等于-的点的坐标为_______.正确答案:解析:设切点坐标34.设y=则dy|x=2=_______.正确答案:解析:该题若直接求较麻烦,可先利用对数性质展开.35.函数y=2x3-9x2+12x-3在区间(3,10)上为单调递_______.正确答案:增解析:y=2x3-9x2+12x-3,y’=6x2-18x+12=6(x-1)(x-2)驻点x=1;x=2.x<1,y’>0;1<x<2,y’<0;x>2,y’>0.故在区间(3,10)上曲线单调递增.36.曲线y=4-的拐点为_______.正确答案:(1,4)解析:y=4-,x>1,y”>0;x<1,y”<0,所以曲线拐点为(1,4).37.曲面z-ez4-2xy=3在点(1,2,0)处的切平面方程为_______.正确答案:2x+y-4=0解析:令F(x,y,z)=z-ez+2xy-3,则曲面上任一点处的切平面的法向量为:n=(Fx,Fy,Fz}={2y,2x,1-ez}于是,点(1,2,0)处的切平面的法向量为n1={4,2,0},故所求切平面方程为:4(x-1)+2(y-2)+0(z-0)=0即2x+y-4=0.38.已知f(x)的一个原函数为(1+sinx)lnx,则∫xf’(x)dx=_______.正确答案:x(cosxlnx+)-(1+sinx)lnx+C解析:由于∫xf’(x)dx=xf(x)-∫f(x)dx,又(1+sinx)lnx为f(x)的一个原函数,因为f(x)=[(1+3sinx)lnx]’=coslnx+则∫f(x)dx=(1+sinx)lnx+C.故∫xf’(x)dx=(x)dxxlnx+)-(1+sinx)lnx+C.39.函数y=∫0x(t-1)(t+1)2dt的极值点是_______.正确答案:x=1解析:y’=(x-1)(x+1)2,令y’=0.得x=0,x=1,x=-1.由于y的定义域为[0,+∞),因此,有唯一驻点x=1,当0<x<1时,y’<0,当x>1时,y’>0.所以x=1为极小值点.40.不定积分∫正确答案:ln|lnsinx|+C解析:41.已知点A(0,0,0),B(1,0,-1),C(0,1,2)则△ABC中BC边上的高为_______.正确答案:解析:42.设z=z(x,y)是由方程z-y-x+xez-y-x=0所确定,则dz=_______.正确答案:解析:F=z-y-x+xez-y-xFx=-1+ez-y-x-xez-y-x,Fy=-1-xez-y-x,Fz=1+xez-y-x因此,dz=(1-)dx+dy.本题也可方程两端取微分来做.43.设区域D由x=2,y=dxdy=_______.正确答案:解析:44.将函数y=展开为(x-5)的幂级数是_______.正确答案:)(n-5)2(2<x<7)解析:45.微分方程y”+y=xcos2x的特解应设为y*=_______.正确答案:y*=(ax+b)cos2x+(cx+d)sin2x解析:微分方程y”+y=xcos2x所对应的齐次方程为y”+y=0.特征方程为r2+1=0.特征根为r=±i,齐次方程的通解为Y=C1cosx+C2sinx.对于y”+y=x,由于方程含y.所以特解可设ax+b对于y”+y=cos2x考虑到齐次方程通解,所以特解可设ccos2x+dsin2x故原方程特解可设为y*=(ax+b)(ccos2x+dsin2x)即y*=(ax+b)cos2x+(cx+d)sin2x.解答题解答时应写出推理、演算步骤。

2024浙江专升本高数模拟卷2

2024浙江专升本高数模拟卷2

2024浙江•专升本高数•模拟卷2考试时间: 120分钟 班次: ____________姓名:___________一、单选题 (共5小题20分)1.x =0是f(x)={e x +1x <0,2x =0ln(1+x)x >0的( )A.可去间断点B.跳跃间断点C.连续点D.无穷间断点2.设a 1=x(cos √x −1),a 2=√xln(1+√x 3),a 3=√x +13−1, 当x →0+时,以上3个无穷小量按照从低阶到高阶的排序是( ) A.a 1,a 2,a 3 B.a 2,a 3,a 1 C.a 2,a 1,a 3D.a 3,a 2,a 13.设f(x)在(−∞,+∞)连续,下列说法正确的是( ) A.dd x [∫f(x)d x]=f(x)+C,C 为任意常数B.若f(x)在[a,b]上连续, 则f(x)在(a,b)上必有最大值和最小值C.对任意常数a,b , 总有∫a bf(x)d x =∫a bf(a +b −x)d x 成立 D.若f(x)为偶函数, 则f(x)的原函数一定是奇函数4.级数∑n=1∞(−1)n (1−cos βn )(β为常数且大于0)( )A.发散B.条件收敛C.绝对收玫D.收敛性与β有关5.设P =∫−1212cos 2x ∙ln 1−x1+x d x,N =∫−1212[cosx 2+ln 1−x1+x ]d x,M =∫−1212[xsin 2x −cos 2x ]d x , 则有( ) A.N <P <M B.M <P <N C.N <M <PD.P <M <N二、填空题 (共10小题40分)6.已知函数f(x)={x,x <0,0,x =0e x −2,x >0,则f[f(1)]=________.7.lim x→+∞x 3+x 2+12x+x 3sinx =_______ . 8.函数f(x)=13x 3−3x 2+9x 在区间[0,4]上的最大值为________.9.设y =f(x)由方程xy +2lnx =y 4确定,则曲线y =f(x)在点(1,1)处的切线方程为_______.10.极限lim n→∞1n (ln 2πn +ln 22πn +⋯+ln 2nπn )用定积分表示为________.11.lim x→0+(sinx x )11−cosx =_______.12.已知f(x)在x =1处可导, 且limΔx→0f(1+2Δx)−f(1)4Δx =2, 则f ′(1)=________.13.已知y =cos (x +lnx 2), 则d y =_______.14.设函数f(x)在(−∞,+∞)上连续, 且∫01f(x)d x =3, 则∫0π2cosxf(sinx)d x=__________.15.位于曲线y =1x (1+ln 2x )(e ⩽x <+∞)下方以及x 轴上方的无界区域的面积为_________.三、计算题 (共8小题60分)16.求极限limx→0e x2−e 2−2cosx x 4. 17.设f(x)={x1+e 1x,x ≠0,0,x =0,判断f(x)在x =0处的连续性与可导性.18.设y =(2x+3)4∙√x−6√x+13, 求y ′.19.求∫xtan 2x d x .20.∫−11(sin 3x +x 2)e −|x|d x . 21.一平面经过直线l:x+53=y−21=z4,且垂直于平面x +y −z +15=0, 求该平面的方程.22.求xy ′−y =2023x 2满足y |x=1=2024的特解.23.已知定义在(−∞,0)∪(0,+∞)上的可导函数f(x)满足方程f(x)−4x∫1xf(t)d t =x 2,试求: 该函数的单调区间、极值. 四、综合题 (共3小题20分)24.求∑n=1∞(−1)n−1n(2n−1)x2n 的收敛区间及其和函数. 25.设直线y =ax(0<a <1)与拋物线y =x 2围成图形D 1面积记作A 1;由直线y =ax(0<a <1)、抛物线y =x 2及直线x =1围成图形D 2面积记作A 2.26.设函数f(x)在[0,2]连续,(0,2)可导, 且f(0)=0,∫02f(x)d x =2, 试证明: 至少存在ξ∈(0,2), 使得f ′(ξ)=f(ξ)−ξ+1.。

江苏省专转本(高等数学)模拟试卷2(题后含答案及解析)

江苏省专转本(高等数学)模拟试卷2(题后含答案及解析)

江苏省专转本(高等数学)模拟试卷2(题后含答案及解析)题型有:1. 选择题 2. 填空题 4. 解答题 5. 综合题 6. 证明题选择题在每小题给出的四个选项中,只有一项是符合要求的。

1.已知连续函数f(x)满足f(x)=x2+x∫01f(x)dx,则f(x)=( )。

A.f(x)=x2+xB.f(x)=x2-xC.f(x)=x2+D.f(x)=x2+正确答案:C解析:用代入法可得出正确答案为C。

2.函数在x=0处( )。

A.连续但不可导B.连续且可导C.不连续也不可导D.可导但不连续正确答案:B解析:3.关于的间断点说法正确的是( )。

A.x=kπ+为可去间断点B.x=0为可去间断点C.x=kπ为第二类无穷间断点D.以上说法都正确正确答案:D解析:对于x=kπ,当k=0,即x=0时,,x=0为可去间断点。

当k≠0时,,x=kπ为第二类无穷间断点。

4.设D:x2+y2≤R2,则=( )。

A.=πR3B.∫02πdθ∫0Rrdr=πR2C.∫02πdθ∫0Rr2dr=πR3D.∫02πdθ∫0RR2dr=2πR3正确答案:C解析:在极坐标中,0≤r≤R,0≤θ≤2π,。

5.抛物面在点M0(1,2,3)处的切平面是( )。

A.6x+3y-2z-18=0B.6x+3y+2z-18=0C.6x+3y+2z+18=0D.6x-3y+2z-18=0正确答案:B解析:设切平面方程为6x+3y+2z-18=0。

6.幂级数的收敛半径是( )。

A.0B.1C.2D.+∞正确答案:B解析:,收敛半径。

填空题7.,则a=______,b=______。

正确答案:-4,3解析:并且x2+ax+b=0,所以a=-4,b=3。

8.u=f(xy,x2+2y2),其中f为可微函数,则=______。

正确答案:yf’1+2xf’2解析:令w=xy,v=x2+y2,则u=f(w,v),=f’w(w,v)·y+f’v(w,v)·2x。

专升本高等数学二(一元函数积分学)模拟试卷2(题后含答案及解析)

专升本高等数学二(一元函数积分学)模拟试卷2(题后含答案及解析)

专升本高等数学二(一元函数积分学)模拟试卷2(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题1.cos x的一个原函数是( )A.B.C.D.正确答案:B解析:+C(C为任意常数),可知当C=0时,cos x的一个原函数是,故选B.知识模块:一元函数积分学2.经过点(1,0)且在其上任一点x处的切线斜率为3x2的曲线方程是( )A.y=x3一1B.y=x2一1C.y=x3+1D.y=x3+C正确答案:A解析:因为y’=3x2,所以y=∫y’dx=x3+C,又过点(1,0),所以C=一1.知识模块:一元函数积分学3.已知∫f(x2)dx=+C,则f(x)= ( )A.B.C.D.正确答案:B解析:∫f(x2)dx=+C,两边求导得f(x2)=,所以f(x)=.知识模块:一元函数积分学4.∫xf(x2)f’(x2)dx= ( )A.f2(x2)+CB.f2(x2)+CC.f(x2)+CD.4f2(x2)+C正确答案:A解析:∫xf(x2)f’(x2)dx=∫f(x2)f’(x2)d(x2)=∫f(x2)df(x2)=f2(x2)+C.知识模块:一元函数积分学5.∫-11(3x2+sin5x)dx= ( )A.一2B.一1C.1D.2正确答案:D解析:∫-11(3x2+sin5x)dx=3∫-11x2dx+∫-11sin5xdx,因为f1(x)=x2为偶函数,所以∫-11x2dx=2∫01x2dx=,因为f2(x)=sin5x为奇函数,所以∫-11sin5xdx=0.故∫-11(3x2+sin5x)dx=×3=2.知识模块:一元函数积分学6.∫0xetdt= ( )A.exB.ex一1C.ex-1D.ex+1正确答案:A解析:因为∫axf(t)dt=f(x),故∫0xetdt=ex.知识模块:一元函数积分学7.设f(x)连续,则(∫0xtf(x2-t2dt)= ( )A.xf(x2)B.一xf(x2)C.2xf(x2)D.一2xf(x2)正确答案:A解析:∫0xtf(x2一t2)dt f(μ)dμ.则[∫0xtf(x2-t2)dt]=[∫0x2f(μ)dμ]=xf(x2),故选A.知识模块:一元函数积分学8.设函数f(x)=∫0xet2dt,则f’(0)= ( )A.0B.1C.2D.e正确答案:B解析:因为f(x)=∫0xet2dt,所以f’(x)=ex2,f’(0)=1.知识模块:一元函数积分学9.由曲线y=,直线y=x,x=2所围面积为( )A.∫12(一x)dxB.∫12(x一)dxC.∫12(2一)dy+∫12(2一y)dyD.∫12(2一)dx+∫12(2一x)dx正确答案:B解析:曲线y=与直线y=x,x=2所围成的区域D如图3—4所示,则SD=∫12(x一)dx.知识模块:一元函数积分学填空题10.=_________.正确答案:x—arctanx+C解析:=x—arctanx+C.知识模块:一元函数积分学11.已知函数f(x)在[0,1]上有连续的二阶导数,且f(0)=1,f(1)=2,f’(1)=3,则定积分∫01xf’’(x)dx的值等于_________.正确答案:2解析:∫01xf’’(x)dx=∫01xdf’(x)=xf’(x)|01-∫01f’(x)dx=f’(1)一[f(1)一f(0)]=3—2+1=2.知识模块:一元函数积分学12.设f(x)=e-x,则∫12dx=________.正确答案:解析:由f(x)=e-x知,f’(x)=一e-x,因此f’(lnx)=,所以.知识模块:一元函数积分学13.当p_________时,反常积分∫1+∞dx收敛.正确答案:<0解析:=xp-1,∫0+∞dx<∫0+∞xp-1dx=xp|0+∞,只有当P<0时,∫0+∞xp-1dx才收敛,也即∫0+∞dx收敛,故p <0时,∫0+∞dx收敛.知识模块:一元函数积分学14.由y=x3与y=所围成的图形绕Ox轴旋一周所得旋转体的体积为________.正确答案:解析:交于点(0,0),(1,1),故绕Ox轴旋转一周所得旋转体的体积为V=π∫01(x-x6)dx=.知识模块:一元函数积分学解答题15.求∫(x—ex)dx.正确答案:∫(x-ex)dx=∫xdx-∫exdx=一ex+C.涉及知识点:一元函数积分学16.计算.正确答案:涉及知识点:一元函数积分学17.求∫x2exdx.正确答案:∫x2exdx=∫x2dex=x2ex一∫2xexdx=x2ex一2∫xdex=x2ex一2(xex-∫exdx)=x2ex一2xex+2ex+C.涉及知识点:一元函数积分学18.计算.正确答案:令x=2sint,如图3—3,t∈,则dx=2costdt,涉及知识点:一元函数积分学19.求.正确答案:=sin1.涉及知识点:一元函数积分学20.设∫1+∞(—1)dx=1,求常数a,b.正确答案:由此积分收敛知,应有b一a=0,即b=a,故ln(1+a)=1,所以1+a=e,a=e一1,且b=e一1.涉及知识点:一元函数积分学21.若f(x)=∫01f(t)dt,求f(x).正确答案:设∫01f(t)dt=k,则两边同时在[0,1]上定积分得求得k=.涉及知识点:一元函数积分学22.已知∫0x(x一t)f(t)dt=1一cosx,证明:∫0f(x)dx=1.正确答案:因∫0x(x—t)f(t)dt=1一cosx,于是有∫0xx.f(t)dt—∫0xtf(t)dt=1一cosx,即x.∫0xf(t)dt—∫0xtf(t)dt=1一cosx,两边求导得∫0xf(t)dt+xf(x)一xf(x)=sinx,从而有∫0xf(t)dt=sinx,故=1.涉及知识点:一元函数积分学已知曲线y=x2,23.求该曲线在点(1,1)处的切线方程;正确答案:因为y’=2x,所以在点(1,1)处的切线方程为y=2(x一1)+1=2x 一1;涉及知识点:一元函数积分学24.求该曲线和该切线及直线y=0所围成的平面图形的面积S;正确答案:S=∫01;涉及知识点:一元函数积分学25.求上述平面图形绕x轴旋转一周所得旋转体的体积V.正确答案:V=∫01π(x2)2dx一.涉及知识点:一元函数积分学已知曲线y=(a>0)与曲线y=在点(x0,y0)处有公共切线,求26.常数a及切点(x0,y0);正确答案:由题设条件可得解此方程组可得a=,x0=e2,y0=1,于是切点为(e2,1).涉及知识点:一元函数积分学27.两曲线与x轴围成的平面图形的面积S.正确答案:画出曲线y=的图形,则两曲线与x轴围成的平面图形(如图3—7)的面积S=∫01(e2y一e2y2)dy=.涉及知识点:一元函数积分学。

[专升本类试卷]专升本高等数学二(向量代数与空间解析几何)模拟试卷2.doc

[专升本类试卷]专升本高等数学二(向量代数与空间解析几何)模拟试卷2.doc

[专升本类试卷]专升本高等数学二(向量代数与空间解析几何)模拟试卷2一、选择题1 设a、b为两个非零向量,λ为非零常数,若向量a+λb垂直于向量b,则λ等于( )(A)(B)(C)1(D)a.b2 设有单位向量a0,它同时与b=3i+j+4k,c=i+k垂直,则a0为 ( )(A)(B)i+j—k(C)(D)i-j+k3 在空间直角坐标系中,若向量a与Ox轴和Oz轴的正向夹角分别为45°和60°,则向量a与Oy轴正向夹角为 ( )(A)30°(B)45°(C)60°(D)60°或120°4 若两个非零向量a与b满足|a+b|=|a|+|b|,则 ( ) (A)a与b平行(B)a与b垂直(C)a与b平行且同向(D)a与b平行且反向5 直线 ( )(A)过原点且与y轴垂直(B)不过原点但与y轴垂直(C)过原点且与y轴平行(D)不过原点但与y轴平行6 平面2x+3y+4z+4=0与平面2x-3y+4z-4=0的位置关系是 ( ) (A)相交且垂直(B)相交但不重合,不垂直(C)平行(D)重合7 已知三平面的方程分别为π1:x-5y+2z+1=0,π2:3x-2y+3z+1=0,π3:4x+2y+3z-9=0,则必有 ( )(A)π1与π2平行(B)π1与π2垂直(C)π2与π3平行(D)π1与π3垂直8 平面π1:x-4y+z-2=0和平面π2:2x-2y-z-5=0的夹角为 ( )9 设球面方程为(x-1)2+(y+2)2+(z-3)2=4,则该球的球心坐标与半径分别为 ( ) (A)(一1,2,一3),2(B)(一1,2,一3),4(C)(1,一2,3),2(D)(1,一2,3),410 方程一=z在空间解析几何中表示 ( )(A)双曲抛物面(B)双叶双曲面(C)单叶双曲面(D)旋转抛物面11 方程(z-a)2=x2+y2表示 ( )(A)xOz面内曲线(z-a)2=x2绕y轴旋转而成(B)xOz面内直线z-a=x绕z轴旋转而成(C)yOz面内直线z-a=y绕y轴旋转而成(D)yOz面内曲线(z-a)2=y2绕x轴旋转而成12 下列方程在空间直角坐标系中所表示的图形为柱面的是 ( ) (A)=y2(B)z2—1=(C)(D)x2+y2一2x=0二、填空题13 向量a=3i+4j-k的模|a|=________.14 在空间直角坐标系中,以点A(0,一4,1),B(一1,一3,1),C(2,一4,0)为顶点的△ABC的面积为________.15 (a×b)2+(a.b)2=________.16 过点P(4,1,一1)且与点P和原点的连线垂直的平面方程为_________.17 通过Oz轴,且与已知平面π:2x+y一-7=0垂直的平面方程为________.18 直线=z与平面x+2y+2z=5的交点坐标是________.19 点P(3,7,5)关于平面π:2x一6y+3z+42=0对称的点P'的坐标为________.20 求垂直于向量a={2,2,1}与b={4,5,3}的单位向量.21 若|a|=3,|b|=4,且向量a、b垂直,求|(a+b)×(a一b)|.22 设平面π通过点M(2,3,一5),且与已知平面x—y+z=1垂直,又与直线平行,求平面π的方程.23 求过点A(-1,0,4)且平行于平面π:3x一4y+z-10=0,又与直线L0:相交的直线方程.24 求直线与平面x—y+z=0的夹角.25 求过点(2,1,1),平行于直线且垂直于平面x+2y一3z+5=0的平面方程.26 求点(一1,2,0)在平面x+2y-z+1=0的投影点坐标.27 求直线L:绕z轴旋转所得旋转曲面的方程.。

专升本高等数学一(多元函数积分学)模拟试卷2(题后含答案及解析)

专升本高等数学一(多元函数积分学)模拟试卷2(题后含答案及解析)

专升本高等数学一(多元函数积分学)模拟试卷2(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题1.化二重积分f(x,y)dσ为极坐标下的二次积分,其中D:4≤x2+y2≤9,正确的是( )A.∫02πdθ∫4θf(x,y)rdrB.∫02πdθ∫23f(x,y)rdrC.∫02πdθ∫23f(rcosθ,rsinθ)rdrD.∫02πdθ∫49f(rcosθ,rsinθ)rdr正确答案:C解析:该积分区域在极坐标系下可表示为:0≤θ≤2π,2≤r≤3,则该积分在极坐标系下为f(x,y)dσ=∫02πdθ∫23f(rcosθ,rsinθ)rdr,故选C.知识模块:多元函数积分学2.二次积分∫0dθ∫0cosθf(rcosθ,rsinθ)rdr可以写成( )A.B.C.D.正确答案:D解析:积分区域D为:0≤θ≤,0≤r≤cosθ,令x=rcosθ,y=rsinθ,则0≤x≤1,0≤x2+y2≤x,即0≤x≤1,0≤y≤,故二次积分可写成∫01dx,D也可表示为0≤y≤,故选D.知识模块:多元函数积分学3.若∫01dx∫x2xf(x,y)dy=∫01dy∫yφ(y)f(x,y)dx成立,则φ(y)= ( ) A.y2B.yC.D.正确答案:C解析:积分区域D可表示为0≤x≤1,x2≤y≤x,也可表示为0≤y≤1,y ≤x≤,故φ(y)=.知识模块:多元函数积分学4.设L为直线x+y=1上从点A(1,0)到B(0,1)的直线段,则∫L(x+y)dx—dy= ( )A.2B.1C.一1D.一2正确答案:D解析:用积分路径L可表示为:y=1一x,起点:x=1,终点:x=0,所以∫L(x+y)dx—dy=∫10dx+dx=-2.知识模块:多元函数积分学5.积与路径无关的是( )A.∫L(x2+y2)dx+dyB.∫Lxdx+xydyC.∫Ldx+xydyD.∫Lydx+xdy正确答案:D解析:A项,=1,故选D.知识模块:多元函数积分学6.L为从点(0,0)经点(0,1)到点(1,1)的折线,则∫Lx2dy+ydx= ( ) A.1B.2C.0D.一1正确答案:A解析:积分路径如图5—13所示,∫Lx2dy+ydx=x2dy+ydx+x2dy+ydx=0+∫01dx=1,故选A知识模块:多元函数积分学7.设曲线L的方程是x=acost,y=asint(a>0,0≤t≤2π),则曲线积分(x2+y2)nds=( )A.2πa2nB.2πa2n+1C.一πanD.πan正确答案:B解析:(x2+y2)nds=∫02π(a2)n dt=2πa2n+1.知识模块:多元函数积分学填空题8.当函数f(x,y)在有界闭区域D上________时,f(x,y)在D上的二重积分必存在.正确答案:连续解析:由二重积分的定义和极限存在的定义可知,当函数f(x,y)在有界闭区域D上连续时,f(x,y)在D上的二重积分必存在.知识模块:多元函数积分学9.设区域D={(x,y)|0≤x≤1,0≤y≤1},则=________.正确答案:2解析:=2SD=2.知识模块:多元函数积分学10.若D是中心在原点、半径为a的圆形区域,则(x2+y2)2dσ=_______.正确答案:πa6解析:(x2+y2)2dσ=∫02πdθ∫0ar4.rdr=a6×2π=πa6.知识模块:多元函数积分学11.设D是由Y=,y=x,y=0所围成的第一象限部分,则=_______.正确答案:解析:由题意,该积分易于在极坐标系下计算,又积分区域D可表示为:于是有知识模块:多元函数积分学12.交换I=∫01dx f(x,y)dy的次序为I=________.正确答案:∫01dy∫0y2f(x,y)dx+∫12dy f(x,y)dx解析:由0≤x≤1,得区域D如图5—3所示,D由x=y2,(y一1)2+x2=1,x=0围成,改变积分次序后区域需分2块.D可表示为D1+D2={(x,y)|0≤y≤1,0≤x≤y2}+{(x,y)|1≤y≤2,0≤x≤},则知识模块:多元函数积分学13.设区域D由y轴与曲线x=cosy(其中所围成,则二重积分3x2sin2ydxdy=________.正确答案:解析:知识模块:多元函数积分学14.L为三顶点分别为(0,0),(3,0),(3,2)的三角形正向边界,则(2x —y+4)dx+(5y+3x一6)dy=_______.正确答案:12解析:如图5—14所示,(2x—Y+4)dx+(5y+3x一6)dy==∫03(2x+4)dx+∫02(5y+3)dy+∫30xdx=21+16—25=12.知识模块:多元函数积分学15.设L为直线y=x一1上的点(1,0)到点(2,1)的直线段,则曲线积分∫L(x—y+2)ds=_______.正确答案:解析:∫L(x—y+2)ds=∫12(x一(x一1)+2).知识模块:多元函数积分学解答题16.计算∫0πdy dx.正确答案:积分区域又可表示为{(x,y)|0≤x≤,0≤y≤x2},则涉及知识点:多元函数积分学17.求,其中D由y=和y=x2围成.正确答案:如图5—4所示,区域D:0≤x≤1,x2≤y≤,故涉及知识点:多元函数积分学18.计算y2exydσ,其中D:0≤x≤1,0≤y≤1.正确答案:由题意可知y2exydσ=∫01dy∫01y2exydx=∫01(yey-y)dy=.涉及知识点:多元函数积分学19.求,其中D:0≤y≤x,0≤x≤.正确答案:根据被积函数的特点,选择先对y积分.区域D可表示为:{(x,y)|0≤x≤,0≤y≤x},.涉及知识点:多元函数积分学20.计算,其中D:4≤x2+y2≤9.正确答案:=∫02π(ln3-ln2)dθ=2πln.涉及知识点:多元函数积分学21.计算∫12dx.正确答案:由于作为y的函数,其原函数不能用初等函数表示,因此交换积分次序.区域D由直线y=x,x=1,x=4,y=2及抛物线y=所围成,如图5-7阴影部分所示,因此区域D可以写为D={(x,y)|1≤y≤2,y≤x≤y2},故∫12dx+∫24dx=∫12dy∫yy2=∫12=(2+π).涉及知识点:多元函数积分学22.计算二重积分,D:x2+y2≤R2,0≤y≤x,x≥0.正确答案:选择极坐标系计算,区域D的表示式为涉及知识点:多元函数积分学23.求,其中D是顶点分别为(0,0),(π,0)及(π,π)的三角形区域.正确答案:如图5—10所示区域D:0≤x≤π,0≤y≤x,故xsin(x+y)dσ=∫0πdx∫0xxsin(x+y)dy=∫0π(xcosx-xcos2x)dx=(xsinx+cosx—cos2x)|0π=一2.涉及知识点:多元函数积分学24.计算x3dy—y3dx,其中L为x2+y2=a2顺时针方向.正确答案:L为顺时针方向,即为反向,故x3dy—y3dx=一=-3x2一(一y2)dxdy=一3∫02πdθ∫0ar2.rdr=.涉及知识点:多元函数积分学25.计算对坐标的曲线积分I=∫L(x2+y)dx+(x-siny)dy,其中L是圆周y=上由点(0,0)到点(1,1)的一段弧.正确答案:P=x2+y,Q=x—siny,因为,所以曲线积分与路径无关,故可选择从(0,0)→(1,0)→(1,1),则I=∫L(x2+y)dx+(x—siny)dy=∫01x2dx+∫01(1-siny)dy=+1+cosy|01=+cos1.涉及知识点:多元函数积分学26.求曲线积分,其中L为如图5—1所示的闭路OAB,是x2+y2=a2上一段弧,端点为A(0,a),.正确答案:涉及知识点:多元函数积分学27.求∫L(y-x)ds,其中L:y=|1一x|—x;0≤x≤2.正确答案:当0≤x≤1时,y=1一x—x=1—2x当1≤x≤2时,y=x-1一x=一1.∫L(y-x)ds=∫01(1-2x)一x]+∫12(-1-x)=.涉及知识点:多元函数积分学。

成考专升本高数模拟试卷及答案(二)

成考专升本高数模拟试卷及答案(二)

成考专升本高数模拟试卷及答案(二)一、单项选择题(共10题,合计40分)A.ƒ(1,2)不是极大值B. ƒ(1,2)不是极小值C. ƒ(1,2)是极大值D. ƒ(1,2)是极小值解析:依据二元函数极值的充分条件,可知B2-AC<0且A>0,所以ƒ(1,2)是极小值,故选D.答案:D设函数ƒ(x)=sin(x2)+e-2x,则ƒˊ(x)等于( ).A.B.C.D.解析:本题主要考查复合函数的求导计算.求复合函数导数的关键是理清其复合过程:第一项是sin u,u=x2;第二项是eυ,υ=-2x.利用求导公式可知,故选B。

解析:用基本初等函数的导数公式,故选C。

由曲线y=-x2,直线x=1及x轴所围成的面积S等于().A. -1/3B. -1/2C. 1/3D. ½解析:选C。

解析:本题考查的知识点是根据一阶导数ƒˊ(x)的图像来确定函数曲线的单调区问.因为在x轴上方ƒˊ(x)>0,而ƒˊ(x)>0的区间为ƒ(x)的单调递增区间,所以选D.设100件产品中有次品4件,从中任取5件的不可能事件是().A. “5件都是正品”B. “5件都是次品”C. “至少有1件是次品”D. “至少有1件是正品”解析:本题考查的知识点是不可能事件的概念.不可能事件是指在一次试验中不可能发生的事件.由于只有4件次品,一次取出5件都是次品是根本不可能的,所以选B设函数ƒ(sinx)=sin2 x,则ƒˊ(x)等于().A. 2cos xB. -2sin xcosxC. %D. 2x试题解析:本题主要考查函数概念及复合函数的导数计算.本题的解法有两种:解法1先用换元法求出ƒ(x)的表达式,再求导.设sinx=u,则ƒ(x)=u2,所以ƒˊ(u)=2u,即ƒˊ(x)=2x,选D.解法2将ƒ(sinx)作为ƒ(x),u=sinx的复合函数直接求导,再用换元法写成ƒˊ(x)的形式.等式两边对x求导得ƒˊ(sinx)·COSx=2sin xCOSx,ƒˊ(sin x)=2sinx.用x换sin x,得ƒˊ(x)=2x,所以选D.设函数ƒ(x)在点x0处连续,则下列结论肯定正确的是().A.B.C. 当x→x0时, ƒ(x)- ƒ(x0)不是无穷小量D. 当x→x0时, ƒ(x)- ƒ(X0)必为无穷小量试题解析:本题主要考查函数在一点处连续的概念及无穷小量的概念.函数y=ƒ(x)在点x0处连续主要有三种等价的定义:二.填空题。

专升本模拟试题高数及答案

专升本模拟试题高数及答案

专升本模拟试题高数及答案一、选择题(每题3分,共30分)1. 函数f(x)=x^2-4x+3在区间[0,5]上的最大值是:A. 1B. 2C. 3D. 42. 已知某函数的导数为f'(x)=3x^2-2x,那么f(x)的原函数是:A. x^3 - x^2 + CB. x^3 - x + CC. x^3 + x^2 + CD. x^3 + x + C3. 曲线y=x^3-2x^2+x在点(1,0)处的切线斜率是:A. -1B. 0B. 1D. 24. 定积分∫[0,1] x^2 dx的值是:A. 1/3B. 1/4C. 1/2D. 15. 函数y=sin(x)的周期是:A. πB. 2πC. 3πD. 4π6. 函数f(x)=|x-1|在x=1处的连续性是:A. 连续B. 可导C. 不连续D. 不可导7. 若f(x)=e^x,g(x)=ln(x),则f(g(x))=:A. e^(ln(x))B. ln(e^x)C. xD. 1/x8. 极限lim(x→0) (sin(x)/x)的值是:A. 0B. 1C. ∞D. 不存在9. 级数∑[1/n^2](n从1到∞)是:A. 收敛B. 发散C. 条件收敛D. 无界10. 函数y=x^2在x=2处的泰勒展开式为:A. x^2 - 4x + 4B. x^2 - 4 + 4C. x^2 - 4x + 4 + O(x^3)D. x^2 - 4x + 4 + O(x^2)二、填空题(每题2分,共20分)11. 若函数f(x)=2x^3-3x^2+x-5,求f'(1)=________。

12. 定积分∫[1,2] (2x+1)dx=________。

13. 函数y=ln(x)在x=e处的导数值是________。

14. 函数y=x^2+3x+2在x=-1处的极小值是________。

15. 函数y=cos(x)的周期是________。

16. 函数y=x^3-6x^2+11x-6在x=2处的切线方程是________。

专升本高等数学二(函数、极限与连续)模拟试卷2(题后含答案及解析)

专升本高等数学二(函数、极限与连续)模拟试卷2(题后含答案及解析)

专升本高等数学二(函数、极限与连续)模拟试卷2(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题1.函数f(x)=与g(x)=x相同时,x的取值范围是( )A.一∞<x<+∞B.x>0C.x≥0D.x<0正确答案:C解析:x≥0时,f(x)=x=g(x),x<0时,f(x)=一x≠g(x),故选C.知识模块:函数、极限与连续2.下列函数中为偶函数的是( )A.x+sinxB.xcos3xC.2x+2-xD.2x一2-x正确答案:C解析:易知A,B,D均为奇函数,对于选项C,f(x)=2x+2-x ,f(一x)=2-x+2x=f(x),所以函数f(x)为偶函数,故选C.知识模块:函数、极限与连续3.函数f(x)在点x0处有定义是存在的( )A.充分条件B.必要条件C.充要条件D.以上都不对正确答案:D解析:极限是否存在与函数在该点有无定义无关.知识模块:函数、极限与连续4.如果,则n= ( )A.1B.2C.3D.0正确答案:B解析:根据“抓大头”的思想,即可知分子最高次数为3次,分母最高次数为n+1次,则有3=n+1,可得n=2.知识模块:函数、极限与连续5.下列等式成立的是( )A.B.C.D.正确答案:C解析:由=0.故选C.知识模块:函数、极限与连续6.设f(x)=∫0sinxsint2dt,g(x)=x3+x4,当x→0时( )A.f(x)与g(x)是等价无穷小B.f(x)是比g(x)高阶无穷小C.f(x)是比g(x)低阶无穷小D.f(x)与g(x)是同阶但非等价无穷小正确答案:D解析:故f(x)与g(x)是同阶但非等价无穷小.知识模块:函数、极限与连续7.设当x→0时,(1一cosx)ln(1+x2)是比xsinxn高阶的无穷小,而xsinxn 是比ex2—1高阶的无穷小,则正整数n等于( )A.1B.2C.3D.4正确答案:B解析:当x→0时,(1-cosx)ln(1+x2)~x2.x2=x4,xsinn~xn+1,ex2一1~x2,又由题中条件可知,n=2.知识模块:函数、极限与连续8.设函数f(x)=在x=0处连续,则k等于( ) A.e2B.e-2C.1D.0正确答案:A解析:由=e2,又因f(0)=k,f(x)在x=0处连续,故k=e2.知识模块:函数、极限与连续9.函数f(x)=在点x=1处为( )A.第一类可去间断点B.第一类跳跃间断点C.第二类间断点D.不能确定正确答案:A解析:f(x)==-2,所以f(x)在x=1处为第一类可去间断点,故选A.知识模块:函数、极限与连续填空题10.设函数y=f(x2)的定义域为[0,2],则f(x)的定义域是_________.正确答案:[0,4]解析:由题意得0≤x2≤4,令t=x2,则0≤t≤4,则f(t)也即是f(x)的定义域为[0,4].知识模块:函数、极限与连续11.已知f(x+1)=x2+2x,则f(x)= _________.正确答案:x2一1解析:方法一:变量代换令μ=x+1,则x=μ一1,f(μ)=(μ一1)2+2(μ-1)=μ2一1,所以f(x)=x2一1.方法二:还原法f(x+1)=x2+2x=(x2+2x+1)一1=(x+1)2一1,所以f(x)=x2一1.知识模块:函数、极限与连续12.=________.正确答案:解析:这是∞一∞型,应先通分合并成一个整体,再求极限..知识模块:函数、极限与连续13.=8,则a=________.正确答案:ln2解析:=e3a=8,所以a=ln2.知识模块:函数、极限与连续14.设f(x)=问当k=________时,函数f(x)在其定义域内连续.正确答案:1解析:由=1。

浙江专升本(高等数学)模拟试卷2(题后含答案及解析)

浙江专升本(高等数学)模拟试卷2(题后含答案及解析)

浙江专升本(高等数学)模拟试卷2(题后含答案及解析)题型有:1. 选择题 2. 填空题 4. 解答题 5. 综合题选择题在每小题给出的四个选项中,只有一项是符合要求的。

1.下列关于连续与间断的表述正确的是( )A.如果f(x)在x=a处连续,那么|f(x)|在x=a处连续.B.如果|f(x)|在x=a处连续,那么f(x)在x=a处连续.C.如果f(x)在R上连续,φ(x)在R上有定义,且有间断点,则φ(f(x))必有间断点.D.如果φ(x)在R上有定义,且有间断点,则φ2(x)必有间断点.正确答案:A解析:B选项,构造f(x)=,x=0处间断,但|f(x)|在x=0连续;C选项,构造φ(x)=sgnx,f(x)=ex,则φ(f(x))连续;D选项,构造φ(x)=,但φ2(x)在R上连续.通过排除法知:A正确.2.设,则f(x)在x=1处( )A.左、右导数都存在B.左导数存在,右导数不存在C.左导数不存在,右导数存在D.左、右导数都不存在正确答案:B解析:因f′(1)==2,f′+(1)==∞,故该函数的左导数存在,右导数不存在,可见选项B正确.3.下列等式中,正确的结果是:( )A.∫f′(x)dx=f(x)B.∫df(x)=f(x)C.∫f(x)dx=f(x)D.d∫f(x)=f(x)+c正确答案:C解析:由不定积分和原函数概念可知∫f′(x)dx=f(x)+c,∫df(x)=f(x)+C,∫f(x)dx=f(x),由微分与导数关系可知d∫f(x)dx=f(x)dx,可见选项C正确.4.已知向量=j+3k,则△OAB的面积是( )A.B.C.D.正确答案:A解析:根据向量叉积的几何意义得S△AOB===-3i-3j+k,所以,可见选项A正确.5.下列级数发散的是( )A.B.C.D.(a≠0常数)正确答案:D解析:发散,故D 正确.填空题6.设函数f(x)=,则其第一类间断点为__________.正确答案:x=1解析:==0.故x=1是函数f(x)的第一类跳跃间断点.7.设向量a与单位向量j成60°,与单位向量k成120°,且|a|=5,则a=___________.正确答案:a=(5,)解析:由题意设向量a的方向角为α,60°,120°,故由cos2α+cos260°+cos2120°=1.可得cos2α=,即a=8.设,g(x)=ex,则g[f(ln2)]=___________.正确答案:e解析:据题意知f(ln2)=1,所以g[f(ln2)]=g(1)=e1=e9.设y=ex(C1sinx+C2cosx)为某二阶常系数齐次线性微分方程的通解,则该方程为___________.正确答案:y″一2y′+2y=0解析:由通解可知该方程的特征根为r1=1+i,r2=1一i,从而可知特征方程为r2一2r+2=0,故此二阶常系数齐次线性微分方程为y″一2y′+2y=0.10.若一ax一ab)=2,则a=___________,b=___________.正确答案:a=1,b=-3解析:由一(ax+b+2)]=0直线y=ax+b+2可看成f(x)==1b+2==-1,故b=-3.11.已知f(0)=2,f(2)=3,f′(2)=4,则xf″(x)dx=___________.正确答案:7解析:f′(x)dx=2f′(2)一[f(x)]=2f′(2)一f(2)+f(0)=7.12.设y=(1+sinx)x,则dy|x=π=___________.正确答案:一πdx解析:对数求导法,lny=xln(1+sinx),则y=ln(1+sinx)+.所以y′=[ln(1+sinx)+|x=π=-π,因此,dy|x=π=-πdx.13.设f′(0)=1,f(0)=0,则=___________.正确答案:解析:14.设tetdt,则常数a=___________.正确答案:a=2解析:左边=ea,右边etdt=aea-et=(a-1)a,所以ea=(a-1)ea,故a=2.15.dx=___________.正确答案:+C解析:dx=+C解答题解答时应写出推理、演算步骤。

专升本高等数学二(向量代数与空间解析几何)模拟试卷2(题后含答

专升本高等数学二(向量代数与空间解析几何)模拟试卷2(题后含答

专升本高等数学二(向量代数与空间解析几何)模拟试卷2(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题1.设a、b为两个非零向量,λ为非零常数,若向量a+λb垂直于向量b,则λ等于( )A.B.C.1D.a.b正确答案:B解析:向量a+λb垂直于向量b,则(a+λb).b=0,则λ=.知识模块:向量代数与空间解析几何2.设有单位向量a0,它同时与b=3i+j+4k,c=i+k垂直,则a0为( )A.B.i+j—kC.D.i-j+k正确答案:A解析:a=c×b==i+j一k,又a0为a的单位向量,故a0=.知识模块:向量代数与空间解析几何3.在空间直角坐标系中,若向量a与Ox轴和Oz轴的正向夹角分别为45°和60°,则向量a与Oy轴正向夹角为( )A.30°B.45°C.60°D.60°或120°正确答案:D解析:由cos2α+cos2β+cos2γ=1,且cosα=,所以向量a与Oy轴正向夹角为60°或120°.知识模块:向量代数与空间解析几何4.若两个非零向量a与b满足|a+b|=|a|+|b|,则( )A.a与b平行B.a与b垂直C.a与b平行且同向D.a与b平行且反向正确答案:C解析:|a|+|b|=|a+b|,(|a|+|b|)2=|a|2+|b|2+2|a||b|=(|a+b|)2=|a|2+|b|2+2ab=|a|2+|b|2+2|a||b|cos〈a,b〉,即cos〈a,b〉=1,故两向量平行,若二者反向则|a|+|b|>|a+b|.不满足条件,故两向量平行且同向.知识模块:向量代数与空间解析几何5.直线( )A.过原点且与y轴垂直B.不过原点但与y轴垂直C.过原点且与y轴平行D.不过原点但与y轴平行正确答案:A解析:若直线方程为,令比例系数为t,则直线可化为本题x0=y0=z0=0说明直线过原点,又β=0,则y=0,即此直线在平面xOz内,即垂直于y轴,故选A.知识模块:向量代数与空间解析几何6.平面2x+3y+4z+4=0与平面2x-3y+4z-4=0的位置关系是( )A.相交且垂直B.相交但不重合,不垂直C.平行D.重合正确答案:B解析:2×2-3×3+4×4=11,且两平面的法向量的对应分量不成比例,故两平面的位置关系是相交,但不垂直,不重合.知识模块:向量代数与空间解析几何7.已知三平面的方程分别为π1:x-5y+2z+1=0,π2:3x-2y+3z+1=0,π3:4x+2y+3z-9=0,则必有( )A.π1与π2平行B.π1与π2垂直C.π2与π3平行D.π1与π3垂直正确答案:D解析:三个平面的法向量分别为n1={1,一5,2},n2={3,一2,3},n3={4,2,3},n1.n2=19,n2.n3=17,n1.n3=0,故π1与π3垂直.知识模块:向量代数与空间解析几何8.平面π1:x-4y+z-2=0和平面π2:2x-2y-z-5=0的夹角为( )A.B.C.D.正确答案:B解析:平面π1的法向量,n1={1,一4,1},平面π2的法向量n2={2,一2,一1},cos〈n1,n2〉=,故〈n1,n2〉=,故选B.知识模块:向量代数与空间解析几何9.设球面方程为(x-1)2+(y+2)2+(z-3)2=4,则该球的球心坐标与半径分别为( )A.(一1,2,一3),2B.(一1,2,一3),4C.(1,一2,3),2D.(1,一2,3),4正确答案:C解析:(x-1)2+[y一(一2)]2+(z-3)2=22,所以,该球的球心坐标与半径分别为(1,一2,3),2.知识模块:向量代数与空间解析几何10.方程一=z在空间解析几何中表示( )A.双曲抛物面B.双叶双曲面C.单叶双曲面D.旋转抛物面正确答案:A解析:方程一=z满足双曲抛物面=z(p和q同号)的形式,故方程=z在空间解析几何中表示双曲抛物面.知识模块:向量代数与空间解析几何11.方程(z-a)2=x2+y2表示( )A.xOz面内曲线(z-a)2=x2绕y轴旋转而成B.xOz面内直线z-a=x绕z轴旋转而成C.yOz面内直线z-a=y绕y轴旋转而成D.yOz面内曲线(z-a)2=y2绕x轴旋转而成正确答案:B解析:方程(z-a)2=x2+y2形式表示旋转后的曲面方程形式是h(z,)=0,其是xOz面上的曲线z-a=x绕z轴旋转得到的曲面方程,故选B.知识模块:向量代数与空间解析几何12.下列方程在空间直角坐标系中所表示的图形为柱面的是( ) A.=y2B.z2—1=C.D.x2+y2一2x=0正确答案:D解析:A项表示的是正锥面,B项表示的是单叶双曲面,C项表示的是椭球面,D项可写为(x-1)2+y2=1,其图形为圆柱面,故选D.知识模块:向量代数与空间解析几何填空题13.向量a=3i+4j-k的模|a|=________.正确答案:解析:|a|=.知识模块:向量代数与空间解析几何14.在空间直角坐标系中,以点A(0,一4,1),B(一1,一3,1),C(2,一4,0)为顶点的△ABC的面积为________.正确答案:解析:知识模块:向量代数与空间解析几何15.(a×b)2+(a.b)2=________.正确答案:a2.b2解析:(a×b)2=|a|2|b|2sin2θ,(a.b)2=|a|2|b|2cos2θ,θ=〈a,b〉,(a×b)2+(a.b)2=|a|2|b|2=a2.b2.知识模块:向量代数与空间解析几何16.过点P(4,1,一1)且与点P和原点的连线垂直的平面方程为_________.正确答案:4z+y—z-18=0解析:由点P与原点的连线和所求平面垂直,因此就是平面的法向量.所以n=={4,1,一1},平面又过点P,所以由点法式得平面的方程为4(x-4)+(y-1)-(z+1)=0,即4x+y一2—18=0.知识模块:向量代数与空间解析几何17.通过Oz轴,且与已知平面π:2x+y一-7=0垂直的平面方程为________.正确答案:x一2y=0解析:过Oz轴的平面方程可设为Ax+By=0(A,B不全为零),则法向量n={A,B,0},因为所求平面与已知平面垂直,又已知平面法向量为{2,1,},故可知2A+B=0,即B=一2A,因此,所求平面方程为x一2y=0.知识模块:向量代数与空间解析几何18.直线=z与平面x+2y+2z=5的交点坐标是________.正确答案:(1,1,1)解析:设=z=t,则交点Q(3t一2,一2t+3,t),又点Q∈平面π,即3t-2+2(-2t+3)+2t=5,解得t=1,故交点为Q(1,1,1).知识模块:向量代数与空间解析几何19.点P(3,7,5)关于平面π:2x一6y+3z+42=0对称的点P’的坐标为________.正确答案:解析:过点P(3,7,5)且垂直于平面π:2x一6y+3z+42=0的直线方程可写为,设点P’的坐标为(2t+3,一6t+7,3t+5),故PP’的中点坐标为(t+3,一3t+7,+5),且该点在平面内,即2(t+3)一6(一3t+7)+3(+5)+42=0,解得t=一,故P’=.知识模块:向量代数与空间解析几何解答题20.求垂直于向量a={2,2,1}与b={4,5,3}的单位向量.正确答案:由向量积的定义可知,向量c=a×b是既垂直于向量a,又垂直于向量b的向量,因此为所求单位向量.由于c==i一2j+2k,因此为所求单位向量.涉及知识点:向量代数与空间解析几何21.若|a|=3,|b|=4,且向量a、b垂直,求|(a+b)×(a一b)|.正确答案:因为(a+b)×(a-b)=一a×b+b×a=2b×a,所以|(a+b)×(a-b)|=2|b||a|sin〈a,b〉=24.涉及知识点:向量代数与空间解析几何22.设平面π通过点M(2,3,一5),且与已知平面x—y+z=1垂直,又与直线平行,求平面π的方程.正确答案:用一般式求之.设平面π的方程为Ax+By+Cz+D=0,则从而,平面π的方程为x一2y一3z=11.涉及知识点:向量代数与空间解析几何23.求过点A(-1,0,4)且平行于平面π:3x一4y+z-10=0,又与直线L0:相交的直线方程.正确答案:用两点式求之.过点A(-1,0,4)与已知平面π:3x一4y+z一10=0平行的平面π1的方程为3(x+1)一4y+(z一4)=0,将直线L0的方程化为参数式并代入π1中,求得t=16.于是直线L0与平面π1的交点B为B(15,19,32),={16,19,28},所求直线方程为.涉及知识点:向量代数与空间解析几何24.求直线与平面x—y+z=0的夹角.正确答案:因为直线的方向向量为s={2,3,2},平面的法向量为n={1,一1,1},所以直线与平面的夹角φ的正弦为sinφ=.所以φ=arcsin.涉及知识点:向量代数与空间解析几何25.求过点(2,1,1),平行于直线且垂直于平面x+2y 一3z+5=0的平面方程.正确答案:直线的方向向量为s={3,2,一1},平面的法向量为n1={1,2,一3},s×n1==一4i+8j+4k,于是所求平面方程为(x一2)一2(y 一1)-(z-1)=0,即x一2y-z+1=0.涉及知识点:向量代数与空间解析几何26.求点(一1,2,0)在平面x+2y-z+1=0的投影点坐标.正确答案:过点(一1,2,0)且与平面x+2y-z+1=0垂直的直线方程为,所以设该垂线与平面x+2y—z+1=0的交点为Q(t一1,2t+2,一t),即点Q就是点(一1,2,0)在平面π:x+2y-z+1=0上的投影点,由点Q ∈π,将Q(t一1,2t+2,一t)代入到平面方程中可得t-1+2(2t+2)+t+1=0,解之得t=一.涉及知识点:向量代数与空间解析几何27.求直线L:绕z轴旋转所得旋转曲面的方程.正确答案:设(x,y,z)是旋转曲面上任何一点,它对应于L上的点为(x0,y0,z0),由L的参数式可得由于(x,y,z)与(x0,y0,z0)到z轴的距离相等,所以有关系式x2+y2=x02+y02=1+t2,另外z=z0,所以z=1+2t,t=,得x2+y2一=1,即为一单叶双曲面方程.涉及知识点:向量代数与空间解析几何。

陕西专升本(高等数学)模拟试卷2(题后含答案及解析)

陕西专升本(高等数学)模拟试卷2(题后含答案及解析)

陕西专升本(高等数学)模拟试卷2(题后含答案及解析)题型有:1. 选择题 2. 填空题 5. 综合题 6. 证明题选择题在每小题给出的四个选项中,只有一项是符合要求的。

1.y=ln(x2+2)在x=0处取得其定义域上的( )A.极大值但不是最大值B.极大值且是最大值C.极小值但不是最小值D.极小值且是最小值正确答案:D解析:函数的定义域为(一∞,∞),又令y’=0,得驻点x=0.当一∞<x<0时,y’<0;当0<x<+∞时,y’>0.故x=0是函数y=ln(x2+2)的极小值点.在(一∞,+∞)内函数只有惟一极小值点,所以x=0又是最小值点.故选D。

2.=( )A.arctanx+CB.C.D.正确答案:C解析:.故选C.3.设a=|1,2,一3|,若b平行于a,且,则向量b是( )A.±{1,2,一3}B.±{2,4,一6}C.{一2,一4,一6}D.{2,一4,6}正确答案:B解析:故得λ=±2,从而b=±2a一±|2,2,一6|,故选B.4.级数的收敛域是( )A.[一3,一3)B.[一3,3]C.(一3,3)D.(一3,3]正确答案:A解析:这是调和级数,它是发散的.当x=一3时,级数成为这是莱布尼兹型级数,它是收敛的.综上可知,原幂级数的收敛区间是[一3,3).故选A.5.方程y’’一4y’一5y=e-x一+sin5x的待定特解形式可设为( )A.y=A1e-x+B1sin5xB.y=A1e-x+B1cos5x+B2sin5xC.y=A1ex+B1cos5xD.y=A1xe-x+B1cos5x+B2sin5x正确答案:D解析:方程对应的齐次方程为y’’一4y’一5y=0它的特征方程为r2一4r一5=0,特征值为r1=5,r2=一1因此方程y’’一4y’一5y—e-x+sin5x的通解为y=C1e5x+C2e-x+y10+y20其中y10是y’’一4y’一5y=e-x的特解,且形式为y10=A1xe-x;y20是y’’一4y’一5y—sin5x的特解,且形式为y20=B1cos5x+B2sin5x 所以,原方程的特解形式为y10+y20一A1xe+B1cos5x+B2sin5x,故选D.填空题6.设函数f(x)在点x=x0处可导,且f’(x0)=3,则__________.正确答案:6解析:7.若f’(sin2x)=cos4x,则f(x)=_________.正确答案:解析:8.设函数f(x)=(2x一1)(x一3)(x一7),则方程f’(x)=0有________个实根.正确答案:2解析:因为f(x)有三个零点,x2=3,x3=7,故在区间,[-3,7]上分别应用罗尔定理,知f’(x)在两个区间内至少各有一个零点,即方程f’(x)=0至少有两个实根。

河南省专升本(高等数学)模拟试卷2(题后含答案及解析)

河南省专升本(高等数学)模拟试卷2(题后含答案及解析)

河南省专升本(高等数学)模拟试卷2(题后含答案及解析)题型有:1. 选择题 2. 填空题 4. 解答题 5. 综合题 6. 证明题选择题在每小题给出的四个选项中,只有一项是符合要求的。

1.函数y=arcsin的定义域为( )A.(-1,1)B.[0,4]C.[0,1)D.[0,1]正确答案:C解析:若函数有意义,则满足1-x2>0且|-1|≤1,求解得{x|0≤x<1},所以选C.2.极限= ( )A.3B.C.0D.不存在正确答案:B解析:原式3.点x=0是函数y=的( )A.连续点B.可去间断点C.跳跃间断点D.第二类间断点正确答案:C解析:当x=0时,函数无意义,故x=0为间断点,又=0,故x=0为函数的跳跃间断点,选C.4.设f(x)=sint2dt,g(x)=x3+x4,则当x→0时,f(x)是比g(x)的( ) A.等价无穷小B.同阶非等价无穷小C.高阶无穷小D.低阶无穷小正确答案:B解析:,故选B.5.设f(x)在x=2处可导,且f’(2)=1,则= ( )A.1B.2C.3D.4正确答案:C解析:因f’(2)=1,所以6.设曲线y=x2+ax+1在点x=1处的切线斜率为-1,则常数a为( ) A.-3B.-2C.-1D.0正确答案:A解析:由题意,y’=x2+ax+1,当x=1时,y’=-1,即2×1+a=-1,得a=-3.7.设y=,则dy= ( )A.B.C.exdxD.exlnxdx正确答案:A解析:因y=,则dy=8.设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),则曲线y=f(x)在(a,b)内平行于x轴的切线( )A.仅有一条B.至少有一条C.有两条D.不存在正确答案:B解析:由题设知,f(x)在[a,b]上满足罗尔定理的条件,由定理的几何意义知,选项B正确.9.函数y=ax2+c在区间(0,+∞)内单调增加,则a,c满足( )A.a&lt;0,且c≠0B.a&gt;0,且c≠0C.a&lt;0,且c为任意实数D.a&gt;0,且c为任意实数正确答案:D解析:因y=ax2+c在(0,+∞)内递增,则y’=2ax>0,又x∈(0,+∞),于是a>0,由于对c无要求,故c可以取任意实数,选项D正确.10.函数y=的最大值是( )A.B.C.D.正确答案:B解析:因y’=,令y’=0,得驻点x=0或x=-4;又x0;x>0时,y’;在x=0处取得极大值,极大值为f(0)==0,故函数的最大值为.选项B正确.11.设x=atcost,y=atsint,(a≠0),则= ( )A.B.C.D.正确答案:A解析:12.设f’(2x-1)=ex,则f(x)= ( )A.B.C.D.正确答案:B解析:因f’(2x-1)=ex,故f’(x)=,故f(x)=+C13.设f(x)=e-x,则= ( )A.e-x4+CB.+CC.-e-x4+CD.+C正确答案:B解析:令lnx=u,则=∫f’(lnx)dlnx=f(u)+C=f(lnx)+C=e-lnx+C=+C14.设f(x)在[0,]上连续,f(x)=xcosx+= ( ) A.-1B.0C.1D.正确答案:A解析:令f(x)dx=a(a为常数),则f(x)=xcosx+a,对等式两边在[0,]上积分得,即a=-1.所以f(x)dx=-1.15.下列广义积分收敛的是( )A.B.C.D.正确答案:C解析:对于C,=1收敛,所以选C.16.下列不等式成立的是( )A.B.C.D.正确答案:B解析:对于B,因1≤x≤2,则x3>x2,故,所以选B.17.设平面π:2x+y+kz-1=0与直线:平行,则k= ( )A.5B.4C.3D.2正确答案:A解析:因平面,π的法向量={2,1,k},直线的方向向量={3,4,-2},因直线与平面平行,所以=0,即{2,1,k}.{3,4,-2}=2×3+1 ×4+k×(-2)=0,即k=5,选A.18.方程x2+y2-z2=0表示的二次曲面是( )A.球面B.旋转抛物面C.圆锥面D.圆柱面正确答案:C解析:x2+y2-z2=0可看做是绕z轴旋转形成的曲面,是圆锥面.19.设z=tan(xy-x2),则=( )A.B.C.D.正确答案:A解析:=sec2(xy-x2).(y-2x)=,选A.20.设z=u2lnv,u=,则dz= ( )A.2y3dx+3xy2dyB.y3dx-3xdyC.y3dx+3xy2dyD.2xy3dx+3x2y2dy正确答案:C解析:先将函数进行复合,得z==xy3.故dz=y3dx+3xy2dy,选C.21.交换积分次序,= ( )A.B.C.D.正确答案:B解析:因已知积分的积分区域D可表示为D=D1+D2,其中,D1:{(x,y)|0≤x≤1,}D2:{(x,y)|1≤x≤4,x-2≤y≤}其图形如第21题图所示,区域D又可表示为D:{(x,y)|-1≤y≤2,y2≤x≤y+2}于是,原积分交换积分次序后为:,选项B正确.22.设D={(x,y)|0≤x≤2,0≤y≤1},则eydxdy= ( )A.2(e-1)B.(e-1)2C.2eD.e+1正确答案:A解析:原式==2(e-1),选A.23.设L是逆时针方向的第一象限圆周:x2+y2=1,则∮L(x+y)dx+(x-y)dy= ( )A.-2B.-1C.0D.1正确答案:B解析:因P(x,y)=z+y,Q(x,y)=x-y,则,所以积分与路径无关,故原积分为:24.旋转曲面x2-y2-z2=1是( )A.xOy平面上的双曲线x2-y2=1绕y轴旋转所得B.xOy平面上的双曲线x2-y2=1绕z轴旋转所得C.xOy平面上的双曲线x2-y2=1绕x轴旋转所得D.xOy平面上的圆x2+y2=1绕x轴旋转所得正确答案:C解析:由旋转曲面的方程特征知,选项C正确.25.下列级数中,收敛的是( )A.B.C.D.正确答案:C解析:选项A,→1,(n→∞),故发散;选=1故发散.选项C,un=,故该级数是ρ=>1的P级数,收敛;选项D,是p=2102<1的P级数,发散,所以选C.26.下列级数中,条件收敛的是( )A.B.C.D.正确答案:B解析:选项A,C,D是绝对收敛,选项B,根据莱布尼兹判别法和p级数的特点容易判断是条件收敛.27.幂级数的收敛区间(不包括端点)为( )A.(-2,2)B.(-1,2)C.(-1,3)D.(-2,3)正确答案:C解析:因an1=,从而收敛半径R==2,收敛区间为-2<x-1<2,即-1<x<3.28.如果连续函数f(x)满足:f(x)=dt+2,则f(x)= ( )A.2exB.2e2xC.2e3xD.2e-x正确答案:B解析:因f(x)=+2,两边求导,得f’(x)=2f(x),于是f(x)=Ce2x,同时注意到f(0)=2,故C=2,即f(x)=2e2x29.微分方程y’’-3y’+2y=0的通解为( )A.y=C1e-x+C2e-2xB.y=C1e-x+C2e2xC.y=C1ex+C2e-2xD.y=C1ex+C2e2x正确答案:D解析:因方程的特征方程为:r2-3r+2=0,故有特征根r1=1,r2=2,于是方程的通解为y=C1ex+C2e2x30.微分方程y’’-7y’+6y=ex的特解可设为( )A.y*=Ce*B.y*=Cxe*C.y*=(ax+b)e*D.y*=Cx*e*正确答案:B解析:因方程的特征方程为r2-7r+6=0,特征根为r1=1,r2=6,而自由项f(x)=ex,λ=1是一重特征根,故方程的特解应设为y’=Cxex填空题31.函数y=的反函数f-1(x)=_______正确答案:解析:由求反函数的步骤可得f-1(x)=32.设(x≠-1),则f’(1)=________正确答案:1解析:令=t,则x=,故f(t)=,f(t)=,所以f’(1)=1.33.函数f(x)=的单调递减区间为______正确答案:(e,+∞)解析:由f’(x)=<0知x>e,故f(x)的单调递减区间为(e,+∞).34.设函数y=f(x)由方程e2x-y-cos(xy)=e-1所确定,则dy=_______正确答案:解析:方程两边微分得e2x+y(2x+y)+sin(xy)d(xy)=0,即e2x+y(2dx+dy)+sin(xy)(xdy+ydx)=0,整理得dy=35.函数f(x)=,(x>0)取得极小值时的x值为_______正确答案:x=解析:f’(x)=2-,令f’(x)=0,得x=36.=______正确答案:+C解析:=∫arctanxd(arctanx)=+C37.在区间[0,2π]上,曲线y=sinx与x轴所围成图形的面积为______ 正确答案:4解析:S==438.已知f(x)dx=1,f(1)=0,则xf’(x)dx__________正确答案:-1解析:=f(x)-1=-139.过点M0(1,-1,2)且垂直于直线的平面方程是_______正确答案:2x+3y+z-1=0解析:所求平面方程为2(x-1)+3(y+1)+(x-2)=0,整理得2x+3y+z-1=0.40.=_________正确答案:0解析:=041.方程sinx+2y-z=ez确定函数z=z(x,y),则=__________正确答案:解析:方程两边对x求偏导数得cosx-,整理得42.设z=,且f(x)可导,则=_________正确答案:2xyf()解析:43.设D是由直线x+y=1,x-y=1及x=0所围成的闭区域,则dxdy=________ 正确答案:1解析:由二重积分的几何意义知,dxdy为区域。

2023年山东省济南市成考专升本高等数学二自考模拟考试(含答案)

2023年山东省济南市成考专升本高等数学二自考模拟考试(含答案)

2023年山东省济南市成考专升本高等数学二自考模拟考试(含答案) 学校:________ 班级:________ 姓名:________ 考号:________一、单选题(30题)1.下列定积分的值等于0的是()。

A.B.C.D.2.3.A.A.B.C.D.4.A.A.3f'(0)B.-3f'(0)C.f'(0)D.-f'(0) 5.6.A.A.B.C.D.7.A.-1B.-1/2C.0D.18.9.10.A.B.C.D.11.A.B.C.D.12.()。

A. B. C. D.13.14.15.16.17.A.A.B.-1C.2D.-418.A.A.B.C.D.19.20.曲线y=x3的拐点坐标是()。

A.(-1,-1)B.(0,0)C.(1,1)D.(2,8)21.22.设f’(cos2x)=sin2x,且f(0)=0,则f(x)等于【】A.x+1/2x2B.x-1/2x2C.sin2xD.cosx-1/2cos2x23.曲线y=α-(x-b)1/3的拐点坐标为A.A.(α,0)B.(α,-b)C.(α,b)D.(b,α)24.25.26.【】A.(4,2)B.x=4C.y=2D.(2,4)27.A.A.仅有一条B.至少有一条C.不一定存在D.不存在28.29.30.设函数?(x)在x=0处连续,当x<0时,?’ (x)<0;当x>0时,?,(x)>0.则().A.?(0)是极小值B.?(0)是极大值C.?(0)不是极值D.?(0)既是极大值又是极小值二、填空题(30题)31.32.33.34. 设函数y=e2/x,则y'________。

35.36.37.38.39.40.41.当f(0)=__________时,f(x)=ln(l+kx)m/x在x=0处连续.42.43.44.曲线y=x3+3x2+1的拐点坐标为______.45.46.47.48.曲线y=ln(1+x)的铅直渐近线是__________。

专升本高等数学二(解答题)模拟试卷2(题后含答案及解析)

专升本高等数学二(解答题)模拟试卷2(题后含答案及解析)

专升本高等数学二(解答题)模拟试卷2(题后含答案及解析) 题型有:1.1.求极限.正确答案:所求极限为∞一∞型,不能直接用洛必达法则,通分变成型.涉及知识点:函数、极限与连续2.正确答案:涉及知识点:函数、极限和连续3.证明当x>0时,有.正确答案:分析可得>0,又可构造辅助函数,用单调性证明.令F(x)=(0<x<+∞),因为F’(x)=<0,所以F(x)在(0,+∞)上单调减少,又=0,所以,对一切x∈(0,+∞),恒有F(x)>0,即.涉及知识点:一元函数微分学4.正确答案:涉及知识点:函数、极限和连续5.求函数的连续区间和相应的极值:正确答案:涉及知识点:函数、极限和连续6.正确答案:涉及知识点:多元函数微分学7.已知∫0x(x一t)f(t)dt=1一cosx,证明:∫0f(x)dx=1.正确答案:因∫0x(x—t)f(t)dt=1一cosx,于是有∫0xx.f(t)dt—∫0xtf(t)dt=1一cosx,即x.∫0xf(t)dt—∫0xtf(t)dt=1一cosx,两边求导得∫0xf(t)dt+xf(x)一xf(x)=sinx,从而有∫0xf(t)dt=sinx,故=1.涉及知识点:一元函数积分学设函数f(μ)在(0,+∞)内具有二阶导数,且z=满足等式=0.8.验证f’’(μ)+=0;正确答案:求二元复合函数z=的二阶偏导数中必然包含f’(μ)及f’’(μ),将的表达式代入等式=0中,就能找出f’(μ)与f’’(μ)的关系式,由题意可知μ=,则涉及知识点:多元函数积分学9.若f(1)=0,f’(1)=1,求函数f(μ)的表达式.正确答案:在方程f’’(μ)+=0中,令f’(μ)=g(μ),则f’’(μ)=g’(μ),方程变为g’(μ)+=0,这是可分离变量微分方程,解得g(μ)=,即f’(μ)=,由初始条件f’(1)=1C1=1,所以f’(μ)=,两边积分得f(μ)=lnμ+C2,由初始条件f(1)=0C2=0,所以f(μ)=lnμ.涉及知识点:多元函数积分学10.求微分方程y’+ysinx=sinx满足=π的特解.正确答案:利用一阶非齐次线性微分方程的通解公式可得y=e-∫sinxdx(sinxe∫sinxdx+C)=ecosx(∫sinxe-cosxdx+C)=ecosx(∫e-cosxd(-cosx)+C)=ecosx(e-cosx+C)=Cecosx+1,将初始条件=π,代入得C=π一1,故原方程的特解为y=ecosx(π一1)+1.涉及知识点:常微分方程11.求函数单调区间和极值:正确答案:涉及知识点:一元函数微分学12.将f(x)=sin2x展成x的幂级数.正确答案:涉及知识点:无穷级数13.求过点(2,1,1),平行于直线且垂直于平面x+2y 一3z+5=0的平面方程.正确答案:直线的方向向量为s={3,2,一1},平面的法向量为n1={1,2,一3},s×n1==一4i+8j+4k,于是所求平面方程为(x一2)一2(y 一1)-(z-1)=0,即x一2y-z+1=0.涉及知识点:向量代数与空间解析几何14.正确答案:涉及知识点:综合15.正确答案:涉及知识点:综合。

四川省专升本(高等数学)模拟试卷2(题后含答案及解析)

四川省专升本(高等数学)模拟试卷2(题后含答案及解析)

四川省专升本(高等数学)模拟试卷2(题后含答案及解析)题型有:1. 选择题 2. 填空题 4. 解答题 5. 综合题 6. 证明题选择题在每小题给出的四个选项中,只有一项是符合要求的。

1.下列命题中正确的有( )A.若x0为f(x)的极值点,则必有f′(x0)=0B.若f′(x0)=0,则x0必为f(x)的极值点C.若x0为f(x)的极值点,可能f′(x0)不存在D.若f(x)在(a,b)内存在极大值,也存在极小值,则极大值必定大于极小值正确答案:C解析:极值的必要条件:设y=f(x)在点x0处可导,且x0为f(x)的极值点,则f′(x0)=0,但反之不一定成立.故选C.2.当x→0时,kx是sinx的等价无穷小量,则k= ( )A.0B.1C.2D.3正确答案:B解析:由等价无穷小量的概念,可知=1,从而k=1,故选B也可以利用等价无穷小量的另一种表述形式,由于当x→0时,有sinx~x,由题设知当x→0时,kx~sinx,从而kx~x,可知k=1.3.设y=ln(1-2x),则y′= ( )A.B.C.D.正确答案:B解析:4.dx= ( )A.一1B.C.D.1正确答案:C解析:本题考查定积分的运算.故选C.5.曲线y=xsin( )A.仅有水平渐近线B.既有水平渐近线又有垂直渐近线C.仅有垂直渐近线D.既无水平渐近线又无垂直渐近线正确答案:A解析:因为所以曲线有水平渐近线y=1,但没有垂直渐近线.6.过原点且与平面2x-y+3z+5=0平行的平面方程为( )A.B.=0C.2x-y+3z=0D.2x=-y=3z正确答案:C解析:已知平面π1:2x—y+3z+5=0的法向量n1=(2,一1,3),所求平面π∥π1,则平面π的法向量n∥n1,可以取n=n1=(2,一1,3).由于所求平面过原点,由平面的点法式方程,得2x—y+3z=0为所求平面方程.7.dx= ( )A.ln|1一x2|+CB.ln|1一x2|+CC.ln|1一x2|+CD.一ln|1一x2|+C正确答案:B解析:ln|1一x2|+C8.设D={(x,y)|x2+y2≤a2,a>0),在极坐标下二重积分e一x2一y2dxdy 可以表示为( )A.re一r2drB.re一r2drC.re一r2drD.e一r2dr正确答案:B解析:因为D:x2+y2≤a2,a>0,令则有r2≤a2,0≤r≤a,0≤θ≤2π,所以re—r2dr.故选B.9.设A为三阶矩阵,|A|=2,其伴随矩阵为A*,则(A*)*= ( ) A.2AB.4AC.8AD.16A正确答案:A解析:因为|A|.|A*|=|A|n,所以|A*|=|A|n-1=4,且|A|A -1=A*,所以A=(A*)-1,故(A*)*=(A*)-1.|A*|=.A.4=2A.10.微分方程y′+满足初始条件y|x=1=0的特解为( ) A.y=(lnx+1)B.y=lnxC.y=(lnx一1)D.y=lnx正确答案:D解析:由一阶线性微分方程的通解公式有由初始条件y|x=1 =0,得C=0,故所求特解为y=lnx.填空题11.设方程y=1+xey确定了y是x的隐函数,则dy=___________.正确答案:dx解析:由y=1+xey得y′=ey+xeyy′,移项化简可得y′=,则dy=dx.12.设某商品的需求函数为Q=f(P)=12一P,则P=6时的需求弹性为___________.正确答案:解析:将P=6代入得13.幂级数的收敛半径为___________.正确答案:解析:因为级数为,所以用比值判别法有当<1时收敛,即x2<2.收敛区间为,故收敛半径R=14.已知f(x)f(y)dy=___________.正确答案:π2解析:因为f(x)dx=π,所以f(y)dy=(f(x)dx)2=π2.15.已知,则X=___________.正确答案:解析:因为矩阵可逆,所以由,可得X=,即解答题解答时应写出推理、演算步骤。

2022-2023学年河南省濮阳市成考专升本高等数学二自考模拟考试(含答案)

2022-2023学年河南省濮阳市成考专升本高等数学二自考模拟考试(含答案)

2022-2023学年河南省濮阳市成考专升本高等数学二自考模拟考试(含答案) 学校:________ 班级:________ 姓名:________ 考号:________一、单选题(30题)1.曲线y=α-(x-b)1/3的拐点坐标为A.A.(α,0)B.(α,-b)C.(α,b)D.(b,α)2.3.4.设f(x)的一个原函数为Xcosx,则下列等式成立的是A.A.f'(x)=xcosxB.f(x)=(xcosx)'C.f(x)=xcosxD.∫xcosdx=f(x)+C5.当x→1时,下列变量中不是无穷小量的是()。

A.x2-1B.sin(x2-1)C.lnxD.e x-16.()。

A.B.C.D.7.若随机事件A与B互不相容,且P(A)=0.4,P(B)=0.3,则P(A+B)=()。

A.0.82B.0.7C.0.58D.0.528.A.A.B.C.D.9.设函数y=2+sinx,则y′=()。

A.cosxB.-cosxC.2+cosxD.2-cosx10.11.A.A.B.C.D.12.13.A.A.必要条件,但非充分条件B.充分条件,但非必要条件C.充分必要条件D.既不是充分条件,也不是必要条件14.曲线y=x3的拐点坐标是()。

A.(-1,-1)B.(0,0)C.(1,1)D.(2,8)15.16.17.18.19.20.21.22.()。

A.B.C.D.23.A.A.B.C.D.24.A.A.B.C.D.25.26.27.A.A.0B.1C.+∞D.不存在且不是+∞28.A.A.9B.8C.7D.629.函数f(x)=x4-24x2+6x在定义域内的凸区间是【】A.(一∞,0)B.(-2,2)C.(0,+∞)D.(—∞,+∞)30.A.xln x+CB.-xlnx+CC.D.二、填空题(30题)31.32.33.34.35.36.37.曲线y=x3+3x2+1的拐点坐标为______.38. 若f(x)=x2e x,则f"(x)=_________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档