高中数学常用二级结论大全课件.doc
高中高考数学所有二级结论《完整版》
角平分线定理逆定理:如果三角形一边上的某个点分这条边所成的两条线段与这条边的对角的两边对应成比例,那么该点与对角顶点的连线是三角形的一条角平分线
27、数列不动点:
定义:方程 的根称为函数 的不动点
利用递推数列 的不动点,可将某些递推关系 所确定的数列化为等比数列或较易求通项的数列,这种方法称为不动点法
45、向量法解立体几何公式总结
一、基本知识点
直线 的方向向量分别为 ,平面 的法向量分别为 (若只涉及一个平面 ,则用 表示其法向量)并在下面都不考虑线线重合、面面重合及线在面内的情况。
3、夹角问题
1)异面直线 所成的角 (范围: )
2)线面角 (范围: ),
3)二面角 (范围: )
4、距离问题
1)点A到点B的距离:
12、切点弦方程:平面内一点引曲线的两条切线,两切点所在直线的方程叫做曲线的切点弦方程
①圆 的切点弦方程为
②椭圆 的切点弦方程为
③双曲线 的切点弦方程为
④抛物线 的切点弦方程为
⑤二次曲线的切点弦方程为
13、①椭圆 与直线 相切的条件是
②双曲线 与直线 相切的条件是
14、椭圆的焦半径(椭圆的一个焦点到椭圆上一点横坐标为 的点P的距离)公式 (左加右减)
平面内一点引曲线的两条切线两切点所在直线的方程叫做曲线的切点弦方程的切点弦方程为x0的切点弦方程为x0的切点弦方程为y0文案大全实用标准文档13椭圆aa与直线ax相切的条件是bb与直线ax相切的条件是14椭圆的焦半径椭圆的一个焦点到椭圆上一点横坐标为离公式r1ex0x015双曲线的焦半径双曲线上横坐标为到焦点的距离公式为双曲线的离心率
高中高考数学所有二级结论《完整版》.doc
高中数学二级结论1.任意的简单n 面体内切球半径为表S V 3(V 是简单n 面体的体积,表S 是简单n 面体的表面积)2.在任意ABC △内,都有tanA+tanB+tanC=tanA·tanB·tanC推论:在ABC △内,若tanA+tanB+tanC<0,则ABC △为钝角三角形3.斜二测画法直观图面积为原图形面积的42倍4.过椭圆准线上一点作椭圆的两条切线,两切点连线所在直线必经过椭圆相应的焦点5.导数题常用放缩1+≥x e x 、1ln 11-≤≤-<-x x x x x 、)1(>>x ex e x 6.椭圆)0,0(12222>>=+b a b y a x 的面积S 为πab S =7.圆锥曲线的切线方程求法:隐函数求导推论:①过圆222)()(r b y a x =-+-上任意一点),(00y x P 的切线方程为200))(())((r b y b y a x a x =--+-- ②过椭圆)0,0(12222>>=+b a b y a x 上任意一点),(00y x P 的切线方程为12020=+b yy a xx ③过双曲线)0,0(12222>>=-b a b y a x 上任意一点),(00y x P 的切线方程为12020=-b yy a xx8.切点弦方程:平面内一点引曲线的两条切线,两切点所在直线的方程叫做曲线的切点弦方程①圆022=++++F Ey Dx y x 的切点弦方程为0220000=++++++F E yy D x x y y x x②椭圆)0,0(12222>>=+b a b y a x 的切点弦方程为12020=+b y y a x x ③双曲线)0,0(12222>>=-b a b y a x 的切点弦方程为12020=-b y y a x x ④抛物线)0(22>=p px y 的切点弦方程为)(00x x p y y +=⑤二次曲线的切点弦方程为022*******=++++++++F yy E x x D y Cy x y y x Bx Ax9.①椭圆)0,0(12222>>=+b a b y a x 与直线)0·(0≠=++B A C By Ax 相切的条件是22222C b B a A =+ ②双曲线)0,0(12222>>=-b a b y a x 与直线)0·(0≠=++B A C By Ax 相切的条件是22222C b B a A =- 10.若A 、B 、C 、D 是圆锥曲线(二次曲线)上顺次四点,则四点共圆(常用相交弦定理)的一个充要条件是:直线AC 、BD 的斜率存在且不等于零,并有0=+BD AC k k ,(AC k ,BDk 分别表示AC 和BD 的斜率)11.已知椭圆方程为)0(12222>>=+b a b y a x ,两焦点分别为1F ,2F ,设焦点三角形21F PF 中θ=∠21F PF ,则221cos e -≥θ(2m ax 21cos e-=θ)12.椭圆的焦半径(椭圆的一个焦点到椭圆上一点横坐标为0x 的点P 的距离)公式2,1ex a r ±=13.已知1k ,2k ,3k 为过原点的直线1l ,2l ,3l 的斜率,其中2l 是1l 和3l的角平分线,则1k ,2k ,3k 满足下述转化关系:3222223321212k k k k k k k k +-+-=,31231231312)()1(1k k k k k k k k k +++-±-=,2122221123212k k k k k k k k +-+-= 14.任意满足r by ax n n =+的二次方程,过函数上一点),(11y x 的切线方程为r y by x ax n n =+--1111 15.已知f(x)的渐近线方程为y=ax+b ,则a x x f x =∝+→)(lim,bax x f x =-∝+→])([lim16.椭圆)0(12222>>=+b a b y a x 绕Ox 坐标轴旋转所得的旋转体的体积为πab V 34=17.平行四边形对角线平方之和等于四条边平方之和18.在锐角三角形中C B A C B A cos cos cos sin sin sin ++>++19.函数f(x)具有对称轴a x =,b x =)(b a ≠,则f(x)为周期函数且一个正周期为|22|b a -20.y=kx+m 与椭圆)0(12222>>=+b a b y a x 相交于两点,则纵坐标之和为22222b k a mb +21.已知三角形三边x ,y ,z ,求面积可用下述方法(一些情况下比海伦公式更实用,如27,28,29)A C CB B A S z AC y C B x B A ⋅+⋅+⋅==+=+=+222222.圆锥曲线的第二定义:椭圆的第二定义:平面上到定点F 距离与到定直线间距离之比为常数e(即椭圆的偏心率,a ce =)的点的集合(定点F 不在定直线上,该常数为小于1的正数)双曲线第二定义:平面内,到给定一点及一直线的距离之比大于1且为常数的点的轨迹称为双曲线 23.到角公式:若把直线1l 依逆时针方向旋转到与2l 第一次重合时所转的角是θ,则21121tan k k k k θ=⋅+-24.A 、B 、C 三点共线⇔n m n m +=+=1,(同时除以m+n)25.过双曲线)0,0(12222>>=-b a b y a x 上任意一点作两条渐近线的平行线,与渐近线围成的四边形面积为2ab26.反比例函数)0(>=k x ky 为双曲线,其焦点为)2,2(k k 和)2,2(k k --,k<027.面积射影定理:如图,设平面α外的△ABC 在平面α内的射影为△ABO ,分别记△ABC 的面积和△ABO 的面积为S 和S′ ,记△ABC 所在平面和平面α所成的二面角为θ,则cos θ = S′ : S28,角平分线定理:三角形一个角的平分线分其对边所成的两条线段与这个角的两边对应成比例角平分线定理逆定理:如果三角形一边上的某个点分这条边所成的两条线段与这条边的对角的两边对应成比例,那么该点与对角顶点的连线是三角形的一条角平分线 29.数列不动点: 定义:方程表S V3的根称为函数表S V 3的不动点利用递推数列表S V 3的不动点,可将某些递推关系表S V3所确定的数列化为等比数列或较易求通项的数列,这种方法称为不动点法 定理1:若表S V 3表S V 3是表S V 3的不动点,表S V 3满足递推关系表S V 3,则表S V 3,即表S V 3是公比为表S V 3的等比数列.定理2:设表S V 3,表S V 3满足递推关系表S V 3,初值条件表S V 3(1)若表S V 3有两个相异的不动点表S V 3,则表S V 3 (这里表S V 3)(2)若表S V 3只有唯一不动点表S V 3,则表S V 3 (这里表S V 3)定理3:设函数表S V 3有两个不同的不动点表S V 3,且由表S V 3确定着数列表S V 3,那么当且仅当表S V 3时,表S V 330.(1)⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+=-+=+==-=++342cos 2cos 2cos 4242sin 2sin 2sin 4142cos 2cos 2cos 442sin 2sin 2sin 4)sin()sin()sin(k n nC nB nA k n nC nB nA k n nC nB nA k n nC nB nA nC nB nA ,*N ∈k(2)若πC B A =++,则: ①2sin2sin 2sin 8sin sin sin 2sin 2sin 2sin CB A CB AC B A =++++ ②2sin2sin 2sin 41cos cos cos CB AC B A +=++ ③2sin2sin 2sin 212sin 2sin 2sin 222C B A C B A -=++ ④4sin4sin 4sin 412sin 2sin 2sin C B A C B A ---+=++πππ ⑤2sin2sin 2sin 4sin sin sin CB AC B A =++ ⑥2cot2cot 2cot 2cot 2cot 2cot C B A C B A =++ ⑦12tan 2tan 2tan 2tan 2tan 2tan =++A C C B B A⑧C B A C B A B A C A C B sin sin sin 4)sin()sin()sin(=-++-++-+(3)在任意△ABC 中,有:①812sin 2sin 2sin≤⋅⋅C B A ②8332cos 2cos 2cos ≤⋅⋅C B A ③232sin 2sin 2sin ≤++C B A ④2332cos 2cos 2cos ≤++C B A⑤833sin sin sin ≤⋅⋅C B A ⑥81cos cos cos ≤⋅⋅C B A ⑦233sin sin sin ≤++C B A ⑧23cos cos cos ≤++C B A ⑨432sin 2sin 2sin 222≥++C B A⑩12tan 2tan 2tan 222≥++C B A ⑪32tan 2tan 2tan ≥++CB A ⑫932tan 2tan 2tan≤⋅⋅C B A⑬332cot 2cot 2cot≥++CB A⑭3cot cot cot ≥++C B A(4)在任意锐角△ABC 中,有: ①33tan tan tan ≥⋅⋅C B A②93cot cot cot ≤⋅⋅C B A ③9tan tan tan 222≥++C B A④1cot cot cot 222≥++C B A31.帕斯卡定理:如果一个六边形内接于一条二次曲线(椭圆、双曲线、抛物线),那么它的三对对边的交点在同一条直线上32.拟柱体:所有的顶点都在两个平行平面内的多面体叫做拟柱体,它在这两个平面内的面叫做拟柱体的底面,其余各面叫做拟柱体的侧面,两底面之间的垂直距离叫做拟柱体的高拟柱体体积公式[辛普森(Simpson )公式]:设拟柱体的高为H ,如果用平行于底面的平面γ去截该图形,所得到的截面面积是平面γ与一个底面之间距离h 的不超过3次的函数,那么该拟柱体的体积V 为H S S S V )4(61201++=,式中,1S 和2S 是两底面的面积,0S 是中截面的面积(即平面γ与底面之间距离2H h =时得到的截面的面积)事实上,不光是拟柱体,其他符合条件(所有顶点都在两个平行平面上、用平行于底面的平面去截该图形时所得到的截面面积是该平面与一底之间距离的不超过3次的函数)的立体图形也可以利用该公式求体积 33.三余弦定理:设A 为面上一点,过A 的斜线AO 在面上的射影为AB ,AC 为面上的一条直线,那么∠OAC ,∠BAC ,∠OAB 三角的余弦关系为:cos ∠OAC=cos ∠BAC·cos ∠OAB (∠BAC 和∠OAB 只能是锐角)34.在Rt △ABC 中,C 为直角,内角A ,B ,C 所对的边分别是a ,b ,c ,则△ABC 的内切圆半径为2cb a -+35.立方差公式:))((2233b ab a b a b a +--=- 立方和公式:))((2233b ab a b a b a +-+=+ 36.已知△ABC ,O 为其外心,H 为其垂心,则++=37.过原点的直线与椭圆的两个交点和椭圆上不与左右顶点重合的任一点构成的直线斜率乘积为定值)0(22>>-b a b a推论:椭圆上不与左右顶点重合的任一点与左右顶点构成的直线斜率乘积为定值)0(22>>-b a b a 38.12)!1(!!21+++++++=n θxn xx n e n x x x e 推论:212x x e x++> 39.)2(≤≥--a ax ee xx推论:①)0(ln 21>≥-t t t t②)20,0(ln ≤≤>+≥a x a x axx40.抛物线焦点弦的中点,在准线上的射影与焦点F 的连线垂直于该焦点弦 41.双曲线焦点三角形的内切圆圆心的横坐标为定值a (长半轴长) 42.向量与三角形四心:在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c (1)⇔=++O 是ABC ∆的重心(2)⇔⋅=⋅=⋅O 为ABC ∆的垂心 (3)O c b a ⇔=++为ABC ∆的内心==⇔O 为ABC ∆的外心 43.正弦平方差公式:)sin()sin(sin sin 22βαβαβα+-=- 44.对任意圆锥曲线,过其上任意一点作两直线,若两射线斜率之积为定值,则两交点连线所在直线过定点45.三角函数数列求和裂项相消:21cos2)21sin()21sin(sin --+=x x x46.点(x ,y )关于直线A x+B y+C =0的对称点坐标为⎪⎭⎫ ⎝⎛+++-+++-2222)(2,)(2B A C By Ax B y B A C By Ax A x 47.圆锥曲线统一的极坐标方程:θρcos 1e ep-=(e 为圆锥曲线的离心率) 48.超几何分布的期望:若),,(M N n X~H ,则N nM X E =)((其中N M为符合要求元素的频率),)111)(1()(----=N n N M N M n X D49.{}n a 为公差为d 的等差数列,{}n b 为公比为q 的等比数列,若数列{}n c 满足n n n b a c ⋅=,则数列{}n c 的前n项和n S 为2121)1(-+-=+q c c q c S n n n50.若圆的直径端点()()1122,,,A x y B x y ,则圆的方程为()()()()1212x x x x y y y y --+--= 51.过椭圆上一点做斜率互为相反数的两条直线交椭圆于A 、B 两点,则直线AB 的斜率为定值52.二项式定理的计算中不定系数变为定系数的公式:11--=k n k n nC kC 53.三角形五心的一些性质:(1)三角形的重心与三顶点的连线所构成的三个三角形面积相等(2)三角形的垂心与三顶点这四点中,任一点是其余三点所构成的三角形的垂心(3)三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心 (4)三角形的外心是它的中点三角形的垂心 (5)三角形的重心也是它的中点三角形的重心(6)三角形的中点三角形的外心也是其垂足三角形的外心(7)三角形的任一顶点到垂心的距离,等于外心到对边的距离的二倍54.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,则2222c b a -+=⋅55.m>n 时,22nm nm n m e n m e e e e +>-->+。
高中数学常用二级结论
转化关系:
k1
2k2 1
k3 k3k22 k22 2k2k3
,
k2
k1k3
1
(1 k1k3 )2 k1 k3
(k1 k3 )2
, k3
2k2 k1 k1k22
1
k
2 2
2k1k2
14.任意满足 axn by n r 的二次方程,过函数上一点 (x1, y1) 的切线方程为 ax1xn1 by1 yn1 r
2
3.斜二测画法直观图面积为原图形面积的 倍
4
4.过椭圆准线上一点作椭圆的两条切线,两切点连线所在直线必经过椭圆相应的焦点
5.导数题常用放缩 ex
x
1、
1 x
x 1 x
ln
x
x 1、ex
ex( x
1)
6.椭圆
x2 a2
y2 b2
1(a
0,b
0) 的面积 S
为S
πab
7.圆锥曲线的切线方程求法:隐函数求导
A B x2 B C y2 C A z2
2S A B B C C A
22.圆锥曲线的第二定义:
椭圆的第二定义:平面上到定点 F 距离与到定直线间距离之比为常数 e(即椭圆的偏心率,e c )的点的集合(定 a
点 F 不在定直线上,该常数为小于 1 的正数) 双曲线第二定义:平面内,到给定一点及一直线的距离之比大于 1 且为常数的点的轨迹称为双曲线
推论:①过圆 (x a)2 ( y b)2 r 2 上任意一点 P(x0 , y0 ) 的切线方程为 (x0 a)(x a) ( y0 b)( y b) r 2
x2
②过椭圆
a2
y2 b2
1(a
高中数学常用二级结论汇总
高中数学常用二级结论汇总1.数列相关的二级结论:(1)等差数列的常用二级结论:-等差数列的前n项和公式:Sn = (a1 + an) * n / 2;-等差数列通项公式:an = a1 + (n - 1)d;-等差数列前n项和与末项的关系:Sn = (a1 + an) * n / 2 = an * n - (n - 1) * d / 2(2)等比数列的常用二级结论:-等比数列的前n项和公式:Sn=a1*(q^n-1)/(q-1),其中q≠1;-等比数列前n项和与末项的关系:Sn=a1*(1-q^n)/(1-q)。
2.几何相关的二级结论:(1)平行线与三角形的二级结论:-平行线分割三角形的比线段互等;-平行线分割三角形的比面积互等;-平行线分割三角形的比任意两条边互等。
(2)相似三角形的二级结论:-三角形内部的直线与角平分线的交点分割三角形的比线段互等;-三角形内部的直线与角平分线的交点分割三角形的比面积互等。
(3)圆的二级结论:-圆心角的度数等于其所对弧的度数;-同弧所对的圆心角相等;-两圆相交弧的度数等于相对的圆心角的度数。
3.解析几何相关的二级结论:(1)直线的方程二级结论:-斜率相等的两条直线平行;-两直线相交于一点的充要条件是斜率不相等。
(2)圆的方程二级结论:-到圆心距离等于半径的点在所述圆上;-圆心到直线的距离等于半径的相交点所对的弦的中点到圆心的距离。
(3)抛物线的二级结论:-在对称轴上等距离的两点与焦点和顶点的距离相等;-抛物线的顶点坐标为(h,k),则焦点的坐标为(h,k+p),其中p为焦距。
4.概率与统计相关的二级结论:(1)事件的二级结论:-随机事件A的对立事件记为A',则P(A')=1-P(A);-若A与B互斥,则P(AUB)=P(A)+P(B)。
(2)条件概率的二级结论:-若事件B发生的条件下,事件A发生的概率为P(A,B),则P(A,B)=P(A∩B)/P(B);(3)独立事件的二级结论:-若事件A与事件B相互独立,则P(A∩B)=P(A)*P(B)。
(完整word版)高中高考数学所有二级结论《完整版》
(完整word版)⾼中⾼考数学所有⼆级结论《完整版》⾼中数学⼆级结论1、任意的简单n ⾯体内切球半径为表S V3(V 是简单n ⾯体的体积,表S 是简单n ⾯体的表⾯积)2、在任意ABC △内,都有t a n A +t a n B +t a n C =t a n A ·t a n B ·t a n C3、若a 是⾮零常数,若对于函数y =f(x )定义域内的任⼀变量x 点有下列条件之⼀成⽴,则函数y =f(x )是周期函数,且2|a |是它的⼀个周期。
①f(x +a )=f(x -a ) ②f(x +a )=-f(x ) ③f(x +a )=1/f(x ) ④f(x +a )=-1/f(x )4、若函数y =f(x )同时关于直线x =a 与x =b 轴对称,则函数f(x )必为周期函数,且T =2|a -b|5、若函数y =f(x )同时关于点(a ,0)与点(b ,0)中⼼对称,则函数f(x )必为周期函数,且T =2|a -b|6、若函数y =f(x )既关于点(a ,0)中⼼对称,⼜关于直线x =b 轴对称,则函数f(x )必为周期函数,且T =4|a -b|7、斜⼆测画法直观图⾯积为原图形⾯积的42倍 8、过椭圆准线上⼀点作椭圆的两条切线,两切点连线所在直线必经过椭圆相应的焦点9、导数题常⽤放缩1+≥x e x 、1ln 11-≤≤-<-x x xx x、)1(>>x ex e x 10、椭圆)0,0(12222>>=+b a by a x 的⾯积S 为πab S =11、圆锥曲线的切线⽅程求法:隐函数求导推论:①过圆222)()(r b y a x =-+-上任意⼀点),(00y x P 的切线⽅程为200))(())((r b y b y a x a x =--+--①过椭圆)0,0(12222>>=+b a b y a x 上任意⼀点),(00y x P 的切线⽅程为1220=+b yy a xx ①过双曲线)0,0(12222>>=-b a b y a x 上任意⼀点),(00y x P 的切线⽅程为1220=-b yy a xx 12、切点弦⽅程:平⾯内⼀点引曲线的两条切线,两切点所在直线的⽅程叫做曲线的切点弦⽅程①圆022=++++F Ey Dx y x 的切点弦⽅程为0220000=++++++F E yy D x x y y x x ①椭圆)0,0(12222>>=+b a b y a x 的切点弦⽅程为12020=+b yy a x x①双曲线)0,0(12222>>=-b a b y a x 的切点弦⽅程为12020=-byy a x x①抛物线)0(22>=p px y 的切点弦⽅程为)(00x x p y y += ①⼆次曲线的切点弦⽅程为0222000000=++++++++F y y E x x D y Cy x y y x Bx Ax 13、①椭圆)0,0(12222>>=+b a by a x 与直线)0·(0≠=++B A C By Ax 相切的条件是22222C b B a A =+②双曲线)0,0(12222>>=-b a b y a x 与直线)0·(0≠=++B A C By Ax 相切的条件是||22222A a -B b =C14、椭圆的焦半径(椭圆的⼀个焦点到椭圆上⼀点横坐标为0x 的点P 的距离)公式02,1ex a r ±= (左加右减)15、双曲线的焦半径(双曲线上横坐标为x 的点P 到焦点的距离)公式,且F 1为左焦点,F 2为右焦点,e 为双曲线的离⼼率。
高中数学常用二级结论大全
高中数学常用二级结论大全、基础常用结论1» 立方差公式:Q y—b—(£7—CIb+ 6 );立方和公式2 a +b ^(a + b)(a -ab-k-b ).2■任意的闾单冲面体内切球半從为比(卩是简单片面*体的体积* S h是简单” I的体的表面积).3.在Rt「屮.角,内角儿乩「所对的边分别是小h. G 则"厂的内切圜半径为t7 + " 一「,2斜二测画法直观图面积为原图形面积的—fΛ.4t£平疔四边形对角线平方之和等于μ 4条边I A方之和. 6.函数Λ⅛i>∩∕j对称轴x-a. x-b(a≠b}.则 T(Y)为周期函数且T个正周期为2∖a-b∖.7.导数题常用放缩eτ≥x÷l t -≤⅛L X≤X-]Ie x> CX(X >1).乱点(jc,刃关于直线AX^By^C =O的对称点坐标4= 2A{Ax÷ By+ C) ’ 2R{Ax-^By + C)∖I A2 +B- A~ )臥己知二角形三边*戸Z,求面积可用下述方法(一些情况下比海伦公式更实用,如J^27 , √28√29):T∖A^∕i=x∖_________________、圆锥曲线相关结论Hh 持阀购 M 冷端点 川(H-FJ ・一S)・WlIIturrjrrΛj(x -x 1 )( J f -JC 3 ) += O-II- +HiIMJ 二十与-1(0 A 0 丹 A O) t ∣⅛l ⅛l ⅛l Λ- >JχS r 亠 πah. U 亠 ħ J 2. Id fR] IiiI-Mt J ∖ ∕Λ 炸 tF*! IM 的网茨切线・冋 t√J A tX 连战J ⅛r√ι 1 f L 舍足必经id.和如崛+N Λv 岸J ⅛川:.13. (M]t ⅛曲址的切线:⅛⅞≡求法:【迫曲啟驳⅛≠.推论,-i YT Sfc —点 ∕χjr 0,j p 0 )IyJ 灯J ≠,⅛ TT f ,i i < -T fk — ¢7 X JT — tτ ) -I- ( ,Vo — Λ >( 1 - — ∕? ) = Λ- - ιShnHliMl ⅛ + ⅛ = IgAO"Am 上*住一就一点 7∖X Itr y lI y a b'的切级力穆刘兰字+=疽亠 怙3i±X5tl ⅛⅛⅛缶一令=1BAo 上 Ao)上_保慧 AT^(Jr QT ^O )CFJ 切线力÷l t l⅛ 出直--14. fl A √⅛⅛ AiL +⅛y" = r ⅛⅛-过[血线上一点(皿」1 )的LZJ 线Z/种对灯巧*” l+Λ½>τ" 1S. 切点眩右程= Wml 内-T 乂叮M 山绒的刈糸切幻"I^Jt√j ..'.<所ITrf 夕吃白勺⅛-和口 L |倣曲纯白勺切-t A 找-Tf 押<>^) jj L Ir IMI X- * + /Λr + /fF 十 /「= O 夕卜 j ⅛ ZX 齐..v o > &E J<≡)ti i <j Unl +- 1(« A α∕j A CO 外 -A ,A ∕χ 3j u )的切虑炫方杓为勺字-+丄宇一 I ;«m hV 1 B③过心曲炖注一牙二13 A o√> > O)夕卜・A¾尸O * 儿) IrJ 切j ⅛ ■圧方件 刈 X V- — - I Ja - M<l)id 拋物夕垦 JR J =Ao)夕卜 Λl χ Z ∙(-t o , 片)白勺 MJ ΛIΛ弦力 VCylIy n y ∕J (JΓΠ ÷ A) 1CriJ 一1 次 EJh ÷J ⅛ ^l-V ' + ∕√.y^' H-瓷'ι>2 -+- ∕>τr + √√V -I-A * — O 斗卜√Λ 「(*» O ) U J √x 寸左 Jy 穆 刘+打答兰+科笔丄+沪γ3V aι<⅛. CD 甫尙 I ⅛H 一 + J = He/ >O√* A 0>」J t ,C ⅛⅛ ^A + ∕J L +<τ-0 CJ- b'< .4-H ≠ r ⅛) HI t/J 吟勺采 Pr- JZ i ,4-⅛-十 H-^- = < τ2 ; ②収 Hk 直耳笃 ^r = U u > O,Λ>O) ⅛ Γt ⅛J ⅛ 占x+ 茂2+「= O < .√ H ≠ O )+1 IiJJb ⅛ ⅛H 牛 F 亡 川匸门‘ 一 ∕⅛ 7Λ3 = r j .£门亍上炖 £疋+<.v-Λ)2 =17.若A、B、C、D是圆锥曲线(二次曲线)上顺次的四点,则四点共恻(常用相交弦定理)的一个充要条件是:直线AC. BD的斜率存在且不等于寒,并有k AC+ D=O (k 心他Q分别表示"C和BD的斜率).2 21«.已知椭圆方程为⅞ + ⅛- = l(α>A>0),两焦点分 arb,别为斤,佗,设焦点三角形P斤人中∆PFW则cos0≥l-2e2(cos⅛in= 1 - 2e2).19・椭圆的焦半径(椭圆的一个焦点到椭恻上一点横坐标为Xo的点P的距离)公式z1.2 =α±cX().20.已知和处,他为过原点的直线IJ"人的斜率, 其中厶是厶和厶的角平分线,则」山,他满足下述转化关系:k二2k?-k, +k*,~ 1 一烤+2耐他21 •椭圆4 + 4 = l(α>∂>0)绕OX坐标轴旋转所得4的旋转体的体枳为/ = -πah.322.过双曲线⅛-2L = l(α>0,⅛>0)上任意一点作Cr Zr两条渐近线的平行线•与渐近线圉成的四边形而积为ah1 -k^ +2k∖k[斤禹T 土J(I 一斤禹)'+(何十為F2k)-k\ +k、k;~2'23. 过椭圜上•点做斜率互为相反数的两条立线交椭闘 于X 、B 两点,则直线MB 的斜率为定值.24. 过原点的直线与椭圆交于M , 〃两点,椭圆上不与 左右顶点重介的任-点与点〃构成的直线的斜率推论:椭圆上不与左右顶点巫合的任一点与左右顶点构2成的直线斜率乘枳为定值>Λ>0).25. 抛物线焦点弦的中点,在准线上的射彫与焦点F 的 连线垂直于该焦点弦.26. 双曲线焦点W 角形的内切圆I 员I 心的横坐标为定值 α(长半轴长)・27. 对任意圆锥曲线,过其上任意一点作两逍线,若两 直线斜率之积为定值,两直线交曲线于/, 〃两点, 则直线/1〃恒过定点.X v~28. y^~kx^m 与椭圆—+= l(α >⅛ > 0)相交于两盯 Zr29. 圆锥曲线的第二定义:椭圆的第二定义:平面上到定点F 距离与到定直线间距 离之比为常数e (即椭圆的偏心率,e = -)的点的集a 合(定点尸不在定直线上,该常数为小于1的正数). 双曲线第二定义:平面内,到给定一点及一直线的距离 之比大于1冃为常数e 的点的轨迹称为双曲线. 3().反比例函数y = -(k>O)为双曲线,其焦点为X(J2k, J2k )和(―J 2k J 2k ) , RV0.乘积为定值-(a> b>0).点,则纵坐标之和为2mh ~ a 2k 2^b 231.到角公式=若把立线人依逆时针方向旋转到½∕2M_JXLE合时所转的廊是/则曲P © 一亿(A l-A.1 +何走 1 2分别为,厶的斜率)-32.面积射影定理:如图,设平面α外的ΔARL在平面a内的射影为△ ABO t分别记C的面积和^ABO的面积为Λ和亍,1L!ΔJZ?C所在平面和平面α所成的一. 面角为仏33.角平分线定理L三角形-个角的平分线分其对边所成的两条线段T这个角的两边対陶成比例角平分线定理逆定理:如果三角形一边I】的某个点分这条边所成的婀东线段与这条边的对角的两边对应成比例,那么该点与対角顶点的连线是三角形的条紡平分34.{q}是公差为N的零墨数列,血J是公比为g的等比数列,若数列{q}满足C tt^a tt b^则数列匕,}的前3轧数列不动点:定义;方^f(X) = X的根称为曲数/(小的不幼点.利用递推数列/(H)的不动点,町将某些递推关系牛=f∖a n I)所确定的数列化为等比数列或较易求通项的数列,这种方法称为不动点法・定理 1:若/(x) = ox + Λ(t∕≠0^≠l)t P Jkf(X)的不动点.為满足递推关系CI n- > 1),则心-P-盘g I-P) *即{<‰ - p}足公比为&的等比数列.定理 2:设f(x) = (C ≠Q.ad be≠ 0) .{a n}CX^d满足递推关系碍=>1 ,初值条件⑷丰/g)・(I)若f(x)W两个相异的不动点p,q、则(2)若f(χ)H冇呛一不动点呦亠一―XJrZ、ax c . λ…》定理3:设阴数f(x) = ------ 3 ≠01e≠0)有两ex + f个不同的不动点為丛“ a∣∣u∕πtl=Jf(“」确定着数列{wj ,那么当冃仅当⅛= 0.^=2α时科项和S rI为爲CM-心 +JS-IF2ca∙∖Ii—Jf n + lJL2〔这里A二%ι —Jr i =(訂打_ Jr L )工F~X2五、三角形与三角函数相关结论丘$・⅜⅛Oj 三Zfj /砂B I - B-*⅛m H * J⅛ni / f + ≡⅛ m I C " A <j <ιe⅛ f ∙ <zt ι*⅛ // 十t: t w⅛ C -37* /t < F 厶P l j4 Φ片區J f Γ⅞«1R1 + ILtl 1 // * IAlII f "M:I 111 1 ,-i f ■ IJIII /f" t ≡ 11 1 C T aMr论■ ∕ι 厶Azt1*4 ./i u∣H< ■- ιι. (MM 厶武y√^u≠n ±-≠n用叽IH狂平方世公FC<!4 HiI i C —!⅛IITi BE『董 Siflt 1( C —) M ll⅞( C + /∕⅞a-..*r -1 i. **∕≠r≠<r '. 曲J r4 H i tEI PI i l El ...事鼻一 4 A'工卫M/r,,∕J≠≠C 'I ⅝7<** 7 ■ ^*1*4- ⅛J4>M. 玄一■ 2 —■ ∙ *r■* IIf i I l片I JFirJ l if "暨"-,l "⅛111 ----------- H4 I El ------ V CllI2 HJF Z J F=>4 U* ,P⅞IUI VMC 2 1J⅛ M + /扌+ <p—TT . MlJCj¾> ⅛i tτ∣t // -1- C * —K ) + **in( * + -j4 —■/* J + SlilSf 川-I- M —<< -⅞⅛卄f≡SftAτ丹<T 中.-R S• iJs in* j 亍∙≡〔朗CrC⅛⅛-^- ■- Ui⅛⅞cr⅛> K i∙ι -+- a⅝hι+ ⅞⅞itι ■ Y —I2 2 2 2■ ∙Q<□β - COS 再-COS-Λ 讥"⅛J斗祥冲r t OS /f ■+ ςj<Tfi It r ' I<^f>IUtk ∕J→= Ioil 2c∏5dl /f---- -÷ 1.1« E I --- --2 2+ E1⅞ I I —212CZOt<^>Wf÷j≡tΛ^ι 4中” Q +a」Kt I Ii a t⅝ll⅞ // - t⅞li 1 If ' : - 3 ⅝(:O <21<1⅛・- C- CIt ∕<-C!,βK C' <U辛了TflIlI a川十tao Jt/J-I- tj⅞ιι 2< ' 3F-Sl 5 <-1> 4^ι⅛t JIi 1 C ι>t F /# ÷ e * M C-* ⅛I ..Zι.Li> eθS * OOS ∕≠ ⅜ Go< 'Ji Wr---- !⅝ Ll^l -- ;2 2" r , r Sln- -√- tg ≡⅛⅛ "冬I —ΣZ S, IBl -------------------- SlIT -------- ------- S- Ut ------ -------2 2 3Jr2⅛λlB —Ie 三inr U UClfc C<J tiiι⅛, . .-I - ∕≠<w-r jc i -+- !⅛II1. ΛJF + ⅛il∣τ C =4 *> VEI ------------------------------------------------- SiBIS ------------- ⅛ UIi -------------- =2 2 2--f // < ,/f C Ir + QCt --------- T- uci: --------- = Udt ----------------------- Ot --------- Oic⅛f --- 5 2 立 2 2 a a—-IL£Lii ------------------- -I- ta.11. I L EI 11 —— -4- t£Llx —tm⅞ -------------------------------------- —I40.帕斯卡定理:如果一个六边形内接于一条二次曲纟戈(椭圆、双曲线、抛物线),那么它的三对对边的交点在同一条直线上・41・三余弦定理:设川为面上一点,过/的斜线/O在面上的射影为AB, AC为面上的一条直线,那么AO∕C,ΛBAC tΛOAβ三角的余弦关系为:COS AOAC = COS ZjiAC∙cos Z()AB(ZJiAC和ZoAB只能是锐角)•六、三角形与向量42. A . 「二点共线 O OD^mOA + nOC JOB ------ O D (冋时除以 m 4∕ι).m + n43.在△初C 中.角儿B f C 所对的边分别是箱b r G^ABAC = a'^h'~c^44.已知^ABC. O 为其外心.丹为其垂心•则7)H^OA^oH^(K \在△肋「中*角儿 乩「所对的边分别是血 乩G mOA + ()B + ()C^Q<^O 是 ZBC 的重心:⑵OAoB = OBOC = 况刀 OO 为SABC 的垂 心卡 ⑶旅万+丑+<?Cr = 6oO 为ΔA*C 的内心: (4)∣O4∣ = ∣C>5I = IoCl OO 为 AABC 的外心; 46.三角形五心的一些性质:(1) 三角形的貳心与三顶点的连线所构成的二个二角形 面积相等:(2) 三角形的眶心与三顶点这四点中「任一点是閱余三点 所构成的三角形的垂心^(3) 三角形的垂心是它垂足三角形的内心;或昔说,三角 形的内心是它旁心三角形的垂心¥(4}三角形的外心是它的中点三角形的眶心: (5).£角形的蒂心也是它的中点三角形的市心:(6}三角形的中点三角形的外心也是J ⅛临足二角形的外 心;⑺三角形的任-顶点到垂心的距离’等于外心到对边的 距离的二倍.4£向■与三角形:七、其他47t超几何分布的期望:若,则E(X) =— {K中兰为符合要求元壷的频率n N NZw v. M M用-1£>(A) = n一(1--- )(1 ---- )N N N-I48,二项式定理的计算中不定系数变为定系数的公式:Y~ 推论:e x>∖+x + ~.25»* CΛ -e x≥ax(a ≤2).推论:φ∕-->21n∕(r>0);/② In X ≥ aX (Jr > 0,0 ≤ σ ≤ 2),x + a=I+x+r+..+≤+2! «!("+】)!5L m>n时,2IW *Jl。
高中数学二级结论
高中数学二级结论1.任意简单n面体内切球半径为3V/S表。
其中V是简单n面体的体积,S表是简单n面体的表面积。
2.在任意三角形ABC内,有XXX=XXX。
由此得出,若XXX<0,则三角形ABC为钝角三角形。
3.斜二测画法直观图面积为原图形面积的2倍。
4.过椭圆准线上一点作椭圆的两条切线,两切点连线所在直线必经过椭圆相应的焦点。
5.导数题常用放缩e≥x+1、-x≤1/(1-x)≤lnx≤x-1、ex>ex(x>1)、x/(x^2+y^2)≤1/sqrt(2)。
6.椭圆2/a^2+2/b^2=1(a>b)的面积S为S=πab。
7.圆锥曲线的切线方程求法为隐函数求导。
推论:过圆(x-a)^2+(y-b)^2=r上任意一点P(x,y)的切线方程为(x-a)(x-x)+ (y-b)(y-y)=r,过椭圆2/a^2+2/b^2=1(a>b)上任意一点P(x,y)的切线方程为(x/a^2)(x-x)+(y/b^2)(y-y)=1,过双曲线2/a^2-2/b^2=1(a>b)上任意一点P(x,y)的切线方程为(x/a^2)(x-x)-(y/b^2)(y-y)=1.8.切点弦方程是平面内一点引曲线的两条切线,两切点所在直线的方程。
对于圆x^2+y^2+Dx+Ey+F=0,切点弦方程为xx+yy+2(Dx+Ey+F)=0;对于椭圆2/a^2+2/b^2=1(a>b),切点弦方程为(x^2/a^2)+(y^2/b^2)=1;对于双曲线2/a^2-2/b^2=1(a>b),切点弦方程为(x^2/a^2)-(y^2/b^2)=1;对于抛物线y=2px(p>0),切点弦方程为yy=p(x+x);对于二次曲线Axx+Bxy+Cyy+Dx+Ey+F=0(B≠0),切点弦方程为Axx+Bxy+Cyy+Dx+Ey+F=0.9.两个二次曲线相切的条件是A^2a^2+B^2b^2=C^2,其中A和B不同时为0.对于椭圆2/a^2+2/b^2=1(a>b)与直线Ax+By+C=0(B≠0),相切的条件为A^2a^2-B^2b^2=C^2;对于双曲线2/a^2-2/b^2=1(a>b)与直线Ax+By+C=0(B≠0),相切的条件为A^2a^2+B^2b^2=C^2.10.若A、B、C、D是圆锥曲线上顺次四点,则四点共圆的一个充要条件是直线AC、BD的斜率存在且不等于零,并且kAC+kBD=-2.1.已知椭圆方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b)$,两焦点分别为$F_1$,$F_2$,设焦点三角形$PF_1F_2$中$\anglePF_1F_2=\theta$,则有$ab\cos\theta\geq1-2e^2(\cos\theta_{max}=1-2e^2)$。
高考数学常用的50个二级结论
高考数学常用的50个二级结论二级结论绝对会提高你的解题速度,对提升正确率无疑也很有帮助。
但二级结论不同于公式,仅仅将其记住,一是考场上很难想起,二是生搬硬套,很容易陷入老师的命题陷阱里。
因此,一定要自己动手,将每一个二级结论推导一遍,考场上才好放心使用哦~5. 平行四边形对角线平方之和等于四条边平方之和.12. 过椭圆准线上一点作椭圆的两条切线,两切点连线所在直线必经过椭圆相应的焦点.13. 圆锥曲线的切线方程求法:隐函数求导.推论:14. 切点弦方程:平面内一点引曲线的两条切线,两切点所在直线的方程叫做曲线的切点弦方程.22. 过椭圆上一点做斜率互为相反数的两条直线交椭圆于A 、B 两点,则直线AB 的斜率为定值.24. 抛物线焦点弦的中点,在准线上的射影与焦点F的连线垂直于该焦点弦.25. 双曲线焦点三角形的内切圆圆心的横坐标为定值a(长半轴长).26. 对任意圆锥曲线,过其上任意一点作两直线,若两直线斜率之积为定值,两直线交曲线于A,B两点,则直线AB恒过定点.32. 角平分线定理:三角形一个角的平分线分其对边所成的两条线段与这个角的两边对应成比例。
角平分线定理逆定理:如果三角形一边上的某个点分这条边所成的两条线段与这条边对角的两边对应成比例,那么该点与对角顶点的连线是三角形的一条角平分线.39. 帕斯卡定理:如果一个六边形内接于一条二次曲线(椭圆、双曲线、抛物线),那么它的三对对边的交点在同一条直线上.45. 三角形五心的一些性质:(1)三角形的重心与三顶点的连线所构成的三个三角形面积相等;(2)三角形的垂心与三顶点这四点中,任一点是其余三点所构成的三角形的垂心;(3)三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心;(4)三角形的外心是它的中点三角形的垂心;(5)三角形的重心也是它的中点三角形的重心;(6)三角形的中点三角形的外心也是其垂足三角形的外心;(7)三角形的任一顶点到垂心的距离,等于外心到对边的距离的二倍.。
高中高考数学所有二级结论《[完整版]》
高中数学二级结论1.任意的简单n 面体内切球半径为表S V3(V 是简单n 面体的体积,表S 是简单n 面体的表面积) 2.在任意ABC △内,都有tan A +tan B +tan C =tan A ·tan B ·tan C推论:在ABC △内,若tan A +tan B +tan C <0,则ABC △为钝角三角形 3.斜二测画法直观图面积为原图形面积的42倍 4.过椭圆准线上一点作椭圆的两条切线,两切点连线所在直线必经过椭圆相应的焦点5.导数题常用放缩1+≥x e x 、1ln 11-≤≤-<-x x xx x 、)1(>>x ex e x 6.椭圆)0,0(12222>>=+b a by a x 的面积S 为πab S =7.圆锥曲线的切线方程求法:隐函数求导推论:①过圆222)()(r b y a x =-+-上任意一点),(00y x P 的切线方程为200))(())((r b y b y a x a x =--+--②过椭圆)0,0(12222>>=+b a b y a x 上任意一点),(00y x P 的切线方程为12020=+b yy a xx③过双曲线)0,0(12222>>=-b a by a x 上任意一点),(00y x P 的切线方程为12020=-b yy a xx8.切点弦方程:平面内一点引曲线的两条切线,两切点所在直线的方程叫做曲线的切点弦方程 ①圆022=++++F Ey Dx y x 的切点弦方程为0220000=++++++F E y y D x x y y x x ②椭圆)0,0(12222>>=+b a b y a x 的切点弦方程为12020=+b yy a x x③双曲线)0,0(12222>>=-b a b y a x 的切点弦方程为12020=-byy a x x④抛物线)0(22>=p px y 的切点弦方程为)(00x x p y y +=⑤二次曲线的切点弦方程为0222000000=++++++++F yy E x x D y Cy x y y x Bx Ax 9.①椭圆)0,0(12222>>=+b a b y a x 与直线)0·(0≠=++B A C By Ax 相切的条件是22222C b B a A =+②双曲线)0,0(12222>>=-b a by a x 与直线)0·(0≠=++B A C By Ax 相切的条件是22222C b B a A =-10.若A 、B 、C 、D 是圆锥曲线(二次曲线)上顺次四点,则四点共圆(常用相交弦定理)的一个充要条件是:直线AC 、BD 的斜率存在且不等于零,并有0=+BD AC k k ,(AC k ,BD k 分别表示AC 和BD 的斜率)11.已知椭圆方程为)0(12222>>=+b a b y a x ,两焦点分别为1F ,2F ,设焦点三角形21F PF 中θ=∠21F PF ,则221cos e -≥θ(2max 21cos e -=θ)12.椭圆的焦半径(椭圆的一个焦点到椭圆上一点横坐标为0x 的点P 的距离)公式02,1ex a r ±=13.已知1k ,2k ,3k 为过原点的直线1l ,2l ,3l 的斜率,其中2l 是1l 和3l 的角平分线,则1k ,2k ,3k 满足下述转化关系:3222223321212k k k k k k k k +-+-=,31231231312)()1(1k k k k k k k k k +++-±-=,2122221123212k k k k k k k k +-+-= 14.任意满足r by ax n n =+的二次方程,过函数上一点),(11y x 的切线方程为r y by x ax n n =+--111115.已知f (x )的渐近线方程为y=ax+b ,则a xx f x =∝+→)(lim,b ax x f x =-∝+→])([lim16.椭圆)0(12222>>=+b a b y a x 绕Ox 坐标轴旋转所得的旋转体的体积为πab V 34=17.平行四边形对角线平方之和等于四条边平方之和18.在锐角三角形中C B A C B A cos cos cos sin sin sin ++>++19.函数f (x )具有对称轴a x =,b x =)(b a ≠,则f (x )为周期函数且一个正周期为|22|b a -20.y=kx+m 与椭圆)0(12222>>=+b a b y a x 相交于两点,则纵坐标之和为22222b k a mb +21.已知三角形三边x ,y ,z ,求面积可用下述方法(一些情况下比海伦公式更实用,如27,28,29)AC C B B A S zA C y CB x B A ⋅+⋅+⋅==+=+=+222222.圆锥曲线的第二定义:椭圆的第二定义:平面上到定点F 距离与到定直线间距离之比为常数e (即椭圆的偏心率,ace =)的点的集合(定点F 不在定直线上,该常数为小于1的正数)双曲线第二定义:平面内,到给定一点及一直线的距离之比大于1且为常数的点的轨迹称为双曲线 23.到角公式:若把直线1l 依逆时针方向旋转到与2l 第一次重合时所转的角是θ,则21121tan k k k k θ=⋅+-24.A 、B 、C 三点共线⇔OD nm OB OC n OA m OD +=+=1,(同时除以m+n ) 25.过双曲线)0,0(12222>>=-b a b y a x 上任意一点作两条渐近线的平行线,与渐近线围成的四边形面积为2ab26.反比例函数)0(>=k xky 为双曲线,其焦点为)2,2(k k 和)2,2(k k --,k <0 27.面积射影定理:如图,设平面α外的△ABC 在平面α内的射影为△ABO ,分别记△ABC 的面积和△ABO 的面积为S 和S′ ,记△ABC 所在平面和平面α所成的二面角为θ,则cos θ = S′ : S28,角平分线定理:三角形一个角的平分线分其对边所成的两条线段与这个角的两边对应成比例角平分线定理逆定理:如果三角形一边上的某个点分这条边所成的两条线段与这条边的对角的两边对应成比例,那么该点与对角顶点的连线是三角形的一条角平分线 29.数列不动点:定义:方程的根称为函数的不动点利用递推数列的不动点,可将某些递推关系所确定的数列化为等比数列或较易求通项的数列,这种方法称为不动点法x x f =)()(x f )(x f )(1-=n n a f a定理1:若是的不动点,满足递推关系,则,即是公比为的等比数列.定理2:设,满足递推关系,初值条件(1)若有两个相异的不动点,则(这里)(2)若只有唯一不动点,则(这里)定理3:设函数有两个不同的不动点,且由确定着数列,那么当且仅当时,30.(1)⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+=-+=+==-=++342cos 2cos 2cos 4242sin 2sin 2sin 4142cos 2cos 2cos 442sin 2sin 2sin 4)sin()sin()sin(k n nC nB nA k n nC nB nA k n nC nB nA k n nC nB nA nC nB nA ,*N ∈k (2)若πC B A =++,则:①2sin 2sin 2sin 8sin sin sin 2sin 2sin 2sin CB AC B A C B A =++++②2sin 2sin 2sin 41cos cos cos CB AC B A +=++③2sin 2sin 2sin 212sin 2sin 2sin 222C B A C B A -=++④4sin4sin 4sin 412sin 2sin 2sin C B A C B A ---+=++πππ ⑤2sin 2sin 2sin 4sin sin sin CB AC B A =++⑥2cot 2cot 2cot 2cot 2cot 2cot C B A C B A =++⑦12tan 2tan 2tan 2tan 2tan 2tan =++A C C B B A⑧C B A C B A B A C A C B sin sin sin 4)sin()sin()sin(=-++-++-+),1,0()(≠≠+=a a b ax x f p )(x f n a )1(),(1>=-n a f a n n )(1p a a p a n n -=--}{p a n -a )0,0()(≠-≠++=bc ad c dcx bax x f }{n a 1),(1>=-n a f a n n )(11a f a ≠)(x f q p ,q a p a k q a p a n n n n --⋅=----11qca pca k --=)(x f p k p a p a n n +-=--111da c k +=2)0,0()(2≠≠+++=e af ex cbx ax x f 21,x x )(1n n u f u =+}{n u a e b 2,0==2212111)(x u x u x u x u n n n n --=--++(3)在任意△ABC 中,有: ①812sin 2sin 2sin≤⋅⋅C B A ②8332cos 2cos 2cos ≤⋅⋅C B A ③232sin 2sin 2sin≤++C B A ④2332cos 2cos 2cos≤++C B A ⑤833sin sin sin ≤⋅⋅C B A ⑥81cos cos cos ≤⋅⋅C B A ⑦233sin sin sin ≤++C B A ⑧23cos cos cos ≤++C B A ⑨432sin 2sin 2sin 222≥++C B A⑩12tan 2tan 2tan 222≥++CB A⑪32tan 2tan 2tan ≥++CB A⑫932tan 2tan 2tan ≤⋅⋅C B A ⑬332cot 2cot 2cot≥++CB A ⑭3cot cot cot ≥++C B A(4)在任意锐角△ABC 中,有: ①33tan tan tan ≥⋅⋅C B A②93cot cot cot ≤⋅⋅C B A ③9tan tan tan 222≥++C B A④1cot cot cot 222≥++C B A31.帕斯卡定理:如果一个六边形内接于一条二次曲线(椭圆、双曲线、抛物线),那么它的三对对边的交点在同一条直线上32.拟柱体:所有的顶点都在两个平行平面内的多面体叫做拟柱体,它在这两个平面内的面叫做拟柱体的底面,其余各面叫做拟柱体的侧面,两底面之间的垂直距离叫做拟柱体的高拟柱体体积公式[辛普森(Simpson )公式]:设拟柱体的高为H ,如果用平行于底面的平面γ去截该图形,所得到的截面面积是平面γ与一个底面之间距离h 的不超过3次的函数,那么该拟柱体的体积V 为H S S S V )4(61201++=,式中,1S 和2S 是两底面的面积,0S 是中截面的面积(即平面γ与底面之间距离2Hh =时得到的截面的面积)事实上,不光是拟柱体,其他符合条件(所有顶点都在两个平行平面上、用平行于底面的平面去截该图形时所得到的截面面积是该平面与一底之间距离的不超过3次的函数)的立体图形也可以利用该公式求体积 33.三余弦定理:设A 为面上一点,过A 的斜线AO 在面上的射影为AB ,AC 为面上的一条直线,那么∠OAC ,∠BAC ,∠OAB 三角的余弦关系为:cos∠OAC=cos∠BAC ·cos∠OAB (∠BAC 和∠OAB 只能是锐角)34.在Rt △ABC 中,C 为直角,内角A ,B ,C 所对的边分别是a ,b ,c ,则△ABC 的内切圆半径为2cb a -+35.立方差公式:))((2233b ab a b a b a +--=- 立方和公式:))((2233b ab a b a b a +-+=+36.已知△ABC ,O 为其外心,H 为其垂心,则OC OB OA OH ++=37.过原点的直线与椭圆的两个交点和椭圆上不与左右顶点重合的任一点构成的直线斜率乘积为定值)0(22>>-b a ba 推论:椭圆上不与左右顶点重合的任一点与左右顶点构成的直线斜率乘积为定值)0(22>>-b a ba38.12)!1(!!21+++++++=n θxn xx n e n x x x e 推论:212x x e x++>39.)2(≤≥--a ax ee xx推论:①)0(ln 21>≥-t t tt②)20,0(ln ≤≤>+≥a x ax axx 40.抛物线焦点弦的中点,在准线上的射影与焦点F 的连线垂直于该焦点弦 41.双曲线焦点三角形的内切圆圆心的横坐标为定值a (长半轴长) 42.向量与三角形四心:在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c (1)⇔=++0OC OB OA O 是ABC ∆的重心(2)⇔⋅=⋅=⋅OA OC OC OB OB OA O 为ABC ∆的垂心 (3)O OC c OB b OA a ⇔=++0为ABC ∆的内心==⇔O 为ABC ∆的外心43.正弦平方差公式:)sin()sin(sin sin 22βαβαβα+-=-44.对任意圆锥曲线,过其上任意一点作两直线,若两射线斜率之积为定值,则两交点连线所在直线过定点45.三角函数数列求和裂项相消:21cos2)21sin()21sin(sin --+=x x x 46.点(x ,y )关于直线A x+B y+C =0的对称点坐标为⎪⎭⎫ ⎝⎛+++-+++-2222)(2,)(2B A C By Ax B y B A C By Ax A x 47.圆锥曲线统一的极坐标方程:θρcos 1e ep-=(e 为圆锥曲线的离心率)48.超几何分布的期望:若),,(M N n X~H ,则N nM X E =)((其中NM为符合要求元素的频率),)111)(1()(----=N n N M N M nX D 49.{}n a 为公差为d 的等差数列,{}n b 为公比为q 的等比数列,若数列{}n c 满足n n n b a c ⋅=,则数列{}n c 的前n项和n S 为2121)1(-+-=+q c c q c S n n n 50.若圆的直径端点()()1122,,,A x y B x y ,则圆的方程为()()()()12120x x x x y y y y --+--= 51.过椭圆上一点做斜率互为相反数的两条直线交椭圆于A 、B 两点,则直线AB 的斜率为定值 52.二项式定理的计算中不定系数变为定系数的公式:11--=k n kn nC kC53.三角形五心的一些性质:(1)三角形的重心与三顶点的连线所构成的三个三角形面积相等(2)三角形的垂心与三顶点这四点中,任一点是其余三点所构成的三角形的垂心(3)三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心 (4)三角形的外心是它的中点三角形的垂心 (5)三角形的重心也是它的中点三角形的重心(6)三角形的中点三角形的外心也是其垂足三角形的外心(7)三角形的任一顶点到垂心的距离,等于外心到对边的距离的二倍54.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,则2222c b a AC AB -+=⋅55.m >n 时,22nm nm n m e nm e e e e +>-->+。
高考数学常用的50个二级结论
高考数学常用的50个二级结论二级结论绝对会提高你的解题速度,对提升正确率无疑也很有帮助。
但二级结论不同于公式,仅仅将其记住,一是考场上很难想起,二是生搬硬套,很容易陷入老师的命题陷阱里。
因此,一定要自己动手,将每一个二级结论推导一遍,考场上才好放心使用哦~5. 平行四边形对角线平方之和等于四条边平方之和.12. 过椭圆准线上一点作椭圆的两条切线,两切点连线所在直线必经过椭圆相应的焦点.13. 圆锥曲线的切线方程求法:隐函数求导.推论:14. 切点弦方程:平面内一点引曲线的两条切线,两切点所在直线的方程叫做曲线的切点弦方程.22. 过椭圆上一点做斜率互为相反数的两条直线交椭圆于A 、B 两点,则直线AB 的斜率为定值.24. 抛物线焦点弦的中点,在准线上的射影与焦点F的连线垂直于该焦点弦.25. 双曲线焦点三角形的内切圆圆心的横坐标为定值a(长半轴长).26. 对任意圆锥曲线,过其上任意一点作两直线,若两直线斜率之积为定值,两直线交曲线于A,B两点,则直线AB恒过定点.32. 角平分线定理:三角形一个角的平分线分其对边所成的两条线段与这个角的两边对应成比例。
角平分线定理逆定理:如果三角形一边上的某个点分这条边所成的两条线段与这条边对角的两边对应成比例,那么该点与对角顶点的连线是三角形的一条角平分线.39. 帕斯卡定理:如果一个六边形内接于一条二次曲线(椭圆、双曲线、抛物线),那么它的三对对边的交点在同一条直线上.45. 三角形五心的一些性质:(1)三角形的重心与三顶点的连线所构成的三个三角形面积相等;(2)三角形的垂心与三顶点这四点中,任一点是其余三点所构成的三角形的垂心;(3)三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心;(4)三角形的外心是它的中点三角形的垂心;(5)三角形的重心也是它的中点三角形的重心;(6)三角形的中点三角形的外心也是其垂足三角形的外心;(7)三角形的任一顶点到垂心的距离,等于外心到对边的距离的二倍.。
高中数学常用二级结论
高中数学常用二级结论记住这些超有用的常用二级结论,帮你理清数学套路,节约做题时间,数学轻松120+.1.任意的简单n 面体内切球半径为表S V3(V 是简单n 面体的体积,表S 是简单n 面体的表面积) 2.在任意ABC △内,都有tan A +tan B +tan C =tan A ·tan B ·tan C 推论:在ABC △内,若tan A +tan B +tan C <0,则ABC △为钝角三角形 3.斜二测画法直观图面积为原图形面积的42倍 4.过椭圆准线上一点作椭圆的两条切线,两切点连线所在直线必经过椭圆相应的焦点 5.导数题常用放缩1+≥x e x 、1ln 11-≤≤-<-x x xx x 、)1(>>x ex e x 6.椭圆)0,0(12222>>=+b a by a x 的面积S 为πab S =7.圆锥曲线的切线方程求法:隐函数求导推论:①过圆222)()(r b y a x =-+-上任意一点),(00y x P 的切线方程为200))(())((r b y b y a x a x =--+--②过椭圆)0,0(12222>>=+b a b y a x 上任意一点),(00y x P 的切线方程为12020=+b yya xx③过双曲线)0,0(12222>>=-b a by a x 上任意一点),(00y x P 的切线方程为12020=-b yya xx8.切点弦方程:平面内一点引曲线的两条切线,两切点所在直线的方程叫做曲线的切点弦方程 ①圆022=++++F Ey Dx y x 的切点弦方程为0220000=++++++F E y y D x x y y x x ②椭圆)0,0(12222>>=+b a b y a x 的切点弦方程为12020=+b yy a x x③双曲线)0,0(12222>>=-b a b y a x 的切点弦方程为12020=-by y a x x④抛物线)0(22>=p px y 的切点弦方程为)(00x x p y y +=⑤二次曲线的切点弦方程为0222000000=++++++++F yy E x x D y Cy x y y x Bx Ax9.①椭圆)0,0(12222>>=+b a b y a x 与直线)0·(0≠=++B A C By Ax 相切的条件是22222C b B a A =+②双曲线)0,0(12222>>=-b a by a x 与直线)0·(0≠=++B A C By Ax 相切的条件是22222C b B a A =-10.若A 、B 、C 、D 是圆锥曲线(二次曲线)上顺次四点,则四点共圆(常用相交弦定理)的一个充要条件是:直线AC 、BD 的斜率存在且不等于零,并有0=+BD AC k k ,(AC k ,BD k 分别表示AC 和BD 的斜率)11.已知椭圆方程为)0(12222>>=+b a b y a x ,两焦点分别为1F ,2F ,设焦点三角形21F PF 中θ=∠21F PF ,则221cos e -≥θ(2m ax 21cos e -=θ)12.椭圆的焦半径(椭圆的一个焦点到椭圆上一点横坐标为0x 的点P 的距离)公式02,1ex a r ±=13.已知1k ,2k ,3k 为过原点的直线1l ,2l ,3l 的斜率,其中2l 是1l 和3l 的角平分线,则1k ,2k ,3k 满足下述转化关系:3222223321212k k k k k k k k +-+-=,31231231312)()1(1k k k k k k k k k +++-±-=,2122221123212k k k k k k k k +-+-= 14.任意满足r by ax nn=+的二次方程,过函数上一点),(11y x 的切线方程为r y by xax n n =+--111115.已知f (x )的渐近线方程为y=ax+b ,则a xx f x =∝+→)(lim,b ax x f x =-∝+→])([lim16.椭圆)0(12222>>=+b a b y a x 绕Ox 坐标轴旋转所得的旋转体的体积为πab V 34=17.平行四边形对角线平方之和等于四条边平方之和18.在锐角三角形中C B A C B A cos cos cos sin sin sin ++>++19.函数f (x )具有对称轴a x =,b x =)(b a ≠,则f (x )为周期函数且一个正周期为|22|b a -20.y=kx+m 与椭圆)0(12222>>=+b a b y a x 相交于两点,则纵坐标之和为22222bk a mb + 21.已知三角形三边x ,y ,z ,求面积可用下述方法(一些情况下比海伦公式更实用,如27,28,29)AC C B B A S zA C y CB x B A ⋅+⋅+⋅==+=+=+222222.圆锥曲线的第二定义:椭圆的第二定义:平面上到定点F 距离与到定直线间距离之比为常数e (即椭圆的偏心率,ace =)的点的集合(定点F 不在定直线上,该常数为小于1的正数)双曲线第二定义:平面内,到给定一点及一直线的距离之比大于1且为常数的点的轨迹称为双曲线 23.到角公式:若把直线1l 依逆时针方向旋转到与2l 第一次重合时所转的角是θ,则21121tan k k k k θ=⋅+-24.A 、B 、C 三点共线⇔OD nm n m +=+=1,(同时除以m+n ) 25.过双曲线)0,0(12222>>=-b a b y a x 上任意一点作两条渐近线的平行线,与渐近线围成的四边形面积为2ab26.反比例函数)0(>=k xky 为双曲线,其焦点为)2,2(k k 和)2,2(k k --,k <0 27.面积射影定理:如图,设平面α外的△ABC 在平面α内的射影为△ABO ,分别记△ABC 的面积和△ABO 的面积为S 和S′,记△ABC 所在平面和平面α所成的二面角为θ,则cos θ=S′:S28,角平分线定理:三角形一个角的平分线分其对边所成的两条线段与这个角的两边对应成比例角平分线定理逆定理:如果三角形一边上的某个点分这条边所成的两条线段与这条边的对角的两边对应成比例,那么该点与对角顶点的连线是三角形的一条角平分线 29.数列不动点:定义:方程的根称为函数的不动点利用递推数列的不动点,可将某些递推关系所确定的数列化为等比数列或较易求通项的数列,这种方法称为不动点法x x f =)()(x f )(x f )(1-=n n a f a定理1:若是的不动点,满足递推关系,则,即是公比为的等比数列.定理2:设,满足递推关系,初值条件(1)若有两个相异的不动点,则(这里)(2)若只有唯一不动点,则(这里)定理3:设函数有两个不同的不动点,且由确定着数列,那么当且仅当时,30.(1)⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+=-+=+==-=++342cos 2cos 2cos 4242sin 2sin 2sin 4142cos 2cos 2cos 442sin 2sin 2sin 4)sin()sin()sin(k n nC nB nA k n nC nB nA k n nC nB nA k n nC nB nA nC nB nA ,*N ∈k (2)若πC B A =++,则:①2sin 2sin 2sin 8sin sin sin 2sin 2sin 2sin CB AC B A C B A =++++②2sin 2sin 2sin 41cos cos cos CB AC B A +=++③2sin 2sin 2sin 212sin 2sin 2sin 222C B A C B A -=++④4sin4sin 4sin 412sin 2sin 2sin C B A C B A ---+=++πππ ⑤2sin 2sin 2sin 4sin sin sin CB AC B A =++⑥2cot 2cot 2cot 2cot 2cot 2cot C B A C B A =++⑦12tan 2tan 2tan 2tan 2tan 2tan =++A C C B B A),1,0()(≠≠+=a a b ax x f p )(x f n a )1(),(1>=-n a f a n n )(1p a a p a n n -=--}{p a n -a )0,0()(≠-≠++=bc ad c dcx bax x f }{n a 1),(1>=-n a f a n n )(11a f a ≠)(x f q p ,q a p a k q a p a n n n n --⋅=----11qca pca k --=)(x f p k p a p a n n +-=--111da c k +=2)0,0()(2≠≠+++=e af ex cbx ax x f 21,x x )(1n n u f u =+}{n u a e b 2,0==2212111)(x u x u x u x u n n n n --=--++⑧C B A C B A B A C A C B sin sin sin 4)sin()sin()sin(=-++-++-+ (3)在任意△ABC 中,有: ①812sin 2sin 2sin≤⋅⋅C B A ②8332cos 2cos 2cos ≤⋅⋅C B A ③232sin 2sin 2sin≤++C B A ④2332cos 2cos 2cos≤++C B A ⑤833sin sin sin ≤⋅⋅C B A ⑥81cos cos cos ≤⋅⋅C B A ⑦233sin sin sin ≤++C B A ⑧23cos cos cos ≤++C B A ⑨432sin 2sin 2sin 222≥++C B A⑩12tan 2tan 2tan 222≥++CB A⑪32tan 2tan 2tan ≥++CB A⑫932tan 2tan 2tan ≤⋅⋅C B A ⑬332cot 2cot 2cot≥++CB A ⑭3cot cot cot ≥++C B A(4)在任意锐角△ABC 中,有: ①33tan tan tan ≥⋅⋅C B A ②93cot cot cot ≤⋅⋅C B A ③9tan tan tan 222≥++C B A④1cot cot cot 222≥++C B A31.帕斯卡定理:如果一个六边形内接于一条二次曲线(椭圆、双曲线、抛物线),那么它的三对对边的交点在同一条直线上32.拟柱体:所有的顶点都在两个平行平面内的多面体叫做拟柱体,它在这两个平面内的面叫做拟柱体的底面,其余各面叫做拟柱体的侧面,两底面之间的垂直距离叫做拟柱体的高拟柱体体积公式[辛普森(Simpson )公式]:设拟柱体的高为H ,如果用平行于底面的平面γ去截该图形,所得到的截面面积是平面γ与一个底面之间距离h 的不超过3次的函数,那么该拟柱体的体积V 为H S S S V )4(61201++=,式中,1S 和2S 是两底面的面积,0S 是中截面的面积(即平面γ与底面之间距离2Hh =时得到的截面的面积)事实上,不光是拟柱体,其他符合条件(所有顶点都在两个平行平面上、用平行于底面的平面去截该图形时所得到的截面面积是该平面与一底之间距离的不超过3次的函数)的立体图形也可以利用该公式求体积33.三余弦定理:设A 为面上一点,过A 的斜线AO 在面上的射影为AB ,AC 为面上的一条直线,那么∠OAC ,∠BAC ,∠OAB 三角的余弦关系为:cos ∠OAC=cos ∠BAC ·cos∠OAB (∠BAC 和∠OAB 只能是锐角)34.在Rt △ABC 中,C 为直角,内角A ,B ,C 所对的边分别是a ,b ,c ,则△ABC 的内切圆半径为2cb a -+ 35.立方差公式:))((2233b ab a b a b a +--=-立方和公式:))((2233b ab a b a b a +-+=+36.已知△ABC ,O 为其外心,H 为其垂心,则OC OB OA OH ++=37.过原点的直线与椭圆的两个交点和椭圆上不与左右顶点重合的任一点构成的直线斜率乘积为定值)0(22>>-b a ba 推论:椭圆上不与左右顶点重合的任一点与左右顶点构成的直线斜率乘积为定值)0(22>>-b a ba38.12)!1(!!21+++++++=n θxn xx n e n x x x e 推论:212x x e x++>39.)2(≤≥--a ax ee xx推论:①)0(ln 21>≥-t t tt②)20,0(ln ≤≤>+≥a x ax axx 40.抛物线焦点弦的中点,在准线上的射影与焦点F 的连线垂直于该焦点弦 41.双曲线焦点三角形的内切圆圆心的横坐标为定值a (长半轴长) 42.向量与三角形四心:在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c(1)⇔=++0OC OB OA O 是ABC ∆的重心(2)⇔⋅=⋅=⋅OA OC OC OB OB OA O 为ABC ∆的垂心 (3)O OC c OB b OA a ⇔=++0为ABC ∆的内心==⇔O 为ABC ∆的外心43.正弦平方差公式:)sin()sin(sin sin 22βαβαβα+-=-44.对任意圆锥曲线,过其上任意一点作两直线,若两射线斜率之积为定值,则两交点连线所在直线过定点45.三角函数数列求和裂项相消:21cos2)21sin()21sin(sin --+=x x x 46.点(x ,y )关于直线A x+B y+C =0的对称点坐标为⎪⎭⎫ ⎝⎛+++-+++-2222)(2,)(2B A C By Ax B y B A C By Ax A x 47.圆锥曲线统一的极坐标方程:θρcos 1e ep-=(e 为圆锥曲线的离心率)48.超几何分布的期望:若),,(M N n X~H ,则N nM X E =)((其中NM为符合要求元素的频率),)111)(1()(----=N n N M N M n X D49.{}n a 为公差为d 的等差数列,{}n b 为公比为q 的等比数列,若数列{}n c 满足n n n b a c ⋅=,则数列{}n c 的前n项和n S 为2121)1(-+-=+q c c q c S n n n50.若圆的直径端点()()1122,,,A x y B x y ,则圆的方程为()()()()12120x x x x y y y y --+--= 51.过椭圆上一点做斜率互为相反数的两条直线交椭圆于A 、B 两点,则直线AB 的斜率为定值52.二项式定理的计算中不定系数变为定系数的公式:11--=k n k n nC kC53.三角形五心的一些性质:(1)三角形的重心与三顶点的连线所构成的三个三角形面积相等(2)三角形的垂心与三顶点这四点中,任一点是其余三点所构成的三角形的垂心 (3)三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心 (4)三角形的外心是它的中点三角形的垂心 (5)三角形的重心也是它的中点三角形的重心(6)三角形的中点三角形的外心也是其垂足三角形的外心(7)三角形的任一顶点到垂心的距离,等于外心到对边的距离的二倍54.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,则2222c b a AC AB -+=⋅55.m >n 时,22nm nm n m e nm e e e e +>-->+。