第2章调制解调

合集下载

调制解调

调制解调

2.2 数字频率调制
2.2.1 移频键控(FSK)调制 设输入到调制器的比特流为{an}, an=±1,
n=-∞~+∞。 FSK的输出信号形式(第n个比特区间)为
cos(1t 1 ) an 1 s (t ) cos(2t 2 ) an 1
(2 - 23)
即当输入为传号“ +1 ”时,输出频率为 f 1 的正弦波; 当输入为空号“-1”时,输出频率为f2的正弦波。
在大信噪比情况下, 即Uc>>V(t), 有
(2 - 14)
V (t ) (t ) c t (t ) sin (t ) (t ) Uc (2 - 15) y (t ) c t (t ) Uc
鉴频器的输出为
d(t ) d (t ) 1 dy(t ) uout (t ) c dt dt U c dt 1 dy(t ) k f um (t ) U c dt
调制技术
第二代移动通信是数字移动通信,其中的关键技
术之一是数字调制技术。对数字调制技术的主要要求
是:已调信号的频谱窄和带外衰减快(即所占频带窄,
或者说频谱利用率高);易于采用相干或非相干解调; 抗噪声和抗干扰的能力强;以及适宜在衰落信道中传 输。 数字信号调制的基本类型分为振幅键控 (ASK) 、 频移键控 (FSK)和相移键控 (PSK)。此外,还有许多由 基本调制类型改进或综合而获得的新型调制技术。
差为σ2n的高斯随机过程。
发“+1”时: y1(t) = a cos(ω1t+φ1)+nc1(t) cos(ω1t+φ1)
-ns1(t) sin(ω1t+φ1) 发“-1”时:

移动通信第二章-调制技术

移动通信第二章-调制技术
第二章 调制技术
目录
CONTENTS
什么是调制、解调?
调制的目的是什么?
调制的分类
01
线性调制与解调
恒定包络(连续相位)调制
02
03
04
05
(书2.5节)扩频通信
06
调制、解调技术
调制的目的是什么?
使传输的模拟信号或数字信号变换成适合信道传输的信号。 ?移动通信信道的特点
什么是调制、解调?
使高频信号的某个参数(如幅度、频率和相位)随基带信号发生相应的变化,以此方法携带基带信号的信息。 解调是调制的逆过程。 调制、解调技术
扩频通信
2.5 扩频通信
解扩
扩频
伪随机序列:
m序列(PN序列) Gold序列 Walsh函数
2.5 扩频通信
2.5 扩频通信
主要性能指标 处理增益(Gp):频谱扩展前的信息带宽ΔF与频带扩展后的信号带宽W之比。
Mj:抗干扰容限 Ls:接收系统的工作损耗 (S/N)out:信息数据被正确解调而要求的最小输出信噪比 抗干扰容限:指扩频通信系统能在多大干扰环境下正常工作的能力。
调制、解调技术
调制、解调技术
以上两种调制的优缺点:
线性调制(一般不等幅): 优点:频带利用率高 缺点:要求通信设备从频率变换道放大和发射保 持充分的线性,所以设备复杂、成本高 恒定包络(连续相位)调制(等幅): 优点:可使用功率高的C类放大器 缺点:频谱利用率低
调制、解调技术
线性调制与解调 设输入信号:{an},an=±1,n=-∞,∞ 则PSK的信号形式为: 相移键控调制(PSK)
S
n
, 0Biblioteka t0je
?
t
0
j

第2讲 调制与解调

第2讲  调制与解调

图3-45 GMSK信号的功率谱密度
表3-2给出了作为BbTb函数的GMSK 信号中包含给定功率百分比的射频带宽。
表3-2
Bb T b 0.2 0.25 0.5 ∞
GMSK信号中包含给定功率百分比的射频带宽
90% 0.52Rb 0.57Rb 0.69Rb 0.78Rb 99% 0.79Rb 0.86Rb 1.04Rb 1.20Rb 99.9% 0.99Rb 1.09Rb 1.33Rb 2.76Rb 99.99% 1.22Rb 1.37Rb 2.08Rb 6.00Rb
最小频差(最大频偏):
当ak 1 当ak 1
(k 1)Ts t kTs
1 f f 2 f 1 2Ts
即最小频差等于码元速率的一半 设1/Ts=fs,则调频指数
h
f 1 1 Ts f s 2Ts 2
h=0.5时,满足在码元交替点相位连续的条件,也是频移键控为保证良 好的误码率性能所允许的最小调制指数,且此时波形的相关系数为 0.5, 待传送的两个信号是正交的。
图3-22 MQAM信号相干解调原理图
3.1.3 数字频率调制
一、 二进制频移键控
用二进制数字基带信号去控制载波 频率称为二进制频移键控(2FSK)。
如图3-25所示,设输入到调制器的比 n ∞~ ∞ 。 特流为{ a n },an 1, 2FSK的输出信号形式为
图3-25 2FSK信号的产生
图3-35 MSK信号调制器原理框图
MSK信号属于数字频率调制信号,因 此一般可以采用鉴频器方式进行解调,其 原理图如图3-38所示。
图3-38 MSK鉴频器解调原理框图
相干解调的框图如图3-39所示。
图3-39 MSK信号相干解调器原理框图

数字微波调制与解调技术

数字微波调制与解调技术
4
第2章
2.1二进制幅度键控(2ASK)
Amplitude Shift Keying
又称通断键控(OOK)
2ASK信号的产生
Acosct
乘法器

B(t )
So(t )
SASK (t)
cosct
B(t )
模拟幅度调制方法
键控方法
第2章
OOK On-Off Keying 5
基带波形 B(t) ang(t nTs )
PSK调制可以用相乘器,也可以用相位选择器
载波

0
φ
π
移相
S2PSK (t)
B(t )
2PSK调制方框图(相位选法择)
26
第2章
2PSK信号的功率谱密度
pS ( f
)
1 4
[
pB
(
f
fc)
pB ( f
fc )]
由于
a n
g (t
nT s
)
为双极
性矩形n基 带信号,故:
pS ( f ) fs p(1 p)[ G( f fc ) 2 G( f fc ) 2 ]
s
fs2 (1
p)2
2
G(mfs ) ( f
mfs )
m
根据矩形波形g(t)的频谱特点,对
于所有m≠0的整数有 G(mf ) 0 s
pB (
f
)
f s
p(1
p)G(
f
)
2
f 2 (1 s
p)2
(
f
)G(0) 2
9
第2章
当P=1/2时
pASK
(
f
)
1 16

第2章 调制解调技术-OFDM及扩频技术

第2章 调制解调技术-OFDM及扩频技术

IFFT
IFFT输 出
IFFT
时间 Tg Ts 符 号N- 1 符 号N 符 号N+ 1 TFFT
图2-71 保护间隔的插入过程
保护间隔与循环前缀——加循环前缀
FFT积分区间
第三节、 OFDM多载波调制技术
三. OFDM系统性能
1. 抗脉冲干扰

OFDM系统抗脉冲干扰的能力比单载波系统强很多。
第三节、 OFDM多载波调制技术
一. OFDM基本原理
二. OFDM信号调制与解调
三. OFDM系统性能
一.OFDM基本原理
数字调制解调方式可采用并行体制。
多载波传输系统是指将高速率的信息数据流经串/并变换
分割为若干路低速率并行子数据流,然后每路低速率数据采 用一个独立的载波进行调制,最后叠加在一起构成发送信号。
Rb BOFDM N N 1 bit / s / Hz
• OFDM系统的频谱利用率比串行系统提高近一倍。
第四节、扩频调制技术
一.扩频调制原理
二.扩频码介绍
三.扩频调制性能
第四节、扩频调制技术
一.扩频调制原理
• 扩频(spread spectrum)通信是指用来传输信息的信号带宽远远 大于信息本身带宽的一种传输方式。 • 在通信的一些应用中,我们要考虑通信系统的多址能力,抗干 扰、抗阻塞能力以及隐蔽能力等。 • 扩频技术是解决以上问题的有效措施。 扩频通信理论基础来源于信息论中的香农公式:
0
m
(t ) cos mtdn (t ) cos ntdt 0
原信号的码宽为T,速率为1/T, OFDM信号的符号长度为Ts, Ts=MT。每个子载波速率为1/MT。 得每路子信号的带宽为△f=1/Ts

第02章 调制解调器

第02章  调制解调器

· 每片卡配12个指示灯 · 19 英寸工业标准机架 , 可长期稳定 工作。 · 两套电源系统热备份 · 符合ITU-T和Bell数字传输规范 · ITU-T和MNP标准纠错和数据压缩 · 卡片可以带电热插拔更换方便 · 贺氏AT和V.25bis指令集兼容 · 传输速率从300bps到33.600bps · 开机自检和内置V.54环路测试 · 自动或手动调试信号 , 协调提高和 降低速率 · 每架可配置多达16条线 · 可用于2线拨号,2线或4线专线,拨 号备份同步或异步模式
foh =2125Hz
2.1.2调制解调器的用途
使得数字信号可以在电话网中传输,就需 要将数字信号变换成模拟信号的形式,同 时,在通信的另一端要做相反的变换,以 便于数据装置的接收。调制解调器恰恰为 我们提供了这些服务。
2.1.3调制解调器的分类
内置式
按照安装位置分类 外置式 通用调制解调器
按照功能分类
Modem通常有三种工作方式:挂机方式、通 话方式、联机方式。 挂机方式指的是电话线未接通的状态; 双方通过电话进行通话是通话方式 Modem已联通,进行数据传输是联机方式
普通的Modem通常都是通过RS-232C 串 行口信号线与计算机连接。 RS-232C串行口信号分为三类:传送信号、联 络信号和地线 1、传送信号:指TXD(发送数据信号线)和 RXD(接收数据信号线)。经由TXD传送和RXD 接收的信息格式为:一个传送单位(字节)由起始 位、数据位、奇偶校验位和停止位组成。 2、联络信号:指RTS、CTS、DTR、DSR、 DCD和RI六个信号 3、地线信号
数模转换的调制方法也有三种: 1、频移键控(FSK) 频移键控是指用特殊的音频范围来区别发 送数据和接收数据。 2、相移键控(PSK) 3、相位幅度调制(PAM)

第02章 调制解调器要点

第02章  调制解调器要点

1. 基频调制 基频调制就是来自网上的数字信号会经过调制 的过程,将数字信号转换成模拟信号,以模 拟的方式在有线电视的电缆上传输。调制的 方式则与信号传递的方向有关 。下行采用 64QAM调制,在6MHz的频谱宽度内速率可达 到30Mbps。上行采用QPSK调制,可提供 2.56Mbps的数据传送速率 。 2. 上转频 在调制之后,接下來要決定的是信号会经 由哪一个频道送出。即把基频信号转换到某 个电视频道。
Modem通常有三种工作方式:挂机方式、通 话方式、联机方式。 挂机方式指的是电话线未接通的状态; 双方通过电话进行通话是通话方式 Modem已联通,进行数据传输是联机方式
普通的Modem通常都是通过RS-232C 串 行口信号线与计算机连接。 RS-232C串行口信号分为三类:传送信号、联 络信号和地线 1、传送信号:指TXD(发送数据信号线)和 RXD(接收数据信号线)。经由TXD传送和RXD 接收的信息格式为:一个传送单位(字节)由起始 位、数据位、奇偶校验位和停止位组成。 2、联络信号:指RTS、CTS、DTR、DSR、 DCD和RI六个信号 3、地线信号
2.5 如何选购调制解调器
1.产品类型 内置MODEM 成本低,所以售价相对于外置来说比较便 宜。但是它需要占用主板上的一个扩展槽, 并且要对中断和COM口进行设置,且安装 比较麻烦内置MODEM按所采用的接口不 同又可分为:ISA接口、PCI接口、 PCMCIA接口
外置MODEM 外置MODEM是将MODEM的电路板封装在 一个盒子里 ,价格也比同类型的内置MODEM 要高30%以上。 按所采用的接口不同又可分为:串口 MODEM和USB接口MODEM。 USB接口提供高达12Mbps的数据带宽,支持 即插即用和热插拔的特性,安装十分的方便 快捷

第2章调制解调技术GMSK及π4DQPSK资料.

第2章调制解调技术GMSK及π4DQPSK资料.

xk
xk 1
(ak1
ak )
k
2
xk 1
xk1 k
ak ak 1 ak ak 1
第二节、移动通信的数字调制技术
由下列两式可得出MSK的相位轨迹
xk
xk 1
(ak 1
ak )
k
2
k
2Tb
akt
xk
MSK的相位轨迹θ(t)
(t)
3 / 2 - 1 - 1 + 1 - 1 + 1 + 1 + 1 - 1 + 1
G
Sout / Nout Sin / Nin
3m
2 f
(m
f
1)
第一节、基本调制技术
目前应用的模拟 FM 移动通信系统: 话音最高频率 fm= 3 kHz; 最大调制频偏 f = 5 kHz, 则单路信号带宽为多少?
B=2(fm+f)=16 kHz 按照FDM原理,保护频带 Bg = 9 kHz,则一个信道的宽 度为 25 kHz(即载波频率点间隔 25 kHz )。
调制方案的性能衡量标准: 功率效率--在低功率下保持正确传输的能力。(Eb/N0越小越好) 带宽效率—有限带宽内容纳数据量的能力。 (Rb/B越大越好)
在信道频带受限时 为了提高频带利用率,通常采用多进制数字 调制系统。其代价是增加信号功率和实现上的复杂性。
脉冲成型技术可消除码间串扰和保持小的信号带宽,因而得到广 泛应用。
设输入到调制器的比特流为{an}, an=±1, n=-∞~+∞。 FSK的输出信号形式(第n个比特区间)为
s(t)
cos(2 cos(2
( (
fc fc
f f
)t) )t)
an 1 an 1

AM调制与解调

AM调制与解调

第一章 调制解调的基本原理第一节 调制的基本原理“调制”就是使信号f(t)控制载波的某一个或某些参数(如振幅、频率、相位等),是这些参数按照信号f(t)的规律变化的过程。

载波可以是正弦波或脉冲序列。

以正弦型信号作载波的调制叫做连续波调制。

调制后的载波就载有调制信号所包含的信息,称为已调波。

对于连续波调制,已调信号可以表示为())(cos )()t (t ot t A ϑωϕ+=它有振幅频率和相位三个参数构成。

改变三个参数中的任何一个都可以携带同样的信息。

因此连续波的调制可分为调幅、调相、和调频。

调制在通信过程中起着极其重要的作用:无线电通信是通过空间辐射方式传输信号的,调制过程可以将信号的频谱搬移到容易以电磁波形势辐射的较高范围;此外,调制过程可以将不同的信号通过频谱搬移托付至不同频率的载波上,实现多路复用,不至于互相干扰。

按照被调制信号参数的不同,调制的方式也不同。

如果被控制的参数是高频振荡的幅度,则称这种调制方式为幅度调制,简称调幅;如果被控制的参数是高频振荡的频率或相位,则称这种调制方式为频率调制或相位调制,简称调频或调相(调频与调相又统称调角)。

振幅调制是一种实用很广的连续波调制方式。

幅度调制的特点是载波的频率始终保持不变,它的振幅却是变化的。

其幅度变化曲线与要传递的低频信号是相似的。

它的振幅变化曲线称之为包络线,代表了要传递的信息。

第二节解调的基本原理解调是调制的逆过程,它的作用是从已调波信号中取出原来的调制信号。

调制过程是一个频谱搬移的过程,它将低频信号的频谱搬移到载频位置。

如果要接收端回复信号,就要从已调信号的频谱中,将位于载频的信号频谱再搬回来。

解调分为相干解调和非相干解调。

相干解调是指为了不失真地恢复信号,要求本地载波和接收信号的载波必须保持同频同相。

非相干解调主要指利用包络检波器电路来解调的。

包络检波电路实际上是一个输出端并接一个电容的整流电路。

二极管的单向导电性和电容器的充放电特性和低通滤波器滤去高频分量,得到与包络线形状相同的音频信号,见图1.2.3 。

第二章数字信号的调制与解调 ppt课件

第二章数字信号的调制与解调 ppt课件
பைடு நூலகம்
进入接收端的接收功率用Si表示和噪 声功率用Ni表示
解调信噪比增益(解调器输出与输入 信噪比之比)
(2-8)
由上式可知,当输入端的信噪比一定
时,所获得的输出端的信噪比越大,系统 的解调信噪比增益越大。例如卫星系统中 常取mf=5,那么此时解调信噪比增益达到 450。
【例2-1】在采用FDM/FM方式工作的 卫星通信系统中,已知工作频率为6GHz, 试计算一个载波传输252路电话信号时所需 的传输带宽和信噪比增益。
2.3 时分复用与数字信号的调制与解调
2.4 相干解调的载波跟踪技术
2.0 预备知识 2.0.1为什么要调制?
1.无线电通信使用空间辐射方式, 把信号从发射端传送到接收端。根 据电磁波理论,发射天线尺寸为被 发射信号波长的十分之一或更大些, 信号才能有效地被发射出去 (λ=c/f)。
假如要发射一个300Hz的音频信号 (其波长为106m),则就必须要用 100km长的天线,这是无法实现的。
于余弦信号有幅度、相位和频率三种基本 参量,因此可以构成调幅、调相和调频三 种基本调制方式
3.调制定理
在通信系统中,常常会遇到基带信号 f(t)和余弦信号相乘的情况。
信号的频谱由一个频率位置搬移到另 一个频率位置上。
概念: 上边带:位于ωc之上的部分 下边带:位于ωc之下的部分
4.解调原理
2.另外,大气层对基带信号迅 速衰减,对较高频率范围的信号则 能传播很远的距离,因此,要通过 大气层远距离传送基带信号,就需 要极高频率的载波信号来携带被传 送的基带信号,这就是调制。
2.0.2调制定理
1.调制的概念
所谓调制是指用基带信号对载波(通 常为余弦或正弦)波形的某些参数(如幅 度、相位和频率)进行控制,使这些参数 随基带信号的变化而变化。通常是将调制 信号调制到中频(70MHz或140MHz), 然后在频谱搬移到射频(此时不调制)。

调制解调器原理

调制解调器原理

调制解调器原理
调制解调器是一种电子设备,用于将信息信号调制成载波信号进行传输,并将接收到的调制信号解调还原为原始信号。

其原理可以分为调制和解调两个过程。

调制是将原始信息信号(例如语音、数据等)转换为能够在传输介质中传播的高频载波信号。

常见的调制方式包括幅度调制(AM)、频率调制(FM)和相位调制(PM)。

在调制过程中,信息信号被转换为一种能够和载波信号进行叠加的中间频率信号,形成调制信号。

解调是将接收到的调制信号还原成原始信息信号的过程。

解调过程与调制过程相反,通过提取调制信号中的信息部分,并去除载波信号的影响来实现信号的恢复。

常见的解调方式包括包络检波、频率鉴别解调和相干解调等。

调制解调器通常由调制电路和解调电路组成。

调制电路负责将原始信号进行调制,可以使用不同的调制方式来满足不同传输要求。

解调电路则负责接收调制信号,并通过特定的解调方法将其还原成原始信息信号。

调制解调器还可能包括其它辅助电路,如滤波电路用于去除杂散信号和频率偏移电路用于修正频率偏移等。

通过调制解调器,可以将原始信息信号进行有效的传输和接收。

调制可以使信号克服传输介质的限制,在传输过程中较大程度地保持信号的稳定性和可靠性。

解调则能够恢复被调制信号中的信息部分,使接收端能够获取到原始的信息内容。

总之,调制解调器通过将原始信息信号进行调制和解调,实现了信号在传输过程中的转换和恢复,为信息的传输和接收提供了有效的手段。

移动通信课后题

移动通信课后题

2012-2013学年09级《移动通信》复习题及参考答案第一章 概论1、什么叫移动通信移动通信有哪些特点【答】移动通信是指通信双方至少有一方在移动中(或者临时停留在某一非预定的位置上)进行信息传输和交换,这包括移动体(车辆、船舶、飞机或者行人)和移动体之间的通信,移动体和固定点(固定无线电台或有线用户)之间的通信。

特点:1、移动通信必须利用无线电波进行信息传输;2、移动通信是在复杂的干扰环境中运行的;3、移动通信可以利用的频谱资源非常有限,而移动通信业务量的需求却与日俱增;4、移动通信系统的网络结构多种多样,网络管理和控制必须有效;5、移动通信设备(主要是移动台)必须适于在移动环境中使用。

2、单工通信与双工通信有何区别各有何优缺点【答】所谓单工通信,是指通信双方电台交替地进行收信和发信。

此工作方式设备简单,功耗小,但操作不便,通话时易产生断断续续的现象。

它一般应用于用户少的专用调度系统。

所谓双工通信,是指通信双方可同时进行传输消息的工作方式,有时亦称全双工通信。

这种方式操作方便,但电能消耗大。

模拟或数字式的蜂窝电话系统都采用双工制。

第二章 调制解调1、移动通信中对调制解调技术的要求是什么(请总结3G ,LTE 等高速数据传输对调制解调技术的要求)【答】已调信号的频谱窄和带外衰减快(即所占频带窄,或者说频谱利用率高);易于采用相干或非相干解调;抗噪声和抗干扰的能力强;以及适宜在衰落信道中传输。

已调信号所占的带宽要窄:频谱主瓣窄;已调信号频谱副瓣的幅度要低,辐射到相邻频道的功率就小;经调制解调后的输出信噪比(S/N )较大或误码率较低。

1、所有的技术必须在规定频带内提供高的传输效率2、要使信号深衰落引起的误差数降至最小3、应使用高效率的放大器4、在衰落条件下获得所需要的误码率2、已调信号的带宽是如何定义的FM 信号的带宽如何计算【答】已调信号的带宽是指已调信号所包含的各种不同频率成分所占据的频率范围。

移动通信第2章调制与解调

移动通信第2章调制与解调

调制信号的功率谱
f
7
2.1.5 数字调制分类的方法
数字式调制
不恒定包络
ASK(移幅键控) QAM(正交幅度调制) MQAM(星座调制)
FSK BFSK(二进制移频键控) (移频键控) MFSK(多进制移频键控)
BPSK(二进制移相键控)
恒定包络
PSK (移相键控)
DPSK(差分二进制移相键控)
QPSK (正交四相 移相键控)
• 当采用较高传输速率时,要求更为紧凑的功率谱才能满足 对邻道辐射功率低于-60dB~-80dB的要求
23
2.2.12 GMSK
• GMSK是GSM的优选方案
– 实现简单,在原MSK调制器增加前置滤波器,得到平滑后的某 种新的波形后再进行调频,就可以得到良好的频谱特性
– 对前置滤波器的要求 • 带宽窄且为锐截止型,以滤除基带信号中的高频成分 • 有较低的过脉冲响应,防止已调波瞬时频偏过大 • 保持输出脉冲响应的面积不变,使调制指数为1/2
11
第2章 调制与解调
2.1 概述 2.2 数字频率调制
– 二进制频移键控BFSK – 最小频移键控MSK) – 高斯最小频移键控GMSK
2.3 数字相位调制
– 二进制移相键控调制2PSK – 四相移键控调制QPSK
• 交错四相移键控调制OQPSK • /4- DQPSK调制
2.4 正交振幅调制QAM 2.5 扩频调制技术 2.6 多载波调制
S(t)
1
-1 -1
1
1
1
0
f2
f1
f1
f2
f2
f2
k
2π +1 -1
-1 +1 +1 +1

PSK调制和解调的基本原理回顾

PSK调制和解调的基本原理回顾

1第1章 PSK 调制和解调的基本原理回顾我们这里设计的课题(PSK 调制与解调)涉及到两种:2PSK 和2DPSK 1.1 三种数字调制的比较数字调制就是用载波信号的某些离散状态来表征所传送的信号,在接收端也对载波信号的离散调制参量进行检测。

和模拟信号一样,数字调制也有调幅、调频和调相三种基本形式,即有振幅键控(ASK )、移频键控(FSK )和移相键控(PSK )三种基本形式。

如下图所示:图1-1 三种调制方式图各种调制方式的对比分析。

由于噪声干扰的影响最终表现在收方恢复信码时的误码率性能上,所以系统的抗噪声性能可以用系统平均的误码率来表征。

即用各自系统的平均误码率P e 对广义信噪比ε的曲线来表示系统的抗噪声性能。

ε为输入信号每个码元的平均能量与输入噪声的单边功率谱(双边谱的二倍)密度之比,即称广义信噪比。

在此种条件下,可以用相同ε值或相同P e 去比较误码率P e 或ε的大小,从而合理地比较各种键控方式。

(1)ASK 相干解调 P e =1/2erfc[2ε]ε=A 2T/n 0(2)ASK 非相干解调P e ≈[1+πε21].e-ε/2(3)FSK 相干解调P e =1/2erfc[2ε](4)FSK(5)PSK(6)DPSK的意义.令2PSKe0(t)特性为:a也就是说,在一个码元持续时间T s内,e0(t)为:2cosωc t ,概率为Pe0(t)=-cosωc t ,概率为(1-P)即发送二进制0时(a n取+1)e0(t)取0相位;发送二进制符号1时(a n取-1)e0(t)取π相位。

调制可以采用模拟调制的方式产生2PSK,即2PSK信号可通过乘法器来得到。

也可以采用数字键控的方式产生。

调制原理见下:(a)模拟调制(b) 数字键控调制1-3 2PSK调制原理图1.3 2DPSK调制原理相对移相,就是利用载波相位的相对值来传递信息,也就是利用前后码元载波相位的相对变化来传递信息,所以也称为“差分移相”。

2DPSK的调制与解调

2DPSK的调制与解调

设计(论文)题目:2DPSK的调制与解调姓名学号班级学院指导教师目录摘要 (2)第1章2DPSK原理介绍 (3)1.1 2DPSK的基本原理: (3)1.2 2DPSK的调制原理: (4)1.3 2DPSK的解调原理: (5)1.3.1 极性比较法: (7)1.3.2 相位比较法: (7)第2章系统仿真 (8)2.1.1 2DPSK调制解调系统的总体设计 (8)2.1.2 具体设计 (9)第3章结论 (14)参考文献 (15)2DPSK调制与解调摘要在现代通信技术中,因为基于数字信号的数据传输优于模拟信号的传输,所以数字信号的传输显得越来越重要。

虽然近距离时我们可以利用数字基带信号直接传输,但是进行远距离传输时必须将基带信号调制到高频处。

为了使数字信号能够在信道中传输,要求信道应具有高通形式的传输特性。

然而,在实际信道中,大多数信道具有带通传输特性,数字信号不能直接在这种带通传输特特性的信道中传输,因此,必须用数字信号对载波进行调制,产生各种已调信号。

我们通常采用数字键控的方法来实现数字调制信号,所以又将其称为键控法。

当调制信号采用二进制数字信号时,这种调制就被称为二进制数字调制。

最常用的二进制数字调制方式有二进制振幅键控、二进制移频键控和二进制移相键控。

其中二进制移相键控又包括两种方式:绝对移相键控(2PSK)和相对(差分)移相方式(2DPSK )。

在二进制数字调制中,当正弦载波的相位随二进制数字基带信号离散变化时,就产生了二进制移相键控,即所谓的绝对移相键控(2PSK)。

虽然绝对移相键控的实现方法较为简单,但是却存在一个缺点,即我们所说的倒“ ”现象。

因此,在实际中一般不采用2PSK 方式,而采用2DPSK方式对数字信号进行调制解调。

本文主要讨论关于2DPSK 的调制解调。

并将其与MATLAB结合进行研究和仿真。

第1章 2DPSK 原理介绍1.1 2DPSK 的基本原理:说到2DPSK ,就不得不说一下二进制移相键控(2PSK )。

通信原理实验二

通信原理实验二

通信原理实验二实验二:调制与解调一、实验目的1. 理解调制与解调的基本概念;2. 掌握调幅(AM)、调频(FM)以及解调的原理;3. 实现AM、FM的信号调制与解调。

二、实验原理1. 调制原理调制是指在通信过程中将信息信号调制到载波上,以便传输的过程。

调制是将信息信号的某些特征参数随时间变化的过程。

1.1 调幅(AM)调制调幅是指通过改变载波的振幅来传输信息的一种调制方式。

调幅信号能够改变载波的背景亮度,使其随着信息信号的变化而变化。

1.2 调频(FM)调制调频是通过改变载波的频率来传输信息的一种调制方式。

调频信号能够改变载波的频率,使其频率随着信息信号的变化而变化。

2. 解调原理解调是指将调制信号中的信息还原出来的过程。

解调过程是调制的逆过程。

2.1 调幅(AM)解调调幅解调是从调幅信号中还原出原始信号的过程。

调幅信号在传输过程中会叠加一定的噪声,因此解调时需要采取一定的处理方法,如包络检波、同步检波等。

2.2 调频(FM)解调调频解调是从调频信号中还原出原始信号的过程。

调频信号在传输过程中对噪声具有较好的抵抗能力,因此解调过程较为简单,常采用频率鉴别解调等方法。

三、实验内容1. 实现AM调制与解调2. 实现FM调制与解调四、实验步骤1. 搭建AM调制电路,将音频信号与载波信号进行调制;2. 实现AM解调,将调制后的信号还原为音频信号;3. 搭建FM调制电路,将音频信号与载波信号进行调制;4. 实现FM解调,将调制后的信号还原为音频信号;5. 测试与观测调制与解调过程中的信号波形变化。

五、实验数据记录与分析(根据实际实验情况填写数据并进行相应的分析)六、实验总结通过本次实验,我们学习了调制与解调的原理,并实际搭建电路进行了AM和FM的调制与解调。

通过观测信号波形变化,我们加深了对调制与解调过程的理解,并掌握了相关的实验操作技巧。

本次实验对我们理解通信原理中的调制与解调起到了很好的辅助作用。

第二章 调制解调器

第二章 调制解调器
电话线上传送的按照声音的强弱幅度连续变化的电 信号称为模拟信号(analog signal);模拟信号的 信号电平是连续变化的;
V(t)
模拟信号
0
t
3.1数据传输中常见概念:
计算机所产生的电信号是用两种不同的电平 去表示0,1比特序列的电压脉冲信号,这种电 信号称为数字信号(dligital signal);
V(t)
数字信号
0
t
3.1数据传输中常见概念:
信道:传输信息的必经之路称为"信道".也称为传 送电信号的一条道路.按照信道中传输的信号分类, 可把信道分为模拟信道和数字信道 . 物理信道是指用来传送信号或数据的物理通路,网络 中两个结点之间的物理通路称为通信链路,物理信道 由传输介质及有关设备组成. 逻辑信道也是一种通路但在信号收,发点之间并不存 在一条物理上的传输介质,而是在物理信道基础上, 由结点内部的边来实现.
3.1数据传输中常见概念:
指通信线上传输信息的速度.有两种表示方法,即信号速 率和调制速率. 信号速率S:指单位时间内所传送的二制位代码的有效位 数,以每秒多少比特数计,即bit/s,b/p,位/秒.信号速 率的高低,由每位所占的时间决定,若一位数据所占的时 间越小,则信号速率越高.设T为传输的电脉冲信号的宽 度或周期,N为电脉冲信号所有可能的状态数,则信号速 率为S=1/T×log2N(bps) ( ) × 调制速率B:是脉冲信号经过调制后的传输速率,以波特 (BAUD)为单位,通常用于表示调制器之间传输信号的 速率.表示每分钟传送多少电信号单元,若T(秒)表示 调制周期,则调制速率为:B=1/T
3.1数据传输中常见概念:
符号速率又叫信号速率,记为 .它表示单位时间内(每秒 每秒) 符号速率又叫信号速率,记为N.它表示单位时间内 每秒 又叫信号速率 脉冲个数(可以是多进制 可以是多进制). 信道上实际传输的符号个数或 脉冲个数 可以是多进制 . 符号速率的单位是波特,即每秒的符号个数. 符号速率的单位是波特,即每秒的符号个数. 信息传输速率,简称传信率,通常记为 . 信息传输速率,简称传信率,通常记为R.它表示单位时 间内系统传输(或信源发出 的信息量,即二进制码元数. 或信源发出)的信息量 间内系统传输 或信源发出 的信息量,即二进制码元数. 在二进制通信系统中,信息传输速率R(比特 比特/ 等于信 在二进制通信系统中,信息传输速率 比特/秒)等于信 号速率.对于多进制两者不相等. 号速率.对于多进制两者不相等.例如四进制中符号速率 波特, 为2400波特,其信息速率为 波特 其信息速率为4800bit/s;而八进制的信息 /; 速率为7200bit/s等等.它们的关系为式中 为符号的进 等等. 速率为 / 等等 它们的关系为式中m为符号的进 制数 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

式中, 为调制指数。
将式(2 - 7)展开成级数得
uFM (t ) = U c {J 0 ( m f ) sin ω ct + J 1 ( m f ) sin[(ω c + Ω)t ] − J 1 (m f ) sin[(ω c − Ω)t ] + J 2 (m f ) sin[(ω c + 2Ω)t ] − J 2 (m f ) sin[(ω c − 2Ω)t ] + ...
B = 2(1 + m f + m f ) ⋅ Fm
FM信号的产生可以用压控振荡器(VCO)直接调频, 也可以将调制信号积分后送入调相器进行“间接调频”。 FM信号解调可采用鉴频器或锁相环鉴频。
第2章 调制解调
在接收端,输入的高斯白噪声(其双边功率谱密度为 N0/2)和信号一起通过带宽B=2(mf+1)Fm 的前置放大器,经 限幅后送入到鉴频器,再经低通滤波后得到所需的信号。 在限幅器前,信号加噪声可表示为
Ps ( f ) = 1 2 2 f s [ G ( f + f1 ) + G ( f − f1 ) ] 16
1 2 2 + f s G (0) [δ ( f + f1 ) + δ ( f − f1 ) 16 1 2 2 + f s [ G ( f + f 2 ) + [G ( f − f 2 ) ] 16 + 1 2 f s G (0) [δ ( f + f 2 ) + δ ( f − f 2 ) 16
第2章 调制解调
P s( f ) f0 =(f1+f2) 2
f2- f1
o
f1- fs
f1
f0
f2
f2+ fs
图 2 - 3 FSK信号的功率谱
B = f 2 − f1 + 2 f s
第2章 调制解调
y 1(t) 带通 滤波器 ω1
相乘器
低通 滤波器 定时脉冲
x 1(t)
cos( ω1t+φ 1) 输入 y 2(t) 相乘器
n
= +1 = −1 = +1 = −1
n
n
n
s(t ) = ∑ bn g (t − nTs ) cos(ω1t + ϕ1 ) + ∑ bn g (t − nTs ) cos(ω 2t + ϕ 2 )
n
第2章 调制解调
令g(t)的频谱为G(ω), an取+1和-1的概率相等,则s(t)的功 率谱表达式为
V (t ) ψ (t ) ≈ ω c t + ϕ (t ) + sin[θ (t ) − ϕ (t )] Uc = ω ct + ϕ (t ) + y (t ) Uc
鉴频器的输出为
uout (t ) = dψ ( t ) dϕ (t ) 1 dy (t ) − ωc = + dt dt U c dt
Sout / N out G= = 3m 2 ( m f + 1) f Sin / N in
但在小信噪比情况下,即Uc<<V(t), 由式(2 -14)得
Uc ψ ( t ) ≈ ω 0t + θ ( t ) + sin[ϕ (t ) − θ (t )] V (t )
第2章 调制解调
FM
dB
AM 同步检波 N out o S out
第2章 调制解调
移动通信信道的基本特征是:第一,带宽有限, 它取决于可使用的频率资源和信道的传播特性;第二, 干扰和噪声影响大,这主要是移动通信工作的电磁环 境所决定的;第三,存在着多径衰落。针对移动通信 信道的特点,已调信号应具有高的频谱利用率和较强 的抗干扰、抗衰落的能力。
第2章 调制解调
设载波信号为
x
e dz
− z2
第2章 调制解调
2.2.2 最小移频键控 最小移频键控(MSK)
MSK是一种特殊形式的FSK,其频差是满足两个频率 相互正交(即相关函数等于0)的最小频差,并要求FSK信号 的相位连续,其频差∆f=f2-f1=1/2Tb, 即调制指数为
∆f ∆f h= = 0.5 1 / Tb
式中,Tb为输入数据流的比特宽度。 MSK的信号表达式为
第2章 调制解调
第 2 章 调制解调
2.1 概述 概述 2.2 数字频率调制 2.3 数字相位调制 2.4 正交振幅调制 正交振幅调制(QAM)

第2章 调制解调
2.1 概 述
调制的目的是把要传输的模拟信号或数字信号变 调制 换成适合信道传输的信号。该信号称为已调信号。 调 制过程用于通信系统的发端。在接收端需将已调信号 还原成要传输的原始信号,该过程称为解调 解调。 解调
}
第2章 调制解调
式中,Jk(mf)为k阶第一类贝塞尔函数:
J k (m f ) = ∑
j =0 ∞
( −1) j (m f / 2) 2 j + k j! ( k + j )!
振幅 2π B=2(mf+1)Ω Uc Uc/2 J 1(mf) J 1(mf) J 0(mf) J 2(mf) J 2(mf) ωc Ω ω
π S (t ) = cos ω c t + a k t + xk 2Tb
第2章 调制解调

ϕ k = ωct + θ k
式中
kTb ≤ t ≤ (k + 1)Tb
式中, U c (t ) 经限幅器限幅后将为一常量, V (t ) sin[θ (t ) − ϕ (t )] ψ (t ) = ω ct + ϕ (t ) + arctan (2-14) U c + V (t ) cos[θ (t ) − ϕ (t )]
'
第2章 调制解调
在大信噪比情况下,即Uc>>V(t), 有
u(t ) = U c cos(ω ct + θ 0 )
式中,Uc——载波信号的振幅,ωc——载波信号的角频率, θ0——载波信号的初始相位。 调频和调相信号可写成下列一般形式
u(t ) = U c cos(ω ct + ϕ (t ))
式中,φ(t)为载波的瞬时相位。
第2章 调制解调
设调制信号为um(t), 则调频信号的瞬时角频率与输 入信号的关系为
门限 S in N in dB
图 2 – 2 FM解调器的性能及门限效应
第2章 调制解调
2.2 数字频率调制
2.2.1 移频键控调制 移频键控调制(FSK)
设 输 入 到 调 制 器 的 比 特 流 为 { an } , an=±1, n=∞~+∞。FSK的输出信号形式(第n个比特区间)为
cos(ω1t +ϕ1 )
Pe = ∫
0
−∞
0 r 2 1 1 −( z − a ) 2 / 2σ z f ( z )dz = dz = erfc ∫−∞ e 2 2π σ z 2
第2章 调制解调
式中, r =
a2 / 2
δ
为输入信噪比,erfc(x)为互补误差函数,
2 n
erfc( x ) =
2
π


经过相乘器和低通滤波后的输出有: 发“+1”时:
{
x1 ( t ) = a + nc 1 ( t ) x 2 ( t ) = nc 2 ( t )
发“-1”时:
{
x1 ( t ) = nc 1 ( t ) x 2 ( t ) = a + nc 2 ( t )
第2章 调制解调
设在取样时刻,x1(t)和x2(t)对应的样点值为x1 和x2 , nc1(t)和nc2(t)对应的样点值为nc1 和nc2 ,则在输入“+1”和 “ -1” 等 概 的 条 件 下 , 误 比 特 率 就 等 于 发 送 比 特 为 “+1”(或“-1”)的误比特率,即
比较判决 输出
带通 滤波器 ω2
低通 滤波器
x 2(t)
cos( ω 2 t+φ 2)
图 2 - 4 FSK的相干解调框图
第2章 调制解调
设图2 - 4 中两个带通滤波器的输出分别为y1(t)和y2(t)。 它们包括有用信号分量和噪声分量。设噪声分量为加性窄 带高斯噪声,可分别表示为 ω1支路: nc1 (t ) cos(ω1t + ϕ1 ) − ns1 (t ) sin(ω1t + ϕ1 ) ω2支路:nc 2 (t ) cos(ω 2t + ϕ 2 ) − ns 2 (t ) sin(ω 2t + ϕ 2 ) 式中,nc1(t), ns1(t), nc2(t),ns2(t)是均值为0,方差为 σ n 的
Pe = P( x1 < x2 ) = P( a + nc1 < nc 2 ) = P( a + nc1 − nc 2 < 0)
2 由于nc1(t)和nc2(t)是均值为0,方差为 σ n 的高斯随机过程,
2 则有z=a+nc1-nc2是均值为a、方差为 σ z2 = 2σ的高斯随机变 n
量,从而有
发“-1”时:
y1 ( t ) = nc 1 cos(ω 1 t +ϕ ) − ns 1 ( t ) sin(ω 1 t +ϕ 1 ) y2 ( t ) = a cos(ω 2t +ϕ ) + nc 2 ( t ) cos(ω 2t +ϕ 2 ) − ns 2 ( t ) sin(ω 2t +ϕ 2 )
1 dy (t ) = k f um (t ) + U c dt
相关文档
最新文档