MAX9551中文资料

合集下载

开关电源控制芯片M51995资料资料精

开关电源控制芯片M51995资料资料精
16 HEAT SINK PIN
15
14 CT
13 T-OFF 12 CF 11 T-ON
Outline 20P2N-A
Connect the heat sink pin to GND.
RECOMMENDED OPERATING Cห้องสมุดไป่ตู้NDITIONS
Supply voltage range............................................12 to 36V Operating frequency.................................less than 500kHz Oscillator frequency setting resistance
MITSUBISHI (Dig./Ana. INTERFACE)
M51995AP/FP
DESCRIPTION
M51995A is the primary switching regulator controller which is especially designed to get the regulated DC voltage from AC power supply. This IC can directly drive the MOS-FET with fast rise and fast fall output pulse. Type M51995A has the functions of not only high frequency OSC and fast output drive but also current limit with fast response and high sensibility so the true "fast switching regulator" can be realized. It has another big feature of current protection to short and over current,owing to the integrated timer-type protection circuit,if few parts are added to the primary side. The M51995A is equivalent to the M51977 with externally resettable OVP(over voltage protection)circuit.

MAX31785中文资料

MAX31785中文资料

_________________________________________________________________Maxim Integrated Products __1本文是英文数据资料的译文,文中可能存在翻译上的不准确或错误。

如需进一步确认,请在您的设计中参考英文资料。

有关价格、供货及订购信息,请联络Maxim 亚洲销售中心:10800 852 1249 (北中国区),10800 152 1249 (南中国区),或访问Maxim 的中文网站: 。

6通道智能风扇控制器MAX3178519-5703; Rev 0; 12/10+表示无铅(Pb)/符合RoHS 标准的封装。

T = 卷带包装。

*EP = 裸焊盘。

概述MAX31785是一款闭环多通道风扇控制器。

自动闭环风扇控制架构将风扇控制在尽可能低的转速,从而节省系统功率。

低风扇转速的其它优势包括:有效降低可闻噪声和更长的风扇寿命、更少的系统维护。

根据用户可编程查找表(LUT),器件根据11个温度传感器中的一个或多个传感器测量值,自动调节6个独立风扇的转速。

也可以由外部主机手动控制风扇转速,器件自动调整风扇转速。

器件具有风扇状况诊断功能,帮助用户预防将要发生的风扇故障。

器件还可监测多达6路远端电压。

应用网络交换机/路由器基站服务器智能电网系统工业控制定购信息特性S 6路独立的风扇控制通道 支持3线和4线风扇 自动闭环风扇转速控制 基于RPM 或PWM 控制 可选手动控制模式快速、慢速PWM 频率选项 风扇交替启动,缓解电源压力 双转速计(支持12个风扇) 风扇故障检测 风扇运转状态监测 非易失风扇运转时间表S 支持多达11个温度传感器6个外部温度二极管,带有串联电阻自动抵消功能 1个内部温度传感器 4个I 2C 数字温度传感器对所有温度传感器进行故障检测S 6路ADC 测量远端电压S PMBus™兼容命令接口S I 2C/SMBus™兼容串行总线,带有总线超时功能S 板载非易失故障记录和默认配置设置S 无需外部时钟S +3.3V 供电PMBus 是SMIF, Inc.的商标。

MAX9850中文资料

MAX9850中文资料

MAX9850
Ordering Information
PART MAX9850ETI TEMP RANGE -40°C to +85°C PIN-PACKAGE 28 Thin QFN-EP*
*EP = Exposed Paddle. Package code T2855-6 (see Package Information section). Pin Configuration appears at end of data sheet.
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at .
元器件交易网
Stereo Audio DAC with DirectDrive Headphone Amplifier MAX9850
ABSOLUTE MAXIMUM RATINGS
(Voltages with respect to AGND.) DVDD, AVDD, PVDD ..................................................-0.3V to +4V AVDD Referenced to PVDD ....................................-0.3V to +0.3V SVSS, PVSS ...............................................................-4V to +0.3V SVSS Referenced to PVSS .....................................-0.3V to +0.3V DGND, PGND........................................................-0.3V to +0.3V BCLK, LRCLK, HPS, SDIN.......................-0.3V to (DVDD + 0.3V) GPIO, MCLK.............................................................-0.3V to +4V REF, PREG ...............................................-0.3V to (AVDD + 0.3V) NREG ........................................................+0.3V to (SVSS - 0.3V) SDA, SCL, ADD ........................................................-0.3V to +4V INL, INR .......................................................................-2V to +2V HPR, HPL.....................................(SVSS - 0.3V) to (AVDD + 0.3V) OUTL, OUTR .............................(NREG - 0.3V) to (PREG + 0.3V) C1N ............................................(PVSS - 0.3V) to (PGND + 0.3V) C1P ............................................(PGND - 0.3V) to (PVDD + 0.3V) Current Into/Out of Any Pin ...............................................100mA Duration of HPL, HPR, OUTL, OUTR Short Circuit to AGND .................................Continuous Continuous Power Dissipation (TA = +70°C) 28-Pin Thin QFN (derate 35.7mW/°C above +70°C) .....2857mW Junction Temperature ......................................................+150°C Operating Temperature Range ...........................-40°C to +85°C Storage Temperature Range .............................-65°C to +150°C Lead Temperature (soldering, 10s) .................................+300°C

MAX3490摘出资料(部分中文)

MAX3490摘出资料(部分中文)

MAX3488, MAX3490,MAX3491 功能,全双工通信,而 MAX3483, MAX3485, MAX3486是专为半双工通信。

单一的电源供应,没有电荷注入;具有+ 5V 逻辑电源互操作;最大偏斜为 8ns ; 2ns 低电流掉电模式;共模输入电压范围:—7〜+ 12V ,总线上允许多达 32个收发器;全双工和半双工版本;具有电流限制和热 关机驱动器过载保护驱动器具有短路电流限制和对功耗过大的保护,热关断电路,驱动器输岀置于高阻抗状态。

接收器输入具 有故障安全功能,保证逻辑高输岀,如果两个输入端开路。

选择MAX3490做RS-422,下图为 MAX3490引脚图1 ——VCC2―― RO 接收器输出 3―― DI 驱动器输入 4 ——GND 5 ---- Y 同相驱动器输出 6 ---- Z 反相驱动器输出 7 ---- B反相接收器输入8——A 同相接收器输入保证数据传输速率(Mbps ) 10电源电压(V ) to 半/全双工 全双工摆率限制 无 驱动器/接收器使 无 关断电流(NA )关断时无引脚数8频率大,高频谐波明显MAX3490没有接收器发送器使能,控制逻辑如下图Dences 宙Rhouf Receiver/Driver Enable(MAX3488/MAX349a}T^ble 3. Transmitting T^able 4. ReceivingMAX3490 (无RE 、DE 引脚)绝对最大额定值如下图:IN^UTOUTPUTSDI zY 1 D 1 □1INPUTSOUTPUTA. 6 RO *D.2V1 <-a.2v0 Inputs Open1□IP/SOE L叵叵DABSOLUTE MAXIMUM RATINGSS U P P 卜F \ 01 ^3 9 e l\/ kill ■ ■ ■ ■ ■■!■■■■■■ iri ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■■ ■ ■ ■ ■ ■ i ■ ■ ■ r ■ ■ ■ ■ ■ ■ ■Control IrpiJ ValLage (RE, D£) ............... .......... ............... -0.3V ta 7V□rtvsr Inpul Voltage (6l).............. .......... .......... ............... -0.3Vtn 7VOnvar Output VcItaQ* (A,気V, ZX - ......................... -7J5V to12.SVftccer^CF Input VaKagc |A, B) . -7.5V to )2 5VReceiver Ojtput Voltage (RO) . . -O.3Vto (Vcc * 0 3V)Gontinucus Power g$ipmTk?n (T R= +70芒|各Pin Pi/Mc DIP 忖申rate 9 09mWU above +70© 72?mW8-Pin SO (<1HW 5 aarrrtVy «bove +7C P C), 471mW14-Rn Plastic DlP(de<m© 10mW fl C above +70忙》... HOOtrMf14-Rn SO (deia1^ fl.SSmW.^C abaw +70*C> __________ UUJllMfOperating Temperalur?MAXU C .............. ......... *........ ... ..................... -.Ot:to +7[TCMAX3d_ _E__”…lh.. “一,. ,.H.…““-“,-H.⑷乜B +85\:Storage Temperafur? Range lo +16[yCbead Tempeiature [wldering lOlMC)..................................... +XD*CMAX3490驱动器的开关特性如下图:DRIVER SWITCHING CHARACTERISTICS-MAX3465h MAX14$0, and MAX3491ri^E:» 3.3M a T*w *25*CJPARAMtFER CONCilTICNS m TVP MA 9(UNITSDrrwf OHtreftfiii OdljMjt Del叩g■ Sdll, Figure 7 122M mDrvcr Wfe-oEiii Ckrlp ui T M7»C r Time hno良L * fiOtl, Flpm 71&25mEtr p临他n M■丫LCfflMCHHiah Lrvtl IpiLM R L * 37(1. F4l/*a T2235m轉、ion Delay Hl0hi&-Lew Leveli IpML R. - ZTflFiflWWE■Jr22 35tp L n - iPHitl □越g*曲m Dtt&Ff吕的却iH^ie S- IPDS R.fc• 27n, FipL<eS E mDRIVER OUTPUT ENABLEJOIS^BLE TIMES {IWS-iflS'IMLW3-431 聞切Dmw CXJtput tnable r me I Q L OW LE^el tfZL Ri= 110SL f^FLFa 10 45 M OEDiwci" OulpiJl EiwN? Trne tg High Len el S FZH Ri ■ 110(1 钿ure $ 45raDrw CMp讥04»^le Time tom Migih Level fi t* 11(X1. F»flL*t940 to POriw D・*l・ Tim from LwLwi tpLE R L* 11IMI. i&40 BO mDTM< dip Lit Errtb^A Tiffii Au墟电叭旳Lx L#v4l tm Rl ■匚如i 10<8W gm 他Qrta&r ErrtBifi Titre frw 电靜©询|a H(;h 4PCH R; - 1inni FigiLiraS®o r»MAX3490CPA(TCto +70'Q8 Ptasttc DIPMAX349OCSA(TCt口+7D B C\8 SOMAX3490C/D crcto+70e c \Dice'MAX349OEPA-4(rc to +85X8 Plastic DIPMAX349OESA■40X10+9598 SOMAX3490引脚配置与典型工作电路,如下图|l巒4e 2 MAA J4ML JWAJC3啲Pin 8 两#挪询事呵Typ"C^ uftMOTE AEANODE O 8LXF砂*师悶ZKSQW诂沖盟F训卜皿咻斥$钵自Ncrv^OfU MAX3490封装尺寸L -15^ Plastic DIPPLASTIC DU AL-IN-LINE PACKAGE(0.300 in.)DIM [HOMES MLLlWETESS MIN MAA MIN MAXA a 200A1ocn&-■"20 12& C 175 3104-iS *3 0D5& Q0» 1.402W0.01S a 022 041 OKoo^ 1 MC DQOB0 0120200 30 &1D0Q&0 09001328E0.300 0 925 A2A E10咖0 310dia7VT e OJOO■■eA D.3H)■*tB Q4P0 10 16 L 0 IU a iso 2923J1 PINSMCHES MJJME1TER3-MN NUM MNI MAXa 0 3430 w BM 891 0140^3513-6719-43 ET lir o.-«Q -B51: 911&.43 010MBS 0i1522 4B 23.24 020 101S104535742454□24 1 14H2B52S DE37 13。

MAX15301数据手册中文版

MAX15301数据手册中文版

MAX15301是一个全功能,高效,数字化的点负载(POL)操纵器与先进的电源治理和遥测功能与PID 为基础的数字电源稳压器,MAX15301采纳Maxim拥有专利的Intune的™自动补偿,状态空间操纵算法。

Intune 的操纵律是有效的小信号和大信号响应,占占空比饱和度的阻碍。

这排除需要用户以确信和设置的阈值从线性转换到非线性模式。

这些能力在快速环路的瞬态响应,并减少输出电容器的数量相较,竞争的模拟和数字操纵器。

MAX15301包括多种功能,以优化效率。

内部开关BabyBuck的稳压器可产生栅极驱动器和内部偏置电源,低功耗的操纵器。

一种先进的,高效率的MOSFET的栅极驱动器,具有自适应非重叠按时,而持续调整的高侧和低侧的按时和驱动电压的全范围内的电压,电流和温度,以尽可能减少开关损耗。

MAX15301设计最终客户的设计环境的初衷。

上的PMBus™兼容的串行总线接口进行通信的监控器监控和故障治理。

全套的电源治理功能,无需复杂和昂贵的测序和监控IC。

大体的DC-DC转换操作,可设置通过引脚搭接,并非需要用户配置固件。

这使得电源子系统的快速进展前完成板级系统的工程。

Maxim提供支持的硬件和软件配置MAX15301 ,MAX15301可在32引线,5mm×5mm TQFN封装,工作在-40°C至+85°C的温度范围内。

特点:的自动补偿功能能够确保稳固,同时优化瞬态性能2.在快速瞬态响应减少输出电容的非线性补偿结果3.差分远端电压传感许诺±1%V OUT精度在整个温度范围内(-40°C至+85°C)接口用于配置,操纵和监测5.支持电压定位6.提高效率(自适应非重叠时序驱动器)至14V的宽输入电压范围8.高效片上BabyBuck稳压器的自偏置9.输出电压范围从到10.进入预偏置输出启动11.可配置的软启动和软停止时刻12.固定工作频率同步(300kHz至1MHz)13.灵活的排序和故障治理14.引脚手动跳线配置(输出电压,从机地址,开关频率,电流限制)15.能够快速原型图表典型工作电路引脚名字功能1SYNC外部开关频率同步输入端。

MAX5161中文资料

MAX5161中文资料

RW CW
MAX516_NE_ _
400 1700

10
pF
150
200
250
End-to-End Resistance
HL
MAX516_ME_ _
75
100
125
kΩ
MAX516_LE_ _
37.5
50
62.5
DIGITAL INPUTS
Input High Voltage
VIH
Input Low Voltage
(position 16) o ±2kV ESD Protection o Small-Footprint Packages
6-Pin SOT23 (MAX5161) 8-Pin µMAX (MAX5160) o Glitchless Switching Between the Resistor Taps
Applications
LCD Screen Adjustment Volume Control Mechanical Potentiometer Replacement
Functional Diagram
H
VDD
GND
MAX5160
MAX5161
CS
INC
UP/DN COUNTER
POSITION DECODER
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

MAX2605-MAX2609中文资料

MAX2605-MAX2609中文资料

General DescriptionThe MAX2605–MAX2609 evaluation kits (EV kits) simplify evaluation of this family of voltage-controlled oscillators (VCOs). These kits enable testing of the devices’ per-formance and require no additional support circuitry.Both signal outputs use SMA connectors to facilitate connection to RF test equipment.These EV kits are fully assembled and tested. Their oscil-lation frequencies are set to approximately the midrange of the respective VCOs.Featureso Easy Evaluationo Complete, Tunable VCO Test Board with Tank Circuit o Low Phase Noiseo Fully Assembled and TestedEvaluate: MAX2605–MAX2609MAX2605–MAX2609 Evaluation Kits19-1673 Rev 0; 9/00Ordering InformationComponent SuppliersFor free samples and the latest literature, visit or phone 1-800-998-8800.For small orders, phone 1-800-835-8769.MAX2606 Component ListMAX2605 Component ListE v a l u a t e : M A X 2605–M A X 2609MAX2605–MAX2609 Evaluation Kits 2_______________________________________________________________________________________Quick StartThe MAX2605–MAX2609 evaluation kits are fully assembled and factory tested. Follow the instructions in the Connections a nd Setup section for proper device evaluation.Test Equipment Required•Low-noise power supplies (these are recommended for oscillator noise measurement). Noise or ripple will frequency-modulate the oscillator and cause spectral spreading. Batteries can be used in place of power supplies, if necessary.– Use a DC power supply capable of supplying +2.7V to +5.5V. Alternatively, use two or three 1.5V batteries.– Use a DC power supply capable of supplying +0.4V to +2.4V, continuously variable, for TUNE.Alternatively, use two 1.5V batteries with a resistive voltage divider or potentiometer.•An RF spectrum analyzer that covers the operating frequency range of the MAX2605–MAX2609• A 50Ωcoaxial cable with SMA connectors •An ammeter (optional)Connections and Setup1)Connect a DC supply (preset to +3V) to the V CC and GND terminals (through an ammeter, if desired) on the EV kit.2)Turn on the DC supply. If used, the ammeter readingMAX2607 Component ListMAX2608 Component ListEvaluate: MAX2605–MAX2609MAX2605–MAX2609 Evaluation Kits_______________________________________________________________________________________3approximates the typical operating current specified in the MAX2605–MAX2609 data sheet.3)Connect the VCO output (OUT+ or OUT-) to a spec-trum analyzer with a 50Ωcoaxial cable.4)Apply a positive variable DC voltage between 0.4V and 2.4V to TUNE.5)Check the tuning bandwidth on the spectrum analyz-er by varying the tuning voltage (+0.4V to +2.4V).Layout ConsiderationsThe EV kit PC board can serve as a guide for laying out a board using the MAX2605–MAX2609. Generally, the VCC pin on the PC board should have a decoupling capacitor placed close to the IC. This minimizes noisecoupling from the supply. Also, place the VCO as far away as possible from the noisy section of a larger sys-tem, such as a switching regulator or digital circuits.The VCO ’s performance is strongly dependent on the availability of the external tuning inductor. For best per-formance, use high-Q components and choose their val-ues carefully. To minimize the effects of parasitic ele-ments, which degrade circuit performance, place the tuning inductor and C BYP close to the VCO. For higher-frequency versions, include the parasitic PC board inductance and capacitance when calculating the oscillation frequency. In addition, remove the ground plane around and under the tuning inductor to minimize the effect of parasitic capacitance.Noise on TUNE translates into FM noise on the outputs;therefore, keep the trace between TUNE and the control circuitry as short as possible. If necessary, use an RC filter to further suppress noise, as done on the EV kits.E v a l u a t e : M A X 2605–M A X 2609MAX2605–MAX2609 Evaluation Kits 4_______________________________________________________________________________________Figure 2. MAX2608/MAX2609 EV Kits SchematicFigure 1. MAX2605/MAX2606/MAX2607 EV Kits SchematicEvaluate: MAX2605–MAX2609MAX2605–MAX2609 Evaluation Kits_______________________________________________________________________________________5Figure 3. MAX2605/MAX2606/MAX2607 EV Kits ComponentPlacement Guide—Top Silk ScreenFigure 4. MAX2608/MAX2609 EV Kits Component PlacementGuide—Top Silk ScreenFigure 5. MAX2605/MAX2606/MAX2607 EV Kits PC BoardLayout—Component SideFigure 6. MAX2608/MAX2609 EV Kits PC Board Layout—Component SideMa xim ca nnot a ssume responsibility for use of a ny circuitry other tha n circuitry entirely embodied in a Ma xim product. No circuit pa tent licenses a re implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.6_____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©2000 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.E v a l u a t e : M A X 2605–M A X 2609MAX2605–MAX2609 Evaluation Kits Figure 7. MAX2605/MAX2606/MAX2607/MAX2608/MAX2609EV Kits PC Board Layout—Ground Plane。

MAX系列芯片大全

MAX系列芯片大全

MAXIM/DALLAS 中文数据资料DS12CR887, DS12R885, DS12R887 RTC,带有恒压涓流充电器DS1870 LDMOS RF功放偏置控制器DS1921L-F5X Thermochron iButtonDS1923 温度/湿度记录仪iButton,具有8kB数据记录存储器DS1982, DS1982-F3, DS1982-F5 1k位只添加iButton?DS1990A 序列号iButtonDS1990R, DS1990R-F3, DS1990R-F5 序列号iButtonDS1991 多密钥iButtonDS2129 LVD SCSI 27线调节器DS2401 硅序列号DS2406 双通道、可编址开关与1k位存储器DS2408 1-Wire、8通道、可编址开关DS2411 硅序列号,带有VCC输入DS2413 1-Wire双通道、可编址开关DS2430A 256位1-Wire EEPROMDS2431 1024位、1-Wire EEPROMDS2480B 串行、1-Wire线驱动器,带有负荷检测DS2482-100 单通道1-Wire主控制器DS2482-100 勘误表PDF: 2482-100A2DS2482-800, DS2482S-800 八通道1-Wire主控制器DS2482-800 勘误表PDF: 2482-800A2DS2502 1k位只添加存储器DS2505 16k位只添加存储器DS28E04-100 4096位、可寻址、1-Wire EEPROM,带有PIODS3170DK DS3/E3单芯片收发器开发板DS3231, DS3231S 高精度、I2C集成RTC/TCXO/晶振DS33Z44 四路以太网映射器DS3902 双路、非易失、可变电阻器,带有用户EEPROMDS3906 三路、非易失、小步长调节可变电阻与存储器DS3984 4路冷阴极荧光灯控制器DS4302 2线、5位DAC,提供三路数字输出DS80C400-KIT DS80C400评估套件DS80C410, DS80C411 具有以太网和CAN接口的网络微控制器DS80C410 勘误表PDF: 80C410A1DS89C430, DS89C440, DS89C450 超高速闪存微控制器DS89C430 勘误表PDF: 89C430A2DS89C440 勘误表PDF: 89C440A2DS89C450 勘误表PDF: 89C450A2DS89C430 勘误表PDF: 89C430A3DS89C440 勘误表PDF: 89C440A3DS89C450 勘误表PDF: 89C450A3DS89C430 勘误表PDF: 89C430A5DS89C440 勘误表PDF: 89C440A5DS89C450 勘误表PDF: 89C450A5DS9090K 1-Wire器件评估板, B版DS9097U-009, DS9097U-E25, DS9097U-S09 通用1-Wire COM端口适配器DS9490, DS9490B, DS9490R USB至1-Wire/iButton适配器MAX1034, MAX1035 8/4通道、±VREF多量程输入、串行14位ADCMAX1072, MAX1075 1.8Msps、单电源、低功耗、真差分、10位ADCMAX1076, MAX1078 1.8Msps、单电源供电、低功耗、真差分、10位ADC,内置电压基准MAX1146, MAX1147, MAX1148, MAX1149 多通道、真差分、串行、14位ADCMAX1149EVKIT MAX1149评估板/评估系统MAX1220, MAX1257, MAX1258 12位、多通道ADC/DAC,带有FIFO、温度传感器和GPIO端口MAX1224, MAX1225 1.5Msps、单电源、低功耗、真差分、12位ADCMAX1258EVKIT MAX1057, MAX1058, MAX1257, MAX1258评估板/评估系统MAX1274, MAX1275 1.8Msps、单电源、低功耗、真差分、12位ADCMAX13000E, MAX13001E, MAX13002E, MAX13003E, MAX13004E, MAX13005E 超低电压电平转换器MAX1302, MAX1303 8/4通道、±VREF多量程输入、串行16位ADCMAX1304, MAX1305, MAX1306, MAX1308, MAX1309, MAX1310, MAX1312, MAX1313,MAX1314 8/4/2通道、12位、同时采样ADC,提供±10V、±5V或0至+5V模拟输入范围MAX13050, MAX13052, MAX13053, MAX13054 工业标准高速CAN收发器,具有±80V故障保护MAX13080E, MAX13081E, MAX13082E, MAX13083E, MAX13084E, MAX13085E, MAX13086E, MAX13087E, MAX13088E, MAX13089E +5.0V、±15kV ESD保护、失效保护、热插拔、RS-485/RS-422收发器MAX13101E, MAX13102E, MAX13103E, MAX13108E 16通道、带有缓冲的CMOS逻辑电平转换器MAX1334, MAX1335 4.5Msps/4Msps、5V/3V、双通道、真差分10位ADCMAX1336, MAX1337 6.5Msps/5.5Msps、5V/3V、双通道、真差分8位ADCMAX13481E, MAX13482E, MAX13483E ±15kV ESD保护USB收发器, 外部/内部上拉电阻MAX1350, MAX1351, MAX1352, MAX1353, MAX1354, MAX1355, MAX1356, MAX1357 双路、高端、电流检测放大器和驱动放大器MAX1450 低成本、1%精确度信号调理器,用于压阻式传感器MAX1452 低成本、精密的传感器信号调理器MAX1487, MAX481, MAX483, MAX485, MAX487, MAX488, MAX489, MAX490, MAX491 低功耗、限摆率、RS-485/RS-422收发器MAX1492, MAX1494 3位半和4位半、单片ADC,带有LCD驱动器MAX1494EVKIT MAX1493, MAX1494, MAX1495评估板/评估系统MAX1497, MAX1499 3位半和4位半、单片ADC,带有LED驱动器和μC接口MAX1499EVKIT MAX1499评估板/评估系统MAX15000, MAX15001 电流模式PWM控制器, 可调节开关频率MAX1515 低电压、内置开关、降压/DDR调节器MAX1518B TFT-LCD DC-DC转换器, 带有运算放大器MAX1533, MAX1537 高效率、5路输出、主电源控制器,用于笔记本电脑MAX1533EVKIT MAX1533评估板MAX1540A, MAX1541 双路降压型控制器,带有电感饱和保护、动态输出和线性稳压器MAX1540EVKIT MAX1540评估板MAX1551, MAX1555 SOT23、双输入、USB/AC适配器、单节Li+电池充电器MAX1553, MAX1554 高效率、40V、升压变换器,用于2至10个白光LED驱动MAX1556, MAX1557 16μA IQ、1.2A PWM降压型DC-DC转换器MAX1556EVKIT MAX1556EVKIT评估板MAX1558, MAX1558H 双路、3mm x 3mm、1.2A/可编程电流USB开关,带有自动复位功能MAX1586A, MAX1586B, MAX1586C, MAX1587A, MAX1587C 高效率、低IQ、带有动态内核的PMIC,用于PDA和智能电话MAX16801A/B, MAX16802A/B 离线式、DC-DC PWM控制器, 用于高亮度LED驱动器MAX1858A, MAX1875A, MAX1876A 双路180°异相工作的降压控制器,具有排序/预偏置启动和POR MAX1870A 升/降压Li+电池充电器MAX1870AEVKIT MAX1870A评估板MAX1874 双路输入、USB/AC适配器、1节Li+充电器,带OVP与温度调节MAX1954A 低成本、电流模式PWM降压控制器,带有折返式限流MAX1954AEVKIT MAX1954A评估板MAX19700 7.5Msps、超低功耗模拟前端MAX19700EVKIT MAX19700评估板/评估系统MAX19705 10位、7.5Msps、超低功耗模拟前端MAX19706 10位、22Msps、超低功耗模拟前端MAX19707 10位、45Msps、超低功耗模拟前端MAX19708 10位、11Msps、超低功耗模拟前端MAX2041 高线性度、1700MHz至3000MHz上变频/下变频混频器,带有LO缓冲器/开关MAX2043 1700MHz至3000MHz高线性度、低LO泄漏、基站Rx/Tx混频器MAX220, MAX222, MAX223, MAX225, MAX230, MAX231, MAX232, MAX232A, MAX233,MAX233A, MAX234, MAX235, MAX236, MAX237, MAX238, MAX239, MAX240, MAX241,MAX242, MAX243, MAX244, MAX245, MAX246, MAX247, MAX248, MAX249 +5V供电、多通道RS-232驱动器/接收器MAX2335 450MHz CDMA/OFDM LNA/混频器MAX2370 完备的、450MHz正交发送器MAX2370EVKIT MAX2370评估板MAX2980 电力线通信模拟前端收发器MAX2986 集成电力线数字收发器MAX3013 +1.2V至+3.6V、0.1μA、100Mbps、8路电平转换器MAX3205E, MAX3207E, MAX3208E 双路、四路、六路高速差分ESD保护ICMAX3301E, MAX3302E USB On-the-Go收发器与电荷泵MAX3344E, MAX3345E ±15kV ESD保护、USB收发器,UCSP封装,带有USB检测MAX3394E, MAX3395E, MAX3396E ±15kV ESD保护、大电流驱动、双/四/八通道电平转换器, 带有加速电路MAX3535E, MXL1535E +3V至+5V、提供2500VRMS隔离的RS-485/RS-422收发器,带有±15kV ESD保护MAX3570, MAX3571, MAX3573 HI-IF单芯片宽带调谐器MAX3643EVKIT MAX3643评估板MAX3645 +2.97V至+5.5V、125Mbps至200Mbps限幅放大器,带有信号丢失检测器MAX3645EVKIT MAX3645评估板MAX3654 47MHz至870MHz模拟CATV互阻放大器MAX3654EVKIT MAX3654评估板MAX3657 155Mbps低噪声互阻放大器MAX3658 622Mbps、低噪声、高增益互阻前置放大器MAX3735, MAX3735A 2.7Gbps、低功耗、SFP激光驱动器MAX3737 多速率激光驱动器,带有消光比控制MAX3737EVKIT MAX3737评估板MAX3738 155Mbps至2.7Gbps SFF/SFP激光驱动器,带有消光比控制MAX3744, MAX3745 2.7Gbps SFP互阻放大器,带有RSSIMAX3744EVKIT, MAX3745EVKIT MAX3744, MAX3745评估板MAX3748, MAX3748A, MAX3748B 紧凑的、155Mbps至4.25Gbps限幅放大器MAX3785 6.25Gbps、1.8V PC板均衡器MAX3787EVKIT MAX3787评估板MAX3793 1Gbps至4.25Gbps多速率互阻放大器,具有光电流监视器MAX3793EVKIT MAX3793评估板MAX3805 10.7Gbps自适应接收均衡器MAX3805EVKIT MAX3805评估板MAX3840 +3.3V、2.7Gbps双路2 x 2交叉点开关MAX3841 12.5Gbps CML 2 x 2交叉点开关MAX3967 270Mbps SFP LED驱动器MAX3969 200Mbps SFP限幅放大器MAX3969EVKIT MAX3969评估板MAX3982 SFP铜缆预加重驱动器MAX3983 四路铜缆信号调理器MAX3983EVKIT MAX3983评估板MAX3983SMAEVKIT MAX3983 SMA连接器评估板MAX4079 完备的音频/视频后端方案MAX4079EVKIT MAX4079评估板MAX4210, MAX4211 高端功率、电流监视器MAX4210EEVKIT MAX4210E、MAX4210A/B/C/D/F评估板MAX4211EEVKIT MAX4211A/B/C/D/E/F评估板MAX4397 用于双SCART连接器的音频/视频开关MAX4397EVKIT MAX4397评估系统/评估板MAX4411EVKIT MAX4411评估板MAX4729, MAX4730 低电压、3.5、SPDT、CMOS模拟开关MAX4754, MAX4755, MAX4756 0.5、四路SPDT开关,UCSP/QFN封装MAX4758, MAX4759 四路DPDT音频/数据开关,UCSP/QFN封装MAX4760, MAX4761 宽带、四路DPDT开关MAX4766 0.075A至1.5A、可编程限流开关MAX4772, MAX4773 200mA/500mA可选的限流开关MAX4795, MAX4796, MAX4797, MAX4798 450mA/500mA限流开关MAX4826, MAX4827, MAX4828, MAX4829, MAX4830, MAX4831 50mA/100mA限流开关, 带有空载标记, μDFN封装MAX4832, MAX4833 100mA LDO,带有限流开关MAX4834, MAX4835 250mA LDO,带有限流开关MAX4836, MAX4837 500mA LDO,带有限流开关MAX4838A, MAX4840A, MAX4842A 过压保护控制器,带有状态指示FLAGMAX4850, MAX4850H, MAX4852, MAX4852H 双路SPDT模拟开关,可处理超摆幅信号MAX4851, MAX4851H, MAX4853, MAX4853H 3.5/7四路SPST模拟开关,可处理超摆幅信号MAX4854 7四路SPST模拟开关,可处理超摆幅信号MAX4854H, MAX4854HL 四路SPST、宽带、信号线保护开关MAX4855 0.75、双路SPDT音频开关,具有集成比较器MAX4864L, MAX4865L, MAX4866L, MAX4867, MAX4865, MAX4866 过压保护控制器,具有反向保护功能MAX4880 过压保护控制器, 内置断路开关MAX4881, MAX4882, MAX4883, MAX4884 过压保护控制器, 内部限流, TDFN封装MAX4901, MAX4902, MAX4903, MAX4904, MAX4905 低RON、双路SPST/单路SPDT、无杂音切换开关, 可处理负电压MAX4906, MAX4906F, MAX4907, MAX4907F 高速/全速USB 2.0开关MAX5033 500mA、76V、高效率、MAXPower降压型DC-DC变换器MAX5042, MAX5043 双路开关电源IC,集成了功率MOSFET和热插拔控制器MAX5058, MAX5059 可并联的副边同步整流驱动器和反馈发生器控制ICMAX5058EVKIT MAX5051, MAX5058评估板MAX5062, MAX5062A, MAX5063, MAX5063A, MAX5064, MAX5064A, MAX5064B 125V/2A、高速、半桥MOSFET驱动器MAX5065, MAX5067 双相、+0.6V至+3.3V输出可并联、平均电流模式控制器MAX5070, MAX5071 高性能、单端、电流模式PWM控制器MAX5072 2.2MHz、双输出、降压或升压型转换器,带有POR和电源失效输出MAX5072EVKIT MAX5072评估板MAX5074 内置MOSFET的电源IC,用于隔离型IEEE 802.3af PD和电信电源MAX5078 4A、20ns、MOSFET驱动器MAX5084, MAX5085 65V、200mA、低静态电流线性稳压器, TDFN封装MAX5088, MAX5089 2.2MHz、2A降压型转换器, 内置高边开关MAX5094A, MAX5094B, MAX5094C, MAX5094D, MAX5095A, MAX5095B, MAX5095C 高性能、单端、电流模式PWM控制器MAX5128 128抽头、非易失、线性变化数字电位器, 采用2mm x 2mm μDFN封装MAX5417, MAX5417L, MAX5417M, MAX5417N, MAX5417P, MAX5418, MAX5419 256抽头、非易失、I2C接口、数字电位器MAX5417LEVKIT MAX5417_, MAX5418_, MAX5419_评估板/评估系统MAX5477, MAX5478, MAX5479 双路、256抽头、非易失、I2C接口、数字电位器MAX5478EVKIT MAX5477/MAX5478/MAX5479评估板/评估系统MAX5490 100k精密匹配的电阻分压器,SOT23封装MAX5527, MAX5528, MAX5529 64抽头、一次性编程、线性调节数字电位器MAX5820 双路、8位、低功耗、2线、串行电压输出DACMAX5865 超低功耗、高动态性能、40Msps模拟前端MAX5920 -48V热插拔控制器,外置RsenseMAX5921, MAX5939 -48V热插拔控制器,外置Rsense、提供较高的栅极下拉电流MAX5932 正电源、高压、热插拔控制器MAX5932EVKIT MAX5932评估板MAX5936, MAX5937 -48V热插拔控制器,可避免VIN阶跃故障,无需RSENSEMAX5940A, MAX5940B IEEE 802.3af PD接口控制器,用于以太网供电MAX5940BEVKIT MAX5940B, MAX5940D评估板MAX5941A, MAX5941B 符合IEEE 802.3af标准的以太网供电接口/PWM控制器,适用于用电设备MAX5945 四路网络电源控制器,用于网络供电MAX5945EVKIT, MAX5945EVSYS MAX5945评估板/评估系统MAX5953A, MAX5953B, MAX5953C, MAX5953D IEEE 802.3af PD接口和PWM控制器,集成功率MOSFETMAX6640 2通道温度监视器,提供双路、自动PWM风扇速度控制器MAX6640EVKIT MAX6640评估系统/评估板MAX6641 兼容于SMBus的温度监视器,带有自动PWM风扇速度控制器MAX6643, MAX6644, MAX6645 自动PWM风扇速度控制器,带有过温报警输出MAX6678 2通道温度监视器,提供双路、自动PWM风扇速度控制器和5个GPIOMAX6695, MAX6696 双路远端/本地温度传感器,带有SMBus串行接口MAX6877EVKIT MAX6877评估板MAX6950, MAX6951 串行接口、+2.7V至+5.5V、5位或8位LED显示驱动器MAX6966, MAX6967 10端口、恒流LED驱动器和输入/输出扩展器,带有PWM亮度控制MAX6968 8端口、5.5V恒流LED驱动器MAX6969 16端口、5.5V恒流LED驱动器MAX6970 8端口、36V恒流LED驱动器MAX6977 8端口、5.5V恒流LED驱动器,带有LED故障检测MAX6978 8端口、5.5V恒流LED驱动器,带有LED故障检测和看门狗MAX6980 8端口、36V恒流LED驱动器, 带有LED故障检测和看门狗MAX6981 8端口、36V恒流LED驱动器, 带有LED故障检测MAX7030 低成本、315MHz、345MHz和433.92MHz ASK收发器, 带有N分频PLLMAX7032 低成本、基于晶振的可编程ASK/FSK收发器, 带有N分频PLLMAX7317 10端口、SPI接口输入/输出扩展器,带有过压和热插入保护MAX7319 I2C端口扩展器,具有8路输入,可屏蔽瞬态检测MAX7320 I2C端口扩展器, 带有八个推挽式输出MAX7321 I2C端口扩展器,具有8个漏极开路I/O口MAX7328, MAX7329 I2C端口扩展器, 带有八个I/O口MAX7347, MAX7348, MAX7349 2线接口、低EMI键盘开关和发声控制器MAX7349EVKIT MAX7349评估板/仿真: MAX7347/MAX7348MAX7375 3引脚硅振荡器MAX7381 3引脚硅振荡器MAX7389, MAX7390 微控制器时钟发生器, 带有看门狗MAX7391 快速切换时钟发生器, 带有电源失效检测MAX7445 4通道视频重建滤波器MAX7450, MAX7451, MAX7452 视频信号调理器,带有AGC和后肩钳位MAX7452EVKIT MAX7452评估板MAX7462, MAX7463 单通道视频重建滤波器和缓冲器MAX8505 3A、1MHz、1%精确度、内置开关的降压型调节器,带有电源就绪指示MAX8524, MAX8525 2至8相VRM 10/9.1 PWM控制器,提供精密的电流分配和快速电压定位MAX8525EVKIT MAX8523, MAX8525评估板MAX8533 更小、更可靠的12V、Infiniband兼容热插拔控制器MAX8533EVKIT MAX8533评估板MAX8545, MAX8546, MAX8548 低成本、宽输入范围、降压控制器,带有折返式限流MAX8550, MAX8551 集成DDR电源方案,适用于台式机、笔记本电脑及图形卡MAX8550EVKIT MAX8550, MAX8550A, MAX8551评估板MAX8552 高速、宽输入范围、单相MOSFET驱动器MAX8553, MAX8554 4.5V至28V输入、同步PWM降压控制器,适合DDR端接和负载点应用MAX8563, MAX8564 ±1%、超低输出电压、双路或三路线性n-FET控制器MAX8564EVKIT MAX8563, MAX8564评估板MAX8566 高效、10A、PWM降压调节器, 内置开关MAX8570, MAX8571, MAX8572, MAX8573, MAX8574, MAX8575 高效LCD升压电路,可True ShutdownMAX8571EVKIT MAX8570, MAX8571, MAX8572, MAX8573, MAX8574, MAX8575评估板MAX8576, MAX8577, MAX8578, MAX8579 3V至28V输入、低成本、迟滞同步降压控制器MAX8594, MAX8594A 5路输出PMIC,提供DC-DC核电源,用于低成本PDAMAX8594EVKIT MAX8594评估板MAX8632 集成DDR电源方案,适用于台式机、笔记本电脑和图形卡MAX8632EVKIT MAX8632评估板MAX8702, MAX8703 双相MOSFET驱动器,带有温度传感器MAX8707 多相、固定频率控制器,用于AMD Hammer CPU核电源MAX8716, MAX8717, MAX8757 交叉工作、高效、双电源控制器,用于笔记本电脑MAX8716EVKIT MAX8716评估板MAX8717EVKIT MAX8717评估板MAX8718, MAX8719 高压、低功耗线性稳压器,用于笔记本电脑MAX8725EVKIT MAX8725评估板MAX8727 TFT-LCD升压型、DC-DC变换器MAX8727EVKIT MAX8727评估板MAX8729 固定频率、半桥CCFL逆变控制器MAX8729EVKIT MAX8729评估板MAX8732A, MAX8733A, MAX8734A 高效率、四路输出、主电源控制器,用于笔记本电脑MAX8737 双路、低电压线性稳压器, 外置MOSFETMAX8737EVKIT MAX8737评估板MAX8738 EEPROM可编程TFT VCOM校准器, 带有I2C接口MAX8740 TFT-LCD升压型、DC-DC变换器MAX8743 双路、高效率、降压型控制器,关断状态下提供高阻MAX8751 固定频率、全桥、CCFL逆变控制器MAX8751EVKIT MAX8751评估板MAX8752 TFT-LCD升压型、DC-DC变换器MAX8758 具有开关控制和运算放大器的升压调节器, 用于TFT LCDMAX8758EVKIT MAX8758评估板MAX8759 低成本SMBus CCFL背光控制器MAX8760 双相、Quick-PWM控制器,用于AMD Mobile Turion 64 CPU核电源MAX8764 高速、降压型控制器,带有精确的限流控制,用于笔记本电脑MAX9223, MAX9224 22位、低功耗、5MHz至10MHz串行器与解串器芯片组MAX9225, MAX9226 10位、低功耗、10MHz至20MHz串行器与解串器芯片组MAX9483, MAX9484 双输出、多模CD-RW/DVD激光二极管驱动器MAX9485 可编程音频时钟发生器MAX9485EVKIT MAX9485评估板MAX9486 8kHz参考时钟合成器,提供35.328MHz倍频输出MAX9486EVKIT MAX9486评估板MAX9489 多路输出网络时钟发生器MAX9500, MAX9501 三通道HDTV滤波器MAX9500EVKIT MAX9500评估板MAX9501EVKIT MAX9501评估板MAX9502 2.5V视频放大器, 带有重建滤波器MAX9504A, MAX9504B 3V/5V、6dB视频放大器, 可提供大电流输出MAX9701 1.3W、无需滤波、立体声D类音频功率放大器MAX9701EVKIT MAX9701评估板MAX9702 1.8W、无需滤波、立体声D类音频功率放大器和DirectDrive立体声耳机放大器MAX9702EVSYS/EVKIT MAX9702/MAX9702B评估系统/评估板MAX9703, MAX9704 10W立体声/15W单声道、无需滤波的扩展频谱D类放大器MAX9705 2.3W、超低EMI、无需滤波、D类音频放大器MAX9705BEVKIT MAX9705B评估板MAX9710EVKIT MAX9710评估板MAX9712 500mW、低EMI、无需滤波、D类音频放大器MAX9713, MAX9714 6W、无需滤波、扩频单声道/立体声D类放大器MAX9714EVKIT MAX9704, MAX9714评估板MAX9715 2.8W、低EMI、立体声、无需滤波、D类音频放大器MAX9715EVKIT MAX9715评估板MAX9716, MAX9717 低成本、单声道、1.4W BTL音频功率放大器MAX9716EVKIT MAX9716评估板MAX9718, MAX9719 低成本、单声道/立体声、1.4W差分音频功率放大器MAX9718AEVKIT MAX9718A评估板MAX9719AEVKIT MAX9719A/B/C/D评估板MAX9721 1V、固定增益、DirectDrive、立体声耳机放大器,带有关断MAX9721EVKIT MAX9721评估板MAX9722A, MAX9722B 5V、差分输入、DirectDrive、130mW立体声耳机放大器,带有关断MAX9722AEVKIT MAX9722A, MAX9722B评估板MAX9723 立体声DirectDrive耳机放大器, 具有BassMax、音量控制和I2C接口MAX9725 1V、低功率、DirectDrive、立体声耳机放大器,带有关断MAX9728AEVKIT MAX9728A/MAX9728B评估板MAX9750, MAX9751, MAX9755 2.6W立体声音频功放和DirectDrive耳机放大器MAX9759 3.2W、高效、低EMI、无需滤波、D类音频放大器MAX9759EVKIT MAX9759评估板MAX9770, MAX9772 1.2W、低EMI、无需虑波、单声道D类放大器,带有立体声DirectDrive耳机放大器MAX9787 2.2W立体声音频功率放大器, 提供模拟音量控制MAX9850 立体声音频DAC,带有DirectDrive耳机放大器MAX9890 音频咔嗒声-怦然声抑制器MAX9951, MAX9952 双路引脚参数测量单元MAX9960 双闪存引脚电子测量/高压开关矩阵MAX9961, MAX9962 双通道、低功耗、500Mbps ATE驱动器/比较器,带有2mA负载MAX9967 双通道、低功耗、500Mbps ATE驱动器/比较器,带有35mA负载MAX9986A SiGe高线性度、815MHz至1000MHz下变频混频器, 带有LO缓冲器/开关MAXQ2000 低功耗LCD微控制器MAXQ2000 勘误表PDF: MAXQ2000A2MAXQ2000-KIT MAXQ2000评估板MAXQ3120-KIT MAXQ3120评估板MXL1543B +5V、多协议、3Tx/3Rx、软件可选的时钟/数据收发器。

MAX3841中文资料

MAX3841中文资料

PARAMETER
SYMBOL
CONDITIONS
MIN TYP MAX UNITS
Core Supply Current Data Rate
ICC
Excluding CML termination currents
(Note 1)
65
90
mA
0
12.5 Gbps
CML Input Differential CML Input Common Mode
Termination Currents)
Ordering Information
PART
TEMP RANGE
MAX3841ETG -40°C to +85°C
PINPACKAGE
24 Thin QFN
PKG. CODE
T2444-1
Pin Configuration appears at end of data sheet.
12
dB
CML Output Differential CML Output Termination
VOUT
(Note 2) Single ended
400
500
42.5
50
600 57.5
mVP-P Ω
CML Output Transition Time Deterministic Jitter Random Jitter Propagation Delay
Note 4: Measured at 9.953Gbps using a pattern of 100 ones, 27 - 1 PRBS, 100 zeros, 27 - 1 PRBS, and at 12.5Gbps using a ±K28.5 pattern. VCC_IN = VCC_OUT = 1.8V, and VIN = 400mVP-P differential.

FLAT-PANEL DISPLAY(平板显示器)

FLAT-PANEL DISPLAY(平板显示器)

Part Input Voltage(V)AVDD Boost Output (V)Buck Output(V)V GON (V)Switch ControlPackage MAX872810.8 to 13.2V IN to 17 2.0 to 3.635✓32-TQFN MAX170148.0 to 16.5V IN to 20 1.5 to 3.340-TQFN MAX8795 2.5 to 6V IN to 18—32-TQFN MAX87236 to 13.2—2.0 to3.6—16-TQFNPart Topology Dimming Interface Frequency SynchronizationV IN(MAX)(V)Package MAX8751Full bridge Analog✓2832-TQFN MAX8729Half bridge40-TQFNCCFL Backlight ControllersPart No. of AmpsPeak Current per Amp (mA)Operating Voltage (V, max)Package MAX95501800208-µMAX ®-EP, 5-SOT23MAX955128-µMAX-EP MAX9552414-TSSOP-EPHigh-Current VCOM BuffersPOWER CONTROLLERBACKLIGHT LAMPSPower SuppliesSolutions for LCD-TV DisplaysµMAX is a registered trademark of Maxim Integrated Products, Inc.Highly Efficient White-LED Drivers Have Multistring Current Regulation for LCD Backlight Applications2SMBus TM INTERFACE8-STRING WLED DRIVER WITH EXTERNAL STEP-UP•Accurate Dimming Control UsingSMBus, PWM Interface•Dimming Range with 256-StepResolution •Regulated String Current Accuracyof ±3% •Low 800mV Feedback Voltage at FullCurrent Improves Efficiency•15mA to 30mA Full-Scale LED Current•Step-Up Controller Regulates Output Just Above the Highest LED String Voltage •Open- and Short-Circuit LED Protection;Output Overvoltage Protection •500kHz/750kHz/1MHz SwitchingFrequency Allows Small External Components WLED Drivers for LCD Notebook ApplicationsSMBus is a trademark of Intel Corporation.N E W3Power Supply with Integrated Scan Driver for LCD ApplicationsOptimized for TFT LCDs with On-Glass Row DriversThe MAX17010 is the first LCD power supply in the industry to include a high-voltage, level-shifting scan driver designed to drive TFT panels with row drivers integrated on the panel glass. Its seven outputs swing from -10V (min)to +30V (max) and can swiftly drive capacitive loads. The MAX17010’s high level of integration is fully compatible with the most advanced L CD panel-glass technologies and offers customers a highly cost-effective and reliable solution.LOGIC INPUTSCAN DRIVER'S INPUT/OUTPUT WAVEFORMS WITH LOGIC INPUT4µs/div 0V0VV A 5V/divV Y10V/div•1.8V to 5.5V Input-Voltage Range•3mA DC-DC Converter Quiescent Current (Switching)•High-Voltage Level-Shifting Scan Driver •Seven Logic-Level Inputs •-10V to +30V Output Rails•1.2MHz Current-Mode Step-Up Regulator •Fast Transient Response•High ±1.0% Output-Voltage Accuracy •Built-In 20V , 1.9A, 200m ΩMOSFET •High Efficiency (> 85%)•Digital Soft-Start •High-Speed Op Amp•150mA Output Current •45V/µs Slew Rate•20MHz, -3dB Bandwidth •Thermal-Overload Protection•5mm x 5mm, 40-Pin TQFN PackageHIGH-EFFICIENCY STEP-UP CONVERTERLOAD CURRENT (mA)E F F I C I E N C Y (%)10010102030405060708090100011000OPERATIONAL AMPLIFIER'S FAST TRANSIENT RESPONSE20µs/div0mV0mAV VCOM(AC-COUPLED)100mV/divI VCOM 50mA/divN E W4Quad-Output, TFT-Supply, DC-DC Controller for LCD TV Offers the Smallest, Most Optimized SolutionThe MAX17014 is an LCD-TV , TFT, DC-DC supply that integrates: step-up and step-down converters; charge-pump regulators; two high-current op amps designed to drive the LCD backplane (VCOM); and a series p-channel FET that sequences power to A VDD during IC startup. Through this high level of integration, the MAX17014 reduces the number of external components, thereby saving space and minimizing external BOM.•8.0V to 16.5V Input-Voltage Range •650kHz/1.2MHz Selectable Operation •Current-Mode Step-Up Regulator •Fast Load-Transient Response •±1.0% Accurate Output Voltage •Built-In 20V , 2.8A, 100m ΩMOSFET •Current-Mode Step-Down Regulator •Fast Load-Transient Response •Output Voltage Adjustable Down to 1.5V•2.5A, 100m ΩMOSFET•Integrated High-Voltage Switch for Gate-Driver Control•T wo High-Speed Op Amps•±150mA Short-Circuit Current •45V/µs Slew Rate•20MHz, -3dB Bandwidth•200m Ωp-Channel FET for AVDD Sequencing•Input Undervoltage Lockout and Thermal-Overload Protection•7mm x 7mm, 48-Pin TQFN PackageTypical Component Values (1.2MHz)N E W5•1.2MHz Current-Mode Step-Up Regulator•Fast Transient Response•High ±1.5% Output-Voltage Accuracy •Built-In 20V , 2.4A n-Channel MOSFET•Linear-Regulator Controllers for V GON and V GOFF•Timer-Delay Fault Latch for All Regulator Outputs•High-Performance Op Amps •±130mA Output Short-Circuit Current•45V/µs Slew Rate•20MHz, -3dB Bandwidth •Rail-to-Rail Inputs/Outputs •Logic-Controlled, High-Voltage Switch with Adjustable Delay •Thermal-Overload ProtectionTFT-LCD DC-DC Converter with Op Amps Offers the Smallest SolutionThe MAX8795A DC-DC converter includes: a high-performance step-up regulator; two linear-regulator controllers; a logic-controlled, high-voltage switch with adjustable delay; and five high-current op amps for active-matrix TFT LCDs. This high level of integration enables the smallest solution for notebook and monitor applications.Designed to drive the L CD backplane and/or the gamma-correction divider string, the integrated high-perfor-mance op amps feature a high ±130mA output current, fast 45V/µs slew rate, wide 20MHz bandwidth, and rail-to-rail inputs and outputs.N E W6ELECTRICAL EFFICIENCY vs.INPUT VOLTAGEINPUT VOLTAGE (V)E L E C T R I C A L EF F I C I E N C Y (%)22191613106070809010050725•> 85% Efficiency Maximizes Battery Life•MAX8759 Includes Special Features to Further Improve Efficiency •Proprietary Control Scheme •Ambient-Light Sensing Support•Intel DPST (Display Power-Saving Technology) Support •Wide 4.6V to 28V Input-Voltage Range •DPWM Dimming Control•SMBus-/Analog-Controlled 256:1 Dimming Range (MAX8759)•SMBus-Controlled 32:1 Dimming Range (MAX8709)•Analog-Controlled 10:1 Dimming Range (MAX8722)•Comprehensive Fault Protection•Secondary Voltage Limit Reduces Transformer Stress •Adjustable Lamp-Out Protection with 1s Timer •Secondary Current LimitHigh-Efficiency CCFL Backlight Controllers Handle Wide Input-V oltage RangeMAX8759 Supports Ambient-Light Sensing and Intel ®DPSTThe MAX8759/MAX8722/MAX8709 integrated backlight controllers are optimized to drive cold-cathode fluorescent lamps (CCFLs) using a resonant, full-bridge inverter architecture for maximum power-to-light-output effi-ciency. Operating over a 4.6V to 28V input-voltage range while achieving > 85% efficiency, these controllers are ideal for battery-powered applications such as notebook computers. The MAX8759/MAX8722/MAX8709 achieve dimming by “chopping” the lamp current on and off. The devices include safety features that protect against lamp-out and short-circuit faults.Intel is a registered trademark of Intel Corporation.LED Backlight ControllersTrue Shutdown and UCSP are trademarks of Maxim Integrated Products, Inc.78ON /OFFIDEAL FOR NOTEBOOKS, PDAs, LCD TVs, AND MONITORSLow-Cost, Internal-Switch, Step-Down Regulator Is Ideal for LCD Panels and 8V/12V Industrial ApplicationsThe MAX8723 is a high-efficiency, switch-mode, step-down regulator with a 14V internal power switch. With only a few external passive components, this low-cost regulator takes a 6V to 13.2V DC source and generates a fixed 3.3V or adjustable DC-output voltage of 2.0V to 3.6V (dual mode). The 13.2V input-voltage range makes this partideal for LCD panels, point-of-load regulators, and other 8V/12V industrial equipment applications.•6V to 13.2V Input-Supply Range •Integrated 14V , 2A, n-Channel MOSFET Switch•Preset ±1.5% Accurate, 3.3V Fixed Output, or 2.0V to 3.6V Adjustable Output (Dual Mode)•Current-Mode PWM Operation •Frequency-Selectable 500kHz/1MHz/1.5MHz•Internal 5V Linear RegulatorSupports Up to 25mA External Load •Small, 4mm x 4mm, 16-Pin TQFN Package Low-Noise, High-Efficiency Step-Up DC-DC Converters for TFT LCDsThe MAX1790/MAX8715/MAX8740/MAX8752 step-up converters provide > 90% efficiency for notebook,monitor, and LCD-TV applications. The converters incorporate high-performance (at 1.2MHz), current-mode, fixed-frequency PWM circuitry with a built-in n-channel MOSFET to provide a highly efficient regulator with fast response.This fixed-frequency, current-mode operation at high switching frequencies (640kHz or 1.2MHz) allows easy filtering and fast loop performance.10VCOM Calibrator Adjusts Voltage over Wide Temperature RangeThe DS3501 7-bit nonvolatile digital potentiometer features an output voltage of up to 15.5V and is the first VCOM calibrator to incorporate temperature sensing and a lookup table (LUT) for about the cost of a standard VCOM calibrator . Whereas previous-generation calibrators only offer a fixed voltage for all temperatures, the DS3501 gives the LCD-panel designer a powerful new tool for controlling flicker over a wide operating range.DIGITAL POT OUTPUT VOLTAGEvs. TEMPERATURETEMPERATURE (°C)O U T P U T V O L T A G E (V )9.08.58.07.57.06.56.0-40-2020406080100•128 Wiper Tap Points•On-Chip Temperature Sensor and ADC •Nonvolatile Initial-Value Register •36-Byte Nonvolatile Lookup Table (Temp vs. Voltage or Temp vs. ∆V)•I 2C-Compatible Serial Interface•2.7V to 5.5V Digital Operating Voltage •4.5V to 15.5V Analog Operating Voltage •-40°C to +100°C Operating Temperature •10-Pin µSOP PackageA1A0SDA SCLRHRLRWN E WOUTPUT0.1mA TO 24mA PER LED100908070605040Li+ BATTERY VOLTAGE (V, TIME WEIGHTED)EFFICIENCYPLED/PBATT(%)•Six Adaptive CurrentRegulators•Drive Up to Six Whiteor RGB LEDs•±0.4% Accurate CurrentMatching•Low 70µA I Q•1MHz Fixed-FrequencySwitching for SmallComponents•T A Derating Protects LEDs•Serial-Pulse-DimmingInterface (MAX8648)•EV Kit Available•Prices Start at $1.95†(MAX8647) and $1.70†(MAX8648)Industry’s First Negative, White-LED Charge Pumps Achieve Highest Efficiency Independent Adaptive Mode Switching Improves Efficiency by 12%The MAX8647/MAX8648 utilize a negative charge-pump architecture to reduce in-line resistance and maximize efficiency by delaying mode switching from 1x to 1.5x operation during battery discharge. Combined with indepen-dent adaptive mode switching for each L ED, this architecture improves efficiency by 12%, even with high L ED forward-voltage (V F) mismatching. These superior features make the MAX8647/MAX8648 ideal for cell phones, smartphones, portable media players, and other portable devices in which every milliamp-hour of battery life is crucial.†2.5k-up pricing provided is for design guidance and is FOB USA. International prices will differ due to local duties, taxes, and exchange rates. Not all packages are offered in 1k increments, and some may require minimum order quantities.N E WFirst LED Charge Pump to Integrate Audio Amp Saves 50% SpaceDifferential Input, 1.1W Amplifier Provides Excellent Noise ImmunityLi+E V K I TA V A I L AB L E COMPETITIVE SOLUTION = 18mm 2vs.6-LED CHARGE PUMPCLASS AB AMPLIFIERP R I C E SS T A R T A T $1.36†Maxim's SOLUTION = 9mm 250% SMALLER THAN COMPETITIONLED Charge Pump•No Inductor Required•Adaptive, Independent Current Regulator for Each LED•32 Pseudo-Logarithmic Dimming Levels, Down to 0.1mA•Low 140µA Quiescent Current •Single-Wire, Serial-Pulse-Dimming InterfaceAudio Amplifier•Single-Supply Operation •High 90dB PSRR at 1kHz •Low 0.004% THD+N at 1kHz•-9dB to +18dB Gain Settings in 3dB Steps •Integrated Click-and-Pop Suppression •No Output-Coupling Capacitors,Snubber Networks, or Bootstrap Capacitors Required†2.5k-up recommended resale. Prices provided are for design guidance and are FOB USA. International prices will differ due to local duties, taxes, and exchange rates. Not all packagesare offered in 1k increments, and some may require minimum order quantities.N E WIndustry’s Most Accurate 18-Channel Programmable Gamma BufferOnly 8mV Buffer Error Reduces FlickerDIGITAL INPUT CODEI N L (L S B )19212864-0.050.050.10-0.10256LESS THAN 0.05 LSB INLDIGITAL INPUT CODED N L (L S B )19264128-0.050.050.10-0.10256LESS THAN 0.05 LSB DNLOUT_REFU_HOUT1OUT2OUT3OUT4OUT5OUT6OUT7OUT_REFU_L OUT_REFL_H OUT8OUT9OUT10OUT11OUT12OUT13OUT14OUT_REFL_LREFU_H REFU_LAVDDDV DDSDA SCL A0DVRSETREFL_H REFL_LGND•14 Programmable and 4 Static Gamma Buffers•128-Step Programmable VCOM Calibrator•Custom Power-Up Voltages Available•9V to 16.5V Analog Supply Range •I 2C-Compatible Serial Interface•5mm x 5mm, 32-Pin TQFN PackageProgrammable Gamma Reference Generator Integrates 18 Buffers and All LCD-Panel Calibration FunctionsIntegrating all LCD-panel calibration functions, the MAX5678*provides a 128-step VCOM calibrator and 18buffered channels, including 14 channels of 8-bit programmable gamma reference voltages. Featuring an easy-to-program I 2C interface, the MAX5678 enables factory or dynamic calibration of flicker level and color variances in LCD panels. A wide supply range makes it ideal for a variety of panel sizes.F U T U R E P R O DU C T*Future product—contact factory for availability.LOAD TRANSIENT (MAX9550)High-Current VCOM Buffers Reduce Flicker on Large LCD PanelsMAX9550/51/52 Drive Large Capacitive Loads for Fast VCOM Settling Time—Settles 2x Faster than Competition• Requires Series Resistor to Remain Stable • Low-Current Drive• Can Directly Drive LCD C LOAD• High-Current DriveSlow Settling Time (> 4µs)Fast Settling Time (< 2µs)N E WSpread-Spectrum Clock Modulators Reduce Peak EMI in LCD PanelsPin-Selectable Dither Rate and Magnitude Reduce Radiated Emissions by Up to 17dBAn integrated phase-locked loop (PLL) modulates the output clock around the center frequency at a pin-selectable magnitude, thus reducing peak EMI at fundamental and harmonic frequencies. EMI reduction is accomplished without changing clock rise/fall times or adding the space, weight, design time, and costs associated with mechanical shielding.For Additional EMI-Reduction Solutions, Visit: /Spread-SpectrumFlexible•Wide Operating-Temperature Range•Wide Input-Frequency Range•User-Selectable Dither Magnitude and RateKey Benefits•EMI Reduction Saves Shielding Costs•High Performance:±75ps Cycle-to-Cycle Jitter Applications•LCD Televisions and Computer Monitors•Automotive Infotainment and Telematics•POS Terminals •Printers17dB EMI REDUCTION0-10-20-30-40-50-60-70-800.960.970.98 1.03 1.041.021.010.99 1.00x f OUTP O W E R S P E C T R U M (d B m )NO DITHERN E WHIGH EFFICIENCY EXTENDS BATTERY LIFEOUTPUT POWER (W)E F F I C I E N C Y (%)86421020304050607080901000010FREQUENCY (MHz)2202006080100140160120180510152025303540030240 260 280300FILTERLESS SPREAD-SPECTRUM OPERATIONREDUCES EMI AND BOM COSTEMI with inexpensive ferrite-bead filters (V DD = 12V, 1m cable, 8Ω load).A M P L I T U D E (dB µV /m )Wide-Supply-Range, High-Efficiency, 2 x 15W Class D AmplifierThe MAX9744 single-supply filterless amplifier provides Class AB amplifier performance with Class D efficiency,thus conserving board space and eliminating the need for a bulky heatsink. To further reduce BOM cost and to simplify portable-multimedia dock designs, the MAX9744 integrates a 64-step dual-mode (analog or digital) program-mable volume control.For Information on Maxim’s Complete Line of Class D Speaker Amplifiers,Go to: /ClassD-AmpsN E W。

MAX9111中文资料

MAX9111中文资料

General DescriptionThe MAX9111/MAX9113 single/dual low-voltage differen-tial signaling (LVDS) receivers are designed for high-speed applications requiring minimum power consumption, space, and noise. Both devices support switching rates exceeding 500Mbps while operating from a single +3.3V supply, and feature ultra-low 300ps (max)pulse skew required for high-resolution imaging applica-tions such as laser printers and digital copiers.The MAX9111 is a single LVDS receiver, and the MAX9113 is a dual LVDS receiver.Both devices conform to the EIA/TIA-644 LVDS standard and convert LVDS to LVTTL/CMOS-compatible outputs.A fail-safe feature sets the outputs high when the inputs are undriven and open, terminated, or shorted. The MAX9111/MAX9113 are available in space-saving 8-pin SOT23 and SO packages. Refer to the MAX9110/MAX9112 data sheet for single/dual LVDS line drivers.________________________ApplicationsFeatureso Low 300ps (max) Pulse Skew for High-Resolution Imaging and High-Speed Interconnecto Space-Saving 8-Pin SOT23 and SO Packages o Pin-Compatible Upgrades to DS90LV018A and DS90LV028A (SO Packages Only)o Guaranteed 500Mbps Data Rateo Low 29mW Power Dissipation at 3.3V o Conform to EIA/TIA-644 Standard o Single +3.3V Supplyo Flow-Through Pinout Simplifies PC Board Layout o Fail-Safe Circuit Sets Output High for Undriven Inputso High-Impedance LVDS Inputs when Powered OffMAX9111/MAX9113Single/Dual LVDS Line Receivers withUltra-Low Pulse Skew in SOT23________________________________________________________________Maxim Integrated Products 1≥Pin Configurations/Functional Diagrams/Truth Table19-4802; Rev 0; 7/00For free samples and the latest literature, visit or phone 1-800-998-8800.For small orders, phone 1-800-835-8769.Ordering InformationLaser Printers Digital Copiers Cellular Phone Base Stations Telecom Switching EquipmentNetwork Switches/Routers LCD DisplaysBackplane Interconnect Clock DistributionTypical Operating Circuit appears at end of data sheet.M A X 9111/M A X 9113Single/Dual LVDS Line Receivers with Ultra-Low Pulse Skew in SOT232_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICS(V CC = +3.0V to +3.6V, magnitude of input voltage, |V ID | = +0.1V to +1.0V, V CM = |V ID |/2 to (2.4V - (|V ID |/2)), T A = -40°C to +85°C.Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.V CC to GND..............................................................-0.3V to +4V IN_ _ to GND .........................................................-0.3V to +3.9V OUT_ _ to GND...........................................-0.3V to (V CC + 0.3V)ESD Protection All Pins(Human Body Model, IN_+, IN_-)..................................±11kV Continuous Power Dissipation (T A = +70°C)8-Pin SOT23 (derate 7.52mW/°C above +70°C)..........602mW8-Pin SO (derate 5.88mW°C above +70°C).................471mW Operating Temperature RangesMAX911_E.......................................................-40°C to +85°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10s).................................+300°CMAX9111/MAX9113Single/Dual LVDS Line Receivers withUltra-Low Pulse Skew in SOT23_______________________________________________________________________________________3T A = +25°C.Note 2:Current into the device is defined as positive. Current out of the devices is defined as negative. All voltages are referencedto ground except V TH and V TL .Note 3:Guaranteed by design, not production tested.Note 4:AC parameters are guaranteed by design and characterization.Note 5:C L includes probe and test jig capacitance.Note 6:f MAX generator output conditions: t R = t F < 1ns (0% to 100%), 50% duty cycle, V OH = 1.3V, V OL = 1.1V.Note 7:t SKD1is the magnitude difference of differential propagation delays in a channel. t SKD1= |t PLHD - t PHLD |.Note 8:t SKD2is the magnitude difference of the t PLHD or t PHLD of one channel and the t PLHD or t PHLD of the other channel on thesame device.Note 9:t SKD3is the magnitude difference of any differential propagation delays between devices at the same V CC and within 5°Cof each other.Note 10:t SKD4, is the magnitude difference of any differential propagation delays between devices operating over the rated supplyand temperature ranges.Test Circuit DiagramsM A X 9111/M A X 9113Single/Dual LVDS Line Receivers with Ultra-Low Pulse Skew in SOT234_______________________________________________________________________________________Figure 1. Receiver Propagation Delay and Transition Time Test CircuitFigure 2. Receiver Propagation Delay and Transition Time WaveformsMAX9111/MAX9113Single/Dual LVDS Line Receivers withUltra-Low Pulse Skew in SOT23_______________________________________________________________________________________5Typical Operating Characteristics(V CC = 3.3V, |V ID | = 200mV, V CM = 1.2V, f IN = 200MHz, C L = 15pF, T A = +25°C and over recommended operating conditions unless otherwise specified.)3.03.23.13.33.43.53.6SUPPLY VOLTAGE (V)O U T P U T H I G H V O L T A G E (V )OUTPUT HIGH VOLTAGE vs. SUPPLY VOLTAGE2.52.72.62.82.93.03.13.23.33.43.53.63.73.03.23.33.13.43.53.6SUPPLY VOLTAGE (V)O U T P U T L O W V O L T A G E (m V )OUTPUT LOW VOLTAGE vs. SUPPLY VOLTAGE1301201101009048585368637873833.0 3.2 3.33.1 3.4 3.53.6SUPPLY VOLTAGE (V)O U T P U T S H O R T -C I R C U I T C U R R E N T (m A )OUTPUT SHORT-CIRCUIT CURRENTvs. SUPPLY VOLTAGE1416201822243.03.23.13.33.43.53.6SUPPLY VOLTAGE (V)D I F FE R E N T I A L T H R E S H O L D V O L T A G E (m V )DIFFERENTIAL THRESHOLD VOLTAGEvs. SUPPLY VOLTAGE0.010.11101001000FREQUENCY (MHz)P O W E R -S U P P L Y C U R R E N T (m A )0201040305060MAX9113 POWER-SUPPLY CURRENTvs. FREQUENCY-4010-15356085TEMPERATURE (°C)P O W E R -S U P P L Y C U R R E N T (m A )POWER-SUPPLY CURRENTvs. TEMPERATURE6.56.76.66.86.97.07.17.27.37.47.57.67.71.501.601.551.651.701.751.801.851.901.952.002.052.103.03.13.23.43.3 3.53.6DIFFERENTIAL PROPAGATION DELAYvs. SUPPLY VOLTAGESUPPLY VOLTAGE (V)D I F FE R E N T I A L P R O P A G A T I O N D E L A Y (n s )1.501.601.551.651.751.701.801.851.902.001.952.052.102.152.20-40-1510356085DIFFERENTIAL PROPAGATION DELAYvs. TEMPERATURETEMPERATURE (°C)D I F FE R E N T I A L P R O P A G A T I O N D E L A Y (n s )1201008060403.03.33.13.2 3.4 3.53.6DIFFERENTIAL PULSE SKEW vs. SUPPLY VOLTAGEM A X 9111 t o c 09SUPPLY VOLTAGE (V)D I F FE R E N T I A L S K E W (n s )M A X 9111/M A X 9113Single/Dual LVDS Line Receivers with Ultra-Low Pulse Skew in SOT236_______________________________________________________________________________________1.01.61.41.21.82.02.22.42.62.83.001000500150020002500DIFFERENTIAL PROPAGATION DELAY vs. DIFFERENTIAL INPUT VOLTAGEDIFFERENTIAL INPUT VOLTAGE (mV)D I F F E R E N T I A L P R O P A G A T I O N D E L A Y (n s )050150100200250-4010-15356085TEMPERATURE (°C)D I F FE R E N T I A L S K E W (p s )DIFFERENTIAL PULSE SKEWvs. TEMPERATURE1.61.81.72.01.92.12.201.01.50.52.02.53.0DIFFERENTIAL PROPAGATION DELAY vs. COMMON-MODE VOLTAGECOMMON-MODE VOLTAGE (V)D I F FE R E N T I A L P R O P A G A T I O N D E L A Y (n s )330430380530480630580680-4010-15356085TEMPERATURE (°C)T R A N S I T I O N T I M E (p s )TRANSITION TIME vs. TEMPERATURE1.51.91.72.32.12.52.72.93.1102025153035404550LOAD (pF)D I F FE R E N T I A L P R O P A G A T I O N D E L A Y (n s )DIFFERENTIAL PROPAGATION DELAYvs. LOADTypical Operating Characteristics (continued)2006001000140018002200102015253035404550TRANSITION TIME vs. LOADLOAD (pF)T R A N S I T I O N T I M E (p s )(V CC = 3.3V, |V ID | = 200mV, V CM = 1.2V, f IN = 200MHz, C L = 15pF, T A = +25°C and over recommended operating conditions,unless otherwise specified.)MAX9111/MAX9113Single/Dual LVDS Line Receivers withUltra-Low Pulse Skew in SOT23_______________________________________________________________________________________7_______________Detailed DescriptionLVDS InputsThe MAX9111/MAX9113 feature LVDS inputs for inter-facing high-speed digital circuitry. The LVDS interface standard is a signaling method intended for point-to-point communication over a controlled impedance media, as defined by the ANSI/EIA/TIA-644 standards.The technology uses low-voltage signals to achieve fast transition times, minimize power dissipation, and noise immunity. Receivers such as the MAX9111/MAX9113convert LVDS signals to CMOS/LVTTL signals at rates in excess of 500Mbps. The devices are capable of detecting differential signals as low as 100mV and as high as 1V within a 0V to 2.4V input voltage range . The LVDS standard specifies an input voltage range of 0 to 2.4V referenced to ground.Fail-SafeThe fail-safe feature sets the output to a high state when the inputs are undriven and open, terminated, or shorted. When using one channel in the MAX9113,leave the unused channel open.ESD ProtectionAs with all Maxim devices, ESD-protection structures are incorporated on all pins to protect against electrostatic discharges encountered during handling and assembly.The receiver inputs of the MAX9111/MAX9113 have extra protection against static electricity. Maxim ’s engineers have developed state-of-the-art structures to protect these pins against ESD of ±11kV without damage. The ESD structures withstand high ESD in all states: normal operation, shutdown, and powered down.ESD protection can be tested in various ways; the receiver inputs of this product family are characterized for protection to the limit of ±11kV using the H uman Body Model.Human Body ModelFigure 3a shows the H uman Body Model, and Figure 3b shows the current waveform it generates when dis-charged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of inter-est, which is then discharged into the test device through a 1.5k Ωresistor.__________Applications InformationSupply BypassingBypass V CC with high-frequency surface-mount ceram-ic 0.1µF and 0.001µF capacitors in parallel, as close to the device as possible, with the 0.001µF valued capaci-tor the closest to the device. For additional supply bypassing, place a 10µF tantalum or ceramic capacitor at the point where power enters the circuit board.Differential TracesOutput trace characteristics affect the performance of the MAX9111/MAX9113. Use controlled impedance traces to match trace impedance to both transmission medium impedance and the termination resistor.Eliminate reflections and ensure that noise couples as common mode by running the differential traces close together. Reduce skew by matching the electrical length of the traces. Excessive skew can result in a degradation of magnetic field cancellation.Maintain the distance between the differential traces to avoid discontinuities in differential impedance. Avoid 90°turns and minimize the number of vias to further prevent impedance discontinuities.Cables and ConnectorsTransmission media should have a differential charac-teristic impedance of about 100Ω. Use cables and con-nectors that have matched impedance to minimize impedance discontinuities.Avoid the use of unbalanced cables such as ribbon or simple coaxial cable. Balanced cables such as twisted pair offer superior signal quality and tend to generate less EMI due to canceling effects. Balanced cables tend to pick up noise as common mode, which is rejected by the LVDS receiver.TerminationTermination resistors should match the differential char-acteristic impedance of the transmission line. Because the MAX9111/MAX9113 are current steering devices,an output voltage will not be generated without a termi-nation resistor. Output voltage levels depend upon the value of the termination resistor. Resistance values may range from 75Ωto 150Ω.Minimize the distance between the termination resistor and receiver inputs. Use a single 1% to 2% surface-mount resistor across the receiver inputs.Board LayoutFor LVDS applications, a four-layer PC board that pro-vides separate power, ground, LVDS signals, and input signals is recommended. Isolate the input and LVDS signals from each other to prevent coupling. For best results, separate the input and LVDS signal planes with the power and ground planes.M A X 9111/M A X 9113Single/Dual LVDS Line Receivers with Ultra-Low Pulse Skew in SOT238_______________________________________________________________________________________Figure 3a. Human Body ESD Test Modules Figure 3b. Human Body Current WaveformMAX9111/MAX9113Single/Dual LVDS Line Receivers withUltra-Low Pulse Skew in SOT23_______________________________________________________________________________________9Typical Operating CircuitChip InformationTRANSISTOR COUNT:MAX9111: 675MAX9113: 675PROCESS: CMOSM A X 9111/M A X 9113Single/Dual LVDS Line Receivers with Ultra-Low Pulse Skew in SOT2310______________________________________________________________________________________Package InformationMAX9111/MAX9113Single/Dual LVDS Line Receivers with Ultra-Low Pulse Skew in SOT23______________________________________________________________________________________11Package Information (continued)M A X 9111/M A X 9113Single/Dual LVDS Line Receivers with Ultra-Low Pulse Skew in SOT23Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embod ied in a Maxim prod uct. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.12____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©2000 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.NOTES。

MAX15000中文资料

MAX15000中文资料

ELECTRICAL CHARACTERISTICS
(VIN = +12V (for MAX15000, bring VIN up to 23.6V for startup), 10nF bypass capacitors at IN and VCC, R12 = 15kΩ (MAX1500_A), R12 = 7.5kΩ (MAX1500_B), R15 = 1kΩ, C6 = 100nF (see the Typical Application Circuit), NDRV = open, VUVLO/EN = +1.4V, VFB = +1.0V, COMP = open, VCS = 0V, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1)
Pin Configuration
TOP VIห้องสมุดไป่ตู้W
UVLO/EN 1 UFLG FB COMP CS 2 3 4 5 10 IN 9 VCC NDRV GND RT
MAX15000 MAX15001
8 7 6
µMAX 1
________________________________________________________________ Maxim Integrated Products
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at .

MAX19515ETM+中文资料

MAX19515ETM+中文资料

General DescriptionThe MAX19515 dual-channel, analog-to-digital convert-er (ADC) provides 10-bit resolution and a maximum sample rate of 65Msps.The MAX19515 analog input accepts a wide 0.4V to 1.4V input common-mode voltage range, allowing DC-coupled inputs for a wide range of RF , IF , and base-band front-end components. The MAX19515 provides excellent dynamic performance from baseband to high input frequencies beyond 400MHz, making the device ideal for zero-intermediate frequency (ZIF ) and high-intermediate frequency (IF) sampling applications. The typical signal-to-noise ratio (SNR) performance is 60.1dBF S and typical spurious-free dynamic range (SFDR) is 82dBc at f IN = 70MHz and f CLK = 65MHz.The MAX19515 operates from a 1.8V supply.Additionally, an integrated, self-sensing voltage regula-tor allows operation from a 2.5V to 3.3V supply (AVDD).The digital output drivers operate on an independent supply voltage (OVDD) over the 1.8V to 3.5V range.The analog power consumption is only 43mW per chan-nel at V AVDD = 1.8V. In addition to low operating power, the MAX19515 consumes only 1mW in power-down mode and 15mW in standby mode.Various adjustments and feature selections are avail-able through programmable registers that are accessed through the 3-wire serial-port interface.Alternatively, the serial-port interface can be disabled,with the three pins available to select output mode,data format, and clock-divider mode. Data outputs are available through a dual parallel CMOS-compatible out-put data bus that can also be configured as a single multiplexed parallel CMOS bus.The MAX19515 is available in a small 7mm x 7mm 48-pin thin QFN package and is specified over the -40°C to +85°C extended temperature range.Refer to the MAX19505, MAX19506, and MAX19507data sheets for pin- and feature-compatible 8-bit,65Msps, 100Msps, and 130Msps versions, respectively.Refer to the MAX19516 and MAX19517 data sheets for pin- and feature-compatible 10-bit, 100Msps and 130Msps versions, respectively.ApplicationsIF and Baseband Communications, Including Cellular Base Stations and Point-to-Point Microwave ReceiversUltrasound and Medical ImagingPortable Instrumentation and Low-Power Data AcquisitionDigital Set-Top BoxesFeatureso Very-Low-Power Operation (43mW/Channel at 65Msps)o 1.8V or 2.5V to 3.3V Analog Supply o Excellent Dynamic Performance60.1dBFS SNR at 70MHz 82dBc SFDR at 70MHzo User-Programmable Adjustments and Feature Selection through an SPI™Interface o Selectable Data Bus (Dual CMOS or Single Multiplexed CMOS)o DCLK Output and Programmable Data Output Timing Simplifies High-Speed Digital Interface o Very Wide Input Common-Mode Voltage Range (0.4V to 1.4V)o Very High Analog Input Bandwidth (> 850MHz)o Single-Ended or Differential Analog Inputs o Single-Ended or Differential Clock Input o Divide-by-One (DIV1), Divide-by-Two (DIV2), and Divide-by-Four (DIV4) Clock Modes o Two’s Complement, Gray Code, and Offset Binary Output Data Format o Out-of-Range Indicator (DOR)o CMOS Output Internal Termination Options (Programmable)o Reversible Bit Order (Programmable)o Data Output Test Patternso Small 7mm x 7mm 48-Pin Thin QFN Package with Exposed PadMAX19515Dual-Channel, 10-Bit, 65Msps ADC________________________________________________________________Maxim Integrated Products1Ordering Information19-4195; Rev 1; 10/08For pricing, delivery, and ordering information,please contact Maxim Direct at 1-888-629-4642,or visit Maxim’s website at .*EP = Exposed pad.Pin Configuration appears at end of data sheet.SPI is a trademark of Motorola, Inc.M A X 19515Dual-Channel, 10-Bit, 65Msps ADC 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICS(V AVDD = V OVDD = 1.8V, internal reference, differential clock, V CLK = 1.5V P-P , f CLK = 65MHz, A IN = -0.5dBFS, data output terminationStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.OVDD, AVDD to GND............................................-0.3V to +3.6V CMA, CMB, REFIO, INA+, INA-, INB+,INB- to GND ......................................................-0.3V to +2.1V CLK+, CLK-, SYNC, SPEN , CS , SCLK, SDINto GND..........-0.3V to the lower of (V AVDD + 0.3V) and +3.6V DCLKA, DCLKB, D9A–D0A, D9B–D0B, DORA, DORBto GND..........-0.3V to the lower of (V OVDD + 0.3V) and +3.6VContinuous Power Dissipation (T A = +70°C)48-Pin Thin QFN, 7mm x 7mm x 0.8mm (derate 40mW/°C above +70°C).............................................................3200mW Operating Temperature Range ...........................-40°C to +85°C Junction Temperature......................................................+150°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10s).................................+300°CMAX19515Dual-Channel, 10-Bit, 65Msps ADC_______________________________________________________________________________________3ELECTRICAL CHARACTERISTICS (continued)(V AVDD = V OVDD = 1.8V, internal reference, differential clock, V CLK = 1.5V P-P , f CLK = 65MHz, A IN = -0.5dBFS, data output terminationM A X 19515Dual-Channel, 10-Bit, 65Msps ADC 4_______________________________________________________________________________________ELECTRICAL CHARACTERISTICS (continued)(V AVDD = V OVDD = 1.8V, internal reference, differential clock, V CLK = 1.5V P-P , f CLK = 65MHz, A IN = -0.5dBFS, data output terminationMAX19515Dual-Channel, 10-Bit, 65Msps ADC_______________________________________________________________________________________5ELECTRICAL CHARACTERISTICS (continued)(V AVDD = V OVDD = 1.8V, internal reference, differential clock, V CLK = 1.5V P-P , f CLK = 65MHz, A IN = -0.5dBFS, data output terminationM A X 19515Dual-Channel, 10-Bit, 65Msps ADC 6_______________________________________________________________________________________ELECTRICAL CHARACTERISTICS (continued)(V AVDD = V OVDD = 1.8V, internal reference, differential clock, V CLK = 1.5V P-P , f CLK = 65MHz, A IN = -0.5dBFS, data output terminationMAX19515Dual-Channel, 10-Bit, 65Msps ADC_______________________________________________________________________________________7ELECTRICAL CHARACTERISTICS (continued)(V AVDD = V OVDD = 1.8V, internal reference, differential clock, V CLK = 1.5V P-P , f CLK = 65MHz, A IN = -0.5dBFS, data output termination175MHz TWO-TONE IMDFREQUENCY (MHz)A M P L I T U D E (dB F S )-120-100-80-60-40-200f IN1 = 172.49286MHz f IN2 = 177.50202MHz70MHz TWO-TONE IMD PLOTFREQUENCY (MHz)A M P L I T U D E (dB F S )-120-100-80-60-40-200f IN1 = 71.496925MHz f IN2 = 68.504600MHz175MHz INPUT FFT PLOTFREQUENCY (MHz)A M P L I T U D E (dB F S )-120-100-80-60-40-200f IN = 175.096626MHz A IN = -0.512dBFS SNR = 59.073dB SINAD = 59.022dB THD = -78.338dBc SFDR1 = 81.806dBc SFDR2 = 84.255dBc70MHz INPUT FFT PLOTFREQUENCY (MHz)A M P L I T U D E (dB F S )-120-100-80-60-40-200f IN = 70.1014328MHz A IN = -0.532dBFS SNR = 59.432dB SINAD = 58.388dB THD = -79.349dBc SFDR1 = 84.227dBc SFDR2 = 81.877dBc3MHz SINGLE-ENDED INPUT FFT PLOTFREQUENCY (MHz)A M P L I T U D E (dB F S )-120-100-80-60-40-200f IN = 2.99877166748047MHz A IN = -0.546dBFS SNR = 59.675dB SINAD = 59.632dB THD = -79.673dBc SFDR1 = 88.737dBc SFDR2 = 82.290dBcM A X 19515Dual-Channel, 10-Bit, 65Msps ADC 8_______________________________________________________________________________________Typical Operating Characteristics(V AVDD = V OVDD = 1.8V, internal reference, differential clock, V CLK = 1.5V P-P , f CLK = 65MHz, A IN = -0.5dBFS, data output termination = 50Ω, T A = +25°C, unless otherwise noted.)3MHz INPUT FFT PLOTFREQUENCY (MHz)A M P L I T U D E (dB F S )-120-100-80-60-40-200f IN = 2.99877166MHz A IN = -0.532dBFS SNR = 59.682dB SINAD = 59.641dB THD = -79.826dBc SFDR1 = 83.946dBc SFDR2 = 82.852dBcINTEGRAL NONLINEARITY vs. DIGITAL OUTPUT CODEDIGITAL OUTPUT CODEI N L (L S B )2565127681024-1.0-0.8-0.6-0.4-0.200.20.40.60.81.0DIFFERENTIAL NONLINEARITY vs. DIGITAL OUTPUT CODEDIGITAL OUTPUT CODED N L (L S B )2565127681024-1.0-0.8-0.6-0.4-0.200.20.40.60.81.0PERFORMANCE vs. INPUT FREQUENCYINPUT FREQUENCY (MHz)P E R F O R M A N C E (d BF S )5010015020025030035040050556065707580859095ANALOG SUPPLY CURRENT vs. SUPPLY VOLTAGESUPPLY VOLTAGE (V)A N A L O G S U P P L Y C U R R E N T (m A )M A X 19515 o c 181.65 1.701.75 1.80 1.85 1.90 1.954041424344454647484950PERFORMANCEvs. ANALOG INPUT AMPLITUDEANALOG INPUT AMPLITUDE (dBFS)P E R F O R M A N C E (d B F S )-80-70-60-50-40-30-20-1005060708090100110SINGLE-ENDED PERFORMANCEvs. INPUT FREQUENCYINPUT FREQUENCY (MHz)S I N G L E -E N D E D P E R F O R M A N C E (d B F S )1020304050607050556065707580859095Typical Operating Characteristics (continued)(V AVDD = V OVDD = 1.8V, internal reference, differential clock, V CLK = 1.5V P-P , f CLK = 65MHz, A IN = -0.5dBFS, data output termination = 50Ω, T A = +25°C, unless otherwise noted.)MAX19515Dual-Channel, 10-Bit, 65Msps ADC_______________________________________________________________________________________9PERFORMANCEvs. SAMPLING FREQUENCYSAMPLING FREQUENCY (Msps)P E R F O R M A N C E (d B F S )202530354045505560657050556065707580859095PERFORMANCEvs. COMMON-MODE VOLTAGECOMMON-MODE VOLTAGE (V)P E R F O R M A N C E (d B F S)0.350.550.750.95 1.15 1.3550556065707580859095PERFORMANCEvs. ANALOG SUPPLY VOLTAGEANALOG SUPPLY VOLTAGE (V)P E R F O R M A N C E (d B F S)1.651.70 1.75 1.80 1.85 1.90 1.95505560657075808590PERFORMANCEvs. ANALOG SUPPLY VOLTAGEANALOG SUPPLY VOLTAGE (V)P E R F O R M A N C E (d B F S)2.32.5 2.7 2.93.1 3.3 3.5505560657075808590ANALOG SUPPLY CURRENT vs. SAMPLING FREQUENCYSAMPLING FREQUENCY (MHz)A N A L O G S U P P L Y C U R R E N T (m A )M A X 19515 t o c 1620253035404550556065703032343638404244464850ANALOG SUPPLY CURRENTvs. TEMPERATURETEMPERATURE (°C)A N A L O G S U P P L Y C U R R E N T (m A )M A X 19515 t o c 17-40-20020********4142434445464748495010______________________________________________________________________________________Typical Operating Characteristics (continued)(V AVDD = V OVDD = 1.8V, internal reference, differential clock, V CLK = 1.5V P-P , f CLK = 65MHz, A IN = -0.5dBFS, data output termination = 50Ω, T A = +25°C, unless otherwise noted.)ANALOG SUPPLY CURRENT vs. SUPPLY VOLTAGESUPPLY VOLTAGE (V)A N A L O G S U P P L Y C U R R E N T (m A )M A X 19515 t o c 192.32.52.7 2.93.1 3.33.54041424344454647484950M A X 19515Dual-Channel, 10-Bit, 65Msps ADC DIGITAL SUPPLY CURRENT vs. SAMPLING FREQUENCYSAMPLING FREQUENCY (Msps)D I G I T A L S U P P L Y C U R RE N T (mA )202530354045505560657024681012DIGITAL SUPPLY CURRENT vs. SAMPLING FREQUENCYSAMPLING FREQUENCY (Msps)D I G I T A L S U P P L Y C U R RE N T (m A )2025303540455055606570510152025DIGITAL SUPPLY CURRENT vs. TEMPERATURETEMPERATURE (°C)S U P P L Y C U R R E N T (m A )-40-200204060805791113151719212325DIGITAL SUPPLY CURRENT vs. SUPPLY VOLTAGESUPPLY VOLTAGE (V)D I G I T A L S U P P L Y C U R RE N T(m A )1.7 1.92.1 2.3 2.5 2.7 2.93.1 3.3 3.5510152025DIGITAL SUPPLY CURRENT vs. SUPPLY VOLTAGESUPPLY VOLTAGE (V)D I G I T A L S U P P L Y C U R RE N T (m A )1.7 1.92.1 2.3 2.5 2.7 2.93.1 3.3 3.551015202530PERFORMANCE vs. CLOCK DUTY CYCLECLOCK DUTY CYCLE (%)P E R F O R M A N C E (d B F S )30354045505560655560657075808590PERFORMANCE vs. TEMPERATURETEMPERATURE (°C)P E R F O R M A N C E (d B F S )-40-2002040608050556065707580859095GAIN ERROR vs. TEMPERATURETEMPERATURE (°C)G A I N E R R O R (%)M A X 19515 t o c 27-40-20020406080-0.05-0.04-0.03-0.02-0.0100.010.020.030.040.05Typical Operating Characteristics (continued)(V AVDD = V OVDD = 1.8V, internal reference, differential clock, V CLK = 1.5V P-P , f CLK = 65MHz, A IN = -0.5dBFS, data output termination = 50Ω, T A = +25°C, unless otherwise noted.)COMMON-MODE REFERENCE VOLTAGEvs. TEMPERATURETEMPERATURE (°C)C O M M O N -M ODE R EF E R E N C E V O L T AG E (V )-40-2002040608000.20.40.60.81.01.21.41.6OFFSET ERROR vs. TEMPERATURETEMPERATURE (°C)O F F S E T E R R O R (m V )M A X 19515 t o c 28-40-20020406080-0.7-0.6-0.5-0.4-0.3-0.2-0.100.10.2MAX19515Dual-Channel, 10-Bit, 65Msps ADCREFERENCE VOLTAGE vs. TEMPERATURETEMPERATURE (°C)R E F E R E N C E V O L T A G E (V )M A X 19515 t o c 29-40-200204060801.24321.24531.24741.24951.2516GAIN ERROR vs. SUPPLY VOLTAGESUPPLY VOLTAGE (V)G A I N E R R O R (%)1.6 1.82.0 2.2 2.4 2.6 2.83.0 3.2 3.4 3.6-0.08-0.06-0.04-0.0200.020.040.060.08INPUT CURRENTvs. COMMON-MODE VOLTAGECOMMON-MODE VOLTAGE (V)I N P U T C U R R E N T (µA )M A X 19515 t o c 320.40.50.60.70.80.9 1.0 1.1 1.2 1.3 1.4202530354045505560M A X 19515Dual-Channel, 10-Bit, 65Msps ADCMAX19515Dual-Channel, 10-Bit, 65Msps ADCDetailed DescriptionThe MAX19515 uses a 10-stage, fully differential,pipelined architecture (F igure 1) that allows for high-speed conversion while minimizing power consump-tion. Samples taken at the inputs move progressivelythrough the pipeline stages every half clock cycle.From input to output the total latency is 9 clock cycles.Each pipeline converter stage converts its input voltageto a digital output code. At every stage, except the last,the error between the input voltage and the digital out-put code is multiplied and passed on to the nextpipeline stage. Digital error correction compensates forADC comparator offsets in each pipeline stage andensures no missing codes. F igure 2 shows theMAX19515 functional diagram.Analog Inputs and Common-ModeReference Apply the analog input signal to the analog inputs (INA+/INA- or INB+/INB-), which are connected to the input sampling switch (F igure 3). When the input sam-pling switch is closed, the input signal is applied to the sampling capacitors through the input switch resistance. The input signal is sampled at the instant the input switch opens. The pipeline ADC processes the sampled voltage and the digital output result is available 9 clock cycles later. Before the input switch is closed to begin the next sampling cycle, the sampling capacitors are reset to the input common-mode potential.Common-mode bias can be provided externally or internally through 2kΩresistors. In DC-coupled applica-tions, the signal source provides the external bias and the bias current. In AC-coupled applications, the input current is supplied by the common-mode input voltage. For example, the input current can be supplied through the center tap of a transformer secondary winding. Alternatively, program the appropriate internal register through the serial-port interface to supply the input DC current through internal 2kΩresistors (Figure 3). When the input current is supplied through the internal resis-tors, the input common-mode potential is reduced by the voltage drop across the resistors. The common-mode input reference voltage can be adjusted through programmable register settings from 0.45V to 1.35V in 0.15V increments. The default setting is 0.90V. Use this feature to provide a common-mode output reference to a DC-coupled driving circuit.Figure 1. Pipeline Architecture—Stage BlocksM A X 19515Dual-Channel, 10-Bit, 65Msps ADCFigure 2. Functional DiagramFigure 3. Internal Track-and-Hold (T/H) CircuitMAX19515 Dual-Channel, 10-Bit, 65Msps ADCReference Input/Output (REFIO) REF IO adjusts the reference potential, which, in turn, adjusts the full-scale range of the ADC. Figure 4 shows a simplified schematic of the reference system. An internal bandgap voltage generator provides an internal reference voltage. The bandgap potential is buffered and applied to REFIO through a 10kΩresistor. Bypass REF IO with a 0.1µF capacitor to AGND. The bandgap voltage is applied to a scaling and level-shift circuit, which creates internal reference potentials that estab-lish the full-scale range of the ADC. Apply an external voltage on REFIO to trim the ADC full scale. The allow-able adjustment range is +5/-15%. The REF IO-to-ADC gain transfer function is:V FS= 1.5 x [V REFIO/1.25] VoltsProgramming and Interface There are two ways to control the MAX19515 operating modes. Full feature selection is available using the SPI interface, while the parallel interface offers a limited set of commonly used features. The programming mode is selected using the SPEN input. Drive SPEN low for SPI interface; drive SPEN high for parallel interface.Parallel Interface The parallel interface offers a pin-programmable inter-face with a limited feature set. Connect SPEN to AVDD to enable the parallel interface. See Table 1 for pin functionality; see Figure 5 for a simplified parallel-inter-face input schematic.Figure 4. Simplified Reference SchematicFigure 5. Simplified Parallel-Interface Input SchematicM A X 19515Dual-Channel, 10-Bit, 65Msps ADC Serial Programming InterfaceA serial interface programs the MAX19515 control reg-isters through the CS , SDIN, and SCLK inputs. Serial data is shifted into SDIN on the rising edge of SCLK when CS is low. The MAX19515 ignores the data pre-sented at SDIN and SCLK when CS is high. C S must transition high after each read/write operation . SDIN also serves as the serial-data output for reading control registers. The serial interface supports two-byte transfer in a communication cycle. The first byte is a control byte, containing the address and read/write instruction,written to the MAX19515. The second byte is a data byte and can be written to or read from the MAX19515.Figure 6 shows a serial-interface communication cycle.The first SDIN bit clocked in establishes the communi-cation cycle as either a write or read transaction (0 for write operation and 1 for read operation). The following 7 bits specify the address of the register to be written or read. The final 8 SDIN bits are the register data. All address and data bits are clocked in or out MSB first.During a read operation, the MAX19515 serial port dri-ves read data (D7) into SDIN after the falling edge of SCLK following the 8th rising edge of SCLK. Since the minimum hold time on SDIN input is zero, the master can stop driving SDIN any time after the 8th rising edge of SCLK. Subsequent data bits are driven into SDIN on the falling edge of SCLK. Output data in a read opera-tion is latched on the rising edge of SCLK. F igure 7shows the detailed serial-interface timing diagram.Figure 6. Serial-Interface Communication CycleFigure 7. Serial-Interface Timing DiagramMAX19515Dual-Channel, 10-Bit, 65Msps ADCRegister address 0Ah is a special-function register.Writing data 5Ah to register 0Ah initiates a register reset. When this operation is executed, all control regis-ters are reset to default values. A read operation of reg-ister 0Ah returns a status byte with information described in Table 2.The SHDN input (pin 7) toggles between any twopower-management states. The Power Management register defines each power-management state. In thedefault state, SHDN = 1 shuts down the MAX19515 and SHDN = 0 returns to full power.M A X 19515Dual-Channel, 10-Bit, 65Msps ADCIn addition to power management, the HPS_SHDN1and HPS_SHDN0 activate an A+B adder mode. In this mode, the results from both channels are averaged.The MUX_CH bit selects which bus the (A+B)/2 data is presented.**HPS_SHDN1, STBY_SHDN1, CHA_ON_SHDN1, and CHB_ON_SHDN1 are active when SHDN = 1.X = Don’t care.Note:When HPS_SHDN_ = 1 (A+B adder mode), CHA_ON and CHB_ON must BOTH equal 0 for power-down or standby.Bit 4BIT_ORDER_B: Reverse CHB output bit order 0 = Defined data bus pin order (default)1 = Reverse data bus pin orderBit 3BIT_ORDER_A: Reverse CHA output bit order 0 = Defined data bus pin order (default)1 = Reverse data bus pin orderBit 2MUX_CH: Multiplexed data bus selection0 = Multiplexed data output on CHA (CHA data presented first, followed by CHB data) (default)1 = Multiplexed data output on CHB (CHB data presented first, followed by CHA data)Bit 1MUX: Digital output mode0 = Dual data bus output mode (default)1 = Single multiplexed data bus output modeMUX_CH selects the output bus Bit 0Set to 0 for proper operationDual-Channel, 10-Bit, 65Msps ADCMAX19515Bit 3, 2PD_DOUT_1, PD_DOUT_0: Power-down digital output state control00 = Digital output three state (default)01 = Digital output low10 = Digital output three state11 = Digital output highBit 1DIS_DOR: DOR driver disable0 = DOR active (default)1 = DOR disabled (three state)Bit 0DIS_DCLK: DCLK driver disable0 = DCLK active (default)1 = DCLK disabled (three state)M A X 19515Dual-Channel, 10-Bit, 65Msps ADC0 = Nominal1 = Bypasses data aligner delay line to minimize output data latency with respect to the input clock.Rising clock to data transition is approximately 6ns with DTIME = 000b settings (default)Bit 6DLY_HALF_T: Data and DCLK delayed by T/20 = Normal, no delay (default)1 = Delays data and DCLK outputs by T/2Disabled in MUX data bus modeBit 5, 4, 3DCLKTIME_2, DCLKTIME_1, DCLKTIME_0: DCLK timing adjust (controls both channels)000 = Nominal (default)001 = +T/16010 = +2T/16011 = +3T/16100 = Reserved, do not use 101 = -1T/16110 = -2T/16111 = -3T/16Bit 2, 1, 0DTIME_2, DTIME_1, DTIME_0: Data timing adjust (controls both channels)000 = Nominal (default)001 = +T/16010 = +2T/16011 = +3T/16100 = Reserved, do not use 101 = -1T/16110 = -2T/16111 = -3T/16MAX19515Dual-Channel, 10-Bit, 65Msps ADCBit 5, 4, 3CT_DCLK_2_A, CT_DCLK_1_A, CT_DCLK_0_A: CHA DCLK termination control 000 = 50Ω(default)001 = 75Ω010 = 100Ω011 = 150Ω1xx = 300ΩBit 2, 1, 0CT_DATA_2_A, CT_DATA_1_A, CT_DATA_0_A: CHA data output termination control 000 = 50Ω(default)001 = 75Ω010 = 100Ω011 = 150Ω1xx = 300ΩCHB Data Output Termination Control (05h)Bit 5, 4, 3CT_DCLK_2_B, CT_DCLK_1_B, CT_DCLK_0_B: CHB DCLK termination control 000 = 50Ω(default)001 = 75Ω010 = 100Ω011 = 150Ω1xx = 300ΩBit 2, 1, 0CT_DATA_2_B, CT_DATA_1_B, CT_DATA_0_B: CHB data output termination control 000 = 50Ω(default)001 = 75Ω010 = 100Ω011 = 150Ω1xx = 300ΩM A X 19515Dual-Channel, 10-Bit, 65Msps ADCReserved (07h)—Do not write to this register0 = Ramps from 0 to 1023 (offset binary) and repeats (subsequent formatting applied) (default)1= Data alternates between D[9:0] = 010*******, DOR = 1, and D[9:0] = 1010101010,DOR = 0 on both channels Bit 6TEST_DATA: Data test mode 0 = Normal data output (default)1 = Outputs test data patternBit 5, 4FORMAT_1, FORMAT_0: Data numerical format 00 = Two’s complement (default)01 = Offset binary 10 = Gray code11 = Two’s complementBit 3TERM_100: Select 100Ωclock input termination 0 = No termination (default)1 = 100Ωtermination across differential clock inputs Bit 2SYNC_MODE: Divider synchronization mode select 0 = Slip mode (Figure 11) (default)1 = Edge mode (Figure 12)Bit 1, 0DIV1, DIV0: Input clock-divider select 00 = No divider (default)01 = Divide-by-210 = Divide-by-411 = No dividerMAX19515Dual-Channel, 10-Bit, 65Msps ADCSoftware Reset (0Ah)Bit 7CMI_SELF_B: CHB connect input common-mode to analog inputs 0 = Internal common-mode voltage is NOT applied to inputs (default)1 = Internal common-mode voltage applied to analog inputs through 2k ΩresistorsBit 6, 5, 4CMI_ADJ_2_B, CMI_ADJ_1_B, CMI_ADJ_0_B: CHB input common-mode voltage adjustment 000 = 0.900V (default)001 = 1.050V 010 = 1.200V 011 = 1.350V 100 = 0.900V 101 = 0.750V 110 = 0.600V 111 = 0.450VBit 3CMI_SELF_A: CHA connect input common-mode to analog inputs 0 = Internal common-mode voltage is NOT applied to inputs (default)1 = Internal common-mode voltage applied to analog inputs through 2k Ωresistors Bit 2, 1, 0CMI_ADJ_2_A, CMI_ADJ_1_A, CMI_ADJ_0_A: CHA input common-mode adjustment 000 = 0.900V (default)001 = 1.050V 010 = 1.200V 011 = 1.350V 100 = 0.900V 101 = 0.750V 110 = 0.600V 111 = 0.450VBit 7–0SWRESET: Write 5Ah to initiate software resetClock InputsThe input clock interface provides for flexibility in the requirements of the clock driver. The MAX19515accepts a fully differential clock or single-ended logic-level clock. F or differential clock operation, connect a differential clock to the CLK+ and CLK- inputs. In this mode, the input common mode is established internally to allow for AC-coupling. The differential clock signal can also be DC-coupled if the common mode is con-strained to the specified 1V to 1.4V clock input com-mon-mode range. For single-ended operation, connect CLK- to GND and drive the CLK+ input with a logic-level signal. When the CLK- input is grounded (or pulled below the threshold of the clock mode detection comparator) the differential-to-single-ended conversion stage is disabled and the logic-level inverter path is activated.Clock DividerThe MAX19515 offers a clock-divider option. Enable clock division either by setting DIV0 and DIV1 through the serial interface; see the Clock Divide/DataM A X 19515Dual-Channel, 10-Bit, 65Msps ADCFigure 8. Simplified Clock Input SchematicFigure 9. Dual-Bus Output Mode TimingMAX19515 Dual-Channel, 10-Bit, 65Msps ADCF ormat/Test Pattern register (06h) for clock-divider options, or in parallel programming configuration (SPEN = 1) by using the DIV input.System Timing Requirements F igures 9 and 10 depict the relationship between the clock input and output, analog input, sampling event, and data output. The MAX19515 samples on the rising edge of the sampling clock. Output data is valid on the next rising edge of DCLK after a nine-clock internal latency. For applications where the clock is divided, the sample clock is the divided internal clock derived from:[(CLK+ - CLK-)/DIVIDER]Synchronization When using the clock divider, the phase of the internal clock can be different than that of the FPGA, microcon-troller, or other MAX19515s in the system. There are two mechanisms to synchronize the internal clock: slip synchronization and edge synchronization. Select the synchronization mode using SYNC_MODE (bit 2) in the Clock Divide/Data F ormat/Test Pattern register (06h) and drive the SYNCIN input high to synchronize.Slip Synchronization Mode, SYNC_MODE = 0 (default):On the third rising edge of the input clock (CLK) after the rising edge of SYNC (provided set-up and hold times are met), the divided output is forced to skip a state transition (Figure 11).Edge Synchronization Mode, SYNC_MODE = 1:On the third rising edge of the input clock (CLK) after the rising edge of SYNC (provided set-up and hold times are met), the divided output is forced to state 0. A divid-ed clock rising edge occurs on the fourth(/2 mode) or fifth (/4 mode) rising edge of CLK, after a valid rising edge of SYNC (Figure 12).Figure 10. Multiplexed Output Mode Timing。

MAX9635中文资料

MAX9635中文资料

16-BIT ADC
Байду номын сангаас
6-BIT RANGE DIGITAL
CDR, TIM
SIGNAL
CONTROL PROCESSING
16-BIT ADC
方框图
VCC
SDA SCL I2C AO INT
N
GND
________________________________________________________________ Maxim Integrated Products 1 本文是英文数据资料的译文,文中可能存在翻译上的不准确或错误。如需进一步确认,请在您的设计中参考英文资料。
平板PC/笔记本电脑 TV/投影仪/显示器
数字照明管理 便携设备
蜂窝电话/智能电话
安全系统
应用
业内功耗最低的 环境光传感器,内置ADC
特性
♦♦0.045流明至188,000流明宽检测范围 ♦♦小尺寸、2mm x 2mm x 0.6mm UTDFN-Opto封装 ♦♦VCC = 1.7V至3.6V ♦♦工作电流ICC = 0.65µA ♦♦-40°C至+85°C工作温度范围
由于能够检测极其微弱的光线,非常适合光线较暗的工作 环境。
片上光电二极管的光谱响应针对人眼对环境光的响应进行优 化,集成红外及紫外线屏蔽功能。自适应增益电路可自动选
择正确的流明范围优化测试(计数值 / 流明)。
IC设计工作在1.7V至3.6V供电范围,满负荷工作时仅 消 耗0.65µA电流。器件采用小尺寸2mm x 2mm x 0.6mm UTDFN-Opto封装。
有关价格、供货及订购信息,请联络Maxim亚洲销售中心:10800 852 1249 (北中国区),10800 152 1249 (南中国区), 或访问Maxim的中文网站:。

松下伺服马达A5中文选型手册

松下伺服马达A5中文选型手册

.*/"4" ጆѴNJֵ̖᫻ࠓ
1
ྱཁ̭ፀ

)JHISFTQPOTF
Ǘঋᤳ ǘ
" ̾ज़ֵ̖
ֽःᮟည )[
ֽःᮟည L)[
᤟ၸᜈᎵ Ӧ࠭ͳ҃ᤴᜈᎵNj࠯ᜈ఺NjӉᜈ఺ኍ
ࠃဗᛠˉణঋᄉᤳऎֽःᮟည L)[

᤯᣾࿗ࠑधԦᄉКள -4* ଡᰳᤁኪᤳऎὋՎௐᦠ‫ܫ‬۲̅ᣀᅽ
ґᯟᄉᰳֽःଌ҃ҩᑞnj᧓ၸᛠˉణঋᄉᤳऎ֖߿ֽͮःবὋ
Ǘఄᑞ ǘ
"
"
ܲҩᑞࠃௐ ᒬҮ‫ܘ‬ᄝុஞ
Үͺࣰ໎NjϢൢௐᄉ૜Үͯὀ ᎕ᆀ˿ᰳዴऎ߿ͮௐᫍὀ ᧓ၸ࿗ྱᄉζՁ‫੾ူܪ‬శὋधԦѢКளᄉ ʹᑡу CJU ᎃᆉ٧nj
̾ज़఺‫"ۋ‬ QS ὺʹᑡуὼ
" QS
ὺʹᑡуὼ
ͯᴐമᣀᅽ
ͯᴐമᣀᅽ
᤟ၸᜈᎵ Ӧ࠭ͳ҃ᤴᜈᎵNj࠯ᜈ఺Nj఺ࣽNjጛ፤఺೙ኍ
电机
电机规格 ............................................................................................................................35 通用规格 .......................................................................................................................36 电机规格说明 ..................................................................................................................104

MAX1951ESA+T中文资料

MAX1951ESA+T中文资料

General DescriptionThe MAX1951/MAX1952 high-efficiency, DC-to-DC step-down switching regulators deliver up to 2A of out-put current. The devices operate from an input voltage range of 2.6V to 5.5V and provide an output voltage from 0.8V to V IN , making the MAX1951/MAX1952 ideal for on-board postregulation applications. The MAX1951total output error is less than 1% over load, line, and temperature.The MAX1951/MAX1952 operate at a fixed frequency of 1MHz with an efficiency of up to 94%. The high operating frequency minimizes the size of external components.Internal soft-start control circuitry reduces inrush current.Short-circuit and thermal-overload protection improve design reliability.The MAX1951 provides an adjustable output from 0.8V to V IN , whereas the MAX1952 has a preset output of 1.8V. Both devices are available in a space-saving 8-pin SO package.ApplicationsASIC/DSP/µP/FPGA Core and I/O Voltages Set-Top Boxes Cellular Base StationsNetworking and TelecommunicationsFeatureso Compact 0.385in 2Circuit Footprinto 10µF Ceramic Input and Output Capacitors, 2µH Inductor for 1.5A Output o Efficiency Up to 94%o 1% Output Accuracy Over Load, Line, and Temperature (MAX1951, Up to 1.5A)o Guaranteed 2A Output Current o Operate from 2.6V to 5.5V Supplyo Adjustable Output from 0.8V to V IN (MAX1951)o Preset Output of 1.8V (1.5% Accuracy) (MAX1952)o Internal Digital Soft-Softo Short-Circuit and Thermal-Overload ProtectionMAX1951/MAX19521MHz, All-Ceramic, 2.6V to 5.5V Input,2A PWM Step-Down DC-to-DC Regulators________________________________________________________________Maxim Integrated Products 1Ordering Information19-2622; Rev 1; 8/03For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .Typical Operating CircuitPin ConfigurationM A X 1951/M A X 19521MHz, All-Ceramic, 2.6V to 5.5V Input,2A PWM Step-Down DC-to-DC Regulators 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICSStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.IN, V CC to GND........................................................-0.3V to +6V COMP, FB, REF to GND.............................-0.3V to (V CC + 0.3V)LX to Current (Note 1).........................................................±4.5A PGND to GND.............................................Internally Connected Continuous Power Dissipation (T A = +85°C)8-Pin SO (derate 12.2mW/°C above +70°C)................976mWOperating Temperature RangeMAX195_ ESA..................................................-40°C to +85°C Junction Temperature Range............................-40°C to +150°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10s).................................+300°CNote 1:LX has internal clamp diodes to PGND and IN. Applications that forward bias these diodes should take care not to exceedthe IC ’s package power dissipation limits.MAX1951/MAX19521MHz, All-Ceramic, 2.6V to 5.5V Input,2A PWM Step-Down DC-to-DC Regulators_______________________________________________________________________________________3ELECTRICAL CHARACTERISTICS (continued)(V IN = V CC = 3.3V, PGND = GND, FB in regulation, C REF = 0.1µF, T A = 0°C to +85°C , unless otherwise noted. Typical values are at T A = +25°C.)ELECTRICAL CHARACTERISTICSM A X 1951/M A X 19521MHz, All-Ceramic, 2.6V to 5.5V Input,2A PWM Step-Down DC-to-DC Regulators 4_______________________________________________________________________________________Note 3:The LX output is designed to provide 2.4A RMS current.ELECTRICAL CHARACTERISTICS (continued)(V IN = V CC = 3.3V, PGND = GND, FB in regulation, C REF = 0.1µF, T A = -40°C to +85°C , unless otherwise noted.) (Note 2)MAX1951/MAX19521MHz, All-Ceramic, 2.6V to 5.5V Input,2A PWM Step-Down DC-to-DC Regulators_______________________________________________________________________________________5EFFICIENCY vs. LOAD CURRENT(V CC = V IN = 5V)LOAD CURRENT (mA)E F F I C I E N C Y (%)100010010203040506070809010001010,000EFFICIENCY vs. LOAD CURRENT(V CC = V IN = 3.3V)LOAD CURRENT (mA)E F F I C I E N C Y (%)100010010203040506070809010001010,000REF VOLTAGEvs. REF OUTPUT CURRENTREF OUTPUT CURRENT (µA)R E F V O L T A G E (V )35302520151051.9901.9911.9921.9931.9941.9951.98940SWITCHING FREQUENCY vs. INPUT VOLTAGEINPUT VOLTAGE (V)S W I T C H I N G F R E Q U E N C Y (M H z )5.14.63.13.64.10.850.900.951.001.051.101.151.200.802.65.6OUTPUT VOLTAGE DEVIATIONvs. LOAD CURRENTLOAD CURRENT (A)O U T P U T V O L T A G ED E V I A T I O N (m V)1.20.80.4-5-4-3-2-10123456-61.6Typical Operating Characteristics(Typical values are at V IN = V CC = 5V, V OUT = 1.5V, I OUT = 1.5A, and T A = +25°C, unless otherwise noted. See Figure 2.)LOAD TRANSIENT RESPONSEMAX1951 toc0640µs/div0OUTPUT VOLTAGE:100mV/div, AC-COUPLED OUTPUT CURRENT:0.5A/div V IN = 5V V OUT = 2.5V I OUT = 0.5 TO 1ALOAD TRANSIENT RESPONSEMAX1951 toc0740µs/divOUTPUT VOLTAGE:100mV/div, AC-COUPLEDOUTPUT CURRENT:0.5A/div V IN = 3.3V V OUT = 1.5V I OUT = 0.5 TO 1AM A X 1951/M A X 19521MHz, All Ceramic, 2.6V to 5.5V Input,2A PWM Step-Down DC-to-DC Regulators 6_______________________________________________________________________________________Typical Operating Characteristics (continued)(Typical values are at V IN = V CC = 5V, V OUT = 1.5V, I OUT = 1.5A, and T A = +25°C, unless otherwise noted. See Figure 2.)SHUTDOWN CURRENT vs. INPUT VOLTAGEM A X 1951 t o c 12INPUT VOLTAGE (V)S H U T D O W N C U R R E N T (m A )5.04.54.03.53.00.10.20.30.40.50.60.70.80.91.002.55.5SWITCHING WAVEFORMSMAX1951 toc08200ns/div0INDUCTOR CURRENT 1A/divV LX 5V/divOUTPUT VOLTAGE 10mV/div, AC-COUPLEDV IN = 3.3V V OUT = 1.8V I LOAD = 1.5ASOFT-START WAVEFORMSMAX1951 toc091ms/divV COMP 2V/divOUTPUT VOLTAGE 1V/divV IN = V CC = 3.3V V OUT = 2.5V I LOAD = 1.5ASOFT-START WAVEFORMSMAX1951 toc101ms/divV COMP 2V/divOUTPUT VOLTAGE 0.5V/divV IN = V CC = 3.3V V OUT = 0.8VSHUTDOWN WAVEFORMSMAX1951 toc1120µs/divV COMP 2V/divV LX 5V/divOUTPUT VOLTAGE 1V/divV IN = V CC = 3.3V V OUT = 2.5V I LOAD = 1.5AMAX1951/MAX19521MHz, All-Ceramic, 2.6V to 5.5V Input,2A PWM Step-Down DC-to-DC Regulators_______________________________________________________________________________________7Detailed DescriptionThe MAX1951/MAX1952 high-efficiency switching regula-tors are small, simple, DC-to-DC step-down converters capable of delivering up to 2A of output current. The devices operate in pulse-width modulation (PWM) at a fixed frequency of 1MHz from a 2.6V to 5.5V input voltage and provide an output voltage from 0.8V to V IN , making the MAX1951/MAX1952 ideal for on-board postregula-tion applications. The high switching frequency allows for the use of smaller external components, and internal synchronous rectifiers improve efficiency and eliminate the typical Schottky free-wheeling diode. Using the on-resistance of the internal high-side MOSFET to sense switching currents eliminates current-sense resistors,further improving efficiency and cost. The MAX1951total output error over load, line, and temperature (0°C to +85°C) is less than 1%.Controller Block FunctionThe MAX1951/MAX1952 step-down converters use a PWM current-mode control scheme. An open-loop com-parator compares the integrated voltage-feedback signal against the sum of the amplified current-sense signal and the slope compensation ramp. At each rising edge of the internal clock, the internal high-side MOSFET turns on until the PWM comparator trips. During this on-time, cur-rent ramps up through the inductor, sourcing current to the output and storing energy in the inductor. The current-mode feedback system regulates the peak inductor cur-rent as a function of the output voltage error signal. Since the average inductor current is nearly the same as the peak inductor current (<30% ripple current), the circuit acts as a switch-mode transconductance amplifier. To preserve inner-loop stability and eliminate inductor stair-casing, a slope-compensation ramp is summed into the main PWM comparator. During the second half of the cycle, the internal high-side P-channel MOSFET turns off,and the internal low-side N-channel MOSFET turns on.The inductor releases the stored energy as its current ramps down while still providing current to the output. The output capacitor stores charge when the inductor current exceeds the load current, and discharges when the inductor current is lower, smoothing the voltage across the load. Under overload conditions, when the inductor current exceeds the current limit (see the Current Limit section), the high-side MOSFET does not turn on at the rising edge of the clock and the low-side MOSFET remains on to let the inductor current ramp down.Current SenseAn internal current-sense amplifier produces a current signal proportional to the voltage generated by the high-side MOSFET on-resistance and the inductor cur-rent (R DS(ON) x I LX ). The amplified current-sense signal and the internal slope compensation signal are summed together into the comparator ’s inverting input.The PWM comparator turns off the internal high-side MOSFET when this sum exceeds the output from the voltage-error amplifier.Current LimitThe internal high-side MOSFET has a current limit of 3.1A (typ). If the current flowing out of LX exceeds this limit,the high-side MOSFET turns off and the synchronous rectifier turns on. This lowers the duty cycle and causes the output voltage to droop until the current limit is no longer exceeded. A synchronous rectifier current limit of -0.6A (typ) protects the device from current flowing into LX. If the negative current limit is exceeded, the synchro-nous rectifier turns off, forcing the inductor current to flowM A X 1951/M A X 19521MHz, All-Ceramic, 2.6V to 5.5V Input,2A PWM Step-Down DC-to-DC Regulators 8_______________________________________________________________________________________through the high-side MOSFET body diode, back to the input, until the beginning of the next cycle or until the inductor current drops to zero. The MAX1951/MAX1952utilize a pulse-skip mode to prevent overheating during short-circuit output conditions. The device enters pulse-skip mode when the FB voltage drops below 300mV, lim-iting the current to 3A (typ) and reducing power dissipation. Normal operation resumes upon removal of the short-circuit condition.V CC DecouplingDue to the high switching frequency and tight output tolerance (1%), decouple V CC with a 0.1µF capacitor connected from V CC to GND, and a 10Ωresistor con-nected from V CC to IN. Place the capacitor as close to V CC as possible.Soft-StartThe MAX1951/MAX1952 employ digital soft-start circuitry to reduce supply inrush current during startup conditions.When the device exits undervoltage lockout (UVLO), shut-down mode, or restarts following a thermal-overload event, or the external pulldown on COMP is released, the digital soft-start circuitry slowly ramps up the voltages at REF and FB (see the Soft-Start Waveforms in the Typical Operating Characteristics).Undervoltage LockoutIf V CC drops below 2.25V, the UVLO circuit inhibits switching. Once V CC rises above 2.35V, the UVLO clears, and the soft-start sequence activates.Compensationand Shutdown ModeThe output of the internal transconductance voltage error amplifier connects to COMP. The normal operation voltage for COMP is 1V to 2.2V. To shut down the MAX1951/MAX1952, use an NPN bipolar junction transistor or a very low output capacitance open-drain MOSFET to pull COMP to GND. Shutdown mode causes the internal MOSFETs to stop switching, forces LX to a high-impedance state, and shorts REF to G ND.Release COMP to exit shutdown and initiate the soft-start sequence.Thermal-Overload ProtectionThermal-overload protection limits total power dissipation in the device. When the junction temperature exceeds T J = +160°C, a thermal sensor forces the device into shut-down, allowing the die to cool. The thermal sensor turns the device on again after the junction temperature cools by 15°C, resulting in a pulsed output during continuous overload conditions. Following a thermal-shutdown condi-tion, the soft-start sequence begins.Figure 1. Functional DiagramMAX1951/MAX19521MHz, All-Ceramic, 2.6V to 5.5V Input,2A PWM Step-Down DC-to-DC Regulators_______________________________________________________________________________________9Design ProcedureOutput Voltage Selection: Adjustable(MAX1951) or Preset (MAX1952)The MAX1951 provides an adjustable output voltage between 0.8V and V IN . Connect FB to output for 0.8V output. To set the output voltage of the MAX1951 to a voltage greater than V FB (0.8V typ), connect the output to FB and G ND using a resistive divider, as shown in Figure 2a. Choose R2 between 2k Ωand 20k Ω, and set R3 according to the following equation:R3 = R2 x [(V OUT / V FB ) – 1]The MAX1951 PWM circuitry is capable of a stable min-imum duty cycle of 18%. This limits the minimum output voltage that can be generated to 0.18 ✕V IN . Instability may result for V IN /V OUT ratios below 0.18.The MAX1952 provides a preset output voltage.Connect the output to FB, as shown in Figure 2b.Output Inductor DesignUse a 2µH inductor with a minimum 2A-rated DC cur-rent for most applications. For best efficiency, use an inductor with a DC resistance of less than 20m Ωand a saturation current greater than 3A (min). See Table 2for recommended inductors and manufacturers. For most designs, derive a reasonable inductor value (L INIT ) from the following equation:L INIT = V OUT x (V IN - V OUT ) / (V IN x LIR x I OUT(MAX)x f SW )where f SW is the switching frequency (1MHz typ) of the oscillator. Keep the inductor current ripple percentage LIR between 20% and 40% of the maximum load cur-rent for the best compromise of cost, size, and perfor-mance. Calculate the maximum inductor current as:I L(MAX)= (1 + LIR / 2) x I OUT(MAX)Check the final values of the inductor with the output ripple voltage requirement. The output ripple voltage is given by:V RIPPLE = V OUT x (V IN - V OUT ) x ESR / (V IN x L FINAL x f SW )where ESR is the equivalent series resistance of the output capacitors.Input Capacitor DesignThe input filter capacitor reduces peak currents drawn from the power source and reduces noise and voltage ripple on the input caused by the circuit ’s switching.The input capacitor must meet the ripple current requirement (I RMS ) imposed by the switching currents defined by the following equation:For duty ratios less than 0.5, the input capacitor RMS current is higher than the calculated current. Therefore,use a +20% margin when calculating the RMS current at lower duty cycles. Use ceramic capacitors for their low ESR, equivalent series inductance (ESL), and lower cost. Choose a capacitor that exhibits less than 10°C temperature rise at the maximum operating RMS cur-rent for optimum long-term reliability.After determining the input capacitor, check the input ripple voltage due to capacitor discharge when the high-side MOSFET turns on. Calculate the input ripple voltage as follows:V IN_RIPPLE = (I OUT x V OUT ) / (f SW x V IN x C IN )Keep the input ripple voltage less than 3% of the input voltage.Output Capacitor DesignThe key selection parameters for the output capacitor are capacitance, ESR, ESL, and the voltage rating requirements. These affect the overall stability, output ripple voltage, and transient response of the DC-to-DC converter. The output ripple occurs due to variations in the charge stored in the output capacitor, the voltage drop due to the capacitor ’s ESR, and the voltage drop due to the capacitor ’s ESL. Calculate the output voltage ripple due to the output capacitance, ESR, and ESL as:V RIPPLE = V RIPPLE(C)+ V RIPPLE(ESR) + V RIPPLE(ESL)where the output ripple due to output capacitance,ESR, and ESL is:V RIPPLE(C)= I P-P / (8 x C OUT x f SW )V RIPPLE(ESR) = I P-P x ESRV RIPPLE(ESL)= (I P-P / t ON ) x ESL or (I P-P / t OFF ) x ESL,whichever is greater and I P-P the peak-to-peak inductor current is:I P-P = [ (V IN – V OUT ) / f SW x L) ] x V OUT / V INUse these equations for initial capacitor selection, but determine final values by testing a prototype or evalua-tion circuit. As a rule, a smaller ripple current results in less output voltage ripple. Since the inductor ripple current is a factor of the inductor value, the output voltage ripple decreases with larger inductance. Use ceramic capacitors for their low ESR and ESL at the switching frequency of the converter. The low ESL of ceramic capacitors makes ripple voltages negligible.Load transient response depends on the selected output capacitor. During a load transient, the output instantly changes by ESR x I LOAD . Before the controller can respond, the output deviates further, depending on the inductor and output capacitor values. After a short time (see the Load Transient Response graphin theM A X 1951/M A X 19521MHz, All-Ceramic, 2.6V to 5.5V Input,2A PWM Step-Down DC-to-DC Regulators 10______________________________________________________________________________________Typical Operating Characteristic s), the controller responds by regulating the output voltage back to its nominal state. The controller response time depends on the closed-loop bandwidth. A higher bandwidth yields a faster response time, thus preventing the output from deviating further from its regulating value.Compensation DesignThe double pole formed by the inductor and output capacitor of most voltage-mode controllers introduces a large phase shift, which requires an elaborate compensa-tion network to stabilize the control loop. The MAX1951/MAX1952 utilize a current-mode control scheme that reg-ulates the output voltage by forcing the required current through the external inductor, eliminating the double pole caused by the inductor and output capacitor, and greatly simplifying the compensation network. A simple type 1compensation with single compensation resistor (R 1) and compensation capacitor (C 2) creates a stable and high-bandwidth loop.An internal transconductance error amplifier compen-sates the control loop. Connect a series resistor and capacitor between COMP (the output of the error ampli-fier) and G ND to form a pole-zero pair. The external inductor, internal current-sensing circuitry, output capacitor, and the external compensation circuit deter-mine the loop system stability. Choose the inductor and output capacitor based on performance, size, and cost.Additionally, select the compensation resistor and capacitor to optimize control-loop stability. The compo-nent values shown in the typical application circuit (Figure 2) yield stable operation over a broad range of input-to-output voltages.The basic regulator loop consists of a power modulator,an output feedback divider, and an error amplifier. The power modulator has DC gain set by gmc x R LOAD ,with a pole-zero pair set by R LOAD , the output capaci-tor (C OUT ), and its ESR. The following equations define the power modulator:Modulator gain:G MOD = ∆V OUT / ∆V COMP = gmc x R LOAD Modulator pole frequency:fp MOD = 1 / (2 x πx C OUT x (R LOAD +ESR))Modulator zero frequency:fz ESR = 1 / (2 x πx C OUT x ESR)where, R LOAD = V OUT / I OUT(MAX), and gmc = 4.2S.The feedback divider has a gain of G FB = V FB / V OUT ,where V FB is equal to 0.8V. The transconductance error amplifier has a DC gain, G EA(DC),of 70dB. The com-pensation capacitor, C 2,and the output resistance of the error amplifier, R OEA (20M Ω), set the dominantpole. C 2and R 1 set a compensation zero. Calculate the dominant pole frequency as:fp EA = 1 / (2πx C C x R OEA )Determine the compensation zero frequency is:fz EA = 1 / (2πx C C x R C )For best stability and response performance, set the closed-loop unity-gain frequency much higher than the modulator pole frequency. In addition, set the closed-loop crossover unity-gain frequency less than, or equal to, 1/5 of the switching frequency. However, set the maximum zero crossing frequency to less than 1/3 of the zero frequency set by the output capacitance and its ESR when using POSCAP, SPCAP, OSCON, or other electrolytic capacitors.The loop-gain equation at the unity-gain frequency is:G EA(fc) x G MOD(fc) x V FB / V OUT = 1where G EA(fc )= gm EA x R 1, and G MOD(fc)= gmc x R LOAD x fp MOD /f C, where gm EA = 60µS .R 1calculated as:R 1= V OUT x K / (gm EA x V FB x G MOD(fc))where K is the correction factor due to the extra phase introduced by the current loop at high frequencies (>100kHz). K is related to the value of the output capacitance (see Table 1 for values of K vs. C). Set the error-amplifier compensation zero formed by R 1and C 2at the modulator pole frequency at maximum load. C 2is calculated as follows:C 2= (2 x V OUT x C OUT / (R 1 x I OUT(MAX))As the load current decreases, the modulator pole also decreases; however, the modulator gain increases accordingly, resulting in a constant closed-loop unity-gain frequency. Use the following numerical example to calculate R 1and C 2values of the typical application circuit of Figure 2a.Table 1. K ValueV OUT = 1.5VI OUT(MAX)= 1.5A C OUT = 10µF R ESR = 0.010Ωgm EA = 60µSMAX1951/MAX19521MHz, All-Ceramic, 2.6V to 5.5V Input,2A PWM Step-Down DC-to-DC Regulators______________________________________________________________________________________11gmc = 4.2Sf SWITCH = 1MHzR LOAD = V OUT / I OUT(MAX)= 1.5V / 1.5 A = 1Ωfp MOD = [1 / (2πx C OUT x (R LOAD + R ESR )]= [1 / (2 x π×10 ×10-6x (1 + 0.01)] = 15.76kHz.fz ESR = [1/(2πxC OUT R ESR )]= [1 / (2 x π×10 ×10-6×0.01)] = 1.59MHz.For 2µH output inductor, pick the closed-loop unity-gain crossover frequency (f C ) at 200kHz. Determine the power modulator gain at f C :G MOD(fc )= gmc ×R LOAD ×fp MOD / f C = 4.2 ×1 ×15.76kHz / 200kHz = 0.33then:R 1= V O x K / (gm EA x V FB x G MOD(fc )) = (1.5 x 0.55) /(60 ×10-6 ×0.8 ×0.33) ≈51.1k Ω(1%)C 2= (2 x V OUT ×C OUT ) / (R C ×I OUT(max))= (2 ×1.25 × 10 × 10-6)/ (51.1k ×1.5) ≈209pF, choose 220pF, 10%Applications InformationPC Board Layout ConsiderationsCareful PC board layout is critical to achieve clean and stable operation. The switching power stage requires particular attention. Follow these guidelines for good PC board layout:1)Place decoupling capacitors as close to the IC as possible. Keep power ground plane (connected to PG ND) and signal ground plane (connected to GND) separate.2)Connect input and output capacitors to the power ground plane; connect all other capacitors to the signal ground plane.3)Keep the high-current paths as short and wide as possible. Keep the path of switching current (C1 to IN and C1 to PG ND) short. Avoid vias in the switching paths.4)If possible, connect IN, LX, and PGND separately to a large copper area to help cool the IC to further improve efficiency and long-term reliability.5)Ensure all feedback connections are short and direct. Place the feedback resistors as close to the IC as possible.6)Route high-speed switching nodes away from sensi-tive analog areas (FB, COMP).Thermal ConsiderationsThe MAX1951 uses a fused-lead 8-pin SO package with a R THJC rating of 32°C/W. The MAX1951 EV kit layout is optimized for 1.5A. The typical application circuit shown in Figure 2c was tested with the existing MAX1951 EV kit layout at +85°C ambient temperature, and G ND lead temperature was measured at +113°C for a typical device. The estimated junction temperature was +138°C. Thermal performance can be further improved with one of the following options:1) Increase the copper areas connected to G ND, LX,and IN.2) Provide thermal vias next to G ND and IN, to the ground plane and power plane on the back side of PC board, with openings in the solder mask next to the vias to provide better thermal conduction.3) Provide forced-air cooling to further reduce case temperature.M A X 1951/M A X 19521MHz, All-Ceramic, 2.6V to 5.5V Input,2A PWM Step-Down DC-to-DC Regulators 12______________________________________________________________________________________Figure 2a. MAX1951 Adjustable Output Typical Application CircuitFigure 2b. MAX1952 Fixed-Output Typical Application CircuitMAX1951/MAX19521MHz, All-Ceramic, 2.6V to 5.5V Input,2A PWM Step-Down DC-to-DC Regulators______________________________________________________________________________________13Figure 2c. MAX1951 Typical Application Circuit with 2A OutputM A X 1951/M A X 19521MHz, All-Ceramic, 2.6V to 5.5V Input,2A PWM Step-Down DC-to-DC Regulators 14______________________________________________________________________________________Chip InformationTRANSISTOR COUNT: 2500PROCESS: BiCMOSMAX1951/MAX19521MHz, All-Ceramic, 2.6V to 5.5V Input,2A PWM Step-Down DC-to-DC RegulatorsMaxim cannot assume responsibility for use of any circuitry other than circuitry entirely embod ied in a Maxim prod uct. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________15©2003 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.Package Information(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to /packages .)。

MAX5431AEUB+中文资料

MAX5431AEUB+中文资料

MAX5430 toc06
DIVIDER RATIO ACCURACY (%)
±15V Digitally Programmable Precision Voltage-Dividers for PGAs
Typical Operating Characteristics
(VDD = +15V, VSS = -15V or VSS = GND, VH = 5V, VL =-5V, TA = 25°C, unless otherwise noted.) (Note 3)
CIN
5
pF
POWER REQUIREMENTS
Negative Supply CurrentµA
Positive Supply Current
IDD
35
60
µA
Positive Power-Supply Voltage
VDD
Negative Power-Supply Voltage
VSS
10.8 -15.75
15.75
V
0
V
DYNAMIC PERFORMANCE
Switching Time
tD2W, tH2W
0.3
µs
Note 1: All devices are 100% production tested at TA = +25°C. SOT23 packages are guaranteed by design from TA = TMIN to TMAX. Note 2: Gain accuracy is measured without load at pin W.
Features
♦ Four Noninverting PGA Gain Configurations: AV = 1, 2, 4, and 8

MAX3221EEAE+中文资料

MAX3221EEAE+中文资料

Pin Configurations appear at end of data sheet. Typical Operating Circuits appear at end of data sheet.
MAX3223E MAX3243E
AutoShutdown and UCSP are trademarks of Maxim Integrated Products, Inc.
VCC to GND ..............................................................-0.3V to +6V V+ to GND (Note 1) ..................................................-0.3V to +7V V- to GND (Note 1) ...................................................+0.3V to -7V V+ + |V-| (Note 1) .................................................................+13V Input Voltages T_IN, EN, FORCEON, FORCEOFF to GND ............-0.3V to +6V R_IN to GND ......................................................................±25V Output Voltages T_OUT to GND................................................................±13.2V R_OUT, R2OUTB, INVALID to GND .........-0.3V to (VCC + 0.3V) Short-Circuit Duration T_OUT to GND .........................................................Continuous Continuous Power Dissipation (TA = +70°C) 16-Pin SSOP (derate 7.14mW/°C above +70°C) ...........571mW 16-Pin TSSOP (derate 9.4mW/°C above +70°C) ........754.7mW 16-Pin TQFN (derate 20.8mW/°C above +70°C) ......1666.7mW 20-Pin Plastic DIP (derate 11.11mW/°C above +70°C)....889mW 20-Pin SSOP (derate 8.00mW/°C above +70°C) ...........640mW 20-Pin TSSOP (derate 10.9mW/°C above +70°C) .........879mW 20-Pin TQFN (derate 21.3mW/°C above +70°C) ......1702.1mW 28-Pin SSOP (derate 9.52mW/°C above +70°C)............762mW 28-Pin TSSOP (derate 12.8mW/°C above +70°C) .......1026mW Operating Temperature Ranges MAX32_ _EC_ _ ....................................................0°C to +70°C MAX32_ _EE_ _..................................................-40°C to +85°C Storage Temperature Range .............................-65°C to +160°C Lead Temperature (soldering, 10s) .................................+300°C

MAXIM和TI芯片命名规则

MAXIM和TI芯片命名规则

MAXIM和TI芯片命名规则MAXIM命名规则AXIM前缀是“MAX”。

DALLAS则是以“DS”开头。

MAX×××或MAX××××说明:1后缀CSA、CWA 其中C表示普通级,S表示表贴,W表示宽体表贴。

2 后缀CWI表示宽体表贴,EEWI宽体工业级表贴,后缀MJA或883为军级。

3 CPA、BCPI、BCPP、CPP、CCPP、CPE、CPD、ACPA后缀均为普通双列直插。

举例MAX202CPE、CPE普通ECPE普通带抗静电保护MAX202EEPE 工业级抗静电保护(-45℃-85℃)说明 E指抗静电保护MAXIM数字排列分类1字头模拟器 2字头滤波器 3字头多路开关4字头放大器 5字头数模转换器 6字头电压基准7字头电压转换 8字头复位器 9字头比较器三字母后缀:例如:MAX358CPDC = 温度范围P = 封装类型D = 管脚数温度范围:C = 0℃至70℃(商业级)I = -20℃至+85℃(工业级)E = -40℃至+85℃(扩展工业级)A = -40℃至+85℃(航空级)M = -55℃至+125℃(军品级)封装类型:A SSOP(缩小外型封装)B CERQUADC TO-220, TQFP(薄型四方扁平封装)D 陶瓷铜顶封装E 四分之一大的小外型封装F 陶瓷扁平封装H 模块封装, SBGA(超级球式栅格阵列, 5x5 TQFP) J CERDIP (陶瓷双列直插)K TO-3 塑料接脚栅格阵列L LCC (无引线芯片承载封装)M MQFP (公制四方扁平封装)N 窄体塑封双列直插P 塑封双列直插Q PLCC (塑料式引线芯片承载封装)R 窄体陶瓷双列直插封装(300mil)S 小外型封装T TO5,TO-99,TO-100U TSSOP,μMAX,SOTW 宽体小外型封装(300mil)X SC-70(3脚,5脚,6脚)Y 窄体铜顶封装Z TO-92,MQUAD/D 裸片/PR 增强型塑封/W 晶圆MAXIM 专有产品型号命名MAX XXX (X) X X X1 2 3 4 5 61.前缀:MAXIM公司产品代号2.产品系列编号:100-199 模数转换器600-699 电源产品200-299 接口驱动器/接受器700-799 微处理器外围显示驱动器300-399 模拟开关模拟多路调制器800-899 微处理器监视器400-499 运放900-999 比较器500-599 数模转换器3.指标等级或附带功能:A表示5%的输出精度,E表示防静电4 .温度范围:C= 0℃至70℃(商业级)I =-20℃至+85℃(工业级)E =-40℃至+85℃(扩展工业级)A = -40℃至+85℃(航空级)M =-55℃至+125℃(军品级)5.封装形式:A SSOP(缩小外型封装)B CERQUADC TO-220, TQFP(薄型四方扁平封装)D 陶瓷铜顶封装E 四分之一大的小外型封装F 陶瓷扁平封装 H 模块封装, SBGAJ CERDIP (陶瓷双列直插)K TO-3 塑料接脚栅格阵列LLCC (无引线芯片承载封装)M MQFP (公制四方扁平封装)N 窄体塑封双列直插P 塑封双列直插 Q PLCC (塑料式引线芯片承载封装) R 窄体陶瓷双列直插封装(300mil)S 小外型封装T TO5,TO-99,TO-100U TSSOP,μMAX,SOTW 宽体小外型封装(300mil)X SC-70(3脚,5脚,6脚)Y 窄体铜顶封装Z TO-92MQUAD /D裸片/PR 增强型塑封/W 晶圆6.管脚数量:A:8B:10,64C:12,192D:14E:16F:22,256G:24H:44I:28 J:32 K:5,68 L:40M:7,48N:18O:42P:20Q:2,100R:3,84 S:4,80 T:6,160U:60V:8(圆形)W:10(圆形)X:36Y:8(圆形)Z:10(圆形)DALLAS命名规则例如DS1210N.S. DS1225Y-100INDN=工业级S=表贴宽体 MCG=DIP封Z=表贴宽体 MNG=DIP工业级IND=工业级 QCG=PLCC封 Q=QFPAD的命名规则AD常用产品型号命名规则DSP信号处理器放大器工业用器件通信电源管理移动通信视频/图像处理器等模拟A/D D/A 转换器传感器模拟器件AD产品以“AD”、“ADV”居多,也有“OP”或者“REF”、“AMP”、“SMP”、“SSM”、“TMP”、“TMS”等开头的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

General DescriptionThe MAX9550/MAX9551/MAX9552 provide a VCOM source for TFT LCDs. The MAX9550/MAX9551/MAX9552 source and sink a large current to quickly restore the VCOM voltage, making it ideal for TFT LCDs.The output settles to within 0.1% in less than 2µs. In addition, the MAX9550/MAX9551/MAX9552 directly drive the capacitive load in the VCOM layer of the TFT LCDs without the need for a series resistor.The MAX9550/MAX9551/MAX9552 feature single, dual,and quad channel VCOM amplifiers, respectively. The MAX9550/MAX9551/MAX9552 can drive up to 800mA of peak current per channel and operate up to 20V. The devices feature soft-start to reduce inrush current, output short-circuit protection, and thermal shutdown.The MAX9550 is available in a space-saving 5-pin thin SOT23 package, and an 8-pin µMAX ®package with an exposed paddle. The MAX9551 is available in an 8-pin µMAX package with an exposed paddle. The MAX9552is available in a 14-pin TSSOP package. All devices are specified over the -40°C to +85°C temperature range.ApplicationsTFT-LCD PanelsInstrument Control Voltage SourcesFeatures♦Operates Up To 20V ♦800mA Peak Output Current♦Settles to Within 0.1% of V OUT in Less than 2µs ♦Excellent Load Regulation ♦Thermal-Shutdown Protection ♦Short-Circuit Protection to Both Rails ♦Soft-Start to Reduce Inrush CurrentMAX9550/MAX9551/MAX9552High-Current VCOM Drive Buffersfor TFT LCDs________________________________________________________________Maxim Integrated Products 1Ordering Information19-3858; Rev 1; 2/06For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .Pin Configuration appears at end of data sheet.µMAX is a registered trademark of Maxim Integrated Products, Inc.M A X 9550/M A X 9551/M A X 9552High-Current VCOM Drive Buffers for TFT LCDs 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICS(V= 16V, GND = 0V, V = V = V / 2, C = 1µF, T = T to T , unless otherwise noted. Typical values are at Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Supply Voltage (V DD to GND)................................-0.3V to +22V Any Other Pin to GND................................-0.3V to (V DD + 0.3V)IN+/IN- (current)...............................................................±20mA OUT, OUT_ (current)................................................................1A Continuous Power Dissipation (T A = +70°C)5-Pin Thin SOT23 (derate 9.5mW/°C above +70°C)....727mW8-Pin µMAX (derate 10.3mW/°C above +70°C)........824.7mW 14-Pin TSSOP (derate 20.8mW/°C above +70°C).....1667mW Operating Temperature Range ...........................-40°C to +85°C Junction Temperature......................................................+150°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10s).................................+300°CMAX9550/MAX9551/MAX9552High-Current VCOM Drive Buffersfor TFT LCDs_______________________________________________________________________________________3ELECTRICAL CHARACTERISTICS (continued)(V DD = 16V, GND = 0V, V CM = V OUT = V DD / 2, C L = 1µF, T A = T MIN to T MAX , unless otherwise noted. Typical values are at T A = +25°C.) (Note 1)Typical Operating Characteristics(V DD = 16V, GND = 0V, V CM = V OUT = V DD / 2, C L = 1µF, T A = +25°C, unless otherwise noted.)INPUT OFFSET VOLTAGE DEVIATIONvs. SUPPLY VOLTAGEV DD (V)V O S (m V )201510-0.100.10.20.30.40.5-0.2525INPUT OFFSET VOLTAGE DEVIATIONvs. TEMPERATUREM A X 9550 t o c 02TEMPERATURE (°C)V O S (m V )755025-25-0.3-0.2-0.100.10.20.30.40.50.6-0.4-50100TRANSCONDUCTANCE vs. OUTPUT CURRENTOUTPUT CURRENT (mA)T R A N S C O N D U C T A N C E (S )4002000-200-4001020304050600-600600M A X 9550/M A X 9551/M A X 9552High-Current VCOM Drive Buffers for TFT LCDs 4_______________________________________________________________________________________SUPPLY CURRENT vs. SUPPLY VOLTAGESUPPLY VOLTAGE (V)S U P P L Y C U R R E N T (m A )2015100.51.01.52.02.53.00525SUPPLY CURRENT vs. TEMPERATUREM A X 9550 t o c 05TEMPERATURE (°C)S U P P L Y C U R R E N T (m A )7550-250250.51.01.52.02.53.03.54.00-50100LOAD TRANSIENT (±600mA)2µs/divI OUT 500mA/divV OUT 50mV/div AC-COUPLEDSHORT-CIRCUIT WAVEFORMSM A X 9550 t o c 075ms/divV CC 5V/divV OUT 5V/divI OUT 200mA/divI CC200mA/div STARTUP WAVEFORMM A X 9550 t o c 0820µs/divV OUT 5V/divIN +5V/div V CC 10V/div I OUT 200mA/div Typical Operating Characteristics (continued)(V DD = 16V, GND = 0V, V CM = V OUT = V DD / 2, C L = 1µF, T A = +25°C, unless otherwise noted.)MAX9550/MAX9551/MAX9552High-Current VCOM Drive Buffersfor TFT LCDs_______________________________________________________________________________________5M A X 9550/M A X 9551/M A X 9552High-Current VCOM Drive Buffers for TFT LCDs 6_______________________________________________________________________________________Figure 1. Settling Time Test CircuitDetailed DescriptionThe MAX9550/MAX9551/MAX9552 operational transcon-ductance amplifiers (OTA) hold the VCOM voltage sta-ble while providing the ability to source and sink a high current quickly (800mA typ) into a capacitive load such as the backplane of a TFT-LCD panel. The output settles to within 0.1% in less than 2µs. The fast settling time is achieved by increasing the transconductance of the buffer as the output current increases (see the Typical Operating Characteristics ).In addition, the MAX9550/MAX9551/MAX9552 directly drive the capacitive load in the VCOM layer of the TFT LCD without the need for a series resistor.The MAX9550/MAX9551/MAX9552 unity-gain band-width is:GBW = g M / 2πC OUT where C OUT is the capacitive load at the output and g M is the transconductance.To insure buffer stability, place a 1µF low-ESR capaci-tor as close to the OUT pin as possible. However, this value may be reduced if the TFT-LCD panel load pro-vides some of the capacitance and the resistance in series when this capacitance is low. Connect the feed-back at OUT using a Kelvin connection at the low-ESR capacitor.Thermal Shutdown with TemperatureHysteresisThe MAX9550/MAX9551/MAX9552 are capable of high output currents and therefore, feature thermal-shutdown protection with temperature hysteresis. When the die tem-perature reaches +160°C, the devices shut down. When the die cools down by 15°C, the devices turn on again.MAX9550/MAX9551/MAX9552High-Current VCOM Drive Buffersfor TFT LCDs_______________________________________________________________________________________7Applications InformationOutput Load CapacitorThe output load capacitor must have a low ESR value (50m Ωor lower) and it must be placed as close as pos-sible to the OUT pin to ensure buffer stability (see Figure 2). Ceramic capacitors are an excellent choice.Power Supplies and Bypass CapacitorsThe MAX9550/MAX9551/MAX9552 operate from a 6V to 20V single supply, or from ±3V to ±10V dual supplies.Proper supply bypassing ensures stability while driving high transient loads. The MAX9550/MAX9551/MAX9552require minimum 4.7µF (C1)and 0.1µF (C2) power-sup-ply bypass capacitors placed as close as possible tothe power-supply pin (V DD ). See Figure 2.For dual-supply operation, use 4.7µF and 0.1µF bypass capaci-tors on both supplies (V DD and GND) with each capacitor placed as close as possible to the V DD and GND pins.Layout and GroundingThe exposed paddle on the µMAX and TSSOP pack-ages provides a low thermal resistance for heat dissi-pation. Solder the exposed paddle to a ground plane for best results. Do not route traces under these pack-ages. For dual-supply operation, the exposed paddle (EP) must be electrically connected to the negative supply or it can be left unconnected.Figure 2. Typical TFT-LCD Backplane Drive CircuitM A X 9550/M A X 9551/M A X 9552High-Current VCOM Drive Buffers for TFT LCDs 8_______________________________________________________________________________________Pin ConfigurationsChip InformationPROCESS: BiCMOSMAX9550/MAX9551/MAX9552High-Current VCOM Drive Buffersfor TFT LCDs_______________________________________________________________________________________9Package Information(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to /packages.)T H I N S O T 23.E P SM A X 9550/M A X 9551/M A X 9552High-Current VCOM Drive Buffers for TFT LCDs 10______________________________________________________________________________________Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to /packages.)MAX9550/MAX9551/MAX9552High-Current VCOM Drive Buffers for TFT LCDs______________________________________________________________________________________11Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to /packages .)M A X 9550/M A X 9551/M A X 9552High-Current VCOM Drive Buffers for TFT LCDsMaxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.12____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©2006 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products, Inc.Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to /packages .)。

相关文档
最新文档