高一数学必修4任意角和弧度制 (2)
任意角和弧度制(第2课时)
第五课时:任意角和弧度制(第2课时)编写人:潘有金审核人:张广泉审批:苏自先学习目标:1.理解1弧度角的含义,了解任意角的弧度数;2.掌握角度与弧度的换算,熟记特殊角的弧度数;3.掌握弧度制下的弧长公式、扇形面积公式,能利用这些公式解决一些问题。
预习案一、教材助读认真阅读课本P 6 -P 9 ,完成下列问题1.在初中,我们已学习过角的度量,知道角可以用度为单位进行度量。
回忆一下1度角的定义:______________________________,这种用度为单位度量角的单位制叫做_____________。
2.我们把_______________________________叫做1弧度的角,记为____________.用弧度为单位来度量角的单位制叫做___________.3.正角的弧度数是____________,负角的弧度数是___________;零角的弧度数是____________,角α的弧度数的绝对值|α|=___________,其中l是以角α为圆心角时所对的弧长,r是圆的半径。
4.角度与弧度的换算:因为360°=2πrad,180°=πrad,所以1°=_____________rad1rad=_____________________5.在弧度制下,扇形的弧长公式为________________扇形的面积公式为____________________6.在角度制下,扇形的弧长公式为_____________扇形的面积公式为_______________________二、预习自测(牛刀小试)1.- 300°化成弧度是( )A. 43π- B.53π-C.74π-D.76π-2.85π化成度数为( )A.278°B.280°C.288°D.315°3.将下列角度化成弧度(1)22°30′;(2)-210°;(3)1200°4.将下列弧度化成度:(1)12π;(2)43π-;(3)310π5.用弧度制表示⑴终边在x 轴上的角的集合;⑵终边在y 轴上的角的集合三、我的疑惑在下面记下预习中的困惑在课上和同学讨论或向老师请教第五课时:任意角和弧度制(第2课时)导学案一、学始于疑同学们首先认真独立思考如下问题问题1.在初中,我们学习过角的度量。
高中数学 1.1.1任意角 新人教A版必修4(2)
【解】 终边在30°角的终边所在直线上的角的集合为 S1={α|α=30°+k·180°,k∈Z},终边在180°-75°=105°角 的终边所在直线上的角的集合为S2={α|α=105°+k·180°,k ∈Z},因此,终边在图中阴影部分内的角α的取值范围为 {α|α=30°+k·180°≤α<105°+k·180°,k∈Z}.
终边相同的角
所有与角α终边相同的角,连同角α在内,可构成一 个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边 相同的角,都可以表示成角α与 整数个周角 的和.
5.终边相同的角相等吗?相等的角终边相同吗? 答:终边相同的角不一定相等,它们相差360°的整数 倍;相等的角,终边相同.
1.解读任意角的概念 (1)用运动的观点来定义角,就可以把角的概念推广到 任意角,包括任意大小的正角、负角和零角. (2)对角的概念的认识关键是抓住“旋转”二字. ①要明确旋转的方向; ②要明确旋转的大小; ③要明确射线未作任何旋转时的位置.
2.终边相同的角的关注点 所有与角α终边相同的角,连同角α在内可以用式子 k·360°+α,k∈Z表示,在运用时需注意以下四点: (1)k是整数,这个条件不能漏掉. (2)α是任意角. (3)k·360°与α之间用“+”连接,如k·360°-30°应看成 k·360°+(-30°),k∈Z. (4)终边相同的角不一定相等,终边相同的角有无数 个,它们相差周角的整数倍.相等的角终边一定相同.
课堂篇02
合作探究
终边相同的角及象限角
【例1】 将下列各角表示为k·360°+α(k∈ Z,0°≤α<360°)的形式,并指出是第几象限角.
(1)420°;(2)-510°;(3)1 020°.
【解】 (1)420°=360°+60°, 而60°角是第一象限角,故420°是第一象限角. (2)-510°=-2×360°+210°, 而210°是第三象限角,故-510°是第三象限角. (3)用1 020°除以360°的商为2,余数为300°, 即1 020°=2×360°+300°, 而300°是第四象限角,故1 020°是第四象限角.
高中数学必修四任意角与弧度制知识点汇总
任意角与弧度制 知识梳理:一、任意角和弧度制 1、角的概念的推广定义:一条射线OA 由原来的位置,绕着它的端点O 按一定的方向旋转到另一位置OB ,就形成了角α,记作:角α或α∠ 可以简记成α。
注意:(1)“旋转”形成角,突出“旋转”(2)“顶点”“始边”“终边”“始边”往往合于x 轴正半轴 (3)“正角”与“负角”——这是由旋转的方向所决定的。
例1、若13590<<<αβ,求βα-和βα+的范围。
(0,45) (180,270)2、角的分类:由于用“旋转”定义角之后,角的范围大大地扩大了。
可以将角分为正角、零角和负角。
正角:按照逆时针方向转定的角。
零角:没有发生任何旋转的角。
负角:按照顺时针方向旋转的角。
例2、(1)时针走过2小时40分,则分针转过的角度是 -960(2)将分针拨快10分钟,则分针转过的弧度数是 3π .3、 “象限角”为了研究方便,我们往往在平面直角坐标系中来讨论角,角的顶点合于坐标原点,角的始边合于x 轴的正半轴。
角的终边落在第几象限,我们就说这个角是第几象限的角角的终边落在坐标轴上,则此角不属于任何一个象限,称为轴线角。
例1、30? ;390? ;?330?是第 象限角 300? ; ?60?是第 象限角585? ; 1180?是第 象限角 ?2000?是第 象限角。
例2、(1)A={小于90°的角},B={第一象限的角},则A∩B= ④ (填序号).①{小于90°的角} ②{0°~90°的角}③ {第一象限的角}④以上都不对(2)已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是(B )A .B=A∩CB .B∪C=CC .A ⊂CD .A=B=C例3、写出各个象限角的集合:例4、若α是第二象限的角,试分别确定2α,2α 的终边所在位置.解 ∵α是第二象限的角,∴k ·360°+90°<α<k ·360°+180°(k ∈Z ).(1)∵2k ·360°+180°<2α<2k ·360°+360°(k ∈Z ), ∴2α是第三或第四象限的角,或角的终边在y 轴的非正半轴上. (2)∵k ·180°+45°<2α<k ·180°+90°(k ∈Z ), 当k=2n (n ∈Z )时, n ·360°+45°<2α<n ·360°+90°; 当k=2n+1(n ∈Z )时, n ·360°+225°<2α<n ·360°+270°. ∴2α是第一或第三象限的角. 拓展:已知α是第三象限角,问3α是哪个象限的角∵α是第三象限角,∴180°+k ·360°<α<270°+k ·360°(k ∈Z ), 60°+k ·120°<3α<90°+k ·120°. ①当k=3m(m ∈Z )时,可得 60°+m ·360°<3α<90°+m ·360°(m ∈Z ). 故3α的终边在第一象限. ②当k=3m+1 (m ∈Z )时,可得 180°+m ·360°<3α<210°+m ·360°(m ∈Z ). 故3α的终边在第三象限. ③当k=3m+2 (m ∈Z )时,可得 300°+m ·360°<3α<330°+m ·360°(m ∈Z ).故3α的终边在第四象限. 综上可知,3α是第一、第三或第四象限的角. 4、常用的角的集合表示方法 1、终边相同的角:(1)终边相同的角都可以表示成一个0?到360?的角与)(Z k k ∈个周角的和。
高中数学人教A版必修4课件:1.1.2弧度制
思路点拨:
解:(1)①∵1°=1π80 rad, ∴112°30′=1π80×112.5 rad=58π rad. ②-315°=-315×1π80=-74π. (2)①∵1 rad=1π80°, ∴-51π2 rad=-51π2×1π80°=-75°. ②139π=139π×1π80°=1 140°.
(2) 的面积.
思路点拨:(1) 设出圆心角为θ → 建方程组 → 解方程组得解 (2) 化度为弧度 → 求弧长 → 求扇形面积
解:(1)设扇形圆心角的弧度数为 θ(0<θ<2π),弧长为 l, 半径为 r,
依题意有
l+2r=10,
①
12lr=4.
进行角度制与弧度制的互化的策略以及注意点 (1)原则:牢记 180°=π rad,充分利用 1°=1π80 rad 和 1 rad =1π80°进行换算. (2)方法:设一个角的弧度数为 α,角度数为 n,则 α rad=α·1π80°;n°=n·1π80.
(3)注意点 ①用“弧度”为单位度量角时,“弧度”二字或“rad” 可以省略不写. ②用“弧度”为单位度量角时,常常把弧度数写成多少π 的形式,如无特别要求,不必把π写成小数. ③度化弧度时,应先将分、秒化成度,再化成弧度.
3.解析弧度制下弧长公式、扇形的面积公式 在弧度制下,弧长公式和扇形的面积公式分别为: l=|α|R,S=12lR=12|α|R2(其中 α 为圆心角的弧度数,R 为扇 形的半径). 要把握好上述公式,需注意以下三个方面: (1)由上述公式可知,由 α、l、R、S 中的两个量可以求出 另外的两个量,即“知二求二”.
【即时演练】
-247π 是第________象限的角. 解析:∵-247π=-6π-34π,而-34π 是第三象限的角, ∴-247π 是第三象限的角. 答案:三
苏教版高中数学必修4《弧度制(第2课时)》参考教案
课 题:1.1.2弧度制(二) 教学目的:1.巩固弧度制的理解,熟练掌握角度弧度的换算;掌握用弧度制表示的弧长公式、扇形面积公式.2.培养运用弧度制解决具体的问题的意识和能力3.通过弧度制的学习,理解并认识到角度制与弧度制都是对角度量的方法,二者是辩证统一的,而不是孤立、割裂的关系. 教学重点:运用弧度制解决具体的问题. 教学难点:运用弧度制解决具体的问题. 授课类型:新授课 课时安排:1课时教 具:多媒体、实物投影仪 教学过程: 一、复习引入:1. 定义:长度等于半径长的弧所对的圆心角称为1弧度的角。
它的单位是rad 读作弧度,这种用“弧度”做单位来度量角的制度叫做弧度制. 如下图,依次是1rad , 2rad , 3rad ,αrad探究:⑴平角、周角的弧度数,(平角=π rad 、周角=2π rad )⑵正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是0 ⑶角α的弧度数的绝对值 rl=α(l 为弧长,r 为半径) ⑷角度制、弧度制度量角的两种不同的方法,单位、进制不同,就像度量长度一样有不同的方法,千米、米、厘米与丈、尺、寸,反映了事物本身不变,改变的是不同的观察、处理方法,因此结果就有所不同。
⑸用角度制和弧度制来度量零角,单位不同,但数量相同(都是0)用角度制和弧度制来度量任一非零角,单位不同,量数也不同。
2. 角度制与弧度制的换算: ∵ 360︒=2π rad ∴180︒=π rad ∴ 1︒=rad rad 01745.0180≈π'185730.571801=≈⎪⎭⎫ ⎝⎛=πrad在具体运算时,“弧度”二字和单位符号“rad”可以省略3.一些特殊角的度数与弧度数的对应值应该记住: 角度 0° 30° 45° 60° 90° 120° 135° 150° 180° 弧度 0 π/6 π/4 π/3 π/2 2π/3 3π/4 5π/6 π 角度 210° 225° 240° 270° 300° 315° 330° 360° 弧度7π/65π/44π/33π/25π/37π/411π/62π4.应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系。
第四章 §4.1 任意角和弧度制、三角函数的概念
题型二 弧度制及其应用
例 2 (1)已知一扇形的圆心角 α=π3,半径 R=10 cm,则此扇形的弧积为____3____ cm2.
由已知得 α=π3,R=10 cm, 所以 l=αR=π3×10=130π(cm), S 扇形=12αR2=12×π3×102=530π(cm2).
√C.第三、四象限
D.第一、四象限
因为cos α·tan α<0,所以cos α,tan α的值一正一负,所以角α的终边 在第三、四象限.
返回
课时精练
知识过关
一、单项选择题 1.给出下列四个命题,其中正确的是 A.-34π是第四象限角 B.43π是第二象限角 C.-400°是第一象限角
√D.-315°是第一象限角
思维升华
(1)利用三角函数的定义,已知角α终边上一点P的坐标,可以求出α的三 角函数值;已知角α的三角函数值,也可以求出点P的坐标. (2)利用角所在的象限判定角的三角函数值的符号时,特别要注意不要忽 略角的终边在坐标轴上的情况.
跟踪训练 3 (1)已知角 α 的终边过点 P(-8m,-6sin 30°),且 cos α=
A.2kπ-45°(k∈Z)
B.k·360°+94π(k∈Z)
√C.k·360°-315°(k∈Z)
D.kπ+54π(k∈Z)
自主诊断
与94π的终边相同的角可以写成 2kπ+94π(k∈Z),但是角度制与弧度制 不能混用,所以只有 C 正确.
自主诊断
3.(必修第一册P180T3改编)已知角θ的终边过点P(-12,5),则sin θ+cos θ
题型三 三角函数的概念
例 3 (1)(2023·北京模拟)在平面直角坐标系中,角 α 以 x 轴的非负半轴为
高一数学必修任意角和弧度制
高一数学必修4任意角和弧度制第一课时 1.1.1 任意角教学要求:理解任意大小地角正角、负角和零角,掌握终边相同地角、象限角、区间角、终边在坐标轴上地角.教学重点:理解概念,掌握终边相同角地表示法.教学难点:理解角地任意大小.教学过程:一、复习准备:1.提问:初中所学地角是如何定义?角地范围?(角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成地图形;0°~360°)2.讨论:实际生活中是否有些角度超出初中所学地范围? → 说明研究推广角概念地必要性(钟表;体操,如转体720°;自行车车轮;螺丝扳手)二、讲授新课:1.教学角地概念:① 定义正角、负角、零角:按逆时针方向旋转所形成地角叫正角,按顺时针方向旋转所形成地角叫负角,未作任何旋转所形成地角叫零角.② 讨论:推广后角地大小情况怎样? (包括任意大小地正角、负角和零角) ③ 示意几个旋转例子,写出角地度数.④ 如何将角放入坐标系中?→定义第几象限地角.(概念:角地顶点与原点重合,角地始边与x 轴地非负半轴重合. 那么,角地终边(除端点外)在第几象限,我们就说这个角是第几象限角. )⑤ 练习:试在坐标系中表示300°、390°、-330°角,并判别在第几象限? ⑥ 讨论:角地终边在坐标轴上,属于哪一个象限?结论:如果角地终边在坐标轴上,就认为这个角不属于任何一个象限,称为非象限角. 口答:锐角是第几象限角?第一象限角一定是锐角吗?再分别就直角、钝角来回答这两个问题.⑦ 讨论:与60°终边相同地角有哪些?都可以用什么代数式表示?与α终边相同地角如何表示?⑧ 结论:与α角终边相同地角,都可用式子k ×360°+α表示,k ∈Z ,写成集合呢? ⑨ 讨论:给定顶点、终边、始边地角有多少个?注意:终边相同地角不一定相等;但相等地角,终边一定相同;终边相同地角有无数多个,它们相差360°地整数倍2.教学例题:① 出示例1:在0°~360°间,找出下列终边相同角:-150°、1040°、-940°. (讨论计算方法:除以360求正余数 →试练→订正)② 出示例2:写出与下列终边相同地角地集合,并写出-720°~360°间角. 120°、-270°、1020°(讨论计算方法:直接写,分析k 地取值 →试练→订正)③ 讨论:上面如何求k 地值? (解不等式法)④ 练习:写出终边在x 轴上地角地集合,y 轴上呢?坐标轴上呢?第一象限呢? ⑤ 出示例3:写出终边直线在y =x 上地角地集合S , 并把S 中适合不等式360720α︒-≤<︒地元素β写出来. (师生共练→小结)3. 小结:角地推广;象限角地定义;终边相同角地表示;终边落在坐标轴时等;区间角表示.三、巩固练习:1. 写出终边在第一象限地角地集合?第二象限呢?第三象限呢?第四象限呢?直线y =-x 呢?2. 作业:书P6 练习 3 ③④、4、5题.第二课时:1.1.2 弧度制(一)教学要求:掌握弧度制地定义,学会弧度制与角度制互化,并进而建立角地集合与实数集R 一一对应关系地概念.教学重点:掌握换算.教学难点:理解弧度意义.教学过程:一、复习准备:1. 写出终边在x 轴上角地集合 .2. 写出终边在y 轴上角地集合 .3. 写出终边在第三象限角地集合 .4. 写出终边在第一、三象限角地集合 .5. 什么叫1°地角?计算扇形弧长地公式是怎样地?二、讲授新课:1. 教学弧度地意义:① 如图:∠AOB 所对弧长分别为L 、L ’,半径分别为r 、r ’,求证:l r =''l r . ② 讨论:l r 是否为定值?其值与什么有关系?→结论:l r =180n π=定值. ③ 讨论:l r 在什么情况下为值为1?l r是否可以作为角地度量? ④ 定义:长度等于半径长地弧所对地圆心角叫1弧度地角. 用rad 表示,读作弧度. ⑤ 计算弧度:180°、360°→ 思考:-360°等于多少弧度?⑥ 探究:完成书P7 表1.1-1后,讨论:半径为r 地圆心角α所对弧长为l ,则α弧度数=?⑦ 规定:正角地弧度数是一个正数,负角地弧度数是一个负数,零角地弧度数是0. 半径为r 地圆心角α所对弧长为l ,则α弧度数地绝对值为|α|=l r. 用弧度作单位来度量角地制度叫弧度制.⑧ 讨论:由弧度数地定义可以得到计算弧长地公式怎样?⑨ 讨论:1度等于多少弧度?1弧度等于多少度?→度表示与弧度表示有啥不同? -720°地圆心角、弧长、弧度如何看?2 .教学例题:①出示例1:角度与弧度互化:6730' ;35rad π.分析:如何依据换算公式?(抓住:180︒=π rad ) → 如何设计算法?→ 计算器操作: 模式选择 MODE MODE 1(2);输入数据;功能键SHIFT DRG 1(2)=② 练习:角度与弧度互化:0°;30°;45°;3π;2π;120°;135°;150°;54π ③ 讨论:引入弧度制地意义?(在角地集合与实数地集合之间建立一种一一对应地关系)④ 练习:用弧度制表示下列角地集合:终边在x 轴上; 终边在y 轴上.3. 小结:弧度数定义;换算公式(180︒=π rad );弧度制与角度制互化.三、巩固练习:1. 教材P10 练习1、2题.2. 用弧度制表示下列角地集合:终边在直线y =x ; 终边在第二象限; 终边在第一象限.3. 作业:教材P11 5、7、8题.第三课时:1.1.2 弧度制(二)教学要求:更进一步理解弧度地意义,能熟练地进行弧度与角度地换算. 掌握弧长公式,能用弧度表示终边相同地角、象限角和终边在坐标轴上地角. 掌握并运用弧度制表示地弧长公式、扇形面积公式教学重点:掌握扇形弧长公式、面积公式.教学难点:理解弧度制表示.教学过程:一、复习准备:1. 提问:什么叫1弧度地角?1度等于多少弧度?1弧度等于多少度?扇形弧长公式?2. 弧度与角度互换:-43π、310π、-210°、75° 3. 口答下列特殊角地弧度数:0°、30°、45°、60°、90°、120°、135°、…二、讲授新课:1. 教学例题:① 出示例:用弧度制推导:S 扇=12LR ;212S R α=扇. 分析:先求1弧度扇形地面积(12ππR 2)→再求弧长为L 、半径为R 地扇形面积? 方法二:根据扇形弧长公式、面积公式,结合换算公式转换.② 练习:扇形半径为45,圆心角为120°,用弧度制求弧长、面积. ③ 出示例:计算sin 3π、tan1.5、cos 4π (口答方法→共练→小结:换算为角度;计算器求)② 练习:求6π、4π、3π地正弦、余弦、正切. 2. 练习:①. 用弧度制写出与下列终边相同地角,并求0~2π间地角.193π、-675° ② 用弧度制表示终边在x 轴上角地集合、终边在y 轴上角地集合?终边在第三象限角地集合?③ 讨论:α=k ×360°+3π与β=2k π+30°是否正确? ④ α与-94π地终边相同,且-2π<α<2π,则α= . ⑤ 已知扇形AOB 地周长是6cm ,该扇形地中心角是1弧度,求该扇形地面积.解法:设扇形地半径为r ,弧长为l ,列方程组而求.3. 小结:扇形弧长公式、面积公式;弧度制地运用;计算器使用.三、巩固练习:1. 时间经过2小时30分,时针和分针各转了多少弧度?2. 一扇形地中心角是54°,它地半径为20cm ,求扇形地周长和面积.3. 已知角α和角β地差为10°,角α和角β地和是10弧度,则α、β地弧度数分别是 .4. 作业:教材P10 练习4、5、6题.。
《红对勾》2015-2016学年人教A版高中数学必修4课件1-1-2弧度制
3.角α=6这种表达方式正确吗? 答:正确.角α=6表示6弧度的角,这里将“弧度”省 去了.
角度与弧度的互化
4.在同一个式子中,角度制与弧度制能否混用?为什 么?
答:角度制和弧度制是表示角的两种不同的度量方 法,两者有着本质的不同,因此在同一个表达式中不能出 现两种度量方法的混用,如α=2kπ+30°,k∈Z是不正确的 写法,应写成α=2kπ+6π,k∈Z.
扇形的弧长和面积的计算
【例 3】 已知一扇形的周长为 8 cm,当它的半径 和圆心角取什么值时,扇形的面积最大?并求出最大面 积.
【分析】 (1)用哪些量表达扇形的周长?(半径和弧 长)
(2)扇形的面积公式是什么?能否用半径表示?(S= 12lr,能)
(3)如何求扇形面积的最大值?(利用二次函数)
答:随着半径的变化,弧长也在变化,但对于一定大 小的圆心角所对应的弧长与半径的比值是唯一确定的,与 半径的大小无关.
任意角的弧度数与实数的对应关系
(1)正角:正角的弧度数是一个 正数 (2)负角:负角的弧度数是一个 负数 (3)零角:零角的弧度数是 0 . (4)如果半径为r的圆的圆心角α所对弧的长为l,那
角度制与弧度制的互化
【例 2】 设 α1=510°,α2=-750°,β1=45π,β2= -161π.
(1)将 α1,α2 用弧度表示出来,并指出它们各自终边 所在的象限;
(2)将 β1,β2 用角度表示出来,并在[-360°,360°) 内找出与它们终边相同的所有的角.
【分析】 首先利用 1°=18π0rad 可将角度化成弧度,利 用 1rad=18π0°可将弧度化成角度,然后再根据要求指出 α1, α2 终边所在的象限,与 β1,β2 终边相同且在[-360°,360°) 内的角.
高一数学 任意角与弧度制及练习
任意角和弧度制【学习目标】1.理解任意角的概念.掌握象限角、终边相同的角、终边在坐标轴上的角及区间角的表示方法。
2.了解弧度制的意义;掌握角的不同度量方法,能对弧度制和角度制进行正确的换算.3.掌握弧度制下扇形的弧长和面积的计算公式,并能结合具体问题进行正确地运算。
【要点梳理】要点一:任意角的概念1.角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.正角:按逆时针方向旋转所形成的角.负角:按顺时针方向旋转所形成的角.零角:如果一条射线没有做任何旋转,我们称它形成了一个零角.要点诠释:角的概念是通过角的终边的运动来推广的,既有旋转方向,又有旋转大小,同时没有旋转也是一个角,从而得到正角、负角和零角的定义.2.终边相同的角、象限角终边相同的角为{}|360k k Z βββα∈=+∈o g ,角的顶点与原点重合,角的始边与x 轴的非负半轴重合.那么,角的终边(除端点外)在第几象限,我们就说这个角是第几象限角.要点诠释:(1)终边相同的前提是:原点,始边均相同;(2)终边相同的角不一定相等,但相等的角终边一定相同;(3)终边相同的角有无数多个,它们相差360︒的整数倍.3.常用的象限角α是第一象限角,所以|36036090,k k k Z αα<<+∈o o o g gα是第二象限角,所以(){}|36090360180,k k k Z αα+<<+∈o o o o g gα是第三象限角,所以(){}|360180360270,k k k Z αα+<<+∈o o o o g gα是第四象限角,所以(){}|360270360360,k k k Z αα+<<+∈o o o o g g要点二:弧度制1.弧度制的定义长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1rad ,或1弧度,或1(单位可以省略不写).2.角度与弧度的换算弧度与角度互换公式: 180rad π︒=1rad=0180π⎛⎫ ⎪⎝⎭≈57.30°=57°18′,1°=180π≈0.01745(rad) 3.弧长公式:r l ||α=(α是圆心角的弧度数), 扇形面积公式:2||2121r r l S α==. 要点诠释:(1)角有正负零角之分,它的弧度数也应该有正负零之分,如2ππ--,等等,一般地, 正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0,角的正负主要由角的旋转方向来决定.(2)角α的弧度数的绝对值是:rl =α,其中,l 是圆心角所对的弧长,r 是半径. 【典型例题】类型一:角的概念的理解例1.下列结论:①第一象限角都是锐角;②锐角都是第一象限角;③第一象限角一定不是负角;④第二象限角是钝角;⑤小于180°的角是钝角、直角或锐角。
高中数学人教版必修4 1.1.2弧度制 课件2
[解析] 设扇形的弧长为 l,则 l=αR=23π,
∴该扇形的面积 S=12lR=12×23π×1=π3.
命题方向四:弧度制下终边相同的角的表示方法
将下列各角化成 2kπ+α(0<α<2π,k∈Z)的形式,并指出角的终边所 在的象限.
(1)247π;(2)396π.
[解析] (1)∵274π=6π+34π, ∴274π与34π终边相同. 又∵34π是第二象限角,∴274π是第二象限角.
跟踪练习
把α=1 690°写成β+2kπ(k∈Z,β∈[0,2π))的形式.
[解析] 1 690°=1π80×1 690=8π+2158π.
命题方向三:扇形面积公式的应用
一个半径大于 2 的扇形,其周长 c=10,面积 S=6,求这个扇 形的半径 R 和圆心角 α 的弧度数.
[解析] 设扇形的半径为 R(R>2),弧长为 l,由题意得
(2)396π=6π+36π=6π+π2,∴396π与π2的终边相同. 又∵π2是象限界角,∴396π也是象限界角,它不属于任何象 限.
[点评] 用弧度表示的与角α终边相同的角的一般形式为:β=2kπ+ α(k∈Z).这些角所组成的集合为{β|β=2kπ+α,k∈Z}.
1°=__1_8_0____rad≈0.01745rad,
1rad=___1_π8_0__°_≈57.3°=57°18′.
1
3.在弧度制下,弧长公式为l=θr,扇形面积公式为S=__2_lr_______.
预习效果展示
1.(2014·浙江临海市杜桥中学高一月考)下列转化结果错误 的是( )
A.67°30′化成弧度是38πrad B.123π化成度是 600° C.150°化成弧度是56πrad D.1π2化成度是 15°
人教版数学必修四:1.1.2弧度制(作业纸)
课题:§1.1任意角、弧度(二)作业 总第____课时班级_______________姓名_______________一.填空题:1.将下列弧度转化为角度: (1)-87π= ° ′;(2)613π= °; 2.将下列角度转化为弧度:(1)36°= (rad );(2)-105°= (rad );(3)37°30′= (rad ); 3.将分针拨快10分钟,则分针转过的弧度数是 . 4.在[]π2,0上,与π611-终边相同的角是___________. 5.下列四个命题:①圆心角的弧度越大,它所对的弧长就越大;②1rad<1;③公式r l α=中的α必须用弧度制表示;④弧度数只有正,没有负. 其中正确的命题序号是__________6.若角α为第四象限角,则角απ-所在的象限是_______________;若2-=α,则α的终边在第_______象限.7.已知扇形的半径为10cm ,圆心角为60o ,则扇形的弧长为 . 8.用弧度制表示终边在直线x y =上的角的集合________________________.9.若2弧度的圆心角所对的弧长为4cm ,则这个圆心角所夹的扇形的面积是 . 10.用弧度制表示下列角的集合(1)终边落在y 轴非正半轴上的角的集合___________________________________; (2)终边落在二、四象限的角平分线上的角的集合____________________________; (3)终边落在第四象限上的角的集合___________________________________. 二、解答题:11.把下列各角化为),20(2Z k k ∈<≤+παπα的形式,并指出他们是第几象限角。
(1)623π;(2)01500-;(3)718π-;(4)672°.12.蒸汽机飞轮的直径为1.2m ,以300 r/min (转/分)的速度作逆时针旋转, 求(1)飞轮1s 内转过的弧度数; (2)轮周上一点1s 内所转过的路程。
高中数学 必修四 1.1.1任意角和弧度制
又k∈Z,故所求的最大负角为β=-50°. (2)由360°≤10 030°+k·360°<720°, 得-9670°≤k·360°<-9310°,又k∈Z,解得k=-26. 故所求的角为β=670°.
【方法技巧】 1.在0°到360°范围内找与给定角终边相同的角的方法 (1)一般地,可以将所给的角α 化成k·360°+β 的形式(其中 0°≤β <360°,k∈Z),其中的β 就是所求的角. (2)如果所给的角的绝对值不是很大,可以通过如下方法完成:当所 给角是负角时,采用连续加360°的方式;当所给角是正角时,采用 连续减360°的方式,直到所得结果达到要求为止.
4.将35°角的终边按顺时针方向旋转60°所得的角度数为_______, 将35°角的终边按逆时针方向旋转两周后的角度数________. 【解析】将35°角的终边按顺时针方向旋转60°所得的角为35°60°=-25°,将35°角的终边按逆时针方向旋转两周后的角为 35°+2×360°=755°. 答案:-25° 755°
【解析】(1)错误.终边与始边重合的角是k·360°(k∈Z),不一定 是零角. (2)错误.如-10°与350°终边相同,但是不相等. (3)错误.如-330°角是第一象限角,但它是负角. (4)错误.终边在x轴上的角不属于任何象限. 答案:(1)× (2)× (3)× (4)×
2.下列各组角中,终边不相同的是( )
2.判断角的概念问题的关键与技巧 (1)关键:正确理解象限角与锐角、直角、钝角、平角、周角等概念. (2)技巧:判断一种说法正确需要证明,而判断一种说法错误只要举 出反例即可.
【变式训练】射线OA绕端点O顺时针旋转80°到OB位置,接着逆时针 旋转250°到OC位置,然后再顺时针旋转270°到OD位置,则 ∠AOD=________.
最新人教版高中数学必修4第一章《第一章任意角和弧度制》示范教案(第2课时)
第一章第一节任意角和弧度制第二课时作者:房增凤整体设计教学分析在物理学和日常生活中,一个量常常需要用不同的方法进行度量,不同的度量方法可以满足我们不同的需要.现实生活中有许多计量单位,如度量长度可以用米、厘米、尺、码等不同的单位制,度量重量可以用千克、斤、吨、磅等不同的单位制,度量角的大小可以用度为单位进行度量,并且一度的角等于周角的1360,记作1°.通过类比引出弧度制,给出1弧度的定义,然后通过探究得到弧度数的绝对值公式,并得出角度和弧度的换算方法.在此基础上,通过具体的例子,巩固所学概念和公式,进一步认识引入弧度制的必要性.这样可以尽量自然地引入弧度制,并让学生在探究过程中,更好地形成弧度的概念,建立角的集合与实数集的一一对应,为学习任意角的三角函数奠定基础.通过探究讨论,关键弄清1弧度角的定义,使学生建立弧度的概念,理解弧度制的定义,达到突破难点的目的.通过电教手段的直观性,使学生进一步理解弧度作为角的度量单位的可靠性、可行性.通过周角的两种单位制的度量,得到角度与弧度的换算公式.使学生认识到角度制、弧度制都是度量角的制度,二者虽单位不同,但却是互相联系、辩证统一的.进一步加强对辩证统一思想的理解,渗透数学中普遍存在、相互联系、相互转化的观点.三维目标1.通过类比长度、重量的不同度量制,使学生体会一个量可以用不同的单位制来度量,从而引出弧度制.2.通过探究使学生认识到角度制和弧度制都是度量角的制度,通过总结引入弧度制的好处,学会归纳整理并认识到任何新知识的学习,都会为解决实际问题带来方便,从而激发学生的学习兴趣.重点难点教学重点:理解弧度制的意义,并能进行角度和弧度的换算.教学难点:弧度的概念及其与角度的关系.课时安排1课时教学过程导入新课思路 1.(类比导入)测量人的身高常用米、厘米为单位进行度量,这两种度量单位是怎样换算的?家庭购买水果常用千克、斤为单位进行度量,这两种度量单位是怎样换算的?度量角的大小除了以度为单位度量外,还可采用哪种度量角的单位制?它们是怎样换算的?思路2.(情境导入)利用古代度量时间的一种仪器——日晷,或者利用普遍使用的钟表.实际上我们使用的钟表是用时针、分针和秒针角度的变化来确定时间的.无论采用哪一种方法,度量一个确定的量所得到的量数必须是唯一确定的.在初中,已学过利用角度来度量角的大小,现在来学习角的另一种度量方法——弧度制.要使学生真正了解弧度制,首先要弄清1弧度的含义,并能进行弧度与角度换算的关键.在引入弧度制后,可以引导学生建立弧与圆心角的联系——弧的度数等于圆心角的度数.随着角的概念的推广,圆心角和弧的概念也随之推广:从“形”上说,圆心角有正角、零角、负角,相应的,弧也就有正弧、零弧、负弧;从“数”上讲,圆心角与弧的度数有正数、0、负数.圆心角和弧的正负实际上表示了“角的不同方向”,就像三角函数值的正负可以用三角函数线(有向线段)的方向来表示一样.每一个圆心角都有一条弧与它对应,并且不同的圆心角对应着不同的弧,反之亦然.推进新课新知探究提出问题问题①:在初中几何里,我们学习过角的度量,1°的角是怎样定义的呢?问题②:我们从度量长度和重量上知道,不同的单位制能给我们解决问题带来方便.那么角的度量是否也能用不同的单位制呢?活动:教师先让学生思考或讨论问题,并让学生回忆初中有关角度的知识,提出这是认识弧度制的关键,为更好地理解角度弧度的关系奠定基础.讨论后教师提问学生,并对回答好的学生及时表扬,对回答不准确的学生提示引导考虑问题的关键.教师板书弧度制的定义:规定长度等于半径长的圆弧所对的圆心角叫做1弧度的角.以弧度为单位来度量角的制度叫做弧度制;在弧度制下,1弧度记作1 rad.如图1中,的长等于半径r ,AB 所对的圆心角∠AOB 就是1弧度的角,即l r=1.图1讨论结果:①1°的角可以理解为将圆周角分成360等份,每一等份的弧所对的圆心角就是1°.它是一个定值,与所取圆的半径大小无关.②能,用弧度制.提出问题问题①:作半径不等的甲、乙两圆,在每个圆上作出等于其半径的弧长,连接圆心与弧的两个端点,得到两个角,将乙图移到甲图上,两个角有什么样的关系?问题②:如果一个半径为r 的圆的圆心角α所对的弧长是l ,那么α的弧度数是多少?既然角度制、弧度制都是角的度量制,那么它们之间如何换算?活动:教师引导学生学会总结和归纳角度制和弧度制的关系,提问学生归纳的情况,让学生找出区别和联系.教师给予补充和提示,对表现好的学生进行表扬,对回答不准确的学生提示和鼓励.引入弧度之后,应与角度进行对比,使学生明确:第一,弧度制是以“弧度”为单位来度量角的单位制,角度制是以“度”为单位来度量角的单位制;第二,1弧度是等于半径长的弧所对的圆心角(或这条弧)的大小,而1°的角是周角的1360;第三,无论是以“弧度”还是以“度”为单位,角的大小都是一个与半径大小无关的定值.教师要强调为了让学生习惯使用弧度制,本教科书在后续的内容中尽量采用弧度制.讨论结果:①完全重合,因为都是1弧度的角.②α=l r ;将角度化为弧度:360°=2π rad,1°=π180rad ≈0.017 45 rad ,将弧度化为角度:2π rad =360°,1 rad =(180π)°≈57.30°=57°18′.弧度制与角度制的换算公式:设一个角的弧度数为α rad =(180απ)°,n °=n π180(rad). 提出问题问题①:引入弧度之后,在平面直角坐标系中,终边相同的角应该怎么用弧度来表示?扇形的面积与弧长公式用弧度怎么表示?问题②:填写下列的表格,找出某种规律.的长对一些特殊角填表,然后概括出一般情况.教师让学生互动起来,讨论并总结出规律,提问学生的总结情况,让学生板书,教师对做正确的学生给予表扬,对没有总结完全的学生进行简单的提示.检查完毕后,教师做个总结.由上表可知,如果一个半径为r 的圆的圆心角α所对的弧长是l ,那么α的弧度数的绝对值是l α.这里,应当注意从数学思想的高度引导学生认识“换算”问题,即角度制、弧度制都是角的度量制,那么它们一定可以换算.推而广之,同一个数学对象用不同方式表示时,它们之间一定有内在联系,认识这种联系性也是数学研究的重要内容之一.教师给学生指出,角的概念推广后,在弧度制下,角的集合与实数集R 之间建立起一一对应关系:每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.值得注意的是:今后在表示与角α终边相同的角时,有弧度制与角度制两种单位制,要根据角α的单位来决定另一项的单位,即两项所用的单位制必须一致,绝对不能出现k ·360°+π3或者2k π+60°一类的写法.在弧度制中,与角α终边相同的角,连同角α在内,可以写成β=α+2k π(k ∈Z )的形式.如图2为角的集合与实数集R 之间的一一对应关系.图2讨论结果:①与角α终边相同的角,连同角α在内,可以写成β=α+2k π(k ∈Z )的形式.弧度制下关于扇形的公式为l =αR ,S =12αR 2,S =12lR . 的长例1下列命题中,真命题是( )A .一弧度是一度的圆心角所对的弧B .一弧度是长度为半径的弧C .一弧度是一度的弧与一度的角之和D .一弧度是长度等于半径长的弧所对的圆心角,它是角的一种度量单位活动:本例目的是让学生在教师的指导下理解弧度制与角度制的联系与区别,以达到熟练掌握定义.从实际教学上看,弧度制不难理解,学生结合角度制很容易记住.根据弧度制的定义:我们把长度等于半径长的弧和所对的圆心角叫做一弧度的角.对照各项,可知D 为真命题.答案:D例2象限:①-15π4;②32π3;③-20;④-2 3. 活动:本题的目的是让学生理解什么是终边相同的角,教师给予指导并讨论归纳出一般规律.即终边在x 轴、y 轴上的角的集合分别是:{β|β=k π,k ∈Z },{β|β=π2+k π,k ∈Z }.第一、二、三、四象限角的集合分别为:{β|2k π<β<2k π+π2,k ∈Z }, {β|2k π+π2<β<2k π+π,k ∈Z }, {β|2k π+π<β<2k π+3π2,k ∈Z }, {β|2k π+3π2<β<2k π+2π,k ∈Z }. 解:①-15π4=-4π+π4,是第一象限角. ②32π3=10π+2π3,是第二象限角. ③-20=-3×6.28-1.16,是第四象限角.④-23≈-3.464,是第二象限角.点评:在这类题中对于含有π的弧度数表示的角,我们先将它化为2k π+α(k ∈Z ,α∈[0,2π))的形式,再根据α角终边所在的位置进行判断,对于不含有π的弧度数表示的角,取π=3.14,化为k ×6.28+α,k ∈Z ,|α|∈[0,6.28)的形式,通过α与π2,π,3π2比较大小,估计出角所在的象限活动:本例目的是让学生在教师的指导下会用弧度制求终边相同的角,并通过独立完成课后练习真正领悟弧度制的要领,最终达到熟练掌握.从实际教学来看,用弧度制解决角的问题很容易但却难掌握,很有可能记错或者混淆或者化简错误,学生需多做些这方面的题来练基本功.可先让学生多做相应的随堂练习,在黑板上当场演练,教师给予批改指导,对易出错的地方特别强调.对学生出现的种种失误,教师不要着急,在学生的练习操作中一一纠正,这对以后学习大有好处.解:由已知,得7θ=2k π+θ,k ∈Z ,即6θ=2k π.∴θ=k 3π. 又∵0<θ<2π,∴0<k 3π<2π.∵k ∈Z ,当k =1、2、3、4、5时,θ=π3、2π3、π、4π3、5π3. 点评:本题是在一定的约束条件下,求与角α终边相同的角,一般地,首先将这样的角表示为2k π+α(k ∈Z ,α∈[0,2π))的形式,然后在约束条件下确定k 的值,进而求适合条件的角.例4已知一个扇形的周长为a ,求当扇形的圆心角多大时,扇形的面积最大,并求这个最大值.活动:这是一道应用题,并且考查了函数思想,教师提示学生回顾一下用函数法求最值的思路与步骤,教师提问学生对已学知识的掌握和巩固,并对回答好的学生进行表扬,对回答不全面的学生给予一定的提示和鼓励.教师补充,函数法求最值所包括的五个基本环节:(1)选取自变量;(2)建立目标函数;(3)指出函数的定义域;(4)求函数的最值;(5)作出相应结论.其中自变量的选取不唯一,建立目标函数结合有关公式进行,函数定义域要根据题意确定,有些函数是结构确定求最值的方法,并确保在定义域内能取到最值.解:设扇形的弧长为l ,半径为r ,圆心角为α,面积为S .由已知,2r +l =a ,即l =a -2r .∴S =12l ·r =12(a -2r )·r =-r 2+a 2r =-(r -a 4)2+a 216. ∵r >0,l =a -2r >0,∴0<r <a 2. ∴当r =a 4时,S max =a 216.此时,l =a -2·a 4=a 2,∴α=l r=2. 故当扇形的圆心角为2 rad 时,扇形的面积取最大值a 216. 点评:这是一个最大值问题,可用函数法求解,即将扇形的面积S 表示成某个变量的函课本本节练习.解答:1.(1)π8;(2)-7π6;(3)20π3. 点评:能进行角度与弧度的换算.2.(1)15°;(2)-240°;(3)54°.点评:能进行弧度与角度的换算.3.(1){α|α=k π,k ∈Z };(2){α|α=π2+k π,k ∈Z }.点评:用弧度制表示终边分别在x 轴和y 轴上的角的集合.4.(1)cos0.75°>cos0.75;(2)tan1.2°<tan1.2.点评:体会同数值不同单位的角对应的三角函数值可能不同,并进一步认识两种单位制.注意在用计算器求三角函数值之前,要先对计算器中角的模式进行设置.如求cos0.75°之前,要将角模式设置为DEG(角度制);求cos0.75之前,要将角模式设置为RAD(弧度制).5.π3m. 点评:通过分别运用角度制和弧度制下的弧长公式,体会引入弧度制的必要性.6.弧度数为1.2.点评:进一步认识弧度数的绝对值公式.课堂小结由学生总结弧度制的定义,角度与弧度的换算公式与方法.教师强调角度制与弧度制是度量角的两种不同的单位制,它们是互相联系的,辩证统一的;角度与弧度的换算,关键要理解并牢记180°=π rad 这一关系式,由此可以很方便地进行角度与弧度的换算;三个注意的问题,同学们要切记;特殊角的弧度数,同学们要熟记.重要的一点是,同学们自己找到了角的集合与实数集R 的一一对应关系,对弧度制下的弧长公式、扇形面积公式有了深刻的理解,要把这两个公式记下来,并在解决实际问题中灵活运用,表扬学生能总结出引入弧度制的好处,这种不断总结,不断归纳,梳理知识,编织知识的网络,特别是同学们善于联想、积极探索的学习品质,会使我们终生受用,这样持之以恒地坚持下去,你会发现数学王国的许多宝藏,以服务于社会,造福于人类.作业①课本习题1.1 A 组6、8、10.②课后探究训练:课本习题1.1 B 组题.设计感想本节课的设计思想是:在学生的探究活动中通过类比引入弧度制这个概念并突破这个难点.因此一开始要让学生从图形、代数两方面深入探究,不要让开始的探究成为一种摆设.如果学生一开始没有很好的理解,那么以后有些题怎么做就怎么难受.通过探究让学生明确知识依附于问题而存在,方法为解决问题的需要而产生.将弧度制的概念的形成过程自然地贯彻到教学活动中去,由此把学生的思维推到更宽的广度.本节设计的特点是由特殊到一般、由易到难,这符合学生的认知规律;让学生在探究中积累知识,发展能力,对形成科学的探究未知世界的严谨作风有着良好的启迪.但由于学生知识水平的限制,本节不能扩展太多,建议让学有余力的学生继续总结归纳用弧度来计量角的好处并为后续三角函数的学习奠定基础.根据本节特点可考虑分层推进、照顾全体.对优等生,重在引导他们变式思维的训练,培养他们求同思维、求异思维的能力,以及思维的灵活性、深刻性与创造性.鼓励他们独立思考,勇于探索,敢于创新,对正确的要予以肯定,对暴露出来的问题要及时引导、剖析纠正,使课堂学习成为再发现再创造的过程.备课资料一、密位制度量角度量角的单位制,除了角度制、弧度制外,军事上还常用密位制.密位制的单位是“密位”.1密位就是圆的16 000所对的圆心角(或这条弧)的大小.因为360°=6 000密位,所以 1°=6 000密位360≈16.7密位,1密位=360°6 000=0.06°=3.6′≈216″. 密位的写法是在百位上的数与十位上的数之间画一条短线,例如7密位写成0—07,读作“零,零七”,478密位写成4—78,读作“四,七八”.二、备用习题1.一条弦的长度等于圆的半径,则这条弦所对的圆心角的弧度数是( )A.π3B.π6C .1D .π 答案:A2.圆的半径变为原来的2倍,而弧长也增大到原来的2倍,则( )A .扇形的面积不变B .扇形的圆心角不变C .扇形的面积增大到原来的2倍D .扇形的圆心角增大到原来的2倍答案:B3.下列表示的为终边相同的角的是( )A .k π+π4与2k π+π4(k ∈Z ) B.k π2与k π+π2(k ∈Z ) C .k π-2π3与k π+π3(k ∈Z ) D .(2k +1)π与3k π(k ∈Z ) 答案:C三、钟表的分针与时针的重合问题弧度制、角度制以及有关弧度的概念,在日常生活中有着广泛的应用,我们平时所见到的时钟上的时针、分针的转动,其实质都反映了角的变化.时间的度量单位时、分、秒分别与角2π(rad),π30(rad),π1 800(rad)相对应,只是出于方便的原因,才用时、分、秒.时钟上的数学问题比较丰富,下面我们就时针与分针重合的问题加以研讨.例题 在一般的时钟上,自零时开始到分针与时针再一次重合,分针所转过的角的弧度数是多少(在不考虑角度方向的情况下)?甲生:自零时(此时时针与分针重合,均指向12)开始到分针与时针再一次重合,设时针转过了x 弧度,则分针转过了2π+x 弧度,而时针走1弧度相当于经过6π h =360πmin ,分针走1弧度相当于经过30π min ,故有360πx =30π(2π+x ),得x =2π11, ∴到分针与时针再一次重合时,分针转过的弧度数是2π11+2π=24π11(rad). 乙生:设再一次重合时,分针转过弧度数为α,则α=12(α-2π)(因为再一次重合时,时针比分针少转了一周,且分针的旋转速度是时针的12倍),得α=24π11, ∴到分针与时针再一次重合时,分针转过的弧度数是24π11(rad). 点评:两名同学得出的结果相同,其解答过程都是正确的,只不过解题的角度不同而已.甲同学是从时针与分针所走的时间相等方面列出方程求解,而乙同学则从时针与分针所转过的弧度数入手,当分针与时针再次重合时,分针所转过的弧度数α-2π与时针所转过的弧度数相等,利用弧度数之间的关系列出方程求解.。
高中数学必修四 第一章三角函数 1.1.1 任意角
2.角α,β的终边相同,α与β不一定相等 剖析因为角α,β的终边相同,所以将角α终边旋转(逆时针或顺时 针)k(k∈Z)周可得角β,所以角α,β的数量关系为β=k·360°+α(k∈Z), 即角α,β的大小相差360°的k(k∈Z)倍,因此α与β不一定相等.
3.锐角、0°~90°的角、小于90°的角、第一象限的角的区别 剖析:受初中所学角的影响,往往在解决问题时,考虑的角仅仅停 留在锐角、直角、钝角上.将角扩展到任意角后,可用集合的观点 来区别上述各类角. 锐角的集合可表示为{α|0°<α<90°}; 0°~90°的角的集合可表示为{α|0°≤α<90°}; 小于90°的角的集合可表示为{α|α<90°},其中包括锐角和零角 以及所有的负角; 第一象限的角的集合可表示为 {α|k·360°<α<k·360°+90°,k∈Z},其中有正角,也有负角.
0°<α<90°
第一象限
90°
y 轴非负半轴
90°<α<180°
第二象限
180°
x 轴非正半轴
α 的范围 180°<α<270°
α 终边的位置 第三象限
270°
y 轴非正半轴
270°<α<360°
第四象限
(2)当α<0°或α≥360°时,将α化为 k·360°+β(k∈Z,0°≤β<360°),转化为判断角β的终边所在的位置.
名师点拨要正确区分易混的概念,如锐角一定是第一象限的角,而 第一象限的角不全是锐角,如-350°,730°都是第一象限角,但它们 都不是锐角.
典型例题
题型一
判断象限角
【例1】 在0°~360°之间,求出一个与下列各角终边相同的角,
1.1任意角和弧度制(2课时)
1.1.1 任意角学习目标1、知道任意角的定义,知道正角、负角、零角与象限角的概念2、掌握终边相同角的表示方法,并能解决一些简单问题。
【重点、难点】:1、将0°—360°范围的角推广到任意角,终边相同的角的集合;2、用集合来表示终边相同的角.【知识链接】:角的定义学习过程【探索——任意角的概念】阅读课本回答下面的问题:1、初中时候学习角是怎样定义的?2、在日常生活中,你能举出几个旋转角度大于360度的例子吗?3、按____________方向旋转形成的角叫做__________;按__________方向旋转形成的角叫做__________ ;如果____________________________,我们称它形成了一个零角;综上,我们把角的概念推广到__________,任意角包括_____________________。
4、①你的手表慢了5分钟,你将怎样把它调整准确?假如你的手表快了1.3小时,你应当怎样将它调整准确?当时间调整准确后,分针转过了多少度角?②体操运动中有转体两周,在这个动作中,运动员转体多少度?5、在平面直角坐标系中讨论角时,为了讨论问题的方便,我们________________________,角的始边与x轴的__________重合,那么,___________________,我们就说这个角是_______________;如果角的终边在坐标轴上,我们则认为______________________。
【思考1】60o 角、740o角、-135o角、-510o角,分别在哪一象限?【思考2】在直角坐标系中,给定一个角,就有唯一一条边与这个角相对应吗?反之,在直角坐标系中,给定一条终边,就有唯一一个角与之相对应吗?为什么?【探索——终边相同角的表示】阅读课本第4页上端内容,将课文补充完整,并回答下面的问题:1、在直角坐标系中标出210°,-150°,570o角的终边,你有什么发现?它们之间有何数量关系?2、所有与角α终边相同的角,连同角α在内,怎样用一个集合表示出来?即任一与角α终边相同的角,都可以表示成_________________________________。
必修4第一章任意角的概念与弧度制,三角函数定义
角的概念的推广一、考点突破1. 掌握用“旋转”定义角的概念,理解并掌握“正角”“负角”“象限角”“终边相同的角”的含义;2. 掌握所有与α角终边相同的角(包括α角)的表示方法;3. 体会运动变化观点,深刻理解推广后的角的概念。
二、重难点提示重点:掌握用“旋转”定义角的概念,并进而理解“正角”“负角”“象限角”“终边相同的角”的含义。
难点:终边相同的角、第几象限角的表示。
1. 角的概念的推广:一条射线由原来位置OA,绕着它的端点O 点,可以向两个方向旋转:按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,未作任何旋转时,也看作一个角,叫零角。
这样就形成了任意大小的角。
2. 记法与运算: (1)记法:射线OA 绕O 点旋转到OB 所成的角记作∠AOB ; 射线OB 绕O 点旋转到OA 所成的角记作∠BOA ; (2)运算:各角和的旋转量等于各角旋转量的和:射线OA 绕点O 旋转到OB ,又从OB 旋转到OC ,得到∠AOC ,这个过程可表示成角的运算:∠AOC=∠AOB+∠BOC 。
3. 终边相同的角:与α终边相同的角的集合:},360|{Z k k ∈︒⨯+=αββ。
4. 象限角:角的顶点与坐标原点重合,始边与x 轴正半轴重合,此时终边在第几象限,则称这个角是第几象限角。
例题1 射线OA 绕点A 顺时针旋转80°到OB ,再逆时针旋转300°到OC ,再顺时针旋转100°到OD 位置,求AOD ∠的大小。
思路分析:利用正负角的概念结合角的运算求解。
答案:解:AOD ∠=AOB ∠+BOC ∠+COD ∠=︒=︒-+︒+︒-120)100(300)80(。
例题2 在 0~360之间,找出下列终边相同的角,并判定它们是第几象限角: (1)︒-150;(2)︒650;(3)'︒-15950。
思路分析:把负角逆时针旋转一周或者几周,即可得到 0~ 360之间的角,把超过 360 的角顺时针旋转一周或者几周,即可得到 0~ 360之间的角。
蒋王中学高一任意角、弧度(2)
1.1任意角、弧度(2)一、学习目标1、使学生理解弧度的意义,能正确地进行弧度和角度的换算,熟记特殊角的弧度数:2、了解角的集合与实数集R 之间通过弧度制建立的一一对应的关系:3、掌握弧度制下的弧长公式,会利用弧度制解决某些简单的实际问题. 重点:使学生理解弧度的意义,能正确地进行弧度和角度的换算. 难点:弧度的概念. 二、课前自学阅读必修四P7,P8(例1前、例2和例3之间) 1、 角的度量规定__________________为1度的角,用_____作为单位来度量角的制度叫作角度制. 规定_____________________________为1弧度的角,记作______,用______作为单位来度量角的制度叫作弧度制.2、 正角的弧度数是_____数,负角的弧度数是____数,零角的弧度数是_____.在弧度制下,角的集合与实数集R 之间可以建立__________的关系. 3、 角度与弧度的换算r a d _________360= ;1__________rad rad =≈ ;_________1≈=度rad填空:(1)rad ________15=(2)rad _________210=-(3)________121=π (4) _______52=π 4、扇形的半径为R ,弧长为l ,α为圆心角,扇形面积为S弧长公式:____________(α用角度表示)______________(α用弧度表示). 扇形面积公式:__________(α用角度表示)______________(α用弧度表示). 如果半径为r 的圆的圆心角α所对的弧长为l ,那么α弧度数的绝对值_______=α. 三、问题探究例1 把下列各角从弧度化为角度: (1)π53;(2)π34;(3)π125-;(4)5.3例2 把下列各角从角度化为弧度:(1)252;(2)75-;(3)600;(4)'1511例3写出终边落在阴影部分的角的集合(包括边界)例4(1)已知扇形的周长为cm 8,圆心角为rad 2,求扇形的面积.(2)一条弦的长度等于半径r ,求这条弦和其所对劣弧所围成的弓形面积.四、反馈小结反馈:1必修四 P9 T1、T2、T3、T4、T5、T6 2.一只正常的时钟,自零点开始分针与时针再一次重合,分针所转过的角的弧度数是_____3.在[]π2,0上,与π611-终边相同的角是__________. 4.已知扇形的周长为30cm ,当半径r =________,圆心角=θ_____时,扇形的面积最大,最大面积为___________. 五、课后作业1.与490-终边相同的最大负角是_____rad ,最小正角是_____rad. 2.已知),4,0(πα∈且α与角π52-的终边相同,则角α为__________. 3.已知集合{}{}44|,,22|≤≤-=∈+≤≤=x x B Z k k x k x A πππ则=⋂B A ________ 4.必修四 P10 T3、T6、T7、T8、T9、T10、T11。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学必修4任意角和弧度制
第一课时 1.1.1 任意角
教学要求:理解任意大小的角正角、负角和零角,掌握终边相同的角、象限角、区间角、终边在坐标轴上的角. 教学重点:理解概念,掌握终边相同角的表示法.
教学难点:理解角的任意大小.
教学过程:
一、复习准备:
1.提问:初中所学的角是如何定义?角的范围?
(角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形;0°~360°)
2.讨论:实际生活中是否有些角度超出初中所学的范围? → 说明研究推广角概念的必要性
(钟表;体操,如转体720°;自行车车轮;螺丝扳手)
二、讲授新课:
1.教学角的概念:
① 定义正角、负角、零角:按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,未作任何旋转所形成的角叫零角.
② 讨论:推广后角的大小情况怎样? (包括任意大小的正角、负角和零角)
③ 示意几个旋转例子,写出角的度数.
④ 如何将角放入坐标系中?→定义第几象限的角.
(概念:角的顶点与原点重合,角的始边与x 轴的非负半轴重合. 那么,角的终边(除端点外)在第几象限,我们就说这个角是第几象限角. )
⑤ 练习:试在坐标系中表示300°、390°、-330°角,并判别在第几象限?
⑥ 讨论:角的终边在坐标轴上,属于哪一个象限?
结论:如果角的终边在坐标轴上,就认为这个角不属于任何一个象限,称为非象限角.
口答:锐角是第几象限角?第一象限角一定是锐角吗?再分别就直角、钝角来回答这两个问题.
⑦ 讨论:与60°终边相同的角有哪些?都可以用什么代数式表示?
与α终边相同的角如何表示?
⑧ 结论:与α角终边相同的角,都可用式子k ×360°+α表示,k ∈Z ,写成集合呢?
⑨ 讨论:给定顶点、终边、始边的角有多少个?
注意:终边相同的角不一定相等;但相等的角,终边一定相同;终边相同的角有无数多个,它们相差360°的整数倍
2.教学例题:
① 出示例1:在0°~360°间,找出下列终边相同角:-150°、1040°、-940°.
(讨论计算方法:除以360求正余数 →试练→订正)
② 出示例2:写出与下列终边相同的角的集合,并写出-720°~360°间角.
120°、-270°、1020°
(讨论计算方法:直接写,分析k 的取值 →试练→订正)
③ 讨论:上面如何求k 的值? (解不等式法)
④ 练习:写出终边在x 轴上的角的集合,y 轴上呢?坐标轴上呢?第一象限呢?
⑤ 出示例3:写出终边直线在y =x 上的角的集合S , 并把S 中适合不等式360720α︒-≤<︒
的元素β写出来. (师生共练→小结)
3. 小结:角的推广;象限角的定义;终边相同角的表示;终边落在坐标轴时等;区间角表示.
三、巩固练习:
1. 写出终边在第一象限的角的集合?第二象限呢?第三象限呢?第四象限呢?直线y =-x 呢?
2. 作业:书P6 练习 3 ③④、4、5题.
第二课时:1.1.2 弧度制(一)
教学要求:掌握弧度制的定义,学会弧度制与角度制互化,并进而建立角的集合与实数集R 一一对应关系的概念.
教学重点:掌握换算.
教学难点:理解弧度意义.
教学过程:
一、复习准备:
1. 写出终边在x 轴上角的集合 .
2. 写出终边在y 轴上角的集合 .
3. 写出终边在第三象限角的集合 .
4. 写出终边在第一、三象限角的集合 .
5. 什么叫1°的角?计算扇形弧长的公式是怎样的?
二、讲授新课:
1. 教学弧度的意义:
① 如图:∠AOB 所对弧长分别为L 、L ’,半径分别为r 、r ’,求证:l r =''l r . ② 讨论:l r 是否为定值?其值与什么有关系?→结论:l r =180
n π=定值. ③ 讨论:l r 在什么情况下为值为1?l r
是否可以作为角的度量? ④ 定义:长度等于半径长的弧所对的圆心角叫1弧度的角. 用rad 表示,读作弧度.
⑤ 计算弧度:180°、360°→ 思考:-360°等于多少弧度?
⑥ 探究:完成书P7 表1.1-1后,讨论:半径为r 的圆心角α所对弧长为l ,则α弧度数=?
⑦ 规定:正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0. 半径为r 的圆心角α所对弧长为l ,则α弧度数的绝对值为|α|=l r
. 用弧度作单位来度量角的制度叫弧度制. ⑧ 讨论:由弧度数的定义可以得到计算弧长的公式怎样?
⑨ 讨论:1度等于多少弧度?1弧度等于多少度?→度表示与弧度表示有啥不同?
-720°的圆心角、弧长、弧度如何看?
2 .教学例题:
①出示例1:角度与弧度互化:6730' ;35rad π.
分析:如何依据换算公式?(抓住:180︒=π rad ) → 如何设计算法?
→ 计算器操作: 模式选择 MODE MODE 1(2);输入数据;功能键SHIFT DRG 1(2)=
② 练习:角度与弧度互化:0°;30°;45°;3π;2π
;120°;135°;150°;54
π ③ 讨论:引入弧度制的意义?(在角的集合与实数的集合之间建立一种一一对应的关系)
④ 练习:用弧度制表示下列角的集合:终边在x 轴上; 终边在y 轴上.
3. 小结:弧度数定义;换算公式(180︒=π rad );弧度制与角度制互化.
三、巩固练习:
1. 教材P10 练习1、2题.
2. 用弧度制表示下列角的集合:终边在直线y =x ; 终边在第二象限; 终边在第一象限.
3. 作业:教材P11 5、7、8题.
第三课时:1.1.2 弧度制(二)
教学要求:更进一步理解弧度的意义,能熟练地进行弧度与角度的换算. 掌握弧长公式,能用弧度表示终边相同的角、象限角和终边在坐标轴上的角. 掌握并运用弧度制表示的弧长公式、扇形面积公式
教学重点:掌握扇形弧长公式、面积公式.
教学难点:理解弧度制表示.
教学过程:
一、复习准备:
1. 提问:什么叫1弧度的角?1度等于多少弧度?1弧度等于多少度?扇形弧长公式?
2. 弧度与角度互换:-43π、310
π、-210°、75° 3. 口答下列特殊角的弧度数:0°、30°、45°、60°、90°、120°、135°、…
二、讲授新课:
1. 教学例题:
① 出示例:用弧度制推导:S 扇=12LR ;212
S R α=扇.
分析:先求1弧度扇形的面积(12π
πR 2)→再求弧长为L 、半径为R 的扇形面积? 方法二:根据扇形弧长公式、面积公式,结合换算公式转换.
② 练习:扇形半径为45,圆心角为120°,用弧度制求弧长、面积.
③ 出示例:计算sin 3π
、tan1.5、cos 4π
(口答方法→共练→小结:换算为角度;计算器求)
② 练习:求6π、4π、3π
的正弦、余弦、正切.
2. 练习:
①. 用弧度制写出与下列终边相同的角,并求0~2π间的角.
193
π、-675° ② 用弧度制表示终边在x 轴上角的集合、终边在y 轴上角的集合?终边在第三象限角的集合? ③ 讨论:α=k ×360°+
3π与β=2k π+30°是否正确? ④ α与-94
π的终边相同,且-2π<α<2π,则α= . ⑤ 已知扇形AOB 的周长是6cm ,该扇形的中心角是1弧度,求该扇形的面积.
解法:设扇形的半径为r ,弧长为l ,列方程组而求.
3. 小结:
扇形弧长公式、面积公式;弧度制的运用;计算器使用.
三、巩固练习:
1. 时间经过2小时30分,时针和分针各转了多少弧度?
2. 一扇形的中心角是54°,它的半径为20cm ,求扇形的周长和面积.
3. 已知角α和角β的差为10°,角α和角β的和是10弧度,则α、β的弧度数分别是 .
4. 作业:教材P10 练习4、5、6题.。