富力电池简介图文.ppt
磷酸铁锂电池ppt课件
个生产厂家采用的正、负极材料、电解质材料的质量及工艺不同,其性能上会有些差异。
例如同一种型号(同一种封装的标准电池),其电池的容量有较大差别(10%~20%)。
磷酸铁锂动力电池主要性能列于表1。为了与其他可充电电池的相比较,也在表中列出
其他种类可充电电池性能。这里要说明的是,不同工厂生产的磷酸铁锂动力电池在各项性
11
小型磷酸铁锂动力电池
小型磷酸铁锂动力电池是标准的,有圆柱形及长 方形。如圆柱型的型号有18650、26650等。型号中 前两位是表示直径,后两位或三位表示高度(单位 为mm),即18650的尺寸的直径为18,高度为65。 长方形的型号有103450R、183665R等。其前两位是 电池的厚度、中间两位是电池的宽度,后两位是电 池的长度(单位为mm)。电池生产工厂往往在型 号前加三个英文字母作厂标,例如型号为 ×××18650。
24
Gas gauge 或 fuel gauge,原义是指机动车 等油量计量表,这里引申到电池电量的计 量中,取形象意义,表示给用户汇报电池 的可用容量、剩余容量百分比、温度及可 运行时间等信息。电量计IC起的即是这种 作用。
25
电池均衡是指对串联电池包中不同的电池 (或电池组)采用差分电流。串联电池包 中每个电池的电流通常是一样的,因此必 须给电池包增加额外的元件和电路来实现 电池的均衡。只有当电池是串联的,并且 串联电池大于或等于三级时才会考虑电池 的均衡问题。
LiFePO4电池在充电时,正 极中的锂离子Li+通过聚合物隔膜 向负极迁移;在放电过程中,负极 中的锂离子Li+通过隔膜向正极迁 移。锂离子电池就是因锂离子在充 放电时来回迁移而命名的。
图1 LiFePO4电池内部结构
3
新能源动力电池介绍PPT课件
第4页/共19页
方形电池
方形锂电池通常是指铝壳或钢壳方形电池,普及率在国内很高。方形电池有采用卷绕和 叠片两种不同的工艺。
第5页/共19页
叠片式工艺简介
叠片式是将正负极极片、隔膜裁成规定尺寸的大小,随后将正极极片、隔膜、负极极片 叠合成小电芯单体,然后将小电芯单体叠放并联起来组成一个大电芯。
圆柱因压实密度较大,接触电阻较大。
圆柱为钢壳外壳,方壳多为铝制外壳,在发生不 安全事件时,爆炸威力很大。
圆柱焊点位置多;软包因外壳柔软需增加防护装 置。
圆柱因其结构特性循环性能较差,特别到循环后 期会因内部褶皱发生不安全事件。
1)圆柱因工艺标准化成本最低; 2)软包因轻量化设计,成本较铝壳低。
第9页/共19页
65%以上。从国际主流车型看,过去5年软包电池的系统能量密度提升最高,并且最高系统能量密度已经 接近特斯拉装配的松下圆柱电池。
第17页/共19页
感谢聆听!
第18页/共19页
感谢您的观看!
第19页/共19页
第10页/共19页
第11页/共19页
方形电池模组构造
➢ 模组主要由以下几个部分组成:电芯、电池模块端板、端部绝缘罩、模组侧板、绝缘膜、 线束隔离板、上盖、模组输出极、BusBar、输出极底座、输出极保护盖等部分组成。
➢ 电池 模组具有结构紧凑,零件数量少,可靠性高,焊接稳定,内阻低,重量轻,能量密 度高, 空间利用率高等优点
圆柱电池包
软包电池包
方形电池包
小容量的单体电芯导致
大容量电池,管理系统
大容量电池,管理系
管理系统
管理系统(尤其是热管 困 相对简单 理系统)的复杂程度大 难
较 统相对简单
电池组件_图文
电池组件原理
• 在P区中:的光生电子(少子)同样的先因为扩散、后因为漂移 而进入N区,光生空穴(多子)留在P区。如此便在P-N结两侧形 成了正、负电荷的积累,使N区储存了过剩的电子,P区有过剩 的空穴。从而形成与内建电场方向相反的光生电场。
电池组件操作规定
• 在更换光伏组件时,必须断开与之相应的汇流箱开关、取下正 负支路保险及拔开相连光伏组件接线。
• 光伏组件间连接插头出现烧损需更换时,必须断开与之相应的 汇流箱开关、取下正负极支路保险及拔开相连光伏组件接线。
• 光伏组件及连线上的工作和操作必须戴相应电压等级的绝缘手 套。
• 拔开光伏组件连接线插头时必须先用直流钳表确认回路无电流。 • 光伏组件表面严禁踩踏、攀登。
• 光伏组件的维护检修项目一般包括组件清洁、检测、故障处理 及损坏组件的更换等。
• a) 光伏组件的清洁 • 光伏组件在运行中应表面干净,以保证组件转换效率。光伏组
件的清洁周期应综合考虑电站所在地的人工工资、水资源价格、 环境政策等因素制定。但在下列情况下宜进行清洁: • 1) 在相同辐照度下,剔除组件衰减因素,电站发电功率下降3 至5%时。 • 2) 光伏组件出现污秽、鸟粪等异物时。 • 3) 巡检时发现光伏组件表面灰尘较多时。 • 4) 沙尘或极端天气过后
电池组件常见故障及排除方法
• 组串输出电流异常 • a)现象 • 监控系统显示汇流箱某一支路电流异常。 • b)处理 • 1)检查输出异常的汇流箱输出和各支路电流,排除通讯问题; • 2)检查支路保险是否熔断、组串插头或接线盒是否烧损; • 3)检查该组串光伏组件有无热斑或损坏。
富力电子 RT9525 单元型立物电池充电器说明书
1DS9525-01 May 2011Linear Single Cell Li-Ion Battery Charger with Auto Power PathGeneral DescriptionThe RT9525 is an integrated single cell Li-ion battery charger with Auto Power Path Management (APPM). No external MOSFET s are required. The RT9525 enters sleep mode when power is removed. Charging tasks are optimized by using a control algorithm to vary the charge rate including pre-charge mode, fast charge mode and constant voltage mode. For the RT9525, the charge current can also be programmed with an external resister.Additionally, the internal thermal feedback circuitry regulates the die temperature to optimize the charge rate for all ambient temperatures. The charging task will always be terminated in constant voltage mode when the charging current reduces to the termination current of 20%I CHG_FAST . Other features include under voltage protection and over voltage protection for the VIN supply.Featuresz 28V Maximum Rating for VIN Powerz Selectable Power Current Limit (0.1A / 0.5A / 1.5A)z Integrated Power MOSFETsz Auto Power Path Management (APPM)zProgrammable Charging Current Timer and Safe Charge Timerz Under Voltage Protection z Over Voltage Protectionz Power Good and Charger Status Indicator z Optimized Charge Rate via Thermal Feedback z 16-Lead WQFN PackagezRoHS Compliant and Halogen FreeApplicationsz Digital CameraszPDAs and Smart Phones zPortable InstrumentsOrdering InformationNote :Richtek products are :` RoHS compliant and compatible with the current require-ments of IPC/JEDEC J-STD-020.` Suitable for use in SnPb or Pb-free soldering processes.Pin Configurations(TOP VIEW)WQFN-16L 3x3BAT TS BAT NC SYS SYS E N 2E N 1G N DI S E T A S Y S O F F V I NT I M E RENP G O O D CHGMarking InformationJG = : Product CodeYMDNN : Date CodeG : Green (Halogen Free and Pb Free)2DS9525-01 May 2011Typical Application Circuit3DS9525-01 May 2011Function Block Diagram4DS9525-01 May 2011Electrical Characteristics(V IN = 5V, V BAT = 4V, T A = 25°C , unless otherwise specification)Absolute Maximum Ratings (Note 1)zSupply Input Voltage, V IN ------------------------------------------------------------------------------------------------−0.3V to 28V z CHG, PGOOD--------------------------------------------------------------------------------------------------------------−0.3V to 28V z Other Pins-------------------------------------------------------------------------------------------------------------------−0.3V to 6V z CHG, PGOOD Continuous Current ------------------------------------------------------------------------------------20mA z BAT Continuous Current (total in two pins) (Note 2)------------------------------------------------------------2.5A z Power Dissipation, P D @ T A = 25°CWQFN-16L 3x3------------------------------------------------------------------------------------------------------------1.471W z Package Thermal Resistance (Note 3)WQFN-16L 3x3, θJA -------------------------------------------------------------------------------------------------------68°C/W WQFN-16L 3x3, θJC ------------------------------------------------------------------------------------------------------7.5°C/W z Lead Temperature (Soldering, 10 sec.)-------------------------------------------------------------------------------260°C z Junction T emperature -----------------------------------------------------------------------------------------------------150°Cz Storage T emperature Range --------------------------------------------------------------------------------------------−65°C to 150°C z ESD Susceptibility (Note 4)HBM (Human Body Mode)----------------------------------------------------------------------------------------------2kV MM (Machine Mode)------------------------------------------------------------------------------------------------------200VRecommended Operating Conditions (Note 5)z Supply Input Voltage, V IN (EN2 = H, EN1 = L)---------------------------------------------------------------------4.45V to 6V z Supply Input Voltage, V IN (EN2 = L, EN1 = X)---------------------------------------------------------------------4.65V to 6V z Junction T emperature Range --------------------------------------------------------------------------------------------−40°C to 125°C zAmbient T emperature Range --------------------------------------------------------------------------------------------−40°C to 85°C5DS9525-01 May 2011To be continued6DS9525-01 May 2011Note 1. Stresses listed as the above “Absolute Maximum Ratings ” may cause permanent damage to the device. These are forstress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability.Note 2. Guaranteed by design.Note 3. θJA is measured in natural convection at T A = 25°C on a high-effective thermal conductivity four-layer test board ofJEDEC 51-7 thermal measurement standard. The measurement case position of θJC is on the exposed pad of the package.Note 4. Devices are ESD sensitive. Handling precaution is recommended.Note 5. The device is not guaranteed to function outside its operating conditions.7DS9525-01 May 2011Typical Operating CharacteristicsLoad Transient ResponseTime (1ms/Div)APPM, 1.5A Mode, V IN = 5V, V BAT = 3.7V R ISETA = 1k Ω, I SYS = 0 to 2ASYSOFF On/Off With Input Power Time (5ms/Div)V BAT (5V/Div)V SYSOFF (5V/Div)V SYS (5V/Div)I BAT(200mA/Div)V IN = 6V, V BAT= 3.7V, 1.5A Mode, R ISETA = 1k ΩV IN = 5V, V BAT = 3.7V, 1.5A Mode, R ISETA = 1k ΩCharger Detect SequenceTime (10ms/Div)V BAT (2V/Div)I BAT(500mA/Div)SYSOFF On/Off Without Input PowerTime (5ms/Div)V BAT (5V/Div)V SYSOFF (5V/Div)V SYS (5V/Div)I BAT(500mA/Div)V IN = NC, V BAT = 3.7V, 1.5A Mode,R ISETA = 1k Ω, R SYS = 10k ΩOVP FaultTime (50μs/Div)V SYS (2V/Div)V IN (10V/Div)V BAT (1V/Div)I BAT(500mA/Div)V IN = 5V to 15V, V BAT = 3.7V,1.5A Mode, R ISETA = 1k Ω, R SYS = 10ΩV INV SYSV BATI BATTime (250μs/Div)V IN (5V/Div)V BAT (2V/Div)I BAT(500mA/Div)V IN = 5V, V BAT = 3.7V, R ISETA = 620ΩBAT(1V/Div)SYS(1V/Div)V BAT = 3.7V, V SYS = GND9DS9525-01 May 2011OVP Threshold Voltage vs. Temperature6.336.366.396.426.456.486.516.54-50-25255075100125Temperature (°C)O V P T h r e s h o l d V o l t a g e (V )Charger Current vs. Temperature0.0068.75137.50206.25275.00343.75412.50481.25550.00-50-25255075100125Temperature (°C)C h a r g e r C u r r e n t (mA )Dropout Voltage (In-Out) vs. Temperature050100150200250300350400450-50-25255075100125Temperature (°C)D r o p o u t V o l t a g e (mV )Dropout Voltage (Bat-Out) vs. Temperature010203040506070-50-25255075100125Temperature (°C)D r o p o u t V o l t a g e(m V )10DS9525-01 May 2011 Application InformationThe RT9525 is a fully integrated single cell Li-ion battery charger ideal for portable applications. The internal thermal feedback circuitry regulates the die temperature to optimize the charge rate for all ambient temperatures. Other features include under voltage protection and over voltage protection.Pre-Charge ModeWhen the output voltage is lower than 2.8V, the chargingcurrent will be reduced to a fast charge current ratio set by R ISETA to protect the battery life time.Fast Charge ModeWhen the output voltage is higher than 3V, the charging current will be equal to the fast charge current set by R ISETA .Constant Voltage ModeWhen the output voltage is near 4.2V and the charging current falls below the termination current, after a deglitch time check of 25ms, the charger will become disabled and CHG will go from L to H.Re-Charge ModeWhen the chip is in charge termination mode, the charging current will gradually go down to zero. However, once the voltage of the battery drops to below 4V, there will be a deglitch time of 100ms, and then the charging current will resume again.Charging Current DecisionThe charge current can be set according to the following equations :I CHG_FAST = V ISETA / R ISETA x 300 (A)I CHG_PRE = 10% x I CHG_FAST (A)where V ISETA unit = V; R ISETA unit = ΩTime FaultThe Fast Charge Fault Time can be set according to the following equations :Fast Charge Fault Time : t FCHG = 14400 x C TIMER (s)Pre-Charge Fault Time : t PCHG = 1/8 x t FCHG (s)where C TIMER unit is μF.During the fast charge phase, several events may increase the timer duration.For example, the system load current may have activated the APPM loop which reduces the available charging current, the device has entered thermal regulation because the IC junction temperature has exceeded T REG .During each of these events, if 3V < V BAT < 4V, the internal timers are slowed down proportionately to the reduction in charging current. However, once the duration exceeds the fault time, the CHG output will flash at approximately 2Hz to indicate a fault condition and a charger current ~1mA.t FCHG_true = t FCHG xt FCHG_true : modified timer in fast charge t FCHG : original timer in fast charget FCHG = 14400 sec x ( )t PCHG =t PCHG : timer in pre-charge Time fault release :(1) Re-plug power (2) Toggle /EN(3) Enter/Exit USB suspend mode (4) Removes Battery (5) OVPNote that the fast charge fault time is independent of the charge current.Power GoodVIN Power Good (PGOOD = L)ISETA2V TIMERC 1μF FCHGt 8DS9525-01 May 2011Charge EnableWhen EN is low, the charger turns on. When EN is high,the charger turn off. EN is pulled low for initial condition.Battery Pack Temperature MonitoringThe RT9525 features an external battery pack temperaturemonitoring input. The TS input connects to the NTC thermistor in the battery pack to monitor battery temperature and prevent dangerous over temperature conditions. If at any time the voltage at TS falls outside of the operating range, charging will be suspended. The timers maintain their values but suspend counting. When charging is suspended due to a battery pack temperature fault, the CHG pin remains low and continues to indicate charging.When temperature reaches at “Too Cold ” state,R NTC = R COLDWhen temperature reaches at “Too Hot ” state,R NTC = R HOTFrom (1), (2), the R T1 and R T2 can be calculated by the following equations :T1COLD T2NTC T1COLD T2NTC (R + R )R I = 2.1V (V)(R + R ) + R where I = 75 A (typ.)μ××T1HOT T2NTC T1HOT T2(R + R )R I = 0.3V (V)(R + R ) + R ×× (1)(2)HOT COLD T1T1 HOT 1500(R + R )R 3000μμ−×=+Figure 1R Suspend ModeSet EN1 = EN2 = H, and the charger will enter Suspend Mode. In Suspend Mode, CHG is in high impedance and I SUS(MAX) < 330μA.Power SwitchFor the RT9525, there are three power scenarios :(1) When a battery and an external power supply (USB or adapter) are connected simultaneously :If the system load requirements exceed that of the input current limit, the battery will be used tosupplement the current to the load. However, if the system load requirements are less than that of the input current limit, the excess power from the external power supply will be used to charge the battery.(2)When only the battery is connected to the system :The battery provides the power to the system.(3)When only an external power supply is connected to the system :The external power supply provides the power to the system.APPM Profile 1.5A ModeI BAT I SYSI V INV BAT V INV SYS V ADPM Thermal Regulation and Thermal Shutdown The RT9525 provides a thermal regulation loop function to monitor the device temperature. If the die temperature rises above the regulation temperature, T REG , the charge current will automatically be reduced to lower the die temperature. However, in certain circumstances (such as high VIN, heavy system load, etc.) even with the thermal loop in place, the die temperature may still continue to increase. In this case, if the temperature rises above the thermal shutdown threshold, T SD , the internal switch between VIN and SYS will be turned off. The switch between the battery and SYS will remain on, however, to allow continuous battery power to the load. Once the die temperature decreases by ΔT SD , the internal switch between VIN and SYS will be turned on again and the device returns to normal thermal regulation.Input DPM ModeFor the RT9525, the input voltage is monitored when the USB100 or USB500 is selected. If the input voltage is lower than V DPM , the input current limit will be reduced to stop the input voltage from dropping any further. This can prevent the IC from damaging improperly configured or inadequately designed USB sources.APPM ModeOnce the sum of the charging and system load currents becomes higher than the maximum input current limit,the SYS pin voltage will be reduced. When the SYS pin voltage is reduced to V APPM , the RT9525 will automatically operate in APPM mode. In this mode, the charging current is reduced while the SYS current is increased to maintain system output. In APPM mode, the battery termination function is disabled.Battery Supplement Mode Short Circuit Protect In APPM mode, the SYS voltage will continue to drop if the charge current is zero and the system load increases beyond the input current limit. When the SYS voltage decreases below the battery voltage, the battery will kick in to supplement the system load until the SYS voltage rises above the battery voltage.While in supplement mode, there is no battery supplement current regulation. However, a built in short circuit protection feature is available to prevent any abnormal current situations. While the battery is supplementing the load, if the difference between the battery and SYS voltage becomes more than the short circuit threshold voltage,SYS will be disabled. After a short circuit recovery time,t SHORT_R , the counter will be restarted. In supplement mode, the battery termination function is disabled. Note that for the battery supply mode exit condition, V BAT −V SYS < 0V.Battery Disconnect (SYSOFF input)The RT9525 features a SYSOFF input that allows the user to turn off the switch to disconnect the battery from the SYS pin.DS9525-01 May 2011I BAT I SYSI USB T1T2T3T4T5T6T7V BATV USB V SYS V APPM USB 500mA ModeThermal ConsiderationsFor continuous operation, do not exceed absolute maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated by the following formula :P D(MAX) = (T J(MAX) − T A ) / θJAwhere T J(MAX) is the maximum junction temperature, T A is the ambient temperature, and θJA is the junction to ambient thermal resistance.For recommended operating condition specifications of the RT9525, the maximum junction temperature is 125°C and T A is the ambient temperature. The junction to ambient thermal resistance, θJA , is layout dependent. For WQFN-16L 3x3 packages, the thermal resistance, θJA , is 68°C/W on a standard JEDEC 51-7 four-layer thermal test board.The maximum power dissipation at T A = 25°C can be calculated by the following formula :P D(MAX) = (125°C − 25°C) / (68°C/W) = 1.471W for WQFN-16L 3x3 packageThe maximum power dissipation depends on the operating ambient temperature for fixed T J(MAX) and thermal resistance, θJA . For the RT9525 package, the derating curve in Figure 2 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.Figure 2. Derating Curve for the RT9525 Package0.000.200.400.600.801.001.201.401.60255075100125Ambient Temperature (°C)M a x i m u m P o w e r D i s s i p a t i o n (W )Layout ConsiderationsThe RT9525 is a fully integrated low cost single cell Li-Ionbattery charger ideal for portable applications. Careful PCBlayout is necessary. For best performance, place allperipheral components as close to the IC as possible. Ashort connection is highly recommended. The followingguidelines should be strictly followed when designing aPCB layout for the RT9525.` Input and output capacitor should be placed close to IC andconnected to ground plane. The trace of input in the PCBshould be placed far away from the sensitive devices ANDshielded by the ground.` The GND and exposed pad should be connected to a strongground plane for heat sinking and noise protection.` The connection of R ISETA should be isolated from othernoisy traces. A short wire is recommended to prevent EMIand noise coupling.Figure 3. PCB Layout GuideDS9525-01 May 2011Richtek Technology CorporationHeadquarter5F, No. 20, Taiyuen Street, Chupei City Hsinchu, Taiwan, R.O.C.Tel: (8863)5526789 Fax: (8863)5526611Information that is provided by Richtek Technology Corporation is believed to be accurate and reliable. Richtek reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. No third party intellectual property infringement of the applications should be guaranteed by users when integrating Richtek products into any application. No legal responsibility for any said applications is assumed by Richtek.Richtek Technology CorporationTaipei Office (Marketing)5F, No. 95, Minchiuan Road, Hsintien City Taipei County, Taiwan, R.O.C.Tel: (8862)86672399 Fax: (8862)86672377Email:*********************W-Type 16L QFN 3x3 Package。
燃料电池讲解2讲课文档
(阴极)4H++4e- = 2H2
电解槽
石墨电极
第二十一页,共25页。
Na2SO4
溶液
七、氢氧燃料电池带动小电器
电池中附有氢气的碳棒为负极,附有氧气
的碳棒为正极。
电子钟
可走数十分 钟
(+)O2+ 4e- + 4H+= 2H2O
(-)2H2-4e- + 4OH- = 4H2O
电解槽
石墨电极
第二十二页,共25页。
第八页,共25页。
3,高效率的发电装置 4,分散型的发电装置
规模最大的可以替代火力发电或核能发电,用于商业发 电。不需要庞大的设备,不需要变送电系统;与核能相 比,发生事故的危险性较小。可以建在大城市的近郊。 规模稍小的可以建在住宅小区、办公楼、厂区甚至城市 的中心地带。可以减少因长距离输送电力而产生的损耗 。面向个人用途的超小型燃料电池可以作为笔记本电脑
Na2SO4 溶液
七、氢氧燃料电池带动小电器
电池中附有氧气的碳棒为正极,附有氧
气的碳棒为正极。
电子贺卡
贺卡发出红光和 音乐声音
电解槽
石墨电极
第二十三页,共25页。
Na2SO4
溶液
八、该氢氧燃料电池的优点
装置美观,材料价廉;
操作简单,现象明显;
安全; 高效;
无污染。
第二十四页,共25页。
九、氢氧燃料电池的应用
双子星座5号飞船。现在也有一些笔记型电脑开始研究 使用燃料电池。但由于产生的电量太小,且无法瞬间 提供大量电能,只能用于平稳供电上。
第三页,共25页。
这艘212型潜艇是世界上最现代化的常规潜艇。潜艇采用的燃料电
动力电池负极材料和电解液体系介绍ppt课件
1)电导率高。要求电解液黏度低,锂盐溶解度和电离度高,Li+ 导电迁移数高;
2)稳定性好。物理稳定性好,要求电解液具备高的闪点、高的 分解温度、低的电极反应活性,搁置无副反应、时间长等;化学 稳定性好,界面稳定,具备较好的正负极材料表面成膜特性,能 在前几周充放电过程中形成稳定的阻抗固体电解质中间相 (solid electrolyte interphase,SEI膜);
ppt课件.
第五章、总结
富锂锰基动力电池电解液匹配技术研究结论
锂盐是六氟磷酸锂,溶剂是碳酸酯,5种关键添加剂已确定。
电解液匹配技术构建完成
富锂锰基动力电池电解液匹配技术最新研发方向
1、拓宽工作温度范围。分类提出不同温度性质的解决方案,如:高温需 要采用氟代酯醚、新锂盐、离子液体(熔融盐)来提高。低温电解质体 系需要采用熔点较低的腈、醚类体系,固体电解质具有较好的高温工作 性能,但低温性能可能较差,因此高温工作条件下可以采用固体电解质 。
ppt课件.
第一章、锂离子可逆充放电电池简介
1、锂离子可逆充放电电池组成 2、锂离子可逆充放电电池工作原理
ppt课件.
2、锂离子二次电池的工作原理
富锂锰基锂离子电池的工作原理
u 充电时,锂离子 和电子从正极移 动到负极,电能 转化为化学能。
u 放电时相反:锂 离子和电子从负 极移动到正极, 将化学能转化为 电能。
ppt课件.
层状 + 层状 = 层状
2、 与磷酸铁锂相比富锂锰基动力电池的优势
ppt课件.
第三章、富锂锰基动力电池电解液匹配技术 的研究进展和应用现状
1、 富锂锰基动力电池电解液的组成及重要性能
2、电解质常见缺陷和失效机制