概率论习题_(4)

合集下载

概率论习题试题集4

概率论习题试题集4

一、填空题1. 设随机变量X 服从参数为1的指数分布,则数学期望____________)(2=+-XeX E 。

2. 若随机变量X 服从均值为2,方差为2σ的正态分布,且3.0)42(=<<X P ,则__________)0(=<X P 。

3. 已知离散随机变量X 服从参数为2的泊松分布,即 ,2,1,!2)(2===-k e k k X P k ,则23-=X Z 的数学期望___________)(=Z E 。

4. 已知连续型随机变量X 的概率密度为1221)(-+-=x xe xf π,则________________,__________==DX EX 。

5. 设随机变量X 服从参数为λ的泊松分布,且)2()1(===X P X P ,则________________,__________==DX EX 。

6. 设离散随机变量X 的取值是在两次独立试验中事件A 发生的次数,如果在这些试验中事件发生的概率相同,并且已知,9.0=EX 则________=DX 。

7. 设X 表示10次独立重复射击命中目标的次数,每次命中目标的概率为4.0,则2X 的数学期望_____________2=EX 。

8. 设随机变量X 与Y 相互独立,4,2==DY DX ,则______________)2(=-Y X D 。

(12)9.若随机变量321,,X X X 相互独立,且服从相同的两点分布⎪⎪⎭⎫ ⎝⎛2.08.010,则∑==31i i X X 服从_________分布,___________________,__________==DX EX 。

10.设随机变量X 与Y 相互独立,其概率密度分别为:⎩⎨⎧≤≤=其他,010,2)(x x x ϕ,⎩⎨⎧>=--其他,05,)()5(y e y y ϕ,则_______________)(=XY E 。

二、选择题1. 已知随机变量X 服从二项分布,且44.1,4.2==DX EX ,则二项分布的参数p n ,的值为( )(A )6.0,4==p n ; (B )4.0,6==p n ; (C )3.0,8==p n ;(D )1.0,24==p n 。

概率论与数理统计课后习题答案 第四章

概率论与数理统计课后习题答案 第四章

(2) ρxy.
(1)
(2)(X,Y)的分布律为
Y X
0
1
-1
0
1
习题 4.1 1. 设随机变量 X 的概率密度为
(1) 求 E(X)
其他
(2)
解: (1)
(2) 2. 设连续型随机变量 X 的分布函数为
试确定常数 a,b,并求 E(X). 解:
(1)
其他
又因当

(2) 3. 设轮船横向摇摆的随机振幅 X 的概率密度为
的导数为 的导数为
即 即
求 E(X). 解:
4. 设 X1, X2,….. Xn 独立同分布,均值为 ,且设
D. (X,Y)~N(
)
解: 与 不相关 ρ
5. 设二维随机变量(X,Y)~N(
A.
B. 3
C. 18
解: ρ
),则 Cov(X,Y)= B . D. 36
6. 已知随机变量 X 与 Y 相互独立,且它们分别在区间[-1,3]和[2,4]上服从均匀分布,则 E(XY)= A .
A. 3
B. 6
C. 10
解: Cov(X,Y)=0
2. 设随机变量 X 的分布律为 3 .
X
-1
0
1
2

P
0.1 0.2 0.3 0.4
令 Y=2X+1,则 E(Y)=
3
.
解: E(2X+1)=(2*-1+1)*0.1+(2*0+1)*0.2+(2*1+1)*0.3+(2*2+1)*0.4=3
3. 已知随机变量 X 服从泊松分布,且 D(X)=1,则 P{X=1}=

概率论第四章 习题答案

概率论第四章 习题答案

1 ⎛2⎞ 1 DX = EX − ( EX ) = − ⎜ ⎟ = . 2 ⎝ 3 ⎠ 18 1 2 DZ = 4 DX = 4 × = . 18 9
【解毕】
9.在一次拍卖中,两人竞买一幅名画,拍卖以暗标的形式进行,并以最高价成交.设两人 的出价相互独立且均服从(1,2)上的均匀分布,求这幅画的期望成交价. 解:设两人的出价分别为随机变量 X , Y ,则这幅画的期望成交价为 Z = max { X , Y } 由题意知, X 与Y 独立,且 X ∼ U (1, 2); Y ∼ U (1, 2) 先求 Z 的分布函数 当 1 < z < 2 时, F ( z ) = P ( Z £ z ) = P (max { X , Y } £ z ) = P ( X £ z ,Y £ z )
= P( X £ z ) P (Y £ z ) = ( z -1)2
当 z £ 1 时, F ( z ) = 0 ;当 z ³ 2 时, F ( z ) = 1 于是 Z 的密度函数为 f ( z ) = ï í
ì2( z -1),1 < z < 2 ï ï 0, 其它 ï î 5 3
EZ = ò

3 X .求: ( 1)常数 a, b, c; (2) Ee . 4
【解】 (1)由概率密度的性质知,有
+∞ 2 4
1=
又因为
−∞

f ( x )dx = ∫ axdx + ∫ ( cx + b )dx = 2a + 6c + 2b.
0 2
+∞
2
4
2 = EX =
−∞
∫ xf ( x )dx = ∫ xiaxdx + ∫ x ( cx + b )dx

概率论与数理统计许承德习题四答案

概率论与数理统计许承德习题四答案

习题四r 一个袋子中装有四个球,它们上面分别标有数字1,223,今从袋中任取一球后不放回,再从袋中任取一球,以x*y分别表示第一次,第二次取出的球上的标号,求(x,y)的分布列.解(X,Y)的分布列为1212加中P(x=i, r = i)= p(x = i)p(y = iix = i)=oP(X=h r = 2) = P(X=1)P(Y = 2IX=1)1 2 1=—X—=—4 3 6余者类推。

2.将一枚硬币连掷三次,以X表示在三次中出现正面的次数,以y表示三次中出现正面次数与出现反而次数之差的绝对值,试写出(X,Y)的分布列及边缘分布列。

解-枚硬币连掷三次相当于三重贝努里试验,故X B(3,-).p(x )3, k=0丄2.3,于是(X,Y)的分布列和边缘分布为2Pj£ 8 2 8瓦中 P (X 1nI8 8 8 8=0. r = i)= p(x = o)P A = IIX =O )=O , 1 3P(x=h r = i)= p(x = i)p(r = iix = i)= cj(^/xi = ^,余者类推。

3.设(X.Y )的概率密度为c 、 一(6-x-y), 0<X<2, 2<y<4, f (兀y) = ( 80 ,其它.又(1) D = {(;v,y)lx<l,y <3} ; (2) D = {(x,y)lx + y <3}。

求P((X,y)e D}(1) P{(X, y) e D} = J J ;右(6 - X -y}dxdxy4. 1 9-4 2 __兀85 '方 设(X,Y )的概率密度为8(2) P{(X, r) e D) = J J i(6-X- y^dxdy/ *= i<!3-J^x(l-x)Jx-ij^[(3-x)'-4]J.r -0 2 0I 0 , 其他.系数C :(2) (XV )落在圆F + r<r (『<R )内的概率.(1) l = C JJ (R-下匚孑)dxdY = C7rR" -c[ :r 山d&(2)设£> = {(x,y)l 疋+ r <r}・所求概率为P{(X,r)eD}= Jf 务 R-Jx+'g'A' + >'<r-3r5・已知随机变量X 和y 的联合概率密度为4 卩 0<x<h0<y<l0 ■其它.求X 和y 的联合分布函数.解1设(X,y)的分布函数为F(x,y)»则0,J J 0 4itvchuh\I fJ oJ 0Fg y)= f f /(仏 v}diidv =<J --3C J 4-300<0<y<t 0<j<b y>l,X>t 0<y<l,0,j>t y>1. X < 0 或)< 0, 0<x<t 0<y<to<x<b y>tx>l, 0<y<l,x>l, y>L解2由联合密度可见,X#独立,边缘密度分别为边缘分布函数分别为竹(x). Fy(y}.则r o .x<(X 0<%<1,x> 1. 0, Fy (刃=J p/xU)旳 ny <0,0<y<l, y>i ・设(X#)的分布函数为Fgy),则F(x,y) = £¥(x)・Fy(y)n%<0 或 y<0, 0<%<1, 0<><10<x<t y>l, x>t 0<y<t x>U y>l ・6 •设二维随机变量(X")在区域D:O<%<1, \y\<x 内服从均匀分布, 求边缘概率密度。

概率论与数理统计:习题4解答

概率论与数理统计:习题4解答

P118习题41. 设随机变量X 的分布律为求2(),(2),()E X E X D X + 分析:用公式(())()iiiE g X g x p =∑计算解答:31111()0121424i ii E X x p ===⋅+⋅+⋅=∑ 32222211117(2)(2)(02)(12)(22)4242i i i E X x p =+=+=+⋅++⋅++⋅=∑由于32222211113()0124242ii i E X xp ===⋅+⋅+⋅=∑因此22231()()()122D XE X E X =-=-= 注:也可以先计算2()E X ,再由22(2)()2E X E X +=+和22()()()D X E X E X =-计算后两者2. 把4个球随机地投入4个盒子中,设X 表示空盒子的个数,求(),()E X D X 解答:(先计算X 的分布律:确定X 可取得值及取每个值的概率) X 可取的值为0,1,2,3443216{0}464P X ⨯⨯⨯=== 31243442136{1}464C C C P X ⨯⨯⨯⨯=== (先从4个盒子中选3个放球,剩下一个盒子空着;再从选中的3个盒子中选一个盒子放两个球;再决定4个球中哪两个放入这个盒子;最后将剩下两个球放入剩下两个盒子里)213242444(1)21{2}464C C C C P X ⨯⨯⨯+===(先从4个盒子中选2个放球,剩下两个盒子空着;在这两个盒子中放球时,分两种情况:一个盒子放3个另一个放1个,两个盒子各放2个。

第一种情况时,先选一个盒子放三个球,再决定哪3个球放入这个盒子,剩下一个球放入另一个盒子;第二种情况时,选2个球放入第一个盒子,剩下两个只能放入第二个盒子)1441{3}464C P X ===因此X 的分布律为从而()01236464646464E X =⋅+⋅+⋅+⋅= 由于22222636211129()01236464646464E X =⋅+⋅+⋅+⋅= 因此222129811695()()()()0.413864644096D XE X E X =-=-=≈3. 设随机变量X 的密度函数为2(1)01()0x x f x else -<<⎧=⎨⎩ 求(),()E X D X 分析:用公式(())()()E g X g x f x dx +∞-∞=⎰计算解答:11001()()()2(1)3E X xf x dx xf x dx x x dx +∞-∞===-=⎰⎰⎰由于112222001()()()2(1)6E X x f x dx x f x dx x x dx +∞-∞===-=⎰⎰⎰因此222111()()()()6318D XE X E X =-=-=4. 设随机变量X 的密度函数为110()1010x x f x x x else +-≤≤⎧⎪=-<≤⎨⎪⎩求(),()E X D X解答:011011()()(1)(1)066E X xf x dx x x dx x x dx +∞-∞-==++-=-+=⎰⎰⎰由于0122221111()()(1)(1)12126E X x f x dx x x dx x x dx +∞-∞-==++-=+=⎰⎰⎰ 因此()22211()()()066D XE X E X =-=-=5. 设X 表示10次独立重复射击命中目标的次数,每次命中目标的概率为0.4,求2()E X解答:由题意知,~(10,0.4)X B因此()100.44E X =⨯=,()100.40.6 2.4D X =⨯⨯= 从而()222()()() 2.4418.4E X D X E X =+=+=6. 已知随机变量X 服从参数为2的泊松分布,求(32)E X - 解答:由于~(2)X P ,因此()2E X = 从而(32)3()23224E X E X -=-=⨯-=7. 设一部机器在一天内发生故障的概率为0.2,一周5个工作日。

概率四习题

概率四习题

第四章 大数定律及中心极限定理导 学——极限论在概率研究中的应用本章是承前启后的一章:明晰了“频率与概率的关系”,这是一个遗留问题。

并将《概率论》部分划上了一个句号,这是承前;说它启后,有定理设定:⋯⋯,21,,,n X X X 独立同分布,这一设定在《数理统计》部分一直沿用了下去。

全章由四节组成,§1节特征函数,§2节大数定律,讲了三个定理, §3节随机变量序列的两种收敛性,§4节中心极限定理。

三个定理。

“大数”及“极限”均要求+∞→n ,在实际问题中,n 充分大即可。

§2节主要研究对象为:算术平均值()n X X nX +⋯+=11;§4节的主要研究对象为: n ni iX X X+⋯+=∑=11,比nX 1少了。

§2节的学习,不妨先从复习入手。

第二、三章已熟悉了()()⋅⋅D E 及,先推算出21)(,)(σμnX D X E =⋯==⋯=这是核心推导之一,后面学《数理统计》会反复使用,再由契比雪夫不等式及夹逼原理,可推出定理一,其中NX D 2)(σ=中的n1很宝贵。

定理二是由定理一推得的,关键点为:n A X X X n +⋯++=21及X X n n n ni i A ==∑=11,于是可用定理一了。

推导本身是一件很愉快的事。

§2节的三个定理可在比对中学习。

定理一(契)不要求⋯⋯,21,,,n X X X 一定为同分布,(贝)是由定理一(契)的特例。

定理二(马)不要求⋯⋯,21,,,n X X X 独立或同分布。

定理三(辛)不要求)(X D 一定存在,“契”“马”与“辛”的结论均为:μ−→−PX ,即算术平均值依概率收敛于数学期望。

“贝”的结论为:p nn PA −→−,即频率依概率收敛于概率。

这个结论很精致,十分简单了。

翻开§4节,一堆一堆的符号映入眼中,让人头大。

其实,若标准化方法娴熟,这一节并不难。

概率论习题与答案

概率论习题与答案

概率论习题 一、填空题1、掷21n +次硬币,则出现正面次数多于反面次数的概率是 .2、把10本书任意的放到书架上,求其中指定的三本书放在一起的概率.3、一批产品分一、二、三级,其中一级品是二级品的两倍,三级品是二级品的一半,从这批产品中随机的抽取一件,试求取到二级品的概率 .4、 已知()0.7,()0.3,P A P A B =-= 则().P AB =5、 已知()0.3,()0.4,()0.5,P A P B P A B === 则(|).P B A B ⋃=6、 掷两枚硬币,至少出现一个正面的概率为..7、设()0.4,()0.7,P A P A B =⋃= 若,A B 独立,则().P B =8、设,A B 为两事件,11()(),(|),36P A P B P A B === 则(|).P A B =9、设123,,A A A 相互独立,且2(),1,2,3,3i P A i == 则123,,A A A 最多出现一个的概率是.10、某人射击三次,其命中率为0.8,则三次中至多命中一次的概率为 .11、一枚硬币独立的投3次,记事件A =“第一次掷出正面”,事件B =“第二次掷出反面”,事件C =“正面最多掷出一次”。

那么(|)P C AB = 。

12、已知男人中有5%是色盲患者,女人中有0.25%是色盲患者.今从男女人数相等的人群中随机地挑选一人,恰好是色盲患者,求此人是男性的概率 。

13、将3个球随机的放入4个杯子中,求杯子中球的最大个数分别为1,2,3的概率。

14、把C B A ⋃⋃表示为互不相容事件的和是 。

15、,,A B C 中不多于两个发生可表示为 。

二、选择题1、下面四个结论成立的是( ).()().,.().()A A B C A B C B AB C A BC C A B B A D A B B A--=-⋃=∅⊂=∅⋃-=-⋃=若且则2、设()0,P AB =则下列说法正确的是( )...()0()0.()()A AB B ABC P A P BD P A B P A ==-=和不相容 是不可能事件或3、掷21n +次硬币,正面次数多于反面次数的概率为( )1..21211.0.5.21nn A B n n n C D n -++++ 4、设,A B 为随机事件,()0,(|)1,P B P A B >= 则必有( ).()()..()().()()A P AB P A B B AC P A P BD P AB P A ⋃=∈==5、设A 、B 相互独立,且P (A )>0,P (B )>0,则下列等式成立的是( ).A P (AB )=0 .B P (A -B )=P (A )P (B ) .C P (A )+P (B )=1 .D P (A |B )=06、设事件A 与B 互不相容,且P (A )>0,P (B ) >0,则有( ).A P (AB )=l .B P (A )=1-P (B ) .C P (AB )=P (A )P (B ).D P (A ∪B )=17、已知()0.5P A =,()0.4P B =,()0.6P A B +=,则(|)P A B =( ).A 0.2 .B 0.45 .C 0.6 .D 0.758、同时抛掷3枚均匀的硬币,则恰好有两枚正面朝上的概率为( ).A 0.125 .B 0.25 .C 0.375.D 0.509、设事件,A B 互不相容,已知()0.4P A =,()0.5P B =,则()P AB =( ).A 0.1 .B 0.4 .C 0.9 .D 110、已知事件A ,B 相互独立,且()0P A >,()0P B >,则下列等式成立的是( ).A ()()()P A B P A P B ⋃=+ .B ()1()()P A B P A P B ⋃=- .C ()()()P A B P A P B ⋃= .D ()1P A B ⋃=11、设1)(0<<A P ,1)(0<<B P ,1)|()|(=+B A P B A P ,则( )..A 事件A 与B 互不相容 .B 事件A 与B 相互独立 .C 事件A 与B 相互对立.D 事件A 与B 互不独立12、对于任意两事件A 和B ,)(B A P -=( )..A )()(B P A P - .B )()()(AB P B P A P +- .C )()(AB P A P -.D )()()(B A P A P A P -+13、设A 、B 是两事件,且P (A )=0.6,P(B)=0.7则P (AB )取到最大值时是( ).A 0.6 .B 0.7 .C 1 .D 0.4214、某人忘记了电话号码的最后一个数字,因而他随意地拨号。

大学概率论习题四详解

大学概率论习题四详解

大学概率论习题四详解(A)1、设随机向量),(Y X 的分布函数为),(y x F ,对任意d c b a ,,,(d c b a <<,),证明:),(),(),(),(),(c a F c b F d a F d b F d Y c b X a P +--=≤<≤<。

解 ),(),(),(d y c a X P d Y c b X P d Y c b X a P ≤<≤-≤<≤=≤<≤<),(),(),(),(c a F c b F d a F d b F +--=2、一台仪表由二个部件组成,以X 和Y 分别表示这二个部件的寿命(单位:小时),设),(Y X 的分布函数为⎩⎨⎧>>+--=+---其他00010*******y x e e e y x F y x y x ,,),()(...求二个部件的寿命同时超过120小时的概率。

解 ),(∞<<∞<<Y X P 120120090701111120120120120424221212121.)()()(),(),(),(),(......==+--+----=+∞-∞-∞∞=------e e e e e e F F F F 3、设X 等可能的取1,2,3,4中的一个,Y 等可能的取1,… ,X 中的一个,求),(Y X 的联合分布及关于Y 的边缘分布列。

解 易见,X 和Y 的取值都是1,2,3,4,且X 取i 的概率为41,此时Y 取i ,, 1中一数j 的概率为i1,因此ij Y i X P 41===),(,而当j i <时0===),(j Y i X P 。

于是得到),(Y X 的联合分布:关于Y 的边缘分布列:4、某射手,每次击中目标的概率为p )10(<<p ,射击进行到第二次击中目标为止,设i X 表示第i次击中目标时所射击的次数)2,1(=i ,求),(21X X 的联合分布列、边缘分布。

概率论第4-6章课后习题答案

概率论第4-6章课后习题答案

习题四1.设随机变量X的分布律为1 0 12求E(X),E(X2),E(2X+3).【解】(1)11111 ()(1)012;82842 E X=-⨯+⨯+⨯+⨯=(2)2222211115 ()(1)012;82844 E X=-⨯+⨯+⨯+⨯=(3)1 (23)2()32342E X E X+=+=⨯+=2.已知100个产品中有10个次品,求任意取出的5个产品中的次品数的数学期望、方差.【解】设任取出的5个产品中的次品数为X,则X的分布律为故()0.58300.34010.07020.00730405E X=⨯+⨯+⨯+⨯+⨯+⨯0.501,=52()[()]i iiD X xE X P==-∑222(00.501)0.583(10.501)0.340(50.501)00.432.=-⨯+-⨯++-⨯=3.设随机变量X的分布律为1 0 1P p1 p2 p3且已知E (X )=,E(X2)=,求P1,P2,P3. 【解】因1231P P P ++=……①,又12331()(1)010.1E X P P P P P =-++=-=……②, 222212313()(1)010.9E X P P P P P =-++=+=……③由①②③联立解得1230.4,0.1,0.5.P P P ===4.袋中有N 只球,其中的白球数X 为一随机变量,已知E (X )=n ,问从袋中任取1球为白球的概率是多少【解】记A={从袋中任取1球为白球},则(){|}{}Nk P A P A X k P X k ===∑全概率公式001{}{}1().NNk k k P X k kP X k NN n E X NN ========∑∑5.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤≤-<≤.,0,21,2,10,其他x x x x求E (X ),D (X ). 【解】1221()()d d (2)d E X xf x x x x x x x+∞-∞==+-⎰⎰⎰21332011 1.33x x x ⎡⎤⎡⎤=+-=⎢⎥⎢⎥⎣⎦⎣⎦122232017()()d d (2)d 6E X x f x x x x x x x +∞-∞==+-=⎰⎰⎰故221()()[()].6D X E X E X =-= 6.设随机变量X ,Y ,Z 相互独立,且E (X )=5,E (Y )=11,E (Z )=8,求下列随机变量的数学期望. (1) U=2X+3Y+1; (2) V=YZ4X.【解】(1) [](231)2()3()1E U E X Y E X E Y =++=++ 25311144.=⨯+⨯+= (2) [][4][]4()E V E YZ X E YZ E X =-=-,()()4()Y Z E Y E Z E X -因独立1184568.=⨯-⨯=7.设随机变量X ,Y 相互独立,且E (X )=E (Y )=3,D (X )=12,D (Y )=16,求E (3X 2Y ),D (2X3Y ).【解】(1) (32)3()2()3323 3.E X Y E X E Y -=-=⨯-⨯=(2)22(23)2()(3)412916192.D X Y D X DY -=+-=⨯+⨯= 8.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<<.,0,0,10,其他x y x k试确定常数k ,并求E (XY ).【解】因1001(,)d d d d 1,2x f x y x y x k y k +∞+∞-∞-∞===⎰⎰⎰⎰故k=210()(,)d d d 2d 0.25xE XY xyf x y x y x x y y +∞+∞-∞-∞===⎰⎰⎰⎰.9.设X ,Y 是相互独立的随机变量,其概率密度分别为fX (x )=⎩⎨⎧≤≤;,0,10,2其他x x fY (y )=(5)e ,5,0,.y y --⎧>⎨⎩其他求E (XY ).【解】方法一:先求X 与Y 的均值102()2d ,3E X x x x ==⎰5(5)5()ed 5e d e d 51 6.z y y zz E Y y yz z z +∞+∞+∞=-----=+=+=⎰⎰⎰令由X 与Y 的独立性,得2()()()6 4.3E XY E X E Y ==⨯=方法二:利用随机变量函数的均值公式.因X 与Y 独立,故联合密度为(5)2e ,01,5,(,)()()0,,y X Y x x y f x y f x f y --⎧≤≤>==⎨⎩其他于是11(5)2(5)552()2e d d 2d e d 6 4.3y y E XY xy x x y x xy y +∞+∞----===⨯=⎰⎰⎰⎰10.设随机变量X ,Y 的概率密度分别为fX (x )=⎩⎨⎧≤>-;0,0,0,22x x x e fY (y )=⎩⎨⎧≤>-.0,0,0,44y y y e求(1) E (X+Y );(2) E (2X 3Y2).【解】22-200()()d 2e d [e ]e d x x xX X xf x x x x x x+∞+∞+∞--+∞-∞==-⎰⎰⎰201e d .2x x +∞-==⎰ 401()()d 4e dy .4y Y E Y yf y y y +∞+∞--∞==⎰⎰22242021()()d 4e d .48y Y E Y y f y y y y +∞+∞--∞====⎰⎰从而(1)113()()().244E X Y E X E Y +=+=+=(2)22115(23)2()3()23288E X Y E X E Y -=-=⨯-⨯=11.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧<≥-.0,0,0,22x x cx xke求(1) 系数c;(2) E (X );(3) D (X ).【解】(1) 由222()d e d 12k x c f x x cx x k +∞+∞--∞===⎰⎰得22c k =.(2)2220()()d()2e d k x E X xf x x x k x x+∞+∞--∞==⎰⎰22220π2e d .2k x k x x k +∞-==⎰(3)222222201()()d()2e.k x E X x f x x x k x k +∞+∞--∞==⎰⎰故 222221π4π()()[()].4D X E X E X k k ⎛⎫-=-=-= ⎪ ⎪⎝⎭12.袋中有12个零件,其中9个合格品,3个废品.安装机器时,从袋中一个一个地取出(取出后不放回),设在取出合格品之前已取出的废品数为随机变量X ,求E (X )和D (X ). 【解】设随机变量X 表示在取得合格品以前已取出的废品数,则X 的可能取值为0,1,2,3.为求其分布律,下面求取这些可能值的概率,易知9{0}0.750,12P X === 39{1}0.204,1211P X ==⨯= 329{2}0.041,121110P X ==⨯⨯= 3219{3}0.005.1211109P X ==⨯⨯⨯=于是,得到X 的概率分布表如下: X 0 1 2 3 P由此可得()00.75010.20420.04130.0050.301.E X =⨯+⨯+⨯+⨯=22222222()075010.20420.04130.0050.413()()[()]0.413(0.301)0.322.E X D X E X E X =⨯+⨯+⨯+⨯==-=-=13.一工厂生产某种设备的寿命X (以年计)服从指数分布,概率密度为f (x )=⎪⎩⎪⎨⎧≤>-.0,0,0,414x x xe为确保消费者的利益,工厂规定出售的设备若在一年内损坏可以调换.若售出一台设备,工厂获利100元,而调换一台则损失200元,试求工厂出售一台设备赢利的数学期望. 【解】厂方出售一台设备净盈利Y 只有两个值:100元和200元/41/411{100}{1}e d e 4x P Y P X x +∞--==≥==⎰1/4{200}{1}1e .P Y P X -=-=<=-故1/41/41/4()100e (200)(1e )300e 20033.64E Y ---=⨯+-⨯-=-= (元). 14.设X1,X2,…,Xn 是相互独立的随机变量,且有E (Xi )=μ,D (Xi )=σ2,i=1,2,…,n ,记∑==n i i S X n X 12,1,S2=∑=--n i i X X n 12)(11.(1) 验证)(X E =μ,)(X D =n 2σ;(2) 验证S2=)(11122∑=--ni i X n X n ;(3) 验证E (S2)=σ2.【证】(1) 1111111()()().n nn i i i i i i E X E X E X E X nu u n n n n ===⎛⎫===== ⎪⎝⎭∑∑∑ 22111111()()n nni i i ii i i D X D X D X X DXn nn ===⎛⎫== ⎪⎝⎭∑∑∑之间相互独立2221.n n n σσ==(2) 因222221111()(2)2nnnniii iii i i i XX X X X X X nX X X ====-=+-=+-∑∑∑∑2222112nnii i i X nX X nX X nX===+-=-∑∑故22211()1ni i S X nX n ==--∑.(3) 因2(),()i i E X u D X σ==,故2222()()().i i i E X D X EX u σ=+=+同理因2(),()E X u D X n σ==,故222()E X u nσ=+.从而222221111()()[()()]11n ni i i i E s E X nX E X nE X n n ==⎡⎤=-=-⎢⎥--⎣⎦∑∑221222221[()()]11().1ni i E X nE X n n u n u n n σσσ==--⎡⎤⎛⎫=+-+=⎢⎥⎪-⎝⎭⎣⎦∑15.对随机变量X 和Y ,已知D (X )=2,D (Y )=3,Cov(X,Y)=1,计算:Cov (3X2Y+1,X+4Y3).【解】Cov(321,43)3()10Cov(,)8()X Y X Y D X X Y D Y -++-=+- 3210(1)8328=⨯+⨯--⨯=- (因常数与任一随机变量独立,故Cov(X,3)=Cov(Y,3)=0,其余类似). 16.设二维随机变量(X ,Y )的概率密度为f (x ,y )=221,1,π0,.x y ⎧+≤⎪⎨⎪⎩其他试验证X 和Y 是不相关的,但X 和Y 不是相互独立的.【解】设22{(,)|1}D x y x y =+≤. 2211()(,)d d d d πx y E X xf x y x y x x y +∞+∞-∞-∞+≤==⎰⎰⎰⎰2π1001=cos d d 0.πr r r θθ=⎰⎰同理E(Y)=0. 而Cov(,)[()][()](,)d d X Y x E x y E Y f x y x y+∞+∞-∞-∞=--⎰⎰222π1200111d d sin cos d d 0ππx y xy x y r r r θθθ+≤===⎰⎰⎰⎰,由此得XY ρ=,故X 与Y 不相关.下面讨论独立性,当|x|≤1时,2212112()1.ππx X x f x y x ----当|y|≤1时,1()Yf y x.显然()()(,). X Yf x f y f x y≠故X和Y不是相互独立的.17.设随机变量(X,Y)的分布律为1 0 111验证X和Y是不相关的,但X和Y不是相互独立的.【解】联合分布表中含有零元素,X与Y显然不独立,由联合分布律易求得X,Y及XY的分布律,其分布律如下表111由期望定义易得E(X)=E(Y)=E(XY)=0.从而E(XY)=E(X)·E(Y),再由相关系数性质知ρXY=0,即X与Y的相关系数为0,从而X和Y是不相关的.又331{1}{1}{1,1}888P X P Y P X Y =-=-=⨯≠==-=-从而X 与Y 不是相互独立的.18.设二维随机变量(X ,Y )在以(0,0),(0,1),(1,0)为顶点的三角形区域上服从均匀分布,求Cov (X ,Y ),ρXY.【解】如图,SD=12,故(X ,Y )的概率密度为题18图2,(,),(,)0,x y D f x y ∈⎧=⎨⎩其他.()(,)d d D E X xf x y x y =⎰⎰1101d 2d 3xx x y -==⎰⎰22()(,)d d DE X x f x y x y =⎰⎰11201d 2d 6xxx y -==⎰⎰从而222111()()[()].6318D X E X E X ⎛⎫=-=-= ⎪⎝⎭ 同理11(),().318E Y D Y == 而 11001()(,)d d 2d d d 2d .12xDDE XY xyf x y x y xy x y x xy y -====⎰⎰⎰⎰⎰⎰所以1111Cov(,)()()()123336X Y E XY E X E Y =-=-⨯=-.从而11362()()111818XY D X D Y ρ-===-⨯19.设(X ,Y )的概率密度为f (x ,y )=1ππsin(),0,0,2220.x y x y ,⎧+≤≤≤≤⎪⎨⎪⎩其他求协方差Cov (X ,Y )和相关系数ρXY.【解】π/2π/21π()(,)d d d sin()d .24E X xf x y x y x xx y y +∞+∞-∞-∞==+=⎰⎰⎰⎰ππ2222201ππ()d sin()d 2.282E X x x x y y =+=+-⎰⎰从而222ππ()()[()] 2.162D X E X E X =-=+-同理 2πππ(),() 2.4162E Y D Y ==+-又π/2π/2π()d sin()d d 1,2E XY x xy x y x y =+=-⎰⎰故2ππππ4Cov(,)()()()1.2444X Y E XY E X E Y -⎛⎫⎛⎫=-=--⨯=- ⎪ ⎪⎝⎭⎝⎭ 222222π4(π4)π8π164.πππ8π32π8π32()()2162XY D X D Y ρ-⎛⎫- ⎪--+⎝⎭===-=-+-+-+-20.已知二维随机变量(X ,Y )的协方差矩阵为⎥⎦⎤⎢⎣⎡4111,试求Z1=X 2Y 和Z2=2X Y 的相关系数.【解】由已知知:D(X)=1,D(Y)=4,Cov(X,Y)=1. 从而12()(2)()4()4Cov(,)1444113,()(2)4()()4Cov(,)414414,D Z D X Y D X D Y X Y D Z D X Y D X D Y X Y =-=+-=+⨯-⨯==-=+-=⨯+-⨯=12Cov(,)Cov(2,2)Z Z X Y X Y =--2Cov(,)4Cov(,)Cov(,)2Cov(,)2()5Cov(,)2()215124 5.X X Y X X Y Y Y D X X Y D Y =--+=-+=⨯-⨯+⨯=故121212Cov(,)5513.26()()134Z Z Z Z D Z D Z ρ===⨯21.对于两个随机变量V ,W ,若E (V2),E (W2)存在,证明: [E (VW )]2≤E(V2)E (W2). 这一不等式称为柯西许瓦兹(CouchySchwarz )不等式.【证】令2(){[]},.g t E V tW t R =+∈ 显然22220()[()][2]g t E V tW E V tVW t W ≤=+=++222[]2[][],.E V t E VW t E W t R =++∀∈ 可见此关于t 的二次式非负,故其判别式Δ≤0,即2220[2()]4()()E VW E W E V ≥∆=-2224{[()]()()}.E VW E V E W =- 故222[()]()()}.E VW E V E W ≤ 22.假设一设备开机后无故障工作的时间X 服从参数λ=1/5的指数分布.设备定时开机,出现故障时自动关机,而在无故障的情况下工作2小时便关机.试求该设备每次开机无故障工作的时间Y 的分布函数F (y ).【解】设Y 表示每次开机后无故障的工作时间,由题设知设备首次发生故障的等待时间X~E(λ),E(X)=1λ=5.依题意Y=min(X,2). 对于y<0,f(y)=P{Y≤y}=0. 对于y≥2,F(y)=P(X≤y)=1.对于0≤y<2,当x≥0时,在(0,x)内无故障的概率分布为 P{X≤x}=1eλx,所以F(y)=P{Y≤y}=P{min(X,2)≤y}=P{X≤y}=1e y/5.23.已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品.从甲箱中任取3件产品放乙箱后,求:(1)乙箱中次品件数Z 的数学期望;(2)从乙箱中任取一件产品是次品的概率.【解】(1) Z 的可能取值为0,1,2,3,Z 的概率分布为33336C C {}C k kP Z k -==, 0,1,2,3.k =Z=k 0 1 2 3Pk120 920 920 120因此,19913()0123.202020202E Z =⨯+⨯+⨯+⨯=(2) 设A 表示事件“从乙箱中任取出一件产品是次品”,根据全概率公式有3(){}{|}k P A P Z k P A Z k ====∑191921310.202062062064=⨯+⨯+⨯+⨯=24.假设由自动线加工的某种零件的内径X (毫米)服从正态分布N (μ,1),内径小于10或大于12为不合格品,其余为合格品.销售每件合格品获利,销售每件不合格品亏损,已知销售利润T (单位:元)与销售零件的内径X 有如下关系T=⎪⎩⎪⎨⎧>-≤≤<-.12,5,1210,20,10,1X X X 若若若问:平均直径μ取何值时,销售一个零件的平均利润最大 【解】(){10}20{1012}5{12}E T P X P X P X =-<+≤≤->{10}20{1012}5{12}(10)20[(12)(10)]5[1(12)]25(12)21(10) 5.P X u u P u X u u P X u u u u u u u u =--<-+-≤-≤--->-=-Φ-+Φ--Φ---Φ-=Φ--Φ--故2/2d ()125(12)(1)21(10)(1)0(()e ),d 2x E T u u x u ϕϕϕπ-=-⨯---⨯-= 令这里得 22(12)/2(10)/225e 21eu u ----=两边取对数有2211ln 25(12)ln 21(10).22u u --=--解得 125111ln 11ln1.1910.91282212u =-=-≈(毫米)由此可得,当u=10.9毫米时,平均利润最大. 25.设随机变量X 的概率密度为f(x)=⎪⎩⎪⎨⎧≤≤.,0,0,2cos 21其他πx x 对X 独立地重复观察4次,用Y 表示观察值大于π/3的次数,求Y2的数学期望. (2002研考)【解】令 π1,,3(1,2,3,4)π0,3i X Y i ⎧>⎪⎪==⎨⎪≤⎪⎩X .则41~(4,)i i Y Y B p ==∑.因为ππ{}1{}33p P X P X =>=-≤及π/30π11{}cos d 3222x P X x ≤==⎰,所以111(),(),()42,242i i E Y D Y E Y ===⨯= 2211()41()()22D Y E Y EY =⨯⨯==-,从而222()()[()]12 5.E Y D Y E Y =+=+= 26.两台同样的自动记录仪,每台无故障工作的时间Ti(i=1,2)服从参数为5的指数分布,首先开动其中一台,当其发生故障时停用而另一台自动开启.试求两台记录仪无故障工作的总时间T=T1+T2的概率密度fT(t),数学期望E (T )及方差D (T ). 【解】由题意知:55e ,0,()0,0t i t f t t -⎧≥=⎨<⎩. 因T1,T2独立,所以fT(t)=f1(t)*f2(t). 当t<0时,fT(t)=0; 当t≥0时,利用卷积公式得55()5120()()()d 5e 5e d 25e tx t x tT f t f x f t x x x t +∞-----∞=-==⎰⎰故得525e ,0,()0,0.t T t t f t t -⎧≥=⎨<⎩ 由于Ti ~E(5),故知E(Ti)=15,D(Ti)=125(i=1,2)因此,有E(T)=E(T1+T2)=25.又因T1,T2独立,所以D (T )=D (T1+T2)=225.27.设两个随机变量X ,Y 相互独立,且都服从均值为0,方差为1/2的正态分布,求随机变量|XY|的方差.【解】设Z=XY ,由于22~0,,~0,,22X N Y N ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ 且X 和Y 相互独立,故Z~N (0,1). 因22()()(||)[(||)]D X Y D Z E Z E Z -==-22()[()],E Z E Z =- 而22/21()()1,(||)||e d 2πz EZ D Z E Z z z +∞--∞===⎰2/2022e d π2πz z z +∞-==⎰,所以2(||)1πD X Y -=-.28.某流水生产线上每个产品不合格的概率为p(0<p<1),各产品合格与否相互独立,当出现一个不合格产品时,即停机检修.设开机后第一次停机时已生产了的产品个数为X ,求E (X )和D (X ). 【解】记q=1p,X 的概率分布为P{X=i}=qi1p,i=1,2,…,故12111()().1(1)i ii i q p E X iq p p q p q q p ∞∞-=='⎛⎫'===== ⎪--⎝⎭∑∑ 又221211121()()i i i i i i E X i q p i i q p iq p∞∞∞---=====-+∑∑∑2232211()12112.(1)ii q pq q pq p q p pq q p q p p p ∞=''⎛⎫''=+=+⎪-⎝⎭+-=+==-∑所以22222211()()[()].p pD XE X E X p p p --=-=-=题29图29.设随机变量X 和Y 的联合分布在点(0,1),(1,0)及(1,1)为顶点的三角形区域上服从均匀分布.(如图),试求随机变量U=X+Y 的方差. 【解】D(U)=D(X+Y)=D(X)+D(Y)+2Cov(X,Y) =D(X)+D(Y)+2[E(XY)E(X)·E(Y)].由条件知X 和Y 的联合密度为2,(,),(,)0,0.x y G f x y t ∈⎧=⎨<⎩ {(,)|01,01,1}.G x y x y x y =≤≤≤≤+≥从而11()(,)d 2d 2.X xf x f x y y y x +∞-∞-===⎰⎰因此11122300031()()d 2d ,()2d ,22X E X xf x x x x E X x x =====⎰⎰⎰22141()()[()].2918D X E X E X =-=-=同理可得31(),().218E Y D Y == 11015()2d d 2d d ,12xGE XY xy x y x x y y -===⎰⎰⎰⎰541Cov(,)()()(),12936X Y E XY E X E Y =-=-=-于是 1121()().18183618D U D X Y =+=+-=30.设随机变量U 在区间[2,2]上服从均匀分布,随机变量X=1,1,1,1,U U -≤-⎧⎨>-⎩ Y=1,1,1, 1.U U -≤⎧⎨>⎩若 试求(1)X 和Y 的联合概率分布;(2)D (X+Y ).【解】(1) 为求X 和Y 的联合概率分布,就要计算(X ,Y )的4个可能取值(1,1),(1,1),(1,1)及(1,1)的概率. P{x=1,Y=1}=P{U≤1,U≤1}112d d 1{1}444x x P U ---∞-=≤-===⎰⎰ P{X=1,Y=1}=P{U≤1,U>1}=P{∅}=0, P{X=1,Y=1}=P{U>1,U≤1}11d 1{11}44x P U -=-<≤==⎰21d 1{1,1}{1,1}{1}44x P X Y P U U P U ===>->=>=⎰.故得X 与Y 的联合概率分布为(1,1)(1,1)(1,1)(1,1)(,)~1110424X Y ----⎡⎤⎢⎥⎢⎥⎣⎦.(2) 因22()[()][()]D X Y E X Y E X Y +=+-+,而X+Y 及(X+Y )2的概率分布相应为202~111424X Y -⎡⎤⎢⎥+⎢⎥⎣⎦, 204()~1122X Y ⎡⎤⎢⎥+⎢⎥⎣⎦.从而11()(2)20,44E X Y +=-⨯+⨯=211[()]042,22E X Y +=⨯+⨯=所以22()[()][()] 2.D X Y E X Y E X Y +=+-+= 31.设随机变量X 的概率密度为f(x)=x-e 21,(∞<x<+∞)(1) 求E (X )及D (X );(2) 求Cov(X,|X|),并问X 与|X|是否不相关 (3) 问X 与|X|是否相互独立,为什么【解】(1)||1()e d 0.2x E X xx +∞--∞==⎰2||201()(0)e d 0e d 2.2x x D X x x x x +∞+∞---∞=-==⎰⎰(2) Cov(,|)(||)()(||)(||)X X E X X E X E X E X X =-=||1||e d 0,2x x x x +∞--∞==⎰所以X 与|X|互不相关.(3) 为判断|X|与X 的独立性,需依定义构造适当事件后再作出判断,为此,对定义域∞<x<+∞中的子区间(0,+∞)上给出任意点x0,则有0000{}{||}{}.x X x X x X x -<<=<⊂<所以000{||}{} 1.P X x P X x <<<<<故由00000{,||}{||}{||}{}P X x X x P X x P X x P X x <<=<><<得出X 与|X|不相互独立.32.已知随机变量X 和Y 分别服从正态分布N (1,32)和N (0,42),且X 与Y 的相关系数ρXY=1/2,设Z=23YX +. (1) 求Z 的数学期望E (Z )和方差D (Z ); (2) 求X 与Z 的相关系数ρXZ; (3) 问X 与Z 是否相互独立,为什么【解】(1) 1().323X Y E Z E ⎛⎫=+= ⎪⎝⎭()2Cov ,3232XY X Y D Z D D ⎛⎫⎛⎫⎛⎫=++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11119162Cov(,),9432X Y =⨯+⨯+⨯⨯而1Cov(,)()()3462XY X Y D X D Y ρ⎛⎫==-⨯⨯=- ⎪⎝⎭所以 1()146 3.3D Z =+-⨯=(2) 因()()11Cov(,)Cov ,Cov ,Cov ,3232X Y X Z X X X X Y ⎛⎫=+=+ ⎪⎝⎭119()(6)3=0,323D X =+⨯-=- 所以0.()()XZ D X D Z ρ==(3) 由0XZρ==,得X 与Z 不相关.又因1~,3,~(1,9)3Z N X N ⎛⎫⎪⎝⎭,所以X 与Z 也相互独立.33.将一枚硬币重复掷n 次,以X 和Y 表示正面向上和反面向上的次数.试求X 和Y 的相关系数XY ρ.【解】由条件知X+Y=n ,则有D (X+Y )=D (n )=0.再由X~B(n,p),Y~B(n,q),且p=q=12,从而有 ()()4nD X npq D Y ===所以0()()()2()()XY D X Y D X D Y D X D Y ρ=+=++2,24XY n nρ=+ 故XY ρ= 1.34.设随机变量X 和Y 的联合概率分布为1 0 10 1试求X 和Y 的相关系数ρ.【解】由已知知E(X)=,E(Y)=,而XY 的概率分布为YX 10 1 P所以E (XY )=+= Cov(X,Y)=E(XY)E(X)·E(Y)=×=0从而XY ρ=035.对于任意两事件A 和B ,0<P(A)<1,0<P(B)<1,则称Y Xρ=())()()()()()(B P A P B P A P B P A P AB P ⋅-为事件A 和B 的相关系数.试证:(1) 事件A 和B 独立的充分必要条件是ρ=0; (2) |ρ|≤1.【证】(1)由ρ的定义知,ρ=0当且仅当P(AB)P(A)·P(B)=0.而这恰好是两事件A 、B 独立的定义,即ρ=0是A 和B 独立的充分必要条件. (2) 引入随机变量X 与Y 为1,,0,A X A ⎧⎪=⎨⎪⎩若发生若发生; 1,,0,B Y B ⎧⎪=⎨⎪⎩若发生若发生.由条件知,X 和Y 都服从01分布,即01~1()()X P A P A ⎧⎨-⎩ 01~1()()Y P B P B ⎧⎨-⎩从而有E(X)=P(A),E(Y)=P(B),D(X)=P(A)·P(A ),D(Y)=P(B)·P(B ), Cov(X,Y)=P(AB)P(A)·P(B)所以,事件A 和B 的相关系数就是随机变量X 和Y 的相关系数.于是由二元随机变量相关系数的基本性质可得|ρ|≤1. 36. 设随机变量X 的概率密度为fX(x)=⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<<-.,0,20,41,01,21其他x x令Y=X2,F (x,y )为二维随机变量(X ,Y )的分布函数,求: (1) Y 的概率密度fY(y); (2) Cov(X,Y);(3)1(,4)2F -.解: (1) Y 的分布函数为2(){}{}Y F y P Y y P X y =≤=≤.当y≤0时, ()0Y F y =,()0Y f y =;当0<y <1时,(){{0}{0Y F y P X P X P X =≤≤=≤<+≤≤=,()Y f y =;当1≤y<4时,1(){10}{02Y F y P X P X =-≤<+≤≤=()Y f y =;当y≥4时,()1Y F y =,()0Y f y =.故Y 的概率密度为1,()04,0,.Y y f y y <<=≤<⎪⎩其他(2)210111()()d d d 244+X E X =xf x x x x x x ∞∞=+=⎰⎰⎰--,2222210115()()()d d d )246+X E Y =E X =x f x x x x x x ∞∞=+=⎰⎰⎰--,2233310117()()()d d d 248+X E XY =E Y =x f x x x x x x ∞∞=+=⎰⎰⎰--, 故 Cov(X,Y) =2()()()3E XY E X E Y =⋅-.(3) 2111(,4){,4}{,4}222F P X Y P X X -=≤-≤=≤-≤11{,22}{2}22P X X P X =≤--≤≤=-≤≤-11{1}24P X =-≤≤-=. 37. 习题五1.一颗骰子连续掷4次,点数总和记为X.估计P{10<X<18}.【解】设iX 表每次掷的点数,则41ii X X ==∑22222221111117()123456,666666211111191()123456,6666666i i E X E X =⨯+⨯+⨯+⨯+⨯+⨯==⨯+⨯+⨯+⨯+⨯+⨯= 从而22291735()()[()].6212i ii D X E X E X ⎛⎫=-=-= ⎪⎝⎭ 又X1,X2,X3,X4独立同分布.从而44117()()()414,2i i i i E X E X E X =====⨯=∑∑44113535()()()4.123i i i i D X D X D X =====⨯=∑∑所以235/3{1018}{|14|4}10.271,4P X P X <<=-<≥-≈2. 假设一条生产线生产的产品合格率是.要使一批产品的合格率达到在76%与84%之间的概率不小于90%,问这批产品至少要生产多少件【解】令1,,0,i i X ⎧⎨⎩若第个产品是合格品其他情形.而至少要生产n 件,则i=1,2,…,n,且 X1,X2,…,Xn 独立同分布,p=P{Xi=1}=. 现要求n,使得1{0.760.84}0.9.nii XP n=≤≤≥∑即0.80.9niXnP -≤≤≥∑由中心极限定理得0.9,Φ-Φ≥整理得0.95,10⎛Φ≥ ⎝⎭查表 1.64,≥n≥, 故取n=269.3. 某车间有同型号机床200部,每部机床开动的概率为,假定各机床开动与否互不影响,开动时每部机床消耗电能15个单位.问至少供应多少单位电能才可以95%的概率保证不致因供电不足而影响生产.【解】要确定最低的供应的电能量,应先确定此车间同时开动的机床数目最大值m ,而m 要满足200部机床中同时开动的机床数目不超过m 的概率为95%,于是我们只要供应15m 单位电能就可满足要求.令X 表同时开动机床数目,则X~B (200,),()140,()42,E X D X ==0.95{0}().P X m P X m =≤≤=≤=Φ 查表知1.64,= ,m=151.所以供电能151×15=2265(单位).4. 一加法器同时收到20个噪声电压Vk (k=1,2,…,20),设它们是相互独立的随机变量,且都在区间(0,10)上服从均匀分布.记V=∑=201k kV,求P{V >105}的近似值.【解】易知:E(Vk)=5,D(Vk)=10012,k=1,2,…,20由中心极限定理知,随机变量201205~(0,1).10010020201212kk VZ N =-⨯==⨯⨯∑近似的于是105205{105}1010020201212P V P ⎧⎫⎪⎪-⨯⎪>=>⎨⎬⎪⎪⨯⨯⎪⎪⎩⎭ 1000.3871(0.387)0.348,102012V P ⎧⎫⎪⎪-⎪⎪=>≈-Φ=⎨⎬⎪⎪⨯⎪⎪⎩⎭即有 P{V>105}≈5. 有一批建筑房屋用的木柱,其中80%的长度不小于3m.现从这批木柱中随机地取出100根,问其中至少有30根短于3m 的概率是多少 【解】设100根中有X 根短于3m ,则X~B (100,) 从而{30}1{30}11000.20.8P X P X ≥=-<≈-Φ⨯⨯1(2.5)10.99380.0062.=-Φ=-=6. 某药厂断言,该厂生产的某种药品对于医治一种疑难的血液病的治愈率为.医院检验员任意抽查100个服用此药品的病人,如果其中多于75人治愈,就接受这一断言,否则就拒绝这一断言.(1) 若实际上此药品对这种疾病的治愈率是,问接受这一断言的概率是多少 (2) 若实际上此药品对这种疾病的治愈率是,问接受这一断言的概率是多少【解】1,,1,2,,100.0,.i i X i ⎧==⎨⎩第人治愈其他令1001.i i X X ==∑(1) X~B(100,,1001{75}1{75}1i i P X P X =>=-≤≈-Φ∑1( 1.25)(1.25)0.8944.=-Φ-=Φ= (2) X~B(100,,1001{75}1{75}1i i P X P X =>=-≤≈-Φ∑11(1.09)0.1379.=-Φ=-Φ=7. 用Laplace 中心极限定理近似计算从一批废品率为的产品中,任取1000件,其中有20件废品的概率.【解】令1000件中废品数X ,则 p=,n=1000,X~B(1000,, E(X)=50,D(X)=. 故130{20} 6.895 6.895P X ϕ⎛⎫===- ⎪⎝⎭6130 4.510.6.895 6.895ϕ-⎛⎫==⨯ ⎪⎝⎭8. 设有30个电子器件.它们的使用寿命T1,…,T30服从参数λ=[单位:(小时)-1]的指数分布,其使用情况是第一个损坏第二个立即使用,以此类推.令T 为30个器件使用的总计时间,求T 超过350小时的概率.【解】11()10,0.1i E T λ=== 21()100,i D T λ==()1030300,E T =⨯= ()3000.D T = 故{350}111(0.913)0.1814.P T >≈-Φ=-Φ=-Φ=9. 上题中的电子器件若每件为a 元,那么在年计划中一年至少需多少元才能以95%的概率保证够用(假定一年有306个工作日,每个工作日为8小时). 【解】设至少需n 件才够用.则E(Ti)=10,D(Ti)=100, E(T)=10n ,D(T)=100n.从而1{3068}0.95,ni i P T =≥⨯=∑即0.05.≈Φ 故0.95,1.64272.n =Φ=≈所以需272a 元.10. 对于一个学生而言,来参加家长会的家长人数是一个随机变量,设一个学生无家长、1 名家长、2名家长来参加会议的概率分别为,,.若学校共有400名学生,设各学生参加会议的家长数相与独立,且服从同一分布. (1) 求参加会议的家长数X 超过450的概率(2) 求有1名家长来参加会议的学生数不多于340的概率.【解】(1) 以Xi(i=1,2,…,400)记第i 个学生来参加会议的家长数.则Xi 的分布律为易知E (Xi=),D(Xi)=,i=1,2, (400)而400iiX X =∑,由中心极限定理得400400 1.1~(0,1).iXN -⨯=∑近似地于是{450}1{450}1P X P X >=-≤≈-Φ1(1.147)0.1357.=-Φ=(2) 以Y 记有一名家长来参加会议的学生数.则Y~B(400,由拉普拉斯中心极限定理得3404000.8{340(2.5)0.9938.4000.80.2P Y -⨯⎛⎫≤≈Φ=Φ= ⎪⨯⨯⎝⎭11. 设男孩出生率为,求在10000个新生婴儿中女孩不少于男孩的概率【解】用X 表10000个婴儿中男孩的个数,则X~B (10000,)要求女孩个数不少于男孩个数的概率,即求P{X≤5000}. 由中心极限定理有{5000}(3)1(3)0.00135.100000.5150.485P X ≤≈Φ=Φ-=-Φ= ⎪⨯⨯⎝⎭12. 设有1000个人独立行动,每个人能够按时进入掩蔽体的概率为.以95%概率估计,在一次行动中:(1)至少有多少个人能够进入 (2)至多有多少人能够进入【解】用Xi 表第i 个人能够按时进入掩蔽体(i=1,2,...,1000). 令 Sn=X 1+X2+ (X1000)(1) 设至少有m 人能够进入掩蔽体,要求P{m≤Sn≤1000}≥,事件{}.10000.90.190nn m S ≤=≤ ⎪⨯⨯⎝⎭ 由中心极限定理知:{}1{}10.95.10000.90.1n n P m S P S m ≤=-<≈-Φ≥ ⎪⨯⨯⎝⎭ 从而 0.05,90Φ≤ ⎪⎝⎭故 1.65,90=-所以 m==≈884人(2) 设至多有M 人能进入掩蔽体,要求P{0≤Sn≤M}≥.{}0.95.90n P S M ≤≈Φ= ⎪⎝⎭查表知90=,M=900+=≈916人. 13. 在一定保险公司里有10000人参加保险,每人每年付12元保险费,在一年内一个人死亡的概率为,死亡者其家属可向保险公司领得1000元赔偿费.求: (1) 保险公司没有利润的概率为多大;(2) 保险公司一年的利润不少于60000元的概率为多大 【解】设X 为在一年中参加保险者的死亡人数,则X~B (10000,).(1) 公司没有利润当且仅当“1000X=10000×12”即“X=120”. 于是所求概率为{120}100000.0060.994100000.0060.994P X ϕ=≈⎪⨯⨯⨯⨯⎝⎭21(60/59.64)230.1811e 59.6459.64259.640.0517eϕπ--== ⎪⎝⎭=⨯≈(2) 因为“公司利润≥60000”当且仅当“0≤X≤60”于是所求概率为{060}100000.0060.994100000.0060.994P X ≤≤≈Φ-Φ⨯⨯⨯⨯ (0)0.5.59.64⎛=Φ-Φ≈ ⎝14. 设随机变量X 和Y 的数学期望都是2,方差分别为1和4,而相关系数为试根据契比雪夫不等式给出P{|X-Y|≥6}的估计. (2001研考) 【解】令Z=X-Y ,有()0,()()()()2()() 3.E Z D Z D X Y D X D Y D X D Y ρ==-=+-=所以2()31{|()|6}{||6}.63612D X Y P Z E Z P X Y --≥=-≥≤==15. 某保险公司多年统计资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查的100个索赔户中,因被盗向保险公司索赔的户数. (1) 写出X 的概率分布;(2) 利用中心极限定理,求被盗索赔户不少于14户且不多于30户的概率近似值. (1988研考)【解】(1) X 可看作100次重复独立试验中,被盗户数出现的次数,而在每次试验中被盗户出现的概率是,因此,X~B(100,,故X 的概率分布是100100{}C 0.20.8,1,2,,100.k k k P X k k -===(2) 被盗索赔户不少于14户且不多于30户的概率即为事件{14≤X≤30}的概率.由中心极限定理,得{1430}P X ≤≤≈Φ-Φ(2.5)( 1.5)0.994[9.33]0.927.=Φ-Φ-=--=16. 一生产线生产的产品成箱包装,每箱的重量是随机的.假设每箱平均重50千克,标准差为5千克,若用最大载重量为5吨的汽车承运,试利用中心极限定理说明每辆车最多可以装多少箱,才能保障不超载的概率大于.【解】设Xi (i=1,2,…,n)是装运i 箱的重量(单位:千克),n 为所求的箱数,由条件知,可把X1,X2,…,Xn 视为独立同分布的随机变量,而n 箱的总重量Tn=X1+X2+…+Xn 是独立同分布随机变量之和,由条件知:()50,i E X =5,=()50,n E T n ==依中心极限定理,当n~(0,1)N 近似地,故箱数n 取决于条件{5000}n P T P ≤=≤0.977(2).n ≈Φ>=Φ ⎪⎝⎭因此可从2n >解出n<,即最多可装98箱. 习题六1.设总体X~N (60,152),从总体X 中抽取一个容量为100的样本,求样本均值与总体均值之差的绝对值大于3的概率. 【解】μ=60,σ2=152,n=100~(0,1)/X Z N n σ-=即60~(0,1)15/10X Z N -=(|60|3)(||30/15)1(||2)P X P Z P Z ->=>=-<2[1(2)]2(10.9772)0.0456.=-Φ=-=2.从正态总体N (,52)中抽取容量为n 的样本,若要求其样本均值位于区间(,)内的概率不小于,则样本容量n 至少取多大 【解】~(0,1)5/X Z N n -=2.2 4.2 6.2 4.2(2.2 6.2)()55P X P n Z n --<<=<< 2(0.4)10.95,n =Φ-=则Φn =,故n >, 即n>,所以n 至少应取253.设某厂生产的灯泡的使用寿命X~N (1000,σ2)(单位:小时),随机抽取一容量为9的样本,并测得样本均值及样本方差.但是由于工作上的失误,事后失去了此试验的结果,只记得样本方差为S2=1002,试求P(X>1062).【解】μ=1000,n=9,S2=10021000~(8)100/3X Xt t-==10621000(1062)()( 1.86)0.05100/3P X P t P t->=>=>=4.从一正态总体中抽取容量为10的样本,假定有2%的样本均值与总体均值之差的绝对值在4以上,求总体的标准差.【解】~(0,1)Z N=,由P(|X-μ|>4)=得P|Z|>4(σ/n)=,故210.02σ⎡⎤⎛-Φ=⎢⎥⎢⎥⎝⎭⎣⎦,即0.99.Φ=⎝⎭查表得2.33,σ=所以5.43.σ==5.设总体X~N(μ,16),X1,X2,…,X10是来自总体X的一个容量为10的简单随机样本,S2为其样本方差,且P(S2>a)=,求a之值.【解】2222299~(9),()0.1.1616S aP S a Pχχχ⎛⎫=>=>=⎪⎝⎭查表得914.684,16a=所以14.6841626.105.9a⨯==6.设总体X服从标准正态分布,X1,X2,…,Xn是来自总体X的一个简单随机样本,试问统计量Y=∑∑==-ni ii i X X n 62512)15(,n >5服从何种分布【解】2522222211~(5),~(5)inii i i X X X n χχχ====-∑∑且12χ与22χ相互独立.所以2122/5~(5,5)/5X Y F n X n =--7.求总体X~N (20,3)的容量分别为10,15的两个独立随机样本平均值差的绝对值大于的概率.【解】令X 的容量为10的样本均值,Y 为容量为15的样本均值,则X ~N(20,310),Y ~N(20,315),且X 与Y 相互独立.则33~0,(0,0.5),1015X Y N N ⎛⎫-+= ⎪⎝⎭那么~(0,1),X YZ N =所以(||0.3)||2[1(0.424)]P X Y P Z Φ⎛->=>=- ⎝2(10.6628)0.6744.=-=8.设总体X~N (0,σ2),X1,…,X10,…,X15为总体的一个样本.则Y=()21521221121022212X X X X X X ++++++ 服从 分布,参数为 .【解】~(0,1),iX N σi=1,2, (15)那么122210152222111~(10),~(5)i i i i X X χχχχσσ==⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭∑∑且12χ与22χ相互独立,所以222110122211152/10~(10,5)2()/5X X X Y F X X X ++==++所以Y~F 分布,参数为(10,5).9.设总体X~N (μ1,σ2),总体Y~N(μ2,σ2),X1,X2,…,1n X 和Y1,Y2,…,2n X 分别来自总体X 和Y 的简单随机样本,则⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+-+-∑∑==2)()(21121221n n Y Y X X E n j j n i i = .【解】令 1222212111211(),(),11n n i i i j S X X S Y Y n n ===-=---∑∑则122222112211()(1),()(1),n n i j i j X X n S y y n S ==-=--=-∑∑又2222221122112222(1)(1)~(1),~(1),n S n S n n χχχχσσ--=-=-那么1222112222121212()()1()22n n i j i j X X Y Y E E n n n n σχσχ==⎡⎤-+-⎢⎥⎢⎥=+⎢⎥+-+-⎢⎥⎣⎦∑∑2221212221212[()()]2[(1)(1)]2E E n n n n n n σχχσσ=++-=-+-=+-10.设总体X~N (μ,σ2),X1,X2,…,X2n (n≥2)是总体X 的一个样本,∑==ni i X n X 2121,令Y=∑=+-+ni i n iX X X12)2(,求E(Y).【解】令Zi=Xi+Xn+i, i=1,2,…,n.则Zi~N(2μ,2σ2)(1≤i≤n),且Z1,Z2,…,Zn 相互独立.令 2211, ()/1,nni i i i Z Z S Z Z n n ====--∑∑则21111,222nn i i i i X X Z Z n n =====∑∑ 故 2Z X = 那么22211(2)()(1),n ni n i i i i Y X X X Z Z n S +===+-=-=-∑∑所以22()(1)2(1).E Y n ES n σ=-=-11. 设总体X 的概率密度为f(x)=x-e 21 (-∞<x<+∞),X1,X2,…,Xn 为总体X 的简单随机样本,其样本方差为S2,求E(S2). 解: 由题意,得1e , 0,2()1e ,0,2xx x f x x -⎧<⎪⎪=⎨⎪≥⎪⎩于是 22222220()()()()1()()d e d 021()()d e d e d 2,2xx x E S D X E X E X E X xf x x x x E X x f x x x x x x +∞+∞--∞-∞+∞+∞+∞---∞-∞==-=======⎰⎰⎰⎰⎰所以2()2E S =.。

概率论与数理统计 自测题4

概率论与数理统计 自测题4

=
1 n
n

i=1
Xi
,则【

( A)
Cov(
X1
,
Y
)
=
σ2 n
.
(C)
D(
X1
+
Y
)
=
(n
+ n
2)
σ
2.
(B) Cov( X1,Y ) = σ 2.
(D)
D( X1
−Y
)
=
n +1σ n
2.
三、计算
1.
设随机变量X1服从 λ
=
1 2
的指数分布,X2的概率分布密度函数
f
(
x)
=
⎧⎪⎨cxe−
x 2
A 18
B9
C 30
D 36
3.设X是随机变量,EX=μ,DX=σ2,则对任意常数C,必有 【 】
A
E(X-C)2=EX2-C2
B E(X-C)2=E(X-μ)2
C
E(X-C)2≤E(X-μ)2
D E(X-C)2≥E(X-μ)2
23
4.设随机变量 X 的密度函数为
f (x) =
π
(1
1 +
x
2
)
(−∞
10.随机变量 X 服从参数为λ的指数分布,则 P{X > DX } = 。
1 0.15 0.20
。 .
二、选择题
1.设随机变量
X
的概率密度函数为
f

x
)=
⎧⎪0.1e−0.1x ⎨
x>0
,则 E(2X+1)=【

⎪⎩ 0

概率论习题及解答-第四章特征函数

概率论习题及解答-第四章特征函数

的一个新分割, 且
∑n ∑ m
ξ +η =
(xi + yj )1AiBj .
i=1 j=1
所以由数学期望的定义和概率的有限可加性得
∑n ∑ m
∑n ∑ m
∑n ∑ m
E(ξ + η) =
(xi + yj)P(AiBj) =
xiP(AiBj) +
yj P(AiBj )
i=1 j=1
i=1 j=1
i=1 j=1
概率论习题解答
李勇 张余辉
May 30, 2018
1 第四章 数字特征与特征函数
§4.1.4 练习题
练习4.1.1 设 ξ 和 η 均为简单随机变量, 试证明 E(ξ + η) = E(ξ) + E(η).
证明: 不妨假设
∑n ξ = xi1Ai ,
i=1
∑ m η = yj 1Bj ,
j=1
其中 {Ai} 和 {Bj} 均为样本空间的分割. 记 Cij = AiBj, 则 {Cij : 1 i n, 1 j m} 构成样本空间
解: 记 ξ = min{ξ1, ξ2, · · · , ξn}, η = max{ξ1, ξ2, · · · , ξn}, 则 (ξ, η) 的联合密度函数
p(ξ,η)(x, y) = n(n − 1)(y − x)n−2, 0 < x < y < 1,
所以 ξ 和 η 的边缘密度函数分别为 ∫∞
∑n
∑ m
= xiP(Ai) + yjP(Bj) = E(ξ) + E(η).
i=1
j=1
练习4.1.2 假设简单随机变量 ξ 和 η 相互独立, 试证明

(完整版)概率论第四章答案

(完整版)概率论第四章答案

60解 E(Y) E(2X) 2E(X) 2 xe xdx 2,E(Z) E(e 2X ) e 2x e x dx 1.33. 游客乘电梯从底层到电视塔顶观光 , 电梯于每个整点的第 5 分钟、第 25 分钟和第 55分钟从底层起行 . 假设一游客在早八点的第 X 分钟到达底层侯梯处 , 且 X 在区间[0, 60] 上服从均匀分布 . 求该游客等候电梯时间的数学期望 . 解已知X 在[0,60] 上服从均匀分布 , 其概率密度为1X -20 2 P0.40.30.3E(X);E(2-3 X); E(X 2);2 E(3X 25).解 由定义和数学期望的性质知E(X) ( 2) 0.4 0 0.3 2 0.30.2;E(2 3X) 2 3E(X ) 2 3 (0 2) 2.6; E(X 2) ( 2)2 0.4 0 20.3220 3 2.8 ;E(3X 2 5) 3E(X 2)53 2.8 5 13.4. 2. 设随机变量 X 的概率密度为xe, x 0, 1. 设随机变量 X 的分布律为习题 4-1f (x)2X求Y 2X 和Z e 2X的数学期望 .0,x ≤0.0,其它.记Y 为游客等候电梯的时间,则5 X, 0 X ≤5,25 X,5 X ≤25,Y g(X)55 X, 25 X ≤55,65 X,55 X ≤60.160 因此, E(Y) E[g(X)] g(x) f (x)dxg(x)dxf (x) 60, 0≤x≤60,60(A) 若 X ~ B(n, p),则E(X) np.c a , Yc,X 1, X 0.于是 E(Y) (c a) P{ X 1} c P{X 0} ap c .据题意有 ap c a 10% , 因此应要求顾客角保费 c (0.1 p)a .习题 4-21. 选择题(1) 已知 E(X ) 1,D(X)3 则 E[3(X2 2)2] ().(A) 9.(B) 6.(C) 30.(D)36解 E[3(X 2)2] 3E(X24X 4)3[E(X 2)4E(X)4]3{D(X) [E(X)]2 4E(X) 4}3 (3 14 4) 36 .可见,应选 (D).(2) 设 X ~ B(n, p),E(X )6,D(X) 3.6 , 则有 ( ).(A) n 10, p 0.6 . (B) n 20, p 0.3 (C) n 15, p 0.4 .(D) n 12, p 0.5解 因为 X ~ B(n, p), 所以 E(X)=np,D(X)=np(1-p), 得到 np=6, np(1-p)=3n=15 , p=0.4 . 可见,应选 (C).(3) 设 X 与 Y 相互独立,且都服从2N( , 2) , 则有 ( ).(A) E(X Y) E(X) E(Y). (B) E(X Y) 2 .(C) D(X Y) D(X)D(Y).(D) D(XY) 2 2.解 注意到 E(X Y) E(X) E(Y) 0.由于 X 与Y 相互独立 ,所以D(X Y) D(X) D(Y) 222. 选 (D).(4) 在下列结论中 , 错误的是 ().6 . 解之 ,1 5 25(5 x)dx (25 x)dx600 5=11.67(分钟 )..14. 某保险公司规定 , 如果在一年内顾客的投保事件 A 发生 , 该公司就赔偿顾客 a 元. 若一年内事件 A 发生的概率为 p, 为使该公司受益的期望值等于 a 的 10%, 该公司应该要求 顾客交多少保险费?解 设保险公司要求顾客交保费 55(55 x)dx60 (65 x)dx55c 元. 1, 0, 则 P{X 1} p, P{X 0} p . 引入随机变量 事件A 发生, 事件A 不发生. 保险公司的受益值(B) 若 X ~ U 1,1 ,则 D(X) 0 . (C) 若 X 服从泊松分布 , 则 D(X) E(X).(D) 若 X ~ N( , 1 2), 则 X~ N (0,1) .14.3 又 X 1, X 2 , X 3相互独立 , 所以D(Y) D(X 1 2X 2 3X 3) D(X 1) 4D(X 2) 9D(X 3)1 3 4 4 9 20.914. 设两个随机变量 X 和 Y 相互独立 , 且都服从均值为 0, 方差为 的正态分布 , 求2 |X Y |的的期望和方差 .11 解 记U X Y . 由于X ~ N(0, ),Y ~ N(0, ),所以22E(U) E(X) E(Y) 0, D(U) D(X) D(Y) 1. 由此 U ~ N (0,1) . 进而3203~ U( 1,1) , 则 D(X) (b a)122. 已知 X, Y 独立, E(X)= E(Y)=2, E(X 2)= E(Y 2)=5,解 由数学期望和方差的性质有E(3X- 2Y)= 3E(X)-2 E (Y)=3×2-2×2=2,D(3X 2Y) 9D(X) 4D(Y)9 {E(X 2) [E(X)]2} 9 (5 4) 4 (5 4) X 2, X 3 相 互独立 , 其 中 2X 2解X221. 选(B).312求 E(3X-2Y),D(3X-2Y).3. 设随 机变 量 2X 2 ~ N (0, 22), X 3解 由题设知X 1,~ P (3), 记 Y X 14 {E(Y 2) [E(Y)]2}13.X 1 服从区 间[0, 6]上的均匀分布, 3X 3 ,求 E(Y)和 D(Y) .E(X 1) 3, D(X 1) E(X 3)(6 0)2 3,12 113,D(X 3)E(X 2) 0,D(X 2 ) 4,由期望的性质可得E(Y) E(X 12X 2 3X 3) E(X 1) 2E(X 2 ) 3E(X 3)5. 设随机变量X ~U[ 1,2], 随机变量1, X 0,Y 0, X 0,1, X 0. 求期望E(Y) 和方差D(Y) .解因为X的概率密度为1, 1≤x≤2,f X (x) 3于是Y的分布率为P{Y 1} P{XP{YP{Y 1} P{ X因此0, 其它.0110}-f X(x)dx dx-133 0}P{ X 0} 0 ,+2120}0 f X (x)dx dx0033 21 x22 E(|X Y|) E(|U |) |x| e 2dx 0 xe E(|U |2) E(U2) D(U ) [E(U)]22x2 dx02故而D(|X Y|) D(|U|) E(|U|2) [E(|U |)]22e1.2212故有6. 设随机变量U1,X1,求E(X+Y), D(X+Y).E(Y)E(Y2 ) (1)20212D(Y) E(Y2 )[E(Y)]2321.389.在区间[-2, 2]上服从均匀分布若U ≤1, 若U1.9, 随机变量1, 若U≤1, Y 1,若U 1.解(1) 随机变量(X, Y) 的可能取值为(-1,- 1),(- 1,1),(1,- 1),(1,1).-11 1P{X 1,Y 1}P{U ≤ 1,U ≤ 1} P{U ≤ 1}dx-24 4P{ X 1,Y 1}P{U ≤ 1,U1} 0,111 P{ X 1,Y1}P{U1,U ≤1}14dx , 221 1 P{X 1,Y1}P{U1,U1}dx .144 于是得 X 和Y 的联合密度分布X+Y-2 0 21 1 1 P{ X+Y =k}424(X+Y)24P{ (X+Y)2=k}1 1 22由此可见2 2 2 E(X Y) 0;D(X Y) E[( X Y)2] 2. 44习题 4-31. 选择题(1) 在下列结论中 , ( )不是随机变量 X 与 Y 不相关的充分必要条件(A) E(XY)=E(X)E(Y). (B) D(X+Y)=D(X)+D(Y).(C) Cov(X,Y)=0.(D) X 与 Y 相互独立 .解 X 与 Y 相互独立是随机变量 X 与 Y 不相关的充分条件 ,而非必要条件 . 选(D).(2) 设随机变量 X 和 Y 都服从正态分布 , 且它们不相关 , 则下列结论中不正确的是(C) X 与 Y 未必独立 . (D) 解 对于正态分布不相关和独立是等价的 ).(A) X 与 Y 一定独立 . (B) (X, Y)服从二维正态分布 X+Y 服从一维正态分布 . 选 (A).(2) X(3) 设(X, Y)服从二元正态分布, 则下列说法中错误的是( ).(A) ( X, Y) 的边缘分布仍然是正态分布 . (B) X 与 Y 相互独立等价于 X 与 Y 不相关 . (C) (X, Y)是二维连续型随机变量 .(D)由(X, Y)的边缘分布可完全确定 (X, Y)的联合分布 .解 仅仅由 (X, Y)的边缘分布不能完全确定 (X, Y)的联合分布 . 选 (D) 2 设 D(X)=4, D(Y)=6, ρXY =0.6, 求 D(3X-2Y) .解 D(3X 2Y) 9D(X) 4D(Y) 12Cov( X,Y)9 4 4 6 12 XY D(X) D(Y)36 24 12 0.6 2 6 24.727 .3. 设随机变量 X, Y 的相关系数为 0.5, E(X) E(Y) 0, E(X2) E(Y 2) 2,2求 E[(X Y)2] .2 2 2 解 E[(X Y)2] E(X 2) 2E(XY) E(Y 2)4 2[Cov( X,Y) E(X)E(Y)] 4 2 XY D(X) D(Y) 4 2 0.5 2 6.4. 设随机变量 (X, Y)的分布律为1 0 0.42 0 a 1 1 0.2 2 1 b 0.2 2b0.1. 由此可得边缘分布律5. 已知随机变量 ( X ,Y ) ~ N (0.5, 4; 0.1, 9; 0) , Z=2X- Y, 试求方差D(Z), 协方差X 1 2 Y 01P{X i} 0.6 0.4 P{Y j} 0.5 0.5E(Y) 0 0.5 1 0.5 0.5. 0.5 0.1. E(X) 1 0.6 2 0.4 1.4 , Cov( X,Y) E(XY) E(X)E(Y) 0.8 1.4 0.8 E(XY) 得 b 0.3. 进而 a于是故 若 E(XY)=0.8, 求常数 解 首先由p ij 1 得 a b 0.4. 其次由i 1 j1Cov( X ,Z) , 相关系数 ρXZ .解 由于 X,Y 的相关系数为零 , 所以 X 和 Y 相互独立(因X 和Y 服从正态分布 ). 因此D(Z) D(2X Y) 4D(X) D(Y) 4 4 9 25 ,Cov( X,Z) Cov( X,2X Y)2Cov(X,X) Cov( X,Y) .1 X Y关系数XY , Z . 求: (1) E(Z), D(Z); (2) X 与 Z 的相关系数 ρXZ ; (3)问 XY2 3 2 X 与 Z 是否相互独立 ?为什么? 22 解 (1) 由于 X ~ N (1,32 ) , Y ~ N(0,42) , 所以(3) 由 XZ 0知X 与Z 不相关, 又 X 与Z 均服从正态分布 , 故知 X 与 Z 相互独立 .7.证明: 对随机变量 (X, Y), E(XY)=E(X)E(Y)或者 D(X Y)=D(X)+D(Y)的充要条件是 X 与 Y 不相关 .证 首先我们来证明 E(XY) E(X)E(Y) 和D(X Y) D(X) D(Y)是等 价的. 事实上, 注意到 D(X Y) D(X) D(Y) 2Cov( X,Y) . 因此D(X Y) D(X) D(Y) Cov( X,Y) 0 E(XY) E(X)E(Y).因此2D(X) Cov( X,Z) D(X) D(Z) 6. 设随机变量 (X, Y)服从二维正态分布 : XXZ0880.8 . 2522~ N(1,32), Y ~N(0, 42);X 与 Y 的相因此E(Z)D(Z) (2) 由于Cov( X,Z)所以XZXYD(X) D(Y) 12 346.Y 2) 1 13E(X)1E(Y) 2 1 3 11 2 0 1 3 Y 1 111Y 2) D(X) 9 D(Y) 42Cov( 3 X , 12Y) 1 16 1 Cov( X,Y) 1 4 1( 6) 3.4 33Y1 11 1) D(X) Cov( X,Y)9( 6)2 323 2E(X) 1,D(X) 9,E(Y) 0,D(Y) 16,Cov( X,Y)9 X Cov( X, 3 E(X 3D(X 3 1 9Cov( X,Z)D(X) D(Z)0.0,其次证明必要性 . 假设 E(XY)=E(X)E(Y), 则Cov( X,Y) E(XY) E(X)E(Y) 0 .最后证明充分性 . 假设 X 与 Y 不相关, 即 XY 0, 则Cov( X,Y)E(XY) E(X)E(Y) .总习题四1. 设 X 和 Y 是相互独立且服从同一分布的两个随机变量 , 已知 X 的分布律为 1 P{X i} ,i 1,2,3 . 又设U max{ X ,Y}, V min{ X,Y} .3(1) 写出二维随机变量 (U, V)的分布律 ;(2) 求 E(U ). 解 (1) 下面实际计算一下 P{U 1,V 3}.注意到U max{ X,Y}, V min{ X ,Y} , 因此P{U 1,V 3} P{X 1,Y 3}P{X 1}P{Y 1111(2) 由的分布律可得关于 U 的边缘分布律进而XYCov( X,Y)D(X) D(Y)0, 即 X 与 Y 不相关 .0 . 由此知P{X 3,Y 1} 3} P{X 3}P{Y 1} 21 3 5 22 所以 E(U) 112 33 5 22. 99 9 92. 从学校乘汽车到火车站的途中有 3 个交通岗 . 假设在各个交通岗遇到红灯的事件是2相互独立的 , 并且概率是 . 设 X 为途中遇到红灯的次数 , 求随机变量 X 的分布律、 分布函5数和数学期望 .3. 设随机变量 (X,Y) 的概率密度为212y 2, 0≤ y ≤x ≤1, f(x,y) 0, 求E(X), E(Y), E(XY), E(X 2 Y 2).X0 1 2 3P2754 36 8125 125 125 1252754 36 8k} 0 1 2 3125125 125 125解 令 X 表示途中遇到红灯的次数 , 由题设知 X ~ B(3,2) . 即 X 的分布律为53从而 E(X) kP{Xk16 5其它. 解 E(X) xf ( x, y)dxdy 1dx12y 2dy4x 4dxE(X) yf ( x, y)dxdy 0dx 0y12y 2dy 03x 4dxE(XY)xyf(x,y)dxdy1 dx 0x0 xy 12 y 2dy3x 5dxE(X 2 Y 2)(x 2 y 2) f (x,y)dxdy4. 设随机变量(4x5 12 x 5)dx 05 (X,Y)的概率密度为1sin( x f(x,y) 20,2 325 30 1 dx16 15 .(x 2y 2)35 3 612y 2dyy),π0≤x ≤ π, 0≤y ≤22 其它.求E(X),D(X),E(Y),D(Y),E(XY)和Cov(X,Y).于是有1. 22 所以协方差Cov( X,Y) E(XY) E(X)E(Y) 1.2 1615. 设随机变量 X 与 Y 独立, 同服从正态分布 N(0, ) , 求2(1) E(X Y); D( X Y);(2) E (max{ X ,Y}); E(min{ X,Y}) .11解 (1) 记 X Y .由于 X ~ N(0, ),Y ~ N(0, ),所以E( ) E(X) E(Y) 0, D( ) D(X) D(Y) 1. 由此 ~ N(0,1).所以解 E(X)122xf(x,y)dxdy 2 2 x sin( x y)dxdy2E(X 2)2x f (x, y)dxdy2y)dxdy 2. 2 0 2 0x 2 sin(x x 2 E(| X Y |) E(| |)12|x| 2 e 2dx 2 0xe x 22 dx82D(X)2E(X 2)2[E(X)]22.16 22利用对称性 ,有E(Y) 4,D(Y) 16 2. 2 又E(XY)1 xyf ( x, y)dxdy22xy sin( x y)dxdy 1 2 1 2 02 xdx 02 xdx 02ysin(x y)dy 2 y[sin x cos y cos xsin y]dyE(XY) xyf (x, y)dxdy2e x 22E(| |2) 0E( 2) D( ) [E( )]21 故而D(| X Y|) D(| 22|) E(| |2) [E(| |)]2 1021.221 2所以 (2) 注意到max( X , Y) (X Y) |X Y | , min( X , Y)X Y |X Y|E[max( X , Y)] 112{E(X) E(Y) E[| X Y|]} 12 12 212,1 12{E(X) 6. 设随机变量 (X,Y) 的联合概率密度为 x y, 0≤ x ≤2,0≤y ≤2,f (x, y) 8E[min( X,Y)] E(Y) E[| X Y|]} 0, 求: E(X), E(Y), Cov( X,Y), ρXY , D (X+Y ). 解 其它.注意到 f (x, y)只在区域 G:0≤x ≤2,0≤y ≤ 2上不为零,x x y dxdyG 82x(xE(X) xf(x,y)dxdy 因而所以E(X 2)2 dx 02dxD(X)21 0 x(x y)dy 42 x f (x,y)dxdy22 10x (x y)dy 4 22E(X 2) [E(X)]27 1)dx 7623(x 35 72 3 622x )dx11 3612 2 1 22 44 dx xy(x y)dy (x x)dx .8 0 0 4 0337 2 2 5 11E(X) , E(Y 2) E(X 2) , D(Y) D(X) . 6 3 364 491 Cov( X,Y) E(XY) E(X)E(Y) ,3 3636Cov( X,Y) 1XYD(X) D(Y) 11 5D(X Y) D(X) D(Y) 2Cov( X,Y) .917. 设A, B 为随机事件 , 且 P(A) ,P(B|A)41, A 发生 , XY 0, A 不发生 ,Y1P(AB)1111 解由P(B| A)得 P(AB)P(A) , 进而由3P(A)334 121P(AB)1P(A|B)得 P(B) 2P(AB). 在此基础上可以求得2P(B)6(1) P{ X1,Y 1} P(AB)112111P{X 0,Y 1}P(AB) P(B)P(AB)6 12 121 11P{ X 1,Y 0}P(AB)P(A) P(AB)412 6P{X 0,Y 0} P(AB)1 P(AUB) 1 [P(A)P(B) P(AB)]求: (1) 二维随机变量 (X, Y)的概率分布 ; (2) X 与Y 的相关系数XY111 21[111]2.4 6 12 3故(X, Y)的概率分布为由对称性知E(Y)这样,11,P(A|B) , 令 321, B 发生 , 0, B 不发生 .21312111612(2) 由(1)易得关于X 和Y的边缘分布律X0131P{X=k}44Y0151P{Y=k}66因此E(X)1,E(X2)1,4422113D(X) E(X 2)[E(X)]241616E(Y) 1,E(Y2) 1,D(Y) E(Y2)2[E(Y)]2 1 1 566 6 36 36又由(X, Y)的分布律可得21111 E(XY) 0 0 0 1 1 011.3121212 12故111E(XY) E(X)E(Y) 12 4615XY D(X) D(Y)3515.16 3601X。

概率论与数理统计 习题4 英文版

概率论与数理统计 习题4 英文版
概率论与数理统计习题4英文版
EECE 7204
APPL. PROB. & STOCH. PROC.
Homework-4 Problem Set with Text
Due on October 18, 2011
2011 FALL
Reading Assignment: Chapter 4 from Stark and Woods, edition 4.
in part (a) above.
0.5
fX(x )
0.5
0
1
2
x
P4.9
Random variable X
is distributed according to the pd e−x u(x).
(a) Determine the mean µx = E [X ] of X . (b) Determine the variance σ2X = E X − µx 2 of X . (c) Determine the skewness of X given by
2x, 0 < x < 1, fX (x) = 0, else.
P4.2 Text Problem 4.18 (Page 285). Verify your answer in part (c) by computing the mean of the conditional mean determined in part (b). Let X and Y be two RVs. The pdf fX (x) of X is given as
P4.5 Text Problem 4.38 (Page 288).
Let X
be
a
uniform

习题课4

习题课4

第二步: 第二步 对似然函数取对数 ln L(θ ); 第三步:对 求导并令其等于0, 得似然方程(组 第三步 对ln L(θ )求导并令其等于 得似然方程 组) 第四步: 求解似然方程. 第四步 求解似然方程 注:当似然方程无解的时候, 应直接寻求 当似然方程无解的时候 使似然函数达到最大的解求得极大似然估计。 使似然函数达到最大的解求得极大似然估计。
2
n
n
2 i
− nX .
2
点评:以上公式极其简单 点评:以上公式极其简单, 却是统计学中常 用公式, 务必熟记. 用公式 务必熟记
9
是取自正态总体N(0, 22)的 例2 设X1, X2, X3, X4是取自正态总体 的 一个样本, 一个样本 令
Y = a ( X 1 − 2 X 2 )2 + b( 3 X 3 − 4 X 4 )2 ,
1 . F −α (n1, n2 ) = 1 F (n2 , n1 ) α
2
4. 两个抽样分布定理的重要结论 两个抽样分布定理的重要结论: 单个正态总体): 单个正态总体 Th6.2.4 (单个正态总体 2 X −µ (n − 1)S2 σ ~ t(n − 1); ~ χ 2 (n − 1). X ~ N(µ , ); σ2 n S n 两个独立正态总体): 两个独立正态总体 Th6.2.5 (两个独立正态总体
1 1 Y1 = ( X 1 + X 2 + ⋯ + X 6 ), Y2 = ( X 7 + X 8 + X 9 ), 6 3 1 9 2 2 2(Y1 − Y2 ) S = ∑ ( X i − Y2 ) , Z= . 2 i =7 S
证明: 证明:Z ~ t (2) . 点评: 点评: 历史上研究生入学试题. 历史上研究生入学试题

概率论与数理统计课后习题答案习题第四章

概率论与数理统计课后习题答案习题第四章

y 2 i4e −4 y dy =
00
3
1 2 E ( X ) = ∫ xi2 xdx = , 0 3
圣才统计学习网
tj
圣才学习网
求 E(XY). 【解】方法一:先求 X 与 Y 的均值
.c
⎧ 2 x, 0 ≤ x ≤ 1, 其他; ⎩0,
5.设随机变量 X 的概率密度为
N
∑ kP{ X = k}
k =0
N
求 E(X) ,D(X). 【解】 E ( X ) =

+∞
−∞
xf ( x)dx = ∫ x 2 dx + ∫ x(2 − x)dx
0 1
1
2
w.
1 2 0 1
3 ⎡1 3 ⎤ ⎡ 2 x ⎤ = ⎢ x ⎥ + ⎢ x − ⎥ = 1. 3 ⎦1 ⎣ 3 ⎦0 ⎣
12.袋中有 12 个零件,其中 9 个合格品,3 个废品.安装机器时,从袋中一个一个地取出(取 出后不放回) ,设在取出合格品之前已取出的废品数为随机变量 X,求 E(X)和 D(X). 【解】设随机变量 X 表示在取得合格品以前已取出的废品数,则 X 的可能取值为 0,1,2, 3.为求其分布律,下面求取这些可能值的概率,易知
2
8.设随机变量(X,Y)的概率密度为

【解】 (1) E[U ] = E (2 X + 3Y + 1) = 2 E ( X ) + 3E (Y ) + 1
= 2 × 5 + 3 × 11 + 1 = 44.
因Y , Z 独立E (Y )i E ( Z ) − 4 E ( X )
= 11× 8 − 4 × 5 = 68.

概率论与数理统计习题解答(第4章)

概率论与数理统计习题解答(第4章)

第4章习题答案三、解答题1. 设随机变量X求)(X E ,)(2X E ,)53(+X E .解:E (X ) =∑∞=1i ixp= ()2-4.0⨯+03.0⨯+23.0⨯= -0.2E (X 2) =∑∞=12i i p x= 44.0⨯+ 03.0⨯+ 43.0⨯= 2.8E (3 X +5) =3 E (X ) +5 =3()2.0-⨯+5 = 4.42. 同时掷八颗骰子,求八颗骰子所掷出的点数和的数学期望. 解:记掷1颗骰子所掷出的点数为X i ,则X i 的分布律为6,,2,1,6/1}{ ===i i X P记掷8颗骰子所掷出的点数为X ,同时掷8颗骰子,相当于作了8次独立重复的试验, E (X i ) =1/6×(1+2+3+4+5+6)=21/6 E (X ) =8×21/3=283. 某图书馆的读者借阅甲种图书的概率为p 1,借阅乙种图书的概率为p 2,设每人借阅甲乙图书的行为相互独立,读者之间的行为也是相互独立的. (1) 某天恰有n 个读者,求借阅甲种图书的人数的数学期望.(2) 某天恰有n 个读者,求甲乙两种图书至少借阅一种的人数的数学期望. 解:(1) 设借阅甲种图书的人数为X ,则X~B (n , p 1),所以E (X )= n p 1 (2) 设甲乙两种图书至少借阅一种的人数为Y , 则Y ~B (n , p ),记A ={借甲种图书}, B ={借乙种图书},则p ={A ∪ B }= p 1+ p 2 - p 1 p 2 所以E (Y )= n (p 1+ p 2 - p 1 p 2 )4. 将n 个考生的的录取通知书分别装入n 个信封,在每个信封上任意写上一个考生的姓名、地址发出,用X 表示n 个考生中收到自己通知书的人数,求E (X ).解:依题意,X~B (n ,1/n ),所以E (X ) =1.5. 设)(~λP X ,且}6{}5{===X P X P ,求E (X ).解:由题意知X ~P (λ),则X 的分布律P{}k X ==λλ-e k k!,k = 1,2,...又P {}5=X =P {}6=X , 所以λλλλ--=e e!6!565解得 6=λ,所以E (X ) = 6.6. 设随机变量X 的分布律为,,4,3,2,1,6}{22 --===k kk X P π问X 的数学期望是否存在?解:因为级数∑∑∑∞=+∞=+∞=+-=-=⨯-11212112211)1(6)6)1(()6)1((k k k k k k kk k k πππ, 而 ∑∞=11k k 发散,所以X 的数学期望不存在.7. 某城市一天的用电量X (十万度计)是一个随机变量,其概率密度为⎪⎩⎪⎨⎧>=-.0,0,91)(3/其它x xe x f x 求一天的平均耗电量.解:E (X ) =⎰⎰⎰∞-∞-∞∞-==03/203/9191)(dx e x dx xe xdx x f x x x =6.8. 设某种家电的寿命X (以年计)是一个随机变量,其分布函数为⎪⎩⎪⎨⎧>-=.0,5,251)(2其它x x x F求这种家电的平均寿命E (X ).解:由题意知,随机变量X 的概率密度为)()(x F x f '=当x >5时,=)(x f 3350252xx =⨯--,当x ≤5时,=)(x f 0. E (X ) =10|5050)(5-53=-==∞++∞∞+∞⎰⎰xdx x x dx x xf 所以这种家电的平均寿命E (X )=10年.9. 在制作某种食品时,面粉所占的比例X 的概率密度为⎩⎨⎧<<-=.0,10,)1(42)(5其它x x x x f 求X 的数学期望E (X ).解:E (X ) =dx x x dx x xf ⎰⎰+∞∞-=-152)1(42)(=1/410. 设随机变量X 的概率密度如下,求E (X ).⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<-≤≤-+=.010,)1(2301)1(23)(22其它,,,,x x x x x f解:0)1(1023)1(0123)()(22=-++-=+∞∞-=⎰⎰⎰dx x x dx x x dx x xf X E .111. 设),4(~p B X ,求数学期望)2(sinX E π. 解:X 的分布律为k n kk n p p C k X P --==)1(}{, k = 0,1,2,3,4,X 取值为0,1,2,3,4时,2sinX π相应的取值为0,1,0,-1,0,所以)21)(1(4)1(1)1(1)2(sin13343114p p p p p C p p C XE --=-⨯--⨯=π12. 设风速V 在(0,a )上服从均匀分布,飞机机翼受到的正压力W 是V 的函数:2kV W =,(k > 0,常数),求W 的数学期望.解:V 的分布律为⎪⎩⎪⎨⎧<<=其它 ,00 ,1)(a v a v f ,所以 ===+∞∞-=⎰⎰aa v a k dv a kv dx v f kv W E 03022|)31(1)()(231ka13. 设随机变量(X ,求E (X ),E (Y ),E (X – Y ).解:E (X )=0×(3/28+9/28+3/28)+1×(3/14+3/14+0)+ 2×(1/28+0+0)= 7/14=1/2 E (Y )=0×(3/28+3/14+1/28)+1×(9/28+3/14+0)+ 2×(3/28+0+0)=21/28=3/4 E (X -Y ) = E (X )- E (Y )=1/2-3/4= -1/4.14. 设随机变量(X ,Y )具有概率密度⎩⎨⎧≤+≤≤≤≤=其它,01,10,10,24),(y x y x xy y x f ,求E (X ),E (Y ),E (XY )解:E (X )=⎰⎰⎰⎰-=⋅11022424xDydydx x xydxdy x dx x x ⎰-⋅=1022)1(2124dx x x x ⎰+-=10432)2412(52)51264(1543=+-=x x x.152)34524638()1(31242424)(5/22424)(1654311010322210102=-+-=-⋅==⋅===⋅=⎰⎰⎰⎰⎰⎰⎰⎰⎰--x x x x dx x x dydx y xxydxdy xy XY E xdxdy y xydxdy y Y E DxDy15.所得利润(以元计)为)12(1000X Y -=,求E (Y ),D (Y ).解: E (Y) = E [1000(12-X )]=1000E [(12-X )]=1000×[(12-10)×0.2+(12-11)]×0.3+(12-12)×0.3+(12-13)×0.1+(12-14)×0.1] = 400E (Y 2) = E [10002(12-X )2]=10002E [(12-X )2]=10002[(12-10)2×0.2+(12-11)2×0.3+(12-12)2×0.3+(12-13)2×0.1 +(12-14)2×0.1]=1.6×106D (Y )=E (Y 2)-[E (Y )]2=1.6×106- 4002=1.44×10616. 设随机变量X 服从几何分布 ,其分布律为,,2,1,)1(}{1 =-==-k p p k X P k 其中0 < p < 1是常数,求E (X ),D (X ).解:令q=1- p ,则∑∑∑∑∞=∞=-∞=-∞==⨯=⨯==⨯=111111)()}{()(k kk k k k k dqdq p qk p p qk k X P k X Ep q dq d p q dq d p k k /1)11(0∑∞==-==∑∑∑∑∞=-∞=-∞=-∞=⨯+⨯-=⨯==⨯=1111112122])1([)()}{()(k k k k k k k q k qk k p p qk k X P k X Ep qk k pq k k /1)1(12+⨯-=∑∞=-p qdq d pq p q dqd pq k k kk /1)(/1012222∑∑∞=∞=+=+=p p q p q pq p q dq d pq /1/2/1)1(2/1)11(2322+=+-=+-= D (X ) = E (X 2)- E (X ) =2q /p 2+1/p -1/p 2 = (1-p )/p 217. 设随机变量X 的概率密度为⎪⎩⎪⎨⎧<-=其它,01||,11)(2x x x f π,试求E (X ),D (X ).解:E (X )=011)(112=-=⎰⎰-∞∞-dx xxdx x f x πD (X )=E (X 2)=⎰⎰⎰--∈-∞∞-=-=2/2/2]2/,2/[11222cos sin sin 11)(ππππππdt tt tx dx xxdx x f x t2122cos 122/0=-=⎰ππdt t 18. 设随机变量(X ,Y )具有D (X ) = 9,D (Y ) = 4,6/1-=XY ρ,求)(Y X D +,)43(+-Y X D . 解:因为)()(),(Y D X D Y X Cov XY =ρ,所以)()(),(Y D X D Y X Cov XY ρ==-1/6×3×2=-1,11249),(2)()()(=-+=++=+Y X Cov Y D X D Y X D51)1(6369)3,(2)(9)()43(=--+=-++=+-Y X Cov Y D X D Y X D19. 在题13中求Cov (X ,Y ),ρXY . 解:E (X ) =1/2, E (Y ) =3/4, E (XY )=0×(3/28+9/28+3/28+3/14+1/28)+1×3/14+2×0+4×0=3/14, E (X 2)= 02×(3/28+9/28+3/28)+12×(3/14+3/14+0)+ 22×(1/28+0+0)=4/7, E (Y 2)= 02×(3/28+3/14+1/28)+12×(9/28+3/14+0)+ 22×(3/28+0+0)=27/28, D (X )= E (X 2) -[E (X )]2 = 4/7-(1/2)2= 9/28, D (Y )= E (Y 2)- [E (Y )]2=27/28-(3/4)2= 45/112, Cov (X ,Y )= E (XY )- E (X ) E (Y ) =3/14- (1/2) ×(3/4)= -9/56, ρXY = Cov (X ,Y ) /()(X D )(Y D )=-9/56 ÷ (28/9112/45)= -5/520. 在题14中求Cov (X ,Y ),ρXY ,D (X + Y ).解:52)()(==Y E X E ,,)(152=XY E 752)()()(),(-=-=Y E X E XY E Y X Cov )(5124)(2101032Y E dydx y x X E x ===⎰⎰-[])(25125451)()()(22Y D X E X E X D ==-=-= 752),(2)()()(32)()(),(=++=+-==Y X Cov Y D X D Y X D Y D X D Y X Cov XYρ21. 设二维随机变量(X , Y )的概率密度为⎪⎩⎪⎨⎧≤+=.0,1,1),(22其它y x y x f π试验证X 和Y 是不相关的,但X 和Y 不是相互独立的.解:0/12/)(112111122=-==⎰⎰⎰-----dx x x dydx x X E x xππOx2x20/)(111122==⎰⎰----x x dydx y Y E π 0/)(111122==⎰⎰----x x dydx xy XY E π,所以Cov (X ,Y )=0,ρXY =0,即X 和Y 是不相关.⎪⎩⎪⎨⎧<<--=⎪⎩⎪⎨⎧<<-==⎰⎰---∞+∞-其他,,其他,01112011,/1),()(21122x x x dy dy y x f x f x x X ππ ⎪⎩⎪⎨⎧<<--=⎪⎩⎪⎨⎧<<-==⎰⎰---∞+∞-其他,,其他,01112011,/1),()(21122y y y dx dx y x f y f y y Y ππ 当x 2 + y 2≤1时,f ( x,y )≠f X ( x ) f Y (y ),所以X 和Y 不是相互独立的22. 设随机变量(X , Y )的概率密度为⎩⎨⎧<<<=.010,2||,2/1),(其它x x y y x f 验证X 和Y 是不相关的,但X 和Y 不是相互独立的.解:由于f ( x,y )的非零区域为D : 0 < x < 1, | y |< 2x32221102212====⎰⎰⎰⎰⎰-dx x xdydx dxdy y x xf X E xx D ),()(,0211022⎰⎰⎰⎰-===xx Dydydx dxdy y x yf Y E ),()(,0211022⎰⎰⎰⎰-===xx Dxydydx dxdy y x xyf XY E ),()(,所以Cov (X ,Y )=0,从而0)()(),(==y D x D y x Cov xy ρ,因此X 与Y 不相关 .⎪⎩⎪⎨⎧<<===⎰⎰-∞∞-其他,010,221),()(22Xx x dy dy y x f x x x f⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤-=<<-+===⎰⎰⎰-∞+∞-其他,020,421202,42121),()(1212Y y y dx y y dx dx y x f y y y f所以,当0<x <1, -2<y<2时,)()(),(y f x f y x f Y X ≠,所以X 和Y 不是相互独立的 .⎪⎩⎪⎨⎧≤>>=⎩⎨⎧≥<<--==-0,00,0,1)(,0),()(y y e y f Y x Y mx xY Y x n mY Y Q Q y Y θθθ的密度函数为[]()()()取最大值时,当又则令)(n ln 0n m )(d n ln,n 0)(1)()(d )()()()(1.1.)()(.)()( 20000000Q E n m x e dx Q E n m x n m e n e n m n e n m dx Q E nxn m e n m m xenx nxe e n m xe n m m xe nxe dy n m e ye n m m xde de nx yde n m dye m x dy e y x n m y dy Yf Y Q Q E x xxx x x x x y x xyx y x y x y x y x y y x x y x y Y +-=∴<+-=+-=∴+==-+=-⎪⎭⎫ ⎝⎛-+-=-+++-=+-++-+-=-+⎥⎥⎦⎤⎢⎢⎣⎡+-+=-++-=+--==---------∞+----∞+---∞+--∞∞-⎰⎰⎰⎰⎰⎰⎰θθθθθθθθθθθθθθθθθθθθθθθθθθθ四、应用题.1. 某公司计划开发一种新产品市场,并试图确定该产品的产量,他们估计出售一件产品可获利m 元,而积压一件产品导致n 元的损失,再者,他们预测销售量Y (件)服从参数θ的解:设生产x 件产品时,获利Q 为销售量Y 的函数2. 设卖报人每日的潜在卖报数为X 服从参数为λ的泊松分布,如果每日卖出一份报可获报酬m 元,卖不掉而退回则每日赔偿n 元,若每日卖报人买进r 份报,求其期望所得及最佳卖报数。

概率论与数理统计自考(习题卷4)

概率论与数理统计自考(习题卷4)

概率论与数理统计自考(习题卷4)第1部分:单项选择题,共38题,每题只有一个正确答案,多选或少选均不得分。

1.[单选题]已知随机变量X只能取值-1,0,1,2,其相应的概率依次为,则P{X<1|X≠0}=( )。

A)4/25B)8/25C)12/25D)16/25答案:B解析:① 求c:,解得,得X的分布律2.[单选题]设随机变量X服从参数为2的指数分布, 随机变量Y =2X+2, 则E(Y)=A)0.5B)1C)2D)3答案:D解析:本题考察指数分布的数字特征及随机变量函数的数字特征。

已知~,则,所以,故选择D.3.[单选题]设随机变量X与Y的方差分别为4和9,斜方差为4.2,则相关系数为A)0.7B)0.4C)0.5D)0.9答案:A解析:4.[单选题]已知D(X)=9,D(Y)=16,ρXY=0.4,则D(X+Y)为A)9.4B)16.4C)34.5D)34.6答案:D解析:因为,因此Cov(X,Y)=3×4×0.4=4.8,而D(X+Y)=D(X)+D(Y)+2 Cov(X,Y)=9+16+2×4.8=34.6,因此选D。

5.[单选题]在某大学抽查100个学生,调查他们自觉储蓄的比例,情况如下:A)0.9475B)0.9321C)0.8702D)0.6356答案:A解析:Eξ=7.99, Dξ=0.21,切比雪夫不等式:即学生储蓄率为ξ%与平均水平7.99%相差不足两个百分点(ξ=2)的概率不小于0.94756.[单选题]设X1,…Xn为来自正态总体N(μ,σ2)的简单随机样本,则数学期望等于()。

A)n3(n-1)μ·σ2B)(n-1)μ·σ2C)n2(n-1)μ·σ2D)n3(n-1)μ·σ答案:A解析:由于-X,S 是相互独立的,则7.[单选题]设总体X服从正态分布N(0, σ2), X,S2分别为容量是n的样本的均值和方差,则可以作出服从自由度为n-l的t分布的随机变量()。

概率论与数理统计第四章习题及答案

概率论与数理统计第四章习题及答案

概率论与数理统计习题 第四章 随机变量的数字特征习题4-1 某产品的次品率为,检验员每天检验 4次,每次随机地取 10件产品进行检验,如发现其中的次品数多于1个,就去调整设备,以 X 表示一天中调整设备的次数,试求E(X)(设诸产品是否为次品是相互独立的)解:设表示一次抽检的 10件产品的次品数为1 —=.从而E ( X )=np =4X =的数学期望不存在. 解:3j—)不绝对收敛,由数学期望的定义知, X 的数学期望不存在.J求 E(X), E(X 2), E(3X 25).解 E (X )=(-2) +0 +2习题4-3 设随机变量 X 的分布律为P =P (调整设备)=P ( E >1)=1 — P ( E W 1)= 1 -[P ( E =0)+ P ( E =1)]查二项分布表因此X 表示一天调整设备的次数时4P ( X =1)= XX =, P ( X =2)=1 4P ( X =3)= XX =, P ( X =4)=X 〜巳4,. 4XX =2 4XX =P ( X =0)=XX习题4-2 设随机变量 X 的分布律为P X23j ,1,2,,说明X由于.13j (1)j 勺一P(X j(1)j1-)-,而级数2 j 1 j• 1 3j- 1)j1- P(X ( 1)j由关于随机变量函数的数学期望的定理,知E(X2)=(-2) 2小2 小2+0 +2E(3X2+5)=[32 2 2(-2) +5] +[3 0 +5] +[3 2+5]如利用数学期望的性质, 则有E(3X2+5)=3E(X2)+5=3 +5=E(X)2 E(X ) E(3X22 0.4 020.3 0.30.2,习题求(1)Y22(2) 0.4 225) 3E(X ) 54-4 设随机变量2X; (2)Y e 2X0.3 2.8,13.4X的概率密度为f(X)的数学期望.(I)E( Y) E(2X) 2xf(x)dx2( 0dx2( xe 0 e x dx) 2e(II )E(Y) E(e 2X) 2x x .e e dx3x dx习题4-5 设(X,Y)的概率密度为f(x,y)求 E(X), E(Y), E(XY), E(X2 Y2).解各数学期望均可按照E[g(X, Y)]在有限区域G:{(x,y)|0E(X)E(Y) 0,xe3xx 0,x 0dx)12y2, 0,y x 1, 其它g(x, y) f (x, y)dxdy 计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六讲 数理统计 第一章 基本概念考试要求:数学一、三理解:总体,简单随机样本,统计量,样本均值样本方差和样本矩 数学一了解:2χ分布,t 分布,F 分布,分位数并会查表计算,正态总体的常用抽样分布 数学三了解:产生2χ变量,t 变量,F 变量的典型模式理解:标准正态,2χ分布,t 分布,F 分布的分位数并会查表计算,经验分布 掌握:正态分布的常用抽样分布§1 总体和样本一.总体:所研究对象的某项数量指标X 全体。

二.样本,如果12,,...,n X X X 相互独立且都与总体X 同分布,则称12,,...,n X X X 为来自总体的简单随机样本,简称样本。

样本容量,样本值,观测值()XF x ,则12,,...,n X X X 的联合分布121(,,...,)()nn ii F x x x F x ==∏()Xf x ,则12,,...,n X X X 的联合密度 121(,,...,)()nn i i f x x x f x ==∏例 设总体()Xe λ,则来自总体X 的样本12,,...,n X X X 的联合概率密度12(,,...,)n f x x x =______________§2 统计量和样本数字特征一.统计量样本12(,,...,)n X X X 的不含未知参数的函数12(,,...,)n T T X X X =。

如果12,,...,n x x x 是样本12,,...,n X X X 的样本值,则数值12(,,...,)n T x x x 为统计量12(,,...,)n T X X X 的观测值。

二.样本数字特征1.样本均值 11ni i X X n ==∑;2.样本方差 2211()1ni i S X X n ==--∑, 样本标准差S = 3.样本k 阶原点矩 11n kk i i A X n ==∑ 1,2k =;4.样本二阶中心矩2211()ni i B X X n ==-∑()()E X E X μ==, 2()()D X D X n n σ==,22()()E S D X σ==如果()kk E X μ=,11n P kn i k i A X n μ==−−→∑。

例 设总体X 的概率密度为2,01()0,x x f x <<⎧=⎨⎩其他,来自总体X 的样本为1234,,,X X X X 则(4)1234max(,,,)X X X X X =的概率密度(4)()X f x =_____________.§3 常用统计抽样分布常用统计抽样分布:正态分布,2χ分布,t 分布和F 分布。

除正态分布外不必记忆这些分布的概率密度,但要了解其典型模式,分布曲线示意图和分位数,会查表。

一.2χ分布1.典型模式:12,,..n X X X 相互独立且均服从(0,1)N ,则称222212...n X X X χ=+++ 服从自由度为n 的2χ分布,记22()n χχ12221,0()2()20,0n x nx e x n f x x --⎧>⎪⎪=Γ⎨⎪⎪<⎩2()E n χ=,2()2D n χ=;2.可加性:设2211()n χχ,2222()n χχ,且2212χχ和相互独立则2221212()n n χχχ++;3.上α分位点2()n αχ:设22()n χχ,对于给定的(01)αα<<,称满足条件22())n αχχα>=P(的点2()n αχ为2()n χ分布的上α分位点。

例 已知22()n χχ,则2()E χ=______________。

二.t 分布1.典型模式:,X Y 独立,(0,1)XN ,2()Yn χ,则()T t n =1221()2()(1)()2n n x f x n n +-+Γ=+,x -∞<<+∞()f x 是偶函数,n 充分大时,()t n 近似(0,1)N 。

2.上α分位点()t n α~()T t n ,01α<<,(())P T t n αα>=,1()()t n t n αα-=-,2(())P T t n αα>=三.F 分布1.典型模式:,X Y 独立,2212(),~()Xn Y n χχ,则1122(,)X n F F n n Y n =112121212221212212()2,0()()()()220,0n n n n n n n x n n x n n f x n x n x -++⎧Γ⎪ >⎪=⎨ΓΓ+⎪⎪ ≤⎩如果 12(,)FF n n ,则211(,)F n n F2.上α分位点12(,)F n n α12(,)FF n n ,01α<<,12((,))P F F n n αα>=112211(,)(,)F n n F n n αα-=§4 正态总体的抽样分布一.一个正态总体设2(,)XN μσ,12,,..n X X X 来自总体X 的样本样本均值X ,样本方差2S ,则 (1)2(,)XN nσμ,(0,1)X U N =(2)X 与2S 相互独立,且2222(1)(1)n s X n χσ-=-(3)(1)X T t n =-(4)222211()()nii Xn χμχσ==-∑二.两个正态总体 设211(,)XN μσ,222(,)YN μσ,112,,..n X X X 和212,,..n Y Y Y ,分别来自X Y 和的样本,相互独立,2212,,,X Y S S ,(1)22121212(,)X YN n n σσμμ--+,(0,1)U N =(2)如果2212σσ=,则12(2)T t n n =+-其中222112212(1)(1)2n S n S S n n ω-+-=+- (3)2211122222(1,1)S F F n n S σσ=--§5 典型例题分析例1.设总体X 服从参数为p 的0—1分布,则来自总体X 的简单随机样本12,,..n X X X 的概率分布为______________。

例2.设总体()XP λ,则来自总体X 的样本12,,..n X X X 的样本均值X 的分布律为___________。

例3.(98)设1234,,,X X X X 是来自正态总体2(0,2)N 的样本,已知2221234(2)(34)a X X b X X χ=-+-服从2()n χ分布,其中,a b 为常数,则n =________________。

例4.设随机变量()T t n ,则2T 服从的分布及参数为_____________。

例5.(05)设12,,..n X X X (2)n ≥为来自总体(0,1)N 的简单随机样本,X 为样本均值,2S 为样本方差,则()A (0,1)nX N()B 22()nS n χ()C(1)(1)n X t n S--()D2122(1)(1,1)nii n X F n X=--∑例6.设2(0,)XN σ,从总体X 中抽样取样本129,,...,X X X ,试确定σ的值,使得(13)P X <<为最大,其中9119i i X X ==∑。

例7.已知123,,X X X 相互独立,且服从2(0,)N σ,服从(1)t 分布。

例8.设总体X 服从正态2(,)N μσ,(0)σ>从该总体中抽取简单随机样本122,,...,(2)nX X X n ≥,其样本均值为2112ni i X X n ==∑,求统计量21(2)ni n i i Y X X X +==+-∑的数学期望()E Y 。

例9.(04)设总体X 服从正态分布21(,)N μσ,总体服从正态分布22(,)N μσ,112,,...,n X X X 和212,,...,n Y Y Y 分别是来自总体X Y 和的简单随机样本,则12221112()()2n n i j i j X X Y Y E n n ==⎡⎤-+-⎢⎥⎢⎥=⎢⎥+-⎢⎥⎣⎦∑∑________________。

例10.(06)设总体X 的概率密度为1()()2xf x e x -=-∞<<+∞,112,,...,n X X X 为总体X 的简单随机样本,其样本方差为2S ,则2()E S = 。

相关文档
最新文档