中考数学复习新几何作图问题[人教版]
人教版初中数学几何图形初步专项训练解析含答案
人教版初中数学几何图形初步专项训练解析含答案一、选择题1.如图,已知ABC ∆的周长是21,OB ,OC 分别平分ABC ∠和ACB ∠,OD BC ^于D ,且4OD =,则ABC ∆的面积是( )A .25米B .84米C .42米D .21米【答案】C【解析】【分析】 根据角平分线的性质可得点O 到AB 、AC 、BC 的距离为4,再根据三角形面积公式求解即可.【详解】连接OA∵OB ,OC 分别平分ABC ∠和ACB ∠,OD BC ^于D ,且4OD =∴点O 到AB 、AC 、BC 的距离为4∴ABC AOC OBC ABO S S S S =++△△△△()142AB BC AC =⨯⨯++ 14212=⨯⨯ 42=(米)故答案为:C .【点睛】本题考查了三角形的面积问题,掌握角平分线的性质、三角形面积公式是解题的关键.2.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?()A.B.C.D.【答案】D【解析】【分析】根据三视图可判断这个几何体的形状;再由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】解:根据三视图可判断这个几何体是圆柱;D选项平面图一个长方形和两个圆折叠后,能围成的几何体是圆柱.A选项平面图折叠后是一个圆锥;B选项平面图折叠后是一个正方体;C选项平面图折叠后是一个三棱柱.故选:D.【点睛】本题考查由三视图判断几何体及展开图折叠成几何体,熟记常见几何体的平面展开图的特征,是解决此类问题的关键.3.下列图形经过折叠不能围成棱柱的是().A.B.C.D.【答案】B【解析】试题分析:三棱柱的展开图为3个矩形和2个三角形,故B不能围成.考点:棱柱的侧面展开图.4.将一副三角板如下图放置,使点A 落在DE 上,若BC DE P ,则AFC ∠的度数为( )A .90°B .75°C .105°D .120°【答案】B【解析】【分析】 根据平行线的性质可得30E BCE ==︒∠∠,再根据三角形外角的性质即可求解AFC ∠的度数.【详解】∵//BC DE∴30E BCE ==︒∠∠∴453075AFC B BCE =+=︒+︒=︒∠∠∠故答案为:B .【点睛】本题考查了三角板的角度问题,掌握平行线的性质、三角形外角的性质是解题的关键.5.如图,B是线段AD的中点,C是线段BD上一点,则下列结论中错误..的是( )A .BC=AB-CDB .BC=12(AD-CD)C .BC=12AD-CD D .BC=AC-BD 【答案】B【解析】试题解析:∵B 是线段AD 的中点,∴AB=BD=12AD , A 、BC=BD-CD=AB-CD ,故本选项正确; B 、BC=BD-CD=12AD-CD ,故本选项错误; C 、BC=BD-CD=12AD-CD ,故本选项正确; D 、BC=AC-AB=AC-BD ,故本选项正确.故选B .6.如图,O是直线AB上一点,OC平分∠DOB,∠COD=55°45′,则∠AOD=()A.68°30′B.69°30′C.68°38′D.69°38′【答案】A【解析】【分析】先根据平分,求出∠COB,再利用互补求∠AOD【详解】∵OC平分∠DOB,∠COD=55°45′∴∠COB=55°45′,∠DOB=55°45′+55°45′=111°30′∴∠AOD=180-111°30′=68°30′故选:A【点睛】本题考查角度的简单推理,计算过程中,设计到了分这个单位,需要注意,分与度的进率是607.下列语句正确的是()A.近似数0.010精确到百分位B.|x-y|=|y-x|C.如果两个角互补,那么一个是锐角,一个是钝角D.若线段AP=BP,则P一定是AB中点【答案】B【解析】【分析】A中,近似数精确位数是看小数点后最后一位;B中,相反数的绝对值相等;C中,互补性质的考查;D中,点P若不在直线AB上则不成立【详解】A中,小数点最后一位是千分位,故精确到千分位,错误;B中,x-y与y-x互为相反数,相反数的绝对值相等,正确;C中,若两个角都是直角,也互补,错误;D中,若点P不在AB这条直线上,则不成立,错误故选:B【点睛】概念的考查,此类题型,若能够举出反例来,则这个选项是错误的8.如图是某个几何体的展开图,该几何体是()A.三棱柱B.圆锥C.四棱柱D.圆柱【答案】A【解析】【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【详解】解:观察图形可知,这个几何体是三棱柱.故选A.【点睛】本题考查的是三棱柱的展开图,对三棱柱有充分的理解是解题的关键..9.已知点C在线段AB上,则下列条件中,不能确定点C是线段AB中点的是()A.AC=BC B.AB=2AC C.AC+BC=AB D.12 BC AB【答案】C【解析】【分析】根据线段中点的定义,结合选项一一分析,排除答案.显然A、B、D都可以确定点C是线段AB中点【详解】解:A、AC=BC,则点C是线段AB中点;B、AB=2AC,则点C是线段AB中点;C、AC+BC=AB,则C可以是线段AB上任意一点;D、BC=12AB,则点C是线段AB中点.故选:C.【点睛】本题主要考查线段中点,解决此题时,能根据各选项举出一个反例即可.10.已知:在Rt△ABC中,∠C=90°,BC=1,AC=3,点D是斜边AB的中点,点E是边AC上一点,则DE+BE的最小值为()A.2B.31C.3D.23【答案】C【解析】【分析】作B关于AC的对称点B',连接B′D,易求∠ABB'=60°,则AB=AB',且△ABB'为等边三角形,BE+DE=DE+EB'为B'与直线AB之间的连接线段,其最小值为B'到AB的距离=AC=3,所以最小值为3.【详解】解:作B关于AC的对称点B',连接B′D,∵∠ACB=90°,∠BAC=30°,∴∠ABC=60°,∵AB=AB',∴△ABB'为等边三角形,∴BE+DE=DE+EB'为B'与直线AB之间的连接线段,∴最小值为B'到AB的距离3故选C.【点睛】本题考查的是最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此题的关键.11.如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为()A.北偏东30°B.北偏东80°C.北偏西30°D.北偏西50°【答案】A【解析】【分析】根据平行线的性质,可得∠2,根据角的和差,可得答案.【详解】如图,AP∥BC,∴∠2=∠1=50°,∵∠EBF=80°=∠2+∠3,∴∠3=∠EBF﹣∠2=80°﹣50°=30°,∴此时的航行方向为北偏东30°,故选A.【点睛】本题考查了方向角,利用平行线的性质得出∠2是解题关键.12.如图,直线AB∥CD,直线EF分别交AB、CD于E、F两点,EG平分∠AEF,如果∠1=32°,那么∠2的度数是()A.64°B.68°C.58°D.60°【答案】A【解析】【分析】首先根据平行线性质得出∠1=∠AEG ,再进一步利用角平分线性质可得∠AEF 的度数,最后再利用平行线性质进一步求解即可.【详解】∵AB ∥CD ,∴∠1=∠AEG .∵EG 平分∠AEF ,∴∠AEF=2∠AEG ,∴∠AEF=2∠1=64°,∵AB ∥CD ,∴∠2=64°.故选:A .【点睛】本题主要考查了角平分线性质以及平行线的性质,熟练掌握相关概念是解题关键.13.如图,在Rt ABC V 中,90C ∠=︒,以顶点A 为圆心,适当长为半径画弧,分别交AC 、AB 于点M 、N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若4CD =,15AB =,则ABD △的面积是( )A .15B .30C .45D .60 【答案】B【解析】【分析】作DE AB ⊥于E ,根据角平分线的性质得4DE DC ==,再根据三角形的面积公式求解即可.【详解】作DE AB ⊥于E由尺规作图可知,AD 是△ABC 的角平分线∵90C ∠=︒,DE AB ⊥∴4DE DC ==∴△ABD 的面积1302AB DE =⨯⨯= 故答案为:B .【点睛】本题考查了三角形的面积问题,掌握角平分线的性质、三角形面积公式是解题的关键.14.如图,一副三角板按如图所示的位置摆放,其中//AB CD ,45A ∠=︒,60C ∠=°,90AEB CED ∠=∠=︒,则AEC ∠的度数为( )A .75°B .90°C .105°D .120°【答案】C【解析】【分析】 延长CE 交AB 于点F ,根据两直线平行,内错角相等可得∠AFE =∠C ,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:如图,延长CE 交AB 于点F ,∵AB ∥CD ,∴∠AFE =∠C =60°,在△AEF 中,由三角形的外角性质得,∠AEC =∠A +∠AFE =45°+60°=105°.故选:C .【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记相关性质并作出正确的辅助线是解题的关键.15.已知直线m ∥n ,将一块含30°角的直角三角板按如图所示方式放置(∠ABC =30°),并且顶点A ,C 分别落在直线m ,n 上,若∠1=38°,则∠2的度数是( )A.20°B.22°C.28°D.38°【答案】B【解析】【分析】过C作CD∥直线m,根据平行线的性质即可求出∠2的度数.【详解】解:过C作CD∥直线m,∵∠ABC=30°,∠BAC=90°,∴∠ACB=60°,∵直线m∥n,∴CD∥直线m∥直线n,∴∠1=∠ACD,∠2=∠BCD,∵∠1=38°,∴∠ACD=38°,∴∠2=∠BCD=60°﹣38°=22°,故选:B.【点睛】本题考查了平行线的计算问题,掌握平行线的性质是解题的关键.16.如图是正方体的表面展开图,请问展开前与“我”字相对的面上的字是()A.是B.好C.朋D.友【答案】A【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“是”是相对面,“们”与“朋”是相对面,“好”与“友”是相对面.故选:A .【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.17.如图,在ABC V 中,90C ∠=︒,30B ∠=︒,如图:(1)以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ;(2)分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ;(3)连结AP 并延长交BC 于点D .根据以上作图过程,下列结论中错误的是( )A .AD 是BAC ∠的平分线B .60ADC ∠=︒ C .点D 在AB 的中垂线上D .:1:3DAC ABD S S =△△【答案】D【解析】【分析】 根据作图的过程可以判定AD 是∠BAC 的角平分线;利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC 的度数;利用等角对等边可以证得△ADB 的等腰三角形,由等腰三角形的“三线合一”的性质可以证明点D 在AB 的中垂线上;利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.【详解】解:A 、根据作图方法可得AD 是∠BAC 的平分线,正确;B 、∵∠C=90°,∠B=30°,∴∠CAB=60°,∵AD 是∠BAC 的平分线,∴∠DAC=∠DAB=30°,∴∠ADC=60°,正确;C 、∵∠B=30°,∠DAB=30°,∴AD=DB ,∴点D 在AB 的中垂线上,正确;D 、∵∠CAD=30°,∴CD=12 AD,∵AD=DB,∴CD=12 DB,∴CD=13 CB,S△ACD=12CD•AC,S△ACB=12CB•AC,∴S△ACD:S△ACB=1:3,∴S△DAC:S△ABD≠1:3,错误,故选:D.【点睛】本题考查了角平分线的性质、线段垂直平分线的性质以及作图—基本作图.解题时,需要熟悉等腰三角形的判定与性质.18.如图,小慧从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C 处,此时需要将方向调整到与出发时一致,则方向的调整应为()A.左转80°B.右转80°C.左转100°D.右转100°【答案】B【解析】【分析】如图,延长AB到D,过C作CE//AD,由题意可得∠A=60°,∠1=20°,根据平行线的性质可得∠A=∠2,∠3=∠1+∠2,进而可得答案.【详解】如图,延长AB到D,过C作CE//AD,∵此时需要将方向调整到与出发时一致,∴此时沿CE 方向行走,∵从A 处出发沿北偏东60°方向行走至B 处,又沿北偏西20°方向行走至C 处, ∴∠A=60°,∠1=20°,AM ∥BN ,CE ∥AB ,∴∠A=∠2=60°,∠1+∠2=∠3∴∠3=∠1+∠2=20°+60°=80°,∴应右转80°.故选B.【点睛】本题考查了方向角有关的知识及平行线的性质,解答时要注意以北方为参照方向,进行角度调整.19.将下面平面图形绕直线l 旋转一周,可得到如图所示立体图形的是( )A .B .C .D .【答案】B【解析】分析:根据面动成体,所得图形是两个圆锥体的复合体确定答案即可.详解:由图可知,只有B 选项图形绕直线l 旋转一周得到如图所示立体图形.故选:B .点睛:本题考查了点、线、面、体,熟悉常见图形的旋转得到立体图形是解题的关键.20.如图,已知直线AB 和CD 相交于G 点,CG EG ⊥,GF 平分AGE ∠,34CGF ∠=︒,则BGD ∠大小为( )A .22︒B .34︒C .56︒D .90︒【答案】A【解析】【分析】 先根据垂直的定义求出∠EGF 的度数,然后根据GF 平分∠ABE 可得出∠AGF 的度数,再由∠AGC=∠AGF-∠CGF 求出∠AGC 的度数,最后根据对顶角相等可得出∠BGD 的度数.【详解】解:∵CG ⊥EG ,∴∠EGF=90°-∠CGF=90°-34°=56°,又GF 平分∠AGE ,∴∠AGF=∠EGF=56°,∴∠AGC=∠AGF-∠CGF=56°-34°=22°,∴∠BGD=∠AGC=22°.故选:A .【点睛】本题考查了对顶角的性质,垂直的定义以及角平分线的定义,掌握基本概念和性质是解题的关键.。
人教版九年级数学中考尺规作图专项练习及参考答案
人教版九年级数学中考尺规作图专项练习A 级 基础题1.下列各条件中,不能作出唯一三角形的条件是( ) A .已知两边和夹角B .已知两边和其中一条边所对的角C .已知两角和夹边D .已知两角和其中一角的对边2.如图X6-3-1,在△ABC 中,分别以点A 和点B 为圆心,大于12AB 的长为半径画弧,两弧相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD .若△ADC 的周长为10,AB =7,则△ABC 的周长为( )图X6-3-1A .7B .14C .17D .203.如图X6-3-2,点C 在∠AOB 的OB 边上,用尺规作出了CN ∥OA ,在作图痕迹中,是( )图X6-3-2A .以点C 为圆心,OD 为半径的弧B .以点C 为圆心,DM 为半径的弧 C .以点E 为圆心,OD 为半径的弧 D .以点E 为圆心,DM 为半径的弧4.下列关于作图的语句,正确的是( ) A .画直线AB =10厘米 B .画射线OB =10厘米C .已知A ,B ,C 三点,过这三点画一条直线D .过直线AB 外一点画一条直线和直线AB 平行5.已知线段AB 和CD ,如图X6-3-3,求作一线段,使它的长度等于AB +2CD .图X6-3-36.试把如图X6-3-4所示的角四等分(不写作法).图X6-3-47.已知等腰△ABC的顶角∠A=36°(如图X6-3-5).(1)作底角∠ABC的平分线BD,交AC于点D(用尺规作图,不写作法,但保留作图痕迹,然后用墨水笔加墨);(2)通过计算,说明△ABD和△BDC都是等腰三角形.图X6-3-58.某市计划在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M到广场的两个入口A,B的距离相等,且到广场管理处C的距离等于A和B之间距离的一半,A,B,C的位置如图X6-3-6,请在原图上利用尺规作图作出音乐喷泉M的位置(要求:不写已知、求作、作法和结论,保留作图痕迹,必须用铅笔作图).图X6-3-69.如图X6-3-7已知:线段a,c,∠α.求作:△ABC,使BC=a,AB=c,∠ABC=∠α.图X6-3-710.如图X6-3-8,AB ∥CD ,以点A 为圆心,小于AC 长为半径作圆弧,分别交AB ,AC 于E ,F 两点,再分别以E ,F 为圆心,大于12EF 长为半径作圆弧,两条圆弧交于点P ,作射线AP ,交CD 于点M .(1)若∠ACD =114°,求∠MAB 的度数;(2)若CN ⊥AM ,垂足为N ,求证:△ACN ≌△MCN .图X6-3-811.如图X6-3-9,已知△ABC ,画它的内切圆⊙O .图X6-3-9作法:(1)分别作____________,两平分线交于点O ; (2)过点O 作____的垂线段,交BC 于点D ; (3)以点__为圆心,以____的长为半径,画圆, 那么,所画的⊙O 就是△ABC 的______. 12.如图X6-3-10,已知线段a 和h .求作:△ABC ,使得AB =AC ,BC =a ,且BC 边上的高AD =h . 要求:尺规作图,不写作法,保留作图痕迹.图X6-3-10B 级 中等题13.如图X6-3-11,画一个等腰△ABC ,使得底边BC =a ,它的高AD =h .图X6-3-1114.为了推进农村新型合作医疗制度改革,准备在某镇新建一个医疗点P,使P到该镇所属A村、B村、C村的村委会所在地的距离都相等(A,B,C不在同一直线上,地理位置如图X6-3-12),请你用尺规作图的方法确定点P的位置.要求:写出已知,求作,不写作法,保留作图痕迹.解:已知:求作:图X6-3-12C级拔尖题15.如图X6-3-13,已知△ABC,且∠ACB=90°.(1)请用直尺和圆规按要求作图(保留作图痕迹,不写作法和证明):①以点A为圆心,BC边的长为半径作⊙A;②以点B为顶点,在AB边的下方作∠ABD=∠BAC.(2)请判断直线BD与⊙A的位置关系(不必证明).图X6-3-1316.如图X6-3-14,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A,B,C.(1)请完成如下操作:①以点O为原点、竖直和水平方向所在的直线为坐标轴、网格边长为单位长,建立平面直角坐标系;②用直尺和圆规画出该圆弧所在圆的圆心D的位置(不用写作法,保留作图痕迹),并连接AD,CD;(2)请在(1)的基础上,完成下列问题:①写出点的坐标:C__________,D__________;②⊙D的半径=____________(结果保留根号);③若扇形ADC是一个圆锥的侧面展开图,则该圆锥的底面面积为________(结果保留π);④若E(7,0),试判断直线EC与⊙D的位置关系,并说明你的理由.图X6-3-14选做题17.数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线,方法如下: 作法:如图X6-3-15(1),①在OA 和OB 上分别截取OD ,OE ,使OD =OE .②分别以D ,E 为圆心,以大于12DE 的长为半径作弧,两弧在∠AOB 内交于点C .③作射线OC ,则OC 就是∠AOB 的平分线.小聪的作法步骤:如图X6-3-15(2),①利用三角板上的刻度,在OA 和OB 上分别截取OM ,ON ,使OM =ON .②分别过M ,N 作OM ,ON 的垂线,交于点P . ③作射线OP ,则OP 为∠AOB 的平分线.小颖的身边只有刻度尺,经过尝试,她发现利用刻度尺也可以作角平分线. 根据以上情境,解决下列问题:(1)李老师用尺规作角平分线时,用到的三角形全等的判定方法是______; (2)小聪的作法正确吗?请说明理由;(3)请你帮小颖设计用刻度尺作角平分线的方法(要求:作出图形,写出作图步骤,不予证明).(1)(2)图X6-3-15参考答案1.B 2.C 3.D 4.D 5.略6.略 提示:首先把∠O 二等分,再把得到的两部分分别再二等分即可.图D737.解:(1)如图D73,BD 即为所求. (2)∵∠A =36°,∴∠ABC =∠C =(180°-36°)÷2=72°. ∵BD 平分∠ABC ,∴∠ABD =∠DBC =72°÷2=36°. ∴∠CDB =180°-36°-72°=72°.∵∠A =∠ABD =36°,∠C =∠CDB =72°, ∴AD =DB ,BD =BC .∴△ABD 和△BDC 都是等腰三角形. 8.解:如图D74.图D749.解:如图D75,①以α的顶点为圆心,任意长为半径画弧,交α的两边分别为A ′,C ′;②以相同长度为半径,B 为圆心画弧,交BC 于点F ,以F 为圆心,C ′A ′为半径画弧,交AB 于点E ;③在BF 上取点C ,使CB =a ,以B 为圆心,c 为半径画圆交BE 的延长线于点A ,连接AC ,则△ABC 即为所求的三角形.图D7510.(1)解:∵AB ∥CD , ∴∠ACD +∠CAB =180°. 又∵∠ACD =114°, ∴∠CAB =66°.由作法知,AM 是∠CAB 的平分线,∴∠AMB =12∠CAB =33°.(2)证明:∵AM 平分∠CAB , ∴∠CAM =∠MAB . ∵AB ∥CD ,∴∠MAB =∠CMA . ∴∠CAM =∠CMA .又∵CN⊥AM,∴∠ANC=∠MNC.在△ACN和△MCN中,∵∠ANC=∠MNC,∠CAM=∠CMN, CN=CN,∴△ACN≌△MCN.11.解:(1)∠A,∠B的平分线(2)BC(3)O OD内切圆12.解:如图D76.图D7613.略14.解:已知:A,B,C三点不在同一直线上.求作:一点P,使P A=PB=PC(或经过A,B,C三点的外接圆圆心P).正确作出任意两条线段的垂直平分线,并标出交点P,如图D77.图D77图D7815.解:(1)如图D78.(2)直线BD与⊙A相切.∵∠ABD=∠BAC,∴AC∥BD.∵∠ACB=90°,⊙A的半径等于BC,∴点A到直线BD的距离等于BC.∴直线BD与⊙A相切.16.解:(1)如图D79:图D79(2)①(6,2)(2,0)②2 5③54π④相切.理由:∵CD=2 5,CE=5,DE=5,∴CD2+CE2=25=DE2.∴∠DCE=90°,即CE⊥CD.∴直线CE与⊙D相切.17.解:(1)李老师用尺规作角平分线时,用到的三角形全等的判定方法是SSS.故答案为SSS.(2)小聪的作法正确.理由:∵PM⊥OM,PN⊥ON,∴∠OMP=∠ONP=90°.图D80在Rt△OMP和Rt△ONP中,∵OP=OP,OM=ON,∴Rt△OMP≌Rt△ONP(HL).∴∠MOP=∠NOP.∴OP平分∠AOB.(3)如图D80,步骤:①利用刻度尺在OA,OB上分别截取OG=OH.②连接GH,利用刻度尺作出GH的中点Q.③作射线OQ.则OQ为∠AOB的平分线.。
专题8.1创新作图---常用作图技巧在多边形中的应用-中考数学二轮复习必会几何模型剖析(全国通用)
配套训练
常用作图技巧
中考真题
1.(2018·T16)如图,在四边形ABCD中,AB∥CD,AB=2CD,E为AB的
中点.请用无刻度的直尺分别按下列要求画图.
(1)在图1中,画出△ABD中BD边上的中线;
(2)在图2中,若BA=BD,画出△ABD中AD边上的高.
A
A
E
E
F
B
F
D
图1 C ∴AF即为所求.
专题八 创新作图
8.1 “常用作图技巧” 在“多边形”中的应用
人教版中考第二轮总复习---几何模型
题型概述 创新作图:
创新作图
考点归纳
无刻度直尺只能用来画 直线,不能测量长度.
是区别于尺规作图的另一种作图方式,它是以无刻度直尺 作为唯一的作图工具,综合运用图形的几何性质、基本定理、 图形变换等进行分析、推理、归纳,寻找作图依据。
(1)如图1,点B与点G重合,过点C作CM⊥AF;
(2)如图2,点G在点B的左侧,过点C作CN⊥AF.
A
D
A
D
N
M EH
EH
F B(G) 图1 C ∴CM即为所求;
F G B 图2 C ∴CN即为所求;
目录
01 利用三角形三线交于一点作图 知识要点 02 利用平行四边形对角线作图 精讲精练
03 利用轴对称的性质作图
创新作图的主要作图类型有:
1.在三角形中作图; 2.在特殊的四边形中作图; 3.在正多边形中作图; 4.在圆中作图; 5.在网格中作图。
题型概述
创新作图
创新作图的主要的作图要求有:
考点归纳
①找点:两__条__线__相__交__的__是__点__(_线__可__以__是__直__线__也__可__以__是__曲__线__); ②画线:两__点__确__定__一__条__直__线___________________________;
2023年人教版初中数学中考专题尺规作图特训(一)打印版含答案
人教版初中数学2023中考专题尺规作图特训(一)打印版含答案时间:40分钟满分:52分1.(8分)如图,在△ABC中,AC=12 cm,BC=16 cm,AB=20 cm,∠CAB的平分线AD交BC于点D.(1)根据题意将图形补画完整(要求:尺规作图,保留作图痕迹,不写作法);(2)求△ABD的面积.(第1题)2.(8分)如图,在△ABC中,∠ACB的平分线交AB于点D.已知点E是AC上一点,且满足CE=DE.(1)尺规作图:在图中确定点E的位置;(要求保留作图痕迹,不写作法)(2)在(1)的条件下,若AD=2a,BD=3a(a>0),BC=10,求DE的长.(第2题)3.(8分)如图,菱形ABCD中,E是BC边上一点.(1)在BC的右侧作△AEF,使得EF∥BD,且EF=12BD;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,若∠EAF=12∠ABC,求证:AE=2EF.(第3题)4.(8分)如图,已知▱ABCD,点F在AB的延长线上,CF⊥AB.(1)尺规作图:在BC边上找一点E,使得△DCE∽△CBF;(保留作图痕迹,不写作法,不必证明)(2)在(1)的条件下,若点E为BC的中点,AD=8,BF=3,求AB的长.(第4题)5.(10分)如图,∠MAN=90°,点O在AN上,⊙O经过点A,点B在AM上.(1)过点B作⊙O的切线BC,切点为D,交AN于点C;(要求尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若AB=6,BC=10,求⊙O的半径.(第5题)6.(10分)如图,在△ABC中,P是BC边的中点,∠BAP=α(α为锐角).把点P 绕点A顺时针旋转得到点Q,旋转角为2α.(1)求作以A,B,P,D为顶点的四边形,使得点Q是该四边形AD边的中点;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,若AD=BC,探究直线PQ与直线BD的位置关系,并说明理由.(第6题)答案1.解:(1)如图所示.(2)如图,过点D 作DE ⊥AB 于点E , ∵AC 2+BC 2=122+162=202=AB 2, ∴△ABC 是直角三角形,且∠ACB =90°. 又∵AD 平分∠CAB ,DE ⊥AB ,∴CD =DE . ∵S △ABC =S △ABD +S △ACD , ∴12BC ·AC =12AB ·DE +12AC ·CD , ∴10DE +6CD =96,即16DE =96,∴DE =6 cm , ∴S △ABD =12AB ·DE =12×20×6=60(cm 2).(第1题) (第2题)2.解:(1)如图,点E 即为所作.(2)如图,∵CE =DE ,∴∠EDC =∠ECD . ∵CD 平分∠ACB ,∴∠ACD =∠BCD , ∴∠BCD =∠EDC ,∴DE ∥BC . ∴△ADE ∽△ABC , ∴AD AB =DE BC ,即2a 2a +3a=DE10,解得DE =4. 3.(1)解:如图①,△AEF 即为所求.① ② (第3题)(2)证明:如图②,延长EF 交AD 的延长线于点G .∵EF=12BD,∴BD=2EF.∵四边形ABCD是菱形,∴AD∥BC,∠CBD=12∠ABC.又∵EF∥BD,∴四边形BEGD是平行四边形,∴EG=BD=2EF,∠G=∠CBD.∵∠CBD=12∠ABC,∠EAF=12∠ABC,∴∠EAF=∠CBD=∠G,又∵∠AEF=∠GEA,∴△EAF∽△EGA,∴EFAE=AEEG,∴AE2=EF·EG=EF·2EF=2EF2,∴AE=2EF.4.解:(1)如图所示.(第4题)(2)∵四边形ABCD是平行四边形,∴AB=CD,BC=AD=8.∵点E为BC的中点,∴CE=12BC=4.∵△DCE∽△CBF,∴CDCB=CEBF,即CD8=43,∴CD=323,∴AB=323.5.解:(1)如图①所示,BC是⊙O的切线,切点为D.①②(第5题)(2)如图②,连接OD,∵BC是⊙O的切线,∴OD⊥BC.在Rt△ABC中,AB=6,BC=10,∴AC=8. 设⊙O的半径为r,则CO=8-r.∵∠ODC=∠BAC=90°,∠OCD=∠BCA,∴△COD∽△CBA,∴ODAB=OCCB,即r6=8-r10,解得r=3,∴⊙O的半径是3.6.解:(1)如图,四边形ADBP即为所求作.(第6题)(2)直线PQ与直线BD平行.理由如下:∵把点P绕点A顺时针旋转得到点Q,旋转角为2α,且∠BAP=α,∴AQ=AP,∠QAB=α.∵P是BC边的中点,∴BP=12BC.∵Q是AD边的中点,∴AQ=DQ=12AD.∵AD=BC,∴AQ=DQ=BP.∴AP=BP.∴∠ABP=∠BAP=α.∴∠ABP=∠QAB.∴AD∥BC,即DQ∥BP.∴四边形BPQD为平行四边形.∴BD∥PQ.。
中考数学提分训练-尺规作图(含解析)-新版新人教版
2019年中考数学提分训练: 尺规作图一、选择题1.下列画图的语句中,正确的为()A. 画直线AB=10cmB. 画射线OB=10cmC. 延长射线BA到C,使BA=BCD. 过直线AB外一点画一条直线和直线AB相交2.如图,用尺规作出了BF∥OA,作图痕迹中,弧MN是()A. 以B为圆心,OD长为半径的弧 B. 以C为圆心,CD长为半径的弧C. 以E为圆心,DC长为半径的弧 D. 以E为圆心,OD长为半径的弧3.用直尺和圆规作一个角等于已知角,如图,能得出的依据是()A. (SAS)B. (SSS)C. (AAS)D. (A SA)4.如图,锐角三角形ABC中,BC>AB>AC,甲、乙两人想找一点P,使得∠BPC与∠A互补,其作法分别如下:(甲)以A为圆心,AC长为半径画弧交AB于P点,则P即为所求;(乙)作过B点且与AB垂直的直线l,作过C点且与AC垂直的直线,交l于P点,则P即为所求对于甲、乙两人的作法,下列叙述何者正确?()A. 两人皆正确B. 两人皆错误 C. 甲正确,乙错误 D. 甲错误,乙正确5. 如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF 的长为()A. 5B. 6C. 7D. 86.如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A. 4B. 5C. 6D. 77.画正三角形ABC(如图)水平放置的直观图△A′B′C′,正确的是()A. B. C.D.8.已知∠AOB,用尺规作一个角等于已知角∠AOB的作图痕迹如图所示,则判断∠AOB= 所用到的三角形全等的判断方法是()A. SASB. ASAC. AASD. SSS9.如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以点M,N为圆心画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线②∠ADC=60°③△ABD是等腰三角④点D到直线AB的距离等于CD的长度.A. 1B. 2C. 3D. 410. 如图,用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB 于点E、F,那么第二步的作图痕迹②的作法是()A. 以点F为圆心,OE长为半径画弧B. 以点F为圆心,EF长为半径画弧C. 以点E为圆心,OE长为半径画弧 D. 以点E为圆心,EF长为半径画弧11. 如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是()A. 6 B . 8 C.10 D.1212. 如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=8,AB=5,则AE的长为()A. 5B. 6C. 8D. 12二、填空题13. 我们学过用直尺和三角尺画平行线的方法,如图所示,直线a∥b的根据是________.14.作图并写出结论:如图,点P是∠AOB的边OA上一点,请过点P画出OA , OB的垂线,分别交BO 的延长线于M 、N ,线段________的长表示点P到直线BO的距离;线段________的长表示点M到直线AO的距离 ; 线段ON的长表示点O到直线________的距离;点P到直线OA的距离为________.15.如图,已知线段AB,分别以点A,B为圆心,大于线段AB长度一半的长为半径画弧,相交于点C,D,连接AC,BC,BD,CD.其中AB=4,CD=5,则四边形ABCD的面积为________.16.如图,在Rt△ABC中,∠ACB=90°,BC=9,AC=12.分别以点A和点B为圆心、大于AB一半的长为半径作圆弧,两弧相交于点E和点F,作直线EF交AB于点D,连结CD.则CD的长为________.17. 如图,依据尺规作图的痕迹,计算∠α=________°.18. 以Rt△ABC的锐角顶点A为圆心,适当长为半径作弧,与边AB,AC各相交于一点,再分别以这两个交点为圆心,适当长为半径作弧,过两弧的交点与点A作直线,与边BC交于点D.若∠ADB=60°,点D到AC的距离为2,则AB的长为________.19.如图,在每个小正方形的边长为1的网格中,点A,B均在格点上.(Ⅰ)线段AB的长为________.(Ⅱ)请利用网格,用无刻度的直尺在AB上作出点P,使AP= ,并简要说明你的作图方法(不要求证明).________.20.如图,在矩形中,按以下步骤作图:①分别以点和为圆心,以大于的长为半径作弧,两弧相交于点和;②作直线交于点.若,,则矩形的对角线的长为________.三、解答题21.如图,利用尺规,在△ABC的边AC上方作∠CAE=∠ACB,在射线AE上截取AD=BC,连接CD,并证明:CD∥AB(尺规作图要求保留作图痕迹,不写作法)22.已知:如图,Rt△ABC中,∠ACB=90°(1)用直尺和圆规作∠ABC的平分线,交AC于点O;(2)在(1)的条件下,若BC=3,AC=4,求点O到AB的距离。
人教版2023中考数学专题复习:尺规作图
尺规作图命题点1 五种基本尺规作图类型一判定作图结果1.(2022•德州)在△ABC中,根据下列尺规作图的痕迹,不能判断AB与AC 大小关系的是()A.B.C.D.2.(2022•益阳)如图,在△ABC中,BD平分∠ABC,以点A为圆心,以任意长为半径画弧交射线AB,AC于两点,分别以这两点为圆心,以适当的定长为半径画弧,两弧交于点E,作射线AE,交BD于点I,连接CI,以下说法错误的是()A.I到AB,AC边的距离相等B.CI平分∠ACBC.I是△ABC的内心D.I到A,B,C三点的距离相等3.(2022•盘锦)如图,线段AB是半圆O的直径.分别以点A和点O为圆心,大于的长为半径作弧,两弧交于M,N两点,作直线MN,交半圆O于点C,交AB于点E,连接AC,BC,若AE=1,则BC的长是()A.B.4C.6D.4.(2022•长春)如图,在△ABC中,根据尺规作图痕迹,下列说法不一定正确的是()A.AF=BF B.AE=ACC.∠DBF+∠DFB=90°D.∠BAF=∠EBC 5.(2022•威海)过直线l外一点P作直线l的垂线PQ.下列尺规作图错误的是()A.B.C.D.6.(2022•舟山)用尺规作一个角的角平分线,下列作法中错误的是()A.B.C.D.类型二根据作图步骤进行计算、证明或结论判断7.(2022•淄博)如图,在△ABC中,AB=AC,∠A=120°.分别以点A和C 为圆心,以大于AC的长度为半径作弧,两弧相交于点P和点Q,作直线PQ 分别交BC,AC于点D和点E.若CD=3,则BD的长为()A.4B.5C.6D.7 8.(2022•黄石)如图,在△ABC中,分别以A,C为圆心,大于AC长为半径作弧,两弧分别相交于M,N两点,作直线MN,分别交线段BC,AC于点D,E,若AE=2cm,△ABD的周长为11cm,则△ABC的周长为()A.13cm B.14cm C.15cm D.16cm 9.(2022•资阳)如图所示,在△ABC中,按下列步骤作图:第一步:在AB、AC上分别截取AD、AE,使AD=AE;第二步:分别以点D和点E为圆心、适当长(大于DE的一半)为半径作圆弧,两弧交于点F;第三步:作射线AF交BC于点M;第四步:过点M作MN⊥AB于点N.下列结论一定成立的是()A.CM=MN B.AC=AN C.∠CAM=∠BAM D.∠CMA=∠NMA 10.(2022•锦州)如图,在矩形ABCD中,AB=6,BC=8,分别以点A和C为圆心,以大于的长为半径作弧,两弧相交于点M和N,作直线MN分别交AD,BC于点E,F,则AE的长为()A.B.C.D.11.(2022•聊城)如图,△ABC中,若∠BAC=80°,∠ACB=70°,根据图中尺规作图的痕迹推断,以下结论错误的是()A.∠BAQ=40°B.DE=BD C.AF=AC D.∠EQF=25°12.(2022•百色)如图,是求作线段AB中点的作图痕迹,则下列结论不一定成立的是()A.∠B=45°B.AE=EB C.AC=BC D.AB⊥CD 13.(2022•营口)如图,在△ABC中,AB=AC,∠A=36°,由图中的尺规作图得到的射线与AC交于点D,则以下推断错误的是()A.BD=BC B.AD=BD C.∠ADB=108°D.CD=AD 14.(2022•鄂州)如图,直线l1∥l2,点C、A分别在l1、l2上,以点C为圆心,CA长为半径画弧,交l1于点B,连接AB.若∠BCA=150°,则∠1的度数为()A.10°B.15°C.20°D.30°15.(2022•枣庄)如图,在矩形ABCD中,按以下步骤作图:①分别以点B和D 为圆心,以大于BD的长为半径作弧,两弧相交于点E和F;②作直线EF 分别与DC,DB,AB交于点M,O,N.若DM=5,CM=3,则MN=.16.(2022•辽宁)如图,在△ABC中,AB=AC,∠B=54°,以点C为圆心,CA长为半径作弧交AB于点D,分别以点A和点D为圆心,大于AD长为半径作弧,两弧相交于点E,作直线CE,交AB于点F,则∠ACF的度数是.类型三依据要求直接作图17.(2022•淮安)如图,已知线段AC和线段a.(1)用直尺和圆规按下列要求作图.(请保留作图痕迹,并标明相应的字母,不写作法)①作线段AC的垂直平分线l,交线段AC于点O;②以线段AC为对角线,作矩形ABCD,使得AB=a,并且点B在线段AC的上方.(2)当AC=4,a=2时,求(1)中所作矩形ABCD的面积.18.(2022•襄阳)如图,在△ABC中,AB=AC,BD是△ABC的角平分线.(1)作∠ACB的角平分线,交AB于点E(尺规作图,不写作法,保留作图痕迹);(2)求证:AD=AE.19.(2022•宁夏)如图,四边形ABCD中,AB∥DC,AB=BC,AD⊥DC于点D.(1)用尺规作∠ABC的角平分线,交CD于点E;(不写作法,保留作图痕迹)(2)连接AE.求证:四边形ABCE是菱形.20.(2022•赤峰)如图,已知Rt△ABC中,∠ACB=90°,AB=8,BC=5.(1)作BC的垂直平分线,分别交AB、BC于点D、H;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,连接CD,求△BCD的周长.类型四转化类作图21.(2022•陕西)如图,已知△ABC,CA=CB,∠ACD是△ABC的一个外角.请用尺规作图法,求作射线CP,使CP∥AB.(保留作图痕迹,不写作法)命题点2无刻度直尺作图类型一网格中作图22.(2022•长春)图①、图②、图③均是5×5的正方形网格,每个小正方形的边长均为1,其顶点称为格点,△ABC的顶点均在格点上.只用无刻度的直尺,在给定的网格中,按下列要求作图,保留作图痕迹.(1)网格中△ABC的形状是;(2)在图①中确定一点D,连结DB、DC,使△DBC与△ABC全等;(3)在图②中△ABC的边BC上确定一点E,连结AE,使△ABE∽△CBA;(4)在图③中△ABC的边AB上确定一点P,在边BC上确定一点Q,连结PQ,使△PBQ∽△ABC,且相似比为1:2.23.(2022•江西)如图是4×4的正方形网格,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹).(1)在图1中作∠ABC的角平分线;(2)在图2中过点C作一条直线l,使点A,B到直线l的距离相等.类型二根据图形性质作图24.(2022•湖北)已知四边形ABCD为矩形,点E是边AD的中点,请仅用无刻度的直尺完成下列作图,不写作法,保留作图痕迹.(1)在图1中作出矩形ABCD的对称轴m,使m∥AB;(2)在图2中作出矩形ABCD的对称轴n,使n∥AD.25.(2022•无锡)如图,△ABC为锐角三角形.(1)请在图1中用无刻度的直尺和圆规作图:在AC右上方确定点D,使∠DAC=∠ACB,且CD⊥AD;(不写作法,保留作图痕迹)(2)在(1)的条件下,若∠B=60°,AB=2,BC=3,则四边形ABCD的面积为.26.(2022•绥化)已知:△ABC.(1)尺规作图:用直尺和圆规作出△ABC内切圆的圆心O.(只保留作图痕迹,不写作法和证明)(2)如果△ABC的周长为14cm,内切圆的半径为1.3cm,求△ABC的面积.27.(2022•扬州)【问题提出】如何用圆规和无刻度的直尺作一条直线或圆弧平分已知扇形的面积?【初步尝试】如图1,已知扇形OAB,请你用圆规和无刻度的直尺过圆心O 作一条直线,使扇形的面积被这条直线平分;【问题联想】如图2,已知线段MN,请你用圆规和无刻度的直尺作一个以MN为斜边的等腰直角三角形MNP;【问题再解】如图3,已知扇形OAB,请你用圆规和无刻度的直尺作一条以点O为圆心的圆弧,使扇形的面积被这条圆弧平分.(友情提醒:以上作图均不写作法,但需保留作图痕迹)11。
人教版中考数学考点系统复习 第七章 作图与图形变换 第一节 尺规作图
6.★(2022·荆州第 14 题 3 分)如图,在 Rt△ABC 中,∠ACB=90°,通
过尺规作图得到的直线 MN 分别交 AB,AC 于点 D,E,连接 CD.若 CE=13AE =1,则 CD= 6 .
7.(2021·宜昌第 18 题 7 分)如图,在△ABC 中,∠B=40°,∠C=50 °.
D,P 分别是图中所作直线和射线与 AB,CD 的交点.根据图中尺规作图痕
迹推断,以下结论中错误的是
(D )
A.AD=CD
B.∠ABP=∠CBP
C.∠BPC=115°
D.∠PBC=∠A
3.★(2021·鄂州第 5 题 3 分)已知锐角∠AOB=40°,如图,按下列步
骤作图:①在 OA 边取一点 D,以 O 为圆心,OD 长为半径画M︵N,交 OB 于
(1)通过观察尺规作图的痕迹,可以发现直线 DF 是线段 AB 的垂垂直直平平分线分,
射线 AE 是∠DAC 的平平分分线线;
线
(2)在(1)所作的图中,求∠DAE 的度数. 解:∵DF 垂直平分线段 AB,∴DA=DB,∴∠BAD=∠B. ∵∠B=40°,∠C=50°, ∴∠BAC=90°,∴∠CAD=50°. ∵AE 平分∠CAD,∴∠DAE=12∠CAD=25°.
心,大于2BC 长为半径画弧,画弧相交于点 M, N.作直线 MN,交 AC 于点 D,交 BC 于点 E,连接 BD.若 AB=7, AC=12,BC=6,则△ABD 的周长为
(C ) A.25 B.22 C.19 D.18
2.(2021·荆州第 8 题 3 分)如图,在△ABC 中,AB=AC,∠A=40°,点
点 C,连接 CD.②以 D 为圆心,DO 长为半径画G︵H,交 OB 于点 E,连接 DE.
中考数学考点一遍过 考点20 尺规作图(含解析)-人教版初中九年级全册数学试题
考点20尺规作图一、尺规作图1.尺规作图的定义在几何里,把限定用没有刻度的直尺和圆规来画图称为尺规作图.2.五种基本作图(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作一个角的平分线;(4)作一条线段的垂直平分线;(5)过一点作已知直线的垂线.3.根据基本作图作三角形(1)已知三角形的三边,求作三角形;(2)已知三角形的两边及其夹角,求作三角形;(3)已知三角形的两角及其夹边,求作三角形;(4)已知三角形的两角及其中一角的对边,求作三角形;(5)已知直角三角形一直角边和斜边,求作直角三角形.4.与圆有关的尺规作图(1)过不在同一直线上的三点作圆(即三角形的外接圆);(2)作三角形的内切圆.5.有关中心对称或轴对称的作图以及设计图案是中考常见类型.6.作图题的一般步骤(1)已知;(2)求作;(3)分析;(4)作法;(5)证明;(6)讨论.其中步骤(3)(4)(5)(6)一般不作要求,但作图中一定要保留作图痕迹.二、尺规作图的方法1.尺规作图的关键(1)先分析题目,读懂题意,判断题目要求作什么;(2)读懂题意后,再运用几种基本作图方法解决问题.2.根据已知条件作等腰三角形或直角三角形求作三角形的关键是确定三角形的三个顶点,作图依据是三角形全等的判定,常借助基本作图来完成,如作直角三角形就先作一个直角.考向一基本作图1.最基本、最常用的尺规作图,通常称为基本作图.2.基本作图有五种:(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作一个角的平分线;(4)作一条线段的垂直平分线;(5)过一点作已知直线的垂线.典例1如图,在△ABC中,∠ACB=90°,分别以点A和B为圆心,以相同的长(大于12AB)为半径作弧,两弧相交于点M和N,作直线MN交AB于点D,交BC于点E,连接CD,下列结论错误的是A.AD=BD B.BD=CDC.∠A=∠BED D.∠ECD=∠EDC【答案】D【解析】∵MN为AB的垂直平分线,∴AD=BD,∠BDE=90°,∵∠ACB=90°,∴CD=BD,∵∠A+∠B=∠B+∠BED=90°,∴∠A=∠BED,∵∠A≠60°,AC≠AD,∴EC≠ED,∴∠ECD≠∠EDC.故选D.典例2如图,已知∠MAN,点B在射线AM上.(1)尺规作图:①在AN上取一点C,使BC=BA;②作∠MBC的平分线BD,(保留作图痕迹,不写作法)(2)在(1)的条件下,求证:BD∥AN.【解析】(1)①以B点为圆心,BA长为半径画弧交AN于C点;如图,点C即为所求作;②利用基本作图作BD平分∠MBC;如图,BD即为所求作;(2)先利用等腰三角形的性质得∠A=∠BCA,再利用角平分线的定义得到∠MBD=∠CBD,然后根据三角形外角性质可得∠MBD=∠A,最后利用平行线的判定得到结论.∵AB=AC,∴∠A=∠BCA,∵BD平分∠MBC,∴∠MBD=∠CBD,∵∠MBC=∠A+∠BCA,即∠MBD+∠CBD=∠A+∠BCA,∴∠MBD=∠A,∴BD∥AN.1.根据下图中尺规作图的痕迹,可判断AD一定为三角形的A.角平分线B.中线C.高线D.都有可能2.(1)请你用尺规作图,作AD平分∠BAC,交BC于点D(要求:保留作图痕迹);(2)∠ADC的度数.考向二复杂作图利用五种基本作图作较复杂图形.典例2如图,在同一平面内四个点A,B,C,D.(1)利用尺规,按下面的要求作图.要求:不写画法,保留作图痕迹,不必写结论.①作射线AC;②连接AB,BC,BD,线段BD与射线AC相交于点O;③在线段AC上作一条线段CF,使CF=AC–BD.(2)观察(1)题得到的图形,我们发现线段AB+BC>AC,得出这个结论的依据是__________.【答案】见解析.【解析】(1)①如图所示,射线AC即为所求;②如图所示,线段AB,BC,BD即为所求;③如图所示,线段CF即为所求;(2)根据两点之间,线段最短,可得AB+BC>AC.故答案为:两点之间,线段最短.3.作图题:学过用尺规作线段与角后,就可以用尺规画出一个与已知三角形一模一样的三角形来.比如给定一个△ABC,可以这样来画:先作一条与AB相等的线段A′B′,然后作∠B′A′C′=∠BAC,再作线段A′C′=AC,最后连接B′C′,这样△A′B′C′就和已知的△ABC一模一样了.请你根据上面的作法画一个与给定的三角形一模一样的三角形来.(请保留作图痕迹)1.根据已知条件作符合条件的三角形,在作图过程中主要依据是A.用尺规作一条线段等于已知线段B.用尺规作一个角等于已知角C.用尺规作一条线段等于已知线段和作一个角等于已知角D.不能确定2.下列作图属于尺规作图的是A.画线段MN=3cmB.用量角器画出∠AOB的平分线C.用三角尺作过点A垂直于直线l的直线D.已知∠α,用没有刻度的直尺和圆规作∠AOB,使∠AOB=2∠α3.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是A.BH垂直平分线段AD B.AC平分∠BADC.S△ABC=BC·AH D.AB=AD4.如图,点C在∠AOB的OB边上,用尺规作出了∠AOB=∠NCB,作图痕迹中,弧FG是A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧5.如图,△ABC中,∠C=90°,∠CAB=50°.按以下步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于12EF长为半径画弧,两弧相交于点G;③作射线AG交BC边于点D.则∠ADC的度数为A.65°B.60°C.55°D.45°6.如图,△ABC为等边三角形,要在△ABC外部取一点D,使得△ABC和△DBC全等,下面是两名同学做法:甲:①作∠A的角平分线l;②以B为圆心,BC长为半径画弧,交l于点D,点D即为所求;乙:①过点B作平行于AC的直线l;②过点C作平行于AB的直线m,交l于点D,点D即为所求.A.两人都正确B.两人都错误C.甲正确,乙错误D.甲错误,乙正确7.在△ABC中,按以下步骤作图:①分别以A,B为圆心,大于12AB的长为半径画弧,相交于两点M,N;②作直线MN交AC于点D,连接BD.若CD=BC,∠A=35°,则∠C=__________.8.如图,在△ABC中,AB=A C.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连接BD.若∠A=32°,则∠CDB的大小为__________度.9.按要求用尺规作图(要求:不写作法,但要保留作图痕迹,并写出结论)已知:线段AB;求作:线段AB的垂直平分线MN.10.如图,已知△ABC,∠BAC=90°,(1)尺规作图:作∠ABC的平分线交AC于D点(保留作图痕迹,不写作法)(2)若∠C=30°,求证:DC=DB.1.(2019•某某)如图,在四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点A,C为圆心,大于12AC长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为A.22B.4C.3D.102.(2019•某某)如图,在Rt△ABC中,∠B=90°,以点A为圆心,适当长为半径画弧,分别交AB、AC于点D,E,再分别以点D、E为圆心,大于12DE为半径画弧,两弧交于点F,作射线AF交边BC于点G,若BG=1,AC=4,则△ACG的面积是A.1B.32C.2D.523.(2019•)已知锐角∠AOB,如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作PQ,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交PQ于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是A.∠=∠COD B.若OM=MN.则∠AOB=20°C.MN∥CD D.MN=3CD4.(2019•某某)如图,在△ABC中,AC=BC,∠A=40°,观察图中尺规作图的痕迹,可知∠BCG的度数为A.40°B.45°C.50°D.60°5.(2019•某某)如图,在△ABC中,∠C=90°,∠A=30°,以点B为圆心,适当长为半径画弧,分别交BA,BC于点M,N;再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线BP交AC于点D.则下列说法中不正确的是A.BP是∠ABC的平分线B.AD=BDC.S△CBD∶S△ABD=1∶3D.CD=12 BD6.(2019•荆州)如图,矩形ABCD的顶点A,B,C分别落在∠MON的边OM,ON上,若OA=OC,要求只用无刻度的直尺作∠MON的平分线.小明的作法如下:连接AC,BD交于点E,作射线OE,则射线OE平分∠MON.有以下几条几何性质:①矩形的四个角都是直角,②矩形的对角线互相平分,③等腰三角形的“三线合一”.小明的作法依据是A.①②B.①③C.②③D.①②③7.(2019•某某)根据圆规作图的痕迹,可用直尺成功找到三角形外心的是A.B.C.D.8.(2019•某某)如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于12AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD的度数是A.20°B.30°C.45°D.60°9.(2019•襄阳)如图,分别以线段AB的两个端点为圆心,大于AB的一半的长为半径画弧,两弧分别交于C,D两点,连接AC,BC,AD,BD,则四边形ADBC一定是A.正方形B.矩形C.梯形D.菱形10.(2019•某某)如图,在△ABC中,点D是AB边上的一点.(1)请用尺规作图法,在△ABC内,求作∠ADE,使∠ADE=∠B,DE交AC于E;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若=2,求AEEC的值.11.(2019•某某)如图,在ABC △中,ACB ∠为钝角.用直尺和圆规在边AB 上确定一点D .使2ADC B ∠=∠,则符合要求的作图痕迹是A .B .C .D .12.(2019•某某)如图,在△ABC 中,AB =AC ,以点C 为圆心,CB 长为半径画弧,交AB 于点B 和点D ,再分别以点B ,D 为圆心,大于12BD 长为半径画弧,两弧相交于点M ,作射线CM 交AB 于点E .若AE =2,BE =1,则EC 的长度是A .2B .3C .3D .513.(2019•某某)通过如下尺规作图,能确定点D 是BC 边中点的是A .B .C .D .14.(2019•潍坊)如图,已知AOB ∠.按照以下步骤作图:①以点O 为圆心,以适当的长为半径作弧,分别交AOB ∠的两边于C ,D 两点,连接CD ;②分别以点C ,D 为圆心,以大于线段OC 的长为半径作弧,两弧在AOB ∠内交于点E ,连接CE ,DE ;③连接OE 交CD 于点M .下列结论中错误的是A .CEO DEO ∠=∠B .CM MD =C .OCD ECD ∠=∠D .12OCED S CD OE =⋅四边形 15.(2019•东营)如图,在Rt ABC 中,90ACB ∠=︒,分别以点B 和点C 为圆心,大于12BC 的长为半径作弧,两弧相交于D E ,两点,作直线DE 交AB 于点F ,交BC 于点G ,连接CF .若3AC =,2CG =,则CF 的长为A .52B .3C .2D .7216.(2019•某某)如图,在Rt ABC △中,90C ∠=︒,以顶点B 为圆心,适当长度为半径画弧,分别交AB BC ,于点M N ,,再分别以点M N ,为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线BP 交AC 于点D .若30A ∠=︒,则BCDABDS S =△△__________.17.(2019•贵港)尺规作图(只保留作图痕迹,不要求写出作法):如图,已知ABC △,请根据“SAS ”基本事实作出DEF △,使DEF ABC △≌△.18.(2019•某某)如图,已知等腰ABC △顶角30A ∠=︒.(1)在AC 上作一点D ,使AD BD =(要求:尺规作图,保留作图痕迹,不必写作法和证明,最后用黑色墨水笔加墨);(2)求证:BCD △是等腰三角形.19.(2019•某某)图①、图②、图③均是6×6的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,点A B C D E F 、、、、、均在格点上.在图①、图②、图③中,只用无刻度的直尺,在给定的网格中按要求画图,所画图形的顶点均在格点上,不要求写出画法. (1)在图①中以线段AB 为边画一个ABM △,使其面积为6. (2)在图②中以线段CD 为边画一个CDN △,使其面积为6.(3)在图③中以线段EF 为边画一个四边形EFGH ,使其面积为9,且.20.(2019•某某)图1、2是两X 形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC 的两个端点均在小正方形的顶点上.(1)在图1中画出以AC 为底边的等腰直角ABC △,点B 在小正方形顶点上;(2)在图2中画出以AC 为腰的等腰ACD △,点D 在小正方形的顶点上,且ACD △的面积为8.21.(2019•某某)如图,点M 和点N 在AOB 内部.∠两边的距离也相等(保留作图(1)请你作出点P,使点P到点M和点N的距离相等,且到AOB痕迹,不写作法);(2)请说明作图理由.22.(2019•某某)如图,AB为O的直径,点C在O上.∠的平分线,与O交于点D;连接OD,交BC于点E(不写作法,只保(1)尺规作图:作BAC留作图痕迹,且用黑色墨水笔将作图痕迹加黑);(2)探究OE与AC的位置及数量关系,并证明你的结论.23.(2019•某某)已知:AC 是ABCD 的对角线.(1)用直尺和圆规作出线段AC 的垂直平分线,与AD 相交于点E ,连接CE .(保留作图痕迹,不写作法);(2)在(1)的条件下,若35AB BC ==,,求DCE △的周长.24.(2019•某某)如图,在△ABC 中,AC <AB <BC .(1)已知线段AB 的垂直平分线与BC 边交于点P ,连接AP ,求证:∠APC =2∠B .(2)以点B 为圆心,线段AB 的长为半径画弧,与BC 边交于点Q ,连接AQ .若∠AQC =3∠B ,求 ∠B 的度数.25.(2019•某某)图①,图②均为4×4的正方形网格,每个小正方形的顶点称为格点.在图①中已画出线段AB ,在图②中已画出线段CD ,其中A 、B 、C 、D 均为格点,按下列要求画图:(1)在图①中,以AB为对角线画一个菱形AEBF,且E,F为格点;(2)在图②中,以CD为对角线画一个对边不相等的四边形CGDH,且G,H为格点,∠CGD=∠CHD=90°.26.(2019•某某)如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.四边形ABCD 的顶点在格点上,点E是边DC与网格线的交点.请选择适当的格点,用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由.(1)如图1,过点A画线段AF,使AF∥DC,且AF=DC.(2)如图1,在边AB上画一点G,使∠AGD=∠BGC.(3)如图2,过点E画线段EM,使EM∥AB,且EM=AB.27.(2019•某某)在△ABC中,AB=AC,点A在以BC为直径的半圆内.请仅用无刻度的直尺分别按下列要求画图(保留画图痕迹).(1)在图1中作弦EF,使EF∥BC;(2)在图2中以BC为边作一个45°的圆周角.1.【答案】B【解析】由作图的痕迹可知:点D 是线段BC 的中点,∴线段AD 是△ABC 的中线,故选B . 如图,在△ABC 中,∠C =90°,∠B =40°. 2.【解析】(1)如图,AD 为所作;(2)∵∠C =90°,∠B =40°.∴∠BAC =90°–40°=50°, ∵AD 平分∠BAC ,∴∠BAD =12∠BAC =25°, ∴∠ADC =∠B +∠BAD =40°+25°=65°.3.【解析】首先作一条射线,进而截取AB =A ′B ′,∠CAB =∠C ′A ′B ′,进而截取AC =A ′C ′,进而得出答案.如图所示:△A ′B ′C ′即为所求.1.【答案】C【解析】根据已知条件作符合条件的三角形,需要使三角形的要素符合要求,或者是作边等于已知线段,考点冲关变式拓展或者是作角等于已知角,故选C.2.【答案】D【解析】选项A,画线段MN=3cm,需要知道长度,而尺规作图中的直尺是没有长度的,错误;选项B,用量角器画出∠AOB的平分线,量角器不在尺规作图的工具里,错误;选项C,用三角尺作过点A垂直于直线l的直线,三角尺也不在作图工具里,错误;选项D,正确.故选D.3.【答案】A【解析】由作法可得BH为线段AD的垂直平分线,故选A.4.【答案】D【解析】作图痕迹中,弧FG是以点E为圆心,DM为半径的弧,故选D.5.【答案】A【解析】由题意得AG为∠CAB的角平分线,则∠ADC=25°,∵∠C=90°,∴∠ADC=65°,故选A.6.【答案】A【解析】(甲)如图一所示,∵△ABC为等边三角形,AD是∠BAC的角平分线,∴∠BEA=90°,∴∠BED=90°,∴∠BEA=∠BED=90°,由甲的作法可知,AB=BD,∴∠ABC=∠DBC,在△ABC与△DBC中,AB BDABC DBC BC BC⎪∠⎪⎩∠⎧⎨===,∴△ABC ≌△DBC ,故甲的作法正确; (乙)如图二所示,∵BD ∥AC ,CD ∥AB ,∴∠ABC =∠DCB ,∠ACB =∠DBC ,在△ABC 和△DCB 中,ABC DCB BC CB ACB DBC ∠∠∠⎧⎪⎪⎩∠⎨===,∴△ABC ≌△DCB (ASA ),∴乙的作法是正确的.故选A . 7.【答案】40°【解析】∵根据作图过程和痕迹发现MN 垂直平分AB , ∴DA =DB ,∴∠DBA =∠A =35°,∵CD =BC ,∴∠CDB =∠CBD =2∠A =70°,∴∠C =40°, 故答案为:40°. 8.【答案】37【解析】∵AB =AC ,∠A =32°, ∴∠ABC =∠ACB =74°, 又∵BC =DC , ∴∠CDB =∠CBD =12∠ACB =37°, 故答案为:37. 9.【解析】作法:(1)分别以A ,B 点为圆心,以大于2AB的长为半径作弧,两弧相交于M ,N 两点; (2)作直线MN ,MN 即为线段AB 的垂直平分线.10.【解析】(1)射线BD即为所求.(2)∵∠A=90°,∠C=30°,∴∠ABC=90°﹣30°=60°,∵BD平分∠ABC,∴∠CBD=12∠ABC=30°,∴∠C=∠CBD=30°,∴DC=DB.1.【答案】A【解析】如图,连接FC,则AF=FC.∵AD∥BC,∴∠FAO=∠BCO.在△FOA与△BOC中,FAO BCOOA OCAOF COB∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△FOA≌△BOC(ASA),∴AF=BC=3,∴FC=AF=3,FD=AD-AF=4-3=1.在△FDC中,∵∠D=90°,∴CD2+DF2=FC2,∴CD2+12=32,∴CD=22A.2.【答案】C【解析】由作法得AG平分∠BAC,∴G点到AC的距离等于BG的长,即G点到AC的距离为1,直通中考所以△ACG的面积=12×4×1=2.故选C.3.【答案】D【解析】由作图知CM=CD=DN,∴∠=∠COD,故A选项正确;∵OM=ON=MN,∴△OMN是等边三角形,∴∠MON=60°,∵CM=CD=DN,∴∠MOA=∠AOB=∠BON=13∠MON=20°,故B选项正确;∵∠MOA=∠AOB=∠BON=20°,∴∠OCD=∠OCM=80°,∴∠MCD=160°,又∠CMN=12∠AON=20°,∴∠MCD+∠CMN=180°,∴MN∥CD,故C选项正确;∵MC+CD+DN>MN,且CM=CD=DN,∴3CD>MN,故D选项错误,故选D.4.【答案】C【解析】由作法得CG⊥AB,∵AC=BC,∴CG平分∠ACB,∠A=∠B,∵∠ACB=180°-40°-40°=100°,∴∠BCG=12∠ACB=50°.故选C.5.【答案】C【解析】由作法得BD平分∠ABC,所以A选项的结论正确;∵∠C=90°,∠A=30°,∴∠ABC=60°,∴∠ABD=30°=∠A,∴AD=BD,所以B选项的结论正确;∵∠CBD=12∠ABC=30°,∴BD=2CD,所以D选项的结论正确;∴AD=2CD,∴S△ABD=2S△CBD,所以C选项的结论错误.故选C.6.【答案】C【解析】∵四边形ABCD为矩形,∴AE=CE,而OA=OC,∴OE为∠AOC的平分线.故选C.7.【答案】C【解析】三角形外心为三边的垂直平分线的交点,由基本作图得到C选项作了两边的垂直平分线,从而可用直尺成功找到三角形外心.故选C . 8.【答案】B【解析】在△ABC 中,∵∠B =30°,∠C =90°,∴∠BAC =180°-∠B -∠C =60°,由作图可知MN 为AB 的中垂线,∴DA =DB ,∴∠DAB =∠B =30°,∴∠CAD =∠BAC -∠DAB =30°,故选B . 9.【答案】D【解析】由作图可知:AC =AD =BC =BD ,∴四边形ACBD 是菱形,故选D . 10.【解析】(1)如图,∠ADE 为所作.(2)∵∠ADE =∠B , ∴DE ∥BC , ∴AE ADEC DB==2. 11.【答案】B【解析】∵2ADC B ∠=∠且ADC B BCD ∠=∠+∠, ∴B BCD ∠=∠, ∴DB DC =,∴点D 是线段BC 中垂线与AB 的交点,故选B . 12.【答案】D【解析】由作法得CE ⊥AB ,则∠AEC =90°,AC =AB =BE +AE =2+1=3,在Rt△ACE 中,CE =.故选D . 13.【答案】A【解析】作线段BC 的垂直平分线可得线段BC 的中点. 由此可知:选项A 符合条件,故选A . 14.【答案】C【解析】由作图步骤可得:OE 是AOB ∠的角平分线,∴∠COE =∠DOE , ∵OC =OD ,OE =OE ,OM =OM ,∴△COE ≌△DOE ,∴∠CEO =∠DEO , ∵∠COE =∠DOE ,OC =OD ,∴CM =DM ,OM ⊥CD , ∴S 四边形OCED =S △COE +S △DOE =111222OE CM OE DM CD OE ⋅+⋅=⋅, 但不能得出OCD ECD ∠=∠,∴A 、B 、D 选项正确,不符合题意,C 选项错误,符合题意,故选C . 15.【答案】A【解析】由作法得GF 垂直平分BC , ∴FB FC =,2CG BG ==,FG BC ⊥, ∵90ACB ∠=︒,∴FG AC ∥,∴BF CF =, ∴CF 为斜边AB 上的中线, ∵22345AB =+=,∴1522CF AB ==.故选A . 16.【答案】12【解析】由作法得BD 平分ABC ∠, ∵90C =︒∠,30A ∠=︒,∴,∴30ABD CBD ∠=∠=︒,∴DA DB =, 在Rt BCD △中,2BD CD =,∴2AD CD =,∴12BCD ABD S S =△△.故答案为:12. 17.【解析】如图,DEF △即为所求.18.【解析】(1)如图,点D 为所作.(2)∵AB AC =, ∴1(18036)722ABC C ︒=-︒∠∠==︒, ∵DA DB =,∴36ABD A ∠=∠=︒,∴363672BDC A ABD ∠=∠+∠=︒+=︒︒, ∴BDC C ∠=∠, ∴BCD △是等腰三角形.19.【解析】(1)如图①所示,ABM △即为所求.(2)如图②所示,CDN △即为所求. (3)如图③所示,四边形EFGH 即为所求.20.【解析】(1)作AC 的垂直平分线,作以AC 为直径的圆,垂直平分线与圆的交点即为点B .(2)以C 为圆心,AC 为半径作圆,格点即为点D .21.【解析】(1)如图,作∠AOB 的角平分线与线段MN 的垂直平分线交于P 点,即点P 到点M 和点N 的距离相等,且到AOB ∠两边的距离也相等.(2)理由:角的平分线上的点到角的两边的距离相等、直平分线上的点到线段两端点的距离相等. 22.【解析】(1)如图所示:(2)OE AC ∥,12OE AC =. 理由如下:∵AD 平分BAC ∠,∴12BAD BAC ∠=∠, ∵12BAD BOD ∠=∠,∴BOD BAC ∠=∠, ∴OE AC ∥, ∵OA OB =,∴OE 为ABC △的中位线, ∴OE AC ∥,12OE AC =. 23.【解析】(1)如图,CE 为所作.(2)∵四边形ABCD 为平行四边形,∴53AD BC CD AB ====,, ∵点E 在线段AC 的垂直平分线上, ∴EA EC =,∴DCE △的周长538CE DE CD EA DE CD AD CD =++=++=+=+=. 24.【解析】(1)∵线段AB 的垂直平分线与BC 边交于点P ,∴PA =PB , ∴∠B =∠BAP , ∵∠APC =∠B +∠BAP , ∴∠APC =2∠B .(2)根据题意可知BA =BQ , ∴∠BAQ =∠BQA ,∵∠AQC =3∠B ,∠AQC =∠B +∠BAQ , ∴∠BQA =2∠B ,∵∠BAQ +∠BQA +∠B =180°, ∴5∠B =180°,∴∠B =36°.25.【解析】(1)如图,菱形AEBF 即为所求.(2)如图,四边形CGDH 即为所求.26.【解析】(1)如图所示,线段AF 即为所求.(2)如图所示,点G 即为所求. (3)如图所示,线段EM 即为所求.27.【解析】(1)如图1,EF为所作.(2)如图2,∠BCD为所作.。
人教版备考2023中考数学二轮复习 专题23 尺规作图(教师版)
人教版备考2023中考数学二轮复习专题23 尺规作图一、作图题1.(2022九上·深圳期中)定义:在边长为1的小正方形方格纸中,把顶点落在方格交点上的线段、三角形、四边形分别称为格点线段、格点三角形、格点四边形,在5×5的正方形网格中,若每一个小正方形的边长均为1,请仅用无刻度直尺按要求画图.(1)在图①中画一个以AB为边画一个格点正方形ABCD.(2)在图②中画一个格点平行四边形AEBF,使平行四边形面积为6.(3)在图③中画一个格点菱形AMBN,AMBN不是正方形(温馨提示:请画在答题卷相对应的图上)【答案】(1)解:画一个以AB为边画一个格点正方形ABCD,如图所示,(2)解:画一个格点平行四边形AEBF.如图所示,S▱AEBF=2×3=6;(3)解:画一个格点菱形AMBN,AMBN不是正方形,如图所示,【知识点】平行四边形的判定;正方形的判定;作图-直线、射线、线段【解析】【分析】(1)根据题意作图即可;(2)根据题意作图,再利用平行四边形的面积公式计算求解即可;(3)根据题意作图即可。
2.(2022七下·浑南期末)如图,在正方形网格中,△ABC的三个顶点均在格点上.(1)画出△A1B1C1,使得△A1B1C1和△ABC关于直线l对称;(2)过点C作线段CD,使得CD∥AB,且CD=AB.【答案】(1)解:△A1B1C1如图所示:(2)解:如图,CD1、CD2即为所求.【知识点】作图﹣轴对称;作图-直线、射线、线段【解析】【分析】(1)利用轴对称的性质找出点A、B、C的对应点,再连接即可;(2)根据要求作出图形即可。
3.(2022八上·瑞安月考)在5×5的正方形网格中,点A,点B均在格点上,连结AB,请根据要求完成下列作图:(1)在图1中找一个格点C,使得△ABC是直角三角形.(2)在图2中找一个格点D,使得△ABD是三个内角都是锐角的等腰三角形.【答案】(1)解:当∠A=90°或∠B=90°时;当∠C=90°时(2)当AB=BD时【知识点】等腰三角形的性质;勾股定理;作图-三角形【解析】【分析】(1)要使△ABC是直角三角形,分情况讨论,画出图形,当∠A=90°,当∠B=90°,当∠C=90°,分别画出符合题意的三角形.(2)利用勾股定理,根据两边相等的三角形是等腰三角形:当AB=BD时;当AB=AD时,画出三个角都是锐角的等腰三角形即可.4.(2022八上·北仑期中)如图,已知在△ABC中,∠A=120°,∠B=20°,∠C=40°,请在三角形的边上找一点P,并过点P和三角形的一个顶点画一条线段,将这个三角形分成两个等腰三角形.(要求两种不同的分法并写出每个等腰三角形的内角度数)【答案】解:如图,【知识点】等腰三角形的性质;作图-三角形【解析】【分析】由∠A=120°,可过点A作∠BAP=20°,则∠PAC=100°,∠APC=40°,则△APB、△APC 均为等腰三角形;可过点A作∠BAP=80°,则∠PAC=40°,∠APC=100°,则△APB、△APC均为等腰三角形;5.(2022八上·青田期中)如图,在△ABC中,点E在AB边上,请用直尺和圆规求作一点F,使得FE=FA,且F点到AB和BC的距离相等.(保留作图痕迹,不写作法)【答案】解:如图,点F为所作.【知识点】作图-角的平分线;作图-线段垂直平分线【解析】【分析】分别作∠ABC的平分线,线段AE的垂直平分线,两直线的交点即为点F. 6.(2022九上·博白月考)已知四边形ABCD为矩形,点E是边AD的中点,请仅用无刻度的直尺完成下列作图,不写作法,保留作图痕迹.(1)在图1中作出矩形ABCD的对称轴m,使m//AB;(2)在图2中作出矩形ABCD的对称轴n,使n//AD.【答案】(1)解:如图1中,直线m即为所求;(2)解:如图2中,直线n即为所求;【知识点】矩形的性质;作图-平行线【解析】【分析】(1)由矩形的性质作矩形的对角线,两条对角线的交点为O,过点O作AD的垂线交AD于点E,直线OE即为所求;(2)结合(1)的作法,过点O作OE的垂线交AB于点R,直线OR即为所求.7.(2022八上·嘉兴期中)如图,在△ABC中,AC=BC.尺规作图(保留作图痕迹,不写作法)⑴作边AC的垂直平分线;⑵在△ABC内确定一点O,使得点O到三个顶点的距离相等.【答案】解:解:⑴如图,直线l为所作;⑵如图,点O为所作.【知识点】作图-线段垂直平分线【解析】【分析】(1)根据垂直平分线的作法作图即可;(2)作出线段AB的垂直平分线,与AC的垂直平分线的交点即为点O.8.如图方格纸中每个小正方形的边长都是1个单位长度,在方格纸中建立如图所示的平面直角坐标系,ΔABC的顶点都在格点上,且三个顶点的坐标分别为A(0,3),B(3,4),C(2,2).⑴画出△ABC关于原点O的中心对称图形△A′B′C′,并写出点B的对应点B′的坐标.⑵画出将△ABC绕原点O逆时针方向旋转90度后的图形△A′′B′′C′′.【答案】解:⑴如图,ΔA′B′C′即为所求,则点B′(−3,−4)⑵如图,ΔA′′B′′C′′即为所求.【知识点】作图﹣旋转【解析】【分析】(1)利用中心对称的性质,作出点A,B,C分别关于原点的对称点A′,B′,C′,再画出△A′B′C′,写出点B′的坐标.(2)利用旋转的性质,将△ABC绕着点O逆时针旋转90°,可得到对称点A",B",C",再画出△A"B"C".9.(2022八上·宝安期末)如图,在边长为1的小正方形所组成的网格上,每个小正方形的顶点都称为“格点”,△ABC的顶点都在格点上,用直尺完成下列作图.(1)作出△ABC关于直线MN的对称图形;(2)在网格中建立直角坐标系,使点A坐标为(−1,3);(3)在直线MN上取一点P,使得AP+CP最小.【答案】(1)解:作出点A、B、C关于MN的对称点A′、B′、C′,顺次连接,则ΔA′B′C′即为所求作的三角形,如图所示:(2)解:由点A坐标为(−1,3)可知,坐标原点在点A右侧一个单位,下方3个单位处,然后建立平面直角坐标系,如图所示:(3)解:连接A′C,交MN于点P,则点P即为所求,如图所示:【知识点】作图﹣轴对称;轴对称的应用-最短距离问题;平面直角坐标系的构成【解析】【分析】(1)利用轴对称的性质找出点A、B、C的对应点,再连接即可;(2)根据点A的坐标建立平面直角坐标系即可;(3)连接A′C,交MN于点P,则点P即为所求。
2022-2023学年人教版九年级数学上册 几何图形问题 课件PPT
4
4
合作探究
(4)方程的哪个根符合实际意义?为什么? x 6 3 3 符合实际意义.
4
当 x 6 3 3 时,
4
上、下边衬的宽度之和会超过封面的长度,不符合实际情况.
合作探究
(5)如果设中央矩形的长为9x,根据课本上的等量关系,请你列方程求解, 你的解法是什么?
设中央矩形的长为9x cm.则宽为7x cm.
随堂练习
3.如图,在Rt△ABC中,∠C=90°,AC=6 cm,BC=8 cm.点P沿AC边 从点A向终点C以1 cm/s的速度移动;同时点Q沿CB边从点C向终点B以2 cm/s
的速度移动,且当其中一点到达终点时,另一点也随之停止移动.问点P,Q
出发几秒后可使△PCQ的面积为9 cm²?
解:设点P,Q出发x s后△PCQ的面积为9 cm².
(60+2x)(40+2x)=3 500.
合作探究
如图,要设计一本书的封面,封面长为27 cm,宽 为21 cm,正中央是一个与整个封面长宽比例相同 的矩形.如果要使四周的彩色边衬所占面积是封面 面积的四分之一,上、下边衬等宽,左、右边衬等 宽,应如何设计四周边衬的宽度(结果保留小数点 后一位)?
列方程得 9x 7 x 3 27 21.即x2= 27 ,
4
4
解得
x1
3 23 ,x2
3 3 (舍去).
2
∴上、下边衬的宽为
27 9x 54 27
2
4
3 1.8(cm),
左、右边衬的宽为 21 7 x 42 21 3 1.4(cm).
2
4
合作探究
(6)练习:要为一幅长29 cm,宽22 cm的照片配一个相框,要求相框的四条
人教版初中数学中考 讲本 第七单元 图形与变换 第28讲 几何作图
图1
图2
解:(1)如图,直线l即为所求.
(2)如图,直线a即为所求.
【方法归纳】无刻度直尺作图是指使用无刻度直尺进行作图,直尺的功能是作直 线.此类作图的关键是结合图形的性质找到确定直线的两个点.
7.(2022·潜江)已知四边形ABCD为矩形,E是边AD的中点,请仅用无刻度的直 尺完成下列作图,不写作法,保留作图痕迹. (1)在图1中作出矩形ABCD的对称轴m,使m∥AB; (2)在图2中作出矩形ABCD的对称轴n,使n∥AD.
图1
图2
解:(1)如图1,射线BP即为所求. (2)如图2,直线l或直线l'即为所求.
6.(2022·荆州)如图,在10×10的正方形网格中,小正方形的顶点称为格点,顶 点均在格点上的图形称为格点图形,图中△ABC为格点三角形.请按要求作图, 不需证明.
(1)在图1中,作出与△ABC全等的所有格点三角形,要求所作格点三角形与 △ABC有一条公共边,且不与△ABC重叠;
(2)在图2中,作出以BC为对角线的所有格点菱形.
图1
图2
解:(1)如图1,△ABD1ABDC、菱形BECF即为所求.
二、几何图形中的无刻度直尺作图 【例3】已知正方形ABCD的边长为4个单位长度,E是CD的中点,请仅用无刻度 直尺按下列要求作图:(保留作图痕迹) (1)在图1中,将直线AC绕着正方形ABCD的中心顺时针旋转45°; (2)在图2中,将直线AC向上平移1个单位长度.
图1
图2
解:(1)如图1中,直线m即为所求.
图1 (2)如图2中,直线n即为所求.
图2
8.在△ABC中,AB=AC,点A在以BC为直径的半圆内.请仅用无刻度的直尺分别按 下列要求画图:(保留作图痕迹) (1)在图1中作弦EF,使EF∥BC; (2)在图2中以BC为边作一个45°的圆周角.
中考数学复习《几何作图》
又∵BE∥AF,∴四边形ABEF是平行四边形,∵AF=AB,
∴四边形ABEF是菱形
4.用圆规、直尺作图,不写作法,但要保留作图痕迹.
已知:线段c,直线l及l外一点A; 求作:Rt△ABC,使直角边为AC(AC⊥l,垂足为C),斜边AB=c.
【解析】在直线l另一侧取点P,以点A为圆心,AP为半径画弧交直线l于点 M,N,再作线段MN的垂直平分线交l于点C,然后以点A为圆心,c为半径画 弧交l于点B,连结AB,则△ABC为所求作.
(2)设 AB 的垂直平分线交 ME 于点 N,且 MN=2( 3+1) km, 在 M 处测得点 C 位于点 M 的北偏东 60°方向, 在 N 处测得点 C 位于点 N 的北偏西 45° 方向,求点 C 到公路 ME 的距离.
解:(1)到城镇A,B距离相等的点在线段AB的垂直平分线上,到两条公路距
解:如图,△ABC为所求作的三角形
5.如图,已知△ABC,∠BAC=90°,请用尺规过点A作一条直线,使其将△ABC
分成两个相似的三角形.(保留作图痕迹,不写作法)
【解析】过点A作AD⊥BC于D,利用等角的余角相等可得到∠BAD=∠C, 则可判断△ABD与△CAD相似.
解:如图,AD为所求作的直线
解:(1)如图所示:
(2)∵DE是AB的垂直平分线,∴AE=BE, ∴∠EAB=∠B=50°,∴∠AEC=∠EAB+∠B=100°
1.如图,已知锐角△ABC. (1)过点 A 作 BC 边的垂线 MN,交 BC 于点 D; (用尺规作图法,保留作图痕迹,不要求写作法) 3 (2)在(1)条件下,若 BC=5,AD=4,tan∠BAD=4,求 DC 的长.
7.如图,在Rt△ABC中,∠ACB=90°. (1)先作∠ABC的平分线交AC边于点O,再以点O为圆心, OC为半径作⊙O;(要求:尺规作图,保留作图痕迹,不写作法) (2)请你判断(1)中AB与⊙O的位置关系,并证明你的结论.
浙江省中考数学总复习 全程考点训练26 几何作图(含解析)-人教版初中九年级全册数学试题
全程考点训练26 几何作图一、选择题(第1题)1.如图所示给出了过直线外一点作已知直线的平行线的方法,其依据是(A ) A .同位角相等,两直线平行 B .内错角相等,两直线平行 C .同旁内角互补,两直线平行 D .两直线平行,同位角相等2.如图,用尺规作出∠OBF =∠AOB ,作图痕迹MN ︵是(D )(第2题)A .以B 为圆心,OD 长为半径的圆弧 B .以B 为圆心,DC 长为半径的圆弧 C .以E 为圆心,OD 长为半径的圆弧 D .以E 为圆心,DC 长为半径的圆弧(第3题)3.如图,A 是5×5网格图中的一个格点(小正方形的顶点),图中每个小正方形的边长都为1,以A 为其中一个顶点,面积等于52的格点等腰直角三角形(三角形的三个顶点都是格点)的个数为(D )A .10B .12C .14D .16【解析】以A为直角顶点,直角边为5的等腰直角三角形有8个;以A为45°角顶点,斜边为10的等腰直角三角形有8个,共16个.(第4题)4.如图,AD为⊙O的直径,作⊙O的内接正三角形ABC,甲、乙两人的作法分别如下:甲:①作OD的中垂线,交⊙O于B,C两点;②连结AB,AC.△ABC即为所求作的三角形.乙:①以D为圆心,OD长为半径作圆弧,交⊙O于B,C两点;②连结AB,BC,CA.△ABC即为所求作的三角形.由甲、乙两人的作法,可判断(A)A.甲、乙均正确 B.甲、乙均错误C.甲正确,乙错误 D.甲错误,乙正确(第5题)5.三条公路两两相交,交点分别为A,B,C.现计划建一个加油站,要求到三条公路的距离相等,则满足要求的加油站地址有(D)A.1处 B.2处C.3处 D.4处【解析】内角平分线交点及两外角平分线的交点,共4处.二、填空题6.如图所示,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以作__4__个.(第6题)(第6题解)【解析】 如解图所示. 这样的三角形最多可以画出4个.7.已知AB =4 cm ,现以A 为圆心,3 cm 长为半径画弧,交AB 所在的直线于点C ,则BC 的长为1或7cm.【解析】 在点A 的两侧各有一个交点,BC =4-3=1,或BC =4+3=7.8.给出下列关于三角形的条件:①已知三边;②已知两边及其夹角;③已知两角及其夹边;④已知两边及其中一边的对角.利用尺规作图,能作出唯一的三角形的条件是①②③.【解析】 ①②③分别符合全等三角形的判定方法SSS ,SAS ,ASA ;④为SSA ,不符合.(第9题)9.如图,在△ABC 中,∠C =90°,∠CAB =50°.按以下步骤作图: ①以A 为圆心,小于AC 的长为半径画弧,分别交AB ,AC 于点E ,F . ②分别以E ,F 为圆心,大于12EF 的长为半径画弧,两弧交于点G .③作射线AG 交BC 边于点D ,则∠ADC 的度数为65°. 【解析】 由作图知AG 为∠CAB 的平分线, ∴∠CAD =12∠CAB =25°,∴∠ADC =90°-∠CAD =90°-25°=65°. 三、解答题(第10题)10.如图,在△ABC 中,AB =AC ,AD 是高线,AM 是△ABC 外角∠CAE 的平分线. (1)用尺规作图的方法,作∠ADC 的平分线DN (保留作图痕迹,不写作法和证明). (2)设DN 与AM 交于点F ,判断△ADF 的形状(只写结果). 【解析】 (1)如解图,DN 即为所求作的角平分线.(第10题解)(2)△ADF 是等腰直角三角形.(第11题)11.如图,已知∠AOB ,OA =OB ,点E 在OB 边上,四边形AEBF 是矩形.请你只用无刻度的直尺在图中作出∠AOB 的平分线(请写出作法并保留作图痕迹).【解析】 如图,连结AB ,EF 交于点P ,画射线OP 即为∠AOB 的平分线.12.如图是数轴的一部分,其单位长度为a .已知在△ABC 中,AB =3a ,BC =4a ,AC =5a .(第12题)(1)用直尺和圆规作出△ABC (要求:使点A ,C 在数轴上,保留作图痕迹,不必写出作法). (2)记△ABC 外接圆的面积为S 圆,△ABC 的面积为S △,试说明S 圆S △>π. 【解析】 (1)所作△ABC 如解图.(第12题解)(2)∵AB 2+BC 2=AC 2,∴∠B =90°, ∴AC 是外接圆的直径.∴S △=12×3a ·4a =6a 2,S 圆=⎝ ⎛⎭⎪⎫5a 22π=25a 2π4,∴S 圆S △=25a 2π46a 2=25π24>24π24=π. 13.小明家的房前有一块矩形的空地,空地上有三棵树A ,B ,C ,小明想建一个圆形花坛,使三棵树都在花坛的边上.(1)请你帮小明把花坛的位置画出来(尺规作图,不写作法,保留作图痕迹).(第13题)(2)在△ABC 中,若AB =8 m ,AC =6 m ,∠BAC =90°,求圆形花坛的面积.【解析】 (1)如解图(画两边的垂直平分线交于点O ,以O 为圆心,OA 为半径画圆).(第13题解)(2)S =π⎝ ⎛⎭⎪⎫62+8222=25π(m 2).(第14题)14.尺规作图:请在原图上作一个∠AOC ,使其是已知∠AOB 的32倍(要求:写出已知、求作,保留作图痕迹,在所作图中标上必要的字母,不写作法和结论).已知: 求作:(第14题解)【解析】 已知:∠AOB . 求作:∠AOC ,使∠AOC =32∠AOB .作法:先作∠AOB 的平分线OP ,再以OB 为边,在∠AOB 外部作∠BOC =∠AOP ,则∠AOC =32∠AOB ,如解图.15.“三等分任意角”是数学史上的一个著名问题.已知∠MAN ,设∠α=13∠MAN .(1)当∠MAN =69°时,∠α的大小为23°.(2)如图,将∠MAN 放置在每个小正方形的边长均为1 cm 的网格中,角的一边AM 与水平方向的网格线平行,另一边AN 经过格点B ,且AB =2.5 cm.现要求只能使用带刻度的直尺,请你在图中作出∠α,并简要说明作法(不要求证明).(第15题)【解析】 (2)让直尺有刻度的一边过点A ,设该边与过点B 的竖直方向的网格线交于点C ,与过点B 的水平方向的网格线交于点D ,保持直尺有刻度的一边过点A ,调整点C ,D 的位置,使CD =5 cm ,画射线AD ,∠MAD 就是所求的∠α(利用网格结构,作以点B 为直角顶点的Rt△,并且使斜边所在直线过点A ,且斜边长为5 cm.根据中线的性质得斜边中线长等于AB .再结合三角形外角的性质得∠BAD =2∠BDC ,再根据平行线中内错角相等得∠BDC =∠MAD ,从而得到∠MAD =13∠MAN =∠α),作图略.。
人教版九年级数学中考总复习 专题一 作图专题 含解析及答案
专题一作图专题1.如图所示,小明利用一块平面镜使此时的太阳光水平射入隧道内。
请你通过作图画出平面镜并标出反射角的角度。
答案:如图所示解析:根据光的反射定律,反射角等于入射角,作反射光线和入射光线夹角的角平分线就是法线的位置;由图知,反射光线和入射光线的夹角为180°-60°=120°,则反射角等于入射角等于60°。
2.图中的A'B'是物体AB经过平面镜M后所成的像,请在图中画出该物体。
答案:如图所示3.如图所示,点光源S置于平面镜前,请画出点光源S的成像光路图。
答案:如图所示解析:从点光源S向镜面任意发出两条入射光线,入射点分别是O1、O2;根据光的反射定律,画出这两条入射光线的反射光线;将这两条反射光线反向延长,相交于点S',点S'即为点光源S在平面镜中所成的像。
4.如图所示,在平静的湖边上方有一盏路灯,潜水员在水下E处看到了路灯的像,图中A、B两点,其中一点是路灯的发光点,另一点是路灯的像点。
请你区分发光点、像点,在图中画出水下E处的潜水员看到路灯的光路图。
答案:如图所示解析:根据光从空气中斜射入水中时,折射角小于入射角,可知A为路灯的发光点,B为像点,连接EB与界面的交点即为入射点,光路图如图所示。
5.如图所示,平面镜垂直于凸透镜主光轴且在凸透镜左侧焦点上,请完成光路图。
答案:如图所示6.如图所示,请在图中画出力F的力臂l及物体所受重力的示意图。
答案:如图所示7.如图所示,某人在A处提起物体,请在图中画出最省力的绳子绕法。
答案:如图所示解析:从动滑轮上挂钩开始,依次绕过定滑轮和动滑轮,绳端回到人的手中,提升物体绳子条数为3,是最省力的绕法。
8.根据下面左侧电路实物图,在下面右侧方框内画出对应的电路图。
答案:如图所示9.设计一个病床呼叫电路。
要求:开关S1控制指示灯L1和电铃,开关S2控制指示灯L2和电铃。
请在图中连线,形成符合要求的完整电路图。
2022年人教版数学中考总复习-专题复习:创新作图题课件
类型二 与多边形有关
解:(1)作图如解图①所示,DF即为所 求.(2)作图如解图②所示,PQ即为所求.
类型二 与多边形有关
9.如图所示的正六边形ABCDEF中,连接FD,请你只用无
刻度的直尺,完成下列作图:(1)请在图①中,作出一个
边长等于DF的等边三角形;(2)请在图②中,作出一个周 长等于DF的等边三角形.
的中点.
类型二 与多边形有关
图①
图②
解:(1)如解图①,直线EF即为所求;菱形
的对角线互相平分,三角形中位线的性质;
(2)如解图②,点F即为所求.
类型二 与多边形有关
7.请分别在下列图中使用无刻度的直尺按要求画
图.(1)在图1中,点P是▱ABCD的边AD的中点,过点P画 一条线段PM,使PM=12 AB;(2)在图2中,点A,D分别是 ▱FBCE的边FB和EC的中点,且点P是边EC上的动点,画 出△PAB的一条中位线.
图①
图②
类型二 与多边形有关
图①
图②
解:(1)图 1 中,线段 PM 即为所求; (2) 图 2 中,线段 GH 即为所求.
类型二 与多边形有关
8.已知五边形ABCDE中,AB=BC=CD=DE=AE,∠A= ∠B=90°,∠D=60°.请仅用不含刻度的直尺按要求画 图.(1)在图①中,作AB的垂直平分线DF;(2)在图②中, 作线段BC的垂直平分线PQ,其中点P在AE上,点Q在BC 上.
类型三 与圆有关
11.⊙O为△ABC的外接圆,请仅用无刻度的直尺,根据下列 条件分别在图①,图②中画出一条弦,使这条弦将△ABC分 成面积相等的两部分(保留作图痕迹,不写作法).(1)如图①, AC=BC;(2)如图②,直线l与⊙O相切于点P,且l∥BC.
最新人教版九年级数学中考一轮复习课时21作图、视图与投影
课时21.作图、视图与投影【课前热身】1. 如图,左边的几何体,其主视图是( )2. 下面简单几何体的俯视图是( )3. 在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投影不可能是( )4. 下列图形中,是正方体的平面展开图的是( )5. 如图,是一个长方体的三视图(单位:cm),根据图中数据计算这个长方体的体积是____cm 3.6. 如图,在△ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于21BC 的长为半径作弧,两弧相交于M ,N 两点;②作直线MN 交AB 于点D ,连接CD ,若CD=AC ,∠B=25°,则∠ACB 的度数为__ ___.第5题 第6题【知识梳理】1.尺规作图(1)尺规作图的定义:几何里,把限定用直尺(不带刻度的)和圆规作图,叫做尺规作图. (2)五种基本作图①作一条线段等于已知线段.②作一个角等于已知角.③作角的平分线.④作线段的垂直平分线.⑤过一点作已知直线的垂线.2.视图(1)三视图从不同方向观察物体时,可以看到不同的图形.其中,从正面看到的图形,叫做主视图;从左面看到的图形,叫做左视图;从上面看到的图形,叫做俯视图.(2)常见几何体的三视图正方体的三视图都是_______;圆柱体的三视图中两个是长方形,另一个是圆;圆锥体的三视图中两个是等腰三角形,有一个是带有_____的圆;球的三视图都是圆.3.投影(1)投影物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是投影现象.(2)平行投影定义及特征①定义:由平行光线形成的投影是平行投影,太阳光线可以看成是_________.②特征:同一时刻,物高与影长成正比.(3)中心投影定义及其特征①定义:从一点发出的光线形成的投影叫做中心投影.路灯、手电筒和台灯的光线可以看成是从一点发出的.②特征:当物体逐渐接近光源时,物体的影子逐渐变短.当物体逐渐远离光源时,物体的影子逐渐变长.【例题讲解】例1 分别画出下面几何体的三种视图.例2如图,是一个由若干个相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体的个数是( )A.7个B.8个C.9个D.10个例3某工厂加工一批无底账篷,设计者给出了账篷的三视图.请你按照三视图确定每顶账篷的表面积(图中尺才单位:cm).例4如图,已知在△ABC中,∠A=90°.(1)请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AC,BC两边都相切(保留作图痕迹,不写作法和证明).(2)若∠B=60°,AB=3,求⊙P的面积.【中考演练】1.如图,水平放置的长方体的底面是边长为2和4的矩形,它的左视图的面积为6,则长方体的体积等于___ _.2.如图所示是一个圆锥的某平面上的正投影,则该圆锥的侧面积是__ ___.3.三角尺在灯泡O的照射下在墙上形成影子如图所示,现测得OA=20cm,AA′=30cm,则这个三角尺的周长与它在墙上形成的影子的周长的比是___ ___.第1题第2题第3题4.三棱柱的三视图如图所示,△EFG中,EF=8cm,EG=12cm,∠EGF=30°,则AB长为__ __cm.5.如图(1)是一个正方体的侧面展开图,小正方体从图(2)所示的位置依次翻到第1格、第2格、第3格,这时小正方体朝上一面的字是__ __.第4题第5题6.下面简单几何体的左视图是( )7.如图,Rt△ABC绕直角边AB旋转一周,所得几何体的主视图为( )8.若干桶方便面摆放在桌子上,如图所示是它的三视图,则这一堆方便面至少有( )A.6桶B.7桶C.8桶D.9桶9. 下面四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方体包装盒的是( )10.如图所示的三视图所对应的几何体是( )11.如图所示,在平面直角坐标系中,在x 轴、y 轴的正半轴上分别截取OA 、OB ,使OA=OB ;再分别以点A ,B 为圆心,以大于21AB 长为半径作弧,两弧交于点C. 若点C 的坐标为(m -1,2n ),则m 与n 的关系为( )A. m +2n =1B. m -2n =1C.2n -m =1D. n -2m =112. 如图,某同学想测量旗杆的高度,他在某一时刻测得1米长的竹竿竖直放置时影长1.5米,在同时刻测量旗杆的影长时,因旗杆靠近一楼房,影子不全落在地面上,有一部分(CD)落在墙上,他测得落在地面上(BD)影长为21米,留在墙上的影高为2米,求旗杆的高度.13.如图是一个几何体的三视图.(1)写出这个几何体的名称;(2)根据所示数据计算这个几何体的表面积;(3)如果一只蚂蚁要从这个几何体中的点B出发,沿表面爬到AC的中点D,请求出这个线路的最短路程.。
人教版九年级数学中考尺规作图专项练习及参考答案
不必写出作法):
①点 P 到 A,B 两点的距离相等;
②点 P 到∠xOy 的两边的距离相等.
(2)在(1)作出点 P 后,写出点 P 的坐标.
解(1)作图如下,点 P 即为所求作的点.
(2)设 AB 的中垂线交 AB 于点 E,交 x 轴于点 F,
由作图可得,EF⊥AB,EF⊥x 轴,且 OF=3,
∵OP 是∠xOy 的平分线,
∴点 P 的坐标为(3,3).
10.(2018 浙江金华)如图,在 6×6 的网格中,每个小正方形的边长为 1,点 A 在格点(小正方形的顶
点)上.试在各网格中画出顶点在格点上,面积为 6,且符合相应条件的图形.
解符合条件的图形如图所示:
)
答案 B
3.下列各条件中,不能作出唯一三角形的条件是(
)
A.已知两边和夹角
B.已知两边和其中一条边所对的角
C.已知两角和夹边
D.已知两角和其中一角的对边
答案 B
4.
如图,在△ABC 中,∠C=90°,∠B=30°,以点 A 为圆心,任意长为半径画弧分别交 AB,AC 于点 M 和 N,
1
再分别以点 M,N 为圆心,大于2MN 的长为半径画弧,两弧交于点 P,连接 AP 并延长交 BC 于点 D,则下
9
(2)设(1)中所作的☉O 与边 AB 交于异于点 B 的另外一点 D,若☉O 的直径为 5,BC=4;求 DE 的长.(如
果用尺规作图画不出图形,那么可画出草图完成第(2)问)
解(1)☉O 如图所示;
8
(2)作 OH⊥BC 于点 H.
人教版九年级下册数学中考综合复习:第26讲《几何作图》
第26讲《几何作图》要点梳理1.尺规作图的作图工具限定只用圆规和没有刻度的直尺.2.基本作图.(1)作一条线段等于已知线段; (2)作一个角等于已知角; (3)作角的平分线;(4)作线段的垂直平分线; (5)过一点作已知直线的垂线.3.利用基本作图作三角形(1)已知三边作三角形; (2)已知两边及其夹角作三角形;(3)已知两角及其夹边作三角形; (4)已知底边及底边上的高作等腰三角形;(5)已知一直角边和斜边作直角三角形.4.与圆有关的尺规作图(1)过不在同一直线上的三点作圆(即三角形的外接圆); (2)作三角形的内切圆;(3)作圆的内接正方形和正六边形.5.有关中心对称或轴对称的作图以及设计图案是中考的常见类型1.两种画图方法对于一个既不属于尺规基本作图,又不属于已知条件为边角边、角边角、角角边、边边边、斜边直角边的三角形的作图题,可以分析图形中是否有属于上述情况的三角形,先把它作出来,再发展成整个图形,这种思考方法,称为三角形奠基法;也可以按求作图形的要求,一步一步地直接画出图形,这时,关键的点常常由两条直线(或圆弧)相交来确定,称为交会法.事实上,往往把三角形奠基法和交会法结合使用.2.三点注意(1)一般的几何作图,初中阶段只要求写出已知、求作、作法三个步骤,完成作图时,需要注意作图痕迹的保留,作法中要注意作图语句的规范和最后的作图结论.(2)根据已知条件作几何图形时,可采用逆向思维,假设已作出图形,再寻找图形的性质,然后作图或设计方案.(3)实际问题要理解题意,将实际问题转化为数学问题.3.六个步骤:尺规作图的基本步骤:(1)已知:写出已知的线段和角,画出图形;(2)求作:求作什么图形,它符合什么条件,一一具体化;(3)作法:应用“五种基本作图”,叙述时不需重述基本作图的过程,但图中必须保留基本作图的痕迹;(4)证明:为了验证所作图形的正确性,把图作出后,必须再根据已知的定义、公理、定理等,结合作法来证明所作出的图形完全符合题设条件;(5)讨论:研究是不是在任何已知的条件下都能作出图形;在哪些情况下,问题有一个解、多个解或者没有解;(6)结论:对所作图形下结论.命题点1:正多边形和圆1.(沈阳)正六边形ABCDEF 内接于⊙O ,正六边形的周长是12,则⊙O 的半径是( ) A. 3 B.2 C. 22 D. 32命题点2:弧长的计算2.(宁波)如图,在Rt △ABC 中,∠A=90°,BC=22 ,以BC 的中点O 为圆心分别与AB,AC 相切于D,E 两点,则DE 的长为( )A. 4πB. 2π C.π D. π2 命题点3:尺规作图—基本作图1.(衢州)下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P 作已知直线的垂线,则对应选项中作法错误的是( )A .①B .②C .③D .④2.(随州)如图,用尺规作图作∠AOC =∠AOB 的第一步是以点O 为圆心,以任意长为半径画弧①,分别交OA ,OB 于点E ,F ,那么第二步的作图痕迹②的作法是( ) A .以点F 为圆心,OE 长为半径画弧 B .以点F 为圆心,EF 长为半径画弧C .以点E 为圆心,OE 长为半径画弧D .以点E 为圆心,EF 长为半径画弧命题点4:尺规作图—复杂作图3.(丽水)用直尺和圆规作Rt △ABC 斜边AB 上的高线CD ,以下四个作图中,作法错误的是( )4.(漳州)下列尺规作图,能判断AD 是△ABC 边上的高是( )命题点5:作图—应用与设计作图5.(荆州)如图,在5×5的正方形网格中有一条线段AB,点A 与点B 均在格点上.请在这个网格中作线段AB 的垂直平分线.要求:①仅用无刻度直尺,且不能用直尺中的直角;②保留必要的作图痕迹.典例精析考点1.尺规作图及计算【例1】(河池)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是( ) A.6 B.8 C.10 D.12例1 例2 例3【例2】(深圳)如图,已知线段AB,分别以A,B为圆心,大于AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM的度数为( )A.40° B.50° C.60° D.70°【例3】(河北)如图,依据尺规作图的痕迹,计算∠α=_____.考点2.几何作图的应用与设计作图【例4】(吉林)图①、图②、图③都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点.线段AB的端点在格点上.(1)在图①、图②中,以AB为边各画一个等腰三角形,且第三个顶点在格点上;(所画图形不全等)(2)在图③中,以AB为边画一个平行四边形,且另外两个顶点在格点上.【达标测试】1.(舟山)如图,已知△ABC,∠B=40°.(1)在图中,用尺规作出△ABC的内切圆O,并标出⊙O与边AB,BC,AC的切点D,E,F(保留痕迹,不必写作法);(2)连接EF,DF,求∠EFD的度数2.(自贡)两个城镇A,B与一条公路CD,一条河流CE的位置如图所示,某人要修建一避暑山庄,要求该山庄到A,B的距离必须相等,到CD和CE的距离也必须相等,且在∠DCE的内部,请画出该山庄的位置P.(不要求写作法,保留作图痕迹.)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新型作图问题
南京东山外国语学校 周漠康
问题情境
某学习小组在设计一个长方形时钟钟面时,使 钟的中心在长方形对角线的交点上,数字2在长方 形的顶点上,数字3、6 、9 、12标在所在边的中 点上,如图所示.
请你在长方形框中标出数字1所在位置,说出你的方法.
1 12 2 3
9 6
问题探究
(1)如果给你一把带有刻度的直尺,你能画 出∠AOB的平分线吗?并说明理由。
(2)若按正方形设计,画出正方形鱼塘示意图;
(3)你在(2)所设计的正方形鱼塘中,有无最大面积? 为什么?
(4)李大爷想使新建的鱼塘面积最大,你认为鱼塘 的最大面积是多少?
由(3)设计的正方形最大面积是2a2 1/2πa2 <2a2 ∴最大面积是2a2,它是一个正方形
归纳小结
1. 作图题主要类型
B
M
P
N
O
A
(2)如图,已知方格纸中的每个小方格都是 全等的正方形,∠AOB画在方格纸上,请作出 ∠AOB的平分线。
B
N P2 P1
P3
M
A
操作实践
1.有一个未知圆心的圆形工件.现只允许用一块三角 板(注:不允许用三角板上的刻度)画出该工件表 面上的一条直径并定出圆心.要求在图上保留画图痕 迹,写出画法.
(2)使三角形为钝角三角形且面积为4
(在图中画一个即可)
方案设计
如图所示,已知Rt⊿ABC与Rt⊿DEF不相 似,其中∠C,∠F为直角,能否分别将这两个 三角形各分割成两个三角形,使⊿ABC所分成 的两个三角形与⊿DEF所分成的两个三角形分 别对应相似?若能,请你设计出一种分割方案, 并予以说明。
(1)尺规作图 (2)其他工具画图 (3)网格作图
2.作图题常见应用:
(1)设计方案(分割、拼接等) (2)作图探究
聆 插听 我上六 努们腾月 飞 的 一 成力 的 召 直 就 翅 奋 唤 在 明 膀 斗 天 的 梦 想
……
作图探究
李大爷有一个边长为的正方形鱼塘,鱼塘的四 个顶点上各有一棵大树.现决定把原来的鱼塘扩 建成一个圆形或正方形鱼塘(原鱼塘周围的面积 足够大),要求四棵大树不能移动,且四棵大树要 在新建鱼塘的边沿上.(以上设计画图工具不限)
(1)若按圆形设计,画出圆形鱼塘示意图,并求出 鱼塘的面积
S圆=1/2πa2
A D
C
B
F
E
演示文稿
后 等
养猪技术 /jishu/ 养猪技术 峍奣尛
画法:1.作∠BCC1=∠E交AB于C1, 2.作∠EFF1=∠B交DE于F1
A C1 F1 C B F E
D
理由:由画法得⊿BCC1∽⊿EFF1 ∵∠ACC1+∠BCC1=900,∠D+∠E=900, ∴∠ACC1=∠D 同理:∠A=∠DFF1 ∴⊿ACC1∽⊿DFF1
B
N
P O M A
小明是这样做的:
1.分别在OA,OB上量取OM=ON,MR=NS 2.连接MS,NR交于P 3.作射线OP
那么OP是∠AOB的平分线吗?说明理由。
B
S
OB上任取一点M 2.过M作MN∥OA,在MN上量取MP=OM 3.作射线OP
那么OP是∠AOB的平分线吗?说明理由。
B
A
C
2.小芸在班级办黑板报时遇到一个难题,在版 面设计过程中需将一个半圆面三等份,请你帮 助他设计一个合理的等分方案(要求用尺规作 图,保留作图痕迹)
3.如图,正方形网格中的每个小正方形边长都 是 1 ,每个小格的顶点叫做格点,以格点为顶 点分别按下列要求画三角形: 2 2、5 (1)使三角形的三边长分别为3、 (在 图中画一个即可);