2014届高考数学(理)第一轮复习学案——空间向量与空间角

合集下载

【赢在高考】2014届高考数学第一轮复习配套课件:8.6空间向量及其运算-文档资料

【赢在高考】2014届高考数学第一轮复习配套课件:8.6空间向量及其运算-文档资料

目录
退出
( 3) 模、夹角和距离公式 设 a=( a1, a2, a3) , b=( b1, b2, b3) , 2 2 2 则|a|= ������·������ = ������1 + ������2 + ������3 , cos<a, b>=|������||������| =
������·������
目录 退出
( 2) 共面向量定理 如果两个向量 a, b 不共线, 那么向量 p 与向量 a, b 共面的充要条 件是存在惟一的有序实数对( x, y) , 使 p=xa+yb. 推论: 空间一点 P 位于平面 ABC 内的充要条件是存在有序实数 对( x, y) , 使������������=x������������+y������������; 或对空间任意一点 O, 有 ������������ = ������������+x������������+y������������. ( 3) 空间向量基本定理 如果三个向量 a, b, c 不共面, 那么对空间任一向量 p, 存在有序实 数组( x, y, z) , 使得 p=xa+yb+zc, 我们把{a, b, c}叫做空间的一个基 底, a, b, c 都叫做基向量.
目录
退出
对于共面向量定理和空间向量基本定理可对比共 线向量定理进行学习理解.空间向量基本定理是适当选取基底的依 据, 共线向量定理和共面向量定理是证明三点共线、 线线平行、 四点 共面、 线面平行的工具, 三个定理保证了由向量作为桥梁由实数运算 方法完成几何证明问题的完美“嫁接”.
目录
退出
3.空间向量的数量积及运算律 ( 1) 数量积及相关概念 ①两向量的夹角 已知两个非零向量 a, b, 在空间任取一点 O, 作������������=a, ������������=b, 则∠ AOB 叫做向量 a, b 的夹角, 记作<a, b>, 其范围是 0≤<a, b>≤π, 若 <a, b>=2, 则称向量 a 与 b 互相垂直, 记作 a⊥b. ②两向量的数量积 已知两个非零向量 a, b, 则|a||b|cos<a, b>叫做 a, b 的数量积, 记作 a· b, 即 a· b=|a||b|cos<a, b>. 零向量与任何向量的数量积为 0.特别 地, a· a=|a||a|· cos<a, a>=|a|2.

2014版高考数学一轮复习(苏教版,理)配套导学案:第8章 学案43

2014版高考数学一轮复习(苏教版,理)配套导学案:第8章 学案43

学案43空间向量及其运算导学目标:1。

了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示。

2.掌握空间向量的线性运算及其坐标表示。

3.掌握空间向量的数量积及其坐标表示,能运用向量的共线与垂直证明直线、平面的平行和垂直关系.自主梳理1.空间向量的有关概念及定理(1)空间向量:在空间中,具有________和________的量叫做空间向量.(2)相等向量:方向________且模________的向量.(3)共线向量定理对空间任意两个向量a,b(a≠0),b与a共线的充要条件是________________________.(4)共面向量定理如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在有序实数对(x,y),使得p=x a+y b,推论的表达式为错误!=x错误!+y错误!或对空间任意一点O有,错误!=________________或错误!=x错误!+y错误!+z错误!,其中x+y+z=____.(5)空间向量基本定理如果三个向量e1,e2,e3不共面,那么对空间任一向量p,存在惟一的有序实数组(x,y,z),使得p=________________________,把{e1,e2,e3}叫做空间的一个基底.2.空间向量的坐标表示及应用(1)数量积的坐标运算若a=(a1,a2,a3),b=(b1,b2,b3),则a·b=__________________________________________________________ ________.(2)共线与垂直的坐标表示设a=(a1,a2,a3),b=(b1,b2,b3),若b≠0,则a∥b⇔________⇔__________,________,______________,a⊥b⇔__________⇔________________________(a,b均为非零向量).(3)模、夹角和距离公式设a=(a1,a2,a3),b=(b1,b2,b3),则|a|=a·a=________________________________,cos〈a,b>=a·b|a||b|=______________________________________________________。

2014届高考数学(理)一轮复习教案第八章立体几何第7讲 立体几何中的向量方法(Ⅱ)--求空间角(苏教版)

2014届高考数学(理)一轮复习教案第八章立体几何第7讲 立体几何中的向量方法(Ⅱ)--求空间角(苏教版)

第7讲 立体几何中的向量方法(Ⅱ)——求空间角对应学生用书P130考点梳理1.设异面直线l 1,l 2的方向向量分别为m 1,m 2,则l 1与l 2的夹角θ满足cos θ=|cos 〈m 1,m 2〉|.2.设直线l 的方向向量和平面α的法向量分别为m ,n ,则直线l 与平面α的夹角θ满足sin θ=|cos 〈m ,n 〉|. 3.求二面角的大小a .如图①,AB 、CD 是二面角α -l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.b .如图②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=cos 〈n 1,n 2〉或-cos 〈n 1,n 2〉. 【助学·微博】 一个考情解读异面直线所成的角、直线与平面所成的角、二面角是近年高考的常见内容.在新课程标准下,立体几何的基本理论知识要求有所降低,因此应用向量这一工具解题尤为重要.特别是对于易建系的空间图形,应尽量建立空间直角坐标系解决,以降低解题难度.考点自测1.如果平面的一条斜线与它在这个平面上的射影的方向向量分别是a =(1,0,1),b =(0,1,1),那么,这条斜线与平面所成的角是________. 解析 ∵cos 〈a ,b 〉=12·2=12,又∵〈a ,b 〉∈[0,π], ∴〈a ,b 〉=60°.答案 60°2.已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角的大小为________. 解析 cos 〈m ,n 〉=m·n |m ||n |=11×2=22,即〈m ,n 〉=45°,其补角为135°,∴两平面所成的二面角为45°或135°. 答案 45°或135°3.已知向量m ,n 分别是直线l 和平面α的方向向量、法向量,若cos 〈m ,n 〉=-12,则l 与α所成的角为________.解析 设l 与α所成的角为θ,则sin θ=|cos 〈m ,n 〉|=12, ∴θ=30°. 答案 30°4. 在如图所示的正方体A 1B 1C 1D 1-ABCD 中,E 是C 1D 1的中点,则异面直线DE 与AC 夹角的余弦值为________.解析 如图建立直角坐标系D -xyz ,设DA =1,A (1,0,0),C (0,1,0),E ⎝ ⎛⎭⎪⎫0,12,1.则AC→=(-1,1,0),DE →=⎝ ⎛⎭⎪⎫0,12,1,若异面直线DE 与AC 所成的角为θ,cos θ=|cos 〈AC →,DE →〉|=1010. 答案 10105. 如图所示,在三棱柱ABC -A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E 、F 分别是棱AB 、BB 1的中点,则直线EF 和BC 1所成的角是________.解析 建立如图的空间直角坐标系. 设AB =BC =AA 1=2, 则C 1(2,0,2),E (0,1,0),F (0,0,1) 则EF →=(0,-1,1),BC 1→=(2,0,2), ∴EF →·BC 1→=2, ∴cos 〈EF →,BC 1→〉=22×22=12,∴EF 和BC 1所成角为60°. 答案 60°对应学生用书P130考向一 求异面直线所成的角【例1】 (2013·常州质检)如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,∠ABC =π4.OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点. (1)证明:直线MN ∥平面OCD ; (2)求异面直线AB 与MD 所成角的大小.(1)证明 作AP ⊥CD 于点P .如图,分别以AB ,AP ,AO 所在直线为x ,y ,z 轴建立直角坐标系. A (0,0,0),B (1,0,0),P ⎝ ⎛⎭⎪⎫0,22,0,D ⎝ ⎛⎭⎪⎫-22,22,0,O (0,0,2),M (0,0,1),N ⎝ ⎛⎭⎪⎫1-24,24,0.(1)MN →=⎝ ⎛⎭⎪⎫1-24,24,-1,OP →=⎝ ⎛⎭⎪⎫0,22,-2,OD →=⎝ ⎛⎭⎪⎫-22,22,-2. 设平面OCD 的法向量为n =(x ,y ,z ), 则n ·OP →=0,n ·OD →=0.即⎩⎪⎨⎪⎧22y -2z =0,-22x +22y -2z =0.取z =2,解得n =(0,4,2).∵MN →·n =⎝ ⎛⎭⎪⎫1-24,24,-1·(0,4,2)=0,∴MN ∥平面OCD .(2)解 设AB 与MD 所成角为θ, ∵AB→=(1,0,0),MD →=⎝ ⎛⎭⎪⎫-22,22,-1,∴cos θ=|AB →·MD →||AB →|·|MD →|=12,θ∈⎣⎢⎡⎦⎥⎤0,π2,∴θ=π3.∴直线AB 与MD 所成的角为π3.[方法总结] 异面直线所成角范围是(0,π2],若异面直线a ,b 的方向向量为m ,n ,异面直线a ,b 所成角为θ,则cos θ=|cos 〈m ,n 〉|.解题过程是:(1)建系;(2)求点坐标;(3)表示向量;(4)计算.【训练1】 已知正三棱柱ABC -A 1B 1C 1的各棱长都相等,P 为A 1B 上的点,A 1P →=λA 1B →,且PC ⊥AB . (1)求λ的值;(2)求异面直线PC 与AC 1所成角的余弦值.解 (1)设正三棱柱的棱长为2,以AC 的中点O 为原点,OB ,OC 所在直线为x 轴,y 轴,过点O 且平行AA 1的直线为z 轴建立直角坐标系如图,则A (0,-1,0),B (3,0,0),C (0,1,0),A 1(0,-1,2),B 1(3,0,2),C 1(0,1,2). 所以AB →=(3,1,0),CA 1→=(0,-2,2),A 1B →=(3,1,-2).因为PC ⊥AB ,所以CP →·AB →=0,(CA 1→+A 1P →)·AB →=0,(CA 1→+λA 1B →)·AB →=0, 所以λ=-CA 1→·AB →A 1B →·AB→=12.(2)由(1)知CP →=⎝ ⎛⎭⎪⎫32,-32,1,AC 1→=(0,2,2), 所以cos 〈CP →,AC 1→〉=CP →·AC 1→|CP →||AC 1→|=-3+22×22=-28.所以异面直线PC 与AC 1所成角的余弦值为28.考向二 利用向量求直线与平面所成的角【例2】 (2012·苏锡常镇四市调研(二))如图,在长方体ABCD -A 1B 1C 1D 1中,AB =4,AD =2,AA 1=2,F 是棱BC 的中点,点E 在棱C 1D 1上,且D 1E =λEC 1(λ为实数).(1)当λ=13时,求直线EF 与平面D 1AC 所成角的正弦值的大小; (2)求证:直线EF 不可能与直线EA 垂直.解 分别以DA ,DC ,DD 1为x ,y ,z 轴,建立如图所示的空间直角坐标系D -xyz ,则A (2,0,0),C (0,4,0),D 1(0,0,2),E ⎝ ⎛⎭⎪⎫0,4λ1+λ,2,F (1,4,0).所以D 1A →=(2,0,-2),D 1C →=(0,4,-2). (1)当λ=13时,E (0,1,2),EF→=(1,3,-2). 设平面D 1AC 的一个法向量为n =(x ,y ,z ).由⎩⎪⎨⎪⎧n ·D 1A →=0,n ·D 1C →=0解得⎩⎨⎧x =z ,z =2y .取y =1,则n =(2,1,2).因为|EF →|=14,|n |=3,EF →·n =1, 所以cos 〈EF →,n 〉=EF →·n |EF →||n |=114×3=1442.因为cos 〈EF →,n 〉>0,所以〈EF →,n 〉是锐角,是直线EF 与平面D 1AC 所成角的余角,所以直线EF 与平面D 1AC 所成角的正弦值为1442. (2)证明假设EF ⊥EA ,则EF →·EA→=0.因为EA →=⎝ ⎛⎭⎪⎫2,-4λ1+λ,-2,EF →=⎝ ⎛⎭⎪⎫1,4-4λ1+λ,-2.所以2-4λ1+λ⎝ ⎛⎭⎪⎫4-4λ1+λ+4=0.化简,得3λ2-2λ+3=0. 因为Δ=4-36<0,所以该方程无解,所以假设不成立,即直线EF 不可能与直线EA 垂直.[方法总结] (1)异面直线的夹角与向量的夹角有所不同,应注意思考它们的区别与联系.(2)直线与平面的夹角可以转化成直线的方向向量与平面的法向量的夹角,由于向量方向的变化,所以要注意它们的区别与联系.【训练2】(2013·苏北四市调研)如图,已知三棱柱ABC -A 1B 1C 1的侧面与底面垂直,AA 1=AB =AC =1,AB ⊥AC ,M ,N ,P 分别是CC 1,BC ,A 1B 1的中点.(1)求证:PN ⊥AM ;(2)若直线MB 与平面PMN 所成的角为θ,求sin θ的值.(1)证明 建立如图所示直角坐标系;则A (0,0,0),B (1,0,0),C (0,1,0),A 1(0,0,1),B 1(1,0,1),C 1(0,1,1),P ⎝ ⎛⎭⎪⎫12,0,1,M ⎝ ⎛⎭⎪⎫0,1,12,PN →=⎝ ⎛⎭⎪⎫0,12,-1,AM →=⎝ ⎛⎭⎪⎫0,1,12.因为PN →·AM→=0×0+1×12+(-1)×12=0, 所以PN ⊥AM .(2)解 设平面PMN 的一个法向量为n =(x ,y ,z ),NP →=⎝ ⎛⎭⎪⎫0,-12,1,NM →=⎝ ⎛⎭⎪⎫-12,12,12, 则⎩⎪⎨⎪⎧n ·NP →=0,n ·NM →=0⇒⎩⎪⎨⎪⎧-12y +z =0,-12x +12y +12z =0.令y =2,得z =1,x =3.所以n =(3,2,1). 又MB→=⎝ ⎛⎭⎪⎫1,-1,-12, 所以sin θ=n ·MB →|n ||AB →|=1232×14=1442.考向三 利用向量求二面角【例3】 (2012·天津卷)如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AC ⊥AD ,AB ⊥BC ,∠BAC =45°,P A =AD =2,AC =1. (1)证明:PC ⊥AD ;(2)求二面角A -PC -D 的正弦值;(3)设E 为棱P A 上的点,满足异面直线BE 与CD 所成的角为30°,求AE 的长.解 如图,以点A 为原点建立空间直角坐标系,依题意得A (0,0,0),D (2,0,0),C (0,1,0),B ⎝ ⎛⎭⎪⎫-12,12,0,P (0,0,2).(1)证明 易得PC →=(0,1,-2),AD→=(2,0,0), 于是PC →·AD→=0,∴PC ⊥AD . (2)解 PC→=(0,1,-2),CD →=(2,-1,0). 设平面PCD 的法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·PC →=0,n ·CD →=0,即⎩⎨⎧y -2z =0,2x -y =0. 不妨令z =1,可得n =(1,2,1). 可取平面P AC 的法向量m =(1,0,0). 于是cos 〈m ,n 〉=m ·n |m |·|n |=16=66, 从而sin 〈m ,n 〉=306.∴二面角A -PC -D 的正弦值为306.(3)解 设点E 的坐标为(0,0,h ),其中h ∈[0,2].由此得BE →=⎝ ⎛⎭⎪⎫12,-12,h ,由CD →=(2,-1,0),故cos 〈BE →,CD →〉=BE →·CD →|BE →|·|CD →|=3212+h 2×5=310+20h 2,∴310+20h 2=cos 30°=32,解得h =1010,即AE =1010.[方法总结] 求二面角最常用的方法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.【训练3】 (2011·湖北卷)如图,已知正三棱柱ABC -A 1B 1C 1的各棱长都是4,E 是BC 的中点,动点F 在侧棱CC 1上,且不与点C 重合. (1)当CF =1时,求证:EF ⊥A 1C ;(2)设二面角C -AF -E 的大小为θ,求tan θ的最小值.解 (1)建立如图所示的空间直角坐标系,连接EF ,AF ,则由已知可得A (0,0,0),B (23,2,0)C (0,4,0),A 1(0,0,4),E (3,3,0),F (0,4,1), 于是CA 1→=(0,-4,4), EF→=(-3,1,1). 则CA 1→·EF →=(0,-4,4)·(-3,1,1)=0-4+4=0, 故EF ⊥A 1C .(2)设CF =λ(0<λ≤4),平面AEF 的一个法向量为m =(x ,y ,z ),则由(1)得F (0,4,λ).AE→=(3,3,0),AF →=(0,4,λ), 于是由m ⊥AE→,m ⊥AF →可得⎩⎪⎨⎪⎧m ·AE →=0,m ·AF →=0,即⎩⎨⎧3x +3y =0,4y +λz =0.取m =(3λ,-λ,4).又由直三棱柱的性质可取侧面A 1C 的一个法向量为n =(1,0,0),于是由θ为锐角可得cos θ=|m·n ||m|·|n|=3λ2λ2+4,sin θ=λ2+162λ2+4, 所以tan θ=λ2+163λ=13+163λ2.故由0<λ≤4,得1λ≥14,即tan θ≥13+13=63.故当λ=4,即点F 与点C 1重合时,tan θ取得最小值63.对应学生用书P132规范解答15 利用空间向量求空间角向量法通过空间坐标系把空间图形的性质代数化,避免了寻找平面角和垂线段等诸多麻烦,使空间点线面的位置关系的判定和计算程序化、简单化.主要是建系、设点、计算向量的坐标、利用数量积的夹角公式计算.【示例】 (2011·江苏卷)如图,在正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,AB =1,点N 是BC 的中点,点M 在CC 1上,设二面角A 1-DN -M 的大小为θ.(1)当θ=90°时,求AM 的长; (2)当cos θ=66时,求CM 的长.[审题路线图] 设CM =t ,建系确定点的坐标,利用平面的法向量垂直求(1)问,利用法向量表示cos θ求(2)问.[解答示范] 建立如图所示的空间直角坐标系D -xyz .设CM =t (0≤t ≤2),则各点的坐标为A (1,0,0),A 1(1,0,2),N ⎝ ⎛⎭⎪⎫12,1,0,M (0,1,t )所以D N →=⎝ ⎛⎭⎪⎫12,1,0,DM →=(0,1,t ),DA 1→=(1,0,2).设平面DMN 的法向量为n 1=(x 1,y 1,z 1),则n 1·D N →=0,n 1·DM →=0, 即x 1+2y 1=0,y 1+tz 1=0.令z 1=1,则y 1=-t ,x 1=2t ,所以n 1=(2t ,-t,1)是平面DMN 的一个法向量. 设平面A 1DN 的法向量为n 2=(x 2,y 2,z 2),则n 2·DA 1→=0,n 2·D N →=0,即x 2+2z 2=0,x 2+2y 2=0.令z 2=1,则x 2=-2,y 2=1,所以n 2=(-2,1,1)是平面A 1DN 的一个法向量.从而n 1·n 2=-5t +1.(5分)(1)因为θ=90°,所以n 1·n 2=-5t +1=0,解得t =15. 从而M ⎝ ⎛⎭⎪⎫0,1,15.所以AM =12+12+⎝ ⎛⎭⎪⎫152=515.(7分)(2)因为|n 1|=5t 2+1,|n 2|=6, 所以cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=-5t +16·5t 2+1.因为〈n 1,n 2〉=θ或π-θ,所以⎪⎪⎪⎪⎪⎪-5t +16·5t 2+1=66, 解得t =0或t =12.根据图形和(1)的结论可知t =12,从而CM 的长为12.(10分)[模板构建]第一步:建立空间直角坐标系.第二步:确定点的坐标.第三步:求向量(直线的方向向量、平面的法向量)坐标.第四步:计算向量的夹角(或函数值).第五步:将向量夹角转化为所求的空间角.第六步:反思回顾,查看关键点、易错点和答题规范.高考经典题组训练1.(2012·福建卷)如图,在长方体ABCD -A 1B 1C 1D 1中,AA 1=AD =1,E 为CD 中点.(1)求证:B 1E ⊥AD 1;(2)在棱AA 1上是否存在一点P ,使得DP ∥平面B1AE ?若存在,求AP 的长;若不存在,说明理由;(3)若二面角A -B 1E -A 1的大小为30°,求AB 的长.(1)证明 以A 为原点,AB →,AD →,AA 1→的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图).设AB =a ,则A (0,0,0),D (0,1,0),D 1(0,1,1),E ⎝ ⎛⎭⎪⎫a 2,1,0,B 1(a,0,1),故AD 1→=(0,1,1),B 1E →=⎝ ⎛⎭⎪⎫-a 2,1,-1,AB 1→=(a,0,1),AE →=⎝ ⎛⎭⎪⎫a 2,1,0. ∵AD 1→·B 1E →=-a 2×0+1×1+(-1)×1=0, ∴B 1E ⊥AD 1.(2)解 假设在棱AA 1上存在一点P (0,0,z 0),使得DP ∥平面B 1AE .此时DP →=(0,-1,z 0). 又设平面B 1AE 的法向量n =(x ,y ,z ).∵n ⊥平面B 1AE ,∴n ⊥AB 1→,n ⊥AE →,得⎩⎪⎨⎪⎧ax +z =0,ax 2+y =0.取x =1,得平面B 1AE 的一个法向量n =⎝ ⎛⎭⎪⎫1,-a 2,-a .要使DP ∥平面B 1AE ,只要n ⊥DP →,有a 2-az 0=0,解得z 0=12. 又DP ⊄平面B 1AE ,∴存在点P ,满足DP ∥平面B 1AE ,此时AP =12. (3)解 连接A 1D ,B 1C ,由长方体ABCD -A 1B 1C 1D 1及AA 1=AD =1,得AD 1⊥A 1D .∵B 1C ∥A 1D ,∴AD 1⊥B 1C .又由(1)知B 1E ⊥AD 1, 且B 1C ∩B 1E =B 1, ∴AD 1⊥平面DCB 1A 1,∴AD 1→是平面A 1B 1E 的一个法向量,此时AD 1→=(0,1,1). 设AD 1→与n 所成的角为θ, 则cos θ=n ·AD 1→|n |·|AD 1→|=-a2-a 21+a 24+a2.∵二面角A -B 1E -A 1的大小为30°,∴|cos θ|=cos 30°,即3a221+5a 24=32.解得a =2,即AB 的长为2.2. (2012·江西卷)在三棱柱ABC -A 1B 1C 1中,已知AB =AC =AA 1=5,BC=4,点A 1在底面ABC 的投影是线段BC 的中点O .(1)证明在侧棱AA 1上存在一点E ,使得OE ⊥平面BB 1C 1C ,并求出AE 的长. (2)求平面A 1B 1C 与平面BB 1C 1C 夹角的余弦值. (1)证明 连接AO 在△AOA 1中,作OE ⊥AA 1于点E , ∵AA 1∥BB 1,得OE ⊥BB 1, ∵A 1O ⊥平面ABC ,∴A 1O ⊥BC .∵AB =AC ,OB =OC ,得AO ⊥BC ,∴BC ⊥平面AA 1O , ∴BC ⊥OE ,∴OE ⊥平面BB 1C 1C , 又AO =AB 2-BO 2=1,AA 1=5, 得AE =AO AA 1=55.(2)解 如图,分别以OA ,OB ,OA 1所在直线为x ,y ,z 轴,建立空间直角坐标系,则A (1,0,0), B (0,2,0),C (0,-2,0), A 1(0,0,2).由AE→=15AA 1→,得点E 的坐标是⎝ ⎛⎭⎪⎫45,0,25,由(1)得平面BB 1C 1C 的法向量是OE →=⎝ ⎛⎭⎪⎫45,0,25, 设平面A 1B 1C 的法向量n =(x ,y ,z ). 由⎩⎪⎨⎪⎧n ·A 1B 1→=0,n ·A 1C →=0,得⎩⎨⎧-x +2y =0,y +z =0,令y =1,得x =2,z =-1,即n =(2,1,-1), ∴cos 〈OE →,n 〉=OE →·n |OE →|·|n |=3010,即平面BB 1C 1C 与平面A 1B 1C 的夹角的余弦值是3010.对应学生用书P329分层训练A 级 基础达标演练 (时间:30分钟 满分:60分)一、填空题(每小题5分,共30分)1. 如图所示,在正方体ABCD -A1B 1C 1D 1中,O 是底面正方形ABCD 的中心,M 是D 1D 的中点,N 是A 1B 1上的动点,则直线NO 、AM 的位置关系是________.解析 建立坐标系如图,设正方体的棱长为2,则A (2,0,0),M (0,0,1),O (1,1,0),N (2,t,2),NO →=(-1,1-t ,-2),AM →=(-2,0,1),NO →·AM →=0,则直线NO 、AM 的位置关系是异面垂直. 答案 异面垂直2.在正方体ABCD -A 1B 1C 1D 1中,M 、N 分别为棱AA 1和BB 1的中点,则sin 〈CM →,D 1N →〉的值为________. 解析 设正方体的棱长为2,以D 为坐标原点,DA 为x轴,DC 为y 轴,DD 1为z 轴建立空间直角坐标系(如图),可知CM →=(2,-2,1),D 1N →=(2,2,-1), cos 〈CM →,D 1N →〉=-19, 所以sin 〈CM →,D 1N →〉=459. 答案4593.在长方体ABCD -A 1B 1C 1D 1中,AB =AA 1=2,AD =1,E 为CC 1的中点,则异面直线BC 1与AE 所成角的余弦值为________.解析 建立坐标系如图,则A (1,0,0),E (0,2,1), B (1,2,0),C 1(0,2,2).BC 1→=(-1,0,2),AE →=(-1,2,1), cos 〈BC 1→,AE →〉=BC 1→·AE →|BC 1→||AE →|=3010. 所以异面直线BC 1与AE 所成角的余弦值为3010. 答案 30104.(2011·全国卷改编)已知直二面角α-l -β,点A ∈α,AC ⊥l ,C 为垂足,点B ∈β,BD ⊥l ,D 为垂足,若AB =2,AC =BD =1,则CD =________.解析 如图,建立直角坐标系D -xyz ,由已知条件B (0,0,1),A (1,t,0)(t >0),由AB =2解得t = 2. 答案25.在正方体ABCD -A 1B 1C 1D 1中,E 是棱BB 1中点,G 是DD 1中点,F 是BC 上一点且FB =14BC ,则GB 与EF 所成的角为________. 解析 如图建立直角坐标系D -xyz ,设DA =1,由已知条件G ⎝ ⎛⎭⎪⎫0,0,12,B ()1,1,0,E ⎝ ⎛⎭⎪⎫1,1,12,F ⎝ ⎛⎭⎪⎫34,1,0,GB →=⎝ ⎛⎭⎪⎫1,1,-12, EF →=⎝ ⎛⎭⎪⎫-14,0,-12,cos 〈GB →,EF →〉=GB →·EF →|GB →||EF →|=0,则GB →⊥EF →. 答案 90°6.正四棱锥S -ABCD 中,O 为顶点在底面上的射影,P 为侧棱SD 的中点,且SO =OD ,则直线BC 与平面P AC 的夹角的大小为________. 解析 如图所示,以O 为原点建立空间直角坐标系O-xyz .设OD =SO =OA =OB =OC =a ,则A (a,0,0),B (0,a,0),C (-a,0,0),P ⎝ ⎛⎭⎪⎫0,-a 2,a 2.则CA →=(2a,0,0),AP →=⎝ ⎛⎭⎪⎫-a ,-a 2,a 2,CB →=(a ,a,0).设平面P AC 的法向量为n ,可求得n =(0,1,1), 则cos 〈CB →,n 〉=CB →·n |CB →||n |=a 2a 2·2=12. ∴〈CB →,n 〉=60°,∴直线BC 与平面P AC 的夹角为90°-60°=30°. 答案 30°二、解答题(每小题15分,共30分)7. (2012·盐城中学期中调研)如图,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,∠BAC =30°,BC =1,AA 1=6,M 是棱CC 1的中点. (1)求证:A 1B ⊥AM ;(2)求直线AM 与平面AA 1B 1B 所成角的正弦值.解 (1)∵C 1C ⊥平面ABC ,BC ⊥AC ,∴分别以CA ,CB ,CC 1所在直线为x 轴,y 轴,z 轴建立空间直角坐标系.则B (0,1,0),A 1(3,0,6),A (3,0,0),M ⎝ ⎛⎭⎪⎫0,0,62.∴A 1B →=(-3,1,-6),AM →=⎝ ⎛⎭⎪⎫-3,0,62, ∴A 1B →·AM →=3+0-3=0,∴A 1B →⊥AM →. 即A 1B ⊥AM .(2)由(1),知AB →=(-3,1,0),AA 1→=(0,0,6), 设平面AA 1B 1B 的法向量为n =(x ,y ,z ),则⎩⎨⎧-3x +y =0,6z =0.不妨取n =(3,3,0). 设直线AM 与平面AA 1B 1B 所成角为θ. ∴sin θ=|cos 〈AM →,n 〉|=⎪⎪⎪⎪⎪⎪⎪⎪AM →·n |AM →|·|n |=66.8. (2011·湖北卷)如图,已知正三棱柱ABC v A 1B 1C 1的底面边长为2,侧棱长为32,点E 在侧棱AA 1上,点F 在侧棱BB 1上,且AE =22,BF = 2. (1)求证:CF ⊥C 1E ;(2)求二面角E -CF -C 1的大小.解 建立如图所示的空间直角坐标系A -xyz ,则由已知可得A (0,0,0),B (3,1,0),C (0,2,0),C 1(0,2,32),E (0,0,22),F (3,1,2). (1)证明 C 1E →=(0,-2,-2),CF →=(3,-1,2).C 1E →·CF →=0+2-2=0, 所以CF ⊥C 1E .(2)解 CE →=(0,-2,22),设平面CEF 的一个法向量为m =(x ,y ,z ),由m ⊥CE →,m ⊥CF →,得⎩⎪⎨⎪⎧m ·CE →=0,m ·CF →=0,即⎩⎨⎧ -2y +22z =0,3x -y +2z =0.解得⎩⎨⎧y =2z ,x =0.可取m =(0,2,1),设侧面BC 1的一个法向量为n ,由n ⊥BC →,n ⊥CC 1→,及CB →=(3,-1,0),CC 1→=(0,0,32),可取n =(1,3,0).设二面角E -CF -C 1的大小为θ,于是由θ为锐角可得 cos θ=|m ·n ||m ||n |=63×2=22,所以θ=45°. 即所求二面角E -CF -C 1的大小为45°.分层训练B 级 创新能力提升1. 如图,在四棱锥P -ABCD 中,侧面P AD 为正三角形,底面ABCD 为正方形,侧面P AD ⊥底面ABCD ,M 为底面ABCD 内的一个动点,且满足MP =MC ,则点M 在正方形ABCD 内的轨迹为________.解析 以D 为原点,DA 、DC 所在直线分别为x 、y 轴建系如图:设M (x ,y,0),设正方形边长为a ,则P ⎝ ⎛⎭⎪⎫a 2,0,32a ,C (0,a,0),则MC =x 2+(y -a )2, MP =⎝ ⎛⎭⎪⎫x -a 22+y 2+⎝ ⎛⎭⎪⎫32a 2. 由MP =MC 得x =2y ,所以点M 在正方形ABCD 内的轨迹为直线y =12x 的一部分. 答案 ①2.已知正方体ABCD -A 1B 1C 1D 1的棱长为1,点P 在线段BD 1上,当∠APC 最大时,三棱锥P -ABC 的体积为________. 解析 以B 为坐标原点,BA 为x 轴,BC 为y 轴,BB 1为z 轴建立空间直角坐标系(如图所示). 设BP →=λBD 1→,可得:P (λ,λ,λ). 再由cos ∠APC =AP →·CP→|AP →|·|CP →|可求得当λ=13时,∠APC 最大.故V P -ABC =13×12×1×1×13=118.答案 1183.已知P 是二面角α-AB -β棱上的一点,分别在α、β平面上引射线PM 、PN ,如果∠BPM =∠BPN =45°,∠MPN =60°,那么二面角α-AB -β的大小为________.解析 不妨设PM =a ,PN =b ,如图,作ME ⊥AB 于E ,NF ⊥AB 于F ,∵∠EPM =∠FPN =45°,∴PE =22a ,PF =22b ,∴EM →·FN →=(PM →-PE →)·(PN→-PF →) =PM →·PN →-PM →·PF →-PE →·PN →+PE →·PF→ =ab cos 60°-a ×22b cos 45°-22ab cos 45°+22a ×22b =ab 2-ab 2-ab 2+ab 2=0,∴EM →⊥FN →,∴二面角α-AB -β的大小为90°.答案 90°4.(2011·全国卷改编)已知点E 、F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1,CC 1上,且B 1E =2EB ,CF =2FC 1,则面AEF 与面ABC 所成的二面角的正切值为________.解析 如图,建立直角坐标系D -xyz ,设DA =1由已知条件A (1,0,0),E ⎝ ⎛⎭⎪⎫1,1,13,F ⎝ ⎛⎭⎪⎫0,1,23 AE →=⎝ ⎛⎭⎪⎫0,1,13,AF →=⎝ ⎛⎭⎪⎫-1,1,23 设平面AEF 的法向量为n =(x ,y ,z ),面AEF 与面ABC 所成的二面角为θ由⎩⎪⎨⎪⎧ n ·AE →=0,n ·AF →=0,⎩⎪⎨⎪⎧ y +13z =0,-x +y +23z =0.令y =1,z =-3,x =-1,则n =(-1,1,-3)平面ABC 的法向量为m =(0,0,-1)cos θ=cos 〈n ,m 〉=311,tan θ=23. 答案 235. 如图所示,已知点P 在正方体ABCD -A ′B ′C ′D ′的对角线BD ′上,∠PDA =60°.(1)求DP 与CC ′所成角的大小;(2)求DP 与平面AA ′D ′D 所成角的大小.解 如图所示,以D 为原点,DA 为单位长度建立空间直角坐标系D -xyz .则DA →=(1,0,0),CC ′→=(0,0,1).连接BD ,B ′D ′.在平面BB ′D ′D 中,延长DP 交B ′D ′于H .设DH →=(m ,m,1)(m >0),由已知〈DH →,DA →〉=60°,即DA →·DH →=|DA →||DH →|cos 〈DH →,DA →〉, 可得2m =2m 2+1.解得m =22,所以DH →=⎝ ⎛⎭⎪⎫22,22,1. (1)因为cos 〈DH →,CC ′→〉=22×0+22×0+1×11×2=22, 所以〈DH →,CC ′→〉=45°,即DP 与CC ′所成的角为45°.(2)平面AA ′D ′D 的一个法向量是DC→=(0,1,0).因为cos 〈DH →,DC →〉=22×0+22×1+1×01×2=12, 所以〈DH →,DC →〉=60°,可得DP 与平面AA ′D ′D 所成的角为30°.6.如图,在底面为直角梯形的四棱锥P -ABCD 中,AD ∥BC ,∠ABC =90°,P A⊥平面ABCD ,P A =3,AD =2,AB =23,BC =6.(1)求证:BD ⊥平面P AC ;(2)求二面角P -BD -A 的大小.(1)证明 如图,建立空间直角坐标系,则A (0,0,0),B (23,0,0),C (23,6,0),D (0,2,0),P (0,0,3), ∴AP→=(0,0,3),AC →=(23,6,0),BD →=(-23,2,0).∴BD →·AP →=0,BD →·AC→=0.∴BD ⊥AP ,BD ⊥AC .又∵P A ∩AC =A ,∴BD ⊥面P AC .(2)解 设平面ABD 的法向量为m =(0,0,1),设平面PBD 的法向量为n =(x ,y ,z ),则n ·BD →=0,n ·BP→=0.∵BP →=(-23,0,3), ∴⎩⎨⎧ -23x +2y =0,-23x +3z =0解得⎩⎨⎧ y =3x ,z =233x .令x =3,则n =(3,3,2),∴cos 〈m ,n 〉=m·n |m||n |=12.∴二面角P -BD -A 的大小为60°.。

高三数学人教版A版数学(理)高考一轮复习教案空间向量及其运算1

高三数学人教版A版数学(理)高考一轮复习教案空间向量及其运算1

第六节空间向量及其运算空间向量及其应用(1)理解直线的方向向量与平面的法向量.(2)能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系.(3)能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理).(4)能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究立体几何问题中的应用.知识点一空间向量的有关概念1.空间向量的有关概念(1)空间向量:在空间中,具有大小和方向的量叫作空间向量,其大小叫作向量的长度或模.(2)相等向量:方向相同且模相等的向量.(3)共线向量:如果表示空间向量的有向线段所在的直线平行或重合,则这些向量叫作共线向量或平行向量,a平行于b记作a∥b.(4)共面向量:平行于同一平面的向量叫作共面向量.2.空间向量中的有关定理(1)共线向量定理:对空间任意两个向量a,b(b≠0),a∥b⇔存在λ∈R,使a=λb.(2)共面向量定理:若两个向量a,b不共线,则向量p与向量a,b共面⇔存在唯一的有序实数对(x,y),使p=x a+y b.(3)空间向量基本定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在一x,y,z使得p=x a+y b+z c.其中{a,b,c}叫作空间的一个基底.个唯一的有序实数组{}3.两个向量的数量积(1)非零向量a,b的数量积a·b=|a||b|cos〈a,b〉.(2)空间向量数量积的运算律①结合律:(λa)·b=λ(a·b);②交换律:a·b=b·a;③分配律:a·(b+c)=a·b+a·c.易误提醒(1)共线向量与共面向量区别时注意,平行于同一平面的向量才能为共面向量.(2)空间任意三个不共面的向量都可构成空间的一个基底.(3)由于0与任意一个非零向量共线,与任意两个非零向量共面,故0不能作为基向量. (4)基底选定后,空间的所有向量均可由基底唯一表示.[自测练习]1.已知空间四边形OABC 中,OA →=a ,OB →=b ,OC →=c ,点M 在OA 上,且OM =2MA ,N 为BC 中点,则MN →=( )A.12a -23b +12c B .-23a +12b +12cC.12a +12b -12cD.23a +23b -12c 解析:如图所示, MN →=MA →+AB →+BN → =13OA →+(OB →-OA →)+12BC → =OB →-23OA →+12(OC →-OB →)=12OB →-23OA →+12OC →=-23a +12b +12c .答案:B2.已知a =(λ+1,0,2),b =(6,2μ-1,2λ),若a ∥b ,则λ与μ的值可以是( ) A .2,12B .-13,12C .-3,2D .2,2解析:∵a ∥b ,∴b =k a ,即(6,2μ-1,2λ)=k (λ+1,0,2), ∴⎩⎪⎨⎪⎧6=k (λ+1),2μ-1=0,2λ=2k ,解得⎩⎪⎨⎪⎧ λ=2,μ=12,或⎩⎪⎨⎪⎧λ=-3,μ=12.答案:A知识点二 空间向量的坐标表示及其应用 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3).向量表示 坐标表示 数量积 a ·b a 1b 1+a 2b 2+a 3b 3 共线 a =λb (b ≠0) a 1=λb 1,a 2=λb 2,a 3=λb 3 垂直 a ·b =0(a ≠0,b ≠0)a 1b 1+a 2b 2+a 3b 3=0模 |a |a 21+a 22+a 23夹角 〈a ,b 〉(a ≠0,b ≠0)cos 〈a ,b 〉=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23易误提醒 (1)空间向量的坐标运算与坐标原点的位置选取无关,这是因为一个确定的几何体,其“线线”夹角、“点点”距离都是固定的,坐标系的位置不同,只会影响其计算的繁简.(2)进行向量的运算时,在能建系的情况下尽量建系,将向量运算转化为坐标运算. 必备方法 用空间向量解决几何问题的一般步骤: (1)适当的选取基底{a ,b ,c }. (2)用a ,b ,c 表示相关向量. (3)通过运算完成证明或计算问题.[自测练习]3.在空间直角坐标系中,已知点A (1,0,2),B (1,-3,1),点M 在y 轴上,且M 到A 与到B 的距离相等,则M 的坐标是________.解析:设M (0,y,0),由|MA |=|MB |得(1-0)2+(0-y )2+(2-0)2=(1-0)2+(-3-y )2+(1-0)2,解得y =-1.∴M (0,-1,0).答案:(0,-1,0)考点一 空间向量的线性运算|1.设三棱锥O -ABC 中,OA →=a ,OB →=b ,OC →=c ,G 是△ABC 的重心,则OG →等于( ) A .a +b -c B .a +b +c C.12(a +b +c ) D.13(a +b +c )解析:如图所示,OG →=OA →+AG →=OA →+13(AB →+AC →)=OA →+13(OB →-OA →+OC →-OA →)=13(a +b +c ).答案:D2.如图所示,已知空间四边形O -ABC ,其对角线为OB ,AC ,M ,N 分别为OA 、BC 的中点,点G 在线段MN 上,且MG →=2GN →,若OG →=xOA →+yOB →+zOC →,则x ,y ,z 的值分别为________.解析:∵OG →=OM →+MG →=12OA →+23MN →=12OA →+23(ON →-OM →)=12OA →+23ON →-23OM →=12OA →+23×12(OB →+OC →)-23×12OA →=16OA →+13OB →+13OC →,又OG →=xOA →+yOB →+zOC →, 根据空间向量的基本定理,x =16,y =z =13.答案:16,13,13(1)选定空间不共面的三个向量作基向量,并用它们表示出指定的向量,是用向量解决立体几何问题的基本要求.(2)空间向量问题实质上是转化为平面向量问题来解决的,即把空间向量转化到某一个平面上,利用三角形法则或平行四边形法则来解决.考点二 共线向量与共面向量定理的应用|已知E ,F ,G ,H 分别是空间四边形ABCD 中边AB ,BC ,CD ,DA 的中点. (1)求证:E ,F ,G ,H 四点共面; (2)求证:BD ∥平面EFGH ;(3)设M 是EG 和FH 的交点,求证:对空间任一点O ,有OM →=14(OA →+OB →+OC →+OD →).[证明] (1)连接BG ,则EG →=EB →+BG →=EB →+12(BC →+BD →)=EB →+BF →+EH →=EF →+EH →,由共面向量定理知,E ,F ,G ,H 四点共面.(2)因为EH →=AH →-AE →=12AD →-12AB →=12(AD →-AB →)=12BD →,所以EH ∥BD .又EH ⊂平面EFGH ,BD ⊄平面EFGH , 所以BD ∥平面EFGH .(3)任取一点O ,并连接OM ,OA ,OB ,OC ,OD ,OE ,OG . 由(2)知EH →=12BD →,同理FG →=12BD →,所以EH →=FG →,即EH 綊FG , 所以四边形EFGH 是平行四边形, 所以EG ,FH 被点M 平分.故OM →=12(OE →+OG →)=12OE →+12OG →=12⎣⎡⎦⎤12(OA →+OB →)+12⎣⎡⎦⎤12(OC →+OD →)=14(OA →+OB →+OC →+OD →).证明点共面问题可转化为证明向量共面问题,如要证明P ,A ,B ,C 四点共面,只要能证明P A →=xPB →+yPC →或对空间任一点O ,有OA →=OP →+xPB →+yPC →或OP →=xOA →+yOB →+zOC →(x +y +z =1)即可.共面向量定理实际上也是三个非零向量所在直线共面的充要条件.1.已知A 、B 、C 三点不共线,对平面ABC 外的任一点O ,若点M 满足OM →=13(OA →+OB→+OC →).(1)判断MA →、MB →、MC →三个向量是否共面; (2)判断点M 是否在平面ABC 内. 解:(1)由已知OA →+OB →+OC →=3 OM →, ∴OA →-OM →=(OM →-OB →)+(OM →-OC →), 即MA →=BM →+CM →=-MB →-MC →, ∴MA →,MB →,MC →共面.(2)由(1)知MA →,MB →,MC →共面且过同一点M ,所以四点M ,A ,B ,C 共面,从而点M 在平面ABC 内.考点三 利用空间向量证明平行、垂直|如图所示的长方体ABCD -A 1B 1C 1D 1中,底面ABCD 是边长为2的正方形,O 为AC 与BD 的交点,BB 1=2,M 是线段B 1D 1的中点.(1)求证:BM ∥平面D 1AC ; (2)求证:OD 1⊥平面AB 1C .[证明] (1)建立如图所示的空间直角坐标系,则点O (1,1,0),D 1(0,0,2), ∴OD 1→=(-1,-1,2), 又点B (2,2,0),M (1,1,2), ∴BM →=(-1,-1,2),∴OD 1→=BM →.又∵OD 1与BM 不共线, ∴OD 1∥BM .∵OD 1⊂平面D 1AC ,BM ⊄平面D 1AC , ∴BM ∥平面D 1AC .(2)连接OB 1,点B 1(2,2,2),A (2,0,0),C (0,2,0), ∵OD 1→·OB 1→=(-1,-1,2)·(1,1,2)=0, OD 1→·AC →=(-1,-1,2)·(-2,2,0)=0,∴OD 1→⊥OB 1→, OD 1→⊥AC →,即OD 1⊥OB 1,OD 1⊥AC , 又OB 1∩AC =O ,∴OD 1⊥平面AB 1C .(1)设直线l 1的方向向量为v 1=(a 1,b 1,c 1),l 2的方向向量为v 2=(a 2,b 2,c 2),则l 1∥l 2⇔v 1∥v 2⇔(a 1,b 1,c 1)=k (a 2,b 2,c 2)(k ∈R ).(2)设直线l 的方向向量为v =(a 1,b 1,c 1),平面α的法向量为n =(a 2,b 2,c 2),则l ∥α⇔v ⊥n ⇔a 1a 2+b 1b 2+c 1c 2=0,l ⊥α⇔v ∥n ⇔(a 1,b 1,c 1)=k (a 2,b 2,c 2)(k ∈R ).(3)设平面α的法向量为n 1=(a 1,b 1,c 1),平面β的法向量为n 2=(a 2,b 2,c 2),则α∥β⇔n 1∥n 2,α⊥β⇔n 1⊥n 2.2.在长方体ABCD -A 1B 1C 1D 1中,AA 1=2AB =2BC ,E ,F ,E 1分别是棱AA 1,BB 1,A 1B 1的中点.(1)求证:CE ∥平面C 1E 1F ; (2)求证:平面C 1E 1F ⊥平面CEF .证明:以D 为原点,DA ,DC ,DD 1所在的直线为x 轴,y 轴,z 轴建立空间直角坐标系D -xyz ,设BC =1,则C (0,1,0),E (1,0,1),C 1(0,1,2),F (1,1,1),E 1⎝⎛⎭⎫1,12,2.(1)设平面C 1E 1F 的法向量n =(x ,y ,z ). ∵C 1E 1→=⎝⎛⎭⎫1,-12,0,FC 1→=(-1,0,1), ∴⎩⎪⎨⎪⎧ n ·C 1E 1→=0,n ·FC 1→=0,即⎩⎪⎨⎪⎧x -12y =0,-x +z =0.令x =1,得n =(1,2,1).∵CE →=(1,-1,1),n ·CE →=1-2+1=0, ∴CE ⊥n .又∵CE ⊄平面C 1E 1F , ∴CE ∥平面C 1E 1F .(2)设平面EFC 的法向量为m =(a ,b ,c ), 由EF →=(0,1,0),FC →=(-1,0,-1), ∴⎩⎪⎨⎪⎧m ·EF →=0,m ·FC →=0,即⎩⎪⎨⎪⎧b =0,-a -c =0.令a =-1,得m =(-1,0,1).∵m ·n =1×(-1)+2×0+1×1=-1+1=0, ∴平面C 1E 1F ⊥平面CEF .16.混淆空间“向量平行”与“向量同向”致错【典例】 已知向量a =(1,2,3),b =(x ,x 2+y -2,y ),并且a ,b 同向,则x ,y 的值分别为________.[解析] 由题意知a ∥b ,所以x 1=x 2+y -22=y 3,即⎩⎪⎨⎪⎧y =3x ,x 2+y -2=2x , 解得⎩⎪⎨⎪⎧ x =1,y =3,或⎩⎪⎨⎪⎧x =-2,y =-6.当⎩⎪⎨⎪⎧x =-2,y =-6,时,b =(-2,-4,-6)=-2a ,所以a ,b 两向量反向,不符合题意,舍去.当⎩⎪⎨⎪⎧ x =1,y =3,时,b =(1,2,3)=a ,a 与b 同向,所以⎩⎪⎨⎪⎧x =1,y =3. [答案] x =1,y =3[易误点评] 只考虑a ∥b ,忽视了同向导致求解多解.[防范措施] 两向量平行和两向量同向不是等价的,同向是平行的一种情况,两向量同向能推出两向量平行,但反之不成立,也就是说两向量同向是两向量平行的充分不必要条件.[跟踪练习] (2015·成都模拟)已知a =(λ+1,0,2),b =(6,2u -1,2λ),若a ∥b ,则λ与u 的值可以是( )A .2,12B .-13,12C .-3,2D .2,2解析:由a ∥b 验证当λ=2,u =12时成立.答案:AA 组 考点能力演练1.(2015·深圳模拟)已知三棱锥O -ABC ,点M ,N 分别为AB ,OC 的中点,且OA →=a ,OB →=b ,OC →=c ,用a ,b ,c 表示MN →,则MN →等于( )A.12(b +c -a ) B.12(a +b -c ) C.12(a -b +c ) D.12(c -a -b ) 解析:MN →=MA →+AO →+ON →=12(c -a -b ).答案:D2.已知四边形ABCD 满足:AB →·BC →>0,BC →·CD →>0,CD →·DA →>0,DA →·AB →>0,则该四边形为( )A .平行四边形B .梯形C .长方形D .空间四边形解析:由AB →·BC →>0,BC →·CD →>0,CD →·DA →>0,DA →·AB →>0,知该四边形一定不是平面图形,故选D.答案:D3.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ).若a ,b ,c 三向量共面,则实数λ等于( )A.627B.637C.607D.657解析:由题意得c =t a +μb =(2t -μ,-t +4μ,3t -2μ),∴⎩⎪⎨⎪⎧7=2t -μ,5=-t +4μ,λ=3t -2μ.∴⎩⎪⎨⎪⎧t =337,μ=177,λ=657.答案:D4.(2016·东营质检)已知A (1,0,0),B (0,-1,1),OA →+λOB →与OB →的夹角为120°,则λ的值为( )A .±66B.66C .-66D .±6解析:OA →+λOB →=(1,-λ,λ), cos 120°=λ+λ1+2λ2·2=-12,得λ=±66.经检验λ=66不合题意,舍去,∴λ=-66. 答案:C5.设A (3,3,1),B (1,0,5),C (0,1,0),AB 的中点为M ,则|CM |等于( ) A.534 B.532 C.532D.132解析:设M (x ,y ,z ),则x =3+12=2,y =3+02=32,z =1+52=3,即M ⎝⎛⎭⎫2,32,3,|CM |=(2-0)2+⎝⎛⎭⎫32-12+(3-0)2=532.故选C. 答案:C6.(2016·合肥模拟)向量a =(2,0,5),b =(3,1,-2),c =(-1,4,0),则a +6b -8c =________. 解析:由a =(2,0,5),b =(3,1,-2),c =(-1,4,0),∴a +6b -8c =(28,-26,-7). 答案:(28,-26,-7)7.已知向量a ,b 满足条件:|a |=2,|b |=2,且a 与2b -a 互相垂直,则a 与b 的夹角为________.解析:由于a 与2b -a 互相垂直,则a ·(2b -a )=0,即2a·b -|a |2=0,所以2|a ||b |cos a ,b -|a |2=0,则42cosa ,b -4=0,则cos a ,b=22,所以a 与b 的夹角为45°. 答案:45°8.空间四边形OABC 中,OB =OC ,且∠AOB =∠AOC =π3,则cos OA →,BC →的值为________.解析:OA →·BC →=OA →·(OC →-OB →)=OA →·OC →-OA →·OB →=|OA →||OC →|cos OA →,OC→-|OA →||OB→|·cos OA →,OB →.∵OB =OC ,∠AOB =∠AOC =π3,∴OA →·BC →=0,即OA →⊥BC →,∴cos OA →,BC →=0.答案:09.(2016·唐山模拟)已知空间三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b=AC →.(1)求a 和b 夹角的余弦值.(2)设|c |=3,c ∥BC →,求c 的坐标.解:(1)因为AB →=(1,1,0),AC →=(-1,0,2),所以a ·b =-1+0+0=-1,|a |=2,|b |= 5.所以cos 〈a ,b 〉=a ·b |a ||b |=-12×5=-1010. (2)BC →=(-2,-1,2).设c =(x ,y ,z ),因为|c |=3,c ∥BC →,所以x 2+y 2+z 2=3,存在实数λ使得c =λBC →,即⎩⎪⎨⎪⎧ x =-2λ,y =-λ,z =2λ联立解得⎩⎪⎨⎪⎧ x =-2,y =-1,z =2,λ=1,或⎩⎪⎨⎪⎧ x =2,y =1,z =-2,λ=-1,所以c =±(-2,-1,2).10.(2016·太原模拟)如图,直三棱柱ABC -A 1B 1C 1,底面△ABC 中,CA =CB =1,∠BCA =90°,棱AA 1=2,M ,N 分别是A 1B 1,A 1A 的中点.(1)求BN →的模.(2)求cos 〈BA 1→,CB 1→〉的值.(3)求证:A 1B ⊥C 1M .解:如图,建立空间直角坐标系.(1)依题意得B (0,1,0),N (1,0,1),所以|BN →|=(1-0)2+(0-1)2+(1-0)2= 3.(2)依题意得A 1(1,0,2),B (0,1,0),C (0,0,0),B 1(0,1,2).所以BA 1→=(1,-1,2),CB 1→=(0,1,2),BA 1→·CB 1→=3,|BA 1→|=6,|CB 1→|=5,所以cos 〈BA 1→,CB 1→〉=BA 1→·CB 1→|BA 1→||CB 1→|=11030. (3)依题意,得C 1(0,0,2),M ⎝⎛⎭⎫12,12,2,A 1B →=(-1,1,-2),C 1M →=⎝⎛⎭⎫12,12,0. 所以A 1B →·C 1M →=-12+12+0=0, 所以A 1B →⊥C 1M →.所以A 1B ⊥C 1M .B 组 高考题型专练1.(2014·高考广东卷)已知向量a =(1,0,-1),则下列向量中与a 成60°夹角的是( )A .(-1,1,0)B .(1,-1,0)C .(0,-1,1)D .(-1,0,1)解析:经检验,选项B 中向量(1,-1,0)与向量a =(1,0,-1)的夹角的余弦值为12,即它们的夹角为60°,故选B.答案:B2.(2014·高考江西卷)如图,在长方体ABCD -A 1B 1C 1D 1中,AB =11,AD =7,AA 1=12.一质点从顶点A 射向点E (4,3,12),遇长方体的面反射(反射服从光的反射原理),将第i -1次到第i 次反射点之间的线段记为L i (i =2,3,4),L 1=AE ,将线段L 1,L 2,L 3,L 4竖直放置在同一水平线上,则大致的图形是( )解析:由对称性知质点经点E 反射到平面ABCD 的点E 1(8,6,0)处.在坐标平面xAy 中,直线AE 1的方程为y =34x ,与直线DC 的方程y =7联立得F ⎝⎛⎭⎫283,7,0.由两点间的距离公式得E 1F =53, ∵tan ∠E 2E 1F =tan ∠EAE 1=125,∴E 2F =E 1F ·tan ∠E 2E 1F =4.∴E 2F 1=12-4=8.∴L 3L 4=E 1E 2E 2E 3=E 2F E 2F 1=48=12.故选C.答案:C3.(2015·高考浙江卷)已知e 1,e 2是空间单位向量,e 1·e 2=12.若空间向量b 满足b ·e 1=2,b ·e 2=52,且对于任意x ,y ∈R ,|b -(x e 1+y e 2)|≥|b -(x 0e 1+y 0e 2)|=1(x 0,y 0∈R ),则x 0=________,y 0=________,|b |=________.解析:∵e 1,e 2是单位向量,e 1·e 2=12,∴cos 〈e 1,e 2〉=12,又∵0°≤〈e 1,e 2〉≤180°,∴〈e 1,e 2〉=60°.不妨把e 1,e 2放到空间直角坐标系O -xyz 的平面xOy 中,设e 1=(1,0,0),则e 2=⎝⎛⎭⎫12,32,0,再设OB →=b =(m ,n ,r ),由b ·e 1=2,b ·e 2=52,得m =2,n =3,则b =(2,3,r ).而x e 1+y e 2是平面xOy 上任一向量,由|b -(x e 1+y e 2)|≥1知点B (2,3,r )到平面xOy 的距离为1,故可得r =1.则b =(2,3,1),∴|b |=2 2.又由|b -(x e 1+y e 2)|≥|b -(x 0e 1+y 0e 2)|=1知x 0e 1+y 0e 2=(2,3,0),解得x 0=1,y 0=2. 答案:1,2,22。

2014届一轮复习数学试题选编21空间角与空间距离(学生版)

2014届一轮复习数学试题选编21空间角与空间距离(学生版)

(1)∵PD⊥平面 ABCD,∴PD⊥BC,又 BC⊥CD,∴BC⊥面 PCD,∴BC⊥PC. (2)设点 A 到平面 PBC 的距离为 h,
1 1 VA PBC VP ABC , SPBC H SABC PD 3 3 容易求出h 2
3.
解:以 D 为坐标原点, DA, DC, DD1 为坐标轴,建立 O xyz 坐标系, 则 AM (2,0, 2) , DD1 (0,0, 2) , DB (4,3,0) ,
底面半径 OB 2 , D 为 PO 的中点, E 为母线 PB 的中点, F 为底面圆周上一点,满足
EF DE .
(1)求异面直线 EF 与 BD 所成角的余弦值; (2)求二面角 O DF E 的正弦值.
P
D
E
A
O F
B
8 . (江苏省盐城市 2013 届高三年级第二次模拟考试数学试卷)正三棱柱 ABC A1 B1C1 的所
9



设平面 BDD1B1 的一个法向量为 n ( x, y, z )
n DD1 2 z 0 由 可得 n 的一个值是 n (3, 4,0) , n DB 4 x 3 y 0
设直线 AM 与平面 BB1D1D 所成的角是 ,则
角形,AB=BC= 2 ,BB1=3,D 为 A1C1 的中点,F 在线段 AA1 上. (1)AF 为何值时,CF⊥平面 B1DF? (2)设 AF=1,求平面 B1CF 与平面 ABC 所成的锐二面角的余弦值. B1 D C1
A1 F B A
C
3
2013 江苏省高考压轴
7 . (江苏省苏锡常镇四市 2013 届高三教学情况调研(一)数学试题)如图,圆锥的高 PO 4 ,

2014届高三数学一轮复习 (基础知识+小题全取+考点通关+课时检测)7.7空间向量与空间角课件 新人教A版

2014届高三数学一轮复习 (基础知识+小题全取+考点通关+课时检测)7.7空间向量与空间角课件 新人教A版

[答案] A
本例条件下,在线段OB上,是否存在一点M,使C1M 与AB1所成角的余弦为 明理由. 1 ?若存在,求例题图, 假设存在符合条件的点M,设M(0,0,a), 则 C1 M =(0,-2,a),又 AB1 =(-2,2,1),
故PD与平面PBC所成的角为30° .
利用向量法求线面角的方法
(1)分别求出直线和它在平面内的投影直线的方向
向量,转化为求两个方向向量的夹角(或其补角);
(2)通过平面的法向量来求,即求出斜线的方向向
量与平面的法向量的夹角,再求直线和平面的夹角.
2.(2013· 宝鸡模拟)如图,已知PA⊥ 平面ABC,且PA= 2,等腰直角 三角形ABC中,AB=BC=1,AB ⊥BC,AD⊥PB于D,AE⊥PC于E.
所以PC⊥平面ADE.
(2)如图所示,建立空间直角坐标系B-xyz. 则A(1,0,0),C(0,1,0), P(1,0, 2), 因为PC⊥平面ADE, 所以 PC =(-1,1,- 2)是平面ADE的 一个法向量. 设直线AB与平面ADE所成的角为θ, PC· | AB 则sin θ=| | PC || AB | -1,1,- 2· -1,0,0 1 = = , 2 2 则直线AB与平面ADE所成的角为30° .
异面直线所成的角
[例1] (2012· 陕西高考)如图,
在空间直角坐标系中有直三棱柱 ABC-A1B1C1,CA=CC1=2CB, 则直线BC1与直线AB1夹角的余弦 值为 ( )
5 A. 5 2 5 C. 5
5 B. 3 3 D. 5
[自主解答] 不妨令CB=1,则CA=CC1=2.可得 O(0,0,0),B(0,0,1),C1(0,2,0),A(2,0,0),B1(0,2,1), ∴ BC1 =(0,2,-1), AB1 =(-2,2,1), BC1 · 1 AB 4-1 1 = ∴cos〈 BC1 , AB1 〉= = = 5× 9 5 | BC1 || AB1 | 5 >0. 5 ∴ BC1 与 AB1 的夹角即为直线BC1与直线AB1的夹角, 5 ∴直线BC1与直线AB1夹角的余弦值为 . 5

高考数学一轮复习学案:利用空间向量求空间角学案理北师大版

高考数学一轮复习学案:利用空间向量求空间角学案理北师大版

第2课时利用空间向量求空间角题型分类突破」典例剖析探求规律方法(对应学生用书第125页)|题型1| 求异面直线的夹角■■'I 如图7-7-15,四面体ABCDK 0是BD的中点,CA= CB= CD= BD= 2, AB= AD= 2.图7-7-15(1) 求证:AC L平面BCD(2) 求异面直线AB与CD夹角的余弦值.[解](1)证明:连接0C 由CA= CB= CD= BD= 2, AB= AD=J2, O是BD的中点,知CO= 3, AO= 1, AC L BD在^ AOC中, AC=A O+O C,则AC L OC又Bm 0C= Q因此AC L平面BCD(2)如图建立空间直角坐标系Qxyz,则A(0,0,1) , B(1,0,0) , C(0 , 3, 0) , D—1,0,0) , A B= (1,0 , —1) , C D= ( —1,-. 3 , 0),T T| AB- CD x/2所以|cos〈AB, CD | 七T = T |AB I CD即异面直线AB与CD夹角的余弦值为二24异面直线的方向向量的夹角为锐角或直角时, 就是该异面直线的夹角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线的夹角 [跟踪训练](2017 •湖南五市十校3月联考)有公共边的等边三角形 ABC 和BCD 所在平面互 相垂直,则异面直线 AB 和CD 夹角的余弦值为 _________________ .【导学号:79140254】:[设等边三角形的边长为2.取BC 的中点0,连接OA OD •••等边三角形 ABC 和BCD 所在平面互相垂直,二 OA OCOD 两两垂直,以 O 为坐标原点,建立如图所示的空间直角坐标系.则 A (0,0 , 3) , B (0,- 1,0) , qo,1,o ), D ( 3, 0,0),•-AB= (0,- 1,-3) , C D= ( 3, - 1,0),•••异面直线 AB 和 CD 夹角的余弦值为4.] 求直线与平面的夹角■■'I (2017 •浙江高考)如图7-7-16,已知四棱锥 P -ABCD △ PAD 是以AD 为斜边的等腰(1)证明:CE//平面PAB/• cos 〈 AB CD X B- C D1 2X2 4'直角三角形, BC/ AD CDL AD ,图 7-7-16⑵求直线CE与平面PBC夹角的正弦值.[解](1)证明:如图,设PA的中点为F,连接EF, FB异面直线的方向向量的夹角为锐角或直角时,就是该异面直线的夹角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线的夹角所以EF// AD且EF= 2A D1又因为BC// AD BC= 2AD所以EF// BC且EF= BC所以四边形BCEF为平行四边形,所以CE// BF因为BF平面PAB CE/平面PAB所以CE/平面PAB(2)分别取BC AD的中点M N连接PN交EF于点Q连接MQ因为E, F,N分别是PD PA AD的中点,所以Q为EF的中点.在平行四边形BCEF中 , MQ CE由△ PAD为等腰直角三角形得PNL AD1由DCL AD BC/ AD BC= 2人口N是AD的中点得BNLAD 所以ADL平面PBN由BC/ AD得BCL平面PBN那么平面PBCL平面PBN过点Q作PB的垂线,垂足为H ,连接MHMH是MQ&平面PBC上的射影,所以/ QMH1直线CE与平面PBC的夹角.设CD= 1.在厶PCD中 ,由PC= 2 , CD= 1, PD= , 2得CE= 2 ,1在厶PBN中 ,由PN= BN= 1, PB= 3得QH= 4 ,在Rt△ MQH中 , QH= 1, MQ= 2 ,42所以sin / QMIH所以,直线CE与平面PBC夹角的正弦值是[规律方法]1线面角范围-|0, n[向量夹角范围为[0,n ].2线面角0的正弦值等于斜线对应向量与平面法向量夹角余弦值的绝对值•即sin 0 = | cos〈A B n〉| •矗即斜向量,n为平面法向量•[跟踪训练](2018 •广州综合测试(二))如图7-7-17,四边形ABCD是边长为a的菱形,/ BAD= 60°, EBL平面ABCD FD^平面ABCD EB= 2FD=^3a.(1)求证:EF丄AC⑵求直线CE与平面ABF夹角的正弦值.[解]⑴证明:连接BD,因为四边形ABC毘菱形,所以ACL BD 因为FDL平面ABCD AC平面ABCD 所以AC丄FD 因为BDH FD= D所以AC丄平面BDF 因为EBL平面ABCD FDL平面ABCD 所以EB// FD 所以B, D, F, E四点共面.因为EF平面BDFE所以EF L AC(2)法一:如图,以 D 为坐标原点,分别以 DC DF 勺方向为y 轴、z 轴的正方向建立 空间直角坐标系 Dxyz .所以 AB= (0 , a,0), AF = 设平面ABF 的法向量为n = (x , y , z ),令x = 1,则平面 ABF 的一个法向量为 n = (1,0,1). 设直线CE 与平面ABF 的夹角为0 , f | n • CE 3\[B所以 sin 0 = |cos 〈n , CB | == . f 8| n || CE 12a ,0,F 0, 0,- qo , a,0), n • AB= 0, 则 n • AF = 0, 'ay = 0 , 即冷ax +如+爭乙“, 因为CE= 可以求得 ,-扫 0 , 1 2a , 1,—2a ,所以直线CE与平面ABF夹角的正弦值为3占. 8法二:如图,设AS BD= O,以O为坐标原点,分别以OA OB BE的方向为x轴、y轴、z轴的正方向建立空间直角坐标系Oxyz.zy(1)证明:平面 PABL 平面FAD F 0 i QF 0,- 2a ,T a .所以區—fa , 2a , 0 . 也-吕,-?a ,寻.设平面 ABF 的法向量为 n = (x , y , z ),n • AB= 0,则丫 令x =1,则平所以sin e=|cos 〈 n , CB| =吟I n il C E所以直线CE 与平面ABF 夹角的正弦值为 3,.6 8 求二面角 (2017 •全国卷I )如图 7-7-18,在四棱锥 P -ABCD 中,AB// CD ,且/ BAF ^Z CD ® 90°⑵若PA= PD= AB= DC Z APD= 90°,求二面角A PB C的余弦值.[解](1)证明:由已知Z BAP=Z CDP= 90°,得 ABL AP, CDLPD因为AB// CD 所以AB L PD又APH DP= P,所以AB 丄平面PAD因为AB 三平面PAB 所以平面 PABL 平面PAD(2)在平面PAD 内作PF L AD 垂足为点F .由(1)可知,AE L 平面PAD 故AB L PF,可得PFL 平面ABCD以F 为坐标原点,FA 的方向为x 轴正方向,|AB 为单位长度建立如图所示的空间直角坐 标系F -xyz .PA= -2, 0, — # , AB= (0,1,0).设n = (x i , y i , z i )是平面PCB 的一个法向量,则 n • P G= 0, —¥刘 + y i —乎z i = 0 ,T即 2 2 n • CB = 0 , 2x i = 0.所以可取n = (0 , —i , —2). 设mi=(X 2 , y , Z 2)是平面PAB 的一个法向量,则所以可取 m = (i,0,i),贝U cos 〈n , m 〉 所以二面角 APBC 的余弦值为一-T. [规律方法]利用向量计算二面角大小的常用方法m • PA= 0 , AE= n ・m — 2|n||m| = 3X ,, 2由(1)及已知可得 所以心 CB= ( 2 , 0,0),]找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的 法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐 钝 二面角• 2找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起 点的两个向量,则这两个向量的夹角的大小就是二面角的大小[跟踪训练]__(2018 •福州质检)如图7-7-19(1),在等腰梯形 PDCBK PB// DC PB= 3, DC=1,/ DPB= 45°, DAIPB 于点 入将厶PAD 沿 AD 折起,构成如图7-7-19(2)所示的四1棱锥F -ABCD 点M 在棱PB 上,且 PM= q MB(1)求证:PD//平面MAC⑵ 若平面PADL 平面ABCD 求二面角 MAGB 的余弦值.[解](1)证明:连接 BD 交AC 于点N,连接MN依题意知 AB// CDABN h^ CDNBN BAND T CD T 2.BPD 中, MN/ DP 又Pt ?平面 MAC M 库平面MAC • PD//平面 MAC⑵•/平面 PADL 平面 ABCD 平面PAC T 平面 ABCD AD PAL AD• PAL 平面 ABCD又AD L AB • PA AD AB 两两垂直.•/ PM= 1M BBN BM cND MP 2, PA —平面PAD以A为原点,分别以AD AB AP的方向为x轴,y轴,z轴的正方向建立如图所示的空间直角坐标系A -xyz .依题意 Al AD= 1, AB= 2,又 PM k ?MB••• *,0,0) , 00,2,0) , P (0,0,1) , M 0, 3 2 , Q1,1,O), TT 2 2 T• A r> /A A 4 \ A H — — , (A A C\•/ PAL 平面 ABCD•••取m = AP= (0,0,1)为平面BAC 的一个法向量. 设n 2= (x , y , z )为平面MAC 勺法向量,令 x = 1,贝U y = - 1, z = 1,• n 2 = (1 , — 1,1)为平面MAC 勺一个法向量,[规律方法]利用向量法求异面直线夹角的步骤1选好基底或建立空间直角坐标系 •2求出两直线的方向向量 V 1 , V 2.3 代入公式 |COS 〈 V 1 , V 2> | = | V * 1 : V | 求解•I V 1|| V 2|易错警示:两异面直线夹角的范围是 0, n ,两向量的夹角 a 的范围是[0 , n ],当 则丫 n 2 • AM= 0 ,n 2 • AC= 0 , 2 2x + y = 0 ,• cos 〈 n 1 , n 2 > =n 1 • n2面角 MAGB 的余弦值为乂3•- AP= (0,0,1), (1,1,0)。

2014年高考数学一轮复习精品学案(人教版A版)---空间几何体-推荐下载

2014年高考数学一轮复习精品学案(人教版A版)---空间几何体-推荐下载

2014 年高考数学一轮复习精品学案(人教版 A 版)---空间几何体
一.【课标要求】
1.利用实物模型、计算机软件观察大量空间图形,认识柱、锥、台、球及其简单组合 体的结构特征,并能运用这些特征描述现实生活中简单物体的结构;
2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图, 能识别上述的三视图所表示的立体模型,会使用材料(如:纸板)制作模型,会用斜二侧 法画出它们的直观图;
斜边旋转形成的曲面叫做圆锥的侧面。 棱锥与圆锥统称为锥体 (3)台 棱台:用一个平行于底面的平面去截棱锥,底面和截面之间的部分叫做棱台;原棱锥
的底面和截面分别叫做棱台的下底面和上底面;棱台也有侧面、侧棱、顶点。 圆台:用一个平行于底面的平面去截圆锥,底面和截面之间的部分叫做圆台;原圆锥
的底面和截面分别叫做圆台的下底面和上底面;圆台也有侧面、母线、轴 圆台和棱台统称为台体。 (4)球 以半圆的直径所在的直线为旋转轴,半圆面旋转一周形成的几何体叫做球体,简称为
点评:本题主要考查空间想象能力,以及正四棱锥的体积。正方体是大家熟悉的几何 体,它的一些内接或外接图形需要一定的空间想象能力,要学会将空间问题向平面问题转 化。 题型 2:空间几何体的定义
例 3.(2009 四川卷理)如图,在半径为 3 的面上有 A, B, C 三点,
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

高三数学一轮复习精品教案1:空间向量与空间角教学设计

高三数学一轮复习精品教案1:空间向量与空间角教学设计

1.空间向量与空间角1.两条异面直线所成角的求法设两条异面直线a ,b 的方向向量为a ,b ,其夹角为θ,则cos φ=|cos θ|=|a·b||a||b|(其中φ为异面直线a ,b 所成的角).2.直线和平面所成的角的求法如图所示,设直线l 的方向向量为e ,平面α的法向量为n ,直线l 与平面α所成的角为φ,两向量e 与n 的夹角为θ,则有sin φ=|cos θ|=|n·e||n||e|.3.求二面角的大小(1)如图①,AB ,CD 是二面角α ­l ­β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB ,CD 〉.(2)如图②③,n 1,n 2分别是二面角α ­l ­β的两个半平面α,β的法向量,则二面角的大小θ=〈n 1,n 2〉(或π-〈n 1,n 2〉).1.求异面直线所成角时,易求出余弦值为负值而盲目得出答案而忽视了夹角为⎝⎛⎦⎤0,π2. 2.求直线与平面所成角时,注意求出夹角的余弦值的绝对值应为线面角的正弦值. 3.利用平面的法向量求二面角的大小时,二面角是锐角或钝角由图形决定.由图形知二面角是锐角时cos θ=|n 1·n 2||n 1||n 2|;由图形知二面角是钝角时,cos θ=-|n 1·n 2||n 1||n 2|.当图形不能确定时,要根据向量坐标在图形中观察法向量的方向,从而确定二面角与向量n 1,n 2的夹角是相等(一个平面的法向量指向二面角的内部,另一个平面的法向量指向二面角的外部),还是互补(两个法向量同时指向二面角的内部或外部),这是利用向量求二面角的难点、易错点.『试一试』1.已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角为________.『解析』cos 〈m ,n 〉=m ·n |m ||n |=11·2=22,即〈m ,n 〉=45°.∴两平面所成二面角为45°或180°-45°=135°. 『答案』45°或135°2.(2013·石家庄模拟)如图,在正方形ABCD 中,EF ∥AB ,若沿EF 将正方形折成一个二面角后,AE ∶ED ∶AD =1∶1∶2,则AF 与CE 所成角的余弦值为________.『解析』如图建立空间直角坐标系,设AB =EF =CD =2,∵AE ∶DE ∶AD =1∶1∶2,则E (0,0,0),A (1,0,0),F (0,2,0),C (0,2,1),∴AF =(-1,2,0),EC =(0,2,1),∴cos 〈AF ,EC 〉=45,∴AF 与CE 所成角的余弦值为45.『答案』451.求两异面直线a ,b 的夹角θ,须求出它们的方向向量a ,b 的夹角,则cos θ=|cos 〈a ,b 〉|.2.求直线l 与平面α所成的角θ可先求出平面α的法向量n 与直线l 的方向向量a 的夹角.则sin θ=|cos 〈n ,a 〉|. 3.求二面角α ­l ­β的大小θ,可先求出两个平面的法向量n 1,n 2所成的角,则θ=〈n 1,n 2〉或π-〈n 1,n 2〉.『练一练』1.已知四棱锥P ­ABCD 的底面ABCD 是等腰梯形,AB ∥CD ,且AC ⊥BD ,AC 与BD 交于O ,PO ⊥底面ABCD ,PO =2,AB =2CD =22,E ,F 分别是AB ,AP 的中点.则二面角F ­OE ­A 的余弦值为________.『解析』以OB ,OC ,OP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系O -xyz ,由题知,OA =OB =2,OC =OD =1,A (0-2,0),B (2,0,0),C (0,1,0),D (-1,0,0),P (0,0,2),OE =(1,-1,0),OF =(0,-1,1),设平面OEF 的法向量为m =(x ,y ,z ),则⎩⎨⎧m ·OE =0,m ·OF =0,令x =1,可得m =(1,1,1). 易知平面OAE 的一个法向量为n =(0,0,1), 设二面角F ­OE ­A 为α,则cos α=m·n|m||n|=33.『答案』332.如图所示,在四棱锥P ­ABCD 中,底面ABCD 是矩形,P A ⊥平面ABCD ,P A =AD =2,AB =1,BM ⊥PD 于点M .则直线CD 与平面ACM 所成角的余弦值为________.『解析』如图所示,以点A 为坐标原点,建立空间直角坐标系A ­xyz ,则A (0,0,0),P (0,0,2),B (1,0,0),C (1,2,0),D (0,2,0).∵AM ⊥PD ,P A =AD ,∴M 为PD 的中点,∴M 的坐标为(0,1,1). ∴AC =(1,2,0),AM =(0,1,1),CD =(-1,0,0). 设平面ACM 的一个法向量为n =(x ,y ,z ),由n ⊥AC ,n ⊥AM 可得⎩⎪⎨⎪⎧x +2y =0y +z =0,令z =1,得x =2,y =-1.∴n =(2,-1,1). 设直线CD 与平面ACM 所成的角为α, 则sin α=|CD ·n ||CD ||n |=63.∴cos α=33,即直线CD 与平面ACM 所成角的余弦值为33. 『答案』33第一课时 空间角的求法考点一异面直线所成角1.(2013·沈阳调研)在直三棱柱A 1B 1C 1 ­ABC 中,∠BCA =90°,点D 1,F 1分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BD 1与AF 1所成角的余弦值是________.『解析』建立如图所示的坐标系, 设BC =1,则A (-1,0,0),F 1⎝⎛⎭⎫-12,0,1, B (0,-1,0),D 1⎝⎛⎭⎫-12,-12,1,则1AF =⎝⎛⎭⎫12,0,1, 1BD =⎝⎛⎭⎫-12,12,1. ∴cos 〈1AF ,1BD 〉=1AF ·1BD |1AF ||1BD |=3010.『答案』30102.如图,在棱长为1的正方体ABCD ­A 1B 1C 1D 1中,M 和N 分别是A 1B 1和BB 1的中点,那么直线AM 与CN 所成角的余弦值为________.『解析』以D 为坐标原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,如图所示.则A (1,0,0),M ⎝⎛⎭⎫1,12,1,C (0,1,0),N ⎝⎛⎭⎫1,1,12. ∴AM =⎝⎛⎭⎫0,12,1,CN =⎝⎛⎭⎫1,0,12. 设直线AM 与CN 所成的角为θ,则 cos θ=|cos 〈AM ,CN 〉|=|AM ·CN ||AM ||CN |=121+14× 1+14=25. 『答案』25『备课札记』 『类题通法』1.向量法求异面直线所成的角的方法有两种 (1)基向量法:利用线性运算. (2)坐标法:利用坐标运算.2.注意向量的夹角与异面直线所成角的区别当异面直线的方向向量的夹角为锐角或直角时,就是此异面直线所成的角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线所成的角.考点二直线与平面所成角『典例』 (2013·湖南高考)如图,在直棱柱ABCD ­A 1B 1C 1D 1中,AD ∥BC ,∠BAD =90°,AC ⊥BD ,BC =1,AD =AA 1=3.(1)证明:AC ⊥B 1D ;(2)求直线B 1C 1与平面ACD 1所成角的正弦值.『解』 法一:(1)证明:如图1,因为BB 1⊥平面ABCD ,AC ⊂平面ABCD ,所以AC ⊥BB 1.又AC ⊥BD ,所以AC ⊥平面BB 1D .而B 1D ⊂平面BB 1D ,所以AC ⊥B 1D .(2)因为B 1C 1∥AD ,所以直线B 1C 1与平面ACD 1所成的角等于直线AD 与平面ACD 1所成的角(记为θ).图1如图1,连结A 1D .因为棱柱ABCD ­A 1B 1C 1D 1是直棱柱,且∠B 1A 1D 1=∠BAD =90°,所以A 1B 1⊥平面ADD 1A 1.从而A 1B 1⊥AD 1.又AD =AA 1=3,所以四边形ADD 1A 1是正方形,于是A 1D ⊥AD 1.故AD 1⊥平面A 1B 1D ,于是AD 1⊥B 1D . 由(1)知,AC ⊥B 1D ,所以B 1D ⊥平面ACD 1. 故∠ADB 1=90°-θ.在直角梯形ABCD 中,因为AC ⊥BD ,所以∠BAC =∠ADB . 从而Rt △ABC ∽Rt △DAB ,故AB DA =BCAB. 即AB =DA ·BC = 3.连结AB 1,易知△AB 1D 是直角三角形,且B 1D 2=BB 21+BD 2=BB 21+AB 2+AD 2=21,即B 1D =21.在Rt △AB 1D 中,cos ∠ADB 1=AD B 1D =321=217,即cos(90°-θ)=217.从而sin θ=217. 即直线B 1C 1与平面ACD 1所成角的正弦值为217. 法二:(1)证明:易知,AB ,AD ,AA 1两两垂直.如图2,以A 为坐标原点,AB ,AD ,AA 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐图2标系.设AB =t ,则有A (0,0,0),B (t,0,0),B 1(t,0,3),C (t,1,0),C 1(t,1,3),D (0,3,0),D 1(0,3,3).从而1B D =(-t,3,-3),AC =(t,1,0),BD =(-t,3,0). 因为AC ⊥BD ,所以AC ·BD =-t 2+3+0=0, 解得t =3或t =-3(舍去).于是1B D =(-3,3,-3),AC =(3,1,0). 因为AC ·1B D =-3+3+0=0, 所以AC ⊥1B D ,即AC ⊥B 1D .(2)由(1)知,1AD =(0,3,3),AC =(3,1,0),11B C =(0,1,0).设n =(x ,y ,z )是平面ACD 1的一个法向量,则⎩⎨⎧n ·AC =0,n ·1AD =0,即⎩⎨⎧3x +y =0,3y +3z =0. 令x =1,则n =(1,-3,3). 设直线B 1C 1与平面ACD 1所成角为θ,则sin θ=|cos 〈n ,11B C 〉|=⎪⎪⎪⎪⎪⎪n ·11B C |n |·|11B C |=37=217.即直线B 1C 1与平面ACD 1所成角的正弦值为217. 『备课札记』『类题通法』利用平面的法向量求线面角时,应注意(1)求出直线的方向向量与平面的法向量所夹的锐角(钝角时取其补角),取其余角即为所求.(2)若求线面角的余弦值,要注意利用平方关系sin 2θ+cos 2θ=1求出其值.不要误为直线的方向向量与平面的法向量所夹角的余弦值为所求.『针对训练』(2013·福建高考改编)如图,在四棱柱ABCD ­A 1B 1C 1D 1中,侧棱AA 1⊥底面ABCD ,AB ∥DC ,AA 1=1,AB =3k ,AD =4k ,BC =5k ,DC =6k (k >0).若直线AA 1与平面AB 1C 所成角的正弦值为67,求k 的值.『解』由题意知DC ⊥AD ,D 1D ⊥DC ,D 1D ⊥AD 故以D 为原点,DA ,DC ,1DD 的方向为x ,y ,z 轴的正方向建立如图所示的空间直角坐标系,则A (4k,0,0),C (0,6k,0),B 1(4k,3k,1),A 1(4k,0,1), 所以AC =(-4k,6k,0),1AB =(0,3k,1),1AA =(0,0,1).设平面AB 1C 的法向量n =(x ,y ,z ),则由⎩⎨⎧AC ·n =0,1AB ·n =0,得⎩⎪⎨⎪⎧-4kx +6ky =0,3ky +z =0. 取y =2,得n =(3,2,-6k ). 设AA 1与平面AB 1C 所成角为θ,则sin θ=|cos 〈1AA ,n 〉|=⎪⎪⎪⎪⎪⎪1AA ·n |1AA |·|n |=6k 36k 2+13=67,解得k =1, 故所求k 的值为1.考点三二面角『典例』 (2013·新课标卷Ⅱ)如图,直三棱柱ABC ­A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点,AA 1=AC =CB =22AB .(1)证明:BC 1//平面A 1CD ;(2)求二面角D ­A 1C ­E 的正弦值.『解』 (1)证明:连结AC 1交A 1C 于点F ,则F 为AC 1的中点. 又D 是AB 的中点,连结DF ,则BC 1∥DF .因为DF ⊂平面A 1CD ,BC 1⊄平面A 1CD ,所以BC 1∥平面A 1CD . (2)由AC =CB =22AB 得, AC ⊥BC .以C 为坐标原点,CA ,CB ,CC ′的方向为x 轴,y 轴,z 轴的正方向,建立如图所示的空间直角坐标系C ­xyz .设CA =2,则D (1,1,0),E (0,2,1),A 1(2,0,2),CD =(1,1,0),CE =(0,2,1),1CA =(2,0,2).设n =(x 1,y 1,z 1)是平面A 1CD 的法向量,则⎩⎨⎧n ·CD =0,n ·1CA =0.即⎩⎪⎨⎪⎧x 1+y 1=0,2x 1+2z 1=0.可取n =(1,-1,-1).同理,设m 是平面A 1CE 的法向量,则⎩⎨⎧m ·CE =0,m ·1CA =0.可取m =(2,1,-2). 从而cos 〈n ,m 〉=n ·m |n ||m |=33,故sin 〈n ,m 〉=63.即二面角D ­A 1C ­E 的正弦值为63. 『备课札记』在本例条件下,求平面A 1AD 与平面A 1EC 所成二面角的大小. 『解』∵AC =BC ,D 为AB 中点,∴CD ⊥面A 1AD ,∴CD 是平面A 1AD 的一个法向量.由(2)建系条件下可知CD =(1,1,0), 又平面A 1EC 的法向量m =(2,1,-2), ∴cos 〈CD ,m 〉=2+1+02×3=22.∴平面A 1AD 与平面A 1EC 所成角为45°. 『类题通法』利用法向量求二面角时应注意(1)对于某些平面的法向量要注意题中隐含着,不用单独求.(2)注意判断二面角的平面角是锐角还是钝角,可结合图形进行,以防结论失误. 『针对训练』(2014·杭州模拟)如图,已知平面QBC 与直线P A 均垂直于Rt △ABC 所在平面,且P A =AB =AC .(1)求证:P A ∥平面QBC ;(2)若PQ ⊥平面QBC ,求二面角Q ­PB ­A 的余弦值. 『解』(1)证明:过点Q 作QD ⊥BC 于点D , ∵平面QBC ⊥平面ABC ,∴QD ⊥平面ABC . 又P A ⊥平面ABC ,∴QD ∥P A .又QD ⊂平面QBC ,P A ⊄平面QBC ∴P A ∥平面QBC . (2)∵PQ ⊥平面QBC ,∴∠PQB =∠PQC =90°,又PB =PC ,PQ =PQ , ∴△PQB ≌△PQC ,∴BQ =CQ .∴点D 是BC 的中点,连结AD ,则AD ⊥BC , 又AD ⊄平面QBC ,BC ⊂平面QBC , ∴AD ⊥平面QBC .∴PQ ∥AD ,AD ⊥QD , ∴四边形P ADQ 是矩形.分别以AC ,AB ,AP 所在的直线为x ,y ,z 轴建立空间直角坐标系A ­xyz ,设P A =2a ,则Q (a ,a,2a ),B (0,2a,0),P (0,0,2a ),设平面QPB 的法向量为n =(x ,y ,z ), ∵PQ =(a ,a,0),PB =(0,2a ,-2a ),∴⎩⎪⎨⎪⎧ax +ay =0,2ay -2az =0,n =(1,-1,-1). 又平面P AB 的一个法向量为m =(1,0,0).设二面角Q ­PB ­A 为θ,则|cos θ|=|cos 〈m ,n 〉|=⎪⎪⎪⎪m·n |m|·|n|=33, 又二面角Q ­PB ­A 是钝角, ∴cos θ=-33,即二面角Q ­PB ­A 的余弦值为-33.『课堂练通考点』1.已知四棱柱ABCD ­A 1B 1C 1D 1的侧棱AA 1垂直于底面,底面ABCD 为直角梯形,AD ∥BC ,AB ⊥BC ,AD =AB =AA 1=2BC ,E 为DD 1的中点,F 为A 1D 的中点.则直线EF 与平面A 1CD 所成角的正弦值为________.『解析』∵AB ,AD ,AA 1两两垂直,故以AB 所在直线为x 轴,AD 所在直线为y 轴,AA 1所在直线为z 轴,建立空间直角坐标系,如图所示,设BC =1,则A (0,0,0),A 1(0,0,2),C (2,1,0),D (0,2,0),E (0,2,1),F (0,1,1),FE =(0,1,0),1A D =(0,2,-2),CD =(-2,1,0).设平面A 1CD 的一个法向量为n =(1,y ,z ),则⎩⎨⎧n ·1A D =2y -2z =0,n ·CD =-2+y =0,故n =(1,2,2), 则sin θ=|cos 〈n ,FE 〉|=|n ·FE|n |·|FE ||=|1×0+2×1+2×04+4+1×0+1+0|=23,故直线EF 与平面A 1CD 所成的角θ的正弦值为23.『答案』232.(2013·江苏高考)如图,在直三棱柱A 1B 1C 1 ­ABC 中,AB ⊥AC ,AB =AC =2,A 1A =4,点D 是BC 的中点.(1)求异面直线A 1B 与C 1D 所成角的余弦值; (2)求平面ADC 1与平面ABA 1所成二面角的正弦值.『解』(1)以A 为坐标原点,建立如图所示的空间直角坐标系A ­xyz ,则A (0,0,0),B (2,0,0),高三数学一轮复习教案11 C (0,2,0),D (1,1,0),A 1(0,0,4),C 1(0,2,4),所以1A B =(2,0,-4),1C D =(1,-1,-4).因为cos 〈1A B ,1C D 〉=1A B ·1C D| 1A B ||1C D |=1820×18=31010, 所以异面直线A 1B 与C 1D 所成角的余弦值为31010. (2)设平面ADC 1的法向量为n 1=(x ,y ,z ),因为AD =(1,1,0),1AC =(0,2,4),所以n 1·AD =0,n 1·1AC =0,即x +y =0且y +2z =0,取z =1,得x =2,y =-2,所以,n 1=(2,-2,1)是平面ADC 1的一个法向量.取平面ABA 1的一个法向量为n 2=(0,1,0),设平面ADC 1与平面ABA 1所成二面角的大小为θ.由|cos θ|=⎪⎪⎪⎪n 1·n 2|n 1||n 2|=29×1=23,得sin θ=53. 因此,平面ADC 1与平面ABA 1所成二面角的正弦值为53.。

高三数学一轮复习精品教案3:空间向量及其运算(理)教学设计

高三数学一轮复习精品教案3:空间向量及其运算(理)教学设计

第6课时 空间直角坐标系及空间向量1.了解空间直角坐标系,会用空间直角坐标表示点的位置. 2.会推导空间两点间的距离公式.3.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.4.掌握空间向量的线性运算及其坐标表示.5.掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.『梳理自测』一、空间直角坐标系及空间向量的概念1.在空间直角坐标系O -xyz 中,点P (3,2,-1)关于x 轴的对称点的坐标为( ) A .(3,2,1) B .(-3,2,1) C .(3,-2,1) D .(-3,-2,1)2.已知a =(λ+1,0,2),b =(6,2μ-1,2λ),若a ∥b ,则λ与μ的值可以是( ) A .2,12 B .-13,12C .-3,2D .2,23.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA 1→=c ,则下列向量中与BM →相等的向量是( )A .-12a +12b +c B.12a +12b +cC .-12a -12b +c D.12a -12b +c『答案』1.C 2.A 3.A◆以上题目主要考查了以下内容: (一)(1)空间直角坐标系:名称 内容空间直角坐标系 以空间一点O 为原点,具有相同的单位长度,给定正方向,建立三条两两垂直的数轴:x 轴、y 轴、z 轴,这时建立了一个空间直角坐标系O -xyz坐标原点 点O 坐标轴 x 轴、y 轴、z 轴 坐标平面通过每两个坐标轴的平面(2)空间中点M 的坐标:空间中点M 的坐标常用有序实数组(x ,y ,z )来表示,记作M (x ,y ,z ),其中x 叫做点M 的横坐标,y 叫做点M 的纵坐标,z 叫做点M 的竖坐标.建立了空间直角坐标系后,空间中的点M 和有序实数组(x ,y ,z )可建立一一对应的关系.(二)空间两点间的距离(1)设点A (x 1,y 1,z 1),B (x 2,y 2,z 2), 则|AB →|=x 2-x 12+y 2-y 12+z 2-z 12.特别地,点P (x ,y ,z )与坐标原点O 的距离为 |OP →|=x 2+y 2+z 2.(2)设点A (x 1,y 1,z 1),B (x 2,y 2,z 2)是空间中两点,则线段AB 的中点坐标为⎝⎛⎭⎫x 1+x 22,y 1+y 22,z 1+z 22.(三)空间向量的有关概念名称 概念 表示 零向量 模为0的向量 0 单位向量 长度(模)为1的向量 相等向量 方向相同且模相等的向量 a =b 相反向量方向相反且模相等的向量a 的相反向量为-a共线向量 表示空间向量的有向线段所在的直线互相平行或重合的向量 a ∥b 共面向量平行于同一个平面的向量(四)空间向量的线性运算及运算律(1)定义:与平面向量运算一样,空间向量的加法、减法与数乘向量运算,如下:OB →=OA →+AB →=a +b ;BA →=OA →-OB →=a -b ;OP →=λa (λ∈R ).(2)运算律:①加法交换律:a +b =b +a ; ②加法结合律:(a +b )+c =a +(b +c ); ③数乘分配律:λ(a +b )=λa +λb . (五)空间向量的有关定理(1)共线向量定理:对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使得a =λb .(2)共面向量定理:如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在实数x ,y 的有序实数对(x ,y ),使p =x a +y b .(3)空间向量基本定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c .其中,{a ,b ,c }叫做空间的一个基底.二、空间向量的数量积及运算律1.已知向量a =(1,1,0),b =(-1,0,2),且k a +b 与2a -b 互相垂直,则k 的值为( ) A .1 B.15C.35D.752.已知向量a =(4,-2,-4),b =(6,-3,2),则(a +b )·(a -b )的值为________. 『答案』1.D 2.-13◆以上题目主要考查了以下内容: (1)数量积及相关概念 ①两向量的夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a 与b 的夹角,记作〈a ,b 〉,其范围是『0,π』,若〈a ,b 〉=π2,则称a 与b 垂直,记作a⊥b .②两向量的数量积已知空间两个非零向量a ,b ,则|a |·|b |·cos 〈a ,b 〉叫做向量a ,b 的数量积,记作a·b ,即a ·b =|a ||b |cos 〈a ,b 〉.(2)空间向量数量积的运算律 ①结合律:(λa )·b =λ(a·b ); ②交换律:a·b =b·a ; ③分配律:a ·(b +c )=a·b +a·c .『指点迷津』1.一种方法用空间向量解决几何问题的一般方法步骤是: (1)适当的选取基底{a ,b ,c }; (2)用a ,b ,c 表示相关向量; (3)通过运算完成证明或计算问题.2.二个原则——建立空间直角坐标系的原则 (1)合理利用几何体中的垂直关系,特别是面面垂直; (2)尽可能地让相关点落在坐标轴或坐标平面上. 3.二个推论 ①共线向量定理推论若OA →,OB →不共线,则P ,A ,B 三点共线的充要条件是OP →=λOA →+μOB →且λ+μ=1. ②共面向量定理推论若OM →、OA →、OB →不共面,则P 、M 、A 、B 四点共面的充要条件是OP →=xOM →+yOA →+zOB →且x +y +z =1.考向一 空间向量的线性运算如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,设AA 1→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:(1)AP →;(2)A 1N →;(3)MP →+NC 1→.『审题视点』 逐步用三角形法则及向量运算法则 『典例精讲』 (1)∵P 是C 1D 1的中点, ∴AP →=AA 1→+A 1D 1→+D 1P →=a +AD →+12D 1C 1→=a +c +12AB →=a +c +12b .(2)∵N 是BC 的中点,∴A 1N →=A 1A →+AB →+BN →=-a +b +12BC →=-a +b +12AD →=-a +b +12c .(3)∵M 是AA 1的中点, ∴MP →=MA →+AP →=12A 1A →+AP →=-12a +⎝⎛⎭⎫a +c +12b =12a +12b +c , 又NC 1→=NC →+CC 1→=12BC →+AA 1→=12AD →+AA 1→=12c +a , ∴MP →+NC 1→=⎝⎛⎭⎫12a +12b +c +⎝⎛⎭⎫a +12c =32a +12b +32c . 『类题通法』 用已知向量来表示未知向量,一定要结合图形,以图形为指导是解题的关键.要正确理解向量加法、减法与数乘运算的几何意义.首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量,我们可把这个法则称为向量加法的多边形法则.在立体几何中要灵活应用三角形法则,向量加法的平行四边形法则在空间仍然成立.1.(2014·舟山月考)如图所示,已知空间四边形OABC ,其对角线为OB 、AC ,M 、N 分别为OA 、BC 的中点,点G 在线段MN 上,且MG →=2GN →,若OG →=xOA →+yOB →+zOC →,则x ,y ,z 的值分别为________.『解析』连结ON , OG →=OM →+MG →=OM →+23MN →=OM →+23(ON →-OM →)=13OM →+23ON → =13OM →+23×12(OB →+OC →) =13×12OA →+13OB →+13OC → =16OA →+13OB →+13OC → x =16,y =13,z =13. 『答案』16,13,13考向二 共线、共面向量定理及应用(2014·上饶调研)已知E 、F 、G 、H 分别是空间四边形ABCD 的边AB 、BC 、CD 、DA 的中点,(1)求证:E 、F 、G 、H 四点共面; (2)求证:BD ∥平面EFGH ;(3)设M 是EG 和FH 的交点,求证:对空间任一点O ,有OM →=14(OA →+OB →+OC →+OD →).『审题视点』 (1)利用向量共面与点共面的关系证明.(2)根据向量共线的关系证.(3)根据向量运算求证.『典例精讲』 (1)连接BG , 则EG →=EB →+BG →=EB →+12(BC →+BD →)=EB →+BF →+EH →=EF →+EH →, 由共面向量定理的推论知: E 、F 、G 、H 四点共面. (2)因为EH →=AH →-AE →=12AD →-12AB →=12(AD →-AB →)=12BD →, 所以EH ∥BD .又EH ⊂平面EFGH ,BD ⊄平面EFGH , 所以BD ∥平面EFGH .(3)找一点O ,并连接OM ,OA ,OB ,OC ,OD ,OE ,OG . 由(2)知EH →=12BD →,同理FG →=12BD →,所以EH →=FG →,即EH 綊FG , 所以四边形EFGH 是平行四边形. 所以EG ,FH 交于一点M 且被M 平分. 故OM →=12(OE →+OG →)=12OE →+12OG →=12⎣⎡⎦⎤12OA →+OB →+12⎣⎡⎦⎤12OC →+OD → =14(OA →+OB →+OC →+OD →). 『类题通法』 空间共线向量定理、共面向量定理的应用三点(P ,A ,B )共线空间四点(M ,P ,A ,B )共面P A →=λPB →MP →=xMA →+yMB →对空间任一点O ,OP →=OA →+tAB →对空间任一点O ,OP →=OM →+xMA →+yMB →对空间任一点O ,OP →=xOA →+(1-x )OB →对空间任一点O ,OP →=xOM →+yOA →+(1-x -y )OB →2.如图,在三棱柱ABC -A 1B 1C 1中,D 为BC 边上的中点,求证:A 1B ∥平面AC 1D .证明:设BA →=a ,BB 1→=c ,BC →=b , 则BA 1→=BA →+AA 1→=BA →+BB 1→ =a +c ,AD →=AB →+BD →=AB →+12BC →=-a +12b ,AC 1→=AC →+CC 1→=BC →-BA →+BB 1→=b -a +c , BA 1→=AC 1→-2AD →, ∵A 1B ⊄平面AC 1D , ∴A 1B ∥平面AC 1D .考向三 空间向量数量积的应用已知空间三点A (0,2,3),B (-2,1,6),C (1,-1,5). (1)求以AB →,AC →为边的平行四边形的面积;(2)若|a |=3,且a 分别与AB →,AC →垂直,求向量a 的坐标.『审题视点』 ①利用向量夹角公式求sin 〈AB →,AC →〉,代入面积公式. ②向量垂直,数量积为0. 『典例精讲』 (1)由题意可得: AB →=(-2,-1,3),AC →=(1,-3,2), ∴cos 〈AB →,AC →〉=AB →·AC →|AB →||AC →|=-2+3+614×14=714=12.∴sin 〈AB →,AC →〉=32,∴以AB →,AC →为边的平行四边形的面积为 S =2×12|AB →|·|AC →|·sin 〈AB →,AC →〉=14×32=7 3.(2)设a =(x ,y ,z ),由题意得⎩⎪⎨⎪⎧x 2+y 2+z 2=3-2x -y +3z =0,x -3y +2z =0解得⎩⎪⎨⎪⎧x =1y =1z =1或⎩⎪⎨⎪⎧x =-1y =-1,z =-1∴向量a 的坐标为(1,1,1)或(-1,-1,-1).『类题通法』 (1)当题目条件有垂直关系时,常转化为数量积为零进行应用; (2)当异面直线所成的角为α时,常利用它们所在的向量转化为向量的夹角θ来进行计算;(3)通过数量积可以求向量的模.3.已知空间四边形OABC 中,M 为BC 的中点,N 为AC 的中点,P 为OA 的中点,Q 为OB 的中点,若AB =OC ,求证:PM ⊥QN .证明:连结PB 、PC ∴PM →=12PB →+12PC →=12(OB →-12OA →)+12(OC →-12OA →)=12OB →+12OC →-12OA →QN →=12QA →+12QC →=12(OA →-12OB →)+12(OC →-12OB →) =12OA →+12OC →-12OB → ∴PM →·QN →=⎣⎡⎦⎤12OC →+12OB →-OA →⎣⎡12OC →-⎦⎤12OB →-OA →=14|OC →|2-14(OB →-OA →)2=14|OC →|2-14|AB →|2=0 ∴PM ⊥QN .空间“向量平行”与“向量同向”已知向量a =(1,2,3),b =(x ,x 2+y -2,y ),并且a 、b 同向,则x ,y 的值分别为________.『正解』 由题意知a ∥b ,所以x 1=x 2+y -22=y 3.即⎩⎪⎨⎪⎧y =3x , ①x 2+y -2=2x , ② 把①代入②得x 2+x -2=0,(x +2)(x -1)=0, 解得x =-2,或x =1.当x =-2时,y =-6;当x =1时,y =3.当⎩⎪⎨⎪⎧x =-2y =-6时,b =(-2,-4,-6)=-2a ,两向量a ,b 反向,不符合题意,所以舍去.当⎩⎪⎨⎪⎧ x =1y =3时,b =(1,2,3)=a ,a 与b 同向,所以⎩⎪⎨⎪⎧x =1,y =3. 『答案』 1,3『易错点』 两向量平行和两向量同向不是等价的,同向是平行的一种情况.两向量同向能推出两向量平行,但反过来不成立,也就是说,“两向量同向”是“两向量平行”的充分不必要条件.错解就忽略了这一点.『警示』 a 与b 同向是a ∥b 的充分而不必要条件.a ∥b 是a 与b 同向的必要而不充分条件.1.(2013·高考全国新课标Ⅱ卷)一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( )『解析』选A.结合已知条件画出图形,然后按照要求作出正视图.根据已知条件作出图形:四面体C 1-A 1DB ,标出各个点的坐标如图(1)所示,可以看出正视图是正方形,如图(2)所示.故选A.2.(2014·辽宁大连一模)长方体ABCD -A 1B 1C 1D 1中,AB =AA 1=2,AD =1,E 为CC 1的中点,则异面直线BC 1与AE 所成角的余弦值为( )A.1010 B.3010C.21510D.31010『解析』选B.建立坐标系如图,则A (1,0,0),E (0,2,1), B (1,2,0),C 1(0,2,2).BC 1→=(-1,0,2),AE →=(-1,2,1),cos 〈BC 1→,AE →〉=BC 1→·AE →|BC 1→|·|AE →|=3010. 所以异面直线BC 1与AE 所成角的余弦值为3010. 3.(2012·高考陕西卷)如图所示,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为( ) A.55 B.53C.255D.35『解析』选A.不妨令CB =1,则CA =CC 1=2.可得O (0,0,0),B (0,0,1),C 1(0,2,0),A (2,0,0),B 1(0,2,1), ∴BC 1→=(0,2,-1),AB 1→=(-2,2,1),∴cos 〈BC 1→,AB 1→〉=BC 1→·AB 1→|BC 1→||AB 1→|=4-15×9=15=55>0.∴BC 1→与AB 1→的夹角即为直线BC 1与直线AB 1的夹角,∴直线BC 1与直线AB 1夹角的余弦值为55. 4.(2012·高考四川卷)如图,在正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是棱CD 、CC 1的中点,则异面直线A 1M 与DN 所成的角的大小是________.『解析』以D 为原点,DA 、DC 、DD 1为坐标轴建系,设A 1(1,0,1),M (0,12,0),N (0,1,12), ∴DN →=(0,1,12),A 1M →=(-1,12,-1)∴DN →·A 1M →=0,∴A 1M ⊥DN . 『答案』90°。

高考数学一轮复习教案选修第4课向量与空间角的计算

高考数学一轮复习教案选修第4课向量与空间角的计算

一、教学目标1.知道直线的方向向量,会用待定系数法求平面的法向量;2.会用两直线方向向量的夹角、直线方向向量与平面法向量的夹角以及两平面法向量的夹角求线线角、线面角及二面角;3.会用向量的平行或垂直来判断一些简单的空间线面的平行和垂直关系。

二、基础知识回顾与梳理 回顾要求1、阅读教材第99页,了解如何用向量来研究空间的线面位置关系?要解决这个问题,首先我们要用向量来表示直线和平面的“方向”,那如何刻画直线l 方向向量?2、如何刻画平面的“方向”呢?为什么可以用平面的垂线的方向向量(即平面的法向量)来刻画平面的“方向”呢?通过研读教材第99页例1,掌握如何求一个平面的法向量。

3、对于教材第100页的例2,在空间直角坐标系中,用什么样的方程才能表示一个平面?通过类比,在平面直角坐标系中,二元一次方程0)()(00=-+-y y B x xA 表示什么呢?并思考已知平面内一点和平面的法向量,这个平面是否唯一确定?4、阅读教材第101页,掌握如何用向量语言来表述空间的两条直线、直线与平面、平面与平面的位置关系,对于教材第104页的例4,仅有直线的方向向量与平面的法向量垂直,能否说明直线一定与平面平行?5、阅读教材第106~111页,通过例1、2、3,掌握如何用空间向量的方法求解线线成角,线面成角,以及二面角的求法,理解向量语言表述空间的线面位置关系在求解过程中的所起的作用,重点研读第108页两个平面所形成的二面角与两个方向量所形成的夹角之间的关系。

要点解析1、待定系数法求平面的法向量时,首先要转化为法向量与面内的两条相交直线所在的方向向量垂直,其次,由于平面的法向量不唯一,所以为了方便,在得到z y x ,,之间的关系后,可直接赋值,以简化计算。

2、由于垂直于同一平面的直线是互相平行的,所以用平面的法向量来刻画了平面的方向,进而发现研究空间线面位置关系,其实就是研究线线之间的关系。

3、对于教材第104页的例4,在使用空间向量解决问题的时候,还要注意到条件的完整性和充分性,在得到⊥后,还需要强调MN 不在平面CDE 内,否则不能说明线面平行,进而启发学生,用空间向量解决问题的时候,仍需很好的运用数形结合的思想,借助图形自己“翻译”完成。

广东省2014届高三数学一轮复习 试题选编11 空间角与空间距离问题 理

广东省2014届高三数学一轮复习 试题选编11 空间角与空间距离问题 理

广东省2014届高三理科数学一轮复习试题选编11:空间角与空间距离问题一、解答题 1 .(广东省韶关市2013届高三4月第二次调研测试数学理试题)如图甲,在平面四边形ABCD 中,已知45,90,A C ∠=∠=105ADC ∠=,AB BD =,现将四边形ABCD 沿BD 折起,使平面ABD ⊥平面BDC(如图乙),设点E 、F 分别为棱AC 、AD 的中点.(1)求证:DC ⊥平面ABC; (2)求BF 与平面ABC 所成角的正弦值; (3)求二面角B-EF-A 的余弦值.甲DCBAF E乙DCBA【答案】证明:在图甲中∵AB BD =且45A ∠= (1) ∴45ADB ∠= ,90ABC ∠= 即AB BD ⊥在图乙中,∵平面ABD ⊥平面BDC , 且平面ABD 平面BDC=BD∴AB⊥底面BDC,∴AB⊥C D 又90DCB ∠=,∴DC⊥BC,且ABBC B =∴DC ⊥平面ABC(2)解法1:∵E、F 分别为AC 、AD 的中点 ∴EF//CD,又由(1)知,DC ⊥平面ABC, ∴EF⊥平面ABC,垂足为点E∴∠FBE 是BF 与平面ABC 所成的角在图甲中,∵105ADC ∠=, ∴60BDC ∠=,30DBC ∠= 设CD a =则2,BD a BC ==,BF ==,1122EF CD a ==∴在Rt △FEB 中,sin EF FBE FB ∠=== 即BF 与平面ABC解法2:如图,以B 为坐标原点,BD 所在的直线为x 轴建立空间直角坐标系如下图示,设CD a =,则2,BD AB a ==BC =,AD = 可得(0,0,0),(2,0,0)B D a ,(0,0,2)A a,3(,0)2C a ,(,0,)F a a ,∴1(,,0)2CD a =,(,0,)BF a a = 设BF 与平面ABC 所成的角为θ 由(1)知DC ⊥平面ABC∴2cos()2||||CD BF CD BF a πθ⋅-===⋅⋅∴sin θ=(3)由(2)知 FE ⊥平面ABC,又∵BE ⊂平面ABC,AE ⊂平面ABC,∴FE⊥BE,FE ⊥AE, ∴∠AEB 为二面角B-EF-A 的平面角 在△AEB 中,12AE BE AC ==== ∴2221cos 27AE BE AB AEB AE BE +-∠==-⋅即所求二面角B-EF-A 的余弦为17-2 .(广东省华附、省实、深中、广雅四校2013届高三上学期期末联考数学(理)试题)如图,在三棱锥V -ABC 中,VC ⊥底面ABC ,AC ⊥BC ,D 是AB 的中点,且AC =BC =a ,∠VDC =θ (0<θ <π2)(Ⅰ)求证:平面VAB ⊥平面VCD ;(Ⅱ)当角θ 变化时,求直线BC 与平面VAB 所成的角的取值范围.ByX【答案】解法1:CVDBA(Ⅰ)∵ AC =BC =a ,∴ △ACB 是等腰三角形, 又D 是AB 的中点,∴ CD ⊥AB ,又VC ⊥底面ABC .∴ VC ⊥AB .因VC ,CD ⊂ 平面VCD , ∴AB ⊥平面VCD .又AB ⊂平面VAB ,∴平面VAB ⊥平面VCD .(Ⅱ) 过点C 在平面VCD 内作CH ⊥VD 于H , 则由(Ⅰ)知CH ⊥平面VAB .连接BH ,BH 是CB 在平面VAB 上的射影,于是∠CBH 就是直线BC 与平面VAB 所成的角.在Rt △CHD 中,CH = 22asin θ; 设∠CBH =ϕ,在Rt △BHC 中,CH =asin ϕ, ∴2 2 sin θ= sin ϕ , ∵ 0<θ <π2,zxxk ∴ 0<sin θ <1,0<sin ϕ <22. 又0≤ϕ ≤π2 ,∴ 0<ω <π4.即直线BC 与平面VAB 所成角的取值范围为(0, π4).解法2:(Ⅰ)以CA , CB , CV 所在的直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则C (0,0,0), A (a ,0,0), B (0,a ,0),D (a 2 ,a 2,0),V (0,0, 22atan θ ),ADBCH V于是,→ VD =(a 2 ,a 2 ,- 2 2 atan θ),→ CD =(a 2 ,a 2 ,0),→ AB =(-a ,a ,0).从而→ AB ·→ CD =(-a ,a ,0)·(a 2 ,a 2 ,0)=-12 a 2+12 a 2+0=0,即→ AB ⊥→CD , ∴ AB ⊥CD .同理→ AB ·→ VD =(-a ,a ,0)·(a 2 ,a 2 ,- 2 2 atan θ)=-12 a 2+12a 2+0=0,即→ AB ⊥→VD , ∴AB ⊥VD .又CD ∩VD =D ,AB ⊥平面VCD .又AB ⊂平面VAB . ∴平面VAB ⊥平面VCD .(Ⅱ)设直线BC 与平面VAB 所成的角为ϕ ,平面VAB 的一个法向量为n =(x , y , z ),则由n ·→ AB =0, n ·→VD =0. 得 ⎩⎪⎨⎪⎧ -ax +ay =0 a 2 x +a 2y - 2 2 aztan θ=0可取n=(1,1, 2 tan θ ),又→ BC =(0,-a ,0),于是sin ϕ =| n ·→BC | n |·|→BC | |=aa ·2+2tan 2θ= 22sin θ , ∵ 0<θ <π2 ,∴ 0<sin θ <1,0<sin ϕ < 2 2 .又0≤ϕ ≤π2 ,0<ϕ <π4. 即直线BC 与平面VAB 所成角的取值范围为(0, π4).3 .(广东省汕头市东山中学2013届高三下学期入学摸底考试数学(理)试题)如图,在底面为直角梯形的四棱锥ABCD P -中,BC AD //,︒=∠90ABC ,⊥PD 平面ABCD ,1=AD ,3=AB ,4=BC (1)求直线AB 与平面PDC 所成的角;(2)设点E 在棱PC 上,λ=,若//DE 平面PAB ,求λ的值.APEC DB【答案】解1:(1)∵⊥PD 平面ABCD ⊂PD 面PDC ∴平面⊥PDC 平面ABCD过D 作AB DF //交BC 于F 过点F 作CD FG ⊥交CD 于G , ∵平面 PDC 平面CD ABCD = ∴⊥FG 面PDC∴FDG ∠为直线AB 与平面PDC 所成的角 在DFC Rt ∆中,︒=∠90DFC ,3=DF ,3=CF ∴3tan =∠FDG , ∴︒=∠60FDG即直线AB 与平面PDC 所成角为︒60(2)连结EF ,∵AB DF //,⊄DF 平面PAB ,⊂AB 平面PAB ∴//DF 平面PAB又∵//DE 平面PAB 且D DF DE = ∴平面//DEF 平面PAB ∴AB EF //又∵1=AD ,4=BC ,1=BF∴41==BC BF PC PE ∴41=,即41=λ 解2:如图,在平面ABCD 内过D 作直线AB DF //,交BC 于F ,分别以DA 、DF 、DP 所在的直线为x 、y 、z 轴建立空间直角坐标系.设a PD =,则)0,0,0(D 、)0,0,1(A 、)0,3,1(B 、)0,3,3(-C 、),0,0(a P(1)设面PDC 的法向量为),,(z y x n = ∵)0,3,3(-=DC 、),0,0(a =∴由⎪⎩⎪⎨⎧=⋅=⋅00 得⎪⎩⎪⎨⎧==+-0033az y x 令1=x 可解得⎪⎩⎪⎨⎧==03z y∴)0,3,1(=n ∵)0,3,0(= ∴2323030||||,cos =⨯++=⋅>=<n AB PEFBCDAGPE B CD A∴直线AB 与平面PDC 所成的角θ,则23|,cos |sin =><=θ∵︒<<︒900θ ∴︒=60θ 即直线AB 与平面PDC 所成的角为︒60(2)∵),3,3(a PC --= ∴),3,3(λλλλa --==∴),3,3(),3,3(),0,0(λλλλλλa a a a --=--+=+= 设面PAB 的法向量为),,(111z y x = ∵)0,3,0(=、),0,1(a -=∴由⎪⎩⎪⎨⎧=⋅=⋅00m PA 得⎪⎩⎪⎨⎧=-=003az x y 令1=z 可解得⎩⎨⎧==a x y 0∴)1,0,(a =若//DE 平面PAB ,则003)1,0,(),3,3(=-++-=⋅--=⋅λλλλλa a a a a a m DE 而0≠a , 所以41=λ4 .(广东省东莞市2013届高三第二次模拟数学理试题)如图,PA 垂直⊙O 所在平面ABC,AB 为⊙O 的直径,PA=AB,14BF BP =,C 是弧AB 的中点. (1)证明:BC ⊥平面PAC; (2)证明:CF ⊥BP;(3)求二面角F —OC —B 的平面角的正弦值.图5 CDP BAE FCD PAEFH【答案】证明:(1)∵PA ⊥平面ABC,BC ⊂平面ABC,∴BC ⊥PA ∵∠ACB 是直径所对的圆周角, ∴90o ACB ∠=,即BC ⊥AC又∵PA AC A =,∴BC ⊥平面PAC(2)∵PA ⊥平面ABC,OC ⊂平面ABC, ∴OC ⊥PA∵C 是弧AB 的中点,∴∆ABC 是等腰三角形,AC=BC, 又O 是AB 的中点,∴OC ⊥AB又∵PA AB A =,∴OC ⊥平面PAB ,又PB ⊂平面PAB ,∴BP OC ⊥设BP 的中点为E,连结AE,则//OF AE ,AE BP ⊥ ∴BP OF ⊥∵OC OF O =,∴BP ⊥平面CFO . 又CF ⊂平面CFO ,∴CFBP ⊥ 解:(3)由(2)知OC ⊥平面PAB ,∴OF OC ⊥,OC OB ⊥, ∴BOF ∠是二面角F OC B --的平面角 又∵BP OF ⊥,045FBO ∠=,∴045FOB ∠=, ∴sin FOB ∠=,即二面角F OC B --5 .(2011年高考(广东理))如图5,在锥体P A B C D -中,ABCD 是边长为1的菱形,且60DAB ∠=,PA PD ==2PB =,,E F 分别是BC ,PC 的中点.(1)证明:AD ⊥平面DEF ;(2)求二面角P AD B --的余弦值.【答案】【解析】(Ⅰ)连接AE ,BD , 因为ABCD 是边长为1的菱形,且60DAB ∠=︒,E 是BC 的中点,所以,ABD BCD ∆∆均为正三角形,且1,1202DE BE ABE ==∠=︒,所以22272cos 4AE AB BE AB BE ABE =+-⋅⋅∠= 所以22237144AD DE AE +=+==,从而A D D ⊥,取AD 的中点M ,连接,PM BM ,因为PA PD =,BA BD =,所以,PM AD BM AD ⊥⊥, 又PM BM M =,所以AD ⊥平面PBM,所以AD PB ⊥在BCP ∆中,因为,E F 分别是,BC PC 的中点,所以//EF PB ,所以ADEF ⊥ 又EF DE E =,所以AD ⊥平面DEF .(Ⅱ)解法一:由(Ⅰ)知BMP ∠为二面角P AD B --的平面角,易得2BM =,2PM ==,在BPM ∆中,2PB =,由余弦定理得222cos 27BM PM PB BMP BM PM +-∠==-⋅ 所以二面角P AD B --的余弦值为7-.另法:.721,7212132212323272443472cos ,2,23,27)21()2(,,,,,,)1()2(22222----=-=-=⨯⨯-+=⋅-+=∠∴===-=--∠∴⊂⊂⊥⊥的余弦值为即二面角的平面角就是二面角面面且知由B AD P BH PH PB BH PH PHB PB BH PH B AD P PHB BAD BH PAD PH AD BH AD PH 解法二:先证明DF ⊥平面ABCD ,即证明DF DE ⊥即可,在Rt PBC ∆中,PC =PDC ∆中,222cos DCP ∠==所以在FDC ∆中,22211(21224DF =+-⨯⨯=,12DF =在DEF ∆中,2222114DE DF EF +=+==,故DEF ∆为直角三角形,从而DF DE ⊥. 建立空间直角坐标系D xyz -如图所示,则1(0,0,0),(1,0,0),(,22D A P -,所以1(1,0,0),(,2DA DP ==-,设平面PAD 的一个法向量为,,x y z =1()n ,则00DA DP ⎧⋅=⎪⎨⋅=⎪⎩11n n,从而0102x x y z =⎧⎪⎨-+=⎪⎩,解得0x z y =⎧⎪⎨=⎪⎩,令2y =得=1(n显然平面DAB 的一个法向量为0,0,1=2()n ,从而cos ,|||7⋅<>==121212=n n n n |n n ,所以二面角P AD B --的余弦值为6 .(广东省揭阳市2013届高三3月第一次高考模拟数学(理)试题(含解析))如图(4),在等腰梯形CDEF中,CB 、DA 是梯形的高,2AE BF ==,AB =,现将梯形沿CB 、DA 折起,使//EF AB 且2EF AB =,得一简单组合体ABCDEF 如图(5)示,已知,,M N P 分别为,,AF BD EF 的中点.(1)求证://MN 平面BCF ;(2)求证: AP ⊥DE ;(3)当AD 多长时,平面CDEF 与平面ADE 所成的锐二面角为60?DCBAEFMNPFEABCD图(4) 图(5)【答案】(1)证明:连AC ,∵四边形ABCD 是矩形,N 为BD 中点, ∴N 为AC 中点,在ACF ∆中,M 为AF 中点,故//MN CF∵CF ⊂平面BCF ,MN ⊄平面BCF ,//MN ∴平面BCF ; (其它证法,请参照给分)(2)依题意知,DA AB DA AE ⊥⊥ 且AB AE A =I ∴AD ⊥平面ABFE∵AP ⊂平面ABFE ,∴AP AD ⊥, ∵P 为EF中点,∴FP AB ==结合//AB EF ,知四边形ABFP 是平行四边形 ∴//AP BF ,2AP BF ==而2,AE PE ==222AP AE PE += ∴90EAP ∠=,即AP AE ⊥ 又AD AE A =I ∴AP ⊥平面ADE , ∵DE ⊂平面ADE , ∴AP ⊥DE(3)解法一:如图,分别以,,AP AE AD 所在的直线为,,x y z设(0)AD m m =>,则(0,0,0),(0,0,),(0,2,0),A D m E P 易知平面ADE 的一个法向量为(2,0,0)AP =uu u r,设平面DEF 的一个法向量为(,,)n x y z =r ,则00n PE n DE ⎧⋅=⎪⎨⋅=⎪⎩r uur r uuu r故22020x y y mz -+=⎧⎨-=⎩,即020x y y mz -=⎧⎨-=⎩令1x =,则21,y z m ==,故2(1,1,)n m =r∴cos ,||||AP n AP n AP n ⋅<>==uu u r ruu u r r uu u r r ,F MNPFEABC D依题意12=,m =,即AD =,平面CDEF 与平面ADE 所成的锐二面角为60【解法二:过点A 作AM DE ⊥交DE 于M 点,连结PM,则,DE PM ⊥ ∴AMP ∠为二面角A-DE-F 的平面角, 由AMP ∠=600,AP=BF=2得AM tan 60AP ==o, 又AD AE AM DE ⋅=⋅得2AD =,解得AD =即AD =时,平面CDEF 与平面ADE 所成的锐二面角为60 】7 .(广东省梅州市2013届高三3月总复习质检数学(理)试题)已知在四棱锥P-ABCD 中,底面ABCD 是矩形,PA⊥平面ABCD,PA=AD=1,AB=2,E,F 分别是AB 、PD 的中点. (1)求证:AF∥平面PEC; (2)求二面角P-EC-D 的余弦值; (3)求点B 到平面PEC 的距离.【答案】8 .(广东省韶关市2013届高三第三次调研考试数学(理科)试题(word 版) )如图,在三棱拄111ABC A B C -中,AB ⊥侧面11BB C C ,已知11,3BC BCC π=∠=(Ⅰ)求证:1C B ABC ⊥平面;(Ⅱ)试在棱1CC (不包含端点1,)C C 上确定一点E 的位置,使得1EA EB ⊥; (Ⅲ) 在(Ⅱ)的条件下,求二面角11A EB A --的平面角的正切值.EC 1B 1A 1CA【答案】证(Ⅰ)因为AB ⊥侧面11BB C C ,故1AB BC ⊥ 在1BC C 中,1111,2,3BCCC BB BCC π===∠=由余弦定理有1BC == 故有 222111BC BC CC C B BC += ∴⊥ 而 BCAB B = 且,AB BC ⊂平面ABC∴1C B ABC ⊥平面(Ⅱ)由11,,,,EA EB AB EB ABAE A AB AE ABE⊥⊥=⊂平面从而1B E ABE ⊥平面 且BE ABE ⊂平面 故1BE B E ⊥1B 1A 1BA111不妨设 CE x =,则12C E x =-,则221BE x x =+- 又1123B C C π∠= 则2211B E x x =++在1Rt BEB 中有 22114x x x x +++-+= 从而1x =±(舍负) 故E 为1CC 的中点时,1EA EB ⊥ 法二:以B为原点1,,BC BC BA为,,x y z轴,设CE x=,则11(0,0,0),(1),(2BE x B A -- 由1EA EB⊥得 10EA EB ⋅= 即11(1,,0)0222211(1)(2)022x x x x x x x x ---=⎫--=⎪⎪⎭化简整理得 2320x x -+= 1x = 或 2x =当2x =时E 与1C 重合不满足题意 当1x =时E 为1CC 的中点 故E 为1CC 的中点使1EA EB ⊥(Ⅲ)取1EB 的中点D ,1A E 的中点F ,1BB 的中点N ,1AB 的中点M连DF 则11//DF A B ,连DN 则//DN BE ,连MN 则11//MN A B 连MF 则//MF BE ,且MNDF 为矩形,//MD AE 又1111,A B EB BE EB ⊥⊥ 故MDF ∠为所求二面角的平面角在Rt DFM 中,1112DF A B BCE==∆为正三角形)111222MF BE CE === 1tan 22MDF ∴∠== 法二:由已知1111,EA EB B A EB ⊥⊥, 所以二面角11A EB A --的平面角θ的大小为向量11B A 与EA 的夹角因为11B A BA ==1(2EA =-- 故11112cos tan 3EA B A EA B A θθ⋅==⇒=⋅9 .(广东省惠州市2013届高三第三次(1月)调研考试数学(理)试题)如图,在长方体1111ABCD A BC D -中,11AD AA ==,2AB =,点E 在棱AB 上移动. (1)证明:11D E A D ⊥;(2)当E 点为AB 的中点时,求点E 到平面1ACD 的距离; (3)AE 等于何值时,二面角1D EC D --的大小为4π?【答案】(1)证明:如图,连接1D B ,依题意有:在长方形11A ADD 中,11AD AA ==,1111111111111A ADD A D AD A D AD B AB A ADD AB A D A D D E D E AD B AD AB A ⇒⊥⎫⇒⊥⎫⎪⊥⇒⊥⇒⊥⎬⎬⊂⎭⎪=⎭四边形平面又平面平面(2)解:AC ==/21AE AB ==,EC ==cos 2AEC ∠==-, EDCABA 1B 1C 1D 1DCABCD45sin AEC ⇒∠=∴11122AECS∆=⨯=,11111326D AECV-=⨯⨯=.1AD==,1D C==1sin D AC⇒∠==.∴11322A DCS∆==.设点E到平面1ACD的距离为d,∴11131326D AECE AD CV V d--==⨯=13d⇒=.∴点E到平面1ACD的距离为13(3)解:过D作DF EC⊥交EC于F,连接1D F.由三垂线定理可知,1DFD∠为二面角1D EC D--的平面角.∴14DFDπ∠=,12D DFπ∠=,111D D DF=⇒=.1sin26DFDCF DCFDCπ∠==⇒∠=,∴3BCFπ∠=.∴tan3BEBEBCπ=⇒=2AE AB BE=-=故2AE=,二面角1D EC D--的平面角为4π10.(广东省惠州市2014届高三第一次调研考试数学(理)试题(word版))如图,已知三棱锥O ABC-的侧棱,,OA OB OC两两垂直,且1OA=,2OB OC==,E是OC的中点.(1)求O点到面ABC的距离;(2)求二面角E AB C--的正弦值.【答案】解: (1)取BC的中点D,连AD、OD,OB OC OD BC=⊥则、,AD BC⊥.,BC OAD O OH AD H∴⊥⊥面过点作于则OH⊥面ABC,OH的长就是所要求的距离.BC OD===ABCEOOA OB ⊥、OA OC ⊥,,.OA OBC OA OD ∴⊥⊥平面则AD ==在直角三角形OAD 中,有OA OD OH AD⋅===(另解:由112,363ABC V S OH OA OB OC OH ∆=⋅=⋅⋅==知 (2)连结CH 并延长交AB 于F ,连结OF 、EF .,.,,,OC OAB OC AB OH ABC CF AB EF AB ⊥∴⊥⊥∴⊥⊥面又面则EFC ∠就是所求二面角的平面角 作EG CF ⊥于G ,则12EG OH == 在直角三角形OAB 中,OA OB OF AB ⋅== 在直角三角形OEF 中,EF ===30766sin arcsin .(arccos )1818EG EFG EFG EF ∠===∠=或表示为故所求的正弦值是1830 方法二: (1)以O 为原点,OB 、OC 、OA 分别为x 、y 、z 轴建立空间直角坐标系. 则有(0,0,1)A 、(2,0,0)B 、(0,2,0)C 、(0,1,0).E 设平面ABC 的法向量为1(,,),n x y z = 则由11:20;n AB n AB x z ⊥⋅=-=知由11:20.n AC n AC y z ⊥⋅=-=知取1(1,1,2)n =, 则点O 到面ABC 的距离为111n OA d n ⋅=== (2) (2,0,0)(0,1,0)(2,1,0),(2,0,0)(0,0,1)(2,0,1)EB AB =-=-=-=- 设平面EAB 的法向量为(,,),n x y z =则由n AB ⊥知:20;n AB x z⋅=-= 由n EB ⊥知:20.n EB x y ⋅=-=取(1,2,2).n =由(1)知平面ABC 的法向量为1(1,1,2).n = 则cos <1,n n>11189n n n n ⋅====⋅ 结合图形可知,二面角E AB C --的正弦值是183011.(广东省珠海市2013届高三5月综合考试(二)数学(理)试题)如图,四边形与均为菱形,,且.(1)求证:;(2)求证:; (3)求二面角的余弦值.【答案】(1)证明:设AC 与BD 相交于点O,连结FO.因为四边形ABCD 为菱形,所以BD AC ⊥,且O 为AC 中点. 又FA=FC,所以FO AC ⊥因为BDEF BD BDEF FO O BD FO 平面,平面⊂⊂=⋂,, 所以BDEF AC 平面⊥.(2)证明:因为四边形ABCD 与BDEF 均为菱形, 所以//,//,AD BC DE BF因为,AD FBC DE ⊄⊄平面平面FBC 所以//FBC,DE//FBC AD 平面平面又AD EAD DE EAD AD DE D ⋂=⊂⊂,平面,平面, 所以平面//FBC EAD 平面 又FC FBC ⊂平面ABCD BDEF 。

2014届高考数学一轮复习教学案空间向量与空间角(含解析)

2014届高考数学一轮复习教学案空间向量与空间角(含解析)

空间向量与空间角[知识能否忆起]利用向量求空间角1.两条异面直线所成的角的求法设两条异面直线a ,b 的方向向量为a ,b ,其夹角为θ,则cos φ=|cos θ|=|a ·b ||a||b |(其中φ为异面直线a ,b 所成的角).2.直线和平面所成角的求法如图所示,设直线l 的方向向量为e ,平面α的法向量为n ,直线l 与平面α所成的角为φ,两向量e 与n 的夹角为θ,则有sin φ=|cos θ|=|e ·n ||e ||n |.3.求二面角的大小(1)如图1,AB 、CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB ,CD〉.(2)如图2、3,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ=〈n 1,n 2〉(或π-〈n 1,n 2〉).[小题能否全取]1.(教材习题改编)已知向量m ,n 分别是直线l 和平面α的方向向量、法向量,若cos 〈m ,n 〉=-12,则l 与α所成的角为( )A .30°B .60°C .120°D .150°解析:选A 由于cos 〈m ,n 〉=-12,∴〈m ,n 〉=120°.所以直线l 与α所成的角为30°.2.(教材习题改编)已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角的大小为( )A .45°B .135°C .45°或135°D .90°解析:选C cos 〈m ,n 〉=m ·n |m ||n |=11×2=22, 即〈m ,n 〉=45°,其补角为135°, ∴两平面所成的二面角为45°或135°.3.在如图所示的正方体A1B 1C 1D 1-ABCD 中,E 是C 1D 1的中点,则异面直线DE 与AC 夹角的余弦值为( )A .-1010B .-120C.120D.1010解析:选D 如图建立直角坐标系D -xyz ,设DA =1,A (1,0,0),C (0,1,0),E ⎝⎛⎭⎫0,12,1.则AC =(-1,1,0),DE =⎝⎛⎭⎫0,12,1,若异面直线DE 与AC 所成的角为θ,cos θ=|cos 〈AC ,DE 〉|=1010.4.已知点E 、F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1,CC 1上,且B 1E =2EB ,CF =2FC 1,则平面AEF 与平面ABC 所成的二面角的正切值为________.解析:如图,建立直角坐标系D -xyz ,设DA =1由已知条件A (1,0,0), E ⎝⎛⎭⎫1,1,13,F ⎝⎛⎭⎫0,1,23, AE =⎝⎛⎭⎫0,1,13,AF =⎝⎛⎭⎫-1,1,23,设平面AEF 的法向量为n =(x ,y ,z ),面AEF 与面ABC 所成的二面角为θ, 由⎩⎨⎧n ·AE =0,n ·AF =0,得⎩⎨⎧y +13z =0,-x +y +23z =0.令y =1,z =-3,x =-1,则n =(-1,1,-3). 设平面ABC 的法向量为m =(0,0,-1), 则cos θ=cos 〈n ,m 〉=311,tan θ=23.答案:235.(教材习题改编)如图,在长方体ABCD -A 1B 1C 1D 1中,已知DA =DC =4,DD 1=3,则异面直线A 1B 与B 1C 所成角的余弦值________.解析:建立如图所示直角坐标系,则A 1(4,0,3),B (4,4,0),B 1(4,4,3),C (0,4,0),1A B =(0,4,-3),1B C=(-4,0,-3).设异面直线A 1B 与B 1C 所成角为θ,则cos θ=|cos 〈1A B ,1B C 〉|=925.答案:925(1)利用向量求空间角,一定要注意将向量夹角与所求角区别开来,在将向量夹角转化为各空间角时注意空间各角的取值范围,异面直线所成角的范围是⎝⎛⎦⎤0,π2,直线与平面所成角的范围是⎣⎡⎦⎤0,π2,二面角的范围是[0,π]. (2)利用平面的法向量求二面角的大小时,当求出两半平面α、β的法向量n 1,n 2时,要根据向量坐标在图形中观察法向量的方向,从而确定二面角与向量n 1,n 2的夹角是相等,还是互补,这是利用向量求二面角的难点、易错点.典题导入[例1] (2012·陕西高考)如图,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为( )A.55B.53C.255D.35[自主解答] 不妨令CB =1,则CA =CC 1=2.可得 O (0,0,0),B (0,0,1),C 1(0,2,0),A (2,0,0),B 1(0,2,1),∴1BC =(0,2,-1),1AB=(-2,2,1),∴cos 〈1BC ,1AB 〉=1BC ·1AB|1BC ||1AB |=4-15×9=15=55>0.∴1BC 与1AB的夹角即为直线BC 1与直线AB 1的夹角,∴直线BC 1与直线AB 1夹角的余弦值为55. [答案] A本例条件下,在线段OB 上,是否存在一点M ,使C 1M 与AB 1所成角的余弦为13?若存在,求出M 点;不存在,说明理由.解:不妨令CB =1,CA =CC 1=2, 建系如本例题图,假设存在符合条件的点M ,设M (0,0,a ),则1C M =(0,-2,a ),又1AB=(-2,2,1), ∴|cos 〈1C M ,1AB 〉|=|a -4|4+a 2·9=13. ∴|a -4|=4+a 2,∴a 2-8a +16=a 2+4. ∴8a =12,∴a =32.又CB =1,∴a =32>1.故不存在符合条件的点M .由题悟法利用直线的方向向量的夹角求异面直线的夹角时,注意区别:当异面直线的方向向量的夹角为锐角或直角时,就是此异面直线所成的角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线所成的角.以题试法1.(2012·安徽模拟)如图所示,在多面体ABCD -A 1B 1C 1D 1中,上、下两个底面A 1B 1C 1D 1和ABCD 互相平行,且都是正方形,DD 1⊥底面ABCD ,AB =2A 1B 1=2DD 1=2a .(1)求异面直线AB 1与DD 1所成角的余弦值; (2)已知F 是AD 的中点,求证:FB 1⊥平面BCC 1B 1.解:以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (2a,0,0),B (2a,2a,0),C (0,2a,0),D 1(0,0,a ),F (a,0,0),B 1(a ,a ,a ),C 1(0,a ,a ).(1)∵1AB =(-a ,a ,a ),1DD=(0,0,a ),∴cos 〈1AB ,1DD 〉=1AB ·1DD|1AB |·|1DD |=33,所以异面直线AB 1与DD 1所成角的余弦值为33. (2)证明:∵1BB=(-a ,-a ,a ),BC =(-2a,0,0), 1FB=(0,a ,a ),∴⎩⎪⎨⎪⎧1FB ·1BB =0, 1FB ·BC=0,∴FB 1⊥BB 1,FB 1⊥BC . ∵BB 1∩BC =B ,∴FB 1⊥平面BCC 1B 1.典题导入[例2] (2012·大纲全国卷)如图,四棱锥P -ABCD 中,底面ABCD 为菱形,P A ⊥底面ABCD ,AC =22,P A =2,E 是PC 上的一点,PE =2EC .(1)证明:PC ⊥平面BED ;(2)设二面角A -PB -C 为90°,求PD 与平面PBC 所成角的大小.[自主解答] (1)证明:以A 为坐标原点,射线AC 为x 轴的正半轴,建立如图所示的空间直角坐标系A -xyz ,则C (22,0,0).设D (2,b,0),其中b >0,则 P (0,0,2),E ⎝⎛⎭⎫423,0,23,B (2,-b,0).于是PC=(22,0,-2), BE =⎝⎛⎭⎫23,b ,23,DE =⎝⎛⎭⎫23,-b ,23,从而PC ·BE=0,PC ·DE =0, 故PC ⊥BE ,PC ⊥DE . 又BE ∩DE =E , 所以PC ⊥平面BED .(2) AP =(0,0,2),AB=(2,-b,0).设m =(x ,y ,z )为平面P AB 的法向量,则m ·AP =0,m ·AB=0,即2z =0且2x -by =0, 令x =b ,则m =(b ,2,0).设n =(p ,q ,r )为平面PBC 的法向量,则n ·PC =0,n ·BE=0, 即22p -2r =0且2p 3+bq +23r =0, 令p =1,则r =2,q =-2b ,n =⎝⎛⎭⎫1,-2b ,2. 因为二面角A -PB -C 为90°,所以面P AB ⊥面PBC ,故m ·n =0, 即b -2b=0,故b =2,于是n =(1,-1,2),DP=(-2,-2,2),所以cos 〈n ,DP 〉=n ·DP|n ||DP |=12, 所以〈n ,DP〉=60°.因为PD 与平面PBC 所成角和〈n ,DP〉互余,故PD 与平面PBC 所成的角为30°.由题悟法利用向量法求线面角的方法(1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角(钝角时取其补角),取其余角就是斜线和平面所成的角(如例2).以题试法2.(2012·宝鸡模拟)如图,已知P A ⊥平面ABC ,且P A =2,等腰直角三角形ABC 中,AB =BC =1,AB ⊥BC ,AD ⊥PB 于D ,AE ⊥PC 于E .(1)求证:PC ⊥平面ADE ;(2)求直线AB 与平面ADE 所成角的大小. 解:(1)证明:因为P A ⊥平面ABC , 所以P A ⊥BC ,又AB ⊥BC ,且P A ∩AB =A , 所以BC ⊥平面P AB ,从而BC ⊥AD . 又AD ⊥PB ,BC ∩PB =B , 所以AD ⊥平面PBC , 得PC ⊥AD ,又PC ⊥AE ,AE ∩AD =A , 所以PC ⊥平面ADE .(2)如图所示,建立空间直角坐标系B -xyz . 则A (1,0,0),C (0,1,0), P (1,0,2), 因为PC ⊥平面ADE ,所以PC=(-1,1,-2)是平面ADE 的一个法向量.设直线AB 与平面ADE 所成的角为θ,则sin θ=|PC ·AB||PC||AB |=(-1,1,-2)·(-1,0,0)2=12,则直线AB 与平面ADE 所成的角为30°.典题导入[例3] (2012·江西高考)在三棱柱ABC -A 1B 1C 1中,已知AB=AC =AA 1=5,BC =4,点A 1在底面ABC 的投影是线段BC 的中点O .(1)证明在侧棱AA 1上存在一点E ,使得OE ⊥平面BB 1C 1C ,并求出AE 的长;(2)求平面A 1B 1C 与平面BB 1C 1C 夹角的余弦值.[自主解答] (1)证明:连接AO ,在△AOA 1中,作OE ⊥AA 1于点E ,因为AA 1∥BB 1,得OE ⊥BB 1,因为A 1O ⊥平面ABC ,所以A 1O ⊥BC .因为AB =AC ,OB =OC ,得AO ⊥BC ,所以BC ⊥平面AA 1O ,所以BC ⊥OE , 所以OE ⊥平面BB 1C 1C .又AO =AB 2-BO 2=1,AA 1=5, 得AE =AO 2AA 1=55.(2)如图,分别以OA ,OB ,OA 1所在直线为x ,y ,z 轴,建立空间直角坐标系,则A (1,0,0),B (0,2,0),C (0,-2,0),A 1(0,0,2),B 1(-1,2,2),由AE =151AA 得点E 的坐标是⎝⎛⎭⎫45,0,25, 由(1)得平面BB 1C 1C 的法向量是OE =⎝⎛⎭⎫45,0,25, 设平面A 1B 1C 的法向量n =(x ,y ,z ),由⎩⎪⎨⎪⎧n ·11A B=0,n ·1A C=0,得⎩⎪⎨⎪⎧-x +2y =0,y +z =0. 令y =1,得x =2,z =-1,即n =(2,1,-1),所以cos 〈OE ,n 〉=OE·n| OE |·|n |=3010, 即平面A 1B 1C 与平面BB 1C 1C 夹角的余弦值是3010.由题悟法求二面角最常用的方法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.以题试法3.(2012·山西模拟)如图,四棱锥S -ABCD 的底面是正方形,SD ⊥平面ABCD ,SD =AD =a ,点E 是SD 上的点,且DE =λa (0<λ≤1).(1)求证:对任意的λ∈(0,1],都有AC ⊥BE ; (2)若二面角C -AE -D 的大小为60°,求λ的值.解:(1)证明:如图,建立空间直角坐标系D -xyz ,则A (a,0,0,),B (a ,a,0),C (0,a,0),D (0,0,0),E (0,0,λa ),∴AC =(-a ,a,0),BE=(-a ,-a ,λa ), ∴AC ·BE=0对任意λ∈(0,1]都成立,即对任意的λ∈(0,1],都有AC ⊥BE . (2)显然n =(0,1,0)是平面ADE 的一个法向量, 设平面ACE 的法向量为m =(x ,y ,z ),∵AC =(-a ,a,0),AE=(-a,0,λa ),∴⎩⎨⎧m ·AC=0,m ·AE=0.即⎩⎪⎨⎪⎧ -ax +ay =0,-ax +λaz =0,∴⎩⎪⎨⎪⎧x -y =0,x -λz =0. 取z =1,则x =y =λ,∴m =(λ,λ,1), ∵二面角C -AE -D 的大小为60°, ∴|cos 〈n ,m 〉|=|n ·m ||n ||m |=λ1+2λ2=12, ∵λ∈(0,1], ∴λ=22.1.如图所示,在三棱柱ABC -A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC=AA 1,∠ABC =90°,点E 、F 分别是棱AB 、BB 1的中点,则直线EF 和BC 1所成的角为________.解析:建立如图所示的空间直角坐标系. 设AB =BC =AA 1=2,则C1(2,0,2),E (0,1,0),F (0,0,1),则EF=(0,-1,1),1BC =(2,0,2),∴EF ·1BC=2, ∴cos 〈EF ,1BC〉=22×22=12,∴EF 和BC 1所成角为60°. 答案:60°2.如图,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,2AC =AA 1=BC =2.若二面角B 1-DC -C 1的大小为60°,则AD 的长为________.解析:如图,以C 为坐标原点,CA ,CB ,CC 1所在的直线分别为x轴,y 轴,z 轴建立空间直角坐标系,则C (0,0,0),A (1,0,0),B 1(0,2,2),C 1(0,0,2).设AD =a ,则D 点坐标为(1,0,a ),CD =(1,0,a ),1CB=(0,2,2),设平面B 1CD 的一个法向量为m =(x ,y ,z ).则⎩⎪⎨⎪⎧m ·1CB =0m ·CD =0⇒⎩⎪⎨⎪⎧2y +2z =0x +az =0, 令z =-1,得m =(a,1,-1),又平面C 1DC 的一个法向量为n =(0,1,0), 则由cos 60°=|m·n ||m ||n |,得1a 2+2=12,即a =2,故AD = 2. 答案: 23.如图,在正四棱锥S -ABCD 中,O 为顶点在底面上的射影,P 为侧棱SD 的中点,且SO =OD ,则直线BC 与平面P AC 所成角为________.解析:如图所示,以O 为原点建立空间直角坐标系O -xyz .设OD =SO =OA =OB =OC =a ,则A (a,0,0),B (0,a,0),C (-a,0,0),P ⎝⎛⎭⎫0,-a 2,a2. 则CA =(2a,0,0),AP =⎝⎛⎭⎫-a ,-a 2,a 2,CB =(a ,a,0).设平面P AC 的法向量为n ,可求得n =(0,1,1),则cos 〈CB ,n 〉=CB·n | CB ||n |=a 2a 2·2=12. ∴〈CB,n 〉=60°,∴直线BC 与平面P AC 的夹角为90°-60°=30°. 答案:30°4.(2012·山西模拟)如图,在底面为直角梯形的四棱锥P -ABCD 中,AD ∥BC ,∠ABC =90°,P A ⊥平面ABCD ,P A =3,AD =2,AB =23,BC =6.(1)求证:BD ⊥平面P AC ; (2)求二面角P -BD -A 的大小.解:(1)证明:由题可知,AP 、AD 、AB 两两垂直,则分别以AB 、AD 、AP 所在直线为x 、y 、z 轴建立如图所示的空间直角坐标系,则A (0,0,0),B (23,0,0),C (23,6,0),D (0,2,0),P (0,0,3),∴AP =(0,0,3),AC =(23,6,0),BD=(-23,2,0),∴BD ·AP =0,BD ·AC=0.∴BD ⊥AP ,BD ⊥AC .又P A ∩AC =A ,∴BD ⊥平面P AC .(2)显然平面ABD 的一个法向量为m =(0,0,1),设平面PBD 的法向量为n =(x ,y ,z ),则n ·BD =0,n ·BP =0. 由(1)知,BP=(-23,0,3),∴⎩⎨⎧-23x +2y =0,-23x +3z =0,整理得⎩⎪⎨⎪⎧y =3x ,z =233x .令x =3,则n =(3,3,2), ∴cos 〈m ,n 〉=m ·n |m ||n |=12.∴结合图形可知二面角P -BD -A 的大小为60°.5.(2012·辽宁高考)如图,直三棱柱ABC -A ′B ′C ′,∠BAC=90°,AB =AC =λAA ′,点M ,N 分别为A ′B 和B ′C ′的中点.(1)证明:MN ∥平面A ′ACC ′;(2)若二面角A ′-MN -C 为直二面角,求λ的值.解:(1)法一:证明:如图,连接AB ′,AC ′,由已知∠BAC =90°,AB =AC ,三棱柱ABC -A ′B ′C ′为直三棱柱,所以M 为AB ′中点.又因为N 为B ′C ′的中点, 所以MN ∥AC ′. 又MN ⊄平面A ′ACC ′, A ′C ⊂平面A ′ACC ′, 所以MN ∥平面A ′ACC ′.法二:证明:取A ′B ′ 中点P ,连接MP ,NP ,而M ,N 分别为AB ′与B ′C ′的中点,所以MP ∥AA ′,PN ∥A ′C ′, 所以MP ∥平面A ′ACC ′,PN ∥平面A ′ACC ′. 又MP ∩NP =P ,因此平面MPN ∥平面A ′ACC ′.而MN ⊂平面MPN , 因此MN ∥平面A ′ACC ′.(2)以A 为坐标原点,分别以直线AB ,AC ,AA ′为x 轴,y 轴,z 轴建立空间直角坐标系O -xyz ,如图所示.设AA ′=1,则AB =AC =λ,于是A (0,0,0),B (λ,0,0),C (0,λ,0),A ′(0,0,1), B ′(λ,0,1),C ′(0,λ,1), 所以M ⎝⎛⎭⎫λ2,0,12,N ⎝⎛⎭⎫λ2,λ2,1. 设m =(x 1,y 1,z 1)是平面A ′MN 的法向量, 由⎩⎨⎧m ·A M ' =0,m ·MN=0,得⎩⎨⎧λ2x 1-12z 1=0,λ2y 1+12z 1=0,可取m =(1,-1,λ).设n =(x 2,y 2,z 2)是平面MNC 的法向量, 由⎩⎨⎧n ·NC =0,n ·MN=0,得⎩⎨⎧-λ2x 2+λ2y 2-z 2=0,λ2y 2+12z 2=0,可取n =(-3,-1,λ).因为A ′-MN -C 为直二面角,所以m·n =0, 即-3+(-1)×(-1)+λ2=0,解得λ=2(负值舍去).6.如图1,在Rt △ABC 中,∠C =90°,BC =3,AC =6,D ,E 分别是AC ,AB 上的点,且DE ∥BC ,DE =2.将△ADE 沿DE 折起到△A 1DE 的位置,使A 1C ⊥CD ,如图2.(1)求证:A 1C ⊥平面BCDE ;(2)若M 是A 1D 的中点,求CM 与平面A 1BE 所成角的大小;(3)线段BC 上是否存在点P ,使平面A 1DP 与平面A 1BE 垂直?说明理由. 解:(1)证明:因为AC ⊥BC ,DE ∥BC , 所以DE ⊥AC .所以ED ⊥A 1D ,DE ⊥CD ,所以DE ⊥平面A 1DC . 所以DE ⊥A 1C . 又因为A 1C ⊥CD . 所以A 1C ⊥平面BCDE .(2)如图,以C 为坐标原点,建立空间直角坐标系C -xyz ,则A 1(0,0,23),D (0,2,0),M (0,1, 3),B (3,0,0),E (2,2,0).设平面A 1BE 的法向量为n =(x ,y ,z ),则n ·1A B =0,n ·BE =0.又1A B(3,0-= (-1,2,0), 所以⎩⎨⎧3x -23z =0,-x +2y =0.令y =1,则x =2,z = 3. 所以n =(2,1,3).设CM 与平面A 1BE 所成的角为θ.因为CM=所以sin θ=|cos 〈n , CM 〉|=|n ·CM|n ||CM ||=48×4=22. 所以CM 与平面A 1BE 所成角的大小为π4.(3)线段BC 上不存在点P ,使平面A 1DP 与平面A 1BE 垂直,理由如下:假设这样的点P 存在,设其坐标为(p,0,0),其中p ∈[0,3].设平面A 1DP 的法向量为m =(x ,y ,z ),则m ·1A D =0,m ·DP =0. 又1A D =(0,2,-23),DP=(p ,-2,0), 所以⎩⎨⎧2y -2 3z =0,px -2y =0.令x =2,则y =p ,z =p 3. 所以m =(2,p ,p 3). 平面A 1DP ⊥平面A 1BE ,当且仅当m ·n =0, 即4+p +p =0.解得p =-2,与p ∈[0,3]矛盾.所以线段BC 上不存在点P ,使平面A 1DP 与平面A 1BE 垂直.1.(2013·湖北模拟)如图所示,四棱锥P -ABCD 中,底面ABCD为正方形,PD ⊥平面ABCD ,PD =AB =2,E 、F 、G 分别为PC 、PD 、BC 的中点.(1)求证:P A ⊥EF ;(2)求二面角D -FG -E 的余弦值.解:以D 为坐标原点,建立如图所示的空间直角坐标系D -xyz ,则D (0,0,0),A (0,2,0),C (-2,0,0),P (0,0,2),E (-1,0,1),F (0,0,1),G (-2,1,0).(1)证明:由于PA =(0,2,-2),EF =(1,0,0),则PA ·EF=1×0+0×2+(-2)×0=0,∴P A ⊥EF .(2)易知DF =(0,0,1),EF=(1,0,0),FG =(-2,1,-1),设平面DFG 的法向量m =(x 1,y 1,z 1),则⎩⎨⎧m ·DF =0,m ·FG=0,解得⎩⎪⎨⎪⎧z 1=0,-2x 1+y 1-z 1=0. 令x 1=1,得m =(1,2,0)是平面DFG 的一个法向量. 设平面EFG 的法向量n =(x 2,y 2,z 2), 同理可得n =(0,1,1)是平面EFG 的一个法向量. ∵cos 〈m ,n 〉=m ·n |m |·|n |=25·2=210=105,设二面角D -FG -E 的平面角为θ,由图可知θ=π-〈m ,n 〉, ∴cos θ=-105, ∴二面角D -FG -E 的余弦值为-105. 2.(2012·北京西城模拟)如图,在直三棱柱ABC -A1B 1C 1中,AB =BC =2AA 1,∠ABC =90°,D 是BC 的中点.(1)求证:A 1B ∥平面ADC 1; (2)求二面角C 1-AD -C 的余弦值;(3)试问线段A 1B 1上是否存在点E ,使AE 与DC 1成60°角?若存在,确定E 点位置;若不存在,说明理由.解:(1)证明:连接A 1C ,交AC 1于点O ,连接OD .由ABC -A 1B 1C 1是直三棱柱,得四边形ACC 1A 1为矩形,O 为A 1C 的中点.又D 为BC 的中点,所以OD 为△A 1BC 的中位线, 所以A 1B ∥OD ,因为OD ⊂平面ADC 1,A 1B ⊄平面ADC 1, 所以A 1B ∥平面ADC 1.(2)由ABC -A 1B 1C 1是直三棱柱,且∠ABC =90°,得BA ,BC ,BB 1两两垂直.以BC ,BA ,BB 1所在直线分别为x ,y ,z 轴,建立如图所示的空间直角坐标系B -xyz . 设BA =2,则B (0,0,0),C (2,0,0),A (0,2,0),C 1(2,0,1),D (1,0,0),所以AD=(1,-2,0),1AC =(2,-2,1).设平面ADC 1的法向量为n =(x ,y ,z ),则有⎩⎪⎨⎪⎧n ·AD =0,n ·1AC =0.所以⎩⎪⎨⎪⎧x -2y =0,2x -2y +z =0.取y =1,得n =(2,1,-2).易知平面ADC 的一个法向量为v =(0,0,1). 所以cos 〈n ,v 〉=n ·v |n |·|v |=-23.因为二面角C 1-AD -C 是锐二面角, 所以二面角C 1-AD -C 的余弦值为23.(3)假设存在满足条件的点E .因为点E 在线段A 1B 1上,A 1(0,2,1),B 1(0,0,1), 故可设E (0,λ,1),其中0≤λ≤2.所以AE=(0,λ-2,1),1DC =(1,0,1).因为AE 与DC 1成60°角,所以|cos 〈AE ,1DC 〉|=⎪⎪⎪⎪⎪⎪⎪⎪AE ·1DC|AE |·|1DC |=12. 即⎪⎪⎪⎪⎪⎪1(λ-2)2+1·2=12,解得λ=1或λ=3(舍去).所以当点E 为线段A 1B 1的中点时,AE 与DC 1成60°角.1.(2012·北京东城模拟)如图,四边形ABCD 为正方形,PD⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .(1)证明:平面PQC ⊥平面DCQ ; (2)求二面角Q -BP -C 的余弦值.解:(1)证明:如图,以D 为坐标原点,DA 、DP 、DC 所在的直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系D -xyz .设DA =1,则有D (0,0,0),Q (1,1,0),C (0,0,1),P (0,2,0),所以DQ =(1,1,0),DC =(0,0,1),PQ=(1,-1,0),所以PQ ·DQ =0,PQ ·DC =0,即PQ ⊥DQ ,PQ ⊥DC .又DQ ⊂平面DCQ ,DC ⊂平面DCQ ,且DQ ∩DC =D , 所以PQ ⊥平面DCQ .又PQ ⊂平面PQC ,所以平面PQC ⊥平面DCQ .(2)由(1)易知B (1,0,1),CB =(1,0,0),BP=(-1,2,-1).设n =(x ,y ,z )是平面PBC 的法向量,则⎩⎨⎧n ·CB =0,n ·BP=0, 即⎩⎪⎨⎪⎧x =0,-x +2y -z =0,可取n =(0,-1,-2). 设m =(x 1,y 1,z 1)是平面PBQ 的法向量,则⎩⎪⎨⎪⎧m ·BP=0,m ·PQ =0, 即⎩⎪⎨⎪⎧-x 1+2y 1-z 1=0,x 1-y 1=0,可取m =(1,1,1). 所以cos 〈m ,n 〉=-155, 故二面角Q -BP -C 的余弦值为-155. 2.(2012·天津高考)如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AC ⊥AD ,AB ⊥BC ,∠BAC =45°,P A =AD =2,AC =1.(1)证明PC ⊥AD ;(2)求二面角A -PC -D 的正弦值;(3)设E 为棱P A 上的点,满足异面直线BE 与CD 所成的角为30°,求AE 的长.解:如图,以点A 为原点建立空间直角坐标系,依题意得A (0,0,0),D (2,0,0),C (0,1,0),B ⎝⎛-12,⎭⎫12,0,P (0,0,2).(1)证明:易得PC=(0,1,-2), AD=(2,0,0),于是PC ·AD=0,所以PC ⊥AD .(2) PC =(0,1,-2),CD=(2,-1,0).设平面PCD 的法向量n =(x ,y ,z ),则⎩⎨⎧n ·PC=0,n ·CD=0,即⎩⎪⎨⎪⎧y -2z =0,2x -y =0.不妨令z =1, 可得n =(1,2,1).可取平面P AC 的法向量m =(1,0,0). 于是cos 〈m ,n 〉=m·n|m |·|n |=16=66,从而sin 〈m ,n 〉=306. 所以二面角A -PC -D 的正弦值为306. (3)设点E 的坐标为(0,0,h ),其中h ∈[0,2].由此得BE =⎝⎛⎭⎫12,-12,h .由CD =(2,-1,0),故cos 〈BE ,CD 〉=BE ·CD|BE|·|CD |=3212+h 2×5=310+20h 2,所以310+20h 2=cos 30°=32,解得h =1010,即AE =1010. 3.如图,在长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB =2.(1)证明:当点E 在棱AB 上移动时,D 1E ⊥A 1D ; (2)在棱AB 上是否存在点E ,使二面角D 1-EC -D 的平面角为π6?若存在,求出AE 的长;若不存在,请说明理由.解:以D 为原点,DA 、DC 、DD 1所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,则D (0,0,0),C (0,2,0),A 1(1,0,1),D 1(0,0,1).设E (1,y 0,0)(0≤y 0≤2).(1)证明:∵1D E =(1,y 0,-1),1A D=(-1,0,-1), 则1D E ·1A D=(1,y 0,-1)·(-1,0,-1)=0, ∴1D E⊥1A D,即D 1E ⊥A 1D .(2)当AE =2-33时,二面角D 1-EC -D 的平面角为π6. ∵EC =(-1,2-y 0,0),1D C=(0,2,-1),设平面D 1EC 的一个法向量为n 1=(x ,y ,z ),则⎩⎪⎨⎪⎧n 1·EC =0,n 1·1D C =0⇒⎩⎪⎨⎪⎧-x +y (2-y 0)=0,2y -z =0.取y =1,则n 1=(2-y 0,1,2)是平面D 1EC 的一个法向量.而平面ECD 的一个法向量为n 2=1DD =(0,0,1),要使二面角D 1-EC -D 的平面角为π6,则cos π6=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1|·|n 2|=2(2-y 0)2+12+22=32,解得y 0=2-33(0≤y 0≤2). ∴当AE =2-33时,二面角D 1-EC -D 的平面角为π6. 4.(2012·湖北模拟)在直三棱柱ABC -A 1B 1C 1中,AB =AC =1,∠BAC =90°.(1)若异面直线A 1B 与B 1C 1所成的角为60°,求棱柱的高; (2)设D 是BB 1的中点,DC 1与平面A 1BC 1所成的角为θ,当棱柱的高变化时,求sin θ的最大值.解:建立如图所示的空间直角坐标系A -xyz ,设AA 1=h (h >0),则有B (1,0,0),B 1(1,0,h ),C 1(0,1,h ),A 1(0,0,h ),11B C =(-1,1,0),11A C =(0,1,0),1A B=(1,0,-h ). (1)因为异面直线A 1B 与B 1C 1所成的角为60°,所以cos60°=|11B C ·1A B ||11B C |·|1A B |, 即12·h 2+1=12,得1+h 2=2,解得h =1. (2)由D 是BB 1的中点,得D ⎝⎛⎭⎫1,0,h 2, 于是1DC =⎝⎛⎭⎫-1,1,h2. 设平面A 1BC 1的法向量为n =(x ,y ,z ),于是由n ⊥1A B ,n ⊥11A C可得⎩⎪⎨⎪⎧n ·1A B =0,n ·11A C=0,即⎩⎪⎨⎪⎧x -hz =0,y =0,可取n =(h,0,1),故sin θ=|cos 〈1DC,n 〉|,而|cos 〈1DC ,n 〉|=|1DC·n ||1DC |·|n |=⎪⎪⎪⎪-h +h 214h 2+2·h 2+1=hh 4+9h 2+8.令f (h )=hh 4+9h 2+8=1h 2+8h2+9,因为h 2+8h 2+9≥28+9,当且仅当h 2=8h 2,即h =48时,等号成立.所以f (h )≤19+28=18+1=22-17,故当h =48时,sin θ的最大值为22-17.立 体 几 何(时间:120分钟,满分150分)一、选择题(本题共12小题,每小题5分,共60分)1.(2012·重庆模拟)若两条直线和一个平面相交成等角,则这两条直线的位置关系是( )A .平行B .异面C .相交D .平行、异面或相交解析:选D 经验证,当平行、异面或相交时,均有两条直线和一个平面相交成等角的情况出现.2.(2012·福建高考)一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是( )A .球B .三棱锥C .正方体D .圆柱解析:选D 球、正方体的三视图形状都相同,大小均相等,首先排除选项A 和C.对于如图所示三棱锥O -ABC ,当OA 、OB 、OC 两两垂直且OA =OB =OC 时,其三视图的形状都相同,大小均相等,故排除选项B.不论圆柱如何放置,其三视图的形状都不会完全相同. 3.(2012·安徽模拟)在空间,下列命题正确的是( ) A .若三条直线两两相交,则这三条直线确定一个平面 B .若直线m 与平面α内的一条直线平行,则m ∥αC .若平面α⊥β,且α∩β=l ,则过α内一点P 与l 垂直的直线垂直于平面βD .若直线a ∥b ,且直线l ⊥a ,则l ⊥b解析:选D 三条直线两两相交,可确定一个平面或三个平面,故A 错;m 与平面α内一条直线平行,m 也可在α内,故B 错;若平面α⊥β,且α∩β=l ,当P ∈l 时,过P 点与l 垂直的直线可在β外,也可在β内,故C 错.由等角定理知D 正确.4.(2012·新课标全国卷)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为( )A.6πB .43πC .46πD .63π解析:选B 设球的半径为R ,由球的截面性质得R =(2)2+12=3,所以球的体积V =43πR 3=43π.5.(2012·北京海淀二模)某几何体的正视图与俯视图如图所示,侧视图与正视图相同,且图中的四边形都是边长为2的正方形,两条虚线互相垂直,则该几何体的体积是( )A.203 B.43 C .6D .4解析:选A 由三视图知,该几何体是正方体挖去一个以正方体的中心为顶点、以正方体的上底面为底面的四棱锥后的剩余部分,其体积是23-13×22×1=203.6.(2013·安徽模拟)沿一个正方体三个面的对角线截得的几何体如图所示,则该几何体的侧视图为( )解析:选B 由三视图的相关知识易知选B.7.正方体ABCD -A 1B 1C 1D 1中,与体对角线AC 1异面的棱有( ) A .3条 B .4条 C .6条D .8条解析:选C 从定义出发,同时考虑到正方体的体对角线AC 1与正方体的6条棱有公共点A 和C 1,而正方体有12条棱,所以与AC 1异面的棱有6条.8.(2012·衡阳模拟)如图,一个空间几何体的正视图和侧视图都是边长为1的正三角形,俯视图是一个圆,那么这个几何体的侧面积为( )A.π4B.π2C.2π2D.2π4 解析:选B 此几何体是底面半径为12,母线长为1的圆锥,其侧面积S =πrl =π×12×1=π2. 9.如图,在正方体ABCD -A1B 1C 1D 1中,M ,N 分别是BC 1,CD 1的中点,则下列判断错误的是( )A .MN 与CC 1垂直B .MN 与AC 垂直C .MN 与BD 平行D .MN 与A 1B 1平行解析:选D 由于C 1D 1与A 1B 1平行,MN 与C 1D 1是异面直线,所以MN 与A 1B 1是异面直线,故选项D 错误.10.(2012·皖南八校三联)某几何体的三视图如图所示(单位:cm),则此几何体的体积为( )A .18 cm 3B .15 cm 3C .12 cm 3D .9 cm 3解析:选B 由三视图可知,该几何体是一个上下均为长方体的组合体.如图所示,由图中数据可得该几何体体积为3×3×1+1×2×3=15(cm 3).11.在正四面体A -BCD 中,棱长为4,M 是BC 的中点,P 在线段AM 上运动(P 不与A 、M 重合),过点P 作直线l ⊥平面ABC ,l 与平面BCD 交于点Q ,给出下列命题:①BC ⊥面AMD ;②Q 点一定在直线DM 上;③V C -AMD =4 2.其中正确的是( )A .①②B .①③C .②③D .①②③解析:选A ∵A -BCD 是正四面体,M 为BC 中点,∴AM ⊥BC ,DM ⊥BC ,且AM ∩DM =M ,∴BC ⊥面AMD .∴①正确.V C -AMD =13S △AMD ·CM (∵BC ⊥面AMD ,∴CM 为四面体C -AMD 的高). 如图,在△AMD 中,AM =DM =AB 2-BM 2=42-22=23,MN =AM 2-AN 2=12-22=22,∴S △AMD =12AD ·MN =12×4×22=42, ∴V C -AMD =13×42×2=823,故③不正确.由排除法知选A. 12.(2012·浙江高考)已知矩形ABCD ,AB =1,BC = 2.将△ABD 沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中,( )A .存在某个位置,使得直线AC 与直线BD 垂直B .存在某个位置,使得直线AB 与直线CD 垂直C .存在某个位置,使得直线AD 与直线BC 垂直D .对任意位置,三对直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直 解析:选B 对于AB ⊥CD ,因为BC ⊥CD ,可得CD ⊥平面ACB ,因此有CD ⊥AC .因为AB =1,BC =2,CD =1,所以AC =1,所以存在某个位置,使得AB ⊥CD .二、填空题(本题共4小题,每小题5分,共20分)13.(2012·肇庆二模)已知某几何体的三视图如图所示,则该几何体的表面积和体积分别为________,________.解析:由三视图可知,该几何体的下部是一底边长为2,高为4的长方体,上部为一球,球的直径等于正方形的边长.所以长方体的表面积为S 1=2×2×2+4×2×4=40,长方体的体积为V 1=2×2×4=16,球的表面积和体积分别为S 2=4×π×12=4π,V 2=43×π×13=4π3, 故该几何体的表面积为S =S 1+S 2=40+4π,该几何体的体积为V =V 1+V 2=16+4π3.答案:40+4π 16+4π314. (2012·北京怀柔模拟)P 为△ABC 所在平面外一点,且P A 、PB 、PC 两两垂直,则下列命题:①P A ⊥BC ;②PB ⊥AC ;③PC ⊥AB ;④AB ⊥BC .其中正确的个数是________.解析:如图所示.∵P A ⊥PC ,P A ⊥PB ,PC ∩PB =P ,∴P A ⊥平面PBC .又∵BC ⊂平面PBC ,∴P A ⊥BC .同理PB ⊥AC ,PC ⊥AB .但AB 不一定垂直于BC .共3个.答案:315.已知正三棱柱ABC -A 1B 1C 1的所有棱长都等于6,且各顶点都在同一球面上,则此球的表面积等于________.解析:如图,三棱柱的外接球球心为O ,其中D 为上底面三角形外接圆的圆心,其中AD =33×6=23,又OD =3,故在Rt △OAD 中可得R =|OA |=(23)2+32=21,故球的表面积为4π(21)2=84π.答案:84π16.(2012·长春名校联考)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,点M ∈AB 1,N ∈BC 1,且AM =BN ≠2,有以下四个命题:①AA 1⊥MN ;②A 1C 1∥MN ;③MN ∥平面A 1B 1C 1D 1;④MN 与A 1C 1是异面直线.其中正确命题的序号是________.(注:把你认为正确命题的序号都填上)解析:过N 作NP ⊥BB 1于点P ,连接MP ,可证AA 1⊥平面MNP ,∴AA 1⊥MN ,①正确;过M 、N 分别作MR ⊥A 1B 1、NS ⊥B 1C 1于点R 、S ,则当M 不是AB 1的中点,N 不是BC 1的中点时,直线A 1C 1与直线RS 相交;当M 、N 分别是AB 1、BC 1的中点时,A 1C 1∥RS ,∴A 1C 1与MN 可以异面,也可以平行,故②④错误.由①正确知,AA 1⊥平面MNP ,而AA 1⊥平面A 1B 1C 1D 1,∴平面MNP ∥平面A 1B 1C 1D 1,故③对.综上所述,其中正确命题的序号是①③.答案:①③三、解答题(本大题有6小题,共70分)17.(本小题满分10分)(2012·陕西高考)在直三棱柱ABC -A 1B 1C 1中,AB =AA 1,∠CAB =π2. (1)证明:CB 1⊥BA 1;(2)已知AB =2,BC =5,求三棱锥C 1-ABA 1的体积.解:(1)证明:如图所示,连接AB 1,∵ABC -A 1B 1C 1是直三棱柱,∠CAB =π2, ∴AC ⊥平面ABB 1A 1,故AC ⊥BA 1.又∵AB =AA 1,∴四边形ABB 1A 1是正方形,∴BA 1⊥AB 1,又CA ∩AB 1=A ,∴BA 1⊥平面CAB 1,故CB 1⊥BA 1.(2)∵AB =AA 1=2,BC =5,∴AC =A 1C 1=1,由(1)知,A 1C 1⊥平面ABA 1,∴VC 1-ABA 1=13S △ABA 1·A 1C 1=13×2×1=23. 18.(本小题满分12分) (12分)如图所示,四棱锥P -ABCD 的底面是边长为a 的正方形,侧棱P A ⊥底面ABCD ,侧面PBC 内有BE ⊥PC于E ,且BE =63a ,试在AB 上找一点F ,使EF ∥平面P AD . 解:在平面PCD 内,过E 作EG ∥CD 交PD 于G ,连接AG ,在AB 上取点F ,使AF =EG ,则F 即为所求作的点.∵EG ∥CD ∥AF ,EG =AF ,∴四边形FEGA 为平行四边形,∴FE ∥AG .又AG ⊂平面P AD ,FE ⊄平面P AD ,∴EF ∥平面P AD .又在Rt △BCE 中, CE =BC 2-BE 2= a 2-23a 2=33a . 在Rt △PBC 中,BC 2=CE ·CP ,∴CP =a 23a3=3a , 又EG CD =PE PC, ∴EG =PE PC ·CD =23a ,∴AF =EG =23a . ∴点F 为AB 靠近点B 的一个三等分点.19.(本小题满分12分) (12分)(2012·新课标全国卷)如图,在三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB =90°,AC =BC =12AA 1,D 是棱AA 1的中点.(1)证明:平面BDC 1⊥平面BDC ;(2)平面BDC 1分此棱柱为两部分,求这两部分体积的比.解:(1)证明:由题设知BC ⊥CC 1,BC ⊥AC ,CC 1∩AC =C ,所以BC ⊥平面ACC 1A 1.又DC 1⊂平面ACC 1A 1,所以DC 1⊥BC .由题设知∠A 1DC 1=∠ADC =45°,所以∠CDC 1=90°,即DC 1⊥DC .又DC ∩BC =C ,所以DC 1⊥平面BDC .又DC 1⊂平面BDC 1,故平面BDC 1⊥平面BDC .(2)设棱锥B -DACC 1的体积为V 1,AC =1.由题意得V 1=13×1+22×1×1=12. 又三棱柱ABC -A 1B 1C 1的体积V =1,所以(V -V 1)∶V 1=1∶1.故平面BDC 1分此棱柱所得两部分体积的比为1∶1.20.(本小题满分12分) (12分)(2012·安徽高考)如图,长方体ABCD -A 1B 1C 1D 1中,底面A 1B 1C 1D 1是正方形,O 是BD 的中点,E 是棱AA 1上任意一点.(1)证明:BD ⊥EC 1;(2)如果AB =2,AE =2,OE ⊥EC 1,求AA 1的长.解:(1)证明:连接AC ,A 1C 1.由底面是正方形知,BD ⊥AC .因为AA 1⊥平面ABCD ,BD ⊂平面ABCD ,所以AA 1⊥BD .又AA 1∩AC =A ,所以BD ⊥平面AA 1C 1C .由EC 1⊂平面AA 1C 1C 知,BD ⊥EC 1.(2)法一:设AA 1的长为h ,连接OC 1.在Rt △OAE 中,AE =2,AO =2,故OE 2=(2)2+(2)2=4.故Rt△EA1C1中,A1E=h-2,A1C1=22,故EC21=(h-2)2+(22)2.在Rt△OCC1中,OC=2,CC1=h,OC21=h2+(2)2. 因为OE⊥EC1,所以OE2+EC21=OC21,即4+(h-2)2+(22)2=h2+(2)2,解得h=32,所以AA1的长为3 2.法二:∵OE⊥EC1,∴∠AEO+∠A1EC1=90°.又∵∠A1C1E+∠A1EC1=90°,∴∠AEO=∠A1C1E.又∵∠OAE=∠C1A1E=90°,∴△OAE∽△EA1C1,∴AEA1C1=AOA1E,即222=2A1E,∴A1E=22,∴AA1=AE+A1E=3 2.21.(本小题满分12分) (12分)(2012·郑州一模)如图,在四棱锥S-ABCD中,AB⊥AD,AB∥CD,CD=3AB=3,平面SAD⊥平面ABCD,E是线段AD上一点,AE=ED=3,SE⊥AD.(1)证明:平面SBE⊥平面SEC;(2)若SE=1,求三棱锥E-SBC的高.解:(1)证明:∵平面SAD⊥平面ABCD且平面SAD∩平面ABCD=AD,SE⊂平面SAD,SE⊥AD,∴SE⊥平面ABCD.∵BE⊂平面ABCD,∴SE⊥BE.∵AB⊥AD,AB∥CD,CD=3AB=3,AE=ED=3,∴∠AEB=30°,∠CED=60°.∴∠BEC=90°,即BE⊥CE.又SE∩CE=E,,∴BE⊥平面SEC,∵BE⊂平面SBE,∴平面SBE⊥平面SEC.(2)如图,过点E作EF⊥BC于点F,连接SF.由(1)知SE⊥平面ABCD,而BC ⊂平面ABCD ,∴BC ⊥SE ,又SE ∩EF =E ,∴BC ⊥平面SEF ,∵BC ⊂平面SBC ,∴平面SEF ⊥平面SBC .过点E 作EG ⊥SF 于点G ,则EG ⊥平面SBC ,即线段EG 的长即为三棱锥E -SBC 的高. 由(1)易知,BE =2,CE =23,则BC =4,EF = 3.在Rt △SEF 中,SE =1,SF =SE 2+EF 2=2,则EG =ES ·EF SF =32,∴三棱锥E -SBC 的高为32.22.(本小题满分12分) (14分)(2012·北京昌平二模)在正四棱柱ABCD -A 1B 1C 1D 1中,E 为AD 的中点,F 为B 1C 1的中点.(1)求证:A 1F ∥平面ECC 1;(2)在CD 上是否存在一点G ,使BG ⊥平面ECC 1?若存在,请确定点G 的位置,并证明你的结论;若不存在,请说明理由.解:(1)证明:在正四棱柱ABCD -A 1B 1C 1D 1中,取BC 的中点M ,连接AM ,FM .∴B 1F ∥BM 且B 1F =BM .∴四边形B 1FMB 是平行四边形.∴FM ∥B 1B 且FM =B 1B .∴FM ∥A 1A 且FM =A 1A ,∴四边形AA 1FM 是平行四边形.∴F A 1∥AM .∵E 为AD 的中点,∴AE ∥MC 且AE =MC .∴四边形AMCE 是平行四边形.∴CE ∥AM .∴CE ∥A 1F .∵A 1F ⊄平面ECC 1,EC ⊂平面ECC 1,∴A 1F ∥平面ECC 1.(2)在CD上存在一点G,使BG⊥平面ECC1.取CD的中点G,连接BG.在正方形ABCD中,DE=GC,CD=BC,∠ADC=∠BCD,∴△CDE≌△BCG.∴∠ECD=∠GBC.∵∠CGB+∠GBC=90°,∴∠CGB+∠DCE=90°.∴BG⊥EC.∵CC1⊥平面ABCD,BG⊂平面ABCD,∴CC1⊥BG,又EC∩CC1=C,∴BG⊥平面ECC1.故在CD上存在中点G,使得BG⊥平面ECC1.。

2014届高考理科数学第一轮复习导学案42

2014届高考理科数学第一轮复习导学案42

学案44 利用向量方法求空间角导学目标: 1.掌握各种空间角的定义,弄清它们各自的取值范围.2.掌握异面直线所成的角,二面角的平面角,直线与平面所成的角的联系和区别,体会求空间角中的转化思想.自主梳理1.两条异面直线的夹角①定义:设a ,b 是两条异面直线,在直线a 上任取一点作直线a ′∥b ,则a ′与a 的夹角叫做a 与b 的夹角.②范围:两异面直线夹角θ的取值范围是_______________________________________.③向量求法:设直线a ,b 的方向向量为a ,b ,其夹角为φ,则有cos θ=________=_______________.2.直线与平面的夹角①定义:直线和平面的夹角,是指直线与它在这个平面内的射影的夹角.②范围:直线和平面夹角θ的取值范围是______________________________________.③向量求法:设直线l 的方向向量为a ,平面的法向量为u ,直线与平面所成的角为θ,a 与u 的夹角为φ,则有sin θ=|cos φ|或cos θ=sin φ.3.二面角(1)二面角的取值范围是____________. (2)二面角的向量求法:①若AB 、CD 分别是二面角α—l —β的两个面内与棱l 垂直的异面直线,则二面角的大小就是向量AB→与CD →的夹角(如图①).②设n 1,n 2分别是二面角α—l —β的两个面α,β的法向量,则向量n 1与n 2的夹角(或其补角)的大小就是二面角的平面角的大小(如图②③).自我检测1.已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角为________.2.若直线l1,l2的方向向量分别为a=(2,4,-4),b=(-6,9,6),则l1与l2所成的角等于________.3.若直线l的方向向量与平面α的法向量的夹角等于120°,则直线l与平面α所成的角等于________.4.二面角的棱上有A、B两点,直线AC、BD分别在这个二面角的两个半平面内,且都垂直于AB.已知AB=4,AC=6,BD=8,CD=217,则该二面角的大小为___________________________________________________________ _____________.5.(2010·铁岭一模)已知直线AB、CD是异面直线,AC⊥CD,BD⊥CD,且AB=2,CD=1,则异面直线AB与CD所成的角的大小为________.探究点一利用向量法求异面直线所成的角例1已知直三棱柱ABC—A1B1C1,∠ACB=90°,CA=CB=CC1,D为B1C1的中点,求异面直线BD和A1C所成角的余弦值.变式迁移1如图所示,在棱长为a的正方体ABCD—A1B1C1D1中,求异面直线BA1和AC所成的角.探究点二利用向量法求直线与平面所成的角例2如图,已知平面ABCD⊥平面DCEF,M,N分别为AB,DF的中点,求直线MN与平面DCEF所成的角的正弦值.变式迁移2如图所示,在几何体ABCDE中,△ABC是等腰直角三角形,∠ABC=90°,BE和CD都垂直于平面ABC,且BE=AB =2,CD=1,点F是AE的中点.求AB与平面BDF所成的角的正弦值.探究点三利用向量法求二面角例3如图,ABCD是直角梯形,∠BAD=90°,SA⊥平面ABCD,SA=BC=BA=1,AD=12,求面SCD与面SBA所成角的余弦值大小.变式迁移3如图,在三棱锥S—ABC中,侧面SAB与侧面SAC 均为等边三角形,∠BAC=90°,O为BC中点.(1)证明:SO⊥平面ABC;(2)求二面角A—SC—B的余弦值.探究点四综合应用例4如图所示,在三棱锥A—BCD中,侧面ABD、ACD是全等的直角三角形,AD是公共的斜边,且AD=3,BD=CD=1,另一个侧面ABC是正三角形.(1)求证:AD⊥BC;(2)求二面角B-AC-D的余弦值;(3)在线段AC上是否存在一点E,使ED与面BCD成30°角?若存在,确定点E的位置;若不存在,说明理由.变式迁移4 (2011·山东,19)在如图所示的几何体中,四边形ABCD 为平行四边形,∠ACB=90°,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC,AB=2EF.(1)若M是线段AD的中点,求证:GM∥平面ABFE;(2)若AC=BC=2AE,求二面角A-BF-C的大小.1.求两异面直线a、b的所成的角θ,需求出它们的方向向量a,b的夹角,则cos θ=|cos〈a,b〉|.2.求直线l与平面α所成的角θ.可先求出平面α的法向量n与直线l的方向向量a的夹角.则sin θ=|cos〈n,a〉|.3.求二面角α—l—β的大小θ,可先求出两个平面的法向量n1,n2所成的角.则θ=〈n1,n2〉或π-〈n1,n2〉.(满分:90分)一、填空题(每小题6分,共48分)→,1.在正方体ABCD—A1B1C1D1中,M是AB的中点,则sin〈DB1→〉的值等于________.CM2.已知长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是侧棱BB1的中点,则直线AE与平面A1ED1所成的角的大小为________.3.如图,在正四面体ABCD中,E、F分别是BC和AD的中点,则AE与CF所成的角的余弦值为________.4.(2011·南通模拟) 如图所示,在长方体ABCD—A1B1C1D1中,已知B1C,C1D与上底面A1B1C1D1所成的角分别为60°和45°,则异面直线B1C和C1D所成的余弦值为________.5.P是二面角α—AB—β棱上的一点,分别在α、β平面上引射线PM、PN,如果∠BPM=∠BPN=45°,∠MPN=60°,那么二面角α—AB—β的大小为________.6.(2011·无锡模拟)已知正四棱锥P—ABCD的棱长都相等,侧棱PB、PD的中点分别为M、N,则截面AMN与底面ABCD所成的二面角的余弦值是________.7.如图,P A⊥平面ABC,∠ACB=90°且P A=AC=BC=a,则异面直线PB与AC所成角的正切值等于________.8.如图,已知正三棱柱ABC—A1B1C1的所有棱长都相等,D是A1C1的中点,则直线AD与平面B1DC所成的角的正弦值为________.二、解答题(共42分)9.(14分) 如图所示,AF、DE分别是⊙O、⊙O1的直径,AD 与两圆所在的平面均垂直,AD=8.BC是⊙O的直径,AB=AC=6,OE∥AD.(1)求二面角B-AD-F的大小;(2)求直线BD与EF所成的角的余弦值.10.(14分)(2011·大纲全国,19)如图,四棱锥S-ABCD中,AB ∥CD,BC⊥CD,侧面SAB为等边三角形,AB=BC=2,CD=SD=1.(1)证明:SD ⊥平面SAB ;(2)求AB 与平面SBC 所成角的正弦值.11.(14分)(2011·湖北,18)如图,已知正三棱柱ABC -A 1B 1C 1各棱长都是4,E 是BC 的中点,动点F 在侧棱CC 1上,且不与点C 重合.(1)当CF =1时,求证:EF ⊥A 1C ;(2)设二面角C -AF -E 的大小为θ,求tan θ的最小值.学案44 利用向量方法求空间角答案自主梳理1.②⎝ ⎛⎦⎥⎤0,π2 ③|cos φ| ⎪⎪⎪⎪⎪⎪a·b |a|·|b | 2.②⎣⎢⎡⎦⎥⎤0,π2 3.(1)[0,π] 自我检测 1.45°或135° 2.90° 3.30° 4.60° 5.60° 课堂活动区例1 解题导引 (1)求异面直线所成的角,用向量法比较简单,若用基向量法求解,则必须选好空间的一组基向量,若用坐标求解,则一定要将每个点的坐标写正确.(2)用异面直线方向向量求两异面直线夹角时,应注意异面直线所成的角的范围是⎝ ⎛⎦⎥⎤0,π2解如图所示,以C 为原点,直线CA 、CB 、CC 1分别为x 轴、y 轴、z 轴建立空间直角坐标系.设CA =CB =CC 1=2,则A 1(2,0,2),C (0,0,0),B (0,2,0),D (0,1,2), ∴BD →=(0,-1,2),A 1C →=(-2,0,-2),∴cos 〈BD →,A 1C →〉=BD →·A 1C →|BD →||A 1C →|=-105.∴异面直线BD 与A 1C 所成角的余弦值为105.变式迁移1 解 ∵BA 1→=BA →+BB 1→,AC →=AB →+BC →, ∴BA 1→·AC →=(BA →+BB 1→)·(AB→+BC →) =BA →·AB →+BA →·BC →+BB 1→·AB →+BB 1→·BC →. ∵AB ⊥BC ,BB 1⊥AB ,BB 1⊥BC , ∴BA →·BC →=0,BB 1→·AB→=0, BB 1→·BC →=0,BA →·AB →=-a 2, ∴BA 1→·AC→=-a 2. 又BA 1→·AC →=|BA 1→|·|AC →|·cos 〈BA 1→,AC →〉, ∴cos 〈BA 1→,AC →〉=-a 22a ×2a=-12. ∴〈BA 1→,AC →〉=120°.∴异面直线BA 1与AC 所成的角为60°.例2 解题导引 在用向量法求直线OP 与α所成的角(O ∈α)时,一般有两种途径:一是直接求〈OP →,OP ′→〉,其中OP ′为斜线OP 在平面α内的射影;二是通过求〈n ,OP→〉进而转化求解,其中n 为平面α的法向量.解设正方形ABCD ,DCEF 的边长为2,以D 为坐标原点,分别以射线DC ,DF ,DA 为x ,y ,z 轴正半轴建立空间直角坐标系如图.则M (1,0,2),N (0,1,0),可得MN→=(-1,1,-2). 又DA→=(0,0,2)为平面DCEF 的法向量, 可得cos 〈MN →,DA →〉=MN →·DA →|MN →||DA →|=-63.所以MN 与平面DCEF 所成的角的正弦值为 |cos 〈MN →,DA →〉|=63.变式迁移2 解 以点B 为原点,BA 、BC 、BE 所在的直线分别为x ,y ,z 轴,建立如图所示的空间直角坐标系,则B (0,0,0),A (2,0,0),C (0,2,0),D (0,2,1),E (0,0,2),F (1,0,1). ∴BD→=(0,2,1),DF →=(1,-2,0). 设平面BDF 的一个法向量为 n =(2,a ,b ),∵n ⊥DF →,n ⊥BD →, ∴⎩⎨⎧n ·DF →=0,n ·BD→=0.即⎩⎪⎨⎪⎧(2,a ,b )·(1,-2,0)=0,(2,a ,b )·(0,2,1)=0. 解得a =1,b =-2.∴n =(2,1,-2).设AB 与平面BDF 所成的角为θ,则法向量n 与BA →的夹角为π2-θ,∴cos ⎝ ⎛⎭⎪⎫π2-θ=BA →·n |BA →||n |=(2,0,0)·(2,1,-2)2×3=23, 即sin θ=23,故AB 与平面BDF 所成的角的正弦值为23.例3 解题导引 图中面SCD 与面SBA 所成的二面角没有明显的公共棱,考虑到易于建系,从而借助平面的法向量来求解.解建系如图,则A (0,0,0), D ⎝ ⎛⎭⎪⎫12,0,0,C (1,1,0), B (0,1,0),S (0,0,1), ∴AS→=(0,0,1),SC →=(1,1,-1), SD →=⎝⎛⎭⎪⎫12,0,-1,AB →=(0,1,0),AD →=⎝⎛⎭⎪⎫12,0,0. ∴AD →·AS →=0,AD →·AB→=0. ∴AD →是面SAB 的法向量,设平面SCD 的法向量为n =(x ,y ,z ), 则有n ·SC →=0且n ·SD →=0. 即⎩⎨⎧x +y -z =0,12x -z =0.令z =1,则x =2,y =-1. ∴n =(2,-1,1). ∴cos 〈n ,AD →〉=n ·AD →|n ||AD →|=2×126×12=63. 故面SCD 与面SBA 所成的二面角的余弦值为63.变式迁移3 (1)证明 由题设AB =AC =SB =SC =SA .连结OA ,△ABC 为等腰直角三角形,所以OA =OB =OC =22SA , 且AO ⊥BC .又△SBC 为等腰三角形,故SO ⊥BC ,且SO =22SA . 从而OA 2+SO 2=SA 2,所以△SOA 为直角三角形,SO ⊥AO . 又AO ∩BC =O ,所以SO ⊥平面ABC . (2)解以O 为坐标原点,射线OB 、OA 、OS 分别为x 轴、y 轴、z 轴的正半轴,建立如图的空间直角坐标系O -xyz ,如图.设B (1,0,0),则C (-1,0,0), A (0,1,0),S (0,0,1).SC 的中点M ⎝ ⎛⎭⎪⎫-12,0,12,MO →=⎝⎛⎭⎪⎫12,0,-12,MA →=⎝ ⎛⎭⎪⎫12,1,-12, SC→=(-1,0,-1), ∴MO →·SC →=0,MA →·SC→=0. 故MO ⊥SC ,MA ⊥SC ,〈MO →,MA →〉等于二面角A —SC —B 的平面角.cos 〈MO →,MA →〉=MO →·MA →|MO→||MA →|=33, 所以二面角A —SC —B 的余弦值为33.例4 解题导引 立体几何中开放性问题的解决方式往往是通过假设,借助空间向量建立方程,进行求解.(1)证明作AH ⊥面BCD 于H ,连结BH 、CH 、DH ,则四边形BHCD 是正方形,且AH =1,将其补形为如图所示正方体.以D 为原点,建立如图所示空间直角坐标系.则B (1,0,0),C (0,1,0),A (1,1,1). BC→=(-1,1,0),DA →=(1,1,1), ∴BC →·DA→=0,则BC ⊥AD . (2)解 设平面ABC 的法向量为n 1=(x ,y ,z ),则由n 1⊥BC →知:n 1·BC→=-x +y =0, 同理由n 1⊥AC →知:n 1·AC→=-x -z =0, 可取n 1=(1,1,-1),同理,可求得平面ACD 的一个法向量为n 2=(1,0,-1). 由图可以看出,二面角B -AC -D 即为〈n 1,n 2〉,∴cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=1+0+13×2=63.即二面角B -AC -D 的余弦值为63.(3)解 设E (x ,y ,z )是线段AC 上一点,则x =z >0,y =1,平面BCD 的一个法向量为n =(0,0,1),DE→=(x,1,x ),要使ED 与平面BCD 成30°角,由图可知DE→与n 的夹角为60°,所以cos 〈DE →,n 〉=DE →·n |DE →||n |=x 1+2x 2 =cos 60°=12.则2x =1+2x 2,解得x =22,则CE =2x =1.故线段AC 上存在E 点,且CE =1时,ED 与面BCD 成30°. 变式迁移4(1)证明方法一因为EF∥AB,FG∥BC,EG∥AC,∠ACB =90°,所以∠EGF=90°,△ABC∽△EFG.由于AB=2EF,因此BC=2FG.连结AF,由于FG∥BC,FG=12BC,在▱ABCD中,M是线段AD的中点,则AM∥BC,且AM=12BC,因此FG∥AM且FG=AM,所以四边形AFGM为平行四边形,因此GM∥F A.又F A⊂平面ABFE,GM⊄平面ABFE,所以GM∥平面ABFE.方法二因为EF∥AB,FG∥BC,EG∥AC,∠ACB=90°,所以∠EGF=90°,△ABC∽△EFG.由于AB=2EF,所以BC=2FG.取BC的中点N,连结GN,因此四边形BNGF为平行四边形,所以GN∥FB.在▱ABCD中,M是线段AD的中点,连结MN,则MN∥AB.因为MN∩GN=N,所以平面GMN∥平面ABFE.又GM⊂平面GMN,所以GM∥平面ABFE.(2)解 方法一 因为∠ACB =90°,所以∠CAD =90°. 又EA ⊥平面ABCD ,所以AC ,AD ,AE 两两垂直.分别以AC ,AD ,AE 所在直线为x 轴,y 轴和z 轴,建立如图所示的空间直角坐标系,不妨设AC =BC =2AE =2,则由题意得A (0,0,0),B (2,-2,0),C (2,0,0),E (0,0,1),所以AB→=(2,-2,0),BC →=(0,2,0). 又EF =12AB ,所以F (1,-1,1),BF→=(-1,1,1). 设平面BFC 的法向量为m =(x 1,y 1,z 1),则m ·BC →=0,m ·BF→=0, 所以⎩⎪⎨⎪⎧y 1=0,x 1=z 1,取z 1=1,得x 1=1,所以m =(1,0,1).设平面向量ABF 的法向量为n =(x 2,y 2,z 2),则n ·AB →=0,n ·BF →=0,所以⎩⎪⎨⎪⎧x 2=y 2,z 2=0, 取y 2=1,得x 2=1.则n =(1,1,0).所以cos 〈m ,n 〉=m ·n |m |·|n |=12.因此二面角A -BF -C 的大小为60°.方法二 由题意知,平面ABFE ⊥平面ABCD . 取AB 的中点H ,连结CH . 因为AC =BC , 所以CH ⊥AB , 则CH ⊥平面ABFE .过H 向BF 引垂线交BF 于R ,连结CR ,则CR ⊥BF ,所以∠HRC 为二面角A -BF -C 的平面角. 由题意,不妨设AC =BC =2AE =2,在直角梯形ABFE 中,连结FH ,则FH ⊥AB . 又AB =22,所以HF =AE =1,BH =2,因此在Rt △BHF 中,HR =63.由于CH =12AB =2,所以在Rt △CHR 中,tan ∠HRC =263= 3.因此二面角A -BF -C 的大小为60°. 课后练习区 1.21015 2.90°解析 ∵E 是BB 1的中点且AA 1=2,AB =BC =1, ∴∠AEA 1=90°,又在长方体ABCD -A 1B 1C 1D 1中, A 1D 1⊥平面ABB 1A 1,∴A 1D 1⊥AE ,∴AE ⊥平面A 1ED 1. ∴AE 与面A 1ED 1所成的角为90°. 3.23解析 设四面体的棱长为a ,AB →=p ,AC →=q ,AD →=r ,则AE →=12(p +q ),CF →=12(r -2q ).∴AE →·CF →=-12a 2.又|AE →|=|CF →|=32a ,∴cos 〈AE →,CF →〉=AE →,CF →|AE →|·|CF →|=-23. 即AE 和CF 所成角的余弦值为23. 4.645.90° 解析不妨设PM =a ,PN =b ,作ME ⊥AB 于E ,NF ⊥AB 于F , 如图:∵∠EPM =∠FPN =45°,∴PE =22a ,PF =22b , ∴EM →·FN →=(PM →-PE →)·(PN →-PF →) =PM →·PN →-PM →·PF →-PE →·PN →+PE →·PF→ =ab cos 60°-a ×22b cos 45°-22ab cos 45°+22a ×22b =ab 2-ab 2-ab 2+ab2=0, ∴EM →⊥FN →,∴二面角α—AB —β的大小为90°. 6.255解析 如图建立空间直角坐标系,设正四棱锥的棱长为2,则PB =2,OB =1,OP =1. ∴B (1,0,0),D (-1,0,0), A (0,1,0),P (0,0,1),M ⎝ ⎛⎭⎪⎫12,0,12, N ⎝ ⎛⎭⎪⎫-12,0,12, AM →=⎝ ⎛⎭⎪⎫12,-1,12,AN →=⎝ ⎛⎭⎪⎫-12,-1,12,设平面AMN 的法向量为n 1=(x ,y ,z ),由⎩⎪⎨⎪⎧n ·AM →=12x -y +12z =0,n ·AN →=-12x -y +12z =0,解得x =0,z =2y ,不妨令z =2,则y =1.∴n 1=(0,1,2),平面ABCD 的法向量n 2=(0,0,1),则cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=25=255.7. 2解析 PB →=P A →+AB →,故PB →·AC →=(P A →+AB →)·AC →=P A →·AC →+AB →·AC →=0+a ×2a ×cos 45°=a 2. 又|PB→|=3a ,|AC →|=a . ∴cos 〈PB →,AC →〉=33,sin 〈PB →,AC →〉=63, ∴tan 〈PB→,AC →〉= 2. 8.45解析 不妨设正三棱柱ABC —A 1B 1C 1的棱长为2,建立如图所示的空间直角坐标系,则C (0,0,0),A (3,-1,0),B 1(3,1,2),D ⎝ ⎛⎭⎪⎫32,-12,2.则CD →=⎝ ⎛⎭⎪⎫32,-12,2, CB 1→=(3,1,2), 设平面B 1DC 的法向量为n =(x ,y,1),由⎩⎨⎧n ·CD→=0,n ·CB 1→=0,解得n =(-3,1,1).又∵DA →=⎝ ⎛⎭⎪⎫32,-12,-2,∴sin θ=|cos 〈DA →,n 〉|=45.9.解 (1)∵AD 与两圆所在的平面均垂直,∴AD ⊥AB ,AD ⊥AF ,故∠BAF 是二面角B —AD —F 的平面角.(2分) 依题意可知,ABFC 是正方形,∴∠BAF =45°. 即二面角B —AD —F 的大小为45°.(5分)(2)以O 为原点,CB 、AF 、OE 所在直线为坐标轴,建立空间直角坐标系(如图所示),则O (0,0,0),A (0,-3 2,0),B (3 2,0,0),D (0,-3 2,8),E (0,0,8),F (0,3 2,0),(8分)∴BD→=(-3 2,-3 2,8), EF→=(0,3 2,-8). cos 〈BD →,EF →〉=BD →·EF →|BD →||EF →|=0-18-64100×82=-8210.(12分)设异面直线BD 与EF 所成角为α,则cos α=|cos 〈BD →,EF →〉|=8210.即直线BD 与EF 所成的角的余弦值为8210. (14分) 10.方法一 (1)证明 取AB 中点E ,连结DE ,则四边形BCDE 为矩形,DE =CB =2,连结SE ,则SE ⊥AB ,SE = 3.又SD =1,故ED 2=SE 2+SD 2,所以∠DSE为直角,即SD⊥SE.(4分)由AB⊥DE,AB⊥SE,DE∩SE=E,得AB⊥平面SDE,所以AB⊥SD.由SD与两条相交直线AB、SE都垂直,所以SD⊥平面SAB.(7分)(2)解由AB⊥平面SDE知,平面ABCD⊥平面SDE.(10分)作SF⊥DE,垂足为F,则SF⊥平面ABCD,SF=SD·SEDE=32.作FG⊥BC,垂足为G,则FG=DC=1. 连结SG,又BC⊥FG,BC⊥SF,SF∩FG=F,故BC⊥平面SFG,平面SBC⊥平面SFG. 作FH⊥SG,H为垂足,则FH⊥平面SBC.FH=SF·FGSG=37,则F到平面SBC的距离为217.由于ED∥BC,所以ED∥平面SBC,E到平面SBC的距离d为217.(12分)设AB与平面SBC所成的角为α,则sin α=dEB=217,即AB与平面SBC所成的角的正弦值为217.(14分)方法二以C为坐标原点,射线CD为x轴正半轴,建立如图所示的空间直角坐标系C-xyz.设D(1,0,0),则A(2,2,0)、B(0,2,0).(2分)又设S(x,y,z),则x>0,y>0,z>0.(1)证明AS→=(x-2,y-2,z),BS→=(x,y-2,z),DS→=(x-1,y,z),由|AS→|=|BS→|得(x-2)2+(y-2)2+z2=x2+(y-2)2+z2,故x=1.由|DS→|=1得y2+z2=1.①又由|BS→|=2得x2+(y-2)2+z2=4,即y 2+z 2-4y +1=0.②联立①②得⎩⎨⎧y =12,z =32.(4分) 于是S (1,12,32),AS →=(-1,-32,32),BS →=(1,-32,32),DS →=(0,12,32).因为DS →·AS →=0,DS →·BS→=0, 故DS ⊥AS ,DS ⊥BS .又AS ∩BS =S ,所以SD ⊥平面SAB .(7分)(2)解 设平面SBC 的法向量a =(m ,n ,p ),则a ⊥BS →,a ⊥CB →,a ·BS →=0,a ·CB→=0. 又BS →=(1,-32,32),CB →=(0,2,0), 故⎩⎨⎧ m -32n +32p =0,2n =0.取p =2得a =(-3,0,2).(10分)又AB→=(-2,0,0), cos 〈AB →,a 〉=|AB →·a ||AB→||a |=217, 所以AB 与平面SBC 所成角的正弦值为217.(14分)11.(1)证明 建立如图所示的空间直角坐标系,则由已知可得A (0,0,0),B (23,2,0),C (0,4,0),A 1(0,0,4),E (3,3,0),F (0,4,1).(2分)于是CA 1→=(0,-4,4), EF →=(-3,1,1).则CA 1→·EF →=(0,-4,4)·(-3,1,1)=0-4+4=0, 故EF ⊥A 1C .(8分)(2)解 设CF =λ(0<λ≤4),平面AEF 的一个法向量为m =(x ,y ,z ),则由(1)得F (0,4,λ).(8分)AE→=(3,3,0),AF →=(0,4,λ), 于是由m ⊥AE→,m ⊥AF →可得 ⎩⎨⎧ m ·AE →=0,m ·AF→=0,即⎩⎪⎨⎪⎧3x +3y =0,4y +λz =0.取m =(3λ,-λ,4). 又由直三棱柱的性质可取侧面AC 1的一个法向量为n =(1,0,0),于是由θ的锐角可得cos θ=|m ·n ||m |·|n |=3λ2λ2+4,sin θ=λ2+162λ2+4,所以tan θ=λ2+163λ=13+163λ2.(10分) 由0<λ≤4,得1λ≥14,即tan θ≥13+13=63.故当λ=4,即点F 与点C 1重合时,tan θ取得最小值63.(14分)。

高考数学一轮复习备课手册选修第4课向量与空间角的计算

高考数学一轮复习备课手册选修第4课向量与空间角的计算

第课法向量与空间角的计算一、教学目标.知道直线的方向向量,会用待定系数法求平面的法向量;.会用两直线方向向量的夹角、直线方向向量与平面法向量的夹角以及两平面法向量的夹角求线线角、线面角及二面角;.会用向量的平行或垂直来判断一些简单的空间线面的平行和垂直关系。

二、基础知识回顾与梳理回顾要求、阅读教材第页,了解如何用向量来研究空间的线面位置关系?要解决这个问题,首先我们要用向量来表示直线和平面的“方向”,那如何刻画直线方向向量?、如何刻画平面的“方向”呢?为什么可以用平面的垂线的方向向量(即平面的法向量)来刻画平面的“方向”呢?通过研读教材第页例,掌握如何求一个平面的法向量。

、对于教材第页的例,在空间直角坐标系中,用什么样的方程才能表示一个平面?通过类比,在平面直角坐标系中,二元一次方程表示什么呢?并思考已知平面内一点和平面的法向量,这个平面是否唯一确定?、阅读教材第页,掌握如何用向量语言来表述空间的两条直线、直线与平面、平面与平面的位置关系,对于教材第页的例,仅有直线的方向向量与平面的法向量垂直,能否说明直线一定与平面平行?、阅读教材第~页,通过例、、,掌握如何用空间向量的方法求解线线成角,线面成角,以及二面角的求法,理解向量语言表述空间的线面位置关系在求解过程中的所起的作用,重点研读第页两个平面所形成的二面角与两个方向量所形成的夹角之间的关系。

要点解析、待定系数法求平面的法向量时,首先要转化为法向量与面内的两条相交直线所在的方向向量垂直,其次,由于平面的法向量不唯一,所以为了方便,在得到之间的关系后,可直接赋值,以简化计算。

、由于垂直于同一平面的直线是互相平行的,所以用平面的法向量来刻画了平面的方向,进而发现研究空间线面位置关系,其实就是研究线线之间的关系。

、对于教材第页的例,在使用空间向量解决问题的时候,还要注意到条件的完整性和充分性,在得到后,还需要强调不在平面内,否则不能说明线面平行,进而启发学生,用空间向量解决问题的时候,仍需很好的运用数形结合的思想,借助图形自己“翻译”完成。

【世纪金榜】人教版第一轮复习理科数学教师用书配套课件利用空间向量求空间角和距离

【世纪金榜】人教版第一轮复习理科数学教师用书配套课件利用空间向量求空间角和距离
uuuur uuuur
则 cos uAuuCur1gAuuCuu2r 1 0 8 3 .
| AC1 || AC2 | 2 3 3 2
又θ∈ [0, ],
2
所以θ= .
6
答案:
6
(2)(选修2-1P47习题2-5T2改编)已知一个平行六面体的各棱长都等
于2,并且以顶点A为端点的各棱间的夹角都等于60°,则该平行六面体
uuur uuur BA)g(BC
2 2g 5
1 2
uuuur BB1)
=0 2 2 0=0, 2 2g 5
故异面直线AB1和BM的夹角的大小是90°.
答案:90°
(2)①如图,连接AC,BD, 设AC∩BD=O,连接OP,OQ. 因为P-ABCD与Q-ABCD都是正四棱锥, 所以PO⊥平面ABCD,QO⊥平面ABCD. 从而P,O,Q三点在一条直线上, 所以PQ⊥平面ABCD. ②由题设知,四边形ABCD是正方形, 所以AC⊥BD.
【变式训练】将正方形ABCD沿对角线AC折起,当以A,B,C,D四点为顶 点的三棱锥体积最大时,异面直线AD与BC的夹角为( )
A.
B.
C.
D.
6
4
3
2
【解析】选C.不妨以△ABC为底面,则由题意当以A,B,C,D为顶点的三
棱锥体积最大,即点D到底面△ABC的距离最大时,平面ADC⊥平面ABC,
2
范围是[0,π],当异面直线的方向向量的夹角为锐角或直角时,就是该
异面直线的夹角;当异面直线的方向向量的夹角为钝角时,其补角才是
异面直线的夹角.
2.建立空间直角坐标系的策略 (1)一般来说,如果已知的空间几何体中含有两两垂直且交于一点的三 条直线时,就以这三条直线为坐标轴建立空间直角坐标系. (2)如果不存在这样的三条直线,则应尽可能找两条垂直相交的直线, 以其为两条坐标轴建立空间直角坐标系,即坐标系建立时以其中的垂 直相交直线为基本出发点. (3)建系的基本思想是寻找其中的线线垂直关系,在没有现成的垂直关 系时要通过其他已知条件得到垂直关系.

高三数学大一轮复习 利用向量方法求空间角学案 理 新人教A版

高三数学大一轮复习 利用向量方法求空间角学案 理 新人教A版

利用向量方法求空间角导学目标: 1.掌握各种空间角的定义,弄清它们各自的取值范围.2.掌握异面直线所成的角,二面角的平面角,直线与平面所成的角的联系和区别.3.体会求空间角中的转化思想、数形结合思想,熟练掌握平移方法、射影方法等.4.灵活地运用各种方法求空间角.自主梳理1.两条异面直线的夹角(1)定义:设a ,b 是两条异面直线,在直线a 上任取一点作直线a ′∥b ,则a ′与a 的夹角叫做a 与b 的夹角.(2)范围:两异面直线夹角θ的取值范围是_______________________________________.(3)向量求法:设直线a ,b 的方向向量为a ,b ,其夹角为φ,则有cos θ=________=______________.2.直线与平面的夹角(1)定义:直线和平面的夹角,是指直线与它在这个平面内的射影的夹角. (2)范围:直线和平面夹角θ的取值范围是________________________________________.(3)向量求法:设直线l 的方向向量为a ,平面的法向量为u ,直线与平面所成的角为θ,a 与u 的夹角为φ,则有sin θ=__________或cos θ=sin φ.3.二面角(1)二面角的取值范围是____________. (2)二面角的向量求法: ①若AB 、CD 分别是二面角α—l —β的两个面内与棱l 垂直的异面直线,则二面角的大小就是向量AB →与CD →的夹角(如图①).②设n 1,n 2分别是二面角α—l —β的两个面α,β的法向量,则向量n 1与n 2的夹角(或其补角)的大小就是二面角的平面角的大小(如图②③).自我检测1.已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角为( )A .45°B .135°C .45°或135°D .90°2.若直线l 1,l 2的方向向量分别为a =(2,4,-4),b =(-6,9,6),则( ) A .l 1∥l 2 B .l 1⊥l 2C .l 1与l 2相交但不垂直D .以上均不正确3.若直线l 的方向向量与平面α的法向量的夹角等于120°,则直线l 与平面α所成的角等于( )A .120°B .60°C .30°D .以上均错4.(2011·湛江月考)二面角的棱上有A 、B 两点,直线AC 、BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知AB =4,AC =6,BD =8,CD =217,则该二面角的大小为( )A .150°B .45°C .60°D .120°5.(2011·铁岭模拟)已知直线AB 、CD 是异面直线,AC ⊥CD ,BD ⊥CD ,且AB =2,CD =1,则异面直线AB与CD夹角的大小为( )A.30° B.45° C.60° D.75°探究点一利用向量法求异面直线所成的角例1已知直三棱柱ABC—A 1B1C1,∠ACB=90°,CA=CB=CC1,D为B1C1的中点,求异面直线BD和A1C所成角的余弦值.变式迁移1如图所示,在棱长为a的正方体ABCD—A1B1C1D1中,求异面直线BA1和AC所成的角.探究点二利用向量法求直线与平面所成的角例2(2011·新乡月考)如图,已知两个正方形ABCD和DCEF不在同一平面内,M,N 分别为AB,DF的中点.若平面ABCD⊥平面DCEF,求直线MN与平面DCEF所成角的正弦值.变式迁移2如图所示,在几何体ABCDE 中,△ABC 是等腰直角三角形,∠ABC =90°,BE 和CD 都垂直于平面ABC ,且BE =AB =2,CD =1,点F 是AE 的中点.求AB 与平面BDF 所成角的正弦值.探究点三 利用向量法求二面角例3 如图,ABCD 是直角梯形,∠BAD =90°,SA ⊥平面ABCD ,SA =BC =BA =1,AD =12,求面SCD 与面SBA 所成角的余弦值大小.变式迁移3(2011·沧州月考)如图,在三棱锥S —ABC 中,侧面SAB 与侧面SAC 均为等边三角形,∠BAC =90°,O 为BC 中点.(1)证明:SO ⊥平面ABC ;(2)求二面角A —SC —B 的余弦值.探究点四向量法的综合应用例4如图所示,在三棱锥A—BCD中,侧面ABD、ACD是全等的直角三角形,AD是公共的斜边,且AD=3,BD=CD=1,另一个侧面ABC是正三角形.(1)求证:AD⊥BC;(2)求二面角B-AC-D的余弦值;(3)在线段AC上是否存在一点E,使ED与面BCD成30°角?若存在,确定点E的位置;若不存在,说明理由.变式迁移4 (2011·山东)在如图所示的几何体中,四边形ABCD为平行四边形,∠ACB=90°,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC,AB=2EF.(1)若M是线段AD的中点,求证:GM∥平面ABFE;(2)若AC=BC=2AE,求二面角A-BF-C的大小.1.求两异面直线a 、b 的夹角θ,需求出它们的方向向量a ,b 的夹角,则cos θ=|cos 〈a ,b 〉|.2.求直线l 与平面α所成的角θ.可先求出平面α的法向量n 与直线l 的方向向量a 的夹角.则sin θ=|cos 〈n ,a 〉|.3.求二面角α—l —β的大小θ,可先求出两个平面的法向量n 1,n 2所成的角.则θ=〈n 1,n 2〉或π-〈n 1,n 2〉.(满分:75分)一、选择题(每小题5分,共25分)1.(2011·成都月考)在正方体ABCD —A 1B 1C 1D 1中,M 是AB 的中点,则sin 〈DB 1→,CM →〉的值等于( )A.12B.21015C.23 D.11152.长方体ABCD —A 1B 1C 1D 1中,AB =AA 1=2,AD =1,E 为CC 1的中点,则异面直线BC 1与AE 所成角的余弦值为( )A.1010B.3010C.21510D.310103.已知正四棱锥S —ABCD 的侧棱长与底面边长都相等,E 是SB 的中点,则AE 、SD 所成的角的余弦值为( )A.13B.23C.33D.23 4.如图所示,在长方体ABCD —A 1B 1C 1D 1中,已知B 1C ,C 1D 与上底面A 1B 1C 1D 1所成的角分别为60°和45°,则异面直线B 1C 和C 1D 所成的余弦值为( )A.26B.63C.36 D.645.(2011·兰州月考)P 是二面角α—AB —β棱上的一点,分别在α、β平面上引射线PM 、PN ,如果∠BPM =∠BPN =45°,∠MPN =60°,那么二面角α—AB —β的大小为( )A.60° B.70° C.80° D.90°二、填空题(每小题4分,共12分)6.(2011·郑州模拟)已知正四棱锥P—ABCD的棱长都相等,侧棱PB、PD的中点分别为M、N,则截面AMN与底面ABCD所成的二面角的余弦值是________.7.如图,PA⊥平面ABC,∠ACB=90°且PA=AC=BC=a,则异面直线PB与AC所成角的正切值等于________.8.如图,已知正三棱柱ABC—A1B1C1的所有棱长都相等,D是A1C1的中点,则直线AD与平面B1DC所成角的正弦值为________.三、解答题(共38分)9.(12分)(2011·烟台模拟)如图所示,AF、DE分别是⊙O、⊙O1的直径,AD与两圆所在的平面均垂直,AD=8.BC是⊙O的直径,AB=AC=6,OE∥AD.(1)求二面角B-AD-F的大小;(2)求直线BD与EF所成的角的余弦值.10.(12分)(2011·大纲全国)如图,四棱锥S-ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形,AB =BC =2,CD =SD =1.(1)证明:SD ⊥平面SAB ;(2)求AB 与平面SBC 所成角的正弦值.11.(14分)(2011·湖北)如图,已知正三棱柱ABC -A 1B 1C 1各棱长都是4,E 是BC 的中点,动点F 在侧棱CC 1上,且不与点C 重合.(1)当CF =1时,求证:EF ⊥A 1C ;(2)设二面角C -AF -E 的大小为θ,求tan θ的最小值.学案46 利用向量方法求空间角自主梳理1.(2)⎝ ⎛⎦⎥⎤0,π2 (3)|cos φ| ⎪⎪⎪⎪⎪⎪a·b |a|·|b | 2.(2)⎣⎢⎡⎦⎥⎤0,π2 (3)|cos φ| 3.(1)[0,π]自我检测1.C 2.B 3.C 4.C 5.C 课堂活动区例1 解题导引 (1)求异面直线所成的角,用向量法比较简单,若用基向量法求解,则必须选好空间的一组基向量,若用坐标求解,则一定要将每个点的坐标写正确.(2)用异面直线方向向量求两异面直线夹角时,应注意异面直线所成角的范围是⎝⎛⎦⎥⎤0,π2解如图所示,以C 为原点,直线CA 、CB 、CC 1分别为x 轴、y 轴、z 轴建立空间直角坐标系. 设CA =CB =CC 1=2,则A 1(2,0,2),C (0,0,0),B (0,2,0),D (0,1,2), ∴BD →=(0,-1,2),A 1C →=(-2,0,-2),∴cos 〈BD →,A 1C →〉=BD →·A 1C →|BD →||A 1C →|=-105.∴异面直线BD 与A 1C 所成角的余弦值为105. 变式迁移1 解 ∵BA 1→=BA →+BB 1→,AC →=AB →+BC →, ∴BA 1→·AC →=(BA →+BB 1→)·(AB →+BC →) =BA →·AB →+BA →·BC →+BB 1→·AB →+BB 1→·BC →. ∵AB ⊥BC ,BB 1⊥AB ,BB 1⊥BC , ∴BA →·BC →=0,BB 1→·AB →=0, BB 1→·BC →=0,BA →·AB →=-a 2, ∴BA 1→·AC →=-a 2. 又BA 1→·AC →=|BA 1→|·|AC →|·cos〈BA 1→,AC →〉,∴cos 〈BA 1→,AC →〉=-a 22a ×2a=-12.∴〈BA 1→,AC →〉=120°.∴异面直线BA 1与AC 所成的角为60°.例2 解题导引 在用向量法求直线OP 与α所成的角(O ∈α)时,一般有两种途径:一是直接求〈OP →,OP ′→〉,其中OP ′为斜线OP 在平面α内的射影;二是通过求〈n ,OP →〉进而转化求解,其中n 为平面α的法向量.解设正方形ABCD ,DCEF 的边长为2,以D 为坐标原点,分别以射线DC ,DF ,DA 为x ,y ,z 轴正半轴建立空间直角坐标系如图.则M (1,0,2),N (0,1,0),可得MN →=(-1,1,-2). 又DA →=(0,0,2)为平面DCEF 的法向量,可得cos 〈MN →,DA →〉=MN →·DA →|MN →||DA →|=-63.所以MN 与平面DCEF 所成角的正弦值为|cos 〈MN →,DA →〉|=63.变式迁移2 解 以点B 为原点,BA 、BC 、BE 所在的直线分别为x ,y ,z 轴,建立如图所示的空间直角坐标系,则B (0,0,0),A (2,0,0),C (0,2,0),D (0,2,1),E (0,0,2),F (1,0,1).∴BD →=(0,2,1),DF →=(1,-2,0). 设平面BDF 的一个法向量为 n =(2,a ,b ),∵n ⊥DF →,n ⊥BD →, ∴⎩⎪⎨⎪⎧n ·DF →=0,n ·BD →=0.即⎩⎪⎨⎪⎧2,a ,b ·1,-2,0=0,2,a ,b ·0,2,1=0.解得a =1,b =-2.∴n =(2,1,-2). 设AB 与平面BDF 所成的角为θ,则法向量n 与BA →的夹角为π2-θ,∴cos ⎝ ⎛⎭⎪⎫π2-θ=BA →·n |BA →||n |=2,0,0·2,1,-22×3=23,即sin θ=23,故AB 与平面BDF 所成角的正弦值为23.例3 解题导引 图中面SCD 与面SBA 所成的二面角没有明显的公共棱,考虑到易于建系,从而借助平面的法向量来求解.解建系如图,则A (0,0,0), D ⎝ ⎛⎭⎪⎫12,0,0,C (1,1,0), B (0,1,0),S (0,0,1), ∴AS →=(0,0,1),SC →=(1,1,-1),SD→=⎝⎛⎭⎪⎫12,0,-1,AB→=(0,1,0),AD→=⎝⎛⎭⎪⎫12,0,0.∴AD→·AS→=0,AD→·AB→=0.∴AD→是面SAB的法向量,设平面SCD的法向量为n=(x,y,z),则有n·SC→=0且n·SD→=0.即⎩⎪⎨⎪⎧x+y-z=0,12x-z=0.令z=1,则x=2,y=-1.∴n=(2,-1,1).∴cos〈n,AD→〉=n·AD→|n||AD→|=2×126×12=63.故面SCD与面SBA所成的二面角的余弦值为63.变式迁移3 (1)证明由题设AB=AC=SB=SC=SA.连接OA,△ABC为等腰直角三角形,所以OA=OB=OC=22SA,且AO⊥BC.又△SBC为等腰三角形,故SO⊥BC,且SO=22SA.从而OA2+SO2=SA2,所以△SOA为直角三角形,SO⊥AO.又AO∩BC=O,所以SO⊥平面ABC.(2)解以O为坐标原点,射线OB、OA、OS分别为x轴、y轴、z轴的正半轴,建立如图的空间直角坐标系Oxyz,如右图.设B(1,0,0),则C(-1,0,0),A(0,1,0),S(0,0,1).SC的中点M⎝⎛⎭⎪⎫-12,0,12,MO→=⎝⎛⎭⎪⎫12,0,-12,MA→=⎝⎛⎭⎪⎫12,1,-12,SC→=(-1,0,-1),∴MO→·SC→=0,MA→·SC→=0.故MO⊥SC,MA⊥SC,〈MO→,MA→〉等于二面角A—SC—B的平面角.cos 〈MO →,MA →〉=MO →·MA →|MO →||MA →|=33,所以二面角A —SC —B 的余弦值为33. 例4 解题导引 立体几何中开放性问题的解决方式往往是通过假设,借助空间向量建立方程,进行求解.(1)证明作AH ⊥面BCD 于H ,连接BH 、CH 、DH ,则四边形BHCD 是正方形,且AH =1,将其补形为如图所示正方体.以D 为原点,建立如图所示空间直角坐标系.则B (1,0,0),C (0,1,0),A (1,1,1). BC →=(-1,1,0),DA →=(1,1,1), ∴BC →·DA →=0,则BC ⊥AD .(2)解 设平面ABC 的法向量为n 1=(x ,y ,z ),则由n 1⊥BC →知:n 1·BC →=-x +y =0,同理由n 1⊥AC →知:n 1·AC →=-x -z =0, 可取n 1=(1,1,-1),同理,可求得平面ACD 的一个法向量为n 2=(1,0,-1). 由图可以看出,二面角B -AC -D 即为〈n 1,n 2〉,∴cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=1+0+13×2=63.即二面角B -AC -D 的余弦值为63. (3)解 设E (x ,y ,z )是线段AC 上一点, 则x =z >0,y =1,平面BCD 的一个法向量为n =(0,0,1),DE →=(x,1,x ),要使ED 与平面BCD 成30°角,由图可知DE →与n 的夹角为60°,所以cos 〈DE →,n 〉=DE →·n |DE →||n |=x 1+2x 2=cos 60°=12.则2x =1+2x 2,解得x =22,则CE =2x =1. 故线段AC 上存在E 点,且CE =1时,ED 与面BCD 成30°角. 变式迁移4(1)证明 方法一 因为EF ∥AB ,FG ∥BC ,EG ∥AC ,∠ACB =90°, 所以∠EGF =90°,△ABC ∽△EFG .由于AB =2EF ,因此BC =2FG .连接AF ,由于FG ∥BC ,FG =12BC ,在▱ABCD 中,M 是线段AD 的中点,则AM ∥BC ,且AM =12BC ,因此FG ∥AM 且FG =AM ,所以四边形AFGM 为平行四边形,因此GM ∥FA . 又FA ⊂平面ABFE ,GM ⊄平面ABFE , 所以GM ∥平面ABFE .方法二 因为EF ∥AB ,FG ∥BC ,EG ∥AC ,∠ACB =90°, 所以∠EGF =90°, △ABC ∽△EFG . 由于AB =2EF , 所以BC =2FG .取BC 的中点N ,连接GN ,因此四边形BNGF 为平行四边形,所以GN ∥FB . 在▱ABCD 中,M 是线段AD 的中点,连接MN , 则MN ∥AB .因为MN ∩GN =N , 所以平面GMN ∥平面ABFE .又GM ⊂平面GMN ,所以GM ∥平面ABFE .(2)解 方法一 因为∠ACB =90°,所以∠CAD =90°. 又EA ⊥平面ABCD ,所以AC ,AD ,AE 两两垂直.分别以AC ,AD ,AE 所在直线为x 轴,y 轴和z 轴,建立如图所示的空间直角坐标系, 不妨设AC =BC =2AE =2,则由题意得A (0,0,0),B (2,-2,0),C (2,0,0),E (0,0,1),所以AB →=(2,-2,0),BC →=(0,2,0).又EF =12AB ,所以F (1,-1,1),BF →=(-1,1,1). 设平面BFC 的法向量为m =(x 1,y 1,z 1),则m ·BC →=0,m ·BF →=0,所以⎩⎪⎨⎪⎧y 1=0,x 1=z 1,取z 1=1,得x 1=1,所以m =(1,0,1).设平面向量ABF 的法向量为n =(x 2,y 2,z 2),则n ·AB →=0,n ·BF →=0,所以⎩⎪⎨⎪⎧x 2=y 2,z 2=0,取y 2=1,得x 2=1.则n =(1,1,0).所以cos〈m,n〉=m·n|m|·|n|=12.因此二面角A-BF-C的大小为60°.方法二由题意知,平面ABFE⊥平面ABCD.取AB的中点H,连接CH.因为AC=BC,所以CH⊥AB,则CH⊥平面ABFE.过H向BF引垂线交BF于R,连接CR,则CR⊥BF,所以∠HRC为二面角A-BF-C的平面角.由题意,不妨设AC=BC=2AE=2,在直角梯形ABFE中,连接FH,则FH⊥AB.又AB=22,所以HF=AE=1,BH=2,因此在Rt△BHF中,HR=63.由于CH=12AB=2,所以在Rt△CHR中,tan∠HRC=263= 3.因此二面角A-BF-C的大小为60°.课后练习区1.B[以D为原点,DA、DC、DD1分别为x轴、y轴、z轴建立空间直角坐标系,设正方体棱长为1,易知DB1→=(1,1,1),CM→=⎝⎛⎭⎪⎫1,-12,0,故cos〈DB1→,CM→〉=DB1→·CM→|DB1→||CM→|=1515,从而sin〈DB1→,CM→〉=21015.]2.B [建立空间直角坐标系如图. 则A (1,0,0),E (0,2,1), B (1,2,0),C 1(0,2,2). BC 1→=(-1,0,2),AE →=(-1,2,1),cos 〈BC 1→,AE →〉=BC 1→·AE →|BC 1→|·|AE →|=3010.所以异面直线BC 1与AE 所成角的余弦值为3010.] 3.C 4.D 5.D [不妨设PM =a ,PN =b ,作ME ⊥AB 于E ,NF ⊥AB 于F , 如图:∵∠EPM =∠FPN =45°,∴PE =22a ,PF =22b ,∴EM →·FN →=(PM →-PE →)·(PN →-PF →) =PM →·PN →-PM →·PF →-PE →·PN →+PE →·PF →=ab cos 60°-a ×22b cos 45°-22ab cos 45°+22a ×22b=ab 2-ab 2-ab 2+ab2=0,∴EM →⊥FN →,∴二面角α—AB —β的大小为90°.] 6.255解析 如图建立空间直角坐标系,设正四棱锥的棱长为2, 则PB =2,OB =1,OP =1.∴B (1,0,0),D (-1,0,0), A (0,1,0),P (0,0,1),M ⎝ ⎛⎭⎪⎫12,0,12,N ⎝ ⎛⎭⎪⎫-12,0,12,AM →=⎝ ⎛⎭⎪⎫12,-1,12,AN →=⎝ ⎛⎭⎪⎫-12,-1,12,设平面AMN 的法向量为n 1=(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·AM →=12x -y +12z =0,n ·AN →=-12x -y +12z =0,解得x =0,z =2y ,不妨令z =2,则y =1.∴n 1=(0,1,2),平面ABCD 的法向量n 2=(0,0,1),则cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=25=255.7. 2解析 PB →=PA →+AB →,故PB →·AC →=(PA →+AB →)·AC →=PA →·AC →+AB →·AC →=0+a ×2a ×cos45°=a 2.又|PB →|=3a ,|AC →|=a .∴cos 〈PB →,AC →〉=33,sin 〈PB →,AC →〉=63,∴tan 〈PB →,AC →〉= 2. 8.45解析 不妨设正三棱柱ABC —A 1B 1C 1的棱长为2,建立如图所示的空间直角坐标系, 则C (0,0,0),A (3,-1,0),B 1(3,1,2),D ⎝⎛⎭⎪⎫32,-12,2.则CD →=⎝ ⎛⎭⎪⎫32,-12,2,CB 1→=(3,1,2),设平面B 1DC 的法向量为n =(x ,y,1),由⎩⎪⎨⎪⎧n ·CD →=0,n ·CB 1→=0,解得n =(-3,1,1).又∵DA →=⎝ ⎛⎭⎪⎫32,-12,-2,∴sin θ=|cos 〈DA →,n 〉|=45.9.解 (1)∵AD 与两圆所在的平面均垂直, ∴AD ⊥AB ,AD ⊥AF ,故∠BAF 是二面角B —AD —F 的平面角.(2分) 依题意可知,ABFC 是正方形,∴∠BAF =45°. 即二面角B —AD —F 的大小为45°.(5分)(2)以O 为原点,CB 、AF 、OE 所在直线为坐标轴,建立空间直角坐标系(如图所示),则O (0,0,0),A (0,-3 2,0),B (3 2,0,0),D (0,-3 2,8),E (0,0,8),F (0,3 2,0),(7分) ∴BD →=(-3 2,-3 2,8),EF →=(0,3 2,-8).cos 〈BD →,EF →〉=BD →·EF →|BD →||EF →|=0-18-64100×82=-8210.(10分)设异面直线BD 与EF 所成角为α,则cos α=|cos 〈BD →,EF →〉|=8210.即直线BD 与EF 所成的角的余弦值为8210. (12分) 10.方法一 (1)证明 取AB 中点E ,连接DE ,则四边形BCDE 为矩形,DE =CB =2,连接SE ,则SE ⊥AB ,SE = 3.又SD =1,故ED 2=SE 2+SD 2,所以∠DSE 为直角,即SD ⊥SE .(3分) 由AB ⊥DE ,AB ⊥SE ,DE ∩SE =E , 得AB ⊥平面SDE , 所以AB ⊥SD .由SD 与两条相交直线AB 、SE 都垂直, 所以SD ⊥平面SAB .(6分)(2)解 由AB ⊥平面SDE 知,平面ABCD ⊥平面SDE .作SF ⊥DE ,垂足为F ,则SF ⊥平面ABCD ,SF =SD ·SE DE =32.(8分)作FG ⊥BC ,垂足为G ,则FG =DC =1. 连接SG ,又BC ⊥FG ,BC ⊥SF ,SF ∩FG =F ,故BC ⊥平面SFG ,平面SBC ⊥平面SFG . 作FH ⊥SG ,H 为垂足,则FH ⊥平面SBC .FH =SF ·FG SG =37,则F 到平面SBC 的距离为217.由于ED ∥BC ,所以ED ∥平面SBC ,E 到平面SBC 的距离d 为217.(10分)设AB 与平面SBC 所成的角为α,则sin α=d EB =217, 即AB 与平面SBC 所成的角的正弦值为217.(12分) 方法二 以C 为坐标原点,射线CD 为x 轴正半轴,建立如图所示的空间直角坐标系C -xyz .设D (1,0,0),则A (2,2,0)、B (0,2,0).(2分) 又设S (x ,y ,z ),则x >0,y >0,z >0.(1)证明 AS →=(x -2,y -2,z ),BS →=(x ,y -2,z ), DS →=(x -1,y ,z ), 由|AS →|=|BS →|得x -22+y -22+z 2 =x 2+y -22+z 2, 故x =1. 由|DS →|=1得y 2+z 2=1.①又由|BS →|=2得x 2+(y -2)2+z 2=4,即y 2+z 2-4y +1=0.② 联立①②得⎩⎪⎨⎪⎧y =12,z =32.(4分)于是S (1,12,32),AS →=(-1,-32,32),BS →=(1,-32,32),DS →=(0,12,32). 因为DS →·AS →=0,DS →·BS →=0, 故DS ⊥AS ,DS ⊥BS .又AS ∩BS =S ,所以SD ⊥平面SAB .(6分) (2)解 设平面SBC 的法向量a =(m ,n ,p ),则a ⊥BS →,a ⊥CB →,a ·BS →=0,a ·CB →=0.又BS →=(1,-32,32),CB →=(0,2,0),故⎩⎪⎨⎪⎧m -32n +32p =0,2n =0.取p =2得a =(-3,0,2).(9分)又AB →=(-2,0,0),cos 〈AB →,a 〉=|AB →·a ||AB →||a |=217,所以AB 与平面SBC 所成角的正弦值为217.(12分) 11.(1)证明 建立如图所示的空间直角坐标系,则由已知可得A (0,0,0),B (23,2,0),C (0,4,0),A 1(0,0,4),E (3,3,0),F (0,4,1).(2分)于是CA 1→=(0,-4,4), EF →=(-3,1,1). 则CA 1→·EF →=(0,-4,4)·(-3,1,1)=0-4+4=0, 故EF ⊥A 1C .(7分)(2)解 设CF =λ(0<λ≤4),平面AEF 的一个法向量为m =(x ,y ,z ), 则由(1)得F (0,4,λ).(8分) AE →=(3,3,0),AF →=(0,4,λ),于是由m ⊥AE →,m ⊥AF →可得 ⎩⎪⎨⎪⎧m ·AE →=0,m ·AF →=0,即⎩⎨⎧3x +3y =0,4y +λz =0.取m =(3λ,-λ,4).又由直三棱柱的性质可取侧面AC 1的一个法向量为n =(1,0,0),于是由θ的锐角可得cos θ=|m ·n ||m |·|n |=3λ2λ2+4,sin θ=λ2+162λ2+4,所以tan θ=λ2+163λ=13+163λ2.(11分)由0<λ≤4,得1λ≥14,即tan θ≥13+13=63. 故当λ=4,即点F 与点C 1重合时,tan θ取得最小值63. (14分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间向量与空间角[知识能否忆起]利用向量求空间角1.两条异面直线所成的角的求法设两条异面直线a ,b 的方向向量为a ,b ,其夹角为θ,则cos φ=|cos θ|=|a ·b ||a||b |(其中φ为异面直线a ,b 所成的角).2.直线和平面所成角的求法如图所示,设直线l 的方向向量为e ,平面α的法向量为n ,直线l 与平面α所成的角为φ,两向量e 与n 的夹角为θ,则有sin φ=|cos θ|=|e ·n ||e ||n |.3.求二面角的大小(1)如图1,AB 、CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB ,CD〉.(2)如图2、3,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ=〈n 1,n 2〉(或π-〈n 1,n 2〉).[小题能否全取]1.(教材习题改编)已知向量m ,n 分别是直线l 和平面α的方向向量、法向量,若cos 〈m ,n 〉=-12,则l 与α所成的角为( )A .30°B .60°C .120°D .150°解析:选A 由于cos 〈m ,n 〉=-12,∴〈m ,n 〉=120°.所以直线l 与α所成的角为30°.2.(教材习题改编)已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角的大小为( )A .45°B .135°C .45°或135°D .90°解析:选C cos 〈m ,n 〉=m ·n |m ||n |=11×2=22, 即〈m ,n 〉=45°,其补角为135°, ∴两平面所成的二面角为45°或135°.3.在如图所示的正方体A1B 1C 1D 1-ABCD 中,E 是C 1D 1的中点,则异面直线DE 与AC 夹角的余弦值为( )A .-1010B .-120C.120D.1010解析:选D 如图建立直角坐标系D -xyz ,设DA =1,A (1,0,0),C (0,1,0),E ⎝⎛⎭⎫0,12,1.则AC =(-1,1,0),DE =⎝⎛⎭⎫0,12,1,若异面直线DE 与AC 所成的角为θ,cos θ=|cos 〈AC ,DE 〉|=1010.4.已知点E 、F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1,CC 1上,且B 1E =2EB ,CF =2FC 1,则平面AEF 与平面ABC 所成的二面角的正切值为________.解析:如图,建立直角坐标系D -xyz ,设DA =1由已知条件A (1,0,0), E ⎝⎛⎭⎫1,1,13,F ⎝⎛⎭⎫0,1,23, AE =⎝⎛⎭⎫0,1,13,AF =⎝⎛⎭⎫-1,1,23,设平面AEF 的法向量为n =(x ,y ,z ),面AEF 与面ABC 所成的二面角为θ, 由⎩⎨⎧n ·AE =0,n ·AF =0,得⎩⎨⎧y +13z =0,-x +y +23z =0.令y =1,z =-3,x =-1,则n =(-1,1,-3). 设平面ABC 的法向量为m =(0,0,-1), 则cos θ=cos 〈n ,m 〉=311,tan θ=23.答案:235.(教材习题改编)如图,在长方体ABCD -A 1B 1C 1D 1中,已知DA =DC =4,DD 1=3,则异面直线A 1B 与B 1C 所成角的余弦值________.解析:建立如图所示直角坐标系,则A 1(4,0,3),B (4,4,0),B 1(4,4,3),C (0,4,0),1A B =(0,4,-3),1B C=(-4,0,-3).设异面直线A 1B 与B 1C 所成角为θ,则cos θ=|cos 〈1A B ,1B C 〉|=925.答案:925(1)利用向量求空间角,一定要注意将向量夹角与所求角区别开来,在将向量夹角转化为各空间角时注意空间各角的取值范围,异面直线所成角的范围是⎝⎛⎦⎤0,π2,直线与平面所成角的范围是⎣⎡⎦⎤0,π2,二面角的范围是[0,π]. (2)利用平面的法向量求二面角的大小时,当求出两半平面α、β的法向量n 1,n 2时,要根据向量坐标在图形中观察法向量的方向,从而确定二面角与向量n 1,n 2的夹角是相等,还是互补,这是利用向量求二面角的难点、易错点.异面直线所成的角典题导入[例1] (2012·陕西高考)如图,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为( )A.55B.53C.255D.35[自主解答] 不妨令CB =1,则CA =CC 1=2.可得 O (0,0,0),B (0,0,1),C 1(0,2,0),A (2,0,0),B 1(0,2,1),∴1BC =(0,2,-1),1AB=(-2,2,1),∴cos 〈1BC ,1AB 〉=1BC ·1AB|1BC ||1AB |=4-15×9=15=55>0.∴1BC 与1AB的夹角即为直线BC 1与直线AB 1的夹角,∴直线BC 1与直线AB 1夹角的余弦值为55. [答案] A本例条件下,在线段OB 上,是否存在一点M ,使C 1M 与AB 1所成角的余弦为13?若存在,求出M 点;不存在,说明理由.解:不妨令CB =1,CA =CC 1=2, 建系如本例题图,假设存在符合条件的点M ,设M (0,0,a ),则1C M =(0,-2,a ),又1AB=(-2,2,1), ∴|cos 〈1C M ,1AB 〉|=|a -4|4+a 2·9=13.∴|a -4|=4+a 2,∴a 2-8a +16=a 2+4. ∴8a =12,∴a =32.又CB =1,∴a =32>1.故不存在符合条件的点M .由题悟法利用直线的方向向量的夹角求异面直线的夹角时,注意区别:当异面直线的方向向量的夹角为锐角或直角时,就是此异面直线所成的角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线所成的角.以题试法1.(2012·安徽模拟)如图所示,在多面体ABCD -A 1B 1C 1D 1中,上、下两个底面A 1B 1C 1D 1和ABCD 互相平行,且都是正方形,DD 1⊥底面ABCD ,AB =2A 1B 1=2DD 1=2a .(1)求异面直线AB 1与DD 1所成角的余弦值; (2)已知F 是AD 的中点,求证:FB 1⊥平面BCC 1B 1.解:以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (2a,0,0),B (2a,2a,0),C (0,2a,0),D 1(0,0,a ),F (a,0,0),B 1(a ,a ,a ),C 1(0,a ,a ).(1)∵1AB =(-a ,a ,a ),1DD=(0,0,a ),∴cos 〈1AB ,1DD 〉=1AB ·1DD|1AB |·|1DD |=33,所以异面直线AB 1与DD 1所成角的余弦值为33. (2)证明:∵1BB =(-a ,-a ,a ),BC=(-2a,0,0), 1FB=(0,a ,a ),∴⎩⎪⎨⎪⎧1FB ·1BB =0, 1FB ·BC=0,∴FB 1⊥BB 1,FB 1⊥BC . ∵BB 1∩BC =B ,∴FB 1⊥平面BCC 1B 1.直线与平面所成角典题导入[例2] (2012·大纲全国卷)如图,四棱锥P -ABCD 中,底面ABCD 为菱形,P A ⊥底面ABCD ,AC =22,P A =2,E 是PC 上的一点,PE =2EC .(1)证明:PC ⊥平面BED ;(2)设二面角A -PB -C 为90°,求PD 与平面PBC 所成角的大小.[自主解答] (1)证明:以A 为坐标原点,射线AC 为x 轴的正半轴,建立如图所示的空间直角坐标系A -xyz ,则C (22,0,0).设D (2,b,0),其中b >0,则 P (0,0,2),E ⎝⎛⎭⎫423,0,23,B (2,-b,0).于是PC=(22,0,-2), BE =⎝⎛⎭⎫23,b ,23,DE =⎝⎛⎭⎫23,-b ,23,从而PC ·BE =0,PC ·DE =0,故PC ⊥BE ,PC ⊥DE . 又BE ∩DE =E , 所以PC ⊥平面BED .(2) AP =(0,0,2),AB=(2,-b,0).设m =(x ,y ,z )为平面P AB 的法向量,则m ·AP =0,m ·AB =0,即2z =0且2x -by =0, 令x =b ,则m =(b ,2,0).设n =(p ,q ,r )为平面PBC 的法向量,则n ·PC =0,n ·BE =0,即22p -2r =0且2p 3+bq +23r =0, 令p =1,则r =2,q =-2b ,n =⎝⎛⎭⎫1,-2b ,2. 因为二面角A -PB -C 为90°,所以面P AB ⊥面PBC ,故m ·n =0, 即b -2b=0,故b =2,于是n =(1,-1,2),DP=(-2,-2,2),所以cos 〈n ,DP 〉=n ·DP|n ||DP|=12, 所以〈n ,DP〉=60°.因为PD 与平面PBC 所成角和〈n ,DP〉互余,故PD 与平面PBC 所成的角为30°.由题悟法利用向量法求线面角的方法(1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角(钝角时取其补角),取其余角就是斜线和平面所成的角(如例2).以题试法2.(2012·宝鸡模拟)如图,已知P A ⊥平面ABC ,且P A =2,等腰直角三角形ABC 中,AB =BC =1,AB ⊥BC ,AD ⊥PB 于D ,AE ⊥PC 于E .(1)求证:PC ⊥平面ADE ;(2)求直线AB 与平面ADE 所成角的大小. 解:(1)证明:因为P A ⊥平面ABC , 所以P A ⊥BC ,又AB ⊥BC ,且P A ∩AB =A , 所以BC ⊥平面P AB ,从而BC ⊥AD . 又AD ⊥PB ,BC ∩PB =B , 所以AD ⊥平面PBC , 得PC ⊥AD ,又PC ⊥AE ,AE ∩AD =A , 所以PC ⊥平面ADE .(2)如图所示,建立空间直角坐标系B -xyz . 则A (1,0,0),C (0,1,0), P (1,0,2), 因为PC ⊥平面ADE ,所以PC=(-1,1,-2)是平面ADE 的一个法向量.设直线AB 与平面ADE 所成的角为θ,则sin θ=|PC ·AB||PC||AB |=(-1,1,-2)·(-1,0,0)2=12,则直线AB 与平面ADE 所成的角为30°.二 面 角典题导入[例3] (2012·江西高考)在三棱柱ABC -A 1B 1C 1中,已知AB=AC =AA 1=5,BC =4,点A 1在底面ABC 的投影是线段BC 的中点O .(1)证明在侧棱AA 1上存在一点E ,使得OE ⊥平面BB 1C 1C ,并求出AE 的长;(2)求平面A 1B 1C 与平面BB 1C 1C 夹角的余弦值.[自主解答] (1)证明:连接AO ,在△AOA 1中,作OE ⊥AA 1于点E ,因为AA 1∥BB 1,得OE ⊥BB 1,因为A 1O ⊥平面ABC ,所以A 1O ⊥BC .因为AB =AC ,OB =OC ,得AO ⊥BC ,所以BC ⊥平面AA 1O ,所以BC ⊥OE , 所以OE ⊥平面BB 1C 1C .又AO =AB 2-BO 2=1,AA 1=5, 得AE =AO 2AA 1=55.(2)如图,分别以OA ,OB ,OA 1所在直线为x ,y ,z 轴,建立空间直角坐标系,则A (1,0,0),B (0,2,0),C (0,-2,0),A 1(0,0,2),B 1(-1,2,2),由AE =151AA 得点E 的坐标是⎝⎛⎭⎫45,0,25, 由(1)得平面BB 1C 1C 的法向量是OE =⎝⎛⎭⎫45,0,25, 设平面A 1B 1C 的法向量n =(x ,y ,z ),由⎩⎪⎨⎪⎧n ·11A B=0,n ·1A C=0,得⎩⎪⎨⎪⎧-x +2y =0,y +z =0. 令y =1,得x =2,z =-1,即n =(2,1,-1),所以cos 〈OE ,n 〉=OE·n| OE |·|n |=3010, 即平面A 1B 1C 与平面BB 1C 1C 夹角的余弦值是3010.由题悟法求二面角最常用的方法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.以题试法3.(2012·山西模拟)如图,四棱锥S -ABCD 的底面是正方形,SD ⊥平面ABCD ,SD =AD =a ,点E 是SD 上的点,且DE =λa (0<λ≤1).(1)求证:对任意的λ∈(0,1],都有AC ⊥BE ; (2)若二面角C -AE -D 的大小为60°,求λ的值.解:(1)证明:如图,建立空间直角坐标系D -xyz ,则A (a,0,0,),B (a ,a,0),C (0,a,0),D (0,0,0),E (0,0,λa ),∴AC =(-a ,a,0),BE=(-a ,-a ,λa ), ∴AC ·BE =0对任意λ∈(0,1]都成立,即对任意的λ∈(0,1],都有AC ⊥BE .(2)显然n =(0,1,0)是平面ADE 的一个法向量, 设平面ACE 的法向量为m =(x ,y ,z ),∵AC =(-a ,a,0),AE=(-a,0,λa ),∴⎩⎨⎧m ·AC =0,m ·AE=0.即⎩⎪⎨⎪⎧ -ax +ay =0,-ax +λaz =0,∴⎩⎪⎨⎪⎧x -y =0,x -λz =0. 取z =1,则x =y =λ,∴m =(λ,λ,1), ∵二面角C -AE -D 的大小为60°, ∴|cos 〈n ,m 〉|=|n ·m ||n ||m |=λ1+2λ2=12, ∵λ∈(0,1], ∴λ=22.1.如图所示,在三棱柱ABC -A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC=AA 1,∠ABC =90°,点E 、F 分别是棱AB 、BB 1的中点,则直线EF 和BC 1所成的角为________.解析:建立如图所示的空间直角坐标系. 设AB =BC =AA 1=2,则C1(2,0,2),E (0,1,0),F (0,0,1),则EF=(0,-1,1),1BC =(2,0,2),∴EF ·1BC=2, ∴cos 〈EF ,1BC〉=22×22=12,∴EF 和BC 1所成角为60°. 答案:60°2.如图,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,2AC =AA 1=BC =2.若二面角B 1-DC -C 1的大小为60°,则AD 的长为________.解析:如图,以C 为坐标原点,CA ,CB ,CC 1所在的直线分别为x轴,y 轴,z 轴建立空间直角坐标系,则C (0,0,0),A (1,0,0),B 1(0,2,2),C 1(0,0,2).设AD =a ,则D 点坐标为(1,0,a ),CD=(1,0,a ),1CB =(0,2,2),设平面B 1CD 的一个法向量为m =(x ,y ,z ).则⎩⎪⎨⎪⎧m ·1CB =0m ·CD =0⇒⎩⎪⎨⎪⎧2y +2z =0x +az =0, 令z =-1,得m =(a,1,-1),又平面C 1DC 的一个法向量为n =(0,1,0), 则由cos 60°=|m·n ||m ||n |,得1a 2+2=12,即a =2,故AD = 2. 答案: 23.如图,在正四棱锥S -ABCD 中,O 为顶点在底面上的射影,P 为侧棱SD 的中点,且SO =OD ,则直线BC 与平面P AC 所成角为________.解析:如图所示,以O 为原点建立空间直角坐标系O -xyz .设OD =SO =OA =OB =OC =a ,则A (a,0,0),B (0,a,0),C (-a,0,0),P ⎝⎛⎭⎫0,-a 2,a2. 则CA =(2a,0,0),AP =⎝⎛⎭⎫-a ,-a 2,a 2,CB =(a ,a,0).设平面P AC 的法向量为n ,可求得n =(0,1,1),则cos 〈CB ,n 〉=CB·n | CB ||n |=a 2a 2·2=12. ∴〈CB,n 〉=60°,∴直线BC 与平面P AC 的夹角为90°-60°=30°. 答案:30°4.(2012·山西模拟)如图,在底面为直角梯形的四棱锥P -ABCD 中,AD ∥BC ,∠ABC =90°,P A ⊥平面ABCD ,P A =3,AD =2,AB =23,BC =6.(1)求证:BD ⊥平面P AC ; (2)求二面角P -BD -A 的大小.解:(1)证明:由题可知,AP 、AD 、AB 两两垂直,则分别以AB 、AD 、AP 所在直线为x 、y 、z 轴建立如图所示的空间直角坐标系,则A (0,0,0),B (23,0,0),C (23,6,0),D (0,2,0),P (0,0,3),∴AP =(0,0,3),AC =(23,6,0),BD=(-23,2,0),∴BD ·AP =0,BD ·AC=0.∴BD ⊥AP ,BD ⊥AC . 又P A ∩AC =A ,∴BD ⊥平面P AC .(2)显然平面ABD 的一个法向量为m =(0,0,1),设平面PBD 的法向量为n =(x ,y ,z ),则n ·BD =0,n ·BP =0.由(1)知,BP=(-23,0,3),∴⎩⎨⎧-23x +2y =0,-23x +3z =0,整理得⎩⎪⎨⎪⎧y =3x ,z =233x .令x =3,则n =(3,3,2), ∴cos 〈m ,n 〉=m ·n |m ||n |=12. ∴结合图形可知二面角P -BD -A 的大小为60°.5.(2012·辽宁高考)如图,直三棱柱ABC -A ′B ′C ′,∠BAC =90°,AB =AC =λAA ′,点M ,N 分别为A ′B 和B ′C ′的中点.(1)证明:MN ∥平面A ′ACC ′;(2)若二面角A ′-MN -C 为直二面角,求λ的值.解:(1)法一:证明:如图,连接AB ′,AC ′,由已知∠BAC =90°,AB =AC ,三棱柱ABC -A ′B ′C ′为直三棱柱,所以M 为AB ′中点.又因为N 为B ′C ′的中点, 所以MN ∥AC ′. 又MN ⊄平面A ′ACC ′, A ′C ⊂平面A ′ACC ′, 所以MN ∥平面A ′ACC ′.法二:证明:取A ′B ′ 中点P ,连接MP ,NP ,而M ,N 分别为AB ′与B ′C ′的中点,所以MP ∥AA ′,PN ∥A ′C ′, 所以MP ∥平面A ′ACC ′,PN ∥平面A ′ACC ′. 又MP ∩NP =P ,因此平面MPN ∥平面A ′ACC ′.而MN ⊂平面MPN , 因此MN ∥平面A ′ACC ′.(2)以A 为坐标原点,分别以直线AB ,AC ,AA ′为x 轴,y 轴,z 轴建立空间直角坐标系O -xyz ,如图所示.设AA ′=1,则AB =AC =λ,于是A (0,0,0),B (λ,0,0),C (0,λ,0),A ′(0,0,1), B ′(λ,0,1),C ′(0,λ,1), 所以M ⎝⎛⎭⎫λ2,0,12,N ⎝⎛⎭⎫λ2,λ2,1. 设m =(x 1,y 1,z 1)是平面A ′MN 的法向量, 由⎩⎨⎧m ·A M ' =0,m ·MN=0,得⎩⎨⎧λ2x 1-12z 1=0,λ2y 1+12z 1=0,可取m =(1,-1,λ).设n =(x 2,y 2,z 2)是平面MNC 的法向量, 由⎩⎨⎧n ·NC =0,n ·MN=0,得⎩⎨⎧-λ2x 2+λ2y 2-z 2=0,λ2y 2+12z 2=0,可取n =(-3,-1,λ).因为A ′-MN -C 为直二面角,所以m·n =0, 即-3+(-1)×(-1)+λ2=0,解得λ=2(负值舍去).6.如图1,在Rt △ABC 中,∠C =90°,BC =3,AC =6,D ,E 分别是AC ,AB 上的点,且DE ∥BC ,DE =2.将△ADE 沿DE 折起到△A 1DE 的位置,使A 1C ⊥CD ,如图2.(1)求证:A 1C ⊥平面BCDE ;(2)若M 是A 1D 的中点,求CM 与平面A 1BE 所成角的大小;(3)线段BC 上是否存在点P ,使平面A 1DP 与平面A 1BE 垂直?说明理由. 解:(1)证明:因为AC ⊥BC ,DE ∥BC , 所以DE ⊥AC .所以ED ⊥A 1D ,DE ⊥CD ,所以DE ⊥平面A 1DC . 所以DE ⊥A 1C . 又因为A 1C ⊥CD . 所以A 1C ⊥平面BCDE .(2)如图,以C 为坐标原点,建立空间直角坐标系C -xyz ,则A 1(0,0,23),D (0,2,0),M (0,1, 3),B (3,0,0),E (2,2,0).设平面A 1BE 的法向量为n =(x ,y ,z ),则n ·1A B =0,n ·BE =0. 又1A B(3,0-23)= (-1,2,0),所以⎩⎨⎧3x -23z =0,-x +2y =0.令y =1,则x =2,z = 3. 所以n =(2,1,3).设CM 与平面A 1BE 所成的角为θ.因为CM=(0,1,3),所以sin θ=|cos 〈n , CM 〉|=|n ·CM|n ||CM ||=48×4=22. 所以CM 与平面A 1BE 所成角的大小为π4.(3)线段BC 上不存在点P ,使平面A 1DP 与平面A 1BE 垂直,理由如下:假设这样的点P 存在,设其坐标为(p,0,0),其中p ∈[0,3].设平面A 1DP 的法向量为m =(x ,y ,z ),则m ·1A D =0,m ·DP =0. 又1A D =(0,2,-23),DP=(p ,-2,0),所以⎩⎨⎧2y -2 3z =0,px -2y =0.令x =2,则y =p ,z =p 3. 所以m =(2,p ,p 3). 平面A 1DP ⊥平面A 1BE ,当且仅当m ·n =0, 即4+p +p =0.解得p =-2,与p ∈[0,3]矛盾.所以线段BC 上不存在点P ,使平面A 1DP 与平面A 1BE 垂直.1.(2013·湖北模拟)如图所示,四棱锥P -ABCD 中,底面ABCD为正方形,PD ⊥平面ABCD ,PD =AB =2,E 、F 、G 分别为PC 、PD 、BC 的中点.(1)求证:P A ⊥EF ;(2)求二面角D -FG -E 的余弦值.解:以D 为坐标原点,建立如图所示的空间直角坐标系D -xyz ,则D (0,0,0),A (0,2,0),C (-2,0,0),P (0,0,2),E (-1,0,1),F (0,0,1),G (-2,1,0).(1)证明:由于PA =(0,2,-2),EF =(1,0,0),则PA ·EF=1×0+0×2+(-2)×0=0,∴P A ⊥EF .(2)易知DF =(0,0,1),EF=(1,0,0),FG =(-2,1,-1),设平面DFG 的法向量m =(x 1,y 1,z 1),则⎩⎨⎧m ·DF =0,m ·FG=0,解得⎩⎪⎨⎪⎧z 1=0,-2x 1+y 1-z 1=0. 令x 1=1,得m =(1,2,0)是平面DFG 的一个法向量. 设平面EFG 的法向量n =(x 2,y 2,z 2), 同理可得n =(0,1,1)是平面EFG 的一个法向量. ∵cos 〈m ,n 〉=m ·n |m |·|n |=25·2=210=105, 设二面角D -FG -E 的平面角为θ,由图可知θ=π-〈m ,n 〉, ∴cos θ=-105, ∴二面角D -FG -E 的余弦值为-105. 2.(2012·北京西城模拟)如图,在直三棱柱ABC -A1B 1C 1中,AB =BC =2AA 1,∠ABC =90°,D 是BC 的中点.(1)求证:A 1B ∥平面ADC 1; (2)求二面角C 1-AD -C 的余弦值;(3)试问线段A 1B 1上是否存在点E ,使AE 与DC 1成60°角?若存在,确定E 点位置;若不存在,说明理由.解:(1)证明:连接A 1C ,交AC 1于点O ,连接OD .由ABC -A 1B 1C 1是直三棱柱,得四边形ACC 1A 1为矩形,O 为A 1C 的中点.又D 为BC 的中点,所以OD 为△A 1BC 的中位线, 所以A 1B ∥OD ,因为OD ⊂平面ADC 1,A 1B ⊄平面ADC 1, 所以A 1B ∥平面ADC 1.(2)由ABC -A 1B 1C 1是直三棱柱,且∠ABC =90°,得BA ,BC ,BB 1两两垂直.以BC ,BA ,BB 1所在直线分别为x ,y ,z 轴,建立如图所示的空间直角坐标系B -xyz . 设BA =2,则B (0,0,0),C (2,0,0),A (0,2,0),C 1(2,0,1),D (1,0,0),所以AD=(1,-2,0),1AC =(2,-2,1).设平面ADC 1的法向量为n =(x ,y ,z ),则有⎩⎪⎨⎪⎧n ·AD =0,n ·1AC =0. 所以⎩⎪⎨⎪⎧x -2y =0,2x -2y +z =0.取y =1,得n =(2,1,-2).易知平面ADC 的一个法向量为v =(0,0,1). 所以cos 〈n ,v 〉=n ·v |n |·|v |=-23.因为二面角C 1-AD -C 是锐二面角, 所以二面角C 1-AD -C 的余弦值为23.(3)假设存在满足条件的点E .因为点E 在线段A 1B 1上,A 1(0,2,1),B 1(0,0,1), 故可设E (0,λ,1),其中0≤λ≤2.所以AE=(0,λ-2,1),1DC =(1,0,1).因为AE 与DC 1成60°角,所以|cos 〈AE ,1DC 〉|=⎪⎪⎪⎪⎪⎪⎪⎪AE ·1DC|AE |·|1DC |=12. 即⎪⎪⎪⎪⎪⎪1(λ-2)2+1·2=12,解得λ=1或λ=3(舍去).所以当点E 为线段A 1B 1的中点时,AE 与DC 1成60°角.1.(2012·北京东城模拟)如图,四边形ABCD 为正方形,PD⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .(1)证明:平面PQC ⊥平面DCQ ; (2)求二面角Q -BP -C 的余弦值.解:(1)证明:如图,以D 为坐标原点,DA 、DP 、DC 所在的直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系D -xyz .设DA =1,则有D (0,0,0),Q (1,1,0),C (0,0,1),P (0,2,0),所以DQ =(1,1,0),DC =(0,0,1),PQ=(1,-1,0),所以PQ ·DQ =0,PQ ·DC=0,即PQ ⊥DQ ,PQ ⊥DC .又DQ ⊂平面DCQ ,DC ⊂平面DCQ ,且DQ ∩DC =D , 所以PQ ⊥平面DCQ .又PQ ⊂平面PQC ,所以平面PQC ⊥平面DCQ .(2)由(1)易知B (1,0,1),CB =(1,0,0),BP=(-1,2,-1).设n =(x ,y ,z )是平面PBC 的法向量,则⎩⎨⎧n ·CB =0,n ·BP=0, 即⎩⎪⎨⎪⎧x =0,-x +2y -z =0,可取n =(0,-1,-2). 设m =(x 1,y 1,z 1)是平面PBQ 的法向量,则⎩⎪⎨⎪⎧m ·BP=0,m ·PQ =0, 即⎩⎪⎨⎪⎧-x 1+2y 1-z 1=0,x 1-y 1=0,可取m =(1,1,1). 所以cos 〈m ,n 〉=-155, 故二面角Q -BP -C 的余弦值为-155. 2.(2012·天津高考)如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AC ⊥AD ,AB ⊥BC ,∠BAC =45°,P A =AD =2,AC =1.(1)证明PC ⊥AD ;(2)求二面角A -PC -D 的正弦值;(3)设E 为棱P A 上的点,满足异面直线BE 与CD 所成的角为30°,求AE 的长.解:如图,以点A 为原点建立空间直角坐标系,依题意得A (0,0,0),D (2,0,0),C (0,1,0),B ⎝⎛-12,⎭⎫12,0,P (0,0,2).(1)证明:易得PC=(0,1,-2), AD=(2,0,0),于是PC ·AD =0,所以PC ⊥AD .(2) PC =(0,1,-2),CD=(2,-1,0).设平面PCD 的法向量n =(x ,y ,z ),则⎩⎨⎧n ·PC =0,n ·CD=0,即⎩⎪⎨⎪⎧y -2z =0,2x -y =0.不妨令z =1, 可得n =(1,2,1).可取平面P AC 的法向量m =(1,0,0). 于是cos 〈m ,n 〉=m·n|m |·|n |=16=66,从而sin 〈m ,n 〉=306. 所以二面角A -PC -D 的正弦值为306. (3)设点E 的坐标为(0,0,h ),其中h ∈[0,2].由此得BE =⎝⎛⎭⎫12,-12,h .由CD =(2,-1,0),故cos 〈BE ,CD 〉=BE ·CD|BE|·|CD |=3212+h 2×5=310+20h 2,所以310+20h 2=cos 30°=32,解得h =1010,即AE =1010. 3.如图,在长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB =2.(1)证明:当点E 在棱AB 上移动时,D 1E ⊥A 1D ; (2)在棱AB 上是否存在点E ,使二面角D 1-EC -D 的平面角为π6?若存在,求出AE 的长;若不存在,请说明理由.解:以D 为原点,DA 、DC 、DD 1所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,则D (0,0,0),C (0,2,0),A 1(1,0,1),D 1(0,0,1).设E (1,y 0,0)(0≤y 0≤2).(1)证明:∵1D E =(1,y 0,-1),1A D=(-1,0,-1), 则1D E ·1A D=(1,y 0,-1)·(-1,0,-1)=0, ∴1D E⊥1A D,即D 1E ⊥A 1D .(2)当AE =2-33时,二面角D 1-EC -D 的平面角为π6. ∵EC=(-1,2-y 0,0),1D C =(0,2,-1),设平面D 1EC 的一个法向量为n 1=(x ,y ,z ),则⎩⎪⎨⎪⎧n 1·EC =0,n 1·1D C =0⇒⎩⎪⎨⎪⎧-x +y (2-y 0)=0,2y -z =0.取y =1,则n 1=(2-y 0,1,2)是平面D 1EC 的一个法向量.而平面ECD 的一个法向量为n 2=1DD =(0,0,1),要使二面角D 1-EC -D 的平面角为π6,则cos π6=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1|·|n 2|=2(2-y 0)2+12+22=32,解得y 0=2-33(0≤y 0≤2). ∴当AE =2-33时,二面角D 1-EC -D 的平面角为π6. 4.(2012·湖北模拟)在直三棱柱ABC -A 1B 1C 1中,AB =AC =1,∠BAC =90°.(1)若异面直线A 1B 与B 1C 1所成的角为60°,求棱柱的高; (2)设D 是BB 1的中点,DC 1与平面A 1BC 1所成的角为θ,当棱柱的高变化时,求sin θ的最大值.解:建立如图所示的空间直角坐标系A -xyz ,设AA 1=h (h >0),则有B (1,0,0),B 1(1,0,h ),C 1(0,1,h ),A 1(0,0,h ),11B C =(-1,1,0),11A C =(0,1,0),1A B=(1,0,-h ).(1)因为异面直线A 1B 与B 1C 1所成的角为60°,所以cos60°=|11B C ·1A B ||11B C |·|1A B |, 即12·h 2+1=12,得1+h 2=2,解得h =1. (2)由D 是BB 1的中点,得D ⎝⎛⎭⎫1,0,h 2, 于是1DC =⎝⎛⎭⎫-1,1,h2. 设平面A 1BC 1的法向量为n =(x ,y ,z ),于是由n ⊥1A B ,n ⊥11A C可得 ⎩⎪⎨⎪⎧n ·1A B =0,n ·11A C=0,即⎩⎪⎨⎪⎧x -hz =0,y =0,可取n =(h,0,1),故sin θ=|cos 〈1DC,n 〉|,而|cos 〈1DC ,n 〉|=|1DC·n ||1DC |·|n |=⎪⎪⎪⎪-h +h 214h 2+2·h 2+1=hh 4+9h 2+8.令f (h )=hh 4+9h 2+8=1h 2+8h2+9, 因为h 2+8h 2+9≥28+9,当且仅当h 2=8h 2,即h =48时,等号成立.所以f (h )≤19+28=18+1=22-17,故当h =48时,sin θ的最大值为22-17.立 体 几 何(时间:120分钟,满分150分)一、选择题(本题共12小题,每小题5分,共60分)1.(2012·重庆模拟)若两条直线和一个平面相交成等角,则这两条直线的位置关系是( )A .平行B .异面C .相交D .平行、异面或相交解析:选D 经验证,当平行、异面或相交时,均有两条直线和一个平面相交成等角的情况出现.2.(2012·福建高考)一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是( )A .球B .三棱锥C .正方体D .圆柱解析:选D 球、正方体的三视图形状都相同,大小均相等,首先排除选项A 和C.对于如图所示三棱锥O -ABC ,当OA 、OB 、OC 两两垂直且OA =OB =OC 时,其三视图的形状都相同,大小均相等,故排除选项B.不论圆柱如何放置,其三视图的形状都不会完全相同. 3.(2012·安徽模拟)在空间,下列命题正确的是( ) A .若三条直线两两相交,则这三条直线确定一个平面 B .若直线m 与平面α内的一条直线平行,则m ∥αC .若平面α⊥β,且α∩β=l ,则过α内一点P 与l 垂直的直线垂直于平面βD .若直线a ∥b ,且直线l ⊥a ,则l ⊥b解析:选D 三条直线两两相交,可确定一个平面或三个平面,故A 错;m 与平面α内一条直线平行,m 也可在α内,故B 错;若平面α⊥β,且α∩β=l ,当P ∈l 时,过P 点与l 垂直的直线可在β外,也可在β内,故C 错.由等角定理知D 正确.4.(2012·新课标全国卷)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为( )A.6πB .43πC .46πD .63π解析:选B 设球的半径为R ,由球的截面性质得R =(2)2+12=3,所以球的体积V =43πR 3=43π.5.(2012·北京海淀二模)某几何体的正视图与俯视图如图所示,侧视图与正视图相同,且图中的四边形都是边长为2的正方形,两条虚线互相垂直,则该几何体的体积是( )A.203 B.43 C .6D .4解析:选A 由三视图知,该几何体是正方体挖去一个以正方体的中心为顶点、以正方体的上底面为底面的四棱锥后的剩余部分,其体积是23-13×22×1=203.6.(2013·安徽模拟)沿一个正方体三个面的对角线截得的几何体如图所示,则该几何体的侧视图为( )解析:选B 由三视图的相关知识易知选B.7.正方体ABCD -A 1B 1C 1D 1中,与体对角线AC 1异面的棱有( ) A .3条 B .4条 C .6条D .8条解析:选C 从定义出发,同时考虑到正方体的体对角线AC 1与正方体的6条棱有公共点A 和C 1,而正方体有12条棱,所以与AC 1异面的棱有6条.8.(2012·衡阳模拟)如图,一个空间几何体的正视图和侧视图都是边长为1的正三角形,俯视图是一个圆,那么这个几何体的侧面积为( )A.π4B.π2C.2π2D.2π4 解析:选B 此几何体是底面半径为12,母线长为1的圆锥,其侧面积S =πrl =π×12×1=π2. 9.如图,在正方体ABCD -A1B 1C 1D 1中,M ,N 分别是BC 1,CD 1的中点,则下列判断错误的是( )A .MN 与CC 1垂直B .MN 与AC 垂直C .MN 与BD 平行D .MN 与A 1B 1平行解析:选D 由于C 1D 1与A 1B 1平行,MN 与C 1D 1是异面直线,所以MN 与A 1B 1是异面直线,故选项D 错误.10.(2012·皖南八校三联)某几何体的三视图如图所示(单位:cm),则此几何体的体积为( )A .18 cm 3B .15 cm 3C .12 cm 3D .9 cm 3解析:选B 由三视图可知,该几何体是一个上下均为长方体的组合体.如图所示,由图中数据可得该几何体体积为3×3×1+1×2×3=15(cm 3).11.在正四面体A -BCD 中,棱长为4,M 是BC 的中点,P 在线段AM 上运动(P 不与A 、M 重合),过点P 作直线l ⊥平面ABC ,l 与平面BCD 交于点Q ,给出下列命题:①BC ⊥面AMD ;②Q 点一定在直线DM 上;③V C -AMD =4 2.其中正确的是( )A .①②B .①③C .②③D .①②③解析:选A ∵A -BCD 是正四面体,M 为BC 中点,∴AM ⊥BC ,DM ⊥BC ,且AM ∩DM =M ,∴BC ⊥面AMD .∴①正确.V C -AMD =13S △AMD ·CM (∵BC ⊥面AMD ,∴CM 为四面体C -AMD 的高). 如图,在△AMD 中,AM =DM =AB 2-BM 2=42-22=23,MN =AM 2-AN 2=12-22=22,∴S △AMD =12AD ·MN =12×4×22=42, ∴V C -AMD =13×42×2=823,故③不正确.由排除法知选A. 12.(2012·浙江高考)已知矩形ABCD ,AB =1,BC = 2.将△ABD 沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中,( )A .存在某个位置,使得直线AC 与直线BD 垂直B .存在某个位置,使得直线AB 与直线CD 垂直C .存在某个位置,使得直线AD 与直线BC 垂直D .对任意位置,三对直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直 解析:选B 对于AB ⊥CD ,因为BC ⊥CD ,可得CD ⊥平面ACB ,因此有CD ⊥AC .因为AB =1,BC =2,CD =1,所以AC =1,所以存在某个位置,使得AB ⊥CD .二、填空题(本题共4小题,每小题5分,共20分)13.(2012·肇庆二模)已知某几何体的三视图如图所示,则该几何体的表面积和体积分别为________,________.解析:由三视图可知,该几何体的下部是一底边长为2,高为4的长方体,上部为一球,球的直径等于正方形的边长.所以长方体的表面积为S 1=2×2×2+4×2×4=40,长方体的体积为V 1=2×2×4=16,球的表面积和体积分别为S 2=4×π×12=4π,V 2=43×π×13=4π3, 故该几何体的表面积为S =S 1+S 2=40+4π,该几何体的体积为V =V 1+V 2=16+4π3.答案:40+4π 16+4π314. (2012·北京怀柔模拟)P 为△ABC 所在平面外一点,且P A 、PB 、PC 两两垂直,则下列命题:①P A ⊥BC ;②PB ⊥AC ;③PC ⊥AB ;④AB ⊥BC .其中正确的个数是________.解析:如图所示.∵P A ⊥PC ,P A ⊥PB ,PC ∩PB =P ,∴P A ⊥平面PBC .又∵BC ⊂平面PBC ,∴P A ⊥BC .同理PB ⊥AC ,PC ⊥AB .但AB 不一定垂直于BC .共3个.答案:315.已知正三棱柱ABC -A 1B 1C 1的所有棱长都等于6,且各顶点都在同一球面上,则此球的表面积等于________.解析:如图,三棱柱的外接球球心为O ,其中D 为上底面三角形外接圆的圆心,其中AD =33×6=23,又OD =3,故在Rt △OAD 中可得R =|OA |=(23)2+32=21,故球的表面积为4π(21)2=84π.答案:84π16.(2012·长春名校联考)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,点M ∈AB 1,N ∈BC 1,且AM =BN ≠2,有以下四个命题:①AA 1⊥MN ;②A 1C 1∥MN ;③MN ∥平面A 1B 1C 1D 1;④MN 与A 1C 1是异面直线.其中正确命题的序号是________.(注:把你认为正确命题的序号都填上)解析:过N 作NP ⊥BB 1于点P ,连接MP ,可证AA 1⊥平面MNP ,∴AA 1⊥MN ,①正确;过M 、N 分别作MR ⊥A 1B 1、NS ⊥B 1C 1于点R 、S ,则当M 不是AB 1的中点,N 不是BC 1的中点时,直线A 1C 1与直线RS 相交;当M 、N 分别是AB 1、BC 1的中点时,A 1C 1∥RS ,∴A 1C 1与MN 可以异面,也可以平行,故②④错误.由①正确知,AA 1⊥平面MNP ,而AA 1⊥平面A 1B 1C 1D 1,∴平面MNP ∥平面A 1B 1C 1D 1,故③对.综上所述,其中正确命题的序号是①③.答案:①③三、解答题(本大题有6小题,共70分)17.(本小题满分10分)(2012·陕西高考)在直三棱柱ABC -A 1B 1C 1中,AB =AA 1,∠CAB =π2. (1)证明:CB 1⊥BA 1;(2)已知AB =2,BC =5,求三棱锥C 1-ABA 1的体积.解:(1)证明:如图所示,连接AB 1,∵ABC -A 1B 1C 1是直三棱柱,∠CAB =π2, ∴AC ⊥平面ABB 1A 1,故AC ⊥BA 1.又∵AB =AA 1,∴四边形ABB 1A 1是正方形,∴BA 1⊥AB 1,又CA ∩AB 1=A ,∴BA 1⊥平面CAB 1,故CB 1⊥BA 1.(2)∵AB =AA 1=2,BC =5,∴AC =A 1C 1=1,由(1)知,A 1C 1⊥平面ABA 1,∴VC 1-ABA 1=13S △ABA 1·A 1C 1=13×2×1=23. 18.(本小题满分12分) (12分)如图所示,四棱锥P -ABCD 的底面是边长为a 的正方形,侧棱P A ⊥底面ABCD ,侧面PBC 内有BE ⊥PC于E ,且BE =63a ,试在AB 上找一点F ,使EF ∥平面P AD . 解:在平面PCD 内,过E 作EG ∥CD 交PD 于G ,连接AG ,在AB 上取点F ,使AF =EG ,则F 即为所求作的点.∵EG ∥CD ∥AF ,EG =AF ,∴四边形FEGA 为平行四边形,∴FE ∥AG .又AG ⊂平面P AD ,FE ⊄平面P AD ,∴EF ∥平面P AD .又在Rt △BCE 中, CE =BC 2-BE 2= a 2-23a 2=33a . 在Rt △PBC 中,BC 2=CE ·CP ,∴CP =a 23a3=3a , 又EG CD =PE PC, ∴EG =PE PC ·CD =23a ,∴AF =EG =23a . ∴点F 为AB 靠近点B 的一个三等分点.19.(本小题满分12分) (12分)(2012·新课标全国卷)如图,在三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB =90°,AC =BC =12AA 1,D 是棱AA 1的中点.(1)证明:平面BDC 1⊥平面BDC ;(2)平面BDC 1分此棱柱为两部分,求这两部分体积的比.解:(1)证明:由题设知BC ⊥CC 1,BC ⊥AC ,CC 1∩AC =C ,所以BC ⊥平面ACC 1A 1.又DC 1⊂平面ACC 1A 1,所以DC 1⊥BC .由题设知∠A 1DC 1=∠ADC =45°,所以∠CDC 1=90°,即DC 1⊥DC .又DC ∩BC =C ,所以DC 1⊥平面BDC .又DC 1⊂平面BDC 1,故平面BDC 1⊥平面BDC .(2)设棱锥B -DACC 1的体积为V 1,AC =1.由题意得V 1=13×1+22×1×1=12. 又三棱柱ABC -A 1B 1C 1的体积V =1,所以(V -V 1)∶V 1=1∶1.故平面BDC 1分此棱柱所得两部分体积的比为1∶1.20.(本小题满分12分) (12分)(2012·安徽高考)如图,长方体ABCD -A 1B 1C 1D 1中,底面A 1B 1C 1D 1是正方形,O 是BD 的中点,E 是棱AA 1上任意一点.(1)证明:BD ⊥EC 1;(2)如果AB =2,AE =2,OE ⊥EC 1,求AA 1的长.解:(1)证明:连接AC ,A 1C 1.由底面是正方形知,BD ⊥AC .因为AA 1⊥平面ABCD ,BD ⊂平面ABCD ,所以AA 1⊥BD .又AA 1∩AC =A ,所以BD ⊥平面AA 1C 1C .由EC 1⊂平面AA 1C 1C 知,BD ⊥EC 1.(2)法一:设AA 1的长为h ,连接OC 1.在Rt △OAE 中,AE =2,AO =2,故OE 2=(2)2+(2)2=4.故Rt△EA1C1中,A1E=h-2,A1C1=22,故EC21=(h-2)2+(22)2.在Rt△OCC1中,OC=2,CC1=h,OC21=h2+(2)2. 因为OE⊥EC1,所以OE2+EC21=OC21,即4+(h-2)2+(22)2=h2+(2)2,解得h=32,所以AA1的长为3 2.法二:∵OE⊥EC1,∴∠AEO+∠A1EC1=90°.又∵∠A1C1E+∠A1EC1=90°,∴∠AEO=∠A1C1E.又∵∠OAE=∠C1A1E=90°,∴△OAE∽△EA1C1,∴AEA1C1=AOA1E,即222=2A1E,∴A1E=22,∴AA1=AE+A1E=3 2.21.(本小题满分12分) (12分)(2012·郑州一模)如图,在四棱锥S-ABCD中,AB⊥AD,AB∥CD,CD=3AB=3,平面SAD⊥平面ABCD,E是线段AD上一点,AE=ED=3,SE⊥AD.(1)证明:平面SBE⊥平面SEC;(2)若SE=1,求三棱锥E-SBC的高.解:(1)证明:∵平面SAD⊥平面ABCD且平面SAD∩平面ABCD=AD,SE⊂平面SAD,SE⊥AD,∴SE⊥平面ABCD.∵BE⊂平面ABCD,∴SE⊥BE.∵AB⊥AD,AB∥CD,CD=3AB=3,AE=ED=3,∴∠AEB=30°,∠CED=60°.∴∠BEC=90°,即BE⊥CE.又SE∩CE=E,,∴BE⊥平面SEC,∵BE⊂平面SBE,∴平面SBE⊥平面SEC.(2)如图,过点E作EF⊥BC于点F,连接SF.由(1)知SE⊥平面ABCD,而BC ⊂平面ABCD ,∴BC ⊥SE ,又SE ∩EF =E ,∴BC ⊥平面SEF ,∵BC ⊂平面SBC ,∴平面SEF ⊥平面SBC .过点E 作EG ⊥SF 于点G ,则EG ⊥平面SBC ,即线段EG 的长即为三棱锥E -SBC 的高. 由(1)易知,BE =2,CE =23,则BC =4,EF = 3.在Rt △SEF 中,SE =1,SF =SE 2+EF 2=2,则EG =ES ·EF SF =32,∴三棱锥E -SBC 的高为32.22.(本小题满分12分) (14分)(2012·北京昌平二模)在正四棱柱ABCD -A 1B 1C 1D 1中,E 为AD 的中点,F 为B 1C 1的中点.(1)求证:A 1F ∥平面ECC 1;(2)在CD 上是否存在一点G ,使BG ⊥平面ECC 1?若存在,请确定点G 的位置,并证明你的结论;若不存在,请说明理由.解:(1)证明:在正四棱柱ABCD -A 1B 1C 1D 1中,取BC 的中点M ,连接AM ,FM .∴B 1F ∥BM 且B 1F =BM .∴四边形B 1FMB 是平行四边形.∴FM ∥B 1B 且FM =B 1B .∴FM ∥A 1A 且FM =A 1A ,∴四边形AA 1FM 是平行四边形.∴F A 1∥AM .∵E 为AD 的中点,∴AE ∥MC 且AE =MC .∴四边形AMCE 是平行四边形.∴CE ∥AM .∴CE ∥A 1F .∵A 1F ⊄平面ECC 1,EC ⊂平面ECC 1,∴A 1F ∥平面ECC 1.(2)在CD上存在一点G,使BG⊥平面ECC1.取CD的中点G,连接BG.在正方形ABCD中,DE=GC,CD=BC,∠ADC=∠BCD,∴△CDE≌△BCG.∴∠ECD=∠GBC.∵∠CGB+∠GBC=90°,∴∠CGB+∠DCE=90°.∴BG⊥EC.∵CC1⊥平面ABCD,BG⊂平面ABCD,∴CC1⊥BG,又EC∩CC1=C,∴BG⊥平面ECC1.故在CD上存在中点G,使得BG⊥平面ECC1.。

相关文档
最新文档