2012年全国部分地区中考数学试题分类解析汇编 第10章 平面直角坐标系与坐标
2012年全国部分地区中考数学考试试题分类——二次函数的应用(精编)
2012年全国部分地区中考数学试题分类——二次函数的应用(精编)1. (2012广东珠海7分)如图,二次函数y=(x ﹣2)2+m 的图象与y 轴 交于点C ,点B 是点C 关于该二次函数图象的对称轴对称的点.已知一次 函数y=kx+b 的图象经过该二次函数图象上点A (1,0)及点B . (1)求二次函数与一次函数的解析式;(2)根据图象,写出满足kx+b≥(x ﹣2)2+m 的x 的取值范围.2. (2012黑龙江黑河、齐齐哈尔、大兴安岭、鸡西6分) 如图,抛物线21y x =x 2b c ++-与x 轴交于A 、B 两点,与y 轴交于点C ,且OA=2,OC=3.(1)求抛物线的解析式.(2)若点D(2,2)是抛物线上一点,那么在抛物线的对称轴上,是否存在一点P ,使得△BDP 的周长最小,若存在,请求出点P 的坐标,若不存在,请说明理由.【答案】解:(1)∵OA=2,OC=3,∴A(-2,0),C (0,3)。
将C (0,3)代入21y=x bx c 2-++得c=3。
将A (-2,0)代入21y=x bx 32-++得,()()210=22b 32-⋅-+-+,解得b=12。
∴抛物线的解析式为211y=x x 322-++。
(2)如图:连接AD ,与对称轴相交于P ,由于点A 和点B 关于对称轴对称,则即BP+DP=AP+DP ,当A 、P 、D 共线时BP+DP=AP+DP 最小。
设AD 的解析式为y=kx+b ,将A (-2,0),D (2,2)分别代入解析式得,2k b 0 2k b 2-+=⎧⎨+=⎩,解得,1k 2b 1⎧=⎪⎨⎪=⎩,∴直线AD 解析式为y=12x+1。
∵二次函数的对称轴为112x 122 2=-=⎛⎫⨯- ⎪⎝⎭,∴当x=12时,y=12×12+1=54。
∴P(12,54)。
3. (2012浙江杭州12分)在平面直角坐标系内,反比例函数和二次函数y=k (x 2+x ﹣1)的图象交于点A (1,k )和点B (﹣1,﹣k ).(1)当k=﹣2时,求反比例函数的解析式;(2)要使反比例函数和二次函数都是y 随着x 的增大而增大,求k 应满足的条件以及x 的取值范围; (3)设二次函数的图象的顶点为Q ,当△ABQ 是以AB 为斜边的直角三角形时,求k 的值. 【答案】解:(1)当k=﹣2时,A (1,﹣2),∵A 在反比例函数图象上,∴设反比例函数的解析式为:my x=。
2012年各地中考数学试题分类汇编答案
2012年各地中考数学试题分类汇编(一元二次方程部分)1、(1)解:设每千克核桃应降价x元.…1分根据题意,得(60﹣x﹣40)(100+×20)=2240.…4分化简,得x2﹣10x+24=0 解得x1=4,x2=6.…6分答:每千克核桃应降价4元或6元.…7分(2)解:由(1)可知每千克核桃可降价4元或6元.因为要尽可能让利于顾客,所以每千克核桃应降价6元.…8分此时,售价为:60﹣6=54(元),.…9分答:该店应按原售价的九折出售.…10分2、解:因为60棵树苗售价为120元×60=7200元<8800元,所以该校购买树苗超过60棵,设该校共购买了x棵树苗,由题意得:x[120﹣0.5(x﹣60)]=8800,解得:x1=220,x2=80.当x2=220时,120﹣0.5×(220﹣60)=40<100,∴x1=220(不合题意,舍去);当x2=80时,120﹣0.5×(80﹣60)=110>100,∴x=80,答:该校共购买了80棵树苗.3、解(1)设平均每次下调的百分率为x.由题意,得5(1﹣x)2=3.2.解这个方程,得x1=0.2,x2=1.8.因为降价的百分率不可能大于1,所以x2=1.8不符合题意,符合题目要求的是x1=0.2=20%.答:平均每次下调的百分率是20%.(2)小华选择方案一购买更优惠.理由:方案一所需费用为:3.2×0.9×5000=14400(元),方案二所需费用为:3.2×5000﹣200×5=15000(元).∵14400<15000,∴小华选择方案一购买更优惠.9、4、5、解:(1)设到2013年底,这两年中投入资金的平均年增长率为x ,根据题意得:3+3(x+1)+3(x+1)2=10.5…(3分)(2)由(1)得,x 2+3x ﹣0.5=0…(4分)由根与系数的关系得,x 1+x 2=﹣3,x 1x 2=﹣0.5…(5分)又∵mx 12﹣4m 2x 1x 2+mx 22=12m[(x 1+x 2)2﹣2x 1x 2]﹣4m 2x 1x 2=12m[9+1]﹣4m 2(﹣0.5)=12∴m 2+5m ﹣6=0解得,m=﹣6或m=1…(8分)6、解:(1)222(0.7)2 2.5x ++=,故答案为;0.8,﹣2.2(舍去),0.8。
2012年全国中考数学试题分类解析汇编
2012年全国中考数学试题分类解析汇编专题11:方程(组)的应用一、选择题1. (2012宁夏区3分)小颖家离学校1200米3千米/时,下坡路的平均速度是5千米/时.若设小颖上坡用了x分钟,下坡用了y分钟,根据题意可列方程组为【】A.3x5y1200x y16+=⎧⎨+=⎩B.35x y 1.26060x y16⎧+=⎪⎨⎪+=⎩C.3x5y 1.2x y16+=⎧⎨+=⎩D.35x y12006060x y16⎧+=⎪⎨⎪+=⎩【答案】B。
【考点】由实际问题抽象出二元一次方程组。
【分析】要列方程,首先要根据题意找出存在的等量关系。
本题等量关系为:上坡用的时间×上坡的速度+下坡用的时间×下坡速度=1200,上坡用的时间+下坡用的时间=16。
把相关数值代入(注意单位的通一),得35x y 1.26060x y16⎧+=⎪⎨⎪+=⎩。
故选B。
2. (2012宁夏区3分)运动会上,初二(3)班啦啦队,买了两种价格的雪糕,其中甲种雪糕共花费40元,乙种雪糕共花费30元,甲种雪糕比乙种雪糕多20根.乙种雪糕价格是甲种雪糕价格的1.5倍,若设甲种雪糕的价格为x元,根据题意可列方程为【】.A.4030201.5x x-=B.403020x 1.5x-=C.304020x 1.5x-=D.3040201.5x x-=【答案】B。
【考点】由实际问题抽象出分式方程。
【分析】要列方程,首先要根据题意找出存在的等量关系。
本题等量关系为:甲种雪糕数量比乙种雪糕数量多20根。
而甲种雪糕数量为40x,乙种雪糕数量为301.5x。
(数量=金额÷价格)从而得方程:403020x 1.5x-=。
故选B。
3. (2012广东湛江4分)湛江市2009年平均房价为每平方米4000元.连续两年增长后,2011年平均房价达到每平方米5500元,设这两年平均房价年平均增长率为x,根据题意,下面所列方程正确的是【】A.5500(1+x)2=4000 B.5500(1﹣x)2=4000 C.4000(1﹣x)2=5500 D.4000(1+x)2=5500【答案】D。
2012年全国中考数学试题分类解析汇编(159套63专题)专题60:代数几何综合
2012年全国中考数学试题分类解析汇编(159套63专题)专题60:代数几何综合一、选择题1. (2012浙江义乌3分)一个正方形的面积是15,估计它的边长大小在【 】A .2与3之间B .3与4之间C .4与5之间D .5与6之间【答案】B 。
【考点】算术平方根,估算无理数的大小。
【分析】∵一个正方形的面积是15,∵9<15<16<4。
故选B 。
2. (2012浙江杭州3分)已知抛物线()3y k x 1x k ⎛⎫=+ ⎪⎝⎭-与x 轴交于点A ,B ,与y 轴交于点C ,则能使△ABC 为等腰三角形的抛物线的条数是【 】A .2B .3C .4D .5【答案】B 。
【考点】抛物线与x 轴的交点。
【分析】根据抛物线的解析式可得C (0,﹣3),再表示出抛物线与x 轴的两个交点的横坐标,再根据ABC 是等腰三角形分三种情况讨论,求得k 的值,即可求出答案:根据题意,得C (0,﹣3).令y=0,则()3k x 1x 0k ⎛⎫+= ⎪⎝⎭-,解得x=﹣1或x=3k 。
设A 点的坐标为(﹣1,0),则B (3k,0), ①当AC=BC 时,OA=OB=1,B 点的坐标为(1,0),∴3k =1,k=3; ②当AC=AB 时,点B 在点A 的右面时,∵AC =B 1,0),∴31,k k ==③当AC=AB 时,点B 在点A 的左面时,B 0),∴3k k == 。
∴能使△ABC 为等腰三角形的抛物线的条数是3条。
故选B 。
3. (2012浙江湖州3分)如图,已知点A (4,0),O 为坐标原点,P 是线段OA 上任意一点(不含端点O ,A ),过P 、O 两点的二次函数y 1和过P 、A 两点的二次函数y 2的图象开口均向下,它们的顶点分别为B 、C ,射线OB 与AC 相交于点D .当OD=AD=3时,这两个二次函数的最大值之和等于【 】A C .3 D .4 【答案】A 。
【考点】二次函数的性质,等腰三角形的性质,勾股定理,相似三角形的判定和性质。
(最新最全)2012年全国各地中考数学解析汇编(按章节考点整理)分3个考点精选48题)
(最新最全)2012年全国各地中考数学解析汇编(按章节考点整理)第十一章 因式分解(分3个考点精选48题)11.1 提公因式法(2012北京,9,4)分解因式:269mn mn m ++= .【解析】原式=m (n 2+6n +9)=m (n +3)2【答案】m (n +3)2【点评】本题考查了提公因式及完全平方的知识点。
(2012广州市,13, 3分)分解因式a 2-8a 。
【解析】提取公因式即可分解因式。
【答案】:a(a -8).【点评】本题考查了因式分解的方法。
比较简单。
(2012浙江省温州市,5,4分)把24a a -多项式分解因式,结果正确的是( )A. ()4a a -B. (2)(2)a a +-C. (2)(2)a a a +-D. 2(2)4a --【解析】分解因式按“一提二套”原则:有公因式的先提取公因式,再套用平方差公式或完全平方公式,本题可直接提公因式.【答案】A【点评】有公因式的要先提取公因式,然后再考虑运用平方差公式或完全平方公式进行分解.因式分解要分解到每个多项式因式都不能再分解为止,此题较基础.(湖南株洲市3,9)因式分解:22a a -= .【解析】22(2)a a a a -=-【答案】(2)a a -【点评】本题主要考查因式分解的常用方法及步骤:先提取公因式,再运用公式法进行分解. (2012四川成都,1l ,4分)分解因式:25x x -=________.解析:因式分解的基本方法是提取公因式法、公式法、分组分解法。
本题只有两项,所以,只能用提取公因式法和平方差公式法。
观察可知有公因式x ,提取公因式法分解为x(x-5)。
答案:x(x-5)。
点评:公因式的确定方法是:系数是各项系数的最大公约数,字母是各项都有的字母,指数取最小。
(2012湖北随州,11,4分)分解因式:249x -=______________________。
解析:22249(2)3(23)(23)x x x x -=-=+-。
2012中考数学试题及答案分类汇编:平面几何基础
2012中考数学试题及答案分类汇编:平面几何基础一、选择题1.(河北省2分)如图,∠1+∠2等于A、60°B、90°C、110°D、180°【答案】B。
【考点】平角的定义。
【分析】根据平角的定义得到∠1+90°+∠2=180°,即由∠1+∠2=90°。
故选B。
2.(河北省3分)已知三角形三边长分别为2,x,13,若x为正整数则这样的三角形个数为A、2B、3C、5D、13【答案】B。
【考点】一元一次方程组的应用,三角形三边关系。
【分析】根据三角形的三边关系:三角形两边之和大于第三边,两边差小于第三边,得213132x >x <+⎧⎨+⎩,解得,11<x <15,所以,x 为12、13、14。
故选B 。
3.(山西省2分)如图所示,∠AOB 的两边、OA 、OB 均为平面反光镜,∠AOB=35°,在OB 上有一点E,从E 点射出一束光线经OA 上的点D 反射后,反射光线DC 恰好与OB平行,则∠DEB 的度数是A 、35°B 、70°C 、110°D 、120°【答案】B 。
【考点】平行线的性质,入射角与反射角的关系,三角形内角和定理,等腰三角形的性质。
【分析】过点D 作DF ⊥AO 交OB 于点F,则DF 是法线,根据入射角等于反射角的关系,得∠1=∠3,∵CD ∥OB,∴∠1=∠2(两直线平行,内错角相等)。
∴∠2=∠3(等量代换);在Rt △DOF 中,∠ODF=90°,∠AOB=35°,∴∠2=55°;∴在△DEF 中,∠DEB=180°-2∠2=70°。
故选B 。
4.(山西省2分)一个正多边形,它的每一个外角都等于45°,则该正多边形是A 、正六边形B 、正七边形C 、正八边形D 、正九边形【答案】C 。
2012年全国各地中考数学试题分类解析汇编:精选压轴题(3)
2012年各地中考数学压轴题精选11~20_解析版【11. 2012成都】28. (本小题满分l2分)如图,在平面直角坐标系xOy 中,一次函数54y x m =+ (m 为常数)的图象与x 轴交于点A(3-,0),与y 轴交于点C .以直线x=1为对称轴的抛物线2y ax bx c =++ (a b c ,, 为常数,且a ≠0)经过A ,C 两点,并与x 轴的正半轴交于点B . (1)求m 的值及抛物线的函数表达式;(2)设E 是y 轴右侧抛物线上一点,过点E 作直线AC 的平行线交x 轴于点F .是否存在这样的点E ,使得以A ,C ,E ,F 为顶点的四边形是平行四边形?若存在,求出点E 的坐标及相应的平行四边形的面积;若不存在,请说明理由;(3)若P 是抛物线对称轴上使△ACP 的周长取得最小值的点,过点P 任意作一条与y 轴不平行的直线交抛物线于111M ()x y , ,222M ()x y ,两点,试探究2112P PM M M M ⋅ 是否为定值,并写出探究过程.考点:二次函数综合题。
解答:解:(1)∵经过点(﹣3,0), ∴0=+m ,解得m=, ∴直线解析式为,C (0,).∵抛物线y=ax 2+bx+c 对称轴为x=1,且与x 轴交于A (﹣3,0),∴另一交点为B (5,0), 设抛物线解析式为y=a (x+3)(x ﹣5), ∵抛物线经过C (0,),∴=a •3(﹣5),解得a=,∴抛物线解析式为y=x2+x+;(2)假设存在点E使得以A、C、E、F为顶点的四边形是平行四边形,则AC∥EF且AC=EF.如答图1,(i)当点E在点E位置时,过点E作EG⊥x轴于点G,∵AC∥EF,∴∠CAO=∠EFG,又∵,∴△CAO≌△EFG,∴EG=CO=,即y E=,∴=x E2+x E+,解得x E=2(x E=0与C点重合,舍去),∴E(2,),S▱ACEF=;(ii)当点E在点E′位置时,过点E′作E′G′⊥x轴于点G′,同理可求得E′(+1,),S▱ACE′F′=.(3)要使△ACP的周长最小,只需AP+CP最小即可.如答图2,连接BC交x=1于P点,因为点A、B关于x=1对称,根据轴对称性质以及两点之间线段最短,可知此时AP+CP最小(AP+CP最小值为线段BC的长度).∵B(5,0),C(0,),∴直线BC解析式为y=x+,∵x P=1,∴y P=3,即P(1,3).令经过点P(1,3)的直线为y=kx+3﹣k,∵y=kx+3﹣k,y=x2+x+,联立化简得:x2+(4k﹣2)x﹣4k﹣3=0,∴x1+x2=2﹣4k,x1x2=﹣4k﹣3.∵y1=kx1+3﹣k,y2=kx2+3﹣k,∴y1﹣y2=k(x1﹣x2).根据两点间距离公式得到:M1M2===∴M1M2===4(1+k2).又M1P===;同理M2P=∴M1P•M2P=(1+k2)•=(1+k2)•=(1+k2)•=4(1+k2).∴M1P•M2P=M1M2,∴=1为定值.3【12.2012•聊城】25.某电子厂商投产一种新型电子厂品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣制造成本)(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,厂商每月能获得3502万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?(3)根据相关部门规定,这种电子产品的销售单价不能高于32元,如果厂商要获得每月不低于350万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?考点:二次函数的应用;一次函数的应用。
精编版2012全国各地中考数学试题分类解析汇编代数综合
(精编版)2012全国各地中考数学试题分类解析汇编代数综合问题1. (2012广东佛山10分)规律是数学研究的重要内容之一.初中数学中研究的规律主要有一些特定的规则、符号(数)及其运算规律、图形的数值特征和位置关系特征等方面.请你解决以下与数的表示和运算相关的问题:(1)写出奇数a用整数n表示的式子;(2)写出有理数b用整数m和整数n表示的式子;(3)函数的研究中,应关注y随x变化而变化的数值规律(课本里研究函数图象的特征实际上也是为了说明函数的数值规律).下面对函数y=x2的某种数值变化规律进行初步研究:由表看出,当x的取值从0开始每增加1个单位时,y的值依次增加1,3,5...请回答:当x的取值从0开始每增加12个单位时,y的值变化规律是什么?当x的取值从0开始每增加1n个单位时,y的值变化规律是什么?【答案】解:(1)n是任意整数,则表示任意一个奇数的式子是:2n+1。
(2)有理数b=mn(n≠0)。
(3)①当x的取值从0开始每增加1个单位时,列表如下:故当x 的取值从0开始每增加12个单位时,y 的值依次增加14、34、54 …2i 14-。
②当x 的取值从0开始每增加1n 个单位时,列表如下:故当x 的取值从0开始每增加1n个单位时,y 的值依次增加21n 、23n 、25n …22i 1n -。
【考点】分类归纳(数字的变化类),二次函数的性质,实数。
【分析】(1)n 是任意整数,偶数是能被2整除的数,则偶数可以表示为2n ,因为偶数与奇数相差1,所以奇数可以表示为2n+1。
(2)根据有理数是整数与分数的统称,而所有的整数都可以写成整数的形式,据此可以得到答案。
(3)根据图表计算出相应的数值后即可看出y 随着x 的变化而变化的规律。
2. (2012广东梅州10分)(1)已知一元二次方程x 2+px+q=0(p 2﹣4q≥0)的两根为x 1、x 2;求证:x 1+x 2=﹣p ,x 1•x 2=q .y i+1-y i14 34 54 74 94 114...x i 0 1n 2n 3n 4n 5n ... y i 021n 24n 29n 216n 225n ... y i+1-y i21n23n 25n27n 29n 211n...(2)已知抛物线y=x 2+px+q 与x 轴交于A 、B 两点,且过点(﹣1,﹣1),设线段AB 的长为d ,当p 为何值时,d 2取得最小值,并求出最小值. 【答案】(1)证明:∵a=1,b=p ,c=q ,p 2﹣4q≥0,∴1212bc x x =p x x =q a a+=--⋅=,。
2012中考数学试题及答案分类汇编:数量和位置变化
2012中考数学试题及答案分类汇编:数量和位置变化一、选择题1.(北京4分)如图在Rt△ABC中,∠ACB=90°,∠BAC=30°,AB=2,D是AB边上的一个动点(不与点A、B重合),过点D作CD的垂线交射线CA于点E、设AD=x,CE=y,则下列图象中,能表示y与x的函数关系图象大致是【答案】B。
【考点】动点问题的函数图象,分类归纳。
【分析】应用排它法进行分析。
由已知在Rt△ABC中,∠ACB=90°,∠BAC=30°,AB=2,易得AC=3。
从图形可知,当点D接近点A,即x接近0时,点E接近点A,即y接近3,故选项D错误。
从所给的A,B,C三个选项看,x都在1附近的某-点取得最大值或最小值,从以下的图1和图2看,当x在1附近的某-点D 时CE是最短的,即y有最小值,故选项A错误。
从图2看,当x大于使y有最小值的那一点后,y 随x 增大而增大,并且是能够大于AC=3 ,故选项C 错误。
因此选B 。
实际上,通过作辅助线DF ⊥AC 于F,利用相似三角形和勾股定理是可以得到y 与x 的函数关系式的:22333=32x x y x ⎛⎫-+ ⎪-⎝⎭,但由此函数关系式是不能直接判定它的图象的。
2.(山西省2分)点(一2、1)所在的象限是A 、第一象限B 、第二象限C 、第三象限D 、第四象限【答案】B 。
【考点】平面直角坐标系中各象限点的特征。
【分析】根据平面直角坐标系中各象限点的特征,判断其所在象限,四个象限的符号特征分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)。
故点(一2、1)位于第二象限。
故选B 。
3.(内蒙古巴彦淖尔、赤峰3分)早晨,小张去公园晨练,右图是他离家的距离y(千米)与时间x(分钟)的函数图象,根据图象信息,下列说法正确的是A、小张去时所用的时间多于回家所用的时间B、小张在公园锻炼了20分钟C、小张去时的速度大于回家的速度D、小张去时走上坡路,回家时走下坡路【答案】C。
2012年中考数学试题分类解析——数与代数
一
、
在
日制义务教 育数学课程标 准 ( 实验稿 ) 》( 以下 简称
( 4 ) 凸显数学与现实生活的联 系 ,发展学生数学应用意识 与
《 标准 ( 实验稿) 》 )和 《 义务教育数 学课 程标准 ( 2 0 1 1 年 版) 》 能力.目前 ,数学课程十分重视数学与实际生活的联系 ,强调在 ( 以下简称 《 标准 ( 2 0 1 1 年版) 》 )中 ,“ 数与代数 ”都 是义务教 真实的背景下学 习数学 ,促进学生对数学知识 的理解.方程 与函
准 (2 0 1 1 年 版) 》 ,关 于数 与代数部分 ,除少数 内容和要求有所 注 重对基础 知识和基 本技能 的考查 ,又 关注对 学生 分析 问题 、 调整外 ,更多的 内容和要求 都没有变化.总地看来 《 标准 ( 实 解决 问题能力 的考查 .2 0 1 2年试题 在继 承 以往 特点 的前提 下 , 验稿) 》 和 准 ( 2 0 1 1 年版) 》 都突出强调如下几个方面. 以新的视角创设 问题情境 ,呈现出不同的面貌.
识 点,而且在试 题 的表述 上 ,以神舟九 号飞船 的发 射为现 实背
景 与当今社会 的热点话题结合起来.
答案 :2 4 .
【 评析】 解答此题 ,首先 ,需要学 生理解什 么是 “ 可连数” ,
“ 可连数” 的概 念 ,在 2 0 0以内寻找 “ 可连数 ” ,这 一过程 可以
( 一) 数 与 式 、
( 1 ) 强调 基础知识 和基 本技能 ,为其他 内容 的学 习奠 定基 础.数与代数部 分中涉及 到 了有理数及其运 算 、求解方程 ( 组)
亮点 1 :在具有时代特征的背景下考查基础知识
全国各地中考数学真题+模拟新题分类汇编 第10章 平面直角坐标系
2012年全国各地中考数学(真题+模拟新题)分类汇编第10章 平面直角坐标系(1)1 平面上点的坐标(2012山东省荷泽市,1,3)点(-2,1)在平面直角坐标系中所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限【解析】因为横坐标为-2,这样的点在二、三象限,纵坐标为1,这样的点在一、二象限,所以(-2,1)在第二象限,故选B.【答案】B【点评】要判定点在哪个象限,要掌握四个象限坐标的特点,第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(—+,-)。
(2012四川成都,6,3分)如图,在平面直角坐标系xOy 中,点P(3-,5)关于y 轴的对称点的坐标为( )A .(3-,5-)B .(3,5)C .(3.5-)D .(5,3-)解析:因为点P(3-,5)在第二象限,所以其关于y 轴的对称点在第一象限,纵观四个选项,在第一象限的只有B 。
答案:选B点评:一个点与它关于y 轴的对称点之间的关系是:横坐标相反,纵坐标不变;一个点与它关于x 轴的对称点之间的关系是:横坐标不变,纵坐标相反。
(2011山东省潍坊市,题号10,分值3)10、甲乙两位同学用围棋子做游戏,如图所示,现轮到黑棋下子,黑棋下一子后白棋下一子,使黑棋的5个棋子组成轴对称图形,白棋的5个棋子也成轴对称图形。
则下列下子方法不正确的是( ).[ 说明:棋子的位置用数对表示,如A 点在(6,3)]A .黑(3,7);白(5,3)B .黑(4,7);白(6,2)C .黑(2,7);白(5,3)D .黑(3,7);白(2,6)考点:本题考察了轴对称图形和有序数对的有关知识。
解答:本题可以一个一个选项的判断,哪个位置可以构成轴对称图形.在各个位置补上棋子,观察图形得到选项选项A 、选项B 、 选项D 都可以构成轴对称图形。
故不正确的选项是选项D.选项A 选项B 选项C 选项D点评:本题考查了轴对称图形和有序数对的有关知识,解决问题的方法是根据题目的要求,把图形补充完整,看图形是否符合要求即可(2012四川内江,25,6分)已知点A(1,5),B(3,-1),点M在x轴上,当AM-BM最大时,点M的坐标为.【解析】如下图所示,取B(3,-1)关于x轴的对称点为B′,则B′的坐标为(3,1).作直线AB,它与x轴的交点即为所求的点M.使用待定系数法求得直线AB的解析式为y=-2x+7,令y=0,得-2x+7=0,解得x=72,所以点M的坐标为(72,0).【答案】(72,0)【点评】此题属于最值类问题,将平面直角坐标系、对称点、轴对称、一次函数等知识糅合在一起考查.这类问题中,以往考查较多的是到两定点的距离和最大,而此题从距离差的角度进行考查,会有一部分同学不习惯,无从下手.启示平时学习要注意发散思考,教师组织教学时多注意变式教学,突破思维定势.关于距离和的最小值结论需要根据三角形的任意两边之和大于第三边理解,而象此题这样的关于距离差的最大值结论需要根据三角形的任意两边之差小于第三边来理解.(2012山东泰安,24,3分)如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0)(2,1),(1,1)(1,2)(2,2),……,根据这个规律,第2012个点的横坐标为 .【解析】观察图形可知,到每一横坐标相同的点结束,点的总个数等于最后点的横坐标的平方,并且横坐标是奇数时最后以横坐标为该数,纵坐标为0结束,当横坐标是偶数时,以横坐标为1,纵坐标为横坐标减1的点结束,根据此规律解答即可.如:横坐标为1的点结束,共有1个,1=12,横坐标为2的点结束,共有2个,4=22,横坐标为3的点结束,共有9个,9=32,横坐标为4的点结束,共有16个,16=42,…横坐标为n的点结束,共有n2个,∵452=2025,∴第2025个点是(45,0),第2012个点是(45,13),所以,第2012个点的横坐标为45.【答案】45.【点评】本题为规律探索题,考查了点的坐标,观察出点个数与横坐标的存在的平方关系是解题的关键.(2012山东东营,11,3分)如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的14,那么点B′的坐标是()A.(-2,3)B.(2,-3)C.(3,-2)或(-2,3)D.(-2,3)或(2,-3)【解析】因为矩形OA′B′C′的面积等于矩形OABC面积的14,所以矩形OA′B′C′与矩形OABC的相似比为12,当B′在第二象限时B′(-2,3),当B′在第四象限时B′(2,-3)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年全国部分地区中考数学试题分类解析汇编第10章 平面直角坐标系与坐标一、选择题 1.(2012菏泽)点P (﹣2,1)在平面直角坐标系中所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 考点:点的坐标。
解答:解:点P (﹣2,1)在第二象限. 故选B . 2.(2012成都)如图,在平面直角坐标系xOy 中,点P(3-,5)关于y 轴的对称点的坐标为( )A .( 3-,5-)B .(3,5)C .(3.5-)D .(5,3-)考点:关于x 轴、y 轴对称的点的坐标。
解答:解:点P (﹣3,5)关于y 轴的对称点的坐标为(3,5). 故选B . 3.(2012四川广安)在平面直角坐标系xOy 中,如果有点P (﹣2,1)与点Q (2,﹣1),那么:①点P 与点Q 关于x 轴对称;②点P 与点Q 关于y 轴对称;③点P 与点Q 关于原点对称;④点P 与点Q 都在y=﹣的图象上,前面的四种描述正确的是( )A . ①②B . ②③C . ①④D . ③④考点: 反比例函数图象上点的坐标特征;关于x 轴、y 轴对称的点的坐标;关于原点对称的点的坐标。
专题: 探究型。
分析: 分别根据关于x 轴对称、关于y 轴对称、关于原点对称及反比例函数图象上点的坐标特点进行解答.解答: 解:∵点P (﹣2,1)与点Q (2,﹣1),∴P 、Q 两点关于原点对称,故①②错误,③正确; ∵(﹣2)×1=2×(﹣1﹣2,∴点P 与点Q 都在y=﹣的图象上,故④正确.故选D .点评: 本题考查的是关于x 轴对称、关于y 轴对称、关于原点对称及反比例函数图象上点的坐标特点,熟知以上知识是解答此题的关键.4.(2012•济宁)如图,在平面直角坐标系中,点P 坐标为(﹣2,3),以点O 为圆心,以OP 的长为半径画弧,交x 轴的负半轴于点A ,则点A 的横坐标介于( )A.﹣4和﹣3之间B.3和4之间C.﹣5和﹣4之间D.4和5之间考点:勾股定理;估算无理数的大小;坐标与图形性质。
专题:探究型。
分析:先根据勾股定理求出OP的长,由于OP=OA,故估算出OP的长,再根据点A在x轴的负半轴上即可得出结论.解答:解:∵点P坐标为(﹣2,3),∴OP==,∵点A、P均在以点O为圆心,以OP为半径的圆上,∴OA=OP=,∵9<13<16,∴3<<4.∵点A在x轴的负半轴上,∴点A的横坐标介于﹣4和﹣3之间.故选A.点评:本题考查的是勾股定理及估算无理数的大小,根据题意利用勾股定理求出OP的长是解答此题的关键.5.(2012•聊城)如图,在直角坐标系中,以原点O为圆心的同心圆的半径由内向外依次为1,2,3,4,…,同心圆与直线y=x和y=﹣x分别交于A1,A2,A3,A4…,则点A30的坐标是()A.(30,30)B.(﹣8,8)C.(﹣4,4)D.(4,﹣4)考点:一次函数综合题;解直角三角形。
专题:计算题;规律型。
分析:根据30÷4=7…2,得出A30在直线y=﹣x上,在第二象限,且在第8个圆上,求出OA30=8,通过解直角三角形即可求出答案.解答:解:∵30÷4=7…2,∴A30在直线y=﹣x上,且在第二象限,即射线OA30与x轴的夹角是45°,如图OA=8,∠AOB=45°,∵在直角坐标系中,以原点O为圆心的同心圆的半径由内向外依次为1,2,3,4,…,∴OA 30=8,∵A 30的横坐标是﹣8sin45°=﹣4,纵坐标是4,即A 30的坐标是(﹣4,4). 故选C .点评: 本题考查了解直角三角形,一次函数等知识点的应用,解此题的关键是确定出A 30的位置(如在直线y=﹣x 上、在第二象限、在第8个圆上),此题是一道比较好的题目,主要培养学生分析问题和解决问题的能力. 6.(2012江苏南通)线段MN 在直角坐标系中的位置如图所示,线段 M 1N 1与MN 关于y 轴对称,则点M 的对应的点 M 1的坐标为【 D 】A .(4,2)B .(-4,2)C .(-4,-2)D .(4,-2)【考点】坐标与图形变化-对称.【分析】根据坐标系写出点M 的坐标,再根据关于y 轴对称的点的坐标特点:纵坐标相等,横坐标互为相反数,即可得出M ′的坐标.【解答】解:根据坐标系可得M 点坐标是(-4,-2),故点M 的对应点M ′的坐标为(4,-2),故选:D .【点评】此题主要考查了坐标与图形的变化,关键是掌握关于y轴对称点的坐标的变化特点.7. (2012湖北荆门)已知点M (1﹣2m ,m ﹣1)关于x 轴的对称点在第一象限,则m 的取值范围在数轴上表示正确的是( )A .B .C .D .解析:由题意得,点M 关于x 轴对称的点的坐标为:(1﹣2m ,1﹣m ), 又∵M (1﹣2m ,m ﹣1)关于x 轴的对称点在第一象限, ∴,解得:,在数轴上表示为:.故选A.8.(2012泰安)如图,菱形OABC的顶点O在坐标原点,顶点A在x轴上,∠B=120°,OA=2,将菱形OABC绕原点顺时针旋转105°至OA′B′C′的位置,则点B′的坐标为()A.B.(C.(2012泰安)D.考点:坐标与图形变化-旋转;菱形的性质。
解答:解:连接OB,OB′,过点B′作B′E⊥x轴于E,根据题意得:∠BOB′=105°,∵四边形OABC是菱形,∴OA=AB,∠AOB=∠AOC=∠ABC=×120°=60°,∴△OAB是等边三角形,∴OB=OA=2,∴∠AOB′=∠BOB′﹣∠AOB=105°﹣60°=45°,OB′=OB=2,∴OE=B′E=OB′•sin45°=2=∴点B′的坐标为:.故选A.二、填空题1.(2012•烟台)平行四边形ABCD中,已知点A(﹣1,0),B(2,0),D(0,1).则点C 的坐标为(3,1).考点:平行四边形的性质;坐标与图形性质。
专题:计算题。
分析:画出图形,根据平行四边形性质求出DC∥AB,DC=AB=3,根据D的纵坐标和CD=3即可求出答案.解答:解:∵平行四边形ABCD中,已知点A(﹣1,0),B(2,0),D(0,1),∴AB=CD=2﹣(﹣1)=3,DC∥AB,∴C的横坐标是3,纵坐标和D的纵坐标相等,是1,∴C的坐标是(3,1),故答案为:(3,1).点评:本题考查了平行四边形的性质和坐标与图形性质的应用,能根据图形进行推理和求值是解此题的关键,本题主要考查学生的观察能力,用了数形结合思想.2.(2012山西)如图,在平面直角坐标系中,矩形OABC的对角线AC平行于x轴,边OA 与x轴正半轴的夹角为30°,OC=2,则点B的坐标是.考点:矩形的性质;坐标与图形性质;解直角三角形。
解答:解:过点B作DE⊥OE于E,∵矩形OABC的对角线AC平行于x轴,边OA与x轴正半轴的夹角为30°,∴∠CAO=30°,∴AC=4,∴OB=AC=4,∴OE=2,∴BE=2,∴则点B的坐标是(2,),故答案为:(2,).3.(2012泰安)如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2012个点的横坐标为.考点:点的坐标。
解答:解:根据图形,到横坐标结束时,点的个数等于横坐标的平方,例如:横坐标为1的点结束,共有1个,1=12,横坐标为2的点结束,共有2个,4=22,横坐标为3的点结束,共有9个,9=32,横坐标为4的点结束,共有16个,16=42,…横坐标为n的点结束,共有n2个,∵452=2025,∴第2025个点是(45,0),第2012个点是(45,13),所以,第2012个点的横坐标为45.故答案为:45.4.(2012•扬州)在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是m >2.考点:点的坐标;解一元一次不等式组。
专题:计算题。
分析:根据第一象限的点的坐标,横坐标为正,纵坐标为正,可得出m的范围.解答:解:由第一象限点的坐标的特点可得:,解得:m>2.故答案为:m>2.点评:此题考查了点的坐标的知识,属于基础题,解答本题的关键是掌握第一象限的点的坐标,横坐标为正,纵坐标为正.5.(2012•德州)如图,在一单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上、斜边长分别为2,4,6,…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0),则依图中所示规律,A2012的坐标为(2,1006).考点:等腰直角三角形;点的坐标。
专题:规律型。
分析:由于2012是4的倍数,故A1﹣﹣A4;A5﹣﹣﹣A8;…每4个为一组,可见,A2012在x轴上方,横坐标为2,再根据纵坐标变化找到规律即可解答.解答:解:∵2012是4的倍数,∴A1﹣﹣A4;A5﹣﹣﹣A8;…每4个为一组,∴A2012在x轴上方,横坐标为2,∵A4、A8、A12的纵坐标分别为2,4,6,∴A12的纵坐标为2012×=1006.故答案为(2,1006).点评:本题考查了等腰直角三角形、点的坐标,主要是根据坐标变化找到规律,再依据规律解答.6.(2012安顺)以方程组的解为坐标的点(x,y)在第一象限.考点:一次函数与二元一次方程(组)。
解答:解:,①+②得,2y=3,y=,把y=代入①得,=x+1,解得:x=,因为0,>0,根据各象限内点的坐标特点可知,所以点(x,y)在平面直角坐标系中的第一象限.故答案为:一.三、解答题1.(2012•梅州)如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2)、B(1,3).△AOB绕点O逆时针旋转90°后得到△A1OB1.(直接填写答案)(1)点A关于点O中心对称的点的坐标为(﹣3,﹣2);(2)点A1的坐标为(﹣2,3);(3)在旋转过程中,点B经过的路径为弧BB1,那么弧BB1的长为π.考点:作图-旋转变换;弧长的计算;坐标与图形变化-旋转。
专题:作图题。
分析:(1)根据关于坐标原点成中心对称的点的横坐标与纵坐标都互为相反数解答;(2)根据平面直角坐标系写出即可;(3)先利用勾股定理求出OB的长度,然后根据弧长公式列式进行计算即可得解.解答:解:(1)∵A(3,2),∴点A关于点O中心对称的点的坐标为(﹣3,﹣2);(2)(﹣2,3);(3)根据勾股定理,OB==,所以,弧BB1的长==π.故答案为:(1)(﹣3,﹣2);(2)(﹣2,3);(3)π.点评:本题考查了利用旋转变换作图,弧长的计算,熟练掌握网格结构,准确找出对应点的位置是解题的关键.。