初中数学综合练习(三)_2

合集下载

中考数学专题练习 综合问题(含解析)-人教版初中九年级全册数学试题

中考数学专题练习 综合问题(含解析)-人教版初中九年级全册数学试题

综合题综合题是初中数学中涵盖广、综合性最强的题型,它可以包含初中阶段所学的代数、平面几何、解析几何、统计概率的若干知识点和各种数学思想方法,还能有机结合探索性、开放性等有关问题;它既突出考查了初中数学的主干知识,又突出了与高中衔接的重要内容,如函数、方程、不等式、三角形、四边形、相似形、圆等.它不但考查学生数学基础知识和灵活运用知识的能力还可以考查学生对数学知识迁移整合能力;既考查学生对几何与代数之间的内在联系,多角度、多层面综合运用数学知识、数学思想方法分析问题和解决问题的能力,还考查学生知识网络化、创新意识和实践能力。

前面专题已对代数之方程和不等式综合问题、函数之一次函数和反比例函数综合问题、函数之一次函数、反比例函数和二次函数综合问题、代数和函数综合问题、静态几何之综合问题等有过介绍,本专题主要原创编写代数和平面几何的综合问题、代数和统计概率的综合问题、平面几何和统计概率的综合问题、解析几何和统计概率的综合问题、平面几何和解析几何的综合问题模拟题。

1.已知一元二次方程x2-11x+30=0 的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC底边上的高为。

【答案】4或1192。

【考点】因式分解法解一元二次方程,等腰三角形的性质,三角形三边关系,勾股定理,分类思想的应用。

1. 已知关于x 的方程x 2-(m +2)x +(2m -1)=0的一个根是2,请求出方程的另一个根,并求以此两根为边长的直角三角形的面积。

【答案】解:∵此方程的一个根是1,∴12-1×(m +2)+(2m -1)=0,解得,m=2, 则方程的另一根为:m +2-1=2+1=3。

①该直角三角形的两直角边是1、3时,该直角三角形的面积为131322⋅⋅=。

②当该直角三角形的直角边和斜边分别是1、3时,由勾股定理得该直角三角形的另一直角边为22;则该直角三角形的面积为112222⋅⋅=。

综上所述,该直角三角形的面积为32或2。

苏科版七年级上册数学第三章 代数式 综合练习.docx

苏科版七年级上册数学第三章 代数式 综合练习.docx

初中数学试卷马鸣风萧萧第三章 代数式 综合练习一、填空题:1.下列代数式中355223223xm m b a x y x n m b a ab ,,,,,,,,,-+-+-+π,其中是是单项式的是 ;其中是多项式的是 .2.按要求完成下列表格单项式 系数 次数 单项式 系数 次数 a3x -247n m -b a 22πbc a 2-5432z y x -π3ab3.按要求完成下列表格多项式组成多项式的项多项式的 次数常数项 几次几项式2432323--+-xy y x y x11432223++-ab b a bc a 7452233----mn n m n m4.下列几组单项式中是同类项的是: .①yzx xyz 3和-; ②2252xy y x 和-; ③23234y x z y x 和-; ④5.019和-; ⑤ a -和a 5; ⑥c b a 23-和3235c b a 5.若代数式22144n m nm y x +--与是同类项,则=x y .6.若多项式A 与多项式2222b ab a -+-的和为224b ab a +-,则多项式A 为. 7.若多项式82232332----ab b a b a x 是七次四项式,则x = . 8.已知1052223=-+-x x x ,则=++-266323x x x 。

9.规定一种新的运算:a △b =2ab -a +b ,比如3△4=2×3×4-3+4,则(-2)△5= 。

10.根据如图所示的程序计算,若输入x 的值为-1,则输出y 的值为 .11.某超市进了一批商品,每件进价为a 元,若要获利25%,则每件商品的零售价应定为 。

二、解答题:12.去括号合并同类项(1)232342m m m m -+-- (2) )23(3)3(22222xy y x xy y x ---13.(1)先化简再求值:)3143(2)31(2122y x y x x ----,其中32,2=-=y x 。

人教版初中数学七年级(上)期末综合练习(2)及答案

人教版初中数学七年级(上)期末综合练习(2)及答案

人教版初中数学7年级(上)期末综合练习(二)一.选择题(共8小题)1.有理数a ,b 在数轴上的位置如图所示, 则下列各式:①0a b +>;②0a b ->;③||b a >;④0ab <. 一定成立的是( )A .①②③B .③④C .②③④D .①③④2.下列各组数中, 互为相反数的一组是( )A .32-与3(2)-B .2(2)--与22-C .23-与2(3)-D .3|2|-与3|2|3.如果2x <-,那么|1|1||x -+等于( )A .2x --B .2x +C .xD .x -4.下列两项中,属于同类项的是( )A .26与2xB .4ab 与4abcC .20.2x y 与20.2xyD .nm 和mn - 5.某商店经销一批衬衣,每件进价为a 元,零售价比进价高%m ,后因市场变化,该商把零售价调整为原来零售价的%n 出售.那么调整后每件衬衣的零售价是( )A .(%)(%)a l m l n +-元B .%(1%)am n -元C .(%)%a l m n +元D .(%%)a l m n +元 6.若方程53ax x =+的解为5x =,则a 的值是( )A .14B .4C .16D .807.将一个正方体的表面沿某些棱剪开, 展成的平面图形可以是下图中的( )A .B .C .D .8.钟表上 12 时 15 分钟时, 时针与分针的夹角为( )A .90︒B .82.5︒C .67.5︒D .60︒二.填空题(共10小题)9.2009-的相反数是 . 10.x 是实数, 那么|1||1||5|x x x -++++的最小值是 .11.一个数的倒数是8-,那么这个数是 .12.若26m n a b ++与42a b 是同类项,m n -= .13.代数式223a 的系数是 . 14.已知:25x y +=,347x y +=,则26x y += .15.代数式4a 可表示的实际意义是 .16.“节能减排, 低碳经济”是我国未来发展的方向, 某汽车生产商生产有大、 中、 小三种排量的轿车, 正常情况下的小排量的轿车占生产总量的30%,为了积极响应国家的号召, 满足大众的消费需求准备将小排量轿车的生产量提高, 受其产量结构调整的影响, 大中排量汽车生产量只有正常情况下的90%,但生产总量比原来提高了7.5%,则小排量轿车生产量应比正常情况增加 %.17.如图, 立方体的每个面上都写有一个自然数, 并且相对两个面所写出二数之和相等, 若 10 的对面写的是质数a , 12 的对面写的是质数b , 15 的对面写的是质数c ,则222a b c ab ac bc ++---= .18.如图所示, 已知4CB cm =,8DB cm =,且点D 是AC 的中点, 则AC = cm .三.解答题(共6小题)19. (1)295(6)(4)(8)-+⨯---÷- (2)432134()(2)[(2)(2)]213⨯-+-÷---. 20.如图所示是一个数表,现用一个矩形在数表中任意框出4个数,则(1)a 、c 的关系是: ; (2)当32a b c d +++=时,a = .21.已知m 满足的条件为:代数式5123m m --的值与代数式72m -的值的和等于5;||||a b n a b =+,试求mn 的值.22.在一条东西走向的马路旁, 有青少年宫、 学校、 商场、 医院四家公共场所, 已知青少年宫在学校东300m 处, 商场在学校西200m 处, 医院在学校东500m 处, 若将马路近似地看作一条直线, 以学校为原点, 向东方向为正方向, 用 1 个单位长度表示100m .(1) 在数轴上表示出四家公共场所的位置;(2) 列式计算青少年宫与商场之间的距离 .23.如图, 已知线段AB ,延长AB 到C ,使12BC AB =,D 为AC 的中点,3DC cm =,求BD 的长 .24.保护环境,市政府计划在连接A 、B 两居民区的公路北侧1500米处修建一座污水处理厂,设计时要求该污水处理厂到A 、B 两居民区的距离相等.(1)若要以1:50000的比例尺画设计图,求污水处理厂到公路的图上距离;(2)在图中画出污水处理厂的位置P .(要求:用尺规作图,并写出已知和求作)参考答案与试题解析一.选择题(共8小题)【解答】解: 由数轴可得,0a >,0b <,||||b a >,故可得:0a b ->,||b a >,0ab <;即②③④正确 .故选:C .【解答】解:A 、328-=-,3(2)-,8=-,32∴-与3(2)-相等, 故本选项错误; B 、2(2)4--=-,224-=-,2(2)∴--与22-相等, 故本选项错误;C 、239-=-,2(3)9-=,23∴-与2(3)-互为相反数, 故本选项正确;D 、3|2|8-=,3|2|8=,3|2|∴-与3|2|相等, 故本选项错误 .故选:C .【解答】解:2x <-|1|1|||11|2x x x ∴-+=++=--,故选:A .【解答】解:A 、26与2x 字母不同不是同类项;B 、4ab 与4abc 字母不同不是同类项;C 、20.2x y 与20.2xy 字母的指数不同不是同类项;D 、nm 和mn -是同类项.故选:D .【解答】解:每件进价为a 元,零售价比进价高%m ,∴零售价为:(1%)a m +元,要零售价调整为原来零售价的%n 出售.∴调整后每件衬衣的零售价是:(1%)%a m n +元.故选:C .【解答】解:将5x =代入方程得:520a =解得:4a =.故选:B .【解答】解: 由四棱柱四个侧面和上下两个底面的特征可知,A 、只有 5 个面, 不是正方体的展开图, 不符合题意;出现了田字格, 故不能;B 、D 、出现了田字格, 故不是正方体的展开图, 不符合题意;C 、可以拼成一个正方体, 符合题意 .故选:C .【解答】解:时针在钟面上每分钟转0.5︒,分针每分钟转6︒,∴钟表上 12 时 15 分钟时, 时针与分针的夹角可以看成时针转过 12 时0.5157.5︒⨯=︒,分针在数字 3 上 .钟表 12 个数字, 每相邻两个数字之间的夹角为30︒,12∴时 15 分钟时分针与时针的夹角907.582.5︒-︒=︒.故选:B .二.填空题(共10小题)【解答】解:2009-的相反数是2009.【解答】答: 当1x =时,|1||1||5|8x x x -++++=,当1x =-时,|1||1||5|6x x x -++++=,当5x =-时,|1||1||5|10x x x -++++=.所以当1x =-时,|1||1||5|x x x -++++取最小值 6 .故答案为: 6 .【解答】解:18()18-⨯-=, ∴这个数是18-. 故答案为:18-. 【解答】解:26m n a b ++与42a b 是同类项,24m ∴+=,62n +=,2m ∴=,4n =-,2(4)6m n ∴-=--=.故答案为 6 .【解答】解: 由题意可得223a 的系数是23. 故答案为23.【解答】解: 将已知两等式联立得:25347x y x y +=⎧⎨+=⎩, 解得:13515x y ⎧=⎪⎪⎨⎪=-⎪⎩, 则1312626455x y +=⨯-⨯=.故答案为: 4【解答】解:答案不唯一.如:每支钢笔4元,买了a 支钢笔所需的钱数,或正方形的边长为a ,它的周长是4a .【解答】解: 设小排量轿车生产量应比正常情况增加的百分数为x ,汽车原总量为a . 则可得方程:30%(1)70%90%(17.5%)a x a a ++⨯=+,化简得:0.30.30.70.910.075x ++⨯=+,解得48.3%x ≈.故填 48.3 .【解答】解: 根据相对的两个面的数字和相等, 得101215a b c +=+=+,则2a b -=,5a c -=,3b c -=. 则原式222()()()192a b b c a c -+-+-==.故答案为 19 .【解答】解:4CB cm =,8DB cm =,844CD DB CB cm ∴=-=-=, D 是AC 的中点,2248AC CD cm ∴==⨯=.故答案为: 8 .三.解答题(共6小题)【解答】解: (1) 原式95(6)16(8)=-+⨯--÷-9302=--+37=-;(2) 原式134()16[84]213=⨯-+÷-- 216(12)=-+÷-423=-- 103=-. 【解答】解:(1)当a 为4时,9c =,5c a ∴-=,即5a c =-, 当9a =时,14c =,5c a ∴-=,即5a c =-,a ∴、c 的关系是:5a c =-;(2)设a x =,则1b x =+,5c x =+,6d x =+,32a b c d +++=,15632x x x x ∴++++++=,解得5x =,5a ∴=.【解答】解:根据题意,5172532m m m ---+=, 去分母得,122(51)3(7)30m m m --+-=,去括号得,1210221330m m m -++-=,移项得,1210330221m m m --=--,合并同类项得,7m -=,系数化为1得,7m =-,a 、b 同号时,112n =+=或1(1)2n =-+-=-,a 、b 异号时,0n =,所以,当7m =-、2n =时,(7)214mn =-⨯=-,当7m =-,2n =-时,(7)(2)14mn =-⨯-=,当7m =-,0n =时,(7)00mn =-⨯=,综上所述,mn 的值为14-或14或0.【解答】解: (1) 如图所示: 点A 表示商场, 点C 表示青少年宫, 点D 表示医院, 原点表示学校;(2) 依题意得青少年宫与商场之间的距离为300(200)500()m --=. 答: 青少年宫与商场之间的距离为500m .【解答】解:D 为AC 的中点,3DC cm =,26AC DC cm ∴==, 12BC AB =, 123BC AC cm ∴==, 1BD CD BC cm ∴=-=.【解答】解:(1)比例尺为1:50000实际距离为1500米 ∴图上距离为150000500003cm ÷=;(2)已知:直线L 到AB 的距离为1500米,设计图比例尺为1:50000在L 上求作点P ,使P 到A 、B 的距离相等.作法:找到AB 的中点,过中点作AB 的垂线,交L 于点P , 则P 点为所求.。

正切综合练习题初三

正切综合练习题初三

正切综合练习题初三正切函数是初中数学中的一种重要函数,它在三角函数中有着特殊的地位和作用。

了解并掌握正切函数的概念、性质以及运用方法,对于初三学生来说是非常重要的。

下面我们将通过综合练习题的形式来巩固和提升对正切函数的理解和运用能力。

一、选择题1. 已知角A的终边经过点P(-3, 4),则A的终边上共有一点的坐标是:A. (3, -4)B. (3, 4)C. (-3, -4)D. (-4, 3)2. 若sinA = -1/2,且90°< A < 180°,则A的终边上共有一点的坐标是:A. (1, -√3)B. (-1, √3)C. (1, √3)D. (-1, -√3)3. 若角α和角β都是第一象限角且tanα = 4/3,tanβ = 3/4,那么α和β的关系是:A. α < βB. α > βC. α = βD. 无法确定二、填空题4. 已知角θ的终边经过点P(4, -3),则tanθ的值是________。

5. 若sinx = -1/2,且180°< x < 270°,则tanx的值是________。

6. 若tanA = √3/4,且90°< A < 180°,则A的终边上共经过一点的坐标是________。

7. 已知tanα = -3/4,且180°< α < 270°,则α的终边上共经过一点的坐标是________。

三、综合题8. 一条射线在第二象限内旋转,过程中它的角度由0增加到90°。

请问,这条射线的正切值是逐渐变小还是变大?为什么?9. 已知角θ的终边经过点P(-1, 1),求sinθ、cosθ和tanθ的值。

10. 已知tanA + cotA = √3,求sinA和cosA的值。

四、解答题11. 已知∠ABC是一锐角,且B点的坐标为(-3, 4)。

初中数学七年级上学期习题与答案3-3整式 同步练习2

初中数学七年级上学期习题与答案3-3整式 同步练习2

3.3 整式一、填空题:1.把下列代数式的题号填入相应集合的括号内:A.3-xy, B.-3x2+12, C.22xy-,D.132,E.1x- F.x3 , C.18x3-a2x2+x, H.x+y+z I.1003x-.(1)单项式集合{ }(2)多项式集合{ }(3)二次式项式集合{ }(4)三次多项式集合{ }(5)非整式的集合{ }2.一个圆的半径为r, 它是另一个圆的半径的5 倍, 这两个圆的周长之和是.3.一个半径为R的球的内部被挖去一个棱长为a的小正方体,则余下的几何体的体积是_________.4. 4a2+2a3-13ab2c+25是______次_________项式,最高次项是______,最高次项的系数是________,常数项是________.5.若(3m-2)x21n y+是关于x, y 的系数为1 的五次单项式, 则m= _____, n=______.6.如果单项式的字母因数是a3b2c,且a=1,b=2,c=3时,这个单项式的值为4, 则这个单项式为__________.二、选择题:7.下列说法正确的是( )A.x3yz2没有系数;B.2236x y c++不是整式;C.42是一次单项式;D.8x-5是一次二项式8. 将代数式4a2b+3ab2-2b2+a3按a的升幂排列的是( )A.-2b3+3ab2+4a2b+a3B.a3+4a2b+3ab2-2b3C.4a2b+3ab2-2b3+a3D.4a2b+3ab2+a3-2b39. 代数式1π(x2+y2)是( )A.单项式;B.多项式;C.既不是单项式也不是多项式D.不能判断10. 如果一个多项式是五次多项多,那么( )A.这个多项式最多有6项B.这个多项式只能有一项的次数是5C.这个多项式一定是五次六项式;D.这个多项式最小有两项,并且有一项的次数是511.已知-12│m│ab 3是关于a,b 的单项式,且│m│=2,则这个单项式的系数是 ( ) A.±2 B.±1 C.-1 D.1三、解答题:12.一个人上山和下山的路程都为S,如果上山的速度为V 1,下山的速度为V 2,那么此人上山和下山的平均速度为多少?13.当a 为何值时,化简式子(2-7a)x 3-3ax 2-x+7可得关于x 的二次三项式.14.已知多项式222351662m x y xy x +-+-+是六项四项式,单项式3523n m x y z -的次数与这个多项式的次数相同,求n 的值.参考答案1.(1)C 、D 、E 、F (2)A 、B 、G 、H 、I (3)A 、B (4)G (5)E 、I2.125r π 3.3343R a π- 4.四,四,-13ab 2c,-13,25 5.1,4 6. 13a 3b 2c7.D 8.A9. B 10.D 11.C 12.12222VV V V + 13. a=2714. n=43。

初三数学综合算式专项练习题棱台计算

初三数学综合算式专项练习题棱台计算

初三数学综合算式专项练习题棱台计算初三数学综合算式专项练习题——棱台计算在初中数学中,我们学习了各种各样的数学问题和算式。

本文将提供一些综合的算式练习题,主要围绕着棱台计算展开。

通过这些练习题,我们可以加深对棱台计算的理解,并提高解题的能力。

1. 求解棱台的体积例题1:一个棱台的上底面积为20平方厘米,下底面积为36平方厘米,高度为8厘米,求该棱台的体积。

解析:首先,我们知道棱台的体积公式为:体积 = (上底面积 + 下底面积+ 根号下底面积 ×上底面积) ×高度 ÷ 3。

代入已知的值,得到:体积 = (20 + 36 + 根号36 × 20) × 8 ÷ 3。

计算得:体积 = (20 + 36 + 6 × 20) × 8 ÷ 3 = (56 + 120) × 8 ÷ 3 = 176 × 8 ÷ 3 = 1408 ÷ 3 ≈ 469.33平方厘米。

答案:该棱台的体积约为469.33平方厘米。

例题2:一个棱台的上底面积为16平方厘米,下底面积为25平方厘米,高度为12厘米,求该棱台的体积。

解析:根据棱台的体积公式,代入已知的值,得到:体积 = (16 + 25 + 根号25 × 16) × 12 ÷ 3。

计算得:体积 = (16 + 25 + 5 × 16) × 12 ÷ 3 = (41 + 80) × 12 ÷ 3 = 121 × 12 ÷ 3 = 484 ÷ 3 = 161.33平方厘米。

答案:该棱台的体积约为161.33平方厘米。

2. 求解棱台的表面积例题1:一个棱台的上底面积为16平方厘米,下底面积为36平方厘米,侧面积为48平方厘米,求该棱台的表面积。

第12章 全等三角形 人教版八年级上册数学 综合练习3份(含答案)

第12章 全等三角形 人教版八年级上册数学 综合练习3份(含答案)

第十二章全等三角形综合练习(一)一.选择题1.下列条件中,一定能确定两个等腰三角形全等的是()A.有一腰和底边对应相等的两个等腰三角形B.有一腰和一角相等的两个等腰三角形C.有一角和底边相等的两个等腰三角形D.顶角对应相等的两个等腰三角形2.如图,添加条件不能判断△ACD≌△ABE的是()A.∠AEB=∠ADC,CD=BE B.AC=AB,AD=AEC.AC=AB,∠C=∠B D.∠AEB=∠ADC,∠C=∠B3.如图,将两根钢条AB、CD的中点O连在一起,使AB、CD可以绕点O自由转动,就做成一个测量工件,则AC的长等于内槽宽BD,则判定△OBD≌△OAC的理由是()A.边边边B.角边角C.边角边D.角角边4.如图,△ABC外角∠CBD,∠BCE的平分线BF、CF相交于点F,则下列结论成立的是()A.AF平分BC B.AF⊥BC C.AF平分∠BAC D.AF平分∠BFC 5.如果一个三角形的一条边是另一条边的2倍,并且有一个角是30°,那么这个三角形的形状是()A.直角三角形B.钝角三角形C.锐角三角形D.不能唯一确定6.如图,已知△ABC的三条边和三个角六个元素,则下面甲、乙、丙三个三角形中和△ABC 全等的图形是()A.只有乙B.只有丙C.甲和乙D.乙和丙7.如图,已知△ABE≌△ACD,下列不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE8.如图,AB⊥BD,ED⊥BD于D,AB=CD,AC=CE,下列结论:(1)BC=DE;(2)AC⊥CE;(3)∠CAE=45°,其中正确的有()A.0个B.1个C.2个D.3个9.如图,已知△ABC≌△DEF,且AB=5,BC=6,AC=7,则DF的长为()A.5 B.6 C.7 D.不能确定10.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,小明在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO=AC;③△ABD≌△CBD,其中正确的结论有()A.①②B.①③C.②③D.①②③二.填空题11.如图,△ABC≌△DEF,∠A=80°,∠ABC=60°,则∠F=度.12.如图,四边形ABCD中,∠BAD=∠C=90°,AB=AD,AE⊥BC于E,若线段AE=5,=.则S四边形ABCD13.已知:如图,AC=AE,∠1=∠2,AB=AD,若∠D=25°,则∠B的度数为.14.如图,在平面内,两条直线l1,l2相交于点O,对于平面内任意一点M,若p、q分别是点M到直线l1,l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(1,1)的点共有个.15.如图,已知AB=AC,D为∠BAC的角平分线上面一点,连接BD,CD;如图2,已知AB=AC,D、E为∠BAC的角平分线上面两点,连接BD,CD,BE,CE;如图3,已知AB=AC,D、E、F为∠BAC的角平分线上面三点,连接BD,CD,BE,CE,BF,CF;…,依次规律,第n个图形中有全等三角形的对数是.三.解答题16.如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF.能否由上面的已知条件证明AB∥ED?如果能,请给出证明;如果不能,请从下列四个条件中选择一个合适的条件,添加到已知条件中,使AB∥ED成立,并给出证明.供选择的四个条件(请从其中选择一个):①AB=ED;②∠A=∠D=90°;③∠ACB=∠DFE;④∠A=∠D.17.已知:在△ABD和△ACE中,AD=AB,AC=AE.(1)如图1,若∠DAB=∠CAE=60°,求证:BE=DC;(2)如图2,若∠DAB=∠CAE=n°,求∠DOB的度数.18.如图,△ABC中,D为BC的中点.(1)求证:AB+AC>2AD;(2)若AB=5,AC=3,求AD的取值范围.19.小明和小亮在学习探索三角形全等时,碰到如下一题:如图1,若AC=AD,BC=BD,则△ACB与△ADB有怎样的关系?(1)请你帮他们解答,并说明理由.(2)细心的小明在解答的过程中,发现如果在AB上任取一点E,连接CE、DE,则有CE=DE,你知道为什么吗?(如图2)(3)小亮在小明说出理由后,提出如果在AB的延长线上任取一点P,也有第2题类似的结论.请你帮他画出图形,并写出结论,不要求说明理由.(如图3)20.已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F(1)如图1,若∠ACD=60゜,则∠AFB=;(2)如图2,若∠ACD=α,则∠AFB=(用含α的式子表示);(3)将图2中的△ACD绕点C顺时针旋转任意角度(交点F至少在BD、AE中的一条线段上),如图3.试探究∠AFB与α的数量关系,并予以证明.参考答案一.选择题1.解:A、有一腰和底边对应相等的两个等腰三角形,即三边对应相等,也可以判断其全等,正确;B、角与一腰,对应相等,另一腰也相等,两边与一角,不一定证全等,错误;C、底边固定,角为顶角不可证明其全等,错误;D、顶角对应相等,不可证全等,错误;故选:A.2.解:A、根据AAS可判定△ACD≌△ABE,故本选项错误;B、根据SAS可判定△ACD≌△ABE,故本选项错误;C、根据ASA可判定△ACD≌△ABE,故本选项错误;D、判定两个三角形全等时,必须有边的参与,所以添加条件∠AEB=∠ADC,∠C=∠B后,仍然不能判断△ACD≌△ABE,故本选项正确;故选:D.3.解:∵两钢条中点连在一起做成一个测量工件,∴OA′=OB,OD=OC,∵∠AOC=∠DOB,∴△OBD≌△OAC′.所以BD的长等于内槽宽AC,用的是SAS的判定定理.故选:C.4.解:作FP⊥AE于P,FG⊥BC于G,FH⊥AD于H,∵CF是∠BCE的平分线,∴FP=FG,∵BF是∠CBD的平分线,∴FH=FG,∴FP=FH,又FP⊥AE,FH⊥AD,∴AF平分∠BAC,故选:C.5.解:设△ABC中,∠A=30°,①若a=2b,则∠B<∠A(大边对大角),∴∠C=180°﹣∠A﹣∠B>180°﹣2∠A=120°,即∠C为钝角,∴△ABC是钝角三角形.②若b=2c,a2=b2+c2﹣2bc cos A=5c2﹣2c2,=5﹣2>1,可得a>c,∴∠C<∠A(大边对大角),∴∠B=180°﹣∠A﹣∠C>180°﹣2∠A=120°,即∠B为钝角,∴△ABC是钝角三角形;③c=2a,在直角三角形中30°所对的边为斜边的一半,可得∠C=90°,即△ABC是直角三角形.综上可得△ABC可为直角三角形、钝角三角形,不能为锐角三角形.故选:D.6.解:甲三角形只知道一条边长、一个内角度数无法判断是否与△ABC全等;乙三角形夹50°内角的两边分别与已知三角形对应相等,故乙与△ABC全等;丙三角形72°内角及所对边与△ABC对应相等且均有50°内角,可根据AAS判定乙与△ABC全等;则与△ABC全等的有乙和丙,故选:D.7.解:∵△ABE≌△ACD,∴AB=AC,A不合题意;∴∠BAD=∠CAE,∴∠BAE=∠CAD,B不合题意;∴BD=EC,∴BE=CD,C不合题意;∴AD=AE,∴AD=DE不正确,D符合题意;故选:D.8.证明:∵AB⊥BD,ED⊥BD,∴∠B=∠D=90°,在RT△ABC和RT△CDE中,,∴△ABC≌△CDE,∴BC=DE故(1)正确,∠ACB=∠CED,AC=CE,∵∠CED+∠ECD=90°∴∠ACB+∠ECD=90°,∴∠ACE=90°即AC⊥CE故(2)正确,∵CA=CE,∴∠CAE=∠CEA=45°故(3)正确,故选:D.9.解:∵△ABC≌△DEF,∴DF=AC=7,故选:C.10.解:在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),故③正确;∴∠ADB=∠CDB,在△AOD与△COD中,,∴△AOD≌△COD(SAS),∴∠AOD =∠COD =90°,AO =OC ,∴AC ⊥DB ,故①②正确.故选:D .二.填空题(共5小题)11.解:∵△ABC ≌△DEF ,∠A =80°,∠ABC =60°, ∴∠D =∠A =80°,∠DEF =∠ABC =60°,∵∠F +∠D +∠DEF =180°,∴∠F =40°,故答案为:40.12.解:过A 点作AF ⊥CD 交CD 的延长线于F 点,如图, ∵AE ⊥BC ,AF ⊥CF ,∴∠AEC =∠CFA =90°,而∠C =90°,∴四边形AECF 为矩形,∴∠2+∠3=90°,又∵∠BAD =90°,∴∠1=∠2,在△ABE 和△ADF 中∴△ABE ≌△ADF ,∴AE =AF =5,S △ABE =S △ADF ,∴四边形AECF 是边长为5的正方形,∴S 四边形ABCD =S 正方形AECF =52=25.故答案为25.13.解:∵∠1=∠2,∴∠BAC=∠DAE,又∵AC=AE,AB=AD,∴△ABC≌△ADE,∴∠B=∠D=25°.故答案为25°.14.解:到l1的距离是1的点,在与l1平行且与l1的距离是1的两条直线上;到l2的距离是1的点,在与l2平行且与l2的距离是1的两条直线上;以上四条直线有四个交点,故“距离坐标”是(1,1)的点共有4个.故答案为:4.15.解:当有1点D时,有1对全等三角形;当有2点D、E时,有3对全等三角形;当有3点D、E、F时,有6对全等三角形;当有4点时,有10个全等三角形;…当有n个点时,图中有个全等三角形.故答案为:.三.解答题(共5小题)16.解:不能;选择条件①AE=BE.∵FB=CE,∴FB+FC=CE+FC,即BC=EF,在△ABC和△DEF中,∴△ABC≌△DEF(SSS),∴∠B=∠E,∴AB∥ED.17.证明:(1)∵∠DAB=∠CAE∴∠DAB+∠BAC=∠CAE+∠BAC∴∠DAC=∠BAE,在△ADC和△ABE中,,∴△ADC≌△ABE,∴DC=BE,(2)同理得:△ADC≌△ABE,∴∠ADC=∠ABE,又∵∠DOB=180°﹣∠ODB﹣∠OBD,=180°﹣∠ODB﹣∠ABD﹣∠ABE,∴∠DOB=180°﹣∠ODB﹣∠ABD﹣∠ADC,=180°﹣∠ADB﹣∠ABD,∴∠DOB=∠DAB=n°.18.(1)证明:由BD=CD,再延长AD至E,使DE=AD,∵D为BC的中点,∴DB=CD,在△ADC和△EDB中,∴△ADC≌△EDB(SAS),∴BE=AC,在△ABE中,∵AB+BE>AE,∴AB+AC>2AD;(2)∵AB=5,AC=3,∴5﹣3<2AD<5+3,∴1<AD<4.19.解:(1)△ACB≌△ADB,理由如下:如图1,∵在△ACB与△ADB中,,∴△ACB≌△ADB(SSS);(2)如图2,∵由(1)知,△ACB≌△ADB,则∠CAE=∠DAE.∴在△CAE与△DAE中,,∴△CAE≌△DAE(SAS),∴CE=DE;(3)如图3,PC=PD.理由同(2),△APC≌△APD(SAS),则PC=PD.20.解:(1)∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,在△ACE和△DCB中∴△ACE≌△DCB,∴∠CAE=∠CDB,∴∠AFB=∠CDB+∠CDA+∠DAE =∠CDA+∠DAE+∠BAE=∠CDA+∠DAC=180°﹣60°=120°,故答案为:120°.(2)解:∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,在△ACE和△DCB中∴△ACE≌△DCB,∴∠CAE=∠CDB,∴∠AFB=∠CDB+∠CDA+∠DAE =∠CDA+∠DAE+∠BAE=∠CDA+∠DAC=180°﹣∠ACD=180°﹣α,故答案为:180°﹣α(3)∠AFB=180﹣α,证明:∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,在△ACE和△DCB中∴△ACE≌△DCB,∴∠AEC=∠DBC,∴∠AFB=∠AEC+∠CEB+∠EBD=∠DBC+∠CEB+∠EBC=∠CEB+∠EBC=180°﹣∠ECB=180°﹣α,即∠AFB=180°﹣α第十二章全等三角形综合练习(二)一.选择题1.如图,AC和BD相交于O点,若OA=OD,用“SAS”证明△AOB≌△DOC还需()A.AB=DC B.OB=OC C.∠C=∠D D.∠AOB=∠DOC 2.如图,在△ABC和△DEC中,AB=DE.若添加条件后使得△ABC≌△DEC,则在下列条件中,不能添加的是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.∠B=∠E,∠A=∠D D.BC=EC,∠A=∠D3.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N重合,过角尺顶点C作射线OC.由此作法便可得△MOC≌△NOC,其依据是()A.SSS B.SAS C.ASA D.AAS4.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.角的内部到角的两边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确5.如图,AB=DB,∠1=∠2,请问添加下面哪个条件不能判断△ABC≌△DBE的是()A.BC=BE B.AC=DE C.∠A=∠D D.∠ACB=∠DEB6.如图,已知∠1=∠2,要说明△ABD≌△ACD,还需从下列条件①∠ADB=∠ADC,②∠B =∠C,③DB=DC,④AB=AC中选一个,则正确的选法个数是()A.1个B.2个C.3个D.4个7.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE8.如图,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,PR=PS,则这四个结论中正确的有()①PA平分∠BAC;②AS=AR;③QP∥AR;④△BRP≌△CSP.A.4个B.3个C.2个D.1个9.已知图中的两个三角形全等,则∠1等于()A.72°B.60°C.50°D.58°10.如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD交BE于点F,若BF=AC,则∠ABC 等于()A.45°B.48°C.50°D.60°二.填空题11.已知△ABC≌△DEF,∠A=50°,∠B=60°,则∠F=.12.如图所示,一位同学拿了两块45°的三角尺△MNK、△ACB做了一个探究活动;将△MNK 的直角顶点M放在△ABC的斜边AB的中点处,设AC=BC=a.猜想此时重叠部分四边形CEMF的面积为;简述证明主要思路.13.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=°.14.在平面直角坐标系中,点A(x,y)的坐标满足方程3x﹣y=4,(1)当点A到两条坐标轴的距离相等时,点A的坐标为.(2)当点A在x轴上方时,点A的横坐标x满足条件.15.如图1,已知AB=AC,D为∠BAC的平分线上面﹣点.连接BD,CD;全等三角形的对数是.如图2.已知AB=AC,D,E为∠BAC的平分线上面两点.连接BD,CD,BE,CE;全等三角形的对数是.如图3.已知AB=AC,D,E,F为∠BAC的平分线上面三点,连接BD,CD,BE,CE,BF,CF;全等三角形的对数是.…依此规律,第n个图形中有全等三角形的对数是.三.解答题16.以点A为顶点作两个等腰直角三角形(△ABC,△ADE),如图1所示放置,使得一直角边重合,连接BD,CE.(1)说明BD=CE;(2)延长BD,交CE于点F,求∠BFC的度数;(3)若如图2放置,上面的结论还成立吗?请简单说明理由.17.如图所示,A,E,F,C在一条直线上,AE=CF,过E,F分别作DE⊥AC,BF⊥AC,垂足分别为E、F,且AB=CD.(1)△ABF与△CDE全等吗?为什么?(2)求证:EG=FG.18.“综合与实践”学习活动准备制作一组三角形记这些三角形的三边分别为a,b,c,用记号(a,b,c)(a≤b≤c)表示一个满足条件的三角形,如(2,4,4)表示边长分别为2,4,4个单位长度的一个三角形(1)若这些三角形三边的长度为大于0且小于3的整数个单位长度,请用记号写出所有满足条件的三角形;(2)如图,AD是△ABC的中线,线段AB,AC的长度分别为2个,6个单位长度,且线段AD的长度为整数个单位长度,过点C作CE∥AB交AD的延长线于点E①求AD的长度;②请直接用记号表示△ACE.19.如图,在△ABC中,∠ACB=45°,过点A作AD⊥BC于点D,点E为AD上一点,且ED=BD.(1)求证:△ABD≌△CED;(2)若CE为∠ACD的角平分线,求∠BAC的度数.20.如图,在△ABC中,AB=AC=2,∠B=36°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=36°,DE交线段AC于点E.(1)当∠BDA=128°时,∠EDC=,∠AED=;(2)线段DC的长度为何值时,△ABD≌△DCE?请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数;若不可以,请说明理由.参考答案一.选择题1.解:A、AB=DC,不能根据SAS证两三角形全等,故本选项错误;B、∵在△AOB和△DOC中,∴△AOB≌△DOC(SAS),故本选项正确;C、两三角形相等的条件只有OA=OD和∠AOB=∠DOC,不能证两三角形全等,故本选项错误;D、根据∠AOB=∠DOC和OA=OD,不能证两三角形全等,故本选项错误;故选:B.2.解:A、添加BC=EC,∠B=∠E可用SAS判定两个三角形全等,故A选项正确;B、添加BC=EC,AC=DC可用SSS判定两个三角形全等,故B选项正确;C、添加∠B=∠E,∠A=∠D可用ASA判定两个三角形全等,故C选项正确;D、添加BC=EC,∠A=∠D后是SSA,无法证明三角形全等,故D选项错误.故选:D.3.解:∵在△ONC和△OMC中,∴△MOC≌△NOC(SSS),∴∠BOC=∠AOC,故选:A.4.解:(1)如图所示:过两把直尺的交点P作PE⊥AO,PF⊥BO,∵两把完全相同的长方形直尺,∴PE=PF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选:A.5.解:A、添加BC=BE,可根据SAS判定△ABC≌△DBE,故正确;B、添加AC=DE,SSA不能判定△ABC≌△DBE,故错误;C、添加∠A=∠D,可根据ASA判定△ABC≌△DBE,故正确;D、添加∠ACB=∠DEB,可根据ASA判定△ABC≌△DBE,故正确.故选:B.6.解:∵∠1=∠2,AD公共,①如添加∠ADB=∠ADC,利用ASA即可证明△ABD≌△ACD;②如添加∠B=∠C,利用AAS即可证明△ABD≌△ACD;③如添加DB=DC,因为SSA,不能证明△ABD≌△ACD,所以此选项不能作为添加的条件;④如添加AB=AC,利用SAS即可证明△ABD≌△ACD;故选:C.7.解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选:D.8.解:(1)PA平分∠BAC.∵PR⊥AB,PS⊥AC,PR=PS,AP=AP,∴△APR≌△APS,∴∠PAR=∠PAS,∴PA平分∠BAC;(2)由(1)中的全等也可得AS=AR;(3)∵AQ=PR,∴∠1=∠APQ,∴∠PQS=∠1+∠APQ=2∠1,又∵PA平分∠BAC,∴∠BAC=2∠1,∴∠PQS=∠BAC,∴PQ∥AR;(4)∵PR⊥AB,PS⊥AC,∴∠BRP=∠CSP,∵PR=PS,∴△BRP不一定全等与△CSP(只具备一角一边的两三角形不一定全等).故选:B.9.解:如图,由三角形内角和定理得到:∠2=180°﹣50°﹣72°=58°.∵图中的两个三角形全等,∴∠1=∠2=58°.故选:D.10.解:∵AD⊥BC,BE⊥AC,∴∠ADB=∠BEC=90°,∴∠FBD=∠CAD,在△FDB和△CAD中,,∴△FDB≌△CDA,∴DA=DB,∴∠ABC=∠BAD=45°,故选:A.二.填空题(共5小题)11.解:∵∠A=50°,∠B=60°,又∵∠A+∠B+C=180°,∴∠C=70°,∵△ABC≌△DEF,∴∠F=∠C,即:∠F=70°.故答案为:70°.12.解:重叠部分四边形CEMF的面积为a2.证明如下:连CM,如图,∵点M为等腰直角△ABC的斜边AB的中点,∴CM=MB=MA,∴∠A=∠ACM=∠MCB=45°,∠CMA=90°,又∵△MNK为直角三角形,∴∠EMF=90°,∴∠AMF=∠EMC=90°﹣∠CMF,在△AFM和△CEM中,∴△AFM≌△CEM,∴S△AFM=S△CEM,∴重叠部分四边形CEMF的面积=S△ACM=S△ACB=××a×a=a2.故答案为:a2.13.解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.故答案为:135.14.解:(1)∵点A(x,y)的坐标满足方程3x﹣y=4,点A到两条坐标轴的距离相等,∴x=±y,∴3y﹣y=4或﹣3y﹣y=4,解得:y=2或y=﹣1,∴点A的坐标为(2,2)或(1,﹣1),故答案为:(2,2)或(1,﹣1);(2)∵3x﹣y=4,∴y=3x﹣4,∵点A在x轴上方,∴y>0,即3x﹣4>0,∴x>,故答案为:x>.15.解:如图1中,∵AD是∠BAC的平分线,∴∠BAD=∠CAD.在△ABD与△ACD中,∴△ABD≌△ACD(SAS).∴图1中有1对三角形全等;同理图2中,△ABE≌△ACE,∴BE=EC,∵△ABD≌△ACD.∴BD=CD,在△BDE和△CDE中,∴△BDE≌△CDE(SSS),∴图2中有3对三角形全等;同理:图3中有6对三角形全等;由此发现:第n个图形中全等三角形的对数是.故答案为:1,3,6,.三.解答题(共5小题)16.解:(1)∵△ABC、△ADE是等腰直角三角形,∴AB=AC,∠BAD=∠EAC=90°,AD=AE,∵在△ADB和△AEC中,,∴△ADB≌△AEC(SAS),∴BD=CE;(2)∵△ADB≌△AEC,∴∠ACE=∠ABD,而在△CDF中,∠BFC=180°﹣∠ACE﹣∠CDF又∵∠CDF=∠BDA∴∠BFC=180°﹣∠DBA﹣∠BDA=∠DAB=90°;(3)BD=CE成立,且两线段所在直线互相垂直,即∠BFC=90°.理由如下:∵△ABC、△ADE是等腰直角三角形∴AB=AC,AD=AE,∠BAC=∠EAD=90°,∵∠BAC+∠CAD=∠EAD+∠CAD∴∠BAD=∠CAE,∵在△ADB和△AEC中,,∴△ADB≌△AEC(SAS)∴BD=CE,∠ACE=∠DBA,∴∠BFC=∠CAB=90°.17.(1)解:△ABF与△CDE全等,理由如下:∵DE⊥AC,BF⊥AC,∴∠AFB=∠CED=90°,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在Rt△ABF和Rt△CDE中,,∴Rt△ABF≌Rt△CDE(HL);(2)证明:∵Rt△ABF≌Rt△CDE,∴BF=DE,在△DEG和△BFG中,,∴△DEG≌△BFG(AAS),∴EG=FG.18.解:(1)由三角形的三边关系得:所有满足条件的三角形为(1,1,1),(1,2,2),(2,2,2);(2)①∵CE∥AB,∴∠ABD=∠ECD,∠BAD=∠CED,∵AD是△ABC的中线,∴BD=CD,在△ABD和△ECD中,,∴△ABD≌△ECD(AAS),∴AD=ED,AB=CE=2,∴AE=2AD,在△ACE中,AC﹣CE<AE<AC+CE,∴6﹣2<2AD<6+2,∴2<AD<4,∵线段AD的长度为整数个单位长度,∴AD=3;②AE=2AD=6,用记号表示△ACE为(2,6,6).19.(1)证明:∵AD⊥BC,∠ACB=45°,∴∠ADB=∠CDE=90°,△ADC是等腰直角三角形,∴AD=CD,∠CAD=∠ACD=45°,在△ABD与△CED中,,∴△ABD≌△CED(SAS);(2)解:∵CE为∠ACD的角平分线,∴∠ECD=∠ACD=22.5°,由(1)得:△ABD≌△CED,∴∠BAD=∠ECD=22.5°,∴∠BAC=∠BAD+∠CAD=22.5°+45°=67.5°.20.解:(1)∵AB=AC,∴∠C=∠B=36°,∵∠ADE=36°,∠BDA=128°,∵∠EDC=180°﹣∠ADB﹣∠ADE=16°,∴∠AED=∠EDC+∠C=16°+36°=52°,故答案为:16°;52°;(2)当DC=2时,△ABD≌△DCE,理由:∵AB=2,DC=2,∴AB=DC,∵∠C=36°,∴∠DEC+∠EDC=144°,∵∠ADE=36°,∴∠ADB+∠EDC=144°,∴∠ADB=∠DEC,在△ABD和△DCE中,,∴△ABD≌△DCE(AAS);(3)当∠BDA的度数为108°或72°时,△ADE的形状是等腰三角形,①当DA=DE时,∠DAE=∠DEA=72°,∴∠BDA=∠DAE+∠C=72°+36°=108°;②当AD=AE时,∠AED=∠ADE=36°,∴∠DAE=108°,此时,点D与点B重合,不合题意;③当EA=ED时,∠EAD=∠ADE=36°,∴∠BDA=∠EAD+∠C=36°+36°=72°;综上所述,当∠BDA的度数为108°或72°时,△ADE的形状是等腰三角形.第十二章全等三角形综合练习(三)一.选择题1.OP是∠AOB的平分线,则下列说法正确的是()A.射线OP上的点与OA,OB上任意一点的距离相等B.射线OP上的点与边OA,OB的距离相等C.射线OP上的点与OA各点的距离相等D.射线OP上的点与OB上各的距离相等2.如图,E、B、F、C四点在一条直线上,ED=AB,∠A=∠D,再添一个条件仍不能证明△ABC≌△DEF的是()A.ED∥AB B.EB=FC C.DF=AC D.∠DFE=∠C 3.有两个三角形,下列条件能判定两个三角形全等的是()A.有两条边对应相等B.有两边及一角对应相等C.有三角对应相等D.有两边及其夹角对应相等4.某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带③去,这样做根据的三角形全等判定方法为()A.S.A.S.B.A.S.A.C.A.A.S.D.S.S.S.5.如图给出了四组三角形,其中全等的三角形有()组.A.1 B.2 C.3 D.46.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S=28,DE=4,AC=△ABC6,则AB的长是()A.8 B.10 C.12 D.不能确定7.两个等腰三角形,若顶角和底边对应相等,则两个等腰三角形全等,其理由是()A.SAS B.SSS C.ASA D.ASA或AAS 8.如图,在△ABC中,∠C=90°,AD平分∠CAB,已知CD=3,BD=5,则下列结论中错误的是()A.AC=6 B.AD=7 C.BC=8 D.AB=109.如图,三条公路两两相交,现计划修建一个油库,要求油库到这三条公路的距离相等,那么选择油库的位置有()处.A.1 B.2 C.3 D.410.如图,已知EC=BF,∠A=∠D,现从下列6个条件:①AC=DF;②∠B=∠E;③∠ACB=∠DFE;④AB∥ED;⑤AB=ED;⑥DF∥AC;从中选取一个条件,以保证△ABC≌△DEF,则可选择的是()A.②③④⑥B.③④⑤⑥C.①③④⑥D.①②③④二.填空题11.如图,已知∠1=∠2,AC=AD,如果要使△ABC≌△AED,请你添加一个条件.(只添加一个条件)12.如图,在△ABC中,∠B=∠C=70°,BE=DC,BD=CF,则∠EDF的度数为.13.一个加油站点M恰好在两条公路m、n的夹角平分线上,若MN⊥m于N,MN=50m,则点M到公路n的距离是.14.如图,如果要测量池塘两端A、B间的距离,可先在地上取一个可以直接到达A、B两点的点C,连接AC并延长到D,使CD=CA;连接BC并延长到E,使CE=CB;连接DE,可得△ABC≌△DEC,依据的基本事实是,那么AB=.15.已知,如图,△ABC中,∠C=90°,点O为△ABC的三条角平分线的交点,OD垂直BC,OE⊥AC,OF⊥AB,点D、E、F分别是垂足,且AB=10cm,BC=8cm,CA=6cm,则OF=.三.解答题16.如图,在四边形ABCD中,AC平分∠BAD,且AC=BC,AB=2AD.(1)求∠ADC的度数;(2)若AB=10cm,CD=12cm,求四边形ABCD的面积.17.如图,AB⊥AD,AE⊥AC,∠E=∠C,DE=BC.求证:AD=AB.18.在数学实践课上,老师在黑板上画出如图的图形,(其中点B,F,C,E在同一条直线上).并写出四个条件:①AB=DE,②∠1=∠2.③BF=EC,④∠B=∠E,交流中老师让同学们从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题.①请你写出所有的真命题;②选一个给予证明.你选择的题设:;结论:.(均填写序号)19.如图1,我们定义:在四边形ABCD中,若AD=BC,且∠ADB+∠BCA=180°,则把四边形ABCD叫做互补等对边四边形.(1)如图2,在等腰△ABE中,AE=BE,四边形ABCD是互补等对边四边形,求证:∠ABD=∠BAC=∠AEB.(2)如图3,在非等腰△ABE中,若四边形ABCD仍是互补等对边四边形,试问∠ABD =∠BAC=∠AEB是否仍然成立?若成立,请加以证明;若不成立,请说明理由.20.如图(1),在平面直角坐标系中,AB⊥x轴于B,AC⊥y轴于C,点C(0,m),A (n,m),且(m﹣4)2+n2﹣8n=﹣16,过C点作∠ECF分别交线段AB、OB于E、F两点.(1)求A点的坐标;(2)若OF+BE=AB,求证:CF=CE;(3)如图(2),若∠ECF=45°,给出两个结论:OF+AE﹣EF的值不变;OF+AE+EF 的值不变,其中有且只有一个结论正确,请你判断出正确的结论,并加以证明和求出其值.参考答案一.选择题1.解:OP是∠AOB的平分线,射线OP上的点与OA,OB上任意一点的距离不一定相等,A错误;射线OP上的点与边OA,OB的距离相等,B正确;射线OP上的点与OA各点的距离不一定相等,C错误;射线OP上的点与OA上各点的距离不一定相等,D错误,故选:B.2.解:A、添加ED∥AB可得∠E=∠ABC,可利用ASA判定△ABC≌△DEF,故此选项不合题意;B、由EB=FC可得EF=BC,不能判定△ABC≌△DEF,故此选项符合题意;C、添加DF=AC可利用SAS判定△ABC≌△DEF,故此选项不合题意;D、添加∠DFE=∠C可利用AAS判定△ABC≌△DEF,故此选项不合题意;故选:B.3.解:∵三角形全等的判定方法有:SSS、SAS、ASA、AAS;A、B、C不能满足某一个判定方法,∴A、B、C不能判定两个三角形全等;D能判定两个三角形全等;∵D满足三角形全等的判定方法SAS,∴D能判定.故选:D.4.解:第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.故选:B.5.解:图1可以利用AAS证明全等,图2可以利用SAS证明全等,图3可以利用SAS证明全等,图4可以利用ASA证明全等.故选:D.6.解:如图:过D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,DE=4,∴DF=DE=4,=28,∵S△ABC∴AB×DE+AC×DF=28,∴×AB×4+6×4=28,∴AB=8,故选:A.7.解:一个等腰三角形,若顶角对应相等,则它们的两个底角也相等,所以根据AAS或者ASA都可以判定这两个三角形全等.故选:D.8.解:∵CD=3,BD=5,∴BC=CD+BD=3+5=8,故C正确;过点D作DE⊥AB于点E,∵AD平分∠CAB,∴CD=DE=3.在Rt△BDE中,∵BD=5,DE=3,∴BE===4.∵∠B=∠B,∠DEB=∠C,∴△BED∽△BCA,∴==,即==,解得AB=10,AC=6,故A,D正确;在Rt△ACD中,∵AC=6,CD=3,∴AD===3,故B错误.故选:B.9.解:∵有三条公路相交如图,现计划修建一个油库,要求到三条公路的距离相等,∴在角平分线的交点处.如图.故选:D.10.解:∵EC=BF,∴BC=EF;∵∠A=∠D,∠B=∠E,∴△ABC≌△DEF(AAS),故②可以;∵∠ACB=∠DFE,∴△ABC≌△DEF,故③可以;∵AB∥ED,∴∠B=∠E,∴△ABC≌△DEF,故④可以;∵DF∥AC,∴∠BCA=∠DFE,∴△ABC≌△DEF,故⑥可以;而①⑤是利用AAS,则不可以.故选:A.二.填空题(共5小题)11.解:∵∠1=∠2,∴∠1+∠EAB=∠2+∠EAB,即∠CAB=∠DAE,而AC=AD,∴当AB=AE时,在△ABC和△AED中,∴△ABC≌△AED(SAS).故答案为:AB=AE.(答案不唯一)12.解:∵AB=AC,∴∠B=∠C,在△BDE和△CFD中,,∴△BDE≌△CFD(SAS);∴∠BED=∠CDF,∴∠BDE+∠CDF=∠BDE+∠BED=180°﹣∠B=110°,∴∠EDF=180°﹣110°=70°.故答案为70°13.解:因为加油站恰好位于两条公路m,n所夹角的平分线上,所以加油站到公路m和公路n的距离是相等的,即为50m,故答案为:50m14.解:在△ABC和△DEC中,,∴△ABC≌△DEC(SAS),∴AB=DE,故答案为SAS,DE.15.解:连接OA、OB、OC,如图,∵点O为△ABC的三条角平分线的交点,OD垂直BC,OE⊥AC,OF⊥AB,∴OD=OE=OF,设OF =x ,则OD =OE =x ,∵S △AOC +S △BOC +S △AOB =S △ACB , ∴•x •6+•x •8+•x •10=•6•8,解得x =2, 即OF 的长为2cm .故答案为2cm .三.解答题(共5小题)16.解:(1)作CE ⊥AB 交AB 于点E ,则∠AEC =90°, ∵AC =BC ,∴CE 是AB 的垂直平分线,∴AE =BE =AB ,∵AB =2AD ,∴AE =AD =AB ,∵∠AC 平分∠BAD ,∴∠EAC =∠DAC ,在△ADC 和△AEC 中,,∴△ADC ≌△AEC ,∴∠ADC =∠AEC =90°;(2)∵CE 是AB 的垂直平分线,∴S △ACD =S △AEC ,∵AB =2AD ,CD =CE ,∴S △ACB =2S △ADC ,∴四边形ABCD 的面积=3S △ADC =3××5×12=90cm 2.17.证明:∵AB⊥AD,AE⊥AC,∴∠EAC=∠DAB=90°,即∠EAD+∠DAC=∠CAB+∠DAC.∴∠EAD=∠CAB,在△ADE和△ABC中,,∴△ADE≌△ABC(AAS),∴AD=AB.18.解:①情况一:题设:①②④;结论:③;情况二:题设①③④;结论:②;情况三:题设②③④;结论:①.②选择的题设:①③④;结论:②;理由:∵BF=EC,∴BF+CF=EC+CF,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴∠1=∠2;故答案为:①③④;②.19.解:(1)∵AE=BE,∴∠EAB=∠EBA,∵四边形ABCD是互补等对边四边形,∴AD=BC,在△ABD和△BAC中,,∴△ABD≌△BAC(SAS),∴∠ADB=∠BCA,又∵∠ADB+∠BCA=180°,∴∠ADB=∠BCA=90°,在△ABE中,∵∠EAB=∠EBA==90°﹣∠AEB,∴∠ABD=90°﹣∠EAB=90°﹣(90°﹣∠AEB)=∠AEB,同理:∠BAC=∠AEB,∴∠ABD=∠BAC=∠AEB;(2)仍然成立;理由如下:如图③所示:过点A、B分别作BD的延长线与AC的垂线,垂足分别为G、F,∵四边形ABCD是互补等对边四边形,∴AD=BC,∠ADB+∠BCA=180°,又∠ADB+ADG=180°,∴∠BCA=∠ADC,又∵AG⊥BD,BF⊥AC,∴∠AGD=∠BFC=90°,在△AGD和△BFC中,∴△AGD≌△BFC,∴AG=BF,在△ABG和△BAF中,∴△ABG≌△BAF,∴∠ABD=∠BAC,∵∠ADB+∠BCA=180°,∴∠EDB+∠ECA=180°,∴∠AEB+∠DHC=180°,∵∠DHC+∠BHC=180°,∴∠AEB=∠BHC.∵∠BHC=∠BAC+∠ABD,∠ABD=∠BAC,∴∠ABD=∠BAC=∠AEB.20.解:(1)(m﹣4)2+n2﹣8n=﹣16,即(m﹣4)2+(n﹣4)2=0,则m﹣4=0,n﹣4=0,解得:m=4,n=4.则A的坐标是(4,4);(2)∵AB⊥x轴,AC⊥y轴,A(4,4),∴AB=AC=OC=OB,∠ACO=∠COB=∠ABO=90°,又∵四边形的内角和是360°,∴∠A=90°,∵OF+BE=AB=BE+AE,∴AE=OF,∴在△COF和△CAE中,,∴△COF≌△CAE,得∴CF=CE;(3)结论正确,值为0.证明:在x轴负半轴上取点H,使OH=AE,∵在△ACE和△OCH中,,∴△ACE≌△OCH,∴∠1=∠2,CH=CE,又∵∠EOF=45°,∴∠HCF=45°,∴在△HCF和△ECF中,,∴△HCF≌△ECF,∴HF=EF,∴OF+AE﹣EF=0.。

初二数学上册综合算式专项练习题平方根与立方根计算

初二数学上册综合算式专项练习题平方根与立方根计算

初二数学上册综合算式专项练习题平方根与立方根计算初二数学上册综合算式专项练习题:平方根与立方根计算在初中数学课程中,平方根与立方根是经常出现的重要内容。

在进行平方根与立方根的计算时,我们需要掌握一些基本的规律和技巧。

本文将通过综合算式专项练习题的形式,来深入探讨平方根与立方根的计算方法。

综合算式一:计算平方根的值1. 计算√4的值。

解析:根据平方根的定义,√4的值等于使得x^2=4的x的值。

因此,我们可以很容易地得到答案,即√4=2。

2. 计算√16的值。

解析:同样地,根据平方根的定义,√16的值等于使得x^2=16的x的值。

在这个例子中,我们可以发现x=4满足等式,所以√16=4。

3. 计算√25的值。

解析:根据平方根的定义,我们可以得到√25=5。

综合算式二:计算立方根的值1. 计算∛8的值。

解析:根据立方根的定义,∛8的值等于使得x^3=8的x的值。

观察可得,2满足等式,因此∛8=2。

2. 计算∛27的值。

解析:根据立方根的定义,我们可以得到∛27=3。

3. 计算∛125的值。

解析:观察可得125=5^3,因此∛125=5。

综合算式三:平方根与立方根的运算1. 计算√4+∛8的值。

解析:根据前面的计算结果,我们可以得到√4=2、∛8=2。

因此,√4+∛8=2+2=4。

2. 计算√16-∛8的值。

解析:根据前面的计算结果,我们可以得到√16=4、∛8=2。

因此,√16-∛8=4-2=2。

3. 计算(√9)^2+(∛27)^2的值。

解析:根据前面的计算结果,我们可以得到√9=3、∛27=3。

因此,(√9)^2+(∛27)^2=3^2+3^2=9+9=18。

综合算式四:平方根与立方根的应用1. 在直角三角形中,已知一直角边的长度为4,另一直角边的长度为4√2,请计算斜边的长度。

解析:根据勾股定理,直角三角形斜边的长度等于两个直角边长度的平方和的平方根。

在这个例子中,我们已知一直角边的长度为4,另一直角边的长度为4√2。

初二数学上册综合算式专项练习题之根式运算

初二数学上册综合算式专项练习题之根式运算

初二数学上册综合算式专项练习题之根式运算根式运算是初中数学中的重要内容之一,它在数学中有着广泛的应用。

根式是含有根号的数,例如√2、√3等,根式运算主要包括根式的加减、乘除以及有理化等。

一、根式的化简根式的化简是指将含有根号的数化为最简形式。

常见的根式有两种:完全平方数的根式和非完全平方数的根式。

1. 化简完全平方数的根式完全平方数的根式是指根号下含有完全平方数的根式,例如√4、√9等。

化简这类根式时,可以直接提取出完全平方数的平方根。

例如,√4=2,√9=3,因为2×2=4,3×3=9。

2. 化简非完全平方数的根式非完全平方数的根式是指根号下含有非完全平方数的根式,例如√2、√3等。

这类根式无法直接计算出精确值,因此需要化简为最简形式。

化简非完全平方数的根式时,可以通过分解质因数的方法,找到其中的完全平方因式。

例如,√18=√(2×3×3)=3√2。

二、根式的加减根式的加减是指对两个根式进行加或减运算。

为了进行运算,需要先将根式化为相同的根式形式,然后根据相同根式的系数进行运算。

例如,计算√5 + √3:由于√5和√3的根式形式不同,无法直接进行运算。

为了使它们的根式形式相同,可以采用有理化的方法。

有理化是指通过乘以一个合适的因式,使根式中的根号消去。

有理化的步骤如下:1. 对根式中的每一个根号乘以相同的因式,使得被乘数的因式为完全平方数;2. 将根式乘积的根号下面的数相乘。

对于√5 + √3,可进行有理化操作,得到:√5 + √3 = √5 * (√3/√3) + √3 * (√5/√5)= (√15)/√3 + (√15)/√5= (√15*√5 + √15*√3) / (√3*√5)= (√75+√45) / √15三、根式的乘除根式的乘除是指对两个或多个根式进行乘或除运算。

为了进行运算,需要进行根式的合并或分解。

1. 根式的乘法根式的乘法是指对两个根式进行相乘运算。

2024版初中一年级上册数学易错综合练习题

2024版初中一年级上册数学易错综合练习题

2024版初中一年级上册数学易错综合练习题试题部分一、选择题(每题2分,共20分)1. 下列数中,最小的是()A. |3|B. (3)^0C. 23D.2. 下列各数中,有理数是()A. √1B. √3C. √9D. √93. 下列各式中,单项式是()A. x^2 + y^2B. 2x 3yC. x^2 y^2D. 2/x4. 下列各式中,同类项是()A. 3x^2和2xyB. 4x^2和3x^3C. 5x^2和2x^2D. 5x^2和5y^25. 下列各式中,多项式是()A. 2x + 3B. 2x 3 = 0C. x^2 4x + 4D. |x| 16. 下列各式中,整式是()A. 1/x + 2B. x^2 1/xC. x^3 + 2x^2 + 3xD. √x 27. 下列各式中,分式是()A. x^2 + 1B. x^2 1/x^2C. x^3 + 2x^2 + 3xD. 1/(x + 1)8. 若|a| = 5,则a的值为()A. 5或5B. 5C. 5D. 09. 下列各式中,正确的是()A. (2)^3 = 6B. (2)^2 = 4C. (2)^3 = 8D. (2)^2 = 810. 若a、b互为相反数,则a + b的值为()A. 0B. 1C. 1D. 不能确定二、判断题(每题2分,共20分)1. 任何有理数都可以写成分数的形式。

()2. 两个负数相乘,结果一定是正数。

()3. 任何两个单项式都是同类项。

()4. 3x^3和4x^3是同类项。

()5. x^2和x^3是同类项。

()6. 整式和分式的和一定是整式。

()7. 两个同类项相加,结果仍然是同类项。

()8. 任何有理数的平方都是正数。

()9. 任何有理数的立方都是正数。

()10. 0是整数,也是有理数。

()三、计算题(每题2分,共40分)1. 计算:|3| + 52. 计算:(3)^2 2^33. 计算:2x 3x,其中x = 54. 计算:3a^2 + 2a^2,其中a = 25. 计算:(2/3)x (1/3)x,其中x = 96. 计算:4x^2 2x^2,其中x = 37. 计算:5x^3 ÷ x,其中x = 28. 计算:2(3a + 4),其中a = 19. 计算:(3a 2b)(a + b),其中a = 2,b = 110. 计算:(x + 2)(x 2),其中x = 311. 计算:2x(x^2 3x + 1),其中x = 112. 计算:(a + b)^2,其中a = 2,b = 313. 计算:(a b)^2,其中a = 3,b = 414. 计算:|a b|,其中a = 5,b = 715. 计算:|a| + |b|,其中a = 4,b = 616. 计算:√(a^2 + b^2),其中a =一、选择题答案1. A2. C3. B4. C5. C6. C7. D8. A9. C10. A二、判断题答案1. ×2. √3. ×4. √5. ×6. ×7. √8. ×9. ×10. √三、计算题答案1. 82. 13. 104. 165. 66. 187. 168. 149. 510. 511. 312. 113. 714. 215. 1016. √(16 + 9) = √25 = 5四、应用题答案(由于未提供具体应用题,故此处不给出答案)1. 有理数的概念和性质包括正数、负数、零以及它们的运算规则。

初中数学圆中切线的判定与性质综合应用专项练习题3(附答案详解)

初中数学圆中切线的判定与性质综合应用专项练习题3(附答案详解)

初中数学圆中切线的判定与性质综合应用专项练习题3(附答案详解)1.如图,已知⊙O是△ABC的外接圆,AD是⊙O的直径,且BD=BC,延长AD到E,且有∠EBD=∠CAB.⑴求证:BE是⊙O的切线;⑵若BC=3,AC=5,求圆的直径AD的长.2.如图,AB是⊙O的直径,点D,E在⊙O上,∠A=2∠BDE,点C在AB的延长线上,∠C=∠ABD.(1)求证:CE是⊙O的切线;(2)若⊙O的半径长为5,BF=2,求EF的长.⊥,垂足为点,E DA 3.如图,四边形ABCD内接于O,BD是O的直径,AE CD∠.平分BDE(1)AE是O的切线吗?请说明理由;AE=求BC的长.(2)若4,4.如图,在平面直角坐标系中,Rt△ABC的斜边AB在y轴上,边AC与x轴交于点D,AE平分∠BAC交边BC于点E,经过点A、D、E的圆的圆心F恰好在y轴上,⊙F与y轴相交于另一点G.(1)求证:BC是⊙F的切线;(2)若点A、D的坐标分别为A(0,﹣1),D(2,0),求⊙F的半径;(3)试探究线段AG 、AD 、CD 三者之间满足的等量关系,并证明你的结论.5.如图,A 是半径为12cm 的O 上的定点,动点P 从A 出发,以2πcm/s 的速度沿圆周逆时针运动,当点P 回到A 地立即停止运动.(1)如果90POA ∠=,求点P 运动的时间;(2)如果点P 是OA 延长线上的一点,AB OA =,那么当点P 运动的时间为2s 时,判断直线OA 与O 的位置关系,并说明理由.6.如图,AB 为⊙O 的直径,C 为圆外一点,AC 交⊙O 于点D ,BC 2=CD•CA ,弦ED=弦BD ,BE 交AC 于F.(1)求证:BC 为⊙O 切线;(2)判断△BCF 的形状并说明理由;(3)已知BC=15,CD=9,求tan ∠ADE 的值.7.如图,AB 是⊙O 的直径, BC 交⊙O 于点D ,E 是BD 的中点,连接AE 交BC 于点F ,∠ACB =2∠EAB .(1)判断直线AC 与⊙O 的位置关系,并说明理由;(2)若3cos4C=,8AC=,求BF的长.8.如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O交AB于点D,E为BC的中点,连接DE并延长交AC的延长线于点F.(1)求证:D E是⊙O的切线;(2)若CF=2,DF=4,求⊙O直径的长.9.如图,在Rt△ABC中,∠ACB=90°.∠ABC的平分线交AC于点O,以点O为圆心,OC为半径.在△ABC同侧作半圆O.(1)求证:AB与⊙O相切;(2)若AB=5,AC=4,求⊙O的半径.10.如图,AB是⊙O的直径,BM切⊙O于点B,点P是⊙O上的一个动点(点P不与A,B两点重合),连接AP,过点O作OQ∥AP交BM于点Q,过点P作PE⊥AB于点C,交QO的延长线于点E,连接PQ,OP,AE.(1)求证:直线PQ为⊙O的切线;(2)若直径AB的长为4.①当PE=时,四边形BOPQ为正方形;②当PE=时,四边形AEOP为菱形.11.如图,在三角形ABC中,AB=10,AC=BC=13,以BC为直径作⊙O交AB于点D,交AC于点G,直线DF⊥AC,于点F,交CB的延长线于点E.(1)求证:DF是⊙O的切线;(2)求cos∠ADF的值.12.如图,线段AB经过⊙O的圆心O,交⊙O于A、C两点,BC=1,AD为⊙O的弦,连结BD,∠BAD=∠ABD=30°.(1)求证:直线BD是⊙O的切线;(2)求⊙O的半径长.13.如图,在△ABC中,AB=AC=10,tan∠A=43,点O是线段AC上一动点(不与点A,点C重合),以OC为半径的⊙O与线段BC的另一个交点为D,作DE⊥AB于E.(1)求证:DE是⊙O的切线;(2)当⊙O与AB相切于点F时,求⊙O的半径;(3)在(2)的条件下,连接OB交DE于点M,点G在线段EF上,连接GO.若∠GOM =45°,求DM和FG的长.14.如图,AB是⊙O的直径,点D在AB的延长线上,C、E是⊙O上的两点,CE=CB,∠BCD=∠CAE,延长AE交BC的延长线于点F.(1)求证:CD是⊙O的切线;(2)求证:CE=CF;(3)若BD=1,CD=2,求弦AC的长.15.已知:△ABC内接于⊙O,过点A作直线EF.(1)如图甲,AB为直径,要使EF为⊙O的切线,还需添加的条件是(写出两种情况,不需要证明):①或②;(2)如图乙,AB是非直径的弦,若∠CAF=∠B,求证:EF是⊙O的切线.(3)如图乙,若EF是⊙O的切线,CA平分∠BAF,求证:OC⊥AB.16.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A,D的⊙O分别交AB,AC于点E,F,连接OF交AD于点G.(1)求证:BC是⊙O的切线;(2)求证:2=⋅;AD AB AF(3)若BE=8,sinB=513,求AD的长,17.在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是边AB上一点,以BD为直径的⊙O经过点E,且交BC于点F.(1)求证:AC是⊙O的切线;(2)若BF=6,⊙O的半径为5,求CE的长.18.已知:如图,AB是⊙O直径,OD⊥弦BC于点F,且交⊙O于点E,若∠AEC=∠ODB.(1)求证:BD是⊙O的切线;(2)当AB=10,BC=8时,求BD的长.19.如图,在O中,AB为直径,点C、D都在O上,且BD平分ABC∠,过点D作DE BC⊥,交BC的延长线于点E.(1)求证:DE是O的切线;(2)若3BC =,1CE =,求O 的直径.20.如图,在三角形ABC 中,10AB =,13AC BC ==,以BC 为直径作O 交AB 于点D ,交AC 于点G ,直线DF AC ⊥于点F ,交CB 的延长线于点E .(1)求证:DF 是O 的切线;(2)求cos ADF ∠的值.21.如图,已知△ABC 内接于⊙O ,过点B 作直线EF ∥AC ,又知∠ACB =∠BDC =60°,AC =3cm .(1)请探究EF 与⊙O 的位置关系,并说明理由;(2)求⊙O 的周长.22.如图,AB 为⊙O 的直径,点C 在⊙O 外,∠ABC 的平分线与⊙O 交于点D ,∠C =90°.(1)求证:CD 是⊙O 的切线;(2)若∠CDB =60°,AB =18,求AD 的长.23.如图,在Rt ABC 中,90ABC ∠=︒,作BAC ∠的角平分线交BC 于点O ,以O 为圆心,OB 为半径作圆.(1)依据题意补充完整图形;(尺规作图,保留作图痕迹,不写作法)(2)求证:O与直线AC相切;(3)在(2)的条件下,若O与直线AC相切的切点为D,O与BC相交于点F,连接BD,DF;其中CD23=,2CF=,求AB的长.24.如图,在△ABC中,AB = BC,以BC为直径作⊙ O交AC于点E,过点E作AB 的垂线交AB于点F,交CB的延长线于点G.(1)求证: EG是⊙O的切线;(2)若BG=OB,AC=6,求BF的长.25.如图,AB是⊙O的直径,点C是⊙O上一点,AC平分∠DAB,直线DC与AB的延长线相交于点P,AD与PC延长线垂直,垂足为点D,CE平分∠ACB,交AB于点F,交€€⊙O于点E.(1)求证:PC与⊙O相切;(2)求证:PC=PF;(3)若AC=8,tan∠ABC=43,求线段BE的长.26.如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,AC=FC.(1)求证:AC是⊙O的切线;(2)已知圆的半径R=5,EF=3,求DF 的长.27.如图①,已知点C 是以AB 为直径的圆O 上一点,直线AC 与过B 点的切线相交于点D ,E 是BD 的中点,连接CE .(1)求证:CE 是圆O 的切线;(2)如图②,CF AB ⊥,垂足为F ,若O 的半径为3,4BE =,求CF 的长; (3)如图③,连接AE 交CF 于点H ,求证:点H 是CF 的中点.28.定义:当点P 在射线OA 上时,把OP OA 的的值叫做点P 在射线OA 上的射影值;当点P 不在射线OA 上时,把射线OA 上与点P 最近点的射影值,叫做点P 在射线OA 上的射影值.例如:如图1,△OAB 三个顶点均在格点上,BP 是OA 边上的高,则点P 和点B 在射线OA 上的射影值均为OP OA =13.(1)在△OAB 中,①点B 在射线OA 上的射影值小于1时,则△OAB 是锐角三角形;②点B 在射线OA 上的射影值等于1时,则△OAB 是直角三角形;③点B 在射线OA 上的射影值大于1时,则△OAB 是钝角三角形. 其中真命题有 .A .①②B .①③C .②③D .①②③(2)已知:点C 是射线OA 上一点,CA =OA =1,以〇为圆心,OA 为半径画圆,点B 是⊙O 上任意点.①如图2,若点B 在射线OA 上的射影值为12.求证:直线BC 是⊙O 的切线; ②如图3,已知D 为线段BC 的中点,设点D 在射线OA 上的射影值为x ,点D 在射线OB 上的射影值为y ,直接写出y 与x 之间的函数关系式为 .29.如图,ABC ∆内接于O ,BC 是O 的直径,弦AF 交BC 于点E ,延长BC 到点D ,连接OA , AD ,使得FAC AOD ∠=∠,D BAF ∠=∠(1)求证:AD 是O 的切线; (2)若O 的半径为5,2CE =,求EF 的长.参考答案1.(1)详见解析;(2)6【解析】【分析】(1)先根据等弦所对的劣弧相等,再结合∠EBD=∠CAB从而得到∠BAD=∠EBD,最后用直径所对的圆周角为直角即可;(2)利用三角形的中位线先求出OM,再用勾股定理求出半径r,最后得到直径的长.【详解】解:⑴证明:连接OB,CD,OB、CD交于点M∵BC=BD,∴∠CAB=∠BAD.∵OA=OB,∴∠BAD=∠OBA.∴∠CAB=∠OBA.∴OB∥AC.又AD是直径,∴∠ABD=∠ACD =90°,又∠EBD=∠CAB, ∠CAB=∠OBA.∴∠OBE=90°,即OB⊥BE.又OB是半径,∴BE是⊙O的切线.⑵∵ OB∥AC, OA=OD,AC=5,.∴ OM=2.5 ,BM=OB-2.5,OB⊥CD设⊙O的半径为r,则在Rt△OMD中:MD2=r2-2.52;在Rt△BMD中:MD2=BD2-(r-2.5)2 ,BD=BC=3.∴r1=3 ,r2=-0.5(舍).∴圆的直径AD的长是6.【点睛】此题是切线的判定,主要考查了圆周角的性质,切线的判定,勾股定理等,解本题的关键是作出辅助线.2.(1)证明见解析;(2)EF10【解析】【分析】(1)连接OE,易得∠ADB=90°,证明∠BOE=∠A,联立∠C=∠ABD可求证.(2)连接BE,根据同弧所对的圆周角先证明△BEF∽△BOE,根据相似三角形的性质求出EF的长度.【详解】解:(1)连接OE,∵AB是o的直径,∴∠ADB=90°,∴∠A+∠ABD=90°,由图可知∠BOE=2∠BDE又∵∠A=2∠BDE∴∠A=∠BOE∵∠C=∠ABD∴∠BOE+∠C=90°∴OE⊥EC∴CE是⊙O的切线.(2)连接BE,有图可知∠BED=∠A=∠BOE,∴△BEF∽△BOE∴BE BF EF BO BE OE==∵OB=OE=5,BF=2∴BE=EF∴EF2=OE·BF=1010故答案为:(1)证明见解析;(2)EF10=【点睛】本题考查了圆的相关知识、相似三角形的判定及性质,解题的关键在于合理作出辅助线转化求解.3.(1)AE是O的切线,理由见解析;(2)8.【解析】【分析】(1)连接AO,由AO=DO,得∠OAD=∠ODA,由DA平分∠BDE,得∠ADE=∠ODA,则∠ADE=∠OAD,证明AO∥ED,得OA⊥AE;(2)延长AO交BC于点F,由∠C=∠FAE=∠AEC=90°,可证四边形AECF为矩形,则CF=AE=4,由垂径定理得BF=FC=4.【详解】()1AE是O的切线.连接AO,OA OD=,,OAD ODA∴∠=∠ADE ADB∠=∠,OAD ADE∴∠=∠//AO CE∴AE CD⊥AE AO∴⊥AE∴是O的切线.()2延长AO交BC于点F.∵BD是⊙O的直径,∴∠C=90°.∴∠C=∠FAE=∠AEC=90°.∴四边形AECF为矩形,CF=AE=4.∵AF⊥BC,且AF过圆心,∴BC=2CF=8.【点睛】本题考查了切线的判定与性质,圆周角定理,垂径定理的运用.关键是连接AO并延长,证明直角和矩形.4.(1)证明见解析;(2)52;(3)AG=AD+2CD.【解析】【分析】(1)连接EF,根据角平分线的定义、等腰三角形的性质得到∠FEA=∠EAC,得到FE∥AC,根据平行线的性质得到∠FEB=∠C=90°,证明结论;(2)连接FD,设⊙F的半径为r,根据勾股定理列出方程,解方程即可;(3)作FR⊥AD于R,得到四边形RCEF是矩形,得到EF=RC=RD+CD,根据垂径定理解答即可.【详解】(1)证明:连接EF,∵AE平分∠BAC,∴∠FAE=∠CAE,∵FA=FE,∴∠FAE=∠FEA,∴∠FEA=∠EAC,∴FE∥AC,∴∠FEB=∠C=90°,即BC是⊙F的切线;(2)解:连接FD,设⊙F的半径为r,则r2=(r﹣1)2+22,解得,r=52,即⊙F的半径为52;(3)解:AG=AD+2CD.证明:作FR⊥AD于R,则∠FRC=90°,又∠FEC=∠C=90°,∴四边形RCEF是矩形,∴EF=RC=RD+CD,∵FR⊥AD,∴AR=RD,∴EF=RD+CD=12AD+CD,∴AG=2FE=AD+2CD.考点:圆的综合题;探究型.5.(1)3s或9s(2)直线BP与O相切,理由见解析【解析】【分析】(1)当∠POA=90°时,点P运动的路程为⊙O周长的14或34,所以分两种情况进行分析;(2)直线BP与⊙O的位置关系是相切,根据已知可证得OP⊥BP,即直线BP与⊙O相切.【详解】解:(1)当∠POA=90°时,根据弧长公式可知点P运动的路程为⊙O周长的14或34,设点P运动的时间为ts;当点P运动的路程为⊙O周长的14时,2π•t=14•2π•12,解得t=3;当点P运动的路程为⊙O周长的34时,2π•t=34•2π•12,解得t=9;∴当∠POA=90°时,点P运动的时间为3s或9s.(2)如图,当点P运动的时间为2s时,直线BP与⊙O相切理由如下:当点P运动的时间为2s时,点P运动的路程为4πcm,连接OP,PA;∵半径AO=12cm,∴⊙O的周长为24πcm,∴AP的长为⊙O周长的16,∴∠POA=60°;∵OP=OA,∴△OAP是等边三角形,∴OP=OA=AP,∠OAP=60°;∵AB=OA,∴AP=AB,∵∠OAP=∠APB+∠B,∴∠APB=∠B=30°,∴∠OPB=∠OPA+∠APB=90°,∴OP⊥BP,∴直线BP与⊙O相切.【点睛】本题考查的是切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.6.(1)证明见解析;(2)△BCF为等腰三角形.证明见解析;(3)7 24【解析】【分析】(1)由BC2=CD•CA,根据三角形相似的判定得到△CBD∽△CAB,根据三角形相似的性质得到∠CBD=∠BAC,而AB为⊙O的直径,根据圆周角定理的推论得∠ADB=90°,易证得∠ABD+∠CBD=90°,根据切线的判定即可得到答案;(2)由DE BD,根据圆周角定理得∠DAE=∠BAC,由(1)得∠BAC=∠CBD,则∠CBD=∠DAE,根据同弧所对的圆周角相等得∠DAE=∠DBF,所以∠DBF=∠CBD,而∠BDF=90°,根据等腰三角形三线的判定即可得到△BCF为等腰三角形;(3)由BC2=CD•CA,BC=15,CD=9,可计算出CA=25,根据等腰三角形的性质有BF=BC=15,DF=DC=9,利用勾股定理计算出BD=12,得到AF=7,再根据等积可求出AE=71228 155⨯=,然后利用Rt△AEF∽Rt△BDF,通过相似比可计算出EF,则可得到BE,而∠ADE=∠ABE,最后利用三角函数的性质可计算出tan∠ADE的值.【详解】(1)证明:∵BC2=CD•CA,∴BC:CA=CD:BC,∵∠C=∠C,∴△CBD∽△CAB,∴∠CBD=∠BAC,又∵AB为⊙O的直径,∴∠ADB=90°,即∠BAC+∠ABD=90°,∴∠ABD+∠CBD=90°,即AB⊥BC,∴BC为⊙O切线;(2)△BCF为等腰三角形.证明如下:∵DE BD=,∴∠DAE=∠BAC,又∵△CBD∽△CAB,∴∠BAC=∠CBD,∴∠CBD=∠DAE,∵∠DAE=∠DBF,∴∠DBF=∠CBD,∵∠BDF=90°,∴∠DBC=∠BDF=90°∵BD=BD∴△BDF≌△BDC∴BF=BC∴△BCF 为等腰三角形;(3)解:∵BC 2=CD•CA ,BC=15,CD=9,∴CA=25,BF=BC=15,DF=DC=9,∴=12,∴AF=25-18=7,∴S △ABF =12•AE•BF=12•AF•BD , ∴AE=71228155⨯=, 易证Rt △AEF ∽Rt △BDF ,∴EF :DF=AF :BF ,即EF :9=7:15,∴EF=215, ∴BE=15+215=965, ∵∠ADE=∠ABE ,∴tan ∠ADE=tan ∠ABE 287596245=. 【点睛】本题考查了切线的判定与性质:过半径的外端点与半径垂直的直线是圆的切线;圆的切线垂直于过切点的半径.也考查了圆周角定理及其推论以及三角形相似的判定与性质. 7.(1)AC 是⊙O 的切线,见解析;(2)83BF =【解析】【分析】(1)首先证明∠ACB =∠BAD ,然后根据圆周角定理的推论得出∠ACB +∠CAD=90°,则有∠BAD+∠CAD=90°,所以BA ⊥AC ,则可证明AC 是⊙O 的切线;(2)过点F 做FH ⊥AB 于点H .首先通过角平分线的性质得出FH=FD ,且FH ∥AC ,然后利用锐角三角函数求出CD,BD 的长度,然后设 DF=x ,则FH=x ,143BF x =-,最后利用3cos 4FH BFH BF ∠==建立关于x 的方程,解方程即可得出答案. 【详解】解:(1)AC是⊙O的切线理由:如图,连接AD.∵ E是BD中点,∴BE DE=.∴∠DAE=∠EAB.∵∠ACB =2∠EAB,∴∠ACB =∠BAD.∵ AB是⊙O的直径,∴∠ADB=∠ADC=90°,∴∠ACB +∠CAD=90°,∴∠BAD+∠CAD=90°.即BA⊥AC.∴ AC是⊙O的切线.(2)解:如图,过点F做FH⊥AB于点H.∵ AD⊥BD,FH⊥AB,∠DAE=∠EAB,∴ FH=FD,且FH∥AC.在Rt△ADC中,∵3cos4C=,8AC=,∴ CD=6.同理,在Rt△BAC中,可求得32 3BC=.∴143BD=.设DF=x,则FH=x,143BF x=-.∵ FH∥AC,∴∠BFH=∠ACB.∴3cos4FHBFHBF∠==.即31443xx=-.解得x=2,经检验,x=2是原分式方程的解,∴83BF=.【点睛】本题主要考查切线的判定及性质,圆周角定理的推论,解直角三角形,掌握切线的判定及性质,圆周角定理的推论,锐角三角函数,分式方程的解法是解题的关键.8.(1)证明见解析;(2)6.【解析】试题分析:(1)连接OD、CD,由AC为⊙O的直径知△BCD是直角三角形,结合E为BC 的中点知∠CDE=∠DCE,由∠ODC=∠OCD且∠OCD+∠DCE=90°可得答案;(2)设⊙O的半径为r,由OD2+DF2=OF2,即r2+42=(r+2)2可得r=3,即可得出答案.试题解析:(1)如图,连接OD、CD.∵AC为⊙O的直径,∴△BCD是直角三角形,∵E 为BC的中点,∴BE=CE=DE,∴∠CDE=∠DCE,∵OD=OC,∴∠ODC=∠OCD,∵∠ACB=90°,∴∠OCD+∠DCE=90°,∴∠ODC+∠CDE=90°,即OD⊥DE,∴DE是⊙O 的切线;(2)设⊙O 的半径为r ,∵∠ODF=90°,∴OD 2+DF 2=OF 2,即r 2+42=(r+2)2,解得:r=3,∴⊙O 的直径为6.考点:切线的判定与性质.9.(1)见解析;(2)⊙O 的半径长是32. 【解析】【分析】(1)过O 作OH ⊥AB 于H ,得到∠BHO=∠BCO=90°,根据角平分线的定义得到∠CBO=∠HBO ,根据全等三角形的性质得到OH=OC ,于是得到AB 与⊙O 相切; (2)求得BC 的长,然后证明BC 是切线,利用切线长定理求得BH 的长,证明△OAH ∽△BAC ,利用相似三角形的性质求解.【详解】(1)证明:如图,过O 作OH ⊥AB 于H ,∠ACB =90°∴∠BHO =∠BCO =90°,∵BO 平分∠ABC ,∴∠CBO =∠HBO ,∵BO =BO ,∴△CBO ≌△HBO (AAS ),∴OH =OC ,∴AB 与⊙O 相切;(2)解:∵在直角△ABC 中,AB =5,AC =4,∴BC 2222543,AB AC -=-=∵∠ACB =90°,即BC ⊥AC ,∴BC 是半圆的切线,又∵AB 与半圆相切,∴BH =BC =3,AH =AB ﹣BH =5﹣3=2.∵AB 是切线,∴OH ⊥AB ,∴∠OHA =∠BCA ,又∵∠A =∠A ,∴△OAH ∽△BAC , ∴,OH AH BC AC =即2,34OH = 解得OH =32.即⊙O 的半径长是32. 【点睛】本题考查了切线的判定,勾股定理,全等三角形的判定和性质,相似三角形的判定和性质,掌握以上知识是解题的关键.10.(1)见解析;(2)①2;②【解析】【分析】(1)根据切线的性质得∠OBQ =90°,根据平行线的性质得∠APO =∠POQ ,∠OAP =∠BOQ ,加上∠OPA =∠OAP ,则∠POQ =∠BOQ ,于是根据“SAS”可判断△BOQ ≌△POQ ,得到∠OPQ =∠OBQ =90°,根据切线的判定即可得证;(2)①由(1)得到∠OPQ =∠OBQ =90°,由于OB =OP ,所以当∠BOP =90°,四边形OPQB 为正方形,此时点C 、点E 与点O 重合,于是PE =PO =2;②根据菱形的判定,当OC =AC ,PC =EC ,四边形AEOP 为菱形,则OC =12OA =1,然后利用勾股定理计算出PC ,从而得到PE 的长.【详解】(1)证明:∵OQ ∥AP ,∴∠BOQ =∠OAP ,∠POQ =∠APO ,又∵OP =OA ,∴∠APO =∠OAP ,∴∠POQ =∠BOQ ,在△BOQ 与△POQ 中,=OB OP BOQ POQ OQ OQ =⎧⎪∠∠⎨⎪=⎩,∴△BOQ ≌△POQ (SAS ),∴∠OPQ =∠OBQ =90°,∵点P 在⊙O 上,∴PQ 是⊙O 的切线;(2)解:①∵∠OBQ =∠OPQ =90°,∴当∠BOP =90°,四边形OPQB 为矩形,而OB =OP ,则四边形OPQB 为正方形,此时点C 、点E 与点O 重合,PE =PO =12AB =2; ②∵PE ⊥AB ,∴当OC =AC ,PC =EC ,四边形AEOP 为菱形,∵OC =12OA =1,∴PC =,∴PE =2PC =.故答案为:2;.【点睛】本题考查了切线的判定与性质、全等三角形的判定与性质和菱形、正方形的判定方法;综合应用所学知识是解答本题的关键.11.(1)证明见解析;(2)1213【解析】【分析】(1)连接OD 和CD ,根据圆周角定理求出∠BDC=90°,根据等腰三角形的性质求出AD =BD ,根据三角形的中位线求出OD∥AC,求出OD⊥EF,根据切线的判定得出即可;(2)根据余角的性质得到∠ADF=∠ODC,等量代换得到∠ADF=∠ODC,根据勾股定理得到CD =12,根据三角函数的定义即可得到结论.【详解】(1)证明:连接OD ,CD ,∵BC 为⊙O 的直径,∴∠BDC=90°,即CD⊥AB,∵AC=BC ,AB =10,∴AD=BD =5,∵O 为BC 中点,∴OD∥AC,∵DF⊥AC,∴OD⊥EF,∵OD 过O ,∴直线DF 是⊙O 的切线;(2)∵∠ADC=∠BDC=90°,∠ODF=90°,∴∠ADF=∠ODC,∴OD=OC ,∴∠ODC=∠OCD,∴∠ADF=∠ODC,∵BD=5,BC =13,∴CD=12,∴cos ADF ∠=cos BCD ∠=1213CD BC =.【点睛】本题考查了切线的判定,求一个角的三角函数值,(1)要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可;(2)求一个角的三角函数值,要把这个角放入直角三角形中或作垂直,也可以根据等角的三角函数值相等进行转化. 12.(1)见解析;(2)1【解析】【分析】(1)根据等腰三角形的性质得到∠A=∠ADO=30°,求出∠DOB=60°,求出∠ODB=90°,根据切线的判定推出即可;(2)根据直角三角形的性质得到OD=12OB,于是得到结论.【详解】(1)证明:连接OD,∵OA=OD,∠A=∠ABD=30°,∴∠A=∠ADO=30°,∴∠DOB=2∠A=60°,∴∠ODB=180°﹣∠DOB﹣∠B=90°,∵OD是⊙O的半径,∴BD是⊙O的切线;(2)解:∵∠ODB=90°,∠DBC=30°,∴OD=12 OB,∵OC=OD,∴BC=OC=1,∴⊙O的半径OD的长为1.【点睛】本题主要考查的是圆的综合应用,掌握等腰三角形的性质以及圆切线的判定是解题的关键.13.(1)见解析;(2)r=409;(3)DM=8027,FG=89【解析】【分析】(1)连接OD,根据等腰三角形判断出∠ABC=∠ACB,进而得到OD∥AB即可得到求证;(2)连接OF,根据切线得到△AOF是直角三角形,根据tan∠A=43,设半径OF=OC=r,则可表示出AF=34r,AO=10-r,勾股定理求出半径即可得到结果;(3)现根据题意证出ODEF是正方形,求出BE,再根据△BEM∽△ODM,即可得到MD;在EF延长线上截取FT=DM,证明出OT=OM,再证明△OGT≌△OGM,则GM=GT=GF+FT=GF+DM,设出GF=a,根据勾股定理求解即可.【详解】解:(1)证明:连接OD∵OC,OD均为⊙O的半径,∴OC=OD,∴∠DCO=∠CDO又∵在△ABC中,AB=AC,∴∠ABC=∠ACB∴∠ABC=∠CDO,∴OD∥AB∵DE⊥AB,∴DE⊥OD∴DE是⊙O的切线.(2)解:连接OF,设⊙O的半径为r,则OF=r,OC=r∵⊙O与AB相切于点F,∴AB⊥OF,∴∠OF A=90°,在Rt△AOF中,∠OF A=90°,OF=r,tan∠A=4 3∴AF=34r,∴AO=5 4 r又∵AO=AC-OC=10-r,∴54r=10-r∴ r=409.(3)由(2)知r=409,∴AF=34r=103∵∠ODE=∠DEF=∠OFE=90°,∴四边形ODEF是矩形∵OF=OD,∴矩形ODEF是正方形,∴DE=EF=OF=40 9∴BE=AB-AF-EF=10-103-409=209∵∠BME=∠OMD,∠BEM=∠ODM=90°∴△BEM∽△ODM,∴EM BE DM OD即409DMDM=209409,解得DM=8027在EF延长线上截取FT=DM∵四边形ODEF是正方形,∴∠OFT=∠ODM=90°,OF=OD ∴△OFT≌△ODM,∴∠2=∠1,OT=OM∵∠DOF=90°,∠GOM=45°,∴∠GOF+∠1=45°,∴∠GOF+∠2=45°即∠GOT=45°,∴∠GOT=∠GOM又OG=OG,∴△OGT≌△OGM,∴GM=GT=GF+FT=GF+DM设GF=a,则EG=409-a,GM=8027+a,且EM=DE-DM=409-8027=4027在Rt△EMG中,EM2+EG2=GM2,即(4027)2+(409-a)2=(8027+a)2,解得a=89∴FG的长为89.【点睛】此题考查圆与特殊四边形的知识:切线的判定及性质,特殊四边形的证明,勾股定理等,难度较大,需要做辅助线.14.(1)见解析;(2)见解析;(3)3【解析】【分析】(1)连接OC,可证得∠CAD=∠BCD,由∠CAD+∠ABC=90°,可得出∠OCD=90°,即结论得证;(2)证明△ABC≌△AFC可得CB=CF,又CB=CE,则CE=CF;(3)证明△DCB∽△DAC,可求出DA的长,求出AB长,设BC=a,AC=2a,则由勾股定理可得AC的长.【详解】解:(1)连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAD+∠ABC=90°,∵CE=CB,∴∠CAE=∠CAB,∵∠BCD=∠CAE,∴∠CAB=∠BCD,∵OB=OC,∴∠OBC=∠OCB,∴∠OCB+∠BCD=90°,∴∠OCD=90°,∴CD是⊙O的切线;(2)∵∠BAC=∠CAE,∠ACB=∠ACF=90°,AC=AC,∴△ABC≌△AFC(ASA),∴CB=CF,又∵CB=CE,∴CE=CF;(3)∵∠BCD=∠CAD,∠ADC=∠CDB,∴△DCB ∽△DAC , ∴CD AD AC BD CD BC==,∴1=, ∴DA =2,∴AB =AD ﹣BD =2﹣1=1,设BC =a ,AC a ,由勾股定理可得:222)1a +=,解得:a =3,∴3AC =. 【点睛】本题主要考查了切线的判刑、等腰三角形的性质、全等三角形的判定与性质,学会添加辅助线和灵活运用所学知识是解题的关键.15.(1)①OA ⊥EF ;②∠FAC=∠B ;(2)见解析;(3)见解析.【解析】【分析】(1) 添加条件是:①OA ⊥EF 或∠FAC=∠B 根据切线的判定和圆周角定理推出即可.(2) 作直径AM,连接CM ,推出∠M=∠B=∠EAC ,求出∠FAC+∠CAM=90°,根据切线的判定推出即可.(3)由同圆的半径相等得到OA=OB ,所以点O 在AB 的垂直平分线上,根据∠FAC=∠B ,∠ BAC=∠FAC ,等量代换得到∠BAC=∠B ,所以点C 在AB 的垂直平分线上,得到OC 垂直平分AB .【详解】(1)①OA ⊥EF ②∠FAC=∠B ,理由是:①∵OA ⊥EF ,OA 是半径,∴EF 是⊙O 切线,②∵AB 是⊙0直径,∴∠C=90°,∴∠B+∠BAC=90°,∵∠FAC=∠B,∴∠BAC+∠FAC=90°,∴OA⊥EF,∵OA是半径,∴EF是⊙O切线,故答案为:OA⊥EF或∠FAC=∠B,(2)作直径AM,连接CM,即∠B=∠M(在同圆或等圆中,同弧所对的圆周角相等),∵∠FAC=∠B,∴∠FAC=∠M,∵AM是⊙O的直径,∴∠ACM=90°,∴∠CAM+∠M=90°,∴∠FAC+∠CAM=90°,∴EF⊥AM,∵OA是半径,∴EF是⊙O的切线.(3)∵OA=OB,∴点O在AB的垂直平分线上,∵∠FAC=∠B,∠BAC=∠FAC,∴∠BAC=∠B,∴点C在AB的垂直平分线上,∴OC垂直平分AB,∴OC⊥AB.【点睛】本题考查了切线的判定,圆周角定理,三角形的内角和定理等知识点,注意:经过半径的外端且垂直于半径的直线是圆的切线,直径所对的圆周角是直角.16.(1)详见解析;(2)详见解析;(3)AD13【解析】【分析】(1)连接OD,由AD为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD与AC平行,得到OD与BC垂直,即可得证;(2)连接DF,证明△ABD∽△ADF,,由相似三角形的性质即可证得结论;(3)连接EF,设圆的半径为r,由sinB的值,利用锐角三角函数定义求出r的值,由直径所对的圆周角为直角,得到EF与BC平行,得到sin∠AEF=sinB,进而求出AF的长,再根据(2)的结论即可求得AD的长.【详解】(1)如图,连接OD,∵AD为∠BAC的角平分线,∴∠BAD=∠CAD,∵OA=OD,∴∠ODA=∠OAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,∴OD⊥BC,∴BC为圆O的切线;(2)连接DF,由(1)知BC为圆O的切线,∴∠FDC=∠DAF,∴∠CDA=∠CFD,∴∠AFD=∠ADB,∵∠BAD=∠DAF,∴△ABD∽△ADF,∴AB AD AD AF=,即AD2=AB•AF;(3)连接EF,在Rt△BOD中,sinB=513 ODOB=,设圆的半径为r,可得5813 rr=+,解得:r=5,∴AE=10,AB=18,∵AE是直径,∴∠AFE=∠C=90°,∴EF∥BC,∴∠AEF=∠B,∴sin∠AEF=513 AFAE=,∴AF=AE•sin∠AEF=10×513=50 13,∵AD2=AB•AF∴5013181313AB AF⋅=⨯=.【点睛】本题是圆的综合题,考查的知识点有切线的判定与性质,相似三角形的判定与性质,锐角三角函数定义以及平行线的判定与性质,熟练掌握各自的性质是解本题的关键.17.(1)详见解析;(2)4【解析】【分析】(1)首先利用等腰三角形的性质和角平分线的定义得出∠EBC=∠OEB,然后得出OE∥BC,则有∠OEA=∠ACB=90°,则结论可证.(2)连接OE、OF,过点O作OH⊥BF交BF于H,首先证明四边形OHCE是矩形,则有 ,然后利用等腰三角形的性质求出BH的长度,再利用勾股定理即可求出OH的OH CE长度,则答案可求.【详解】(1)证明:连接OE.∵OE=OB,∴∠OBE=∠OEB.∵BE平分∠ABC,∴∠OBE=∠EBC,∴∠EBC=∠OEB,∴OE∥BC,∴∠OEA=∠ACB.∵∠ACB=90°,∴∠OEA=90°∴AC是⊙O的切线;(2)解:连接OE、OF,过点O作OH⊥BF交BF于H,∵OH ⊥BF ,90OHC ∴=︒ .90OHC ACB OEC =∠=∠=︒∴四边形OECH 为矩形,∴OH =CE .∵,OB OF OH BF =⊥,BF =6,∴BH =3.在Rt △BHO 中,OB =5,∴OH 2253-4,∴CE =4.【点睛】本题主要考查切线的判定,等腰三角形的性质,矩形的性质,勾股定理,掌握切线的判定,等腰三角形的性质,矩形的性质,勾股定理是解题的关键.18.(1)见解析;(2)203【解析】【分析】(1)从切线的判定为目标,来求BD ⊥AB ,连接AC 通过相似来证得;(2)通过已知条件和第一步求得的三角形相似求得BD 的长度.【详解】(1)证明:连接AC ,∵AB 是⊙O 的直径∴∠ACB =90°又∵OD ⊥BC∴AC∥OE∴∠CAB=∠EOB由AC对的圆周角相等∴∠AEC=∠ABC又∵∠AEC=∠ODB∴∠ODB=∠OBC∴△DBF∽△OBD∴∠OBD=90°即BD⊥AB又∵AB是直径∴BD是⊙O的切线.(2)∵OD⊥弦BC于点F,且点O圆心,∴BF=FC∴BF=4由题意OB是半径即为5∴在直角三角形OBF中OF为3由以上(1)得到△DBF∽△OBD∴BD OB BF OF=即得BD=203.【点睛】本题考查了切线的判定及其应用,通过三角形相似求得,本题思路很好,是一道不错的题.19.(1)见解析;(232【解析】【分析】(1)连接OD ,证//OD BC ,则OD DE ⊥,即可证明DE 是O 的切线;(2)连AD 、CD ,作DF AB ⊥,证明Rt Rt BDF BDE ∆∆≌,Rt Rt ADF CDE ∆∆≌,从而求出AB 长,即为O 直径. 【详解】解:(1)连OD ,∵OB OD =,∴ODB OBD ∠=∠,∵BD 平分ABC ∠,∴OBD CBD ∠=∠,∴ODB CBD ∠=∠,∴//OD BC ,∵DE BC ⊥,∴90E ∠=︒,∴90ODE ∠=︒,即OD DE ⊥,∴DE 是O 的切线;(2)连AD 、CD ,作DF AB ⊥,∵在O 中,ABD CBD ∠=∠,∴AD CD =,又∵OD DE ⊥,DF AB ⊥,∴DE DF =,在Rt △BDE 和Rt △BDF 中BD=BD DE=DF ⎧⎨⎩∴Rt Rt BDF BDE ∆∆≌(HL ),在Rt △ADF 和Rt △CDE 中AD=DC DF=DE ⎧⎨⎩∴Rt Rt ADF CDE ∆∆≌(HL ),∴1BF BE ==,1AF CE ==,∴32AB =+,即O 的直径为32+.【点睛】本题是对圆知识的综合考查,熟练掌握圆的性质定理是解决本题的关键.20.(1)证明见解析;(2)12cos 13ADF ∠=. 【解析】【分析】(1)连接OD 和CD ,根据圆周角定理求出∠BDC=90°,根据等腰三角形的性质求出AD=BD ,根据三角形的中位线求出OD ∥AC ,求出OD ⊥EF ,根据切线的判定得出即可;(2)根据余角的性质得到∠ADF=∠ODC ,等量代换得到∠ADF=∠OCD ,根据勾股定理得到CD=12,根据三角函数的定义即可得到结论.【详解】(1)证明:如图,连接OD ,CD ,∵BC 为⊙O 的直径,∴∠BDC=90°(直径所对的圆周角是90°),即CD ⊥AB ,∵AC=BC ,AB=10,∴AD=BD=5,∵O 为BC 中点,∴OD ∥AC ,∵DF ⊥AC ,∴∠DFC=90°,∴∠FDO=180°-90°=90°(两直线平行,同旁内角互补),∴OD ⊥EF ,又∵OD 过圆心O 点,∴直线DF 是⊙O 的切线;(2)∵∠ADC=∠BDC=90°,∠ODF=90°,∴∠ADF=∠ODC ,又∵OD=OC ,∴∠ODC=∠OCD ,∴∠ADF=∠OCD (等量替换),∵BD=5,BC=13,∴(勾股定理),12cos cos 13ADF BCD ∠=∠=; 【点睛】 本题主要考查了切线的判断、等腰三角形的性质、解直角三角形、圆周角定理、勾股定理的知识点,能综合运用知识点进行求解是解题的关键.21.(1)EF 与⊙O 相切.理由见解析;(2)⊙O 的周长为2πcm .【解析】【分析】(1)延长BO 交AC 于H ,如图,先证明△ABC 为等边三角形,利用点O 为△ABC 的外心得到BH ⊥AC ,由于AC ∥EF ,所以BH ⊥EF ,于是根据切线的判定定理即可得到EF 为⊙O 的切线;(2)连结OA ,如图,根据等边三角形的性质得∠OAH =30°,AH =CH =12AC =2,再在Rt △AOH 中,利用三角函数和计算出OA =1,然后根据圆的周长公式计算.【详解】(1)EF 与⊙O 相切.理由如下:延长BO 交AC 于H ,如图,∵∠BAC =∠BDC =60°,而∠ACB =60°,∴△ABC 为等边三角形,∵点O 为△ABC 的外心,∴BH ⊥AC ,∵AC ∥EF ,∴BH ⊥EF ,∴EF 为⊙O 的切线;(2)连结OA ,如图,∵△ABC 为等边三角形,∴OA 平分∠ABC ,∴∠OAH =30°,∵OH ⊥AC ,∴AH =CH =12AC 在Rt △AOH 中,∵cos ∠OAH =AH OA,∴OA 1, ∴⊙O 的周长=2π×1=2π(cm ).【点睛】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了等边三角形的判定与性质.22.(1)见解析;(2)3π.【解析】【分析】(1)连接OD,求出OD//BC,求出OD⊥DC,根据切线的判定得出即可;(2)求出∠CBD=30°,求出∠AOD=∠ABC=60°,求出半径OA,根据弧长公式求出即可.【详解】(1)连接OD,∵OD=OB,∴∠ODB=∠OBD,∵BD平分∠ABC,∴∠CBD=∠OBD,∴∠CBD=∠ODB,∴OD//BC,∴∠C+∠ODC=180°,∵∠C=90°.∴∠ODC=90°,即OD⊥DC,∵OD过O,∴CD是⊙O的切线;(2)∵∠CDB=60°,∠C=90°,∴∠CBD=30°,∵BD平分∠ABC,∴∠ABC=60°,∵OD//BC,∴∠AOD=∠ABC=60°,∵直径AB=18,∴半径OA=9,∴弧AD的长是609180π⨯=3π.【点睛】本题考查了切线的判定,平行线的性质,等腰三角形的性质,弧长公式等知识点,能灵活运用知识点进行推理是解此题的关键.23.(1)见解析;(2)见解析;(3)AB=【解析】【分析】(1)根据尺规作图的规则作图即可.(2)根据角平分线证明边和角,再根据切线长定理求证即可.(3)先在(2)的前提下,根据三角形相似,求出圆的半径,再根据△ODC∽△ABC求出AB即可.【详解】(1)作图如下:(2)证明:过点O 作OD ⊥AC ,垂足为D .∵∠ABC=90°,∴OB ⊥AB ,∵AO 平分∠BAC 且OB ⊥AB ,OD ⊥AC ,∴OB=OD ,∴⊙O 与直线AC 相切.(2)由(1)可知,∠ODC=90°,∵BF 为直径∴∠BDF=90°,∴∠ODC=∠BDF ,∴∠BDO=∠CDF ,∵OB=OD ,∴∠BDO=∠DBO ,∴CDF=∠DBO ,且∠DCF=∠BCD ,∴△DCF ∽△BCD ,∴2CD CF BC =⋅,∵CD23=,CF=2,∴BC=6,∴OB=OF=2,∴OC=4,OD=2,∵△ODC∽△ABC,∴OD CDAB BC=,OD=2,CD23=∴23AB=.【点睛】此题考查尺规作图的方法,切线长定理及三角形相似,知识面较广,难度较难.24.(1)见解析;(2)3【解析】【分析】(1)由AB=BC,可得△ABC是等腰三角形,且BE⊥AC可得AE=CE,根据中位线定理可得OE∥AB,且AB⊥EG可得OE⊥EG,即可证EG是⊙O的切线(2)易证得△OBE是等边三角形,根据三角函数求BE,CE的长,再根据三角形的中位线的性质即可求得BF的长.【详解】(1)如图:连接OE,BE,∵AB=BC,∴∠C=∠A,∵BC是直径,∴∠CEB=90°,且AB=BC,∴CE=AE ,且CO=OB ,∴OE ∥AB ,∵GE ⊥AB ,∴EG ⊥OE ,且OE 是半径,∴EG 是⊙O 的切线;(2) ∵BG = OB ,OE ⊥EG ,∴BE= 12OG=OB=OE , ∴△OBE 为等边三角形,∴∠CBE = 60°, ∵AC = 6,∴CЕ = 3,BЕ =3tan 60 ,∴∵ОB = BG ,OE//AB ,∴BF= 12 【点睛】本题考查了切线的性质和判定,等腰三角形的判定和性质,三角形中位线的性质,解直角三角形等,关键是灵活运用切线的判定解决问题.25.(1)见解析;(2)见解析;(3)【解析】【分析】(1)连接OC ,根据角平分线的定义、等腰三角形的性质得到∠DAC=∠OCA ,得到OC ∥AD ,根据平行线的性质得到OC ⊥PD ,根据切线的判定定理证明结论;(2)根据圆周角定理、三角形的外角的性质证明∠PFC=∠PCF ,根据等腰三角形的判定定理证明;(3)连接AE ,根据正切的定义求出BC ,根据勾股定理求出AB ,根据等腰直角三角形的性质计算即可.【详解】。

人教版初中数学24圆练习题(三)

人教版初中数学24圆练习题(三)

人教版初中数学24圆练习题(三)一、选择题(本大题共136小题,共408.0分)1. 已知:如图,ABCD是⊙O的内接正方形,AB=4,F是BC的中点,AF的延长线交⊙O于点E,则AE的长是( )A. B. C. D.2. 正六边形的外接圆的半径与内切圆的半径之比为( ) A. 1:B.:2C. 2:D.:13. 如图,在⊙O中,OA=AB,OC⊥AB,则下列结论错误的是( )B. 弦AC的长等于圆内接正十二边形的边长D. ∠BAC=30°A. 弦AB的长等于圆内接正六边形的边长 C.4. 半径相等的圆的内接正三角形、正方形、正六边形的边长之比为( ) A. 1::B.::1C. 3:2:1D. 1:2:35. A.如图,⊙O的内接多边形周长为3,⊙O的外切多边形周长为3.4,则下列各数中与此圆的周长最接近的是( )B.C.D.6. A.cm如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm 2,则该半圆的半径为( )B. 9cmC.cmD.cm7. 已知正六边形的周长是12a,则该正六边形的半径是( ) A. 6aB. 4aC. 2aD.8. A. 3个如图,一种电子游戏,电子屏幕上有一正六边形ABCDEF,点P沿直线AB从右向左移动,当出现点P与B. 4个C. 5个D. 6个正六边形六个顶点中的至少两个顶点距离相等时,就会发出警报,则直线AB上会发出警报的点P有( )9. A. 150° 10. 有一边长为 A.如图,P为正三角形ABC外接圆上一点,则∠APB=( )B. 135°C. 115°D. 120°的正三角形,则它的外接圆的面积为( )B.C. 4πD. 12π初中数学试卷第1页,共43页11. A. 5�s3如图所示的向日葵图案是用等分圆周画出的,则⊙O与半圆P的半径的比为( )B. 4�s1C. 3�s1D. 2�s112. A. 30°如图,⊙O是正方形ABCD的外接圆,点P在⊙O上,则∠APB等于( )B. 45°C. 55°D. 60°13. A. 4如图,在正六边形ABCDEF中,△ABC的面积为2,则△EBC的面积为( )B. 6C. 8D. 1214. 边长为a的正六边形的面积等于( )B. a 2D.a 2A. a2C. a215. 已知正多边形的边心距与边长的比是 A. 正三角形B. 正方形:2,则此正多边形是( )C. 正六边形D. 正十二边形16.内的概率是( ) A.A. 不能构成三角形 A. A. 3r如图,正方形ABCD内接于⊙O,⊙O的直径为分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCDB.C.D.17. 以半径为1的圆内接正三角形、正方形、正六边形的边心距为三边作三角形,则( )B. 这个三角形是等腰三角形C. 这个三角形是直角三角形D. 这个三角形是钝角三角形 B. B. 6rC. 1:2:3 C. 12rD. 3:2:1 D. 24r|的结果为1;③正六边形的中心角为60°;④函数y=的18. 若同一个圆的内接正三角形、正方形、正六边形的边心距分别为r 3,r 4,r 6,则r 3:r 4:r 6等于( ) 19. 已知一个正六边形的半径是r,则此正六边形的周长是( )20. 下列说法:①对角线互相平分且相等的四边形是菱形;②计算|2- 自变量x的取值范围是x≥3.其中正确的个数有( ) A. 1个 A. 2条B. 2个 B. 4条C. 3个 C. 5条D. 4个 D. 10条21. 正五边形的对称轴共有( )22. 如图.在△ABC中,∠B=90°,∠A=30°,AC=4cm,将△ABC绕顶点C顺时针方向旋转至△A'B'C的位置,且A、C、B'三点在同一条直线上,则点A所经过的最短路线的长为( ) A.B. 8cmC.D.23. 小莹准备用纸板制作一顶圆锥形“圣诞帽”,使“圣诞帽”的底面周长为18πcm,高为40cm.裁剪纸板时,小莹应剪出的扇形的圆心角约为( ) A. 72°B. 79°C. 82°D. 85°24. A. 10cm如图,一个扇形铁皮OAB.已知OA=60cm,∠AOB=120°,小华将OA、OB合拢制成了一个圆锥形烟囱帽(接B. 20cmC. 24cm初中数学试卷第2页,共43页缝忽略不计),则烟囱帽的底面圆的半径为( )D. 30cm25. A. 2π如图,底面半径为1,母线长为4的圆锥,一只小蚂蚁若从A点出发,绕侧面一周又回到A点,它爬行的最短路线长是( )B.C.D. 526. 如图,某航天飞机在地球表面点P的正上方A处,从A处观测到地球上的最远点Q,若∠QAP=α,地球半径为R,则航天飞机距地球表面的最近距离AP,以及P、Q两点间的地面距离分别是( )A.B. C. D.27. A. π一块等边三角形木板,边长为1,现将木板沿水平线翻滚(如图),那么B点从开始到结束经过的路长长度为( ) B. πC. 4πD. 2+π28. 已知如图,圆锥的底面圆的半径为r(r>0),母线长OA为3r,C为母线OB的中点在圆锥的侧面上,一只蚂蚁从点A爬行到点C的最短线路长为( )D.A. B. C.29. A. R=2r如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型.若圆的半径为r,扇形的半径为R,B. R=C. R=3rD. R=4r扇形的圆心角等于90°,则r与R之间的关系是( )30. ( ) A. 12πm图中实线部分是半径为9m的两条等弧组成的游泳池.若每条弧所在的圆都经过另一个圆的圆心,则游泳池的周长为B. 18πmC. 20πmD. 24πm31. 如图,王虎使一长为4cm,宽为3cm的长方形木板,在桌面上做无滑动的翻滚(顺时针方向)木板上点A位置变化为A→A 1→A 2,其中第二次翻滚被桌面上一小木块挡住,使木板与桌面成30°角,则点A翻滚到A 2位置时共走过的路径长为( )A. 10cmB. 4πcmC.D.32. 如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”,则半径为2的“等边扇形”的面积为( ) A. πB. 1C. 2D.33. 如图转动一长为4cm,宽为3cm的长方形木板,在桌面上作无滑动的翻滚(顺时针方向),木板上的点A位置变化为A→A 1→A 2,其中第二次翻滚时被桌面上另一小木块挡住,且使木板与桌面成30°角,则A翻滚到A 2时,共经过的路径长为初中数学试卷第3页,共43页( )cm. A. 3.5πA. 120°B. 4.5π B. 约156°C. 5π C. 180°D. 10π D. 约208°34. 如果一个圆锥的主视图是正三角形,则其侧面展开图的圆心角为( )35. 则长为( )如图,等腰梯形ABCD中,AD∥BC,以A为圆心,AD为半径的圆与BC切于点M,与AB 交于点E,若AD=2,BC=6,A. B. C.D. 3π36. 如图,有一半径是1米的圆形铁皮,要从中剪出一个最大的圆心角为90°的扇形,用此扇形铁皮围成一个圆锥,该圆锥的底面圆的半径长为( ) A.米B. 米C. 米D. 米37. 用半径为6cm、圆心角为120°的扇形做成一个圆锥的侧面,则这个圆锥的底面半径是( ) A. 2cmB. 3cmC. 4cmD. 6cm38. 现有30%圆周的一个扇形彩纸片,该扇形的半径为40cm,小红同学为了在“六一”儿童节联欢晚会上表演节目,她打算剪去部分扇形纸片后,利用剩下的纸片制作成一个底面半径为10cm的圆锥形纸帽(接缝处不重叠),那么剪去的扇形纸片的圆心角为( ) A. 9°B. 18°C. 63°D. 72°39. A. 2π A. 30°如图,已知⊙O的半径OA=6,∠AOB=90°,则∠AOB所对的弧AB的长为( )B. 3π B. 60°C. 6π C. 90°D. 12π D. 120°40. 在半径为3cm的圆中,长为2πcm的弧所对的圆心角的度数为( )41. 从一张圆形纸板剪出一个小圆形和一个扇形,分别作为圆锥体的底面和侧面,下列的剪法恰好配成一个圆锥体的是( )A. B. C. D.42. 某小区现有一块等腰直角三角形形状的绿地,腰长为100米,直角顶点为A.小区物业管委会准备把它分割成面积相等的两块,有如下的分割方法:方法一:在底边BC上找一点D,连接AD作为分割线;方法二:在腰AC上找一点D,连接BD作为分割线;方法三:在腰AB上找一点D,作DE∥BC,交AC于点E,DE作为分割线;方法四:以顶点A为圆心,AD为半径作弧,交AB于点D,交AC于点E,弧DE作为分割线.这些分割方法中分割线最短的是( ) A. 方法一B. 方法二C. 方法三D. 方法四初中数学试卷第4页,共43页43. 已知,如图所示,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交于⊙O于点E,∠BAC=45°,给出以下四个结论:=2(,为劣弧)①BD=C D;②∠EBC=22.5°;③AE=2EC;④ 其中正确结论有( ) A. 4个B. 3个C. 2个D. 1个44. 挂钟分针的长10cm,经过45分钟,它的针尖转过的弧长是( ) A.πcmB. 15πcmC.πcmD. 75πcm45.如图(甲),水平地面上有一面积为30πcm 2的灰色扇形OAB,其中OA的长度为6cm,且与地面垂直.若在没有滑动的情况下,将图(甲)的扇形向右滚动至OB垂直地面为止,如图(乙)所示,则O 点移动的距离为( ) A. 20cm A. 12πB. 24cm B. 10πC. 10πcm C. 6πD. 30πcm D. 3π46. 在半径为18的圆中,120°的圆心角所对的弧长是( )47. 如图,一个等边三角形的边长与它的一边相外切的圆的周长相等,当这个圆按箭头方向从某一位置沿等边三角形的三边做无滑动旋转,直至回到原出发位置时,则这个圆共转了( ) A. 4圈B. 3圈C. 5圈D. 3.5圈48. 小明要制作一个圆锥模型,其侧面是由一个半径为9cm,圆心角为240°的扇形纸板制成的,还需要用一块圆形纸板做底面,那么这块圆形纸板的直径为( )cm. A. 15B. 12C. 10D. 949. 如图,张三同学把一个直角边长分别为3cm,4cm的直角三角形硬纸板,在桌面上翻滚(顺时针方向),顶点A的位置变化为A 1?A 2?A 3,其中第二次翻滚时被桌面上一小木块挡住,使纸板一边A 2C 1与桌面所成的角恰好等于∠BAC,则A翻滚到A 2位置时共走过的路程为( ) A. 8cmB. 8πcmC. 2cmD. 4πcm50. 在图中的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A点到B点.甲虫沿弧ADA 1、A 1EB 1、爬行,则下列结论正确的是( )C. 甲、乙同时到B点D. 无法确定B 1FC 1、C 1GB路线爬行,乙虫沿路线 A. 甲先到B点B. 乙先到B点51. A. l 1>l 2如图所示,大半圆弧长l 1,n个小半圆弧长的和为l 2,则l 1与l 2的关系是( ) B. l 1<l 2C. l 1=l 2D. 无法确定52.则这三条弧的长的和是( )如图,△ABC的边长都大于2,分别以它的顶点为圆心,1为半径画弧(弧的端点分别在三角形的相邻两边上),初中数学试卷第5页,共43页感谢您的阅读,祝您生活愉快。

初中数学综合滚动练习:数轴、相反数、绝对值及其综合

初中数学综合滚动练习:数轴、相反数、绝对值及其综合
A.A 点 B.B 点 C.C 点 D.D 点
4.下列各对数中,相等的是( B )
A.-(- 3 )和-0.75 4
B.+(-0.2)和-(+1 ) 5
C.-(+ 1 )和-(-0.01) 100
D.-(-31 )和-(+16 )的本身小,则这个数是
(A) A.正数 B.负数 C.正数和零 D.负数和零 6.下列说法正确的是( C ) A.绝对值等于 3 的数是-3 B.绝对值小于 2 的数有±2,±1,0 C.若|a|=-a,则 a≤0 D.一个数的绝对值一定大于这个数的相反数
二、填空题(每小题 4 分,共 32 分)
9.计算:|-20|= 20 .
10.若 a+ 2 =0,则 a=
2 5
.
5
11.数轴上点 A 表示-1,点 B 表示 2,则 A、B 两
点间的距离是 3 .
12.将-3,-|+2|,-1 ,-1 按从小到大的顺序,
3
用“<”连接应当是 -3<-|+2|<-1<-13
2
2
-(-5).(8 分)
19.(8 分)如图,图中数轴的单位长度为 1.请回答下 列问题:
(1)如果点 A、B 表示的数是互为相反数,那么点 C、 D 表示的数是多少? 解:(1)点 C 表示的数是-1,点 D 表示的数是-6.(4 分)
(2)如果点 D、B 表示的数是互为相反数,那么点 C、 D 表示的数分别是多少? (2)点 C 表示的数是 0.5,点 D 表示的数是-4.5.(8 分)
快速对答案
1A 2D 3C 4B 5A 6C
7C
提示:点击 进入习题
8B
9 20
10
2 5
11 3

二次函数与三角函数的综合题目练习初二数学下册综合算式专项练习题

二次函数与三角函数的综合题目练习初二数学下册综合算式专项练习题

二次函数与三角函数的综合题目练习初二数学下册综合算式专项练习题在数学学习中,二次函数和三角函数是重要的概念。

它们在综合算式中也经常出现,因此熟练掌握二次函数和三角函数的综合题目练习对于初中数学的学习非常重要。

接下来,我们将通过一些例题,来练习和巩固这些知识点。

1. 题目一:已知函数f(x) = 2x^2 - 3x + 5,求f(-1)的值。

解析:将x = -1代入函数f(x)中,得到f(-1) = 2(-1)^2 - 3(-1) + 5= 2(1) + 3 + 5= 2 + 3 + 5= 10故f(-1)的值为10。

2. 题目二:已知函数g(x) = sin(x),求g(π/2)的值。

解析:将x = π/2代入函数g(x)中,得到g(π/2) = sin(π/2)= 1故g(π/2)的值为1。

3. 题目三:已知函数h(x) = 3x^2 - 4sin(x),求h(π)的值。

解析:将x = π代入函数h(x)中,得到h(π) = 3(π)^2 - 4sin(π)= 3π^2 - 4(0)= 3π^2故h(π)的值为3π^2。

通过以上例题,我们可以看到如何运用二次函数和三角函数来求特定点的函数值。

对于二次函数的计算,只需将给定值代入函数表达式中;对于三角函数的计算,只需将给定值代入三角函数表达式中。

掌握了这些计算方法后,我们就能够解决更复杂的综合题目。

接下来,我们来解决一些综合的二次函数和三角函数题目。

4. 题目四:已知函数y = ax^2 + bx + c,其中a ≠ 0。

若函数图像过点(1, 5),且在x = 2处的切线斜率为4,则求函数的解析式。

解析:由已知条件可得:①将x = 1代入函数y中,得到a(1)^2 + b(1) + c = 5得到a + b + c = 5②函数在x = 2处的切线斜率为4,即导数为4。

求导得到y' = 2ax + b,将x = 2代入导数中,得到4 = 2a(2) + b化简得到4 = 4a + b通过以上两个方程,我们可以得到关于a、b、c的方程组:a +b +c = 54 = 4a + b解这个二元一次方程组,可以得到a = 1,b = 0,c = 4。

初二数学上册综合算式专项练习题函数的极值

初二数学上册综合算式专项练习题函数的极值

初二数学上册综合算式专项练习题函数的极值在初中数学上册的综合算式中,我们学习了一些函数的基础知识,如函数的概念、函数的表示方法以及函数的性质。

在这些基础知识的基础上,我们需要进一步学习函数的极值问题。

本文将通过专项练习题来帮助同学们更好地理解和掌握函数的极值概念和求解方法。

一、简单的函数极值问题1. 已知函数 f(x) = 2x^2 + 3x + 1,求 f(x) 的极小值和极大值。

解答:首先,我们需要求出函数的导数。

对于二次函数 f(x) = 2x^2 + 3x + 1,它的导数 f'(x) = 4x + 3。

我们知道,在函数的极值点处,导数等于0。

所以我们可以通过解方程 f'(x) = 0 来求得函数的极值点。

解得 x = -3/4。

然后,我们需要判断这个极值点是极小值还是极大值。

我们可以通过求导数的二阶导数来判断。

对于函数 f(x) = 2x^2 + 3x + 1,它的二阶导数 f''(x) = 4。

由于二阶导数恒为正数,所以该极值点是函数的极小值点。

因此,函数 f(x) 的极小值为 f(-3/4) = 2 * (-3/4)^2 + 3 * (-3/4) + 1 = 7/8。

同理,我们可以得到函数 f(x) 的极大值为 f(0) = 1。

2. 已知函数 f(x) = x^3 - 6x^2 + 9x,求 f(x) 的极值。

解答:同样地,我们需要先求出函数的导数。

对于三次函数 f(x) =x^3 - 6x^2 + 9x,它的导数 f'(x) = 3x^2 - 12x + 9。

然后,我们解方程 f'(x) = 0,得到 x = 1。

接下来,我们求二阶导数 f''(x) = 6x - 12。

将 x = 1 代入得 f''(1) = -6。

由于二阶导数为负数,故 x = 1 为函数的极大值点。

因此,函数 f(x) 的极大值为 f(1) = 1^3 - 6 * 1^2 + 9 * 1 = 4。

2021学年初中数学《等腰三角形》同步练习(三)含答案及解析

2021学年初中数学《等腰三角形》同步练习(三)含答案及解析

2021学年初中数学《等腰三角形》同步练习(三)含答案及解析姓名:__________ 班级:__________考号:__________一、填空题(共8题)1、如图,已知AB=,∠B=20°,则∠= .2、如图所示,正方形ABCD的对角线交于O,△PBC是等边三角形,△PBO的面积为1,则△BPD 的面积是3、等腰三角形的顶角为120°,一腰长为6,则这个三角形底边上任意一点到两腰距离之和为_________。

4、如果等腰三角形的一个外角是50°,则这个等腰三角形顶角的度数是.5、底角为15°,腰长为2的等腰三角形的面积是。

6、如下图,延长正方形ABCD的AB边至点E,使BE=AC,则∠BED=度。

7、如图,△ABC中,DE⊥AB于点E,DF⊥AC于点F.若DE=DF,写出两个你认为正确的结论:;。

8、等腰三角形一边长为7,周长为30,则其腰长为。

二、选择题(共9题)1、如下图,在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,E,F分别为BC、CD的中点,则∠EAF等于()A.75° B.60° C.45° D.30°2、如下图,在△MBN中,BM=6cm,点A、C、D分别在MB、BN、NM上,若四边形ABCD为平行四边形,且∠NDC=∠MDA,则□ABCD的周长是()A.24cm B.18cm C.16cm D.12cm3、等腰三角形△ABC中,AB=AC,腰上的高BD与底边的夹角为20°,则这个等腰三角形顶角的度数为()A.20° B.40° C.50° D.40°或50°4、如果一个等腰三角形的两边长分别为2cm和5cm,那么它的周长是 ( )A.9cm B.12cm C.9cm或12cm D.以上答案都不对5、某小区现有一块等腰直角三角形形状的绿地,腰长为100米,直角顶点为A.小区物业管委会准备把它分割成面积相等的两块,有如下的分割方法:方法一:在底边BC上找一点D,连接AD作为分割线;方法二:在腰AC上找一点D,连接BD作为分割线;方法三:在腰AB上找一点D,作DE∥BC,交AC于点E,DE作为分割线;方法四:以顶点A为圆心,AD为半径作弧,交AB于点D,交AC于点E,弧DE作为分割线.这些分割方法中分割线最短的是( )A.方法一B.方法二C.方法三D.方法四6、等腰三角形两边长分别为6、3,则该等腰三角形的周长为()A、15;B、12;C、12或15;D、97、已知一个等腰三角形两内角的度数之比为1∶4,则这个等腰三角形顶角的度数为()A.20°B.120°C.20°或120°D.36°8、如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A等于()A、30oB、40oC、45oD、36o9、如图,在中,,是的垂直平分线,交于点,交于点.已知,则的度数为()A. B.C. D.三、解答题(共4题)1、已知,如图△ABC是等腰三角形,AB=AC,且∠A=36°,DE是AB的中垂线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学综合练习(三)
丰泽区教师进修学校 刘松
一、选择题(第小题4分,共24分) 1.计算32)b a (的结果是( ).
A.b a 5
B.b a 6
C.36b a
D.32b a
2.下列事件是必然事件的是( ).
A .父亲的年龄比儿子的年龄大
B .通过长期的努力学习,你会成为数学家
C .下雨天,每个人一定都打着伞
D .小明每次数学考试成绩都在90分以上 3.
如图所示的正四棱锥的俯视图是( )
4.已知圆A 和圆B 相切,两圆的圆心距为8cm,圆A 的半径为3cm, 则圆B 的半径是( ).
A .5cm
B .11cm
C .3cm
D .5cm 或11cm 5.已知甲、乙两组数据的平均数相等,若甲组数据的方差为0.055, 乙组数据的方差为0.105,则( )
A.甲组数据比乙组数据波动大
B.甲组数据比乙组数据波动小
C.甲、乙两组数据的波动一样大
D.甲、乙两组数据的波动大小不能比较
6.如图1,点A(m,n)是一次函数y=2x 的图象上的任意一点,AB 垂直于x 轴,垂足为B, 那么三角形ABO 的面积S关于m 的函数关系的图象大致为( )
二、填空题(每小题3分,共36分) 7. 2
1
-
的倒数是______________. 8. 分解因式:3
4x x -=_________.
9. 去年我市粮食总产量约为2050000吨,用科学记数法可表示约为__________吨. 10. 一射击运动员在一次射击练习中打出的成绩是(单位:环): 7,8,9,8,6,8,10,7,这组数据的众数是_________.
11. 某商品标价1200元,打八折售出后仍盈利100元,则该商品进价是______________. 12. 计算:
=-+-x
y y
y x x 222______________.
13. 正五边形的一个内角的度数是__________度. 14. 若反比例函数x
m
y =
的图象经过点A (2,–1), 则m 的值是___________.
15. 某种品牌的产品共100件,其中有5件次品,从中任取一件, 则取到次品的概率是______________.
16.如图,在⊙O 中,∠ACB =∠D =60°,AC =3, 则△ABC 的周长为__________________. 17.如图,圆锥的底面半径为6cm,高为8cm, 那么这个圆锥的侧面积是__________cm 2. 18.等腰三角形的底和腰是方程0862=+-x x 的两根,
O B
C
A
D (第16题图)
.
第17题图
则这个三角形的周长为__________.
三、解答题: (共90分)
19.(8分)计算: 20073211
+--⎪⎭

⎝⎛-
20.(8分)先化简后求值:()()()2
2x y x y x y x ⎡⎤-++-÷⎣⎦
,其中3, 1.5x y ==
21.(8分)在菱形ABCD 中,E 、F 分别在CD 、BC 上,且CE=CF ,求证:△ADE ≌△ABF .
22.(8分)某校320名学生在电脑培训前后各参加了一次水平相同的考试,考分都以同一标准划分成“不合格”、“合格”、“优
秀”三个等级,为了了解电脑培训的效果,随机抽取32名学生两次考试考分等级,制成统计图如下:
试根据上图信息,回答下列问题:
(1)这32名学生经过培训,考分等级“不合格”的百分比由_____下降到_______;
(2)估计该校320名学生中,培训后考分等级为“合格”与“优秀”的学生共有多少名?
23.(8分)如图,在离地面高度6米的C 处引拉线固定电线杆,拉线和地面成61°角,求拉线AC 的长(精确到0.01米
).
24.(8分)有四张背面相同的纸牌A,B,C,D,其正面分别划有四个不同的几何图形(如图).小华将这4张纸牌背面朝上洗匀后摸
出一张,放回洗匀后再摸出一张.用树状图或列表的方法求摸出两张牌面图形都是中心对称图形的纸牌的概率(纸牌可用A 、B 、C 、D 表示).
25.(8分)已知:直角△ABC 中,∠ACB=90º,AC=4,BC=2.
(1)如图①,将直角△ABC 按顺时针方向绕点C 旋转到△A 1B 1C 位置,试求出点A 所经过路径的长度(精确到0.1); (2)如图②,将图①中△A 1B 1C 向左平移到△A 2B 2C 1位置,若点B 2落在AB 上,试求出平移的距离. B
A
C
D E
F
不合格
合格
5
A
B 1
A
B 2
B 1
26.(8分)某工程队在我市旧城改造过程中承包了一项拆迁工程,原计划每天拆迁1250m 2,因为准备工作不足,第一天少拆迁了20%,从第二天开始,该工程队加快了拆迁速度,第三天拆迁了1440m 2.
(1)求该工程队第一天拆迁的面积;
(2)若该工程队第二天、第三天每天的拆迁面积比前一天增加的百分数相同,求这个百分数.
27.(13分)用总长为32 m 的篱笆墙围成一个扇形的花园. (1)当扇形花园的半径为6 m 时,求扇形花园的面积;
(2)设扇形花园的半径为x (m ),面积为y (m 2),求y 关于x 的函数关系式,并写出x 的取值范围;
(3)当扇形花园的半径为为多少时,花园的面积最大?最大面积是多少?此时,这个扇形的圆心角约是多少度?(精确到0.1度) 28.(13分)已知:如图所示,直线l 的解析式为3
34
y x =
-,并且与x 轴、y 轴分别交于点A 、B . (1)求A 、B 两点的坐标;
(2)一个圆心在坐标原点、半径为1的圆,以0.4个单位/秒的速度向x 轴正方向运动,问在什么时刻与直线l 相切;
(3)在题(2)中,若在圆开始运动的同时,一动点P 从B 点出发,沿BA 方向以0.5个单位/秒的速度运动,问在整个运动过程中,点P 在动圆的圆面(圆上和圆内部)上,一共运动了多长时间?
(泉州市教科所数学组修改、审定)
初中数学综合练习(三)参考答案
一、选择题:
1.C ;
2.A ;
3.D ;
4.D ;
5.B ;
6. D. 二、填空题:
7.2-; 8.)2)(2(-+x x x ; 9.6
1005.2⨯; 10.8; 11.860; 12.1; 13.108; 14.2-; 15.05.0; 16.9; 17.π60; 18.10.
三、解答题:
19. 0. 20. y x -;5.1. 21.证明略. 22. (1)%25%,75; (2)240 23.拉线AC 的长约为86.6米. 24.4
1
164==
p (树状图或表格略). 25. (1)点A 所经过路径的长度为
3.6242
≈=⨯ππ
;(2)因为21B BC ∆∽BCA ∆,所以
AC
C B BC BC 121=,得142
21=⨯=BC ,从而x
11=CC , 即平移的距离为1.
26. (1) )(1000%)201(12502m =-⨯;
(2)设这个百分数为x ,由题意得:1440)1(10002=+⨯x ;解之得:2.0=x . 27. (1)
)(60620212m =⨯⨯;(2)所求y 关于x 的函数关系式为x x x x y 16)232(2
12+-=-⋅=)160(<<x ;(3)由64)8(2+--=x y 知,当8=x 时,y 取最大值64;此时,这个扇形的圆心角约为114.6度.
28. (1)A(4,0)、B(0,-3);(2)设动圆圆心在C 处与直线l 相切于D ,连结C D ,由直角△AC D ∽直角△AB O 可求得AC=35,O C=3
7,故t=
37÷0.4=635(秒);当圆C 在直线l 右侧时,可求得t=6
85
秒;(3)设在t 秒时,动圆圆心在F 点处,动点在P 处,此时 OF =0.4t , B P =0.5t ,F 点的坐标为(0.4t ,0),连结PF ,可证PF ∥O B ,∴P 点的横坐标为0.4t ,∵P 点在直线AB 上,∴P 点纵坐标可求为0.3t 3-.易见当0≤PF ≤1时,点P 在动圆的圆面(圆上和圆内部)上.当PF =1且P 点在x 轴下方时,由-(0.3t 3-)=1可
求得t=320;当PF =1且P 点在x 轴上方时,由0.3t 3-=1可求得t=340;故当3
20≤t ≤340时, 0≤PF ≤1,此时点P 在动圆的圆面上,所经过的时间为340-320=3
20
(秒).。

相关文档
最新文档