新人教版七年级下学期数学第七章三角形复习专练

合集下载

七年级下人教版第7章三角形同步练习

七年级下人教版第7章三角形同步练习

第7章《三角形》精练精析提要:本章的考查重点是三角形的性质,包括等腰三角形、直角三角形的一些特殊性质.由于全等三角形是研究图形相等的重要工具,所以这一部分内容也是学好其它几何知识的基础.本章虽然内容较多,但各部分知识之间的联系密切,既要注意了解各部分知识之间的联系,又要保持各部分知识相对的独立性.本章的难点是推理入门.以前在第一册中已了解了推理证明,以及证明几何命题的一般方法步骤,是为现在正规练习证明做准备的.证明要求掌握有理有据地推理,精练准确地表达过程,有一定难度.习题一、填空题1.如果三角形的一个角等于其它两个角的差,则这个三角形是______三角形.2.已知△ABC 中,AD ⊥BC 于D ,AE 为∠A 的平分线,且∠B =35°,∠C =65°,则∠DAE 的度数为_____ .3.三角形中最大的内角不能小于_____,两个外角的和必大于_____ .4.三角形ABC 中,∠A =40°,顶点C 处的外角为110°,那么∠B =_____ .5.锐角三角形任意两锐角的和必大于_____.6.三角形的三个外角都大于和它相邻的内角,则这个三角形为 _____ 三角形.7.在三角形ABC 中,已知∠A =80°,∠B =50°,那么∠C 的度数是 .8.已知∠A =12∠B =3∠C ,则∠A = . 9.已知,如图7-1,∠ACD =130°,∠A =∠B ,那么∠A 的度数是 .10.如图7-2,根据图形填空:(1)AD 是△ABC 中∠BAC 的角平分线,则∠ =∠ =∠ . (2)AE 是△ABC 中线,则 = = .(3)AF 是△ABC 的高,则∠ =∠ =90°.11.如图7-3所示,图中有 个三角形, 个直角三角形.12.在四边形的四个外角中,最多有 个钝角,最多有 个锐角,最多有 个直角.13.四边形ABCD 中,若∠A +∠B =∠C +∠D ,若∠C =2∠D ,则∠C = .14.一个多边形的每个外角都为30°,则这个多边形的边数为 ;一个多边形的每个内角都为135°,则这个多边形的边数为 .15.某足球场需铺设草皮,现有正三角形、正四边形、正五边形、正六边形、正八边形、正十边形6种形状的草皮,请你帮助工人师傅选择两种草皮来铺设足球场,可供选择的两种组合是 .16.若一个n 边形的边数增加一倍,则内角和将 .17.在一个顶点处,若此正n 边形的内角和为 ,则此正多边形可以铺满地面.图7-1 图7-2 图7-318.如图7-4,BC ⊥ED 于O ,∠A =27°,∠D =20°,则∠B= ,∠ACB = .19.如图7-5,由平面上五个点A 、B 、C 、D 、E 连结而成,则∠A +∠B +∠C +∠D +∠E = .20.以长度为5cm 、7cm 、9cm 、13cm 的线段中的三条为边,能够组成三角形的情况有 种,分别是 .二、选择题21.已知三角形ABC 的三个内角满足关系∠B +∠C =3∠A ,则此三角形( ).A .一定有一个内角为45°B .一定有一个内角为60°C .一定是直角三角形D .一定是钝角三角形22.如果一个三角形的三个外角之比为2:3:4,则与之对应的三个内角度数之比为( ).A .4:3:2B .3:2:4C .5:3:1D .3:1:523.三角形中至少有一个内角大于或等于( ).A .45°B .55°C .60°D .65°24.如图7-6,下列说法中错误的是( ).A .∠1不是三角形ABC 的外角B .∠B <∠1+∠2C .∠ACD 是三角形ABC 的外角 D .∠ACD >∠A +∠B25.如图7-7,C 在AB 的延长线上,CE ⊥AF 于E ,交FB 于D ,若∠F =40°,∠C =20°,则∠FBA 的度数为( ).A .50°B .60°C .70°D .80°26.下列叙述中错误的一项是( ).A .三角形的中线、角平分线、高都是线段.B .三角形的三条高线中至少存在一条在三角形内部.C .只有一条高在三角形内部的三角形一定是钝角三角形.D .三角形的三条角平分线都在三角形内部. 27.下列长度的三条线段中,能组成三角形的是( ).A .1,5,7B .3,4,7C .7,4,1D .5,5,528.如果三角形的两边长为3和5,那么第三边长可以是下面的( ).A .1B .9C .3D .1029.三条线段a =5,b =3,c 的值为整数,由a 、b 、c 为边可组成三角形( ).A .1个B .3个C .5个D .无数个30.四边形的四个内角可以都是( ).A .锐角B .直角C .钝角D .以上答案都不对图7-4 图7-5 图7-6 图7-731.下列判断中正确的是( ).A .四边形的外角和大于内角和B .若多边形边数从3增加到n (n 为大于3的自然数),它们外角和的度数不变C .一个多边形的内角中,锐角的个数可以任意多D .一个多边形的内角和为1880°32.一个五边形有三个角是直角,另两个角都等于n ,则n 的值为( ).A .108°B .125°C .135°D .150°33.多边形每一个内角都等于150°,则从此多边形一个顶点发出的对角线有( ).A .7条B .8条C .9条D .10条34.如图7-9,三角形ABC 中,D 为BC 上的一点,且S △ABD =S △ADC ,则AD 为( ).A .高B .角平分线C .中线D .不能确定35.如图7-10,已知∠1=∠2,则AH 必为三角形ABC 的( ).A .角平分线B .中线C .一角的平分线D .角平分线所在射线36.现有长度分别为2cm 、4cm 、6cm 、8cm 的木棒,从中任取三根,能组成三角形的个数为( ).A . 1B . 2C . 3D . 437.如图7-11,三角形ABC 中,AD 平分∠BAC ,EG ⊥AD ,且分别交AB 、AD 、AC 及BC 的延长线于点E 、H 、F 、G ,下列四个式子中正确的是( )38.如图7-12,在三角形ABC 中,∠1=∠2,G 为AD 的中点,延长BG 交AC 于E .F 为AB 上的一点,CF ⊥AD 于H .下列判断正确的有( ).(1)AD 是三角形ABE 的角平分线.(2)BE 是三角形ABD 边AD 上的中线.(3)CH 为三角形ACD 边AD 上的高.A .1个B .2个C .3个D .0个三、解答题39.如图,在三角形ABC 中,∠B =∠C ,D 是BC 上一点,且FD ⊥BC ,DE ⊥AB,∠AFD =140°,你能求出∠EDF 的度数吗?图7-9 图7-10 图7-11 图7-1240.如图,有甲、乙、丙、丁四个小岛,甲、乙、丙在同一条直线上,而且乙、丙在甲的正东方,丁岛在丙岛的正北方,甲岛在丁岛的南偏西52°方向,乙岛在丁岛的南偏东40°方向.那么,丁岛分别在甲岛和乙岛的什么方向?41.如图,已知三角形ABC的三个内角平分线交于点I,IH⊥BC于H,试比较∠CIH和∠BID 的大小.42.如图,在三角形ABC中,AD⊥BC,BE⊥AC,CF⊥AB,BC=16,AD=3,BE=4,CF=6,你能求出三角形ABC的周长吗?43.如图,在三角形ABC中,AD是BC边上的中线,三角形ABD的周长比三角形ACD的周长小5,你能求出AC与AB的边长的差吗?44.已知等腰三角形的周长是16cm.(1)若其中一边长为4cm,求另外两边的长;(2)若其中一边长为6cm,求另外两边长;(3)若三边长都是整数,求三角形各边的长.45.如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,试问BE 与DF平行吗?为什么?46.某同学在计算多边形的内角和时,得到的答案是1125°,老师指出他少加了一个内角的度数,你知道这个同学计算的是几边形的内角和吗?他少加的那个内角的度数是多少?47.把边长为2cm的正方形剪成四个一样的直角三角形,如图所示.请用这四个直角三角形拼成符合下列条件的图形:(1)不是正方形的菱形;(2)不是正方形的长方形;(3)梯形;(4)不是长方形、菱形的的平行四边形.48.下面是数学课堂的一个学习片段,阅读后,请回答下面的问题:学习等腰三角形有关内容后,张老师请同学们交流讨论这样一个问题.“已知等腰三角形ABC的角A等于30°,请你求出其余两角”.同学们经过片刻的思考与交流后,李明同学举手说: “其余两角是30°和120°”;王华同学说:“其余两角是75°和75°.” 还有一些同学也提出了自己的看法…(1)假如你也在课堂中, 你的意见如何? 为什么?(2)通过上面数学问题的讨论, 你有什么感受?(用一句话表示)49.如图,凸六边形ABCDEF的六个角都是120°,边长AB=2cm,BC=8cm,CD=11cm,DE=6cm,你能求出这个六边形的周长吗?参考解析:一、填空题1.直角3.60°,180°4.70°5.90°6.锐角7.∠C=180°-80°-50°=50°.8.设∠A的度数为x.则∠B=2x,∠C=x.所以x+2x+x=180°,解得x=54°.所以∠A=54°.9.∠A=∠B=∠ACD=65°.10.(1)BAD,CAD,BAC;(2)BE,CE,BC;(3)AFB,AFC.11.解:有5个三角形,分别是△ABD,△ADE,△CDE,△ADC,△ABC;有4个直角三角形,分别是△ABD,△ADE,△CDE,△ADC.12.3,2,413.120°14.12,815.正三角形和正四边形、正三角形和正六边形、正四边形和正八边形中任选两种即可.16.增加(n-4)×180°17.360°或720°或180°18.解:因为∠BED=∠A+∠D=47°,所以∠B=180°-90°-47°=43°.所以∠BCD=27°+43°=70°.所以∠ACB=180°-70°=110°.19.解:连结BC,如图,则∠DBC+∠ECB=∠D+∠E.所以∠A+∠B+∠C+∠D+∠E=∠A+∠B+∠C+∠DBC+∠ECB=180°.20.解:有3种.分别以长为5cm,7cm,9cm;7cm,9cm13cm;5cm,9cm,13cm的线段为边能组成三角形.二、选择题21.A22.C23.C24.D25.C26.C28.C29.C30.B31.B32.C33.C34.C(点拨:可能会错选A或B.有的同学一看到面积就认为与高相关,故错选A;有的同学认为平分内角必平分三角形的面积,故错选B.其实,因为△ABD与△ACD同高h,又S△ABD=S△ADC,即BD×h=·CD×h,所以,BD=CD,由此可知,AD为三角形ABC中BC 边的中线.)35.D(点拨:可能会错选A或选C.错选A的同学,只注重平分内角而忽视了三角形的角平分线为一线段这一条件;而错选C的同学,实质上与错选A的同学犯的是同一个错误,显然这里“角平分线”与“一角的平分线”是一个意思,因为前提条件是说“AH必为三角形ABC 的”.)36.A(点拨:由三角形的三边关系知:若长度分别为2cm、4cm、6cm,不可以组成三角形;若长度分别为4cm、6cm、8cm,则可以组成三角形;若长度分别为2cm、4cm、8cm,则不可以组成三角形;若长度分别为2cm、6cm、8cm,则不可以组成三角形.即分别为2cm、4cm、6cm、8cm的木棒,从中任取三根,能组成三角形的个数为1,故应选A.)37.C(点拨:因为EG⊥AD,交点为H,AD平分∠BAC,所以在直角三角形AHE中,∠1=90°-,在三角形ABC中,易知∠BAC=180°-(∠2+∠3),所以∠1=90°-[180°-(∠2+∠3)]=(∠3+∠2).又因为∠1是三角形EBG的外角,所以∠1=∠2+∠G.所以∠G=∠1-∠2=(∠3+∠2)-∠2=(∠3-∠2).)38.A(点拨:由∠1=∠2,知AD平分∠BAE,但AD不是三角形ABE内的线段,所以(1)不正确;同理,BE虽然经过三角形ABD边AD的中点G,但BE不是三角形ABD内的线段,故(2)不正确;由于CH⊥AD于H,故CH是三角形ACD边AD上的高,(3)正确.应选A.)三、解答题39.解析:要想求∠EDF的度数,我们可以利用平角定义,只要能求出∠EDB即可.而∠EDB 在三角形BDE中,只要能求出∠B就可以利用三角形内角和求∠EDB.而∠B又等于∠C,题中告诉了三角形DFC的一个外角∠AFD=140°,所以我们能得出∠C的度数.解:因为∠AFD是三角形DCF的一个外角.所以∠AFD=∠C+∠FDC.即140°=∠C+90°.解得∠C=50°.所以∠B=∠C=50°.所以∠EDB=180°-90°-50°=40°.所以∠FDE=180°-90°-40°=50°.40.解析:我们可以用字母代替甲、乙、丙、丁,用角度代表方向.把题中数据与图形一一对应,利用各方向的关系可求出丁岛分别在甲岛和乙岛的方向.解:设甲岛处的位置为A,乙岛处的位置为B,丙岛处的位置为D,丁岛处的位置为C.如图:因为丁岛在丙岛的正北方,所以CD⊥AB.因为甲岛在丁岛的南偏西52°方向,所以∠ACD=52°.所以∠CAD=180°-90°-52°=38°.所以丁岛在甲岛的东偏北38°方向.因为乙岛在丁岛的南偏东40°方向,所以∠BCD=40°.所以∠CBD=180°-90°-40°=50°.所以丁岛在乙岛的西偏北50°方向.41.解析:利用角平分线的性质解.解:因为AI、BI、CI为三角形ABC的角平分线,所以∠BAD=∠BAC,∠ABI=∠ABC,∠HCI=∠ACB.所以∠BAD+∠ABI+∠HCI=∠BAC+∠ABC+∠ACB=(∠BAC+∠ABC+∠ACB)=×180°=90°.所以∠BAD+∠ABI=90°-∠HCI.又因为∠BAD+∠ABI=∠BID,90°-∠HCI=∠CIH,所以∠BID=∠CIH.所以∠BID和∠CIH是相等的关系.42.解析:本题已知一边长和三条高,我们可以利用三角形的面积公式求得另外两边长,三边相加即可得到三角形的周长.解:由三角形面积公式可得S△ABC=BC×AD=AC×BE,即16×3=4×AC,所以AC=12.由三角形面积公式可得S△ABC=BC×AD=AB×CF,即16×3=6×AB.所以AB=8.所以三角形ABC的周长为16+12+8=36.43.解析:本题要求AC与AB的边长的差,且AC与AB的长度都不知道,不少同学感到无从下手.其实,只要我们仔细分析分析题中条件:三角形ABD的周长比三角形ACD的周长小5,即AC-AB+CD-BD=5,又AD是BC边上的中线,所以BD=CD.所以AC-AB=5.解:AC-AB=5.44.解析:在第(1)和第(2)问中,没有说明所给边长是腰长还是底边长,因此我们要进行分类讨论.在第(3)问中,只给出了三边长都是整数,而此三角形又是等腰三角形,所以其最长边小于8cm,我们可以用列表法一一列出各组边长.解:(1)如果腰长为4cm,则底边长为16-4-4=8cm.三边长为4cm,4cm,8cm,不符合三角形三边关系定理.所以应该是底边长为4cm.所以腰长为(16-4)÷2=6cm.三边长为4cm,6cm,6cm,符合三角形三边关系定理,所以另外两边长都为6cm.(2)如果腰长为6cm,则底边长为16-6-6=4cm.三边长为4cm,6cm,6cm,符合三角形三边关系定理.所以另外两边长分别为6cm和4cm.如果底边长为6cm,则腰长为(16-6)÷2=5cm.三边长为6cm,5cm,5cm,符合三角形三边关系定理,所以另外两边长都为5cm.(3)因为周长为16cm,且三边都是整数,所以三角形的最长边不会超过8cm且是等腰三角形,我们可用列表法,求出其各边长如下:7cm,7cm,2cm;6cm,5cm,5cm;6cm,6cm,4cm,共有这三种情况.45.解析:要想BE与DF平行,就要找平行的条件.题中只给出了∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC.那么我们是利用同位角相等呢还是利用同旁内角互补?经过仔细观察图形我们知道∠BFD是三角形ADF的外角,则∠BFD=∠A+∠ADF.而∠ADF是∠ADC的一半,∠ABE是∠ABC的一半,所以我们选择用同旁内角互补来证平行.解:BE与DF平行.理由如下:由n边形内角和公式可得四边形内角和为(4-2)×180°=360°.因为∠A=∠C=90°,所以∠ADC+∠ABC=180°.因为BE平分∠ABC,DF平分∠ADC,所以∠ADF=∠ADC,∠ABE=∠ABC.因为∠BFD是三角形ADF的外角,所以∠BFD=∠A+∠ADF.所以∠BFD+∠ABE=∠A+∠ADC+∠ABC=∠A+(∠ADC+∠ABC)=90°+90°=180°.所以BE与DF平行.46.解析:我们发现1125°不能被180°整除,所以老师说少加了一个角的度数.我们可设少加的度数为x,利用整除求解.解:设少加的度数为x.则1125°=180°×7-135°.因为0°<x<180°,所以x=135°.所以此多边形的内角和为1125°+135°=1260°.设多边形的边数为n,则(n-2)×180°=1260°,解得n=9.所以此多边形是九边形,少加的那个内角的度数是135°.47.解析:题中告诉了我们按要求拼成.解:如图:48.解析:本题首先要求考生在阅读数学课堂的一个学习片断后,对两名学生的说法提出自己的看法,这时考生应抓住题中条件“等腰三角形ABC的角A等于30°”这个不确定条件进行分析研究.当∠A是顶角时,设底角是α,∴30°+α+α=180°,α=75°,∴其余两底角是75°和75°.当∠A是底角时,设顶角是β,∴30°+30°+β=180°,β=120°,∴其余两角是30°和120°.由此说明李明和王华两同学都犯了以偏概全的答题的错误.对于第(2)问应在第(1)问的解答的基础上,可总结出“根据图形位置关系,实施分类讨论思想方法解多解型问题”,“考虑问题要全面”等.小结:三角形的中线、角平分线、高(线)是三角形中三条十分重要的线段,初学者常因不能准确理解其概念的实质内涵,而出现这样或那样的错误,现举例分析如下,以达到亡羊补牢或未雨绸缪的目的.49.解析:要求六边形的周长,必须先求出边EF和AF的长.由六边形ABCDEF的六个角都是120°,可知六边形的每一个外角的度数都是60°,如图4,如果延长BA,得到的∠P AF=60°,延长EF,得到的∠PF A=60°,两条直线相交形成三角形APF,在三角形APF 中,∠P的度数为180°-60°-60°=60°,因此三角形APF是等边三角形.同样的道理,我们分别延长AB、DC,交于点G,那么三角形BGC为等边三角形.分别延长FE、CD交于点H,则三角形DHE也是等边三角形.所以∠P=∠G=∠H=60°.所以三角形GHP也是等边三角形.于是我们得到三角形APF、三角形BGC、三角形DHE、三角形GHP四个等边三角形.于是就把多边形的问题转化为和等边三角形有关的问题.利用等边三角形的三边相等的性质,可以轻松的求出AF和EF的长,从而求出六边形ABCDEF的周长.解:如图4,分别作直线AB、CD、EF的延长线使它们交于点G、H、P.因为六边形ABCDEF的六个角都是120°,所以六边形ABCDEF的每一个外角的度数都是60°.所以三角形APF、三角形BGC、三角形DHE、三角形GHP都是等边三角形.所以GC=BC=8cm,DH=DE=6cm.所以GH=8+11+6=25cm,F A=P A=PG-AB-BG=25-2-8=15cm,EF=PH-PF-EH=25-15-6=4cm.所以六边形的周长为2+8+11+6+4+15=46cm.小结:本题解题的关键是利用多边形和三角形的关系,通过添加辅助线,利用六边形构造出等边三角形,从而利用转化的思想,把多边形问题转化为和三角形有关的问题,利用三角形的性质、定理来解答多边形的问题.方程思想是我们学习数学的重要思想方法之一.用方程思想求解数学问题时,应从题中的已知量与未知量的关系入手,找出相等关系,运用数学符号语言将相等关系转化为方程,再通过解方程,使问题得到解决.方程思想应用非常广泛.我们不但能用方程思想解决代数问题,而且还能够解决有关的几何问题.。

七年级数学下册 第七章 三角形 全章知识点归纳及典型题目练习(含答案)(含答案)

七年级数学下册 第七章 三角形 全章知识点归纳及典型题目练习(含答案)(含答案)

第七章 三角形1. 由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做_____.组成三角形的线段叫做______,相邻两边的公共端点叫做_____________,相邻两边所组成的角叫做___________,简称___________.如图 以A 、B 、C 为顶点的三角形ABC ,可以记作_______,读作_____________.△ABC 的三边,有时也用_____________表示,顶点A 所对的边BC 用____表示,顶点B 所对的边CA 用____表示,顶点C 所对的边AB 用____表示.2. 三角形的分类三角形按角分类如下:三角形 直角三角形 斜三角形 锐角三角形 _____. 三角形 不等边三角形等腰三角形 底和腰不等的等腰三角形 _______. 3. 在等腰三角形中,相等的两边都叫做___,另一边叫做__,两腰的夹角叫做___,腰和底的夹角叫做____.如右图,等腰三角形ABC 中,AB =AC ,那么腰是___底是____,顶角是____,底角是_____.4. 三角形的三边关系:_________________________________________.5. 三角形的高 从△ABC 的顶点A 向它 所对的边BC 所在直线画垂线,垂足为D ,所得线段AD 叫做△ABC 的边BC 上的_____ .如图⑴,AD 是△ABC 的高,则AD ⊥_____. 连接△ABC 的顶点A 和它所对的边BC 的中点D ,所得线段AD 叫做△ABC 的边BC ⎧⎨⎩⎧⎨⎩⎧⎨⎩⎧⎨⎩上的_____ .如图⑵,AD是△ABC的中线,则BD=______.∠BAC的平分线AD,交∠BAC的对边BC于点D,所得线段AD叫做△ABC的___________.如图⑶,AD是△ABC的角平分线,则∠BAD=∠_______.6.三角形是具有__________的图形,而四边形没有__________ .7.三角形内角和定理三角形三个内角的和等于_______.8.三角形的一个外角等于与它不相邻的______________________.三角形的一个外角大于与它不相邻的_________________ .9.多边形的内角和公式:n边形的内角和等于________________.多边形的外角和等于_______.10.各种平面图形能作“平面镶嵌”的必备条件,是图形拼合后同一个顶点的若干个角的和恰好等于_______.(限定镶嵌的正多边形的边长相等,顶点共用)如果只用一种正多边形镶嵌,符合“平面镶嵌”的必备条件的正多边形是____________________________________.如果用两种正多边形镶嵌,哪些组合可以用来作平面镶嵌:___________________________________________________________________________________________________________________.熟悉以下各题:11.等腰三角形有两边长是2和5,则其周长为_______.12.用一条长为18cm的细绳围成一个等腰三角形.⑴如果腰长是底边的2倍,那么各边的长是多少?⑵能围成有一边长为4cm的等腰三角形吗?为什么?13.在△ABC中,AE是中线,AD是角平分线,AF是高,填空:⑴BE =______=12_____;⑵1_______;2BAD ∠== ⑶_____90;AFB ∠==⑷______.ABC S ∆=14. 如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定15. 适合条件1123A B C ∠=∠=∠的△ABC 是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .都有可能16. 如图,D 是△ABC 的BC 边上一点,且∠1=∠2,∠3=∠4,∠BAC =63°,求∠DAC 的度数.17. 如图⑴,P 点为△ABC 的角平分线的交点,求证:190.2BPC A ∠=+∠ 证明:∵P 点为△ABC 的角平分线的交点, ∴111,2.22ABC ACB ∠=∠∠=∠( ) ∴180(12)BPC ∠=-∠+∠ ( )=1180(____)2ABC -∠+∠=1180(180)2A --∠=190.2A +∠图⑵中,点P 是△ABC 外角平分线的交点,试探究∠BPC 与∠A 的关系.图⑶中,点P是△ABC 内角平分线BP与外角平分线CP的交点,试探究∠BPC与∠A的关系.18.截去一个四边形的一个角后,得到的多边形是________边形.19.从n边形的一个顶点可以引_______条对角线,它们将n边形分成_______个三角形.20.如果一个多边形的边数增加一条,那么这个多边形的内角和增加,外角和增加.21.一个多边形的每一个外角都等于30°,则这个多边形为边形.22.只用一种正多边形镶嵌,这种正多边形不能是( )A.正三角形B.正四边形C.正五边形D.正六边形23.某中学新科技馆铺设地面,已有正三角形形状的地砖,现打算购买一种不同形状的正多边形地砖与正三角形地砖在同一顶点处作平面镶嵌,该学校不应该购买的地砖是( )A.正方形B.正六边形C.正八边形D.正十二边形参考答案1.三角形三角形的边三角形的顶点三角形的内角三角形的角△ABC三角形ABC小写字母 a b c.2. 钝角三角形等边三角形3.腰底边顶角底角AB、AC,BC,∠A,∠B、∠C.4.三角形两边的和大于第三边.5.高BC中线DC角平分线DAC.6.稳定性稳定性7.180°.8.两个内角的和任何一个内角.9.(n-2)·180°360°10.360°正三角形正方形正六边形,正三角形与正四边形、正三角形与正六边形、正三角形与正十二边形、正四边形形与正八边形、正五边形与正十边形. 11.12 12.3.6cm 7.2cm 7.2cm.可以围成底边长为4cm的等腰三角形. 13.EC BC∠DAC∠BAC14.B 15.B 16.24°17.角平分线三角形内角和定理ACB∠BPC=90°-12A∠∠BPC=12A∠18.3或4或5 19.n-3 n-2 20.180°0°21.十二22.C 23.C.。

人教版-数学-七年级下册-七年级数学第七章三角形复习训练题

人教版-数学-七年级下册-七年级数学第七章三角形复习训练题

ABECD七年级数学第七章三角形复习训练题一、填空题1. 锐角三角形的三条高都在 ,钝角三角形有 条高在三角形外,直角三角形有两条高恰是它的 。

2. 若等腰三角形的两边长分别为3cm 和8cm ,则它的周长是 。

3. 要使六边形木架不变形,至少要再钉上 根木条。

4. 在△ABC 中,若∠A=∠C=13∠B ,则∠A= ,∠B= ,这个三角形是 。

5、三角形有两条边的长度分别是5和7,则第三条边a 的取值范围是___________。

6、△ABC 中,∠A =50°,∠B =60°,则∠C = 。

7、将一个三角形截去一个角后,所形成的一个新的多边形的内角和___________。

8、等腰三角形的底边长为10cm,一腰上的中线将这个三角形分成两部分,这两部分的周长之差为2cm,则这个等腰三角形的腰长为_____________________.9、古希腊数学家把数1,3,6,10,15,21,…,叫做三角形数,它有一定的规律性,则第24个三角形数与第22个三角形数的差为 . 10、在 ABC 中,如果∠B -∠A -∠C=50°,∠B=____________。

11、一个多边形的内角和是1980°,则它的边数是____,共有条对角线____,它的外角和是____。

12、观察下图,我们可以发现:图⑴中有1个正方形;图⑵中有5个正方形,图⑶中共有14个正方形,按照这种规律继续下去,图⑹中共有_______个正方形。

二、选择题1、小芳画一个有两边长分别为5和6的等腰三角形,则它的周长是( )A 、16B 、17C 、11D 、16或172、如图,已知直线AB ∥CD ,当点E 直线AB 与CD 之间时,有∠BED =∠ABE +∠CDE 成立;而当点E 在直线AB 与CD 之外时,下列关系式成立的是( )A ∠BED =∠ABE +∠CDE 或∠BED =∠ABE -∠CDEB ∠BED =∠ABE -∠CDEC ∠BED =∠CDE -∠ABE 或∠BED =∠ABE -∠CDE D ∠BED =∠CDE -∠ABE3、 以长为3cm ,5cm ,7cm ,10cm 的四根木棍中的三根木棍为边,可以构成三角形的个数是( )A .1个B .2个C .3个D .4个4、已知一多边形的每一个内角都等于150°,则这个多边形是正( )(A) 十二边形 (B) 十边形 (C) 八边形 (D) 六边形 5、边长相等的下列两种正多边形的组合,不能作平面镶嵌的是( ) A.正方形与正三角形 B.正五边形与正三角形 C.正六边形与正三角形 D.正八边形与正方形 6、如图,在锐角△ABC 中,CD 、BE 分别是AB 、AC 边上的高, 且相交于一点P ,若∠A=50°,则∠BPC 的度数是( )A .150°B .130°C .120°D .100°7、中华人民共和国国旗上的五角星,它的五个锐角的度数和是( ) A 、50B 、100 0C 、180D 、 2008、在∆ABC 中,三个内角满足∠B -∠A=∠C -∠B ,则∠B 等于( ) A 、70° B 、60° C 、90° D 、120° 9、在锐角三角形中,最大内角的取值范围是( )A 、0°<<90°B 、60°<<180°C 、60°<<90°D 、60°≤<90° 10、下面说法正确的是个数有( )①如果三角形三个内角的比是1∶2∶3,那么这个三角形是直角三角形;②如果三角形的一个外角等于与它相邻的一个内角,则这么三角形是直角三角形;③如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形;④如果∠A=∠B=21∠C ,那么△ABC 是直角三角形;⑤若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形;⑥在∆ABC 中,若∠A +∠B=∠C ,则此三角形是直角三角形。

新人教数学七年级下第7章(三角形)单元测试试卷(有答案)

新人教数学七年级下第7章(三角形)单元测试试卷(有答案)

七年级数学(下)第三单元自主学习达标检测A卷(时间90分钟满分100分)班级学号姓名得分一、填空题(共14小题,每题2分,共28分)1.撑上支撑后的自行车能稳稳地停在地上,是因为三角形具有______性.2.在△ABC中,AD是中线,则△ABD的面积______△ACD的面积.(填“>”,“<”或“=”)3.在△ABC中,若∠A=30°,∠B=60°,则这个三角形为三角形;若∠A:∠B:∠C=1:3:5,这个三角形为三角形.(按角的分类填写)4.一木工师傅有两根长分别为5cm、8cm的木条,他要找第三根木条,将它们钉成一个三角形框架,现有3cm、10cm、20cm三根木条,他可以选择长为cm的木条.5.如图所示的图形中x的值是__ ____.6.过n边形的一个顶点的对角线可以把n边形分成______个三角形.(用含n的式子表示)7边上的高是;(2)在△AEC中,AE边上的高是.8.如图,△ABC≌△AED,∠C=400,∠EAC=300,∠B=300,则∠D= ,∠EAD= .9.如图,已知∠1=∠2,请你添加一个条件使△ABC≌△BAD,你的添加条件是(填一个即可).10.若一个等腰三角形的两边长分别是3 cm和5 cm,则它的周长是____ _ cm.11.图所示的图案是由全等的图形拼成的,其中AD=0.5cm,BC=1cm,则AF= .第5题第14题A.B.C.D.12.在△ABC 中,AB =6,AC =10,那么BC 边的取值范围是 .13.如图所示,A 、B 在一水池的两侧,若BE =DE ,∠B =∠D =90°,CD =8 m ,则水池宽AB =m .14.如图,有两个长度相同的滑梯,左边滑梯的高度AC 与右边滑梯水平方向的长度DF 相等,若∠CBA =320,则∠FED = ,∠EFD = . 二、选择题(共4题,每题3分,共12分) 15.如图所示,其中三角形的个数是( )A.2个B.3个C.4个D.5个16.下列各组中的三条线段能组成三角形的是( )A.3,4,8 B.5,6,11 C.5,6,10D.4,4,817.下列图形不具有稳定性的是( )18.一个三角形中直角的个数最多有( )A.3 B.1 C.2 D.0 三、解答题(共60分) 19.(5分)如图,(1)过点A 画高AD ; (2)过点B 画中线BE ;(3)过点C 画角平分线CF .第13题第11题第15题20.(5分)若四边形的两个内角是直角,另外两个内角中一个角比另一个角的2倍少30°,求这两个内角的度数.21.(5分)小颖要制作一个三角形木架,现有两根长度为8m和5m的木棒.如果要求第三根木棒的长度是整数,小颖有几种选法?第三根木棒的长度可以是多少?22.(6分)如图,在△ABC中,∠A=70°,∠B=50°,CD平分∠ACB.求∠ACD的度数.23.(6分)如图所示,∠BAC=90°,BF平分∠ABC交AC于点F,∠BFC=100°,求∠C的度数.24.(6分)如图所示,已知DF⊥AB于F,∠A=40°,∠D=50°,求∠ACB的度数.25(7分).已知等腰三角形一腰上的中线将三角形的周长分为9cm和15cm两部分,求这个等腰三角形的底边长和腰长.26.(7分)如图,已知△ABC中,∠ABC和∠ACB的平分线BD、CE相交于点O,且∠A=60°,求∠BOC的度数.27.(7分)已知:如图,四边形ABCD中,AD⊥DC,BC⊥AB,AE平分∠BAD,CF平分∠DCB,AE交CD于E,CF交AB于F,问AE与CF是否平行?为什么?28.(1)某多边形的内角和与外角和的总和为2 160°,求此多边形的边数;(2)某多边形的每一个内角都等于150°,求这个多边形的内角和.七年级数学(下)第三单元自主学习达标检测B卷(时间90分钟满分100分)班级学号姓名得分一、填空题(共14小题,每题2分,共28分)1.用7根火柴棒首尾顺次连接摆成一个三角形,能摆成的不同的三角形的个数为 .2.工人师傅在安装木制门框时,为防止变形常常像图中所示,钉上两条斜拉的木条,这样做的原理是根据三角形的 性.3.如图,三角形纸片ABC 中,∠A =65°,∠B =75°,将纸片的一角折叠,使点C 落在△ABC 内,若∠1=20°,则∠2的度数为______.4.如图,已知AB ∥CD ,∠A =55°,∠C =20°,则∠P =___________.5.如图,在△ABC 中,AB =AC ,∠A =50°,BD 为∠ABC 的平分线,则∠BDC = °.6.如图,小亮从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A 点时,一共走了 米. 7.如用同一种正多边形地砖镶嵌成平整的地面,那么这种正多边形地砖的形状可以是(写出两种即可) .8.如图所示,∠A +∠B +∠C +∠D +∠E +∠F +∠G 的度数为 . 9.如图,△ABC 中,BD 平分∠ABC ,CD 平分∠ACE ,请你写出∠A 与∠D 的关系: .10.一个多边形,除了一个内角外,其余各角的和为2750°,则这一内角为 . 11.在△ABC 中,∠A =55°,高BE 、CF 交于点O ,则∠BOC =______. 12.如图所示,∠1+∠2+∠3+∠4+∠5+∠6=______.第6题30°30°30°A 第8题GEDCBA第5题DCBA第2题 第3题 第4题第15题第16题13.如图所示,已知点D 是AB 上的一点,点E 是AC 上的一点,BE ,CD 相交于点F ,∠A =50°,∠ACD =40°,∠ABE =28°,则∠CFE 的度数为______.14.任何一个凸多边形的内角中,能否有3个以上的锐角?______(填“能”或“不能”). 二、选择题(共4小题,每题3分,共12分)15.如图,AC ⊥BC ,CD ⊥AB ,DE ⊥BC ,分别交BC ,AB ,BC 于点C ,D ,E ,则下列说法中不正确的是( ) A .AC 是△ABC 和△ABE 的高 B .DE ,DC 都是 △BCD 的高 C .DE 是△DBE 和△ABE 的高 D .AD ,CD 都是 △ACD 的高 16.如图所示,x 的值为( )A .45°B .50°C .55°D .70°17.边长相等的下列两种正多边形的组合,不能作平面镶嵌的是( ) A .正方形与正三角形 B .正五边形与正三角形 C .正六边形与正三角形 D .正八边形与正方形18.如果某多边形的外角分别是10°,20°,30°,…,80°,则这个多边形的边数是( ) A .6B .7C .8D .9 三、解答题(共60分) 19.(4分)△ABC 中,∠A =2∠B =3∠C ,则这个三角形中最小的角是多少度?第9题 第12题 第13题EDC BA20.(4分)如图,已知四边形ABCD 中,∠A =∠D ,∠B =∠C ,试判断AD 与BC 的关系,并说明理由.21.(4分)如图,△ABC 的外角∠CBD 、∠BCE 的平分线相交于点F ,若∠A =68°,求∠F 的度数.22.(6分)在△ABC 中,AB =AC ,AC 上的中线BD 把三角形的周长分为24㎝和30㎝的两个部分,求三角形的三边长.23.(6分)如图所示,某农场有一块三角形土地,准备分成面积相等的4块,分别承包给4位农户,请你设计两种不同的分配方案(在已给的图形中直接画图,保留画图痕迹,不写画法) .24.(6分)如果一个凸多边形的所有内角从小到大排列起来,恰好依次增加的度数相同,设最小角为100°,最大角为140°,那么这个多边形的边数为多少?C B A C B A25.(6分)一个大型模板如图所示,设计要求BA 与CD 相交成30°角,DA 与CB 相交成20°,怎样通过测量∠A ,∠B ,∠C ,∠D 的度数,来检验模板是否合格?26.(8分)如图所示,小明欲从A 地去B 地,有三条路可走:①A →B ;②A →D →B ;③A→C →B .(1)在没有其它因素的情况下,我们可以肯定小明是走①,理由是______.(2)小明绝对不会走③,因为③路程最长,即AC +BC >AD +DB ,你能说明其原因吗?27.(8分)如图1,有一个五角星ABCDE ,你能说明∠A +∠B +∠C +∠D +∠E =180吗? 如图2、图3,如果点B 向右移到AC 上,或AC 的另一侧时,上述结论仍然成立吗?请分别说明理由.D C B A28.(8分)在日常生活中,观察各种建筑物的地板,你就能发现地板常用各种正多边形地砖铺砌成美丽的图案,也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留下一丝空白,又不互相重叠(在几何里叫做平面镶嵌),这显然与正多边形的内角大小有关,当围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角(360°)时,就拼成了一个平面图形.(1)如图,请根据下列图形,填写表中空格:(3)从正三角形、正方形、正六边形中选一种,再在其它正多边形中选一种,请画出用这两种不同的正多边形镶嵌成一个平面图,并探索这两种正多边形共能镶嵌成几种不同的平面图形?说明你的理由.。

七年级数学下册_第七章《三角形》综合测试题_

七年级数学下册_第七章《三角形》综合测试题_

凤冈县2011–2012学年第二学期七年级数学(人教版下册)第七章三角形目标检测题时间:120分钟 满分150 陆建东供题一、选择题(每题3分,共30分)1.等腰三角形两边长分别为 3,7,则它的周长为 ( ).A 、 13 .B 、 17 .C 、 13或17 .D 、 不能确定. 2.一个多边形内角和是10800,则这个多边形的边数为 ( ).A 、 6 .B 、 7 .C 、 8 .D 、 9. 3.若三角形三个内角的比为1:2:3,则这个三角形是( ).A 、 锐角三角形.B 、 直角三角形.C 、 等腰三角形.D 、 钝角三角形. 4.下图中有一条公共边三角形的个数为( ).A 、 4个.B 、 6个.C 、 8个.D 、 10个.5.如图在△ABC 中,∠ACB=900,CD 是边AB 上的高。

那么图中与∠A 相等的角是( )A 、 ∠B . B 、 ∠ACD .C 、 ∠BCD.D 、 ∠BDC. 6. 能将三角形面积平分的是三角形的( ).第4题ED CBA第5题DCBAA 、 角平分线.B 、 高.C 、 中线.D 、外角平分线. 7. 在平面直角坐标系中,点A (-3,0),B (5,0),C (0,4)所组成的三角形ABC 的面积是( )A 、32.B 、4.C 、16.D 、8.8. 以长为13cm 、10cm 、5cm 、7cm 的四条线段中的三条线段为边,可以画出三角形的个数是( )A.1个.B.2个 .C.3个.D.4个.依次观察左边三个图形,并判断照此规律从左向右第四个图形是( ).10. 等腰三角形的底边BC=8 cm ,且|AC -BC|=2 cm ,则腰长AC 为( ) A.10 cm 或6 cm B.10 cm C.6 cm D.8 cm 或6 cm 二、填空(每小题4分,共32分).11.如图,从A 处观测C 处仰角∠CAD=300,从B 处观测C 处的仰角 ∠CBD=450,从C 处观测A、B 两处时视角∠ACB=度.12.已知:如图,CD ∥AB,∠A=400,∠B=600,那么∠1= , ∠2= .13.一个三角形有两条边相等,周长为20㎝,三角形的一边长为5㎝,第(12)题21 DCBA第(11)题DCBA第9题那么其它两边长分别为 .14.填表:用长度相等的火柴棒拼成如图所示的图形:15.如图,∠1=∠2=300,∠3=∠4,∠A=800,则=x ,=y .16.一个多边形的各内角都等于1200,它是 边形。

新人教版七年级下《第七章三角形》复习

新人教版七年级下《第七章三角形》复习

C M
A
D O
B
3.∠CAD+ ∠B+ ∠C+ ∠D+ ∠E=( )
A B
EB
A
E B
A
E
C (1) D
(2) C
D
(3) C
D
4.(1) 已知点P在∠AOB内部,过P 点作PE⊥OA于点E,PF ⊥OB于点F,
那么∠AOB与∠EPF有何关系?
(2)若点P在∠AOB外部,同样作图,那么 ∠AOB与∠EPF有何关系?
(3)通过上面两题,你能说出如果一个角的
两边分别垂直于另一个角的两边,那么这两
个角有何关系吗?
EA
P
O
O
(1) F B
P A
E
F (2) B
通过本节课的学习,你有哪些收获?
1.有关三角形角的运算;往往都 是在一个数学模型的基础上稍加 改变. 2.有关三角形角的运算;关键是找 到联络已知与结论间的中间量
C
12
A
1 2
B
2
1
C
2 1
D
5.如图所示:△ABC中,D,E 分别为BC,AD的中点,且 △ABC面积为4,则阴影部分 面积为_____
1
·例题精讲
1.如图△ABO与△CDO称为“对顶三角形”, 你能证明∠A+ ∠B= ∠C+ ∠D吗?
2.如图2,DM,BM是∠D ,∠B的平分线,求证2∠M= ∠C+ ∠A
A、5cm,7cm,13cm B、3cm,5cm,9cm C、6cm,9cm,14cm D、5cm,6cm,11cm
2.三角形的两边为7cm和5cm,则第三边x的范
围是 2cm<X <12cm

新人教版初一数学下册第七章三角形总复习

新人教版初一数学下册第七章三角形总复习

三角形一、三角形相关概念1.三角形的概念由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形要点:①三条线段;②不在同一直线上;③首尾顺次相接.2.三角形的表示通常用三个大写字母表示三角形的顶点,如用A、B、C表示三角形的三个顶点时,此三角形可记作△ABC,其中线段AB、BC、AC是三角形的三条边,∠A、∠B、∠C分别表示三角形的三个内角.3.三角形中的三种重要线段三角形的角平分线、中线、高线是三角形中的三种重要线段.(1)三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.注意:①三角形的角平分线是一条线段,可以度量,而角的平分线是经过角的顶点且平分此角的一条射线.②三角形有三条角平分线且相交于一点,这一点一定在三角形的内部.③三角形的角平分线画法与角平分线的画法相同,可以用量角器画,也可通过尺规作图来画.(2)三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线.注意:①三角形有三条中线,且它们相交三角形内部一点.②画三角形中线时只需连结顶点及对边的中点即可.(3)三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的限度叫做三角形的高线,简称三角形的高.注意:①三角形的三条高是线段②画三角形的高时,只需要向对边或对边的延长线作垂线,连结顶点与垂足的线段就是该边上的高.二、三角形三边关系定理①三角形两边之和大于第三边,故同时满足△ABC三边长a、b、c的不等式有:a+b>c,b+c>a,c+a>b.②三角形两边之差小于第三边,故同时满足△ABC三边长a、b、c的不等式有:a>b-c,b>a-c,c>b-a.注意:判定这三条线段能否构成一个三角形,只需看两条较短的线段的长度之和是否大于第三条线段即可三、三角形的稳定性三角形的三边确定了,那么它的形状、大小都确定了,三角形的这个性质就叫做三角形的稳定性.例如起重机的支架采用三角形结构就是这个道理.四、三角形的内角结论1:三角形的内角和为180°.表示:在△ABC中,∠A+∠B+∠C=180°结论2:在直角三角形中,两个锐角互余.注意:①在三角形中,已知两个内角可以求出第三个内角如:在△ABC中,∠C=180°-(∠A+∠B)②在三角形中,已知三个内角和的比或它们之间的关系,求各内角.如:△ABC中,已知∠A:∠B:∠C=2:3:4,求∠A、∠B、∠C的度数.五、三角形的外角1.意义:三角形一边与另一边的延长线组成的角叫做三角形的外角.2.性质:①三角形的一个外角等于与它不相邻的两个内角的和.②三角形的一个外角大于与它不相邻的任何一个内角.③三角形的一个外角与与之相邻的内角互补3.外角个数过三角形的一个顶点有两个外角,这两个角为对顶角(相等),可见一个三角形共有六个外角.六、多边形①多边形的对角线2)3(nn条对角线;②n边形的内角和为(n-2)×180°;③多边形的外角和为360°一、选择题:1.下列可能是n边形内角和的是()A、300°B、550°C、720°D、960°2.若一个多边形的内角和与外角和相加是1800°,则此多边形是( )A、八边形B、十边形C、十二边形D、十四边形3.多边形每一个内角都等于150°,则此多边形一个顶点发出的对角线有()A、7条B、8条C、9条D、10条4.小李家装修地面,已有正三角形形状的地砖,现打算购买另一种不同形状的正多边形地砖,与正三角形地砖在同一顶点处作平面镶嵌,则小李不应购买的地砖形状是( )A、正方形B、正六边形C、正八边形D、正十二边形二、填空题:1.一个多边形中,它的内角最多可以有个锐角。

人教版七年级下册第七章三角形复习

人教版七年级下册第七章三角形复习

第七章 三角形复习【考点1:三角形及其稳定性】1、图中共有( )个三角形A 、5B 、6C 、7D 、8B C2、一个三角形的内角最多有 个直角,有 个钝角,有 个锐角。

外角呢?3、具备下列条件的三角形中,不是直角三角形的是( )。

A 、∠A+∠B=∠CB 、∠A=∠B=12∠C C 、∠A=90°-∠B D 、∠A-∠B=90°4、一个三角形的三个内角度数之比为1:2:3,则这个三角形是________三角形5、如图,AB ∥CD ,∠ABD 、∠BDC 的平分线交于E ,试判断△BED 的形状?AD C6、△ABC 的周长是12cm ,边长分别为a ,b ,c , 且a=b+1,b=c+1,则a= cm ,b= cm , c= cm 。

7、三角形三边的比是3∶4∶5,周长是96cm ,那么三边分别是 cm.8、已知一个三角形的周长是18cm ,且三边长之比是2:3:4,则三边长分别是______________9、木工师傅在做完门框后,为了防止变形常常像下图所示那样钉上两条斜拉的木板条(即图中的AB 、CD 两个木条),这样做根据数学道理是____________.10、下列图形中哪些具有稳定性?你能说出生活中运用三角形稳定性的实例吗?运用四边形的不稳定性的呢?【考点2:中线、角平分线、高线】1、三角形一边上的高()。

A、必在三角形内部B、必在三角形的边上C、必在三角形外部D、以上三种情况都有可能2、如图,在△ABC中,BC边上的高是________;在△AFC中,CF边上的高是________;在△ABE中,AB边上的高是_________.3、如图所示,△ABC中,边BC上的高画得对吗?为什么?4、能将三角形的面积分成相等的两部分的是()。

A、三角形的角平分线B、三角形的中线C、三角形的高线D、以上都不对5、如图,AD是△ABC的中线,已知△ABD比△ACD的周长大6 cm ,则AB与AC的差为()A、2cmB、3cmC、6cmD、12cmDB C6、在△ABC中,D,E分别为BC上两点,且BD=DE=EC,则图中面积相等的三角形有()对. A.4对 B.5对 C.6对 D.7对AB ED C△。

人教版七年级数学下册数学第七章三角形测试题

人教版七年级数学下册数学第七章三角形测试题

人教版七年级数学下册数学第七章三角形测试题、选择题(每小题3分,共30分)1下列三条线段,能组成三角形的是( )A 、3,3,3B 、3,3,6C 、3,2,5D 、3,2,62、如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A 、锐角三角形B 、钝角三角形C 、直角三角形D 、都有可能3、如图所示,AD 是厶ABC 的高,延长BC 至 的面积为生,那么()E ,使 CE = BC ,△ ABC 的面积为 $,△ ACE在小方格的顶点上,位置如图形所示, C 也在小方格的顶点上,且以C 为顶点的三角形面积为 1个平方单位,则点 C 的个数为( )A 、3个B 、4个C 、5个D 、6个6、已知△ ABC 中,/ A 、/ B 、/ C 三个角的比例如下,其中能说明 △ ABC 是直角三角形的是( )A 、2: 3: 4B 、1 : 2: 3C 、4: 3: 5D 、1: 2: 2 7、点P 是厶ABC 内一点,连结 BP 并延长交 AC 于D ,连结PC , 则图中/1、/2、/ A 的大小关系是( )A 、/A >/2>/1B 、/A >/2>/1C 、/ 2>/ 1 >/ AD 、/ 1 >/ 2>/ A 8、在厶ABC 中,/ A = 80°BD 、CE 分别平分/ ABC 、/ ACB ,BD 、CE 相交于点 0,则 / B0C 等于()A 、140 °B 、100 °C 、50 °D 、130 °9、 下列正多边形的地砖中,不能铺满地面的正多边形是( )A 、正三角形B 、正四边形C 、正五边形D 、正六边形10、 在厶 ABC 中, / ABC = 90° / A = 50° BD // AC ,则/ CBD 等于()A 、40 °B 、50°C 、45°D 、60°二、填空题(本大题共6小题,每小题3分,共18分)12、如果一个三角形两边为 2cm ,7cm ,且第三边为奇数,则三角形的周长是 ________ 13、 ___________________________________________________ 在厶 ABC 中,/ A = 60° / C = 2/ B ,则/ C = _____________________________________________ 。

最新人教版七年级数学下册三角形复习练习(精品试题)

最新人教版七年级数学下册三角形复习练习(精品试题)

三角形复习练习一、选择题1、等腰三角形两边长分别为3,7,则它的周长为( ) A 、13 B 、17 C 、13或17 D 、不能确定1、8、2在△ABC 中,D 是BC 上的点,且BD ∶DC=2∶1,ACD S ∆=12,那么ABC S ∆等于( ).A .30 B. 36 C. 72 D. 24 3下列说法错误的是( ).A .三角形的三条高一定在三角形内部交于一点B .三角形的三条中线一定在三角形内部交于一点C .三角形的三条角平分线一定在三角形内部交于一点D .三角形的三条高可能相交于外部一点4、若三角形三个内角的比为1∶2∶3,则这个三角形是( ) A 、锐角三角形 B 、直角三角形 C 、等腰三角形 D 、钝角三角形5、在△ABC 中,∠A=2(∠B+∠C),则∠A 的度数为( ) A 、100° B 、120° C 、140° D 、160°6、n 边形所有对角线的条数为( )条.A. ()12n n - B.(2)2n n - C.(3)2n n - D.(4)2n n - 7、已知等腰三角形的一个外角是120°,则它是( )A.等腰直角三角形B.一般的等腰三角形C.等边三角形D.等腰钝角三角形8、如果三角形的一个外角和与它不相邻的两个内角的和为180°,那么与这个外角相邻的内角的度数为( )A. 30°B. 60°C. 90°D. 120°二、填空题1、已知三角形的三边长分别为x,3,4,则x的取值范围是__________.2、在△ABC中,若∠A=80°,∠C=20°,则∠B=____,若∠A=80°,∠B=∠C,则∠C=____。

3、已知△ABC的三个内角的度数之比∠A∶∠B∶∠C=1∶3∶5,则∠B=____,∠C=____。

4、在△ABC中,∠B,∠C的平分线交于点O,若∠BOC=132°,则∠A=______.,则这个多边形的边数5、一个多边形的外角和是内角和的27为___.6、一个多边形截去一个角后,所得的新多边形的内角和为2520°,则原多边形有____条边。

(完整版)七年级下学期数学三角形复习专练410

(完整版)七年级下学期数学三角形复习专练410

三角形复习资料一、三角形相关概念1.三角形的概念由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形要点:①三条线段;②不在同一直线上;③首尾顺次相接.2.三角形的表示通常用三个大写字母表示三角形的顶点,如用A、B、C表示三角形的三个顶点时,此三角形可记作△线段AB、BC、AC是三角形的三条边,∠ A、∠B、∠C分别表示三角形的三个内角.3.三角形中的三种重要线段ABC,其中三角形的角平分线、中线、高线是三角形中的三种重要线段.1〕三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.注意:①三角形的角平分线是一条线段,可以度量,而角的平分线是经过角的顶点且平分此角的一条射线.②三角形有三条角平分线且相交于一点,这一点一定在三角形的内部.③三角形的角平分线画法与角平分线的画法相同,可以用量角器画,也可通过尺规作图来画.2〕三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线.注意:①三角形有三条中线,且它们相交三角形内部一点.②画三角形中线时只需连结顶点及对边的中点即可.3〕三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的限度叫做三角形的高线,简称三角形的高.注意:①三角形的三条高是线段②画三角形的高时,只需要向对边或对边的延长线作垂线,连结顶点与垂足的线段就是该边上的高.〔二〕三角形三边关系定理①三角形两边之和大于第三边,故同时满足△ABC三边长a、b、c的不等式有:a+b>c,b+c>a,c+a>b.②三角形两边之差小于第三边,故同时满足△ABC三边长a、b、c的不等式有:a>b-c,b>a-c,c>b-a.注意:判定这三条线段能否构成一个三角形,只需看两条较短的线段的长度之和是否大于第三条线段即可〔三〕三角形的稳定性三角形的三边确定了,那么它的形状、大小都确定了,三角形的这个性质就叫做三角形的稳定性.例如起重机的支架采用三角形结构就是这个道理.三角形内角和性质的推理方法有多种,常见的有以下几种:〔四〕三角形的内角结论1:三角形的内角和为180°.表示:在△ABC中,∠A+∠B+∠C=180°〔1〕构造平角①可过A点作MN∥BC(如图)②可过一边上任一点,作另两边的平行线〔如图〕2〕构造邻补角,可延长任一边得邻补角〔如图〕构造同旁内角,过任一顶点作射线平行于对边〔如图〕结论2:在直角三角形中,两个锐角互余.表示:如图,在直角三角形ABC中,∠C=90°,那么∠A+∠B=90°〔因为∠A+∠B+∠C=180°〕注意:①在三角形中,两个内角可以求出第三个内角如:在△ABC中,∠C=180°-〔∠A+∠B〕②在三角形中,三个内角和的比或它们之间的关系,求各内角.如:△ABC中,∠A:∠B:∠C=2:3:4,求∠A、∠B、∠C的度数.〔五〕三角形的外角1.意义:三角形一边与另一边的延长线组成的角叫做三角形的外角.如图,∠ACD为△ABC的一个外角,∠BCE也是△ABC的一个外角,这两个角为对顶角,大小相等.2.性质:①三角形的一个外角等于与它不相邻的两个内角的和.②三角形的一个外角大于与它不相邻的任何一个内角.如图中,∠ACD=∠A+∠B,∠ACD>∠A,∠ACD>∠B.③三角形的一个外角与与之相邻的内角互补3.外角个数过三角形的一个顶点有两个外角,这两个角为对顶角〔相等〕,可见一个三角形共有六个外角.〔六〕多边形(补充性)①多边形的对角线n(n3)条对角线2n边形的内角和为〔n-2〕×180°③多边形的外角和为360°考点11.对下面每个三角形,过顶点A画出中线,角平分线和高.AA AB C C B B C(1)(2)(3)考点21、以下说法错误的选项是().A.三角形的三条高一定在三角形内部交于一点B.三角形的三条中线一定在三角形内部交于一点C.三角形的三条角平分线一定在三角形内部交于一点D.三角形的三条高可能相交于外部一点2、以下四个图形中,线段BE是△ABC的高的图形是 ( )B BB B EEA C A E C A C E A CA B C D22题图复旦辅教中心讲义 版权所有 翻录必究3.如图3,在△ABC 中,点D 在BC 上,且AD=BD=CD ,AE 是BC 边上的高,假设沿 AE 所在直线折叠,点 C 恰好落在点D 处,那么∠B 等于〔 〕A .25°B .30°C .45°D .60°4. 如图4,AB=AC=BD ,那么∠1和∠2之间的关系是〔〕A.∠1=2∠2B.2∠1+∠2=180°C.∠1+3∠2=180°D.3∠1 -∠2=180°5. 如图5,在△ABC 中,点D ,E ,F 分别为边BC ,AD ,CE 的中点,且S ABC =4cm 2,那么S 阴影等于()A .2cm 2B.1cm 2C.1 cm2 D. 1 cm 2246. 如图7,BD=DE=EF=FC ,那么,AE 是_____的中线。

新人教(七下)第7章《三角形》整章测试题1.pptx

新人教(七下)第7章《三角形》整章测试题1.pptx

C
D A第 24 题图 B
25.(本题 8 分)一个零件的形状如图,按规定∠A=90º ,∠ C=25º,∠B=25º,检验已量得 ∠BCD=150º,就判断这个零件不合格,运用三角形的有关知识说明零件不合格的理由。
26.(本题 8 分)已知,如图,在△ ABC 中,AD,AE 分别是 △ ABC 的高和角平分线,
那么△ABC 是直角三角形;⑤若三角形的一个内角等于另两个内角之差,那么这个三角形是 直角三角形;⑥在 ABC 中,若∠A+∠B=∠C,则此三角形是直角三角形。 A、3 个 B、4 个 C、5 个 D、6 个
第 5 题图
7.在 ABC 中, B, C 的平分线相交于点 P,设 A x, 用 x 的代数式表示BPC 的
则∠BIC=

若 BM、CM 分别平分∠ABC,∠ACB 的外角平分线,则∠M=
I
1 M
C 2
E 19 题图
A
20.如图 ABC 中,AD 是 BC 上的中线,BE 是 ABD 中 AD 边上
E
的中线,若 ABC 的面积是 24,则 ABE 的面积是

三、解答题(共 60 分)
B
21.(本题 6 分)有人说,自己的步子大,一步能走三米多,你相信吗?
( )(A)1 个 (B)2 个 (C)3 个 (D)4 个 10.给出下列命题:①三条线段组成的图形叫三角形 ②三角形相邻两边组成的角叫三角 形
的内角 ③三角形的角平分线是射线 ④三角形的高所在的直线交于一点,这一点不在三
角形内就在三角形外 ⑤任何一个三角形都有三条高、三条中线、三条角平分线
⑥三角形的三条角平分线交于一点,且这点在三角形内。正确的命题有( )
用你学过的数学知识说明理由。

新人教版七年级下册第七章《三角形》配套练习

新人教版七年级下册第七章《三角形》配套练习

考点一:三角形的分类例1:具备下列条件的三角形中,不是直角三角形的是( )。

A.∠A+∠B=∠CB.∠A=∠B= ∠CC.∠A=90°-∠B例2:等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为( ).A .60°B .120°C .60°或150°D .60°或120°考点二:三角形三边的关系例3:现有两根木棒,它们的长分别是40cm 和50cm ,若要钉成一个三角形木架,则在下列四根木棒中应选取长为( C )A.100cm 的木棒B.90cm 的木棒C.40cm 的木棒D.10cm 的木棒例4:三角形的最长边为10,另两边的长分别为x 和4,周长为c,求x 和c 的取值范围.例5:下列长度的三条线段能组成三角形的是 ( )A 、 3,4,8B 、 5,6,11C 、 1,2,3D 、 5,6,10考点三:求角的度数例6:已知等腰三角形的一个外角为150°,则它的底角为_______.例7:如图,∠1+∠2+∠3+∠4等于多少度;例8:如图,已知ABC ∆中,ACB ABC ∠∠和的角平分线BD,CE 相交于点O.(1)若︒=∠50ABC ,︒=∠70ACB ,则=∠C B 0 ; (2)若︒=∠48ABC ,︒=∠64ACB ,则=∠C B 0 ;(3) 若 60=∠A ,则=∠C B 0 ;例9.如图,AF 是△ABC 的高,AD 是△ABC 的角平分线,且∠B =36°,∠C =76°,求∠DAF 的度数。

ͼ4B CO F D C B A。

人教版七年级数学下册数学第七章三角形测试题

人教版七年级数学下册数学第七章三角形测试题

人教版七年级数学下册数学第七章三角形测试题、选择题(每小题3分,共30分)1下列三条线段,能组成三角形的是( )A 、3,3,3B 、3,3,6C 、3,2,5D 、3,2,62、如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A 、锐角三角形B 、钝角三角形C 、直角三角形D 、都有可能12、如果一个三角形两边为 2cm ,7cm ,且第三边为奇数,则三角形的周长是 ________13、 ___________________________________________________ 在厶 ABC 中,/ A = 60° / C = 2/ B ,则/ C = ________________________________________________ 。

14、 一个多边形的每个内角都等于 150 °则这个多边形是 _______ 边形。

3、 如图所示,AD 是厶ABC 的高,延长BC 至 的面积为生,那么( )A 、S i >S 2B 、S i = S 2C 、 S i < S 24、 下列图形E ,使 CE = BC ,△ ABC 的面积为 $,△ ACE D 、不能确定A 、正方形B 、长方形C 、直角三角形D 、平行四边形 ~1 ~D (第 3题)5、如图,正方形网格中,每个小方格都是边长为1的正方形,A 、B 两点 在小方格的顶点上,位置如图形所示, C 也在小方格的顶点上,且以C 为顶点的三角形面积为 1个平方单位,则点 C 的个数为()A 、3个B 、4个C 、5个D 、6个6、已知△ ABC 中,/ A 、/ B 、/ C 三个角的比例如下,其中能说明 △ ABC 是直角三角形的是( )B *卜 ------AA 、2: 3: 4B 、1 : 2: 3C 、4: 3: 5D 、1: 2: 2 7、点P 是厶ABC 内一点,连结 BP 并延长交 AC 于D ,连结PC , 则图中/ 1、/ 2、/ A 的大小关系是( )A 、/A >/2>/1B 、/A >/2>/1C 、/ 2>/ 1 >/ AD 、/ 1 >/ 2>/ A8、在厶ABC 中,/ A = 80° BD 、CE 分别平分/ ABC 、/ ACB ,BD 、CE 相交于点 0,则 / B0C 等于()A 、140 °B 、100 °C 、50 °D 、130 °9、 下列正多边形的地砖中,不能铺满地面的正多边形是( )A 、正三角形B 、正四边形C 、正五边形D 、正六边形10、 在厶 ABC 中, / ABC = 90° / A = 50° BD // AC ,则/ CBD 等于()A 、40 °B 、50°C 、45°D 、60°二、填空题(本大题共6小题,每小题3分,共18分)11、P ABC 中BC 边的延长线上一点,/A = 50° /B = 70° 贝9/ ACP =15、用正三角形和正方形镶嵌平面,每一个顶点处有________ 个正三角形和_____ 个正方形。

新课标人教版初中数学七年级下册第七章三角形检测试题及答案

新课标人教版初中数学七年级下册第七章三角形检测试题及答案

图1 AB C D1 2图2 新课标人教版初中数学七年级下册第七章三角形检测试题及答案班级: 姓名: 成绩一、细心选一选:(每题3分,共30分) 命题人:王建国 本卷满分:共120分1、下列各组长度的线段为边,能构成三角形的是( )A 、7cm 、5cm 、12cmB 、6cm 、8 cm 、15cmC 、8cm 、4 cm 、3cmD 、4cm 、6 cm 、5cm2、如图1,⊿AOB ≌⊿COD ,A 和C ,B 和D 是对应顶点,若BO=8,AO=10,AB=5,则CD 的长为( )A 、10B 、8C 、5D 、不能确定3、如图2,已知∠1=∠2,要说明⊿ABD ≌⊿ACD,还需从下列条件中选一个,错误的选法是( )A 、∠ADB=∠ADCB 、∠B=∠C C 、DB=DCD 、AB=AC4、生活中,我们经常会看到如图3所示的情况,在电线杆上拉两条钢筋,来加固电线杆,这是利用了三角形的( )A 、稳定性B 、全等性C 、灵活性D 、对称性5、如图4所示,已知AB ∥CD ,AD ∥BC ,那么图中共有全等三角形( )A 、8对B 、4对C 、2对D 、1对6、下列语句:①面积相等的两个三角形全等; ②两个等边三角形一定是全等图形;③如果两个三角形全等,它们的形状和大小一定都相同; ④边数相同的图形一定能互相重合。

其中错误的说法有( )A 、4个 B 、3个 C 、2个 D 、1个7、如果一个三角形三边上的高的交点在三角形的外部,那么这个三角形是( )A 、锐角三角形B 、直角三角形C 、钝角三角形D 、任意三角形8、图4中全等的三角形是 ( )A 、Ⅰ和Ⅱ B 、Ⅱ和ⅣC 、Ⅱ和ⅢD 、Ⅰ和Ⅲ9、如图5,⊿ABC 中,∠ACB=900,把⊿ABC 沿AC 翻折180°,使点B 落在B'的位置,则关于线段AC的性质中,准确的说法是( )A 、是边BB ’上的中线 B 、是边BB ’上的高C 、是∠BAB ’的角平分线D 、以上三种性质都有10、根据下列条件作三角形,不能唯一确定三角形的是( )A 、已知三个角B 、已知三条边C 、已知两角和夹边D 、已知两边和夹角 二、仔细补一补:(每题3分共30分)11、在△ABC 中,若∠A :∠B :∠C=1:3:5,这个三角形为 三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2题图D C B AC C C C三角形练习题考点11.对下面每个三角形,过顶点A 画出中线,角平分线和高.考点21、下列说法错误的是( ).A .三角形的三条高一定在三角形内部交于一点B .三角形的三条中线一定在三角形内部交于一点C .三角形的三条角平分线一定在三角形内部交于一点 D.三角形的三条高可能相交于外部一点2、下列四个图形中,线段BE 是△ABC 的高的图形是( )3.如图3,在△ABC 中,点D 在BC 上,且AD=BD=CD ,AE 是BC 边上的高,若沿AE 所在直线折叠,点C 恰好落在点D 处,则∠B 等于( )A .25° B.30° C.45° D.60°4. 如图4,已知AB=AC=BD ,那么∠1和∠2之间的关系是( )A. ∠1=2∠2B. 2∠1+∠2=180°C. ∠1+3∠2=180°D. 3∠1-∠2=180°5.如图5,在△ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且ABC S = 42cm ,则S 阴影等于( )A .22cm B. 12cm C.122cm D. 142cm 6.如图7,BD=DE=EF=FC ,那么,AE 是 _____ 的中线。

(1)CB AC B A (2)C B A (3)7.如图6,BD=12BC ,则BC 边上的中线为 ______,ABD S ∆=__________。

8.如图1,在△ABC 中,∠BAC=600,∠B=450,AD 是△ABC 的一条角平分线,则∠DAC= 0,∠ADB= 09.如图2,在△ABC 中,AE 是中线,AD 是角平分线,AF 是高,则根据图形填空: ⑴BE= =21 ;⑵∠BAD= =21 ⑶∠AFB= =900;10.如图在△ABC 中,∠ACB=900,CD 是边AB 上的高。

那么图中与∠A 相等的角是( )A 、 ∠B B 、 ∠ACDC 、 ∠BCD D 、 ∠BDC11.在△ABC 中,∠A=21∠C=21∠ABC , BD 是角平分线,求∠A 及∠BDC 的度数(12.已知,如图,AB ∥CD ,AE 平分∠BAC ,CE 平分∠ACD ,求∠E 的度数 13.如图,在△ABC 中,D,E 分别是BC ,AD 的中点,ABC S ∆=42cm ,求ABE S ∆.考点31.关于三角形的边的叙述正确的是 ( )DCBAEDC BA1题 D CAF 2题 C BDCB A _ D_ B_ CA 、三边互不相等B 、至少有两边相等C 、任意两边之和一定大于第三边D 、最多有两边相等2.已知△ABC 中,∠A=200,∠B=∠C ,那么三角形△ABC 是( )A 、锐角三角形B 、直角三角形C 、钝角三角形D 、正三角形 3.下面说法正确的是个数有( )①如果三角形三个内角的比是1∶2∶3,那么这个三角形是直角三角形;②如果三角形的一个外角等于与它相邻的一个内角,则这么三角形是直角三角形;③如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形;④如果∠A=∠B=21∠C ,那么△ABC 是直角三角形;⑤若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形;⑥在 ABC 中,若∠A +∠B=∠C ,则此三角形是直角三角形。

A 、3个B 、4个C 、5个D 、5个 4.一个多边形中,它的内角最多可以有 个锐角 考点41.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是( )A. 3cm, 4cm, 8cmB. 8cm, 7cm, 15cmC. 13cm, 12cm, 20cmD. 5cm, 5cm, 11cm2.下列长度的三条线段能组成三角形的是 ( )A 、 3,4,8B 、 5,6,11C 、 1,2,3D 、 5,6,10 3.等腰三角形两边长分别为3,7,则它的周长为( )A 、13B 、17C 、13或17D 、不能确定4.△ABC 中,如果AB=8cm ,BC=5cm ,那么AC 的取值范围是________________.5.长为11,8,6,4的四根木条,选其中三根组成三角形有 种选法,它们分别是6.一个等腰三角形的两条边长分别为8㎝和3㎝,那么它的周长为7.已知a,b,c 是三角形的三边长,化简|a-b+c|+|a-b-c|. 考点51.不是利用三角形稳定性的是( )A 、自行车的三角形车架B 、三角形房架C 、照相机的三角架D 、矩形门框的斜拉条 2.下列图形中具有稳定性的有()A 、正方形B 、长方形C 、梯形D 、 直角三角形3.装饰大世界出售下列形状的地砖:○1正方形;○2长方形;○3正五边形;○4正六边形。

若只选购其中某一种地砖镶嵌地面,可供选用的地砖有( )A. ○1○2○3 B. ○1○2○4 C. ○2○3○4 D. ○1○3○4 4.下列图形中具有稳定性有( ) A 、 2个 B 、 3个 C 、 4个 D 、 5个5、如图,一扇窗户打开后用窗钩AB 可将其固定,这里所运用的几何原理是( )A 、三角形的稳定性B 、两点确定一条直线C 、两点之间线段最短D 、垂线段最短6.桥梁拉杆,电视塔底座,都是三角形结构,这是利用三角形的 性; 考点61.已知△ABC 的三个内角的度数之比∠A :∠B :∠C=1:3:5,则∠B= 0,∠C= 0(1)(2)(3)(4)(5)(6) B CADE4题图B DC 8题图150︒50︒3217题图140︒80︒16题图B10题图CB D 2.如图,已知点P 在△ABC 内任一点,试说明∠A 与∠P 的大小关系3如图4,∠1+∠2+∠3+∠4等于多少度 考点71、已知等腰三角形的一个外角是120°,则它是( )A.等腰直角三角形B.一般的等腰三角形C.等边三角形D.等腰钝角三角形2、如果三角形的一个外角和与它不相邻的两个内角的和为180°,那么与这个外角相邻的内角的度数为( ) A. 30° B. 60° C. 90° D. 120°3、已知三角形的三个外角的度数比为2∶3∶4,则它的最大内角的度数( ).A. 90°B. 110°C. 100°D. 120° 4、如图,下列说法错误的是( )A 、∠B >∠ACDB 、∠B+∠ACB =180°-∠AC 、∠B+∠ACB <180°D 、∠HEC >∠B5、若一个三角形的一个外角小于与它相邻的内角,则这个三角形是( ).A 、直角三角形B 、锐角三角形C 、钝角三角形D 、无法确定 6、如图,若∠A=100°,∠B=45°,∠C=38°,则∠DFE 等于( ) A. 120° B. 115° C. 110° D. 105° 7、如图,∠1=______.8、如图,则∠1=______,∠2=______,∠3=______,9、已知等腰三角形的一个外角为150°,则它的底角为_______.10、如图,在△ABC 中,D 是BC 边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC 的度数. 考点81.一个多边形的内角和等于它的外角和,这个多边形是 ( )A 、三角形B 、 四边形C 、 五边形D 、 六边形2.一个多边形内角和是10800,则这个多边形的边数为 ( )A 、 6B 、 7C 、 8D 、 9 3.一个多边形的内角和是外角和的2倍,它是( ) A 、 四边形 B 、 五边形 C 、 六边形 D 、 八边形PC B A ͼ44、一个多边形的边数增加一倍,它的内角和增加( )A. 180°B. 360°C. (n-2)·180°D. n·1805、若一个多边形的内角和与外角和相加是1800°,则此多边形是( )A、八边形B、十边形C、十二边形D、十四边形6、正方形每个内角都是 ______,每个外角都是 _______。

7、多边形的每一个内角都等于150°,则从此多边形一个顶点出发引出的对角线有条。

8、六边形共有_______条对角线,内角和等于__________,每一个内角等于_______。

9、内角和是1620°的多边形的边数是 ______。

10、如果一个多边形的每一外角都是24°,那么它是______边形。

11、将一个三角形截去一个角后,所形成的一个新的多边形的内角和________。

12、一个多边形的内角和与外角和之比是5∶2,则这个多边形的边数为______。

13、一个多边形截去一个角后,所得的新多边形的内角和为2520°,则原多边形有____条边。

14.已知一个十边形中九个内角的和的度数是12900,那么这个十边形的另一个内角为度15、.如图,CD∥AF,∠CDE=∠BAF,AB⊥BC,∠BCD=124°,∠DEF=80°.1)观察直线AB与直线DE的位置关系,你能得出什么结论?并说明理由;(2)试求∠AFE的度数.考点91. 下列正多边中,能铺满地面的是()A、正方形B、正五边形C、等边三角形D、正六边形2.下列正多边形的组合中,能够铺满地面的是()A、正六边形和正三角形B、正三角形和正方形C、正八边形和正方形D、正五边形和正八边形3.下列正多边形的组合中,能够铺满地面的是( ).A. 正六边形和正三角形B. 正三角形和正方形C. 正八边形和正方形D. 正五边形和正八边形4.用正三角形和正十二边形镶嵌,可能情况有( )种.A、1B、2C、3D、45.某装饰公司出售下列形状的地砖:①正方形;②长方形;③正五边形;④正六边形.若只选购其中某一种地砖镶嵌地面,可供选用的地砖共有( )种.A、1B、2C、3D、46.小李家装修地面,已有正三角形形状的地砖,现打算购买另一种不同形状的正多边形地砖,与正三角形地砖在同一顶点处作平面镶嵌,则小李不应购买的地砖形状是( )A、正方形B、正六边形C、正八边形D、正十二边形7.用正三角形和正四边形作平面镶嵌,在一个顶点周围,可以有___个正三角形和___个正四边形。

8(2)第n个图案中有白色地砖_______块._第1个_第3个_第?2个综合101.如图,在△ABC 中,∠B, ∠C 的平分线交于点O. (1)若∠A=500,求∠BOC 的度数.(2)设∠A=n 0(n 为已知数),求∠BOC 的度数.3.如图,在△ABC 中,AD ⊥BC,CE 是△ABC 的角平分线,AD 、CE 交于F 点.当∠BAC=80°,∠B=40°时,求∠ACB 、∠AEC 、∠AFE 的度数.4.如图,在直角三角形ABC 中,∠ACB=90°,CD 是AB 边上的高,AB=13cm ,BC=12cm ,AC=5cm ,求:(1)△ABC 的面积; (2)CD 的长;(3)作出△ABC 的边AC 上的中线BE ,并求出△ABE 的面积;(4)作出△BCD 的边BC 边上的高DF ,当BD=11cm 时,试求出DF 的长。

相关文档
最新文档