2015-2016学年苏科版七年级下学数学期末模拟卷
苏科版2015-2016学年度七年级数学下册期末模拟试卷(四)及答案
七下数学期终复习练习四 姓名1.下列多边形中,内角和与外角和相等的是 ( )A .四边形B .五边形C .六边形D .八边形2.下列举反例说明“一个角的余角大于这个角”是假命题的四个选项中,错误的是( )A .设这个角是45°,它的余角是40°,但45°=45°B .设这个角是30°,它的余角是60°,但30°<60°C .设这个角是60°,它的余角是30°,但30°<60°D .设这个角是50°,它的余角是40°,但40°<50°3.下列运算正确的是 ( ) A .(a +b )2=a 2+b 2B .3a 2-2a 2=a 2C .-2(a -1)=-2a -1D .a 6÷a 3=a 24.如果一个三角形的两边长分别是2和4,则第三边可能是 ( )A .2、B .4 、C .6、D .85.已知实数a ,b ,若a >b ,则下列结论正确的是 ( )A .a -5<b -5B .2+a <2+bC .33a b <D .3a >3b6.如图,将周长为8的△ABC 沿BC 方向平移1个单位得到△DEF ,则四边形ABFD 的周长为 ( )A .6B .8C .10D .12第6题 第9题 7.某肿瘤研究所随机地调查了10000人,统计分析结果显示:在吸烟者中患肺癌的比例是25%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患癌的人数比不吸烟者患肺癌的人数多22人,如果设这10000人中,吸烟者患肺癌的人数为x ,不吸烟者患肺癌的人数为y ,根据题意,下面列出的方程组正确的是( ) A .222.5%0.5%10000x y x y -=⎧⎨⨯+⨯=⎩ B .22100002.5%0.5%x y x y -=⎧⎪⎨+=⎪⎩ C .100002.5%0.5%22x y x y +=⎧⎨⨯-⨯=⎩D .10000222.5%0.5%x y x y +=⎧⎪⎨-=⎪⎩ 8.若m -n =-1,则(m -n )2-2m +2n 的值是 ( ) A .3、B .2 、C .1 、D .-19.如图,直线a ,b 被直线c 所截,a ∥b ,∠1=∠2,若∠3=40°,则∠4等于 ( )A .40°B .50°C .70°D .80°10.若关于x 的一元一次不等式组202x m x m -<⎧⎨+>⎩有解,则m 的取值范围为( )A .m >-23B .m ≤23C .m >23D .m ≤-2311.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为_______.12.已知a +b =7,ab =13,那么a 2-ab +b 2=_______.13.如图,直线l 1∥l 2∥l 3,点A ,B ,C 在直线l 1,l 2,l 3上,若∠1=70°,∠2=50°,则∠ABC =_____度.14.关于x ,y 的方程组63x m y m +=⎧⎨-=⎩中,x +y =_______. 15.如果关于x 的不等式组3020x a x b -≥⎧⎨-≤⎩的整数解仅有1,2,那么适合这个不等式组的整数a ,b 组成的有序数对(a ,b )共有_______个.16.如图,A ,B ,C 分别是线段A 1B ,B 1C ,C 1A 的中点,若△ABC 的面积是1,那么△A 1B 1C 1的面积_______.17.先化简,再求值:(x -1)(x +1)-x (x -3),其中x =3.18、(1)分解因式:221122x xy y ++; (2)解方程组:2738x y x y +=⎧⎨-=⎩19.如图,AD ⊥BC ,EF ⊥BC ,∠4=∠C .求证:∠1=∠2.20.定义新运算:对于任意实数a,b,都有a⊗b=a(a-b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊗5=2x(2-5)+1=2x(-3)+1=-6+1=-5.(1)求(-2)⊗3的值;(2)若3⊗x的值小于13,求x的取值范围,并在如图所示的数轴上表示出来.21.某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55,间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.(1)求该校的大、小寝室每间各住多少人?(2)预测该校今年招收的高一新生中有不少于630名女生将人住寝室80间,问该校有多少种安排住宿的方案?22.已知关于x,y的方程组22324x y mx y m-=⎧⎨+=+⎩的解满足不等式组3050x yx y+≤⎧⎨+>⎩求满足条件的m的整数值.①②23.小明用下面的方法画出了45°角:作两条互相垂直的直线MN ,PQ ,交点为O ,点A ,B 分别是MN ,PQ 上任意一点,作∠ABP 的平分线BD ,BD 的反向延长线交∠OAB 的平分线于点C ,则∠C 就是所求的45°角.你认为对吗?请给出证明.24.对于三个数a ,b ,c ,M {},,a b c 表示a ,b ,c 这三个数的平均数,min {},,a b c 表示a ,b ,c 这三个数中最小的数,如:M {}12341,2,333-++-==,min {}1,2,3-=-1;M {}1211,2,33a a a -+++-==,min {}1,2,a -=() a 11 a>-1a ⎧≤-⎪⎨-⎪⎩; 解决下列问题: (1)填空:min {}2202,2,2013--=_______;(2)若min {}2,22,42x x +-=2,求x 的取值范围;(3)①若M {}2,1,2x x +=min {}2,1,2x x +,那么x =_______;②根据①,你发现结论“若M {},,a b c =min {},,a b c ,则_______”(填a ,b ,c 的大小关系);③运用②解决问题:若M {}22,2,2x y x y x y +++-=min {}22,2,2x y x y x y +++-,求x +y 的值.复习练习四参考答案1.A 2.B 3.B 4.B 5.D 6.C7.B8.A9.C10.C11.30°12.10 13.120 14.9 15.6 16.7 17.818.(1)原式=12(x+y)2(2)31xy=⎧⎨=⎩19.略20.(1)11.(2)x>-1 数轴表示如图所示:21.(1)大寝室每间住8人,小寝室每间住6人.(2)有6种22.m=-3或-2.23.对.24.(1)-4 (2)0≤x≤1(3)①1 ②a=b=c③x+y=-4.。
2015-2016学年苏科版第二学期初一数学期末试卷及答案
2015-2016学年第二学期初一数学期末试卷分值:130分;一、选择题:(本题共12小题,每小题2分,共24分)1.下列计算正确的是………………………………………………………………( )A .2223a a a += ;B .824a a a ÷=;C .326a a a ⋅=;D .()236a a =;2. 已知等腰三角形的两条边长分别为2和3,则它的周长为…………………………( )A .7B .8C .5D .7或8 3.若2m a =,3n a =,则m n a +等于………………………………………………( )A .5B .6C .8D .104.下列命题:①同旁内角互补,两直线平行:②全等三角形的周长相等;③直角都相等;④相等的角是对项角.它们的逆命题是真命题的个数是………………………………( )A .1个B .2个C .3个D .4个5.(2014.梅州)如图,直线a ∥b ,射线DC 与直线a 相交于点C ,过点D 作DE ⊥b 于点E ,已知∠1=25°,则∠2的度数为……………………………………………………( )A .115°;B .125°;C .155°;D .165°;6.从一个多边形的任何一个顶点出发都只有5条对角线,则它的边数是…………( )A .6 ;B .7 ;C .8;D .9;7.到三角形的三边距离相等的点是………………………………………………… ( )A .三角形三条高的交点;B .三角形三条内角平分线的交点;C .三角形三条中线的交点;D .三角形三条边的垂直平分线的交点;8.如图,把纸片△ABC 沿DE 折叠,当点A 落在四边形BCDE 内时,则下列结论正确的是…( )A .∠A=∠1+∠2 ;B .2∠A=∠1+∠2;C .3∠A=∠1+∠2;D .3∠A=2(∠1+∠2);9.如图,在△ABC 中,AB=AC ,∠A=40°,点P 为△ABC 内的一点, 且∠PBC=∠PCA ,则∠BPC 的大小( )A .110°B .120°C .130°D .140°10.在数学中,为了书写简便,我们记()11231n k k n n ==++++-+∑ ,()()()112nk x k x x =+=+++∑+…()x n +++ ,则化简()()311k x k x k =---⎡⎤⎣⎦∑的的结果是…………………( )第9题图第8题图第5题图第17题图 A .231520x x -+; B .2398x x -+; C .23620x x --; D .23129x x --;二、填空题:(本题共8小题,每小题3分,共24分)11.用科学计数法表示数:0.000123=___________.12.已知:32a b +=,1ab =,化简()()22a b --的结果是_______. 13.如果()22216x m x +++是完全平方式,则m 的值等于__________.14.如图,在△ABC 中,AB=AC=10cm ,AB 的垂直平分线交AC 于点D ,且△BCD 的周长为17cm ,则BC=_________cm .15.如图,△ABC 是等腰三角形,且AB=AC ,BM 、CM 分别平分∠ABC 、∠ACB ,DE 经过点M ,且DE ∥BC ,则图中有________个等腰三角形.16.如图,△ABC 中,∠ACB=90°,∠A=42°,D 是AB 中点,则∠ADC=_______°.17.(2014•老河口市模拟)如图,OP 平分∠MON ,PA ⊥ON 于点A ,点Q 是射线OM 上的一个动点,若PA=2,则PQ 的最小值为 .18.如果等式2(21)1a a +-=,则a 的值可以是 .三、解答题:(本大题共79分)19.计算:(本题满分8分) (1)()()2201302013113.14323π-⎛⎫⎛⎫--+⨯- ⎪ ⎪⎝⎭⎝⎭; (2)()()2222321ab a b ab -⋅--;20. (本题满分7分)分解因式:(1) 3169a a -;(2) 22344ab a b b --; 21. (本小题5分)解不等式组:()()3261231x x x x ⎧--≤⎪⎨+>-⎪⎩第15题第16题第14题22.(本小题5分)先化简,再求值:()()()22253a b a a b a b +++--,其中3a =,23b =-.23. (本题5分)已知22610340a a b b ++-+=,求代数式()()2324a b a b ab +-+的值24.(6分)(1)如图(1),已知∠AOB 和线段CD ,求作一点P ,使PC=PD ,并且点P 到∠AOB 的两边距离相等(尺规作图....,不写作法,保留作图痕迹,写出结论); (2)如图(2)是一个台球桌,若击球者想通过击打E 球,让E 球先撞上AB 边上的点P ,反弹后再撞击F 球,请在图(2)中画出这一点P .(不写作法,保留作图痕迹,写出结论)25.(6分)如图,已知△ABC 中,AB=BD=DC ,∠ABC=105°,求∠A 、∠C 度数.26.(6分)已知:如图,△ABC 中,AB=AC ,D 是BC 上一点,点E 、F 分别在AB 、 AC 上,BD=CF ,CD=BE ,G 为EF 的中点.求证:(1)△BDE ≌△CFD ; (2)DG ⊥EF .27. (本题满分7分)如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点.将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A、D重合,连接BE、EC.试猜想线段BE和EC的数量及位置关系,并证明你的猜想.28. (本题满分6分)二元一次方程组3102x yx y m+=⎧⎨+=⎩的解x、y()x y≠的值是一个等腰三角形两边的长,且这个等腰三角形的周长为8,求腰的长和m的值.29. (本题满分7分)某化妆品店老板到厂家选购A、B两种品牌的化妆品,若购进A品牌的化妆品5套,B品牌的化妆品6套,需要950元;若购进A品牌的化妆品3套,B品牌的化妆品2套,需要450元.(1)求A、B两种品牌的化妆品每套进价分别为多少元?(2)若销售1套A品牌的化妆品可获利30元,销售1套B品牌的化妆品可获利20元,根据市场需求,化妆品店老板决定,购进B品牌化妆品的数量比购进A品牌化妆品数量的2倍还多4套,且B品牌化妆品最多可购进40套,这样化妆品全部售出后,可使总的获利不少于1200元,问有几种进货方案?如何进货?30. (本题满分8分)如图,在长方形ABCD中,AB=CD=6cm,BC=10cm,点P从点B 出发,以2cm/秒的速度沿BC向点C运动,设点P的运动时间为t秒:(1)PC= cm.(用t的代数式表示)(2)当t为何值时,△ABP≌△DCP?(3)当点P从点B开始运动,同时,点Q从点C出发,以v cm/秒的速度沿CD向点D 运动,是否存在这样v的值,使得△ABP与△PQC全等?若存在,请求出v的值;若不存在,请说明理由.2015-2016学年第二学期初一数学期末试卷参考答案一、选择题:1.D ;2.D ;3.B ;4.B ;5.A ;6.C ;7.B ;8.B ;9.A ;10.A ;二、填空题:11. 41.2310-⨯;12.2;13.2或-6;14.7;15.5;16.96°17.2;18.-2,1,0;三、解答题:19.(1)-4;(2)4535241284a b a b a b --;20.(1)()()4343a a a +-;(2)()22b a b --;21. 04x ≤<;22. 1530ab =-;23.-41;24. 解:(1)如图(1):根据分析得OP 为∠AOB 的角平分线,PE 是线段CD 的中垂线.(2)如图(2)E'为E 以AB 为轴的对称点,由入射角∠EPQ=∠FPQ 则由E 点打击P 点可击中F 点.25.50°,25°;26. 解:(1)在△ABC 中,AB=AC ,∴∠B=∠C ,∵BD=CF ,CD=BE ,∴△BDE ≌△CFD ,∴DE=DF .(2)由(1)知DE=DF ,即△DEF 是等腰三角形,∵G 为EF 的中点,∴DG ⊥EF .27. 数量关系为:BE=EC ,位置关系是:BE ⊥EC .证明:∵△AED 是直角三角形,∠AED=90°,且有一个锐角是45°, ∴∠EAD=∠EDA=45°,∴AE=DE ,∵∠BAC=90°,∴∠EAB=∠EAD+∠BAC=45°+90°=135°,∠EDC=∠ADC-∠EDA=180°-45°=135°,∴∠EAB=∠EDC ,∵D 是AC 的中点,∴AD=CD=12AC ,∵AC=2AB ,∴AB=AD=DC ,∵在△EAB 和△EDC 中AE DE EAB EDC AB DC =⎧⎪∠=∠⎨⎪=⎩,∴△EAB ≌△EDC (SAS ),∴EB=EC ,且∠AEB=∠DEC , ∴∠BEC=∠DEC+∠BED=∠AEB+∠BED=90°,∴BE ⊥EC .28. 解:①x 为底边,y 为腰长,由题意得:31028x y x y +=⎧⎨+=⎩,解得:42x y =⎧⎨=⎩; ∵2+2=4,∴不能构成三角形,故此种情况不成立;②y 为底边,x 为腰长,由题意得:31028x y x y +=⎧⎨+=⎩,解之得 2.82.4x y =⎧⎨=⎩,∵2.4+2.8>2.8,∴能构成三角形,∴2.8+2.4=2m ,解得:m=2.6.29. 解:(1)设A 种品牌的化妆品每套进价为x 元,B 种品牌的化妆品每套进价为y 元.得5695032450x y x y +=⎧⎨+=⎩,解得10075x y =⎧⎨=⎩. 答:A 、B 两种品牌得化妆品每套进价分别为100元,75元.(2)设A 种品牌得化妆品购进m 套,则B 种品牌得化妆品购进(2m+4)套.根据题意得:()24403020241200m m m +≤⎧⎪⎨++≥⎪⎩,解得16≤m ≤18 ∵m 为正整数,∴m=16、17、18∴2m+4=36、38、40答:有三种进货方案(1)A 种品牌得化妆品购进16套,B 种品牌得化妆品购进36套.(2)A 种品牌得化妆品购进17套,B 种品牌得化妆品购进38套.(3)A 种品牌得化妆品购进18套,B 种品牌得化妆品购进40套.35.解:(1)点P 从点B 出发,以2cm/秒的速度沿BC 向点C 运动,点P 的运动时间为t 秒时,BP=2t ,则PC=10-2t ;(2)当t=2.5时,△ABP ≌△DCP ,∵当t=2.5时,BP=2.5×2=5,∴PC=10-5=5,∵在△ABP 和△DCP 中,90AB DC B C BP CP =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABP ≌△DCP (SAS );(2)①当BP=CQ ,AB=PC 时,△ABP ≌△PCQ ,∵AB=6,∴PC=6,∴BP=10-6=4,2t=4,解得:t=2,CQ=BP=4,v ×2=4,解得:v=2;②当BA=CQ ,PB=PC 时,△ABP ≌△QCP ,∵PB=PC ,∴BP=PC=12BC=5,2t=5,解得:t=2.5,CQ=BP=6,v ×2.5=6,解得:v=2.4.综上所述:当v=2.4或2时△ABP 与△PQC 全等.。
2015-2016学年苏科版七年级数学第二学期期末模拟测试卷及答案(3套)
5.某种香皂零售价每块2元,凡购买两块以上(含两块),商场推出两种优惠销售方法,第一种:一块按原价,其余按原价的七折优惠;第二种:全部按原价的八折优惠.你在购买相同数量的香皂的情况下,要使第一种方法比第二种方法得到的优惠多,最少要购买香皂()
(16题图) (18题图)
16.如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是.
17.如图,BP是△ABC中ABC的平分线,CP是ACB的外角的平分线,如果ABP=20,ACP=50,则AP=.
18.如图,在△ABC中,AB=AC,BM、CM分别是∠ABC、∠ACB的平分线,DE经过点M,且DE//BC,则图中有个等腰三角形.
复习练习一参考答案
1、D;2、C;3、C;4、A;5、A;6、C;7、C;8、C;9、 ;10、-1;11、 ;12、 ;13、16;14、 ;15、26;16、5;17、900;18、五;19、(1)-2;(2) ;(3) ;20、(1) ;(2) ;21、(1) 22、 数轴略;23、 ;24、
七下数学期终复习练习一Βιβλιοθήκη 姓名1.下列运算中正确的是()
A. B. C.2x–2=D.
2.中国的光伏技术不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约
只占0.000 0007mm2,这个数用科学记数法表示为()
A.7×10-6mm2B.0.7×10-6mm2C.7×10-7mm2D.70×10-8mm2
三角形的三条边长,求y的长.
28、(1)如图(1),AB∥CD,点P在AB、CD外部,若∠B=40°,∠D=15°,则∠BPD=.
(2)如图(2),AB∥CD,点P在AB、CD内部,则∠B,∠BPD,∠D之间有何数量关系?证明你的结论;
苏科版2015-2016学年名校七年级第二学期期末训练数学试题(含答案)
苏科版2015-2016学年名校七年级第二学期期末训练数学试题2016.5.18一、选择题:(每小题3分,共30分)1.下列计算中,结果错误的是()A.a•a2=a3 B.x6〔x2=x4 C.(ab)2=ab2 D.(﹣a2)3=﹣a62.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.3.下列命题中,真命题的是()A.相等的两个角是对顶角B.若a>b,则|a|>|b|C.两条直线被第三条直线所截,内错角相等D.等腰三角形的两个底角相等4.若a=﹣0.32,b=﹣3﹣2,;,则它们的大小关系是()A.a<b<c<d B.b<a<d<c C.a<d<c<b D.c<a<d<b5.不等式组的最小整数解是()A.1 B.2 C.3 D.46.如图,AB=DB,∠1=∠2,请你添加一个适当的条件,使△ABC≌△DBE,请问添加下面哪个条件不能判断△ABC≌△DBE的是()A.BC=BE B.AC=DE C.∠A=∠D D.∠ACB=∠DEB7.如图,已知AB∥CD,则∠a、∠B和∠y之间的关系为()A.α+β﹣γ=180°B.α+γ=βC.α+β+γ=360°D.α+β﹣2γ=180°8.若不等式组有实数解,则实数m的取值范围是()A.m≤B.m<C.m>D.m≥9.如果的积中不含x项,则q等于()A.B.5 C.D.﹣510.如图,∠AOB=30°,点P是∠AOB内的一个定点,OP=20cm,点C、D分别是OA、OB 上的动点,连结CP、DP、CD,则△CPD周长的最小值为()A.10cm B.15cm C.20cm D.40cm二、填空题:(每小题3分,共24分)11.某种细菌的存活时间只有0.000 012秒,若用科学记数法表示此数据应为秒.12.在△ABC中,若∠A=∠B=∠C,则该三角形是.13.一个n边形的内角和是1260°,那么n= .14.如图,在△ABC中,AB=BC,∠B=120°,AB的垂直平分线交AC于点D.若AC=6cm,则AD= cm.15.若x2﹣4x+b=(x﹣2)(x﹣a),则a﹣b的值是.16.当3m+2n=4时,则8m•4n= .17.如图,A、B、C分别是线段A1B,B1C,C1A的中点,若△ABC的面积是1,那么△A1B1C1的面积.18.已知AD是△ABC的中线,∠ADC=45°,把△ADC沿AD所在直线对折,点C落在点E的位置(如图),则∠EBC等于度.三、解答题:(本题满分76分)19.计算(1)(2)(x+2)2﹣(x+1)(x﹣1)+(2x﹣1)(x﹣2)20.因式分解:(1)x2(x﹣y)+(y﹣x);(2)2a3﹣8a.21.解不等式组,并把不等式组的解集在数轴上表示出来.22.先化简,再求值:,其中a=﹣,b=2.23.已知3〓9m〓27m=316,求(﹣m2)3〔(m3•m2)的值.24.如图,已知∠1+∠2=180°,∠A=∠C,且DA平分∠FDB.求证:(1)AE∥FC(2)AD∥BC(3)BC平分∠DBE.25.如图,AB∥ED,BC∥EF,AF=CD,且BC=6.(1)求证:△ABC≌△DEF;(2)求EF的长度.26.如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.(1)求证:△ABD是等腰三角形;(2)若∠A=40°,求∠DBC的度数;(3)若AE=6,△CBD的周长为20,求△ABC的周长.27.如图1,是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中阴影部分的面积为;(2)观察图2,请你写出三个代数式(m+n)2、(m﹣n)2、mn之间的等量关系式:;(3)根据(2)中的结论,若x+y=﹣6,xy=2.75,则x﹣y= .(4)有许多代数恒等式可以用图形的面积来表示.如图3,它表示了(2m+n)(m+n)=2m2+3mn+n2.试画出一个几何图形,使它的面积能表示(m+n)(m+3n)=m2+4mn+3n2.28.已知方程组的解x是非正数,y为负数.(1)求a的取值范围;(2)化简:|a+1|+|a﹣2|;(3)若实数a满足方程|a+1|+|a﹣2|=4,则a= .29.在“五•一”期间,某公司组织318名员工到雷山西江千户苗寨旅游,旅行社承诺每辆车安排有一名随团导游,并为此次旅行安排8名导游,现打算同时租甲、乙两种客车,其中甲种客车每辆载客45人,乙种客车每辆载客30人.(1)请帮助旅行社设计租车方案.(2)若甲种客车租金为800元/辆,乙种客车租金为600元/辆,旅行社按哪种方案租车最省钱?此时租金是多少?(3)旅行前,旅行社的一名导游由于有特殊情况,旅行社只能安排7名导游随团导游,为保证所租的每辆车安排有一名导游,租车方案调整为:同时租65座、45座和30座的大小三种客车,出发时,所租的三种客车的座位恰好坐满,请问旅行社的租车方案如何安排?30.已知,△ABC是边长3cm的等边三角形.动点P以1cm/s的速度从点A出发,沿线段AB向点B运动.(1)如图1,设点P的运动时间为t(s),那么t= (s)时,△PBC是直角三角形;(2)如图2,若另一动点Q从点B出发,沿线段BC向点C运动,如果动点P、Q都以1cm/s的速度同时出发.设运动时间为t(s),那么t为何值时,△PBQ是直角三角形?(3)如图3,若另一动点Q从点C出发,沿射线BC方向运动.连接PQ交AC于D.如果动点P、Q都以1cm/s的速度同时出发.设运动时间为t(s),那么t为何值时,△DCQ 是等腰三角形?(4)如图4,若另一动点Q从点C出发,沿射线BC方向运动.连接PQ交AC于D,连接PC.如果动点P、Q都以1cm/s的速度同时出发.请你猜想:在点P、Q的运动过程中,△PCD和△QCD的面积有什么关系?并说明理由.参考答案一、选择题: 1.故选C.2.故选:A.3.故选D.4.故选:B.5.故选:C.6.故选B.7.故选A.8.故选A.9.故选C.10.故选:C.二、填空题: 11. 1.2〓10﹣5 秒.12.直角三角形.13.9 .14. 2 cm.15.﹣2 .16.16 .17.7 .18.45 度.三、解答题: 19.【解答】解:(1)原式=100+1﹣0.22011〓52011=101﹣1=100;(2)原式=x2+4x+4﹣x2+1+2x2﹣5x+2=2x2﹣x+7.20.【解答】解:(1)原式=(x﹣y)(x2﹣1)=(x﹣y)(x+1)(x﹣1);(2)原式=2a(a2﹣4)=2a(a+2)(a﹣2).21.【解答】解:由①得:x≤1,由②得:x>﹣,则原不等式的解集为﹣<x≤1,解集表示在数轴上,如图所示:.22.【解答】解:=a2﹣ab﹣2a2+8b2﹣a2+ab﹣b2=﹣2a2+b2,当a=﹣,b=2时,原式=29.23【解答】解:∵3〓9m〓27m=316,∴31+2m+3m=316,∴1+2m+3m=16,∴m=3,∴(﹣m2)3〔(m3•m2)=﹣m6〔m5=﹣m=﹣3.24.【解答】解:(1)∵∠1+∠2=180°,∠1+∠DBE=180,∴∠2=∠DBE,∴AE∥FC;(2)∵AE∥FC,∴∠A+∠ADC=180°,∵∠A=∠C,∴∠C+∠ADC=180°,∴AD∥BC;(3)∵AD∥BC,∴∠ADB=∠CBD,∠ADF=∠C,∵AE∥FC,∴∠C=∠CBE,∴∠CBE=∠ADF,∵DA平分∠FDB,∴∠ADF=∠ADB,∴∠CBE=∠CBD,∴BC平分∠DBE.25.【解答】证明:(1)∵AF=CD,∴AF+CF=CD+CF,即AC=DF,∵AB∥ED,∴∠A=∠D,∵BC∥EF,∴∠ACB=∠DFE,在△ACB和△DFE中,,∴△DEF≌△ABC;(2)∵△DEF≌△ABC,BC=6,∴EF=BC=6.26.【解答】解:(1)证明:∵AB的垂直平分线MN交AC于点D,∴DB=DA,∴△ABD是等腰三角形;(2)∵△ABD是等腰三角形,∠A=40°,∴∠ABD=∠A=40°,∠ABC=∠C=(180°﹣40°)〔2=70°∴∠DBC=∠ABC﹣∠ABD=70°﹣40°=30°;(3)∵AB的垂直平分线MN交AC于点D,AE=6,∴AB=2AE=12,∵△CBD的周长为20,∴AC+BC=20,∴△ABC的周长=AB+AC+BC=12+20=32.27.【解答】解:(1)由图可得小正方形的边长为m﹣n,则它的面积为(m﹣n)2;故答案为:(m﹣n)2;(2)大正方形的边长为m+n,则它的面积为(m+n)2,另外,大正方形的面积可用4个小长方形和1个小正方形表示,即(m﹣n)2+4mn,所以有(m﹣n)2+4mn=(m+n)2;故答案为:(m﹣n)2+4mn=(m+n)2;(3)由(2)可知:(x﹣y)2+4xy=(x+y)2,将x+y=﹣6,xy=2.75代入该式得x﹣y=〒5;故答案为:〒5;(4)答案不唯一:例如:28.【解答】解:(1),①+②得,2x=﹣6+2a;①﹣②得,2y=﹣8﹣4a,∵x是非正数,y为负数,∴,即,解得﹣2<a≤3;(2)当﹣2<a<﹣1时,原式=﹣a﹣1﹣a+2=﹣2a+1;当﹣1≤a≤2时,原式=a+1﹣a+2=3;当2<a≤3时,原式=a+1+a﹣2=2a﹣1;(3)当﹣2<a<﹣1时,原式=﹣a﹣1﹣a+2=﹣2a+1=4,解得a=﹣;当﹣1≤a≤2时,原式=a+1﹣a+2=3,a不存在;当2<a≤3时,原式=a+1+a﹣2=2a﹣1=4,解得a=.29.【解答】解:(1)设租甲种客车x辆,则租乙种客车(8﹣x)辆,依题意,得45x+30(8﹣x)≥318+8,解得x≥5,∵打算同时租甲、乙两种客车,∴x<8,即5≤x<8,x=6,7,有两种租车方案:租甲种客车6辆,则租乙种客车2辆,租甲种客车7辆,则租乙种客车1辆;(2)∵6〓800+2〓600=6000元,7〓800+1〓600=6200元,∴租甲种客车6辆;租乙种客车2辆,所需付费最少为6000(元);(3)设同时租65座、45座和30座的大小三种客车各x辆,y辆,(7﹣x﹣y)辆,根据题意得出:65x+45y+30(7﹣x﹣y)=318+7,整理得出:7x+3y=23,1≤x<7,1≤y<7,1≤7﹣x﹣y<7,故符合题意的有:x=2,y=3,7﹣x﹣y=2,租车方案为:租65座的客车2辆,45座的客车3辆,30座的2辆.30.【解答】解:(1)当△PBC是直角三角形时,∠B=60°,∠BPC=90°,所以BP=1.5cm,所以t=(2)当∠BPQ=90°时,BP=0.5BQ,3﹣t=0.5t,所以t=2;当∠BQP=90°时,BP=2BQ,3﹣t=2t,所以t=1;所以t=1或2(s)(3)因为∠DCQ=120°,当△DCQ是等腰三角形时,CD=CQ,所以∠PDA=∠CDQ=∠CQD=30°,又因为∠A=60°,所以AD=2AP,2t+t=3,解得t=1(s);(4)相等,如图所示:作PE垂直AD,QG垂直AD延长线,则PE∥QG,所以,∠G=∠AEP,因为,所以△EAP≌△GCQ(AAS),所以PE=QG,所以,△PCD和△QCD同底等高,所以面积相等.第11页(共11页)。
【苏科版】七年级下期末模拟数学试题及答案
精品“正版”资料系列,由本公司独创。
旨在将“人教版”、”苏教版“、”北师大版“、”华师大版“等涵盖几乎所有版本的教材教案、课件、导学案及同步练习和检测题分享给需要的朋友。
本资源创作于2020年12月,是当前最新版本的教材资源。
包含本课对应内容,是您备课、上课、课后练习以及寒暑假预习的最佳选择。
通过我们的努力,能够为您解决问题,这是我们的宗旨,欢迎您下载使用!2015-2016学年南京市七年级(下)数学期末模拟测试卷(二)班级 姓名 一、填空题1.若a >b, 则下列不等式中成立的是( ) A .a+2<b+2 B .a ﹣2<b ﹣2C .2a <2bD .﹣2a <﹣2b2.如图, 已知AB ∥CD, BC 平分∠ABE, ∠C=35°, 则∠BED 的度数是( )A .70°B .68°C .60°D .72°3.不等式x+5<2的解在数轴上表示为( ) A .B .C .D .4.一个多边形的每一个内角均为108°, 那么这个多边形是( )A .七边形B .六边形C .五边形D .四边形5.下列运算正确的是( )A 、22x x x =⋅B 、22)(xy xy = C 、632)(x x = D 、422x x x =+6.下列各式能用平方差公式计算的是( )A.)2)(2(a b b a -+B.)121)(121(--+-x x C.)2)((b a b a -+ D.)12)(12(+--x x7.关于x, y 的方程组的解满足x+y=6, 则m 的值为( ) A .﹣1 B .2C .1D .48.从下列不等式中选择一个与x+1≥2组成不等式组, 若要使该不等式组的解集为x≥1, 则可以选择的不等式是( )A .x >0B .x >2C .x <0D .x <29.下列命题中,①长为5㎝的线段AB 沿某一方向平移10㎝后, 平移后线段AB 的长为10㎝ ②三角形的高在三角形内部;③六边形的内角和是外角和的两倍;④平行于同一直线的两条直线平行;⑤两个角的两边分别平行, 则这两个角相等. 真命题个数有( ) A .1个B .2个C .3个D .4个10.如图, 矩形纸片按图(1)中的虚线第一次折叠得图(2), 折痕与矩形一边的形成的∠1=65°, 再按图(2)中的虚线进行第二折叠得到图(3), 则∠2的度数为( ) A .20° B .25° C .30° D .35°二、填空题11.“x 的4倍与2的和是负数”用不等式表示为 . 12.已知是二元一次方程2x+ay=7的解, 则a 的值为 .13.因式分解:4a 2﹣9= . 14.已知,4=+t s 则t t s 822+-= .15.已知三角形的两边分别为a 和b (a >b ), 三角形的第三边x 的范围是 2<x <6, 则ba = .16.若方程组⎩⎨⎧=++=+3313y x k y x 的解x , y 满足01x y <+<, 则k 的取值范围是 .17.若多项式()16322+-+x m x 能够用完全平方公式分解因式, 则m 的值为 .18.一个正三角形和一副三角板(分别含30°和45°)摆放成如图所示的位置, 且AB ∥CD . 则∠1+∠2= .三、解答题 19.计算: (1)(﹣)﹣2+()0+(﹣5)3÷(﹣5)2;(2)(2xy 2)3﹣(5xy 2)(﹣xy 2)2.图(3) 2BA DC21(第18题)20.因式分解:(1)a 3﹣4a ; (2)x 3﹣2x 2y+xy 2.21.解方程组: (1) (2).22.解不等式组, 并在数轴上表示它的解集. (1) (2).23.先化简, 再求值:()()()()()2122213---++-+x x x x x , 其中x =21.24.某电器经营业主计划购进一批同种型号的冷风扇和普通电风扇, 若购进8台冷风扇和20台普通电风扇, 需要资金17400元, 若购进10台冷风扇和30台普通电风扇, 需要资金22500元.求冷风扇和普通电风扇每台的采购价各是多少元?25.如图, EF∥AD, ∠1=∠2, ∠BAC=80°.将求∠AGD的过程填写完整.因为EF∥AD,所以∠2=(),又因为∠1=∠2,所以∠1=∠3(),所以AB∥(),所以∠BAC+=180°(),因为∠BAC=80°,所以∠AGD= .26.已知:如图, 在△ABC中, ∠A=90°, 点D、E分别在AB、AC上, DE∥BC, CF与DE的延长线垂直, 垂足为F.(1)求证:∠B=∠ECF ;(2)若∠B=55°, 求∠CED的度数.27.某公园门票的价格是每位20元, 20人以上(含20人)的团体票8折优惠.(1)现有18位游客要进公园, 如果他们买20人的团体票, 那么比买普通票便宜多少钱?(2)当游客人数不足20人时, 至少要有多少人去该公园, 买团体票才比普通票更合算?28. 阅读材料:方程022=--x x 中, 只含有一个未知数且未知数的次数为2.像这样的方程叫做一元二次方程.把方程的左边分解因式得到()()012=+-x x .我们知道两个因式乘积为0, 其中有一个因式为0即可, 因此方程可以转化为:02=-x 或 01=+x 解这两个一次方程得:x =2或x =-1. 所以原方程的解为: x =2或x =-1.上述将方程022=--x x 转化为02=-x 或01=+x 的过程, 是将二次降为一次的“降次”过程, 从而使得问题得到解决.仿照上面降次的方法, 解决下列问题:(1)解方程032=-x x (2) 解方程组:⎩⎨⎧=+=-4922y x y x知识迁移:根据有理数的乘法法则“两数相乘, 异号得负”, 尝试解不等式:()()13+-x x <0 .29.【课本引申】我们知道, 三角形的一个外角等于与它不相邻的两个内角的和.那么, 三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?A B C D(图1)ABCD E1 2 (图2)AB C DEP【尝试探究】(1)如图1, ∠DBC与∠ECB分别为△ABC的两个外角, 试探究∠A与∠DBC+∠ECB之间存在怎样的数量关系?为什么?【初步应用】(2) 如图2, 在△ABC纸片中剪去△CED, 得到四边形ABDE, 若∠1+∠2=230°,则剪掉的∠C=_________;(3) 小明联想到了曾经解决的一个问题:如图3, 在△ABC中, BP、CP分别平分外角∠DBC、∠ECB, ∠P与∠A有何数量关系?请直接写出答案_ .【拓展提升】(4) 如图4, 在四边形ABCD中, BP、CP分别平分外角∠EBC、∠FCB, ∠P与∠A、∠D有何数量关系?为什么?(若需要利用上面的结论说明, 可直接使用, 不需说明理由)ABC DE FP(图4)参考答案一、选择题1.D2.A3.D4.C 5.C 6.B7.A 8.A 9.B10.B 二、填空题11.4x+2<0.12.﹣3.13.(2a+3)(2a﹣3).14.16;15.1616.-4<k<0 17.-1或7 18.75°三、解答题19.解:(1)原式=9+1﹣5=5;(2)原式=8x3y6﹣5x3y6=3x3y6.20解:(1)a3﹣4a,=a(a2﹣4),=a(a+2)(a﹣2);(2)x3﹣2x2y+xy2,=x(x2﹣2xy+y2),=x(x﹣y)2.21.解:(1)由①得:y=3x﹣5③,把③代入②得:x=3,把x=3代入③得:y=4,则方程组的解为;(2)方程组整理得:,②×2﹣①×3得:y=1,把y=1代入①得:x=6,则方程组的解为.22. 解:(1)去分母得:x+5﹣2<3x+2, 移项得:x ﹣3x <2+2﹣5, 合并同类项得:﹣2x <﹣1, 把x 的系数化为1得:x >;(2),解①得:x≥1, 解②得:x <3,不等式组的解集为:1≤x <3.23. 解:原式=332-+-x x x ()()122422+---+x x x=6x -9.当x =12时, 6x -9=6×21-9=-6.24.解:设冷风扇和普通电风扇每台的采购价格分别为x 元和y 元, 依题意得, ,解得:.答:冷风扇和普通电风扇每台的采购价分别为1800元和150元. 25. 解:∵EF ∥AD,∴∠2=∠3(两直线平行, 同位角相等); 又∵∠1=∠2,∴∠1=∠3(等量代换),∴AB ∥DG (内错角相等, 两直线平行),∴∠BAC+∠AGD=180°(两直线平行, 同旁内角互补), ∵∠BAC=80°, ∴∠AGD=100°.26.(8分)(本题解法不唯一, 以下解答供参考)证明: (1)∵DE ∥BC∴∠B =∠ADE∵∠A =90°∴∠ADE +∠AED =90° ∵∠F =90°∴∠ECF +∠CEF =90°∵∠AED =∠CEF∴∠ADE =∠ECF∴∠B =∠ECF(2) 由(1)可知∠B =∠ECF =55° ∴∠CED =∠F +∠ECF =90°+55°=145° 27. 解:(1)买普通票价钱为:20×18=360(元), 买20人团体票价钱为:20×20×80%=320(元), 360﹣320=40(元),答:18位游客买团体票比买普通票便宜40元; (2)设有x 人去该公园, 根据题意, 得20x >20×80%×20, 解得:x >16.答:至少17人, 买团体票比买普通票便宜. 28.(10分) 解:(1)()3-x x =0解:(2)由①得()()033=-+y x y x0=x 或03=-x 所以原方程组可化为:0=x 或3=x (Ⅰ)⎩⎨⎧=+=+403y x y x 或(Ⅱ)⎩⎨⎧=+=-403y x y x解(Ⅰ)得⎩⎨⎧-==26y x 解(Ⅱ)得⎩⎨⎧==13y x∴原方程组的解为⎩⎨⎧-==26y x 或⎩⎨⎧==13y x(3)原不等式可化为: ①⎩⎨⎧<+>-0103x x 或 ②⎩⎨⎧>+<-0103x x解不等组①无解解不等式②可得 31<<-x所以原不等式的解集为 31<<-x29.(10分)(本题解法不唯一, 以下解答供参考) (1)∠DBC +∠ECB=180°-∠ABC+180°-∠ACB =360°-(∠ABC+∠ACB ) =360°-(180°-∠A )=180°+∠A (2)50° (3)∠P =90°-12∠A(4)延长BA 、CD 交于点Q ,则∠P =90°-12∠Q , ∴∠Q =180°-2∠P .∴∠BAD +∠CDA =180°+∠Q =180°+180°-2∠P=360°-2∠P . (也可不添加辅助线, 其余解法酌情给分)百度文库,是您的资料好助手,助您一臂之力!如果您觉得有用,请收藏我,因为再次见到我的机会不多哦!。
2015-2016苏科版七年级下学期数学期末测试卷
2015-2016年度苏科版七年级下数学期末测试试卷(总分:150分 考试时间:120分钟)班级 姓名 学号 得分一、 选择题( 每题3分,共24分)1、下列现象是数学中平移的是( ▲ )A 、树叶从树上落下B 、电梯由一楼升到顶楼C 、碟片在光驱中运行D 、卫星绕地球运动2、下列运算中,正确的是( ▲ ) A 、4222a a a =+ B 、632a a a =⋅C 、239)3()3(x x x =-÷- D 、()4222b a ab -=-3、利用因式分解简便计算57×99+44×99-99正确的是( ▲ )A.99×(57+44)=99×101=9999B.99×(57+44-1)=99×100=9900C.99×(57+44+1)=99×102=10096D.99×(57+44-99)=99×2=198 4、不等式组2110x x >-⎧⎨-⎩,≤的解集是 ( ▲ )A .12x >-B .12x <-C .1x ≤D .112x -<≤ 5.下列命题是真命题的是( ▲ )A .内错角相等B .任何数的0次方是1C .一个角的补角一定大于它本身D .平行于同一直线的两条直线平行 6、已知不等式组⎩⎨⎧<>ax x 1无解,则a的取值范围是 ( ▲ )A .a >1B . a <1C .a ≤1D .a ≥17、如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D ′、C ′的位置, 若∠EFB =65°,则∠AED ′等于( ▲ )8、一个多边形截去一个角后,形成新多边形的内角和为2520°,则原多边形边数为( ▲ ) A 、13 B 、15 C 、13或15 D 、15或16或17 二、 填空题( 每题3分,共30分) 9、计算:23-=______.10、红细胞的直径约为0.0000077m ,用科学计数法表示为 m . 11、如果a <b .那么3-2a 3-2b (用不等号连接) 12、如图,直线AB ∥CD ,则∠C = °13、如图,小明从点A 出发,沿直线前进20m 后向左转300,再沿直线 前进20m ,又向左转300……照这样走下去,小明第一次回到出发点A , 一共走了 米。
2015-2016年江苏省苏州市七年级(下)期末数学模拟试卷(解析版)
2015-2016学年江苏省苏州市七年级(下)期末数学模拟试卷一、选择题(共10小题,每小题2分,满分20分)1.(2分)下列四幅图中,∠1和∠2是同位角的是()A.(1)、(2)B.(3)、(4)C.(1)、(2)、(3)D.(2)、(3)、(4)2.(2分)如图,已知AB∥CD,则∠A、∠E、∠D之间的数量关系为()A.∠A+∠E+∠D=360°B.∠A+∠E+∠D=180°C.∠A+∠E﹣∠D=180°D.∠A﹣∠E﹣∠D=90°3.(2分)如图,在边长为a的正方形上剪去一个边长为b的小正方形(a>b),把剩下的部分剪拼成一个梯形,分别计算这两个图形阴影部分的面积,由此可以验证的等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣ab=a(a﹣b)4.(2分)不论x,y为何有理数,x2+y2﹣10x+8y+45的值均为()A.正数B.零C.负数D.非负数5.(2分)如果不等式组无解,那么m的取值范围是()A.m>8B.m≥8C.m<8D.m≤86.(2分)对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45°D.∠1=40°,∠2=40°7.(2分)在方格纸中,把一个图形先沿水平方向平移|a|格(当a为正数时,表示向右平移;当a为负数时,表示向左平移),再沿竖直方向平移|b|格(当b为正数时,表示向上平移;当b为负数时,表示向下平移),得到一个新的图形,我们把这个过程记为【a,b】.例如,把图中的ABC先向右平移3格,再向下平移5格得到△A1B1C1,可以把这个过程记为【3,﹣5】.若再将△A1B1C1经过【5,2】得到△A2B2C2,则△ABC经过平移得到△A2B2C2的过程是()A.【2,7】B.【8,﹣3】C.【8,﹣7】D.【﹣8,﹣2】8.(2分)现有纸片:4张边长为a的正方形,3张边长为b的正方形,8张宽为a、长为b 的长方形,用这15张纸片重新拼出一个长方形,那么该长方形的长为()A.2a+3b B.2a+b C.a+3b D.无法确定9.(2分)已知方程组的解满足x+y=2,则k的值为()A.﹣4B.2C.﹣2D.410.(2分)若(x+k)(x﹣4)的积中不含有x的一次项,则k的值为()A.0B.4C.﹣4D.﹣4或4二、填空题(共10小题,每小题2分,满分20分)11.(2分)实验表明,人体内某种细胞的形状可近似看作球,它的直径约为0.00 000 156m,则这个数用科学记数法表示是m.12.(2分)已知:x a=4,x b=3,则x a﹣2b=.13.(2分)如果x﹣y=2,xy=3,则x2y﹣xy2=.14.(2分)若二次三项式4x2+ax+9是一个完全平方式,则a=.15.(2分)如图,在△ABC中,AD是BC边上的高,AE平分∠BAC,∠B=42°,∠C=70°,则∠DAE=.16.(2分)将二元一次方程3x﹣5y=9化成y=kx+m,则k=,m=.17.(2分)若关于x的不等式组只有4个整数解,则a的取值范围是.18.(2分)若(x+m)(x+3)中不含x的一次项,则m的值为.19.(2分)如图,BP是△ABC中∠ABC的平分线,CP是△ABC的外角∠ACM的平分线,如果∠ABP=20°,∠ACP=50°,则∠A+∠P=.20.(2分)三个同学对问题“若方程组的解是,求方程组的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应该是.三、解答题21.(6分)计算题:①()100×3101﹣(﹣2011)0②5a2b•(﹣2ab3)+3ab•(4a2b3)22.(6分)解方程组:(1)(2).23.(6分)分解因式:(1)x2y﹣3y.(2)(2x+y)(2x﹣3y)+x(2x+y).24.(4分)解不等式组.并把解集在数轴上表示出来..25.(5分)如果关于x、y的二元一次方程组的解x和y的绝对值相等,请求出a的值.26.(5分)某公司准备把240吨白砂糖运往A、B两地,用大、小两种货车共20辆,恰好能一次性装完这批白砂糖,相关数据见下表:(1)求大、小两种货车各用多少辆?(2)如果安排10辆货车前往A地,其中大车有m辆,其余货车前往B地,且运往A地的白砂糖不少于115吨,①求m的取值范围;②请你设计出使总运费最少的货车调配方案,并求出最少总运费.27.(5分)如图,AE∥BD,∠CBD=50°,∠AEF=130°.求∠C的度数.28.(5分)在数学中,为了简便,记=1+2+3+…+(n﹣1)+n,=(x+1)+(x+2)+…+(x+n).(1)请你用以上记法表示:1+2+3+…+2011=;(2)化简:;(3)化简:[(x﹣k)(x﹣k﹣1)].29.(8分)阅读理解:解方程组时,如果设,则原方程组可变形为关于m、n的方程组,解这个方程组得到它的解为.由,求得原方程组的解为.利用上述方法解方程组:.30.(10分)若x,y,z满足(x﹣y)2+(z﹣y)2+2y2﹣2(x+z)y+2xz=0,且x,y,z是周长为48的一个三角形的三条边长,求y的长.四、附加题(20分)做对加分,做错不扣分31.(10分)Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2=°;(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为:;(3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.(4)若点P运动到△ABC形外,如图(4)所示,则∠α、∠1、∠2之间的关系为:.32.(10分)如图,直线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB =∠AOB,OE平分∠COF(1)求∠EOB的度数;(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值.(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.2015-2016学年江苏省苏州市七年级(下)期末数学模拟试卷参考答案与试题解析一、选择题(共10小题,每小题2分,满分20分)1.(2分)下列四幅图中,∠1和∠2是同位角的是()A.(1)、(2)B.(3)、(4)C.(1)、(2)、(3)D.(2)、(3)、(4)【考点】J6:同位角、内错角、同旁内角.【解答】解:根据同位角的定义,图(1)、(2)中,∠1和∠2是同位角;图(3)∠1、∠2的两边都不在同一条直线上,不是同位角;图(4)∠1、∠2不在被截线同侧,不是同位角.故选:A.2.(2分)如图,已知AB∥CD,则∠A、∠E、∠D之间的数量关系为()A.∠A+∠E+∠D=360°B.∠A+∠E+∠D=180°C.∠A+∠E﹣∠D=180°D.∠A﹣∠E﹣∠D=90°【考点】JA:平行线的性质.【解答】解:如右图所示,作EF∥AB,∵AB∥EF,∴∠A+∠AEF=180°,又∵AB∥CD,∴EF∥CD,∴∠D=∠FED,∴∠A+∠AEF+∠FED﹣∠D=180°,即∠A+∠E﹣∠D=180°.故选:C.3.(2分)如图,在边长为a的正方形上剪去一个边长为b的小正方形(a>b),把剩下的部分剪拼成一个梯形,分别计算这两个图形阴影部分的面积,由此可以验证的等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣ab=a(a﹣b)【考点】4G:平方差公式的几何背景.【解答】解:阴影部分的面积=a2﹣b2=(a+b)(a﹣b).故选:A.4.(2分)不论x,y为何有理数,x2+y2﹣10x+8y+45的值均为()A.正数B.零C.负数D.非负数【考点】1F:非负数的性质:偶次方;4C:完全平方公式.【解答】解:x2+y2﹣10x+8y+45,=x2﹣10x+25+y2+8y+16+4,=(x﹣5)2+(y+4)2+4,∵(x﹣5)2≥0,(y+4)2≥0,∴(x﹣5)2+(y+4)2+4>0,故选:A.5.(2分)如果不等式组无解,那么m的取值范围是()A.m>8B.m≥8C.m<8D.m≤8【考点】CB:解一元一次不等式组.【解答】解:因为不等式组无解,即x<8与x>m无公共解集,利用数轴可知m≥8.故选:B.6.(2分)对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45°D.∠1=40°,∠2=40°【考点】O1:命题与定理.【解答】解:A、满足条件∠1+∠2=90°,也满足结论∠1≠∠2,故A选项错误;B、不满足条件,故B选项错误;C、满足条件,不满足结论,故C选项正确;D、不满足条件,也不满足结论,故D选项错误.故选:C.7.(2分)在方格纸中,把一个图形先沿水平方向平移|a|格(当a为正数时,表示向右平移;当a为负数时,表示向左平移),再沿竖直方向平移|b|格(当b为正数时,表示向上平移;当b为负数时,表示向下平移),得到一个新的图形,我们把这个过程记为【a,b】.例如,把图中的ABC先向右平移3格,再向下平移5格得到△A1B1C1,可以把这个过程记为【3,﹣5】.若再将△A1B1C1经过【5,2】得到△A2B2C2,则△ABC经过平移得到△A2B2C2的过程是()A.【2,7】B.【8,﹣3】C.【8,﹣7】D.【﹣8,﹣2】【考点】Q3:坐标与图形变化﹣平移.【解答】解:∵2次平移后的横坐标变化分别为3,5,说明图形向右平移了3个单位,又向右平移了5个单位,那么一共向右平移了3+5=8个单位;纵坐标变化分别为﹣5,2,说明图形向下平移了5个单位后,又向上平移了2个单位,那么是平移了﹣5+2=﹣3个单位;∴△ABC经过平移得到△A2B2C2的过程是【8,﹣3】,故选:B.8.(2分)现有纸片:4张边长为a的正方形,3张边长为b的正方形,8张宽为a、长为b 的长方形,用这15张纸片重新拼出一个长方形,那么该长方形的长为()A.2a+3b B.2a+b C.a+3b D.无法确定【考点】4B:多项式乘多项式.【解答】解:根据题意可得:拼成的长方形的面积=4a2+3b2+8ab,又∵4a2+3b2+8ab=(2a+b)(2a+3b),b<3b,∴长=2a+3b.故选:A.9.(2分)已知方程组的解满足x+y=2,则k的值为()A.﹣4B.2C.﹣2D.4【考点】97:二元一次方程组的解.【解答】解:,①﹣②得:x+2y=2,联立得:,解得:,则k=2x+3y=4,故选:D.10.(2分)若(x+k)(x﹣4)的积中不含有x的一次项,则k的值为()A.0B.4C.﹣4D.﹣4或4【考点】4B:多项式乘多项式.【解答】解:(x+k)(x﹣4),=x2﹣4x+kx﹣4k,=x2+(k﹣4)x﹣4k,∵不含有x的一次项,∴k﹣4=0,解得k=4.故选:B.二、填空题(共10小题,每小题2分,满分20分)11.(2分)实验表明,人体内某种细胞的形状可近似看作球,它的直径约为0.00 000 156m,则这个数用科学记数法表示是 1.56×10﹣6m.【考点】1J:科学记数法—表示较小的数.【解答】解:0.000 001 56m这个数用科学记数法表示是1.56×10﹣6m.12.(2分)已知:x a=4,x b=3,则x a﹣2b=.【考点】47:幂的乘方与积的乘方;48:同底数幂的除法.【解答】解:x a﹣2b=x a÷(x b•x b),=4÷(3×3),=.故答案为:.13.(2分)如果x﹣y=2,xy=3,则x2y﹣xy2=6.【考点】53:因式分解﹣提公因式法.【解答】解:∵x﹣y=2,xy=3,∴x2y﹣xy2=xy(x﹣y)=3×2=6.故答案为:6.14.(2分)若二次三项式4x2+ax+9是一个完全平方式,则a=±12.【考点】4E:完全平方式.【解答】解:a=±2×2×3=±12.故答案为:±12.15.(2分)如图,在△ABC中,AD是BC边上的高,AE平分∠BAC,∠B=42°,∠C=70°,则∠DAE=14°.【考点】K2:三角形的角平分线、中线和高;K7:三角形内角和定理.【解答】解:∵在△ABC中,AE是∠BAC的平分线,且∠B=42°,∠C=70°,∴∠BAE=∠EAC=(180°﹣∠B﹣∠C)=(180°﹣42°﹣70°)=34°.在△ACD中,∠ADC=90°,∠C=70°,∴∠DAC=90°﹣70°=20°,∠EAD=∠EAC﹣∠DAC=34°﹣20°=14°.故答案是:14°.16.(2分)将二元一次方程3x﹣5y=9化成y=kx+m,则k=,m=﹣.【考点】93:解二元一次方程.【解答】解:∵3x﹣5y=9,∴5y=3x﹣9,∴y=x﹣.故答案为:;﹣.17.(2分)若关于x的不等式组只有4个整数解,则a的取值范围是﹣11≤a<﹣8.【考点】CC:一元一次不等式组的整数解.【解答】解:解不等式2x>3x﹣3,得:x<3,解不等式3x﹣a>5,得:x>,∵不等式组只有4个整数解,∴﹣2≤<﹣1,解得:﹣11≤a<﹣8,故答案为:﹣11≤a<﹣8.18.(2分)若(x+m)(x+3)中不含x的一次项,则m的值为﹣3.【考点】4B:多项式乘多项式.【解答】解:∵(x+m)(x+3)=x2+(m+3)x+3m,又∵结果中不含x的一次项,∴m+3=0,解得m=﹣3.19.(2分)如图,BP是△ABC中∠ABC的平分线,CP是△ABC的外角∠ACM的平分线,如果∠ABP=20°,∠ACP=50°,则∠A+∠P=90°.【考点】K2:三角形的角平分线、中线和高;K7:三角形内角和定理;K8:三角形的外角性质.【解答】解:∵BP是△ABC中∠ABC的平分线,CP是△ABC的外角∠ACM的平分线,∵∠ABP=20°,∠ACP=50°,∴∠ABC=2∠ABP=40°,∠ACM=2∠ACP=100°,∴∠A=∠ACM﹣∠ABC=60°,∠ACB=180°﹣∠ACM=80°,∴∠BCP=∠ACB+∠ACP=130°,∵∠PBC=20°,∴∠P=180°﹣∠PBC﹣∠BCP=30°,∴∠A+∠P=90°.故答案为:90°.20.(2分)三个同学对问题“若方程组的解是,求方程组的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应该是.【考点】97:二元一次方程组的解.【解答】解:两边同时除以5得,,和方程组的形式一样,所以,解得.故答案为:.三、解答题21.(6分)计算题:①()100×3101﹣(﹣2011)0②5a2b•(﹣2ab3)+3ab•(4a2b3)【考点】47:幂的乘方与积的乘方;49:单项式乘单项式;6E:零指数幂.【解答】解:(1)原式=【(﹣)100×3100】×3﹣1=[﹣×3]100×3﹣1=3﹣1=2;(2)原式=﹣10a3b4+12a3b4=2a3b4.22.(6分)解方程组:(1)(2).【考点】98:解二元一次方程组;9C:解三元一次方程组.【解答】解:(1)②×3﹣①得:y=1把y=1代入②,得:x=3经检验,原方程组的解为:(2 )①+②,③﹣②得:(5)×3﹣(4)得:把代入③得:y=3经检验:是原方程组的解.23.(6分)分解因式:(1)x2y﹣3y.(2)(2x+y)(2x﹣3y)+x(2x+y).【考点】55:提公因式法与公式法的综合运用.【解答】解:(1)原式=y(x2﹣9)=(x+3)(x﹣3);(2)原式=(2x+y)(2x﹣3y+x)=3(2x+y)(x﹣y).24.(4分)解不等式组.并把解集在数轴上表示出来..【考点】C4:在数轴上表示不等式的解集;CB:解一元一次不等式组.【解答】解:不等式①去分母,得x﹣3+6≥2x+2,移项,合并得x≤1,不等式②去括号,得1﹣3x+3<8﹣x,移项,合并得x>﹣2,∴不等式组的解集为:﹣2<x≤1.数轴表示为:25.(5分)如果关于x、y的二元一次方程组的解x和y的绝对值相等,请求出a的值.【考点】97:二元一次方程组的解.【解答】解:方程组得:,已知x和y的绝对值相等,当x、y同号时,则2a﹣12=8﹣a,得:a=,当x、y异号时,则2a﹣12=﹣(8﹣a),得:a=4,所以a的值为:或4.26.(5分)某公司准备把240吨白砂糖运往A、B两地,用大、小两种货车共20辆,恰好能一次性装完这批白砂糖,相关数据见下表:(1)求大、小两种货车各用多少辆?(2)如果安排10辆货车前往A地,其中大车有m辆,其余货车前往B地,且运往A地的白砂糖不少于115吨,①求m的取值范围;②请你设计出使总运费最少的货车调配方案,并求出最少总运费.【考点】9A:二元一次方程组的应用;C9:一元一次不等式的应用.【解答】解:(1)设大货车x辆,则小货车有(20﹣x)辆,15x+10(20﹣x)=240,解得:x=8,20﹣x=20﹣8=12(辆),答:大货车用8辆.小货车用12辆;(2)①调往A地的大车有m辆,则到A地的小车有(10﹣m)辆,由题意得:15m+10(10﹣m)≥115,解得:m≥3,∵大车共有8辆,∴3≤m≤8;②设总运费为W元,∵调往A地的大车有m辆,则到A地的小车有(10﹣m)辆,∴到B的大车(8﹣m)辆,到B的小车有[12﹣(10﹣m)]=(2+m)辆,W=630m+420(10﹣m)+750(8﹣m)+550(2+m),=630m+4200﹣420m+6000﹣750m+1100+550m,=10m+11300.又∵W随m的增大而增大,∴当m=3时,w最小.当m=3时,W=10×3+11300=11330.因此,应安排3辆大车和7辆小车前往A地,安排5辆大车和5辆小车前往B地,最少运费为11330元.27.(5分)如图,AE∥BD,∠CBD=50°,∠AEF=130°.求∠C的度数.【考点】JA:平行线的性质;K8:三角形的外角性质.【解答】解:∵AE∥BD,∠CBD=50°,∴∠A=∠CBD=50°,∵∠AEF=130°,∴∠C=∠AEF﹣∠A=130°﹣50°=80°.28.(5分)在数学中,为了简便,记=1+2+3+…+(n﹣1)+n,=(x+1)+(x+2)+…+(x+n).(1)请你用以上记法表示:1+2+3+…+2011=;(2)化简:;(3)化简:[(x﹣k)(x﹣k﹣1)].【考点】4I:整式的混合运算.【解答】解:(1)1+2+3+…+2011=;(2)=(x﹣1)+(x﹣2)+(x﹣3)+…+(x﹣n)=(x+x…+x)﹣(1+2+3…+n)=nx﹣;(3)[(x﹣k)(x﹣k﹣1)]=(x﹣1)(x﹣2)+(x﹣2)(x﹣3)+(x﹣3)(x﹣4)=x2﹣3x+2+x2﹣5x+6+x2﹣7x+12=3x2﹣15x+20.29.(8分)阅读理解:解方程组时,如果设,则原方程组可变形为关于m、n的方程组,解这个方程组得到它的解为.由,求得原方程组的解为.利用上述方法解方程组:.【考点】98:解二元一次方程组.【解答】解:设,则原方程组可变形为关于m、n的方程组,①+②得:8m=24,解得:m=3,将m=3代入①得:n=﹣2,则方程组的解为:,由=3,=﹣2,故方程组的解为:.30.(10分)若x,y,z满足(x﹣y)2+(z﹣y)2+2y2﹣2(x+z)y+2xz=0,且x,y,z是周长为48的一个三角形的三条边长,求y的长.【考点】59:因式分解的应用.【解答】解:∵(x﹣y)2+(z﹣y)2+2y2﹣2(x+z)y+2xz=(x﹣y)2+(z﹣y)2+2y2﹣2xy﹣2yz+2xz=(x﹣y)2+(z﹣y)2+2y(y﹣x)﹣2z(y﹣x)=(x﹣y)2+(z﹣y)2+2(y﹣x)(y﹣z)=0=[(x﹣y)+(z﹣y)]2=0,即x﹣y+z﹣y=0,∴x+z=2y,又∵x+y+z=48,∴2y+y=48,即3y=48,则y=16.四、附加题(20分)做对加分,做错不扣分31.(10分)Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2=140°;(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为:∠1+∠2=90°+α;(3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.(4)若点P运动到△ABC形外,如图(4)所示,则∠α、∠1、∠2之间的关系为:∠2=90°+∠1﹣α.【考点】K7:三角形内角和定理;K8:三角形的外角性质.【解答】解:(1)∵∠1+∠2+∠CDP+∠CEP=360°,∠C+∠α+∠CDP+∠CEP=360°,∴∠1+∠2=∠C+∠α,∵∠C=90°,∠α=50°,∴∠1+∠2=140°;故答案为:140°;(2)由(1)得出:∠α+∠C=∠1+∠2,∴∠1+∠2=90°+α故答案为:∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由:∵∠2+∠α=∠DME,∠DME+∠C=∠1,∴∠1=∠C+∠2+α=90°+∠2+α.(4)∵∠PFD=∠EFC,∴180°﹣∠PFD=180°﹣∠EFC,∴∠α+180°﹣∠1=∠C+180°﹣∠2,∴∠2=90°+∠1﹣α.故答案为:∠2=90°+∠1﹣α.32.(10分)如图,直线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB =∠AOB,OE平分∠COF(1)求∠EOB的度数;(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值.(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.【考点】JA:平行线的性质.【解答】解:(1)∵CB∥OA,∴∠AOC=180°﹣∠C=180°﹣100°=80°,∵OE平分∠COF,∴∠COE=∠EOF,∵∠FOB=∠AOB,∴∠EOB=∠EOF+∠FOB=∠AOC=×80°=40°;(2)∵CB∥OA,∴∠AOB=∠OBC,∵∠FOB=∠AOB,∴∠FOB=∠OBC,∴∠OFC=∠FOB+∠OBC=2∠OBC,∴∠OBC:∠OFC=1:2,是定值;(3)在△COE和△AOB中,∵∠OEC=∠OBA,∠C=∠OAB,∴∠COE=∠AOB,∴OB、OE、OF是∠AOC的四等分线,∴∠COE=∠AOC=×80°=20°,∴∠OEC=180°﹣∠C﹣∠COE=180°﹣100°﹣20°=60°,故存在某种情况,使∠OEC=∠OBA,此时∠OEC=∠OBA=60°.。
2015-2016学年度苏科版七年级第二学期期末考试数学试卷及答案(精选两套)
2015-2016学年度第二学期七年级期末考试数学试卷 2016.6一、选择题:(本大题共有10小题,每小题2分,共20分.)1.下列计算正确的是 ( )A .a 2+a 2=2a 4B .a 2 • a 3=a 6C .(-3x ) 3÷(-3x )=9x 2D .(-ab 2) 2=-a 2b 42.如果b a >,那么下列各式中一定正确的是 ( ) A . 33-<-b a ; B . b a 33>; C . b a 33->-; D .1313-<-b a 3.下列等式由左边到右边的变形中,属于因式分解的是 ( )A .1)1)(1(2-=-+a a aB .22)3(96-=+-a a aC .1)2(122++=++x x x xD .y x y x y x 222343618∙-=-4.如图,已知AB ∥CD ,BC 平分∠ABE ,∠C =35°,则∠BED 的度数是 ( )A .70°B .68°C . 60°D .72°5.下列命题是假命题的是 ( ) A . 同旁内角互补; B . 垂直于同一条直线的两条直线平行; C . 对顶角相等; D . 同角的余角相等.6.如图,有以下四个条件:①∠B +∠BCD =180°,②∠1=∠2,③∠3=∠4,④∠B =∠5.其中能判定AB ∥CD 的条件的个数有 ( ) A .1 B .2 C .3 D .47. 如果0)2014(-=a 、1)101(--=b 、2)35(-=c ,那么其大小关系为 ( ) A .c b a >> B .b c a >> C .a b c >> D .b a c >>8.如图,∠1,∠2,∠3,∠4是五边形ABCDE 的外角,且∠1=∠2=∠3=∠4=70°,则∠AED 的度数是 ( ) A .80° B .100° C .108° D .110° 9. 若2=ma,3=n a ,则n m a -2的值是 ( )A .1B .12C .43 D .34第4题 第8题10.在方格纸中,把一个图形先沿水平方向平移a 格(当a 为正数时,表示向右平移;当a 为负数时,表示向左平移),再沿竖直方向平移b 格(当b 为正数时,表示向上平移;当b 为负数时,表示向下平移),得到一个新的图形,我们把这个过程记为【a ,b 】.例如,把图中的△ABC 先向右平移3格,再向下平移5格得到△A 1B 1C 1,可以把这个过程记为【3,-5】.若再将△A 1B 1C 1经过【5,2】得到△A 2B 2C 2,则△ABC 经过平移得到△A 2B 2C 2的过程是 ( ) A .【2,7】 B .【8,-3】 C .【8,-7】 D .【-8,-2】 二、填空题:(本大题共8小题,每空2分,共18分.) 11.甲型H7N9流感病毒的直径大约为0.000 000 08米,用科学记数法表示为 米. 12. 因式分解:162-m = ;22882y xy x +-= . 13.已知二元一次方程x -y =1,若y 的值大于-1,则x 的取值范围是 . 14.写出命题“直角三角形的两个锐角互余”的逆命题: ____ _.15. 如图,BC⊥ED 于O ,∠A=45°,∠D=20°,则∠B=________°.16.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=23度,那么∠2= 度.17.已知关于x 的不等式m x <2只有2个正整数解,则m 的取值范围是 . 18.如图,△ABC 中,∠A =35°,沿BE 将此三角形对折,又沿BA' 再一次对折,点C 落在BE 上的C'处,此时∠C'DB =85°,则原三角形的∠ABC 的度数为 . 三、解答题(本大题共10小题,共62分.) 19.(本题满分6分,每小题3分) (1)计算:20141)1(2)14.3(-+---π (2) 计算:2244223)2()(a a a a a ÷+∙--;20.(本题满分6分,每小题3分)第15题 第16题 第18题(1)计算:n (n+1)(n+2) (2)化简求值:2)1()2)(2(---+x x x ,其中1-=x . 21.(本题满分6分,每小题3分)解方程组:(1) ⎩⎨⎧=-=+3252y x y x (2) ⎩⎨⎧=--=-01083572y x y x22. (本题满分6分)(1)解不等式:7)1(68)2(5+-<+-x x ;(2)若(1)中的不等式的最小整数解是方程32=-ax x 的解,求a 的值.23.(本题满分6分)解不等式组()432,121.3x x x x -≤-⎧⎪⎨++>⎪⎩,并把解集在数轴上表示出来.24.(本题满分6分)若关于x 、y 的方程组325233x y a x y a -=-⎧⎨+=+⎩的解都为正数,求a 的取值范围.25.(本题满分6分)如图,AD 是△ABC 的高,BE 平分∠ABC 交AD 于E ,若∠C=70o ,∠BED=64o,求∠BAC 的度数. 26.(本题满分6分)已知:如图,在△ABC 中,∠A=∠ABC ,直线EF 分别交△ABC 的边AB 、AC 和CB 的延长线于点D 、E 、F.求证:∠F+∠FEC=2∠A.27.(本题满分6分)一天,小明在玩纸片拼图游戏时,发现利用图①中的三种材料各若干,可以拼出一些长方形来解释某些等式,比如图②可以解释为等式:2223))(2(b ab a b a b a ++=++.(1)则图③可以解释为等式: .(2)在虚线框中用图①中的基本图形若干块(每种至少用一次)拼成一个长方形,使拼出的长方形面积为22372b ab a ++,并请在图中标出这个长方形的长和宽.(3)如图④,大正方形的边长为m ,小正方形的边长为n ,若用x 、y 表示四个长方形的两边长(y x >),观察图案,指出以下关系式:(a )x y n -=;(b )224m n xy -=;(c )22x y mn -=; (d )22222m n x y ++=.其中正确的关系式的个数有 个.A BC DE F28.(本题满分8分)根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2013年5月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表:2013年5月份,该市居民甲用电200千瓦时,交费122.5元;居民乙用电400千瓦时,交费277.5元.(1)求上表中a、b的值:(2)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时,其当月的平均电价每千瓦时不超过0.62元?初一数学参考答案与评分标准2016.6一、选择题(每小题2分,共30分):C B B A A CD B D B 二、填空题(每空2分,共18分)11、8108-⨯;12、)4)(4(+-m m ,2)2(2y x -;13、 0>x ;14、 有两个角互余的三角形是直角三角形;15、25;16、 67;17、 64≤<m ;18、 75°. 三、解答题19(1)201410)1(2)14.3(-+---π =1211+--------------------(2分) =211--------------------------(3分) (2)2244223)2()(a a a a a ÷+⋅--=28664a a a a ÷+----------------(2分) =64a -----------------------------------(3分)20.(1)原式=n(n 2+3n+2) ---------------(2分)=n 3+3n 2+2n-------------------------------(3分)(2)原式=)12(422+---x x x ------------------------(1分) =12422-+--x x x=52-x ------------------------------------------------(2分) 当1-=x 时,原式=5)1(2--⨯=7--------------------------(3分)21.(1)解:先解出一个未知数,得1分,再解出另一个得2分,最后回答⎩⎨⎧==12y x (3分) (2)解:先解出一个未知数,得1分,再解出另一个得2分,最后回答⎩⎨⎧==16y x (3分)22. 解:(1)x>-3-----------------------------------(3分)(2)x>-3的最小整数解是2-=x ,------(4分)把2-=x 代入32=-ax x 中,解得27=a ---------------(6分) 23.(1)解:解①:1≥x -------------------------(1分) 解②:4<x ---------------------------(2分) 原不等式组的解集是41<≤x --------------(4分)画数轴表示正确------------------------------------------(6分)24.解:先解出⎩⎨⎧+=-=21a y a x ---------------------------------------------(4分)再得⎩⎨⎧>+>-0201a a -------------------------------------------------------(5分)解不等式组得解集:1>a -------------------------------------------------------------(6分) 25.解:∵AD 是△ABC 的高, ∴∠ADC=∠ADB=90° 又∵∠C=70°,∴∠DAC=90°-70°=20°----------------------(1分) 又∵∠BED=64°,∴∠DBE=90°-64°=26°----------------------(2分) ∵BE 平分∠ABC∴∠ABE=∠EBD=26°---------------------------(3分) ∵∠BED=∠ABE+∠BAE∴∠BAE=64°-26°=38°-------------------------(5分) ∴∠BAC=38°+20°=58°--------------------------(6分) (其他解法参照上述评分标准相应给分)26.证得∠C+∠A+∠ABC=1800----------------------(1分)由∠A=∠ABC 得∠C+2∠A=1800----------------------(2分)∠C+∠F+∠FEC=1800----------------------(4分) 得到∠F+∠FEC=2∠A ----------------------(6分) 27.(1)22252)2)(2(b ab a b a b a ++=++---------------------------------------------(2分)(2)图略--------------------------------------------------------------------------------------(4分) (3)4------------------------------------------------------------------------------------------(6分)28.解:(1)⎩⎨⎧=+++=+5.277)3.0(1001501505.12250150a b a b a --------------(2分)解得⎩⎨⎧==65.06.0b a -------------------------------------------(4分)(2)分3种情况:设一户居民月用电量为x 千瓦时①当150≤x 时,x x 62.06.0≤,解得0≥x ,故1500≤≤x ;-------------(5分)②当300150≤<x 时,x x 62.0)150(65.01506.0≤-+⨯,解得250≤x ,故250150≤<x ;----------------------------------------------------(6分)③当300>x 时,x x 62.0)300(9.015065.01506.0≤-+⨯+⨯,解得149294≤x ,故x 无解;-----------------------------------------------------------(7分)综上所述,试行“阶梯电价”收费以后,该市一户居民月用电不大于250千瓦时,其当月的平均电价每千瓦时不超过0.62元-------------------------------------------------------(8分)注:不分类讨论解出不大于250得6分2015-2016学年度第二学期七年级期末考试数学试卷 2016.6一、选择题(每题有且只有一个答案正确,请把你认为正确的答案填在答题纸上,每题3分,共24分) 1. -12等于( ▲ ) A .12B .12-C .2D .2-2.下列运算中,正确的是( ▲ )A.44m m m =B.5210m m =()C.623m m m ÷=D.336+m m m = 3.已知b a <,c 是有理数,下列各式中正确的是( ▲ )A.22bc ac < B.b c a c -<- C.a c b c -<- D.cb c a < 4. 下列命题中的真命题...是( ▲ ) A .相等的角是对顶角 B .三角形的一个外角等于两个内角之和C .如果33a b =,那么a b = D. 内错角相等5. 如图,把三角板的直角顶点放在直尺的一边上,若130∠=︒,则2∠的度数为( ▲ )A.60︒ B.50︒ C.40︒ D.30︒第5题图 第6题图① 第6题图② 6. 把三张大小相同的正方形卡片A 、B 、C 叠放在一个底面为正方形的盒底上,盒底底面未被卡片覆盖的部分用阴影表示.若按图①摆放时,阴影部分的面积为1S ,若按图②摆放时,阴影部分的面积为2S ,则1S 与2S 的大小关系为( ▲ )A. 1S >2SB. 1S <2SC. 1S =2SD.不能确定7.某蔬菜公司收购到某种蔬菜140吨,准备加工上市销售,该公司的加工能力是:每天可以精加工6吨或粗加工16吨.现计划用15天完成加工任务,该公司应安排几天精加工,几天粗加工?设安排x 天精加工,y 天粗加工.为解决这个问题,所列方程组正确的是( ▲ ) A.14016615x y x y +=⎧⎨+=⎩, B.140 61615x y x y +=⎧⎨+=⎩, C.15166140x y x y +=⎧⎨+=⎩, D.15616140x y x y +=⎧⎨+=⎩, 8. 如图,在四边形ABCD 中,A B C ∠∠∠==,点E 在边AB 上,60AED ∠︒=,则一定有( ▲ )A .20ADE ∠︒=B .30ADE ∠︒=C .12ADE ADC ∠∠=D .13ADE ADC ∠∠=二、填空题(每题3分,共30分)9. 某种生物细胞的直径约为0.00056米,用科学记数法表示为 ▲ 米.10.多项式29x -因式分解的结果是 ▲ .11.等腰三角形的两边长分别为5和10,则它的周长为 ▲ . 12.若,21,8==n ma a则m n a -= ▲ . 13.如果2x y -=,3xy =,则22x y xy -= ▲ .14.一个多边形的内角和是其外角和的2倍,那么这个多边形的边数n = ▲ . 15.“同位角相等”的逆命题是 ▲ .16.已知关于x ,y 的二元一次方程组⎩⎨⎧-=+=+12,32y x k y x 的解互为相反数,则k 的值是 ▲ .17.小聪,小玲,小红三人参加“普法知识竞赛”,其中前5题是选择题,每题10分,每题有A 、B 两个选项,且只有一个选项是正确的,三人的答案和得分如下表,试问:这五道题的正确答案(按1~5题的顺序排列)是 ▲ .18.当三角形中一个内角是另一个内角的3倍时,我们称此三角形为“梦想三角形”.如果一个“梦想三角形”有一个角为108︒,那么这个“梦想三角形”的最小内角的度数为 ▲ .三.解答题(本大题共10题,满分96分)19.(本题满分8分,每小题4分)(1)计算:0231(2009)()(2)2--++-; (2)化简:()()()y x x y y x -+--33322.20.(本题满分8分,每小题4分)(1)因式分解:2244ax axy ay -+; (2)解方程组: 31,328x y x y +=-⎧⎨-=⎩21. (本题满分8分,每小题4分)(1) 先化简,再求值:()()()2x y x y x x y xy +--++ ,其中1,2x y =-=(2)解不等式组:⎩⎨⎧>-+-≤-0)3()1(202x x x ,并把它的解集在数轴上表示出来.22.(本题满分8分)如图,EF BC ∥,AC 平分BAF ∠,80B ∠=︒.求C ∠的度数.23.(本题满分10分)食品安全是老百姓关注的话题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A 、B 两种饮料均需加入同种添加剂,A 饮料每瓶需加该添加剂2克,B 饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A 、B 两种饮料共100瓶,问A 、B 两种饮料各生产了多少瓶?24.(本题满分10分)如图,已知DAC ∠是ABC ∆的一个外角,请在下列三个关系: ①B C ∠=∠; ②AE 平分DAC ∠ ③AE BC 中,选出两个恰当的关系作为条件,另一个作为结论,组成一个命题.(1)请写出所有的真命题(用序号表示);(2)请选择其中的一个真命题加以证明.25.(本题满分10分)在如图所示的方格纸中,每个小正方形方格的边长都为1,△ABC 的三个顶点在格点上.(1)画出△ABC 的AC 边上的高,垂足为D ;(标出画高时,你所经过的两个格点,用M 、N 表示)(2)画出将△ABC 先向左平移2格,再向下平移2格得到的△111A B C ;(3)求平移后,线段AC 所扫过的部分所组成的封.闭图形...的面积.26.(本题满分10分)某小区为了绿化环境,计划分两次购进A 、B 两种花草,第一次分别购进A 、B 两种花草30棵和15棵,共花费675元;第二次分别购进A 、B 两种花草12 棵和5棵..两次共...花费940元(两次购进的A 、B 两种花草价格均分别相同). (1)A 、B 两种花草每棵的价格分别是多少元?(2)若再次购买A 、B 两种花草共12棵(A 、B 两种花草价格不变),且A 种花草的数量不少于B 种花草的数量的4倍,请你给出一种费用最省的方案,并求出该方案所需费用.27.(本题满分12分)对于三个数,,a b c ,{},,M a b c 表示,,a b c 这三个数的平均数, {}min ,,a b c 表示,,a b c 这三个数中最小的数,如:{}12341,2,333M -++-==, {}1,2,min 31-=-;{}1211,2,33a a M a -+++-==,{}1in ,m ,2a -=()11(1)a a a ⎧≤-⎪⎨->-⎪⎩; 解决下列问题:(1)填空:{}220min 2,2,2013--=_______;(2)若{}min 2,22,422x x +-=,求x 的取值范围;(3)①若{}2,1,2M x x +={}min 2,1,2x x +,那么x =_______;②根据①,你发现结论“若{},,M a b c {}min ,,a b c =,则_______”(填,,a b c 的大小关系);③运用②解决问题:若{}22,2,2x y x y M y x +++-{}min 22,2,2x y x y x y =+++-,求x y +的值.28. (本题满分12分)已知△ABC 中,ABC ACB ∠=∠,D 为射线..CB 上一点(不与C 、B 重合),点E 为射线..CA 上一点,ADE AED ∠=∠.设BAD α∠=,CDE β∠=.(1) 如图(1),① 若40BAC ∠︒=,30DAE ∠︒=,则α=_____,β=_____.② 写出α与β的数量关系,并说明理由;(2) 如图(2),当D 点在BC 边上,E 点在CA 的延长线上时,其它条件不变,写出α与β的数量关系,并说明理由.(3) 如图(3),D 在CB 的延长线上,根据已知补全图形,并直接写出α与β的关系式__________________.图(1)图(2)图(3)七年级数学参考答案一、选择题(本大题共8小题,每小题3分,共24分)二、填空题(本大题共10小题,每题3分,共30分)9.-45.610⨯ 10.(3)(3)x x +- 11.25 12.1613.6 14.6 15.相等的角是同位角 16.1- 17.BABBA 18. 18︒或36︒三、 解答题:(本大题有8题,共96分)19.(1)解:原式=1+4+(8)- ……2分3=- …………4分(2)解:原式=22224129(9)x xy y x y -+-- ……2分=2251210x xy y --+ ………4分20.(1)解:原式=)44(22y xy x a +- ………………………2分=2)2(y x a - ……………………… 4分(2)解:①⨯3,得393x y +=- ③ ③-②,得1111y =- 解得1y =-将1y =-代入①,得2x =故方程组的解为2,1x y =⎧⎨=-⎩ ………………………4分 21.(1)原式=xy xy x y x 2222+---=xy y +-2………………………2分=24--=6-………………………4分(2)解不等式①,得2≤x ………………………1分解不等式②,得1->x ………………………2分所以原不等式组的解集为21≤<-x ………………………3分………………………4分22.解:∵EF BC∴180100FAB B ∠=︒-∠=︒∵AC 平分BAF ∠ ∴1502FAC FAB ∠=∠=︒ ∵EF BC∴50C FAC ∠=∠=︒ ………………………8分23.解设A 饮料生产了x 瓶,B 饮料生产了y 瓶,依题意得:10023270x y x y +=⎧⎨+=⎩………………………6分 解得:3070x y =⎧⎨=⎩. ………………………9分 答:A 饮料生产了30瓶,B 饮料生产了70瓶. ………………………10分24.(1)①②⇒③或①③⇒②或②③⇒①………………………3分(2)选②③⇒①,证明如下:∵BC ∥AE∴C EAC B DAE ∠∠∠∠= =∵AE 平分DAC ∠∴EAC DAE ∠∠=∴C B ∠∠=………………………10分25.(1)4个格点中任取两个作为M 和N 各1分,标出D 点1分(2)………………………6分(3)9………………………10分26.(1)设A 种花草每棵的价格x 元,B 种花草每棵的价格y 元,根据题意得: 3015675125940675x y x y +=⎧⎨+=-⎩解得 205x y =⎧⎨=⎩∴ A 种花草每棵的价格是20元,B 种花草每棵的价格是5元.……………………………………………………5分(2)设A 种花草的数量为m 株,则B 种花草的数量为(12)m -株, ∵A 种花草的数量不少于B 种花草的数量的4倍,∴4(12)m m ≥-解得:9.6m ≥9.612m ∴≤≤设购买树苗总费用为205(12)1560W m m m =+-=+,当10m =时,最省费用为:151060210⨯+=(元).答:购进A 种花草的数量为10株、B 种2株,费用最省;最省费用是210元. (本题也可以算出所有方案费用,取最小值.) …10分27. (1)-4 …………………………1分(2)由题意,得222,422x x +≥⎧⎨-≥⎩解得01x ≤≤ …………………………4分(3)①1 …………………………6分②a b c == …………………………8分③由题意,得22222x y x y x y x y ++=+⎧⎨+=-⎩ 解得31x y =-⎧⎨=-⎩∴4x y +=- . …………………………12分28(本题满分12分)(1)①α=10︒,β=5︒.…………………………2分②解:=2αβ …………………………3分设,BAC x DAE y ∠=︒∠=︒ ,则x y α=︒-︒ ∵ABC ACB ∠=∠∴1802x C ︒-︒∠= ∵ADE AED ∠=∠ ∴1802y AED ︒-︒∠= ∴180180222y x x y β︒-︒︒-︒︒-︒=-= ∴=2αβ…………………………5分 (2) 1802αβ︒+=…………………………6分 设,BAC x DAE y ∠=︒∠=︒ ,则180CAD y ∠=︒-︒∴(180)180x y x y α=︒-︒-︒=︒-︒+︒∵ABC ACB ∠=∠∴1802x C ︒-︒∠= ∵ADE AED ∠=∠ ∴1802y AED ︒-︒∠= ∴180180180222y x x y β︒-︒︒-︒︒+︒=︒--= ∴1802αβ︒+=…………………………8分 (3)画图…………………………10分 180-=2αβ︒ …………………………12分。
最新苏科版 七年级数学初一下册期末模拟考试检测试卷及答案(四套)
2015-2016学年度七年级数学下册期末质量检测试卷(一)(试卷满分:150分 考试时间:120分)一、选择题(本大题共有8小题,每小题3分,共24分。
在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在答题纸相应位置.......上)1.如图,若m ∥n ,∠1=115°,则∠2=( ) A . 55° B .60° C . 65° D . 70° 2.下列运算正确的是( )A .3a ﹒25a a =B .()325a a =C .336a a a +=D . ()222a b a b +=+3.下列方程是二元一次方程的是 ( )A .23x y z +=-B .5xy =C .153y x+= D . x y = 4.下面有3个命题:①同旁内角互补;②两直线平行,内错角相等;③在同一平面内,垂直于同一条直线的两直线互相平行.其中真命题为 ( )A .①B .②C .③D .②③5.不等式组1(1)22331x x x ⎧+≤⎪⎨⎪-<+⎩的解集在数轴上表示正确的是( )6.一个凸 n 边形,其内角和为1800,则n 的值为( )A .14B .13C .12D .157.已知 a 、b 为常数,若 ax + b >0的解集为 x <15,则 bx -a <0的解集是( ) A .x >-5 B .x <-5 C . x >5 D . x <58.∑表示数学中的求和符号,主要用于求多个数的和,∑下面的小字,1i =表示从1开始求和;上面的小字,如n 表示求和到...n 为止... 即1231ni n i x x x x x ==++++∑…。
则()211ni i =-∑表示 ( ) A .n 2-1 B .12+22+32+…+2i - iC .12+22+32+…+n 2-nD .12+22+32+…+n 2-(1+2+3+…+ n )A B C D第1题图在答题纸相应位置的横线上...) 9.某种生物细胞的直径约为0.000056米,用科学记数法表示为 米. 10.7211x y +=的正整数解是 .11.若29x mx ++ 是一个完全平方式,则m 的值是___________. 12.不等式123x x-<的解集为 . 13.已知102x=,103y=,则210x y-= .14.已知等腰三角形的两条边长分别是7和3,则此三角形的周长为 . 15.命题“对顶角相等”的逆命题是____________________________. 16.若25(2)()x x m x x n -+=--,则m n += .17.已知不等式30x m -≤有5个正整数解,则m 的取值范围是 .18.如图,△ABC 的面积为12,2BD DC =,AE EC =,那么阴影部分的面积是_______.三、解答题(共96分,解答应写出必要的计算过程、推演步骤或文字说明) 19.(每小题4分,共8分)计算: (1)()121122π-⎛⎫---- ⎪⎝⎭(2)()()22x y x y +- 20.(每小题4分,共8分)因式分解:(1)242a a -(2)42816x x -+21.解方程组(每小题4分,共8分)(1)2325y x x y =⎧⎨-=⎩①② (2)11233210x y x y +⎧-=⎪⎨⎪+=⎩①②第18题图22.(本题8分)解不等式组()33121318x x x x -⎧+≥+⎪⎨⎪--<-⎩, 并化简12x x -++.23. (本题10分)如图,在边长为1个单位长度的小正方形组成的网格中.(1)把△ABC 平移至'A 的位置,使点A 与'A 对应,得到△'''A B C ; (2)线段'AA 与'BB 的关系是: ;25.(本题10分)如图,175∠=,60A ∠=,45B ∠=,23∠=∠,FH AB ⊥于H . (1) 求证:DE ∥BC ;(2) CD 与AB 有什么位置关系?证明你的猜想.26.(本题10分)为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费。
苏科版2015-2016学年第二学期七年级数学下册期末试卷及答案
2015—2016学年第二学期期末考试试卷初一数学 2016. 6本试卷由填空题、选择题和解答题三大题组成.共28小题,满分130分.考试时间120分钟. 注意事项:1.答题前,考生务必将自己的考试号、学校、姓名、班级,用0. 5毫米黑色墨水签字笔填写在答题纸相对应的位置上,并认真核对;2.答题必须用0. 5毫米黑色墨水签字笔写在答题纸指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题纸上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题 本大题共有10小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填写在答题纸相应位置上.1. 下列式子计算正确的是A. 660a a ÷=B. 236(2)6a a -=-C. 222()2a b a ab b --=-+D. 22()()a b a b a b ---+=-2. 在人体血液中,红细胞的直径约为7.7-4⨯10cm, 7.7-4⨯10用小数表示为A. 0.000077B. 0. 00077C. -0.00077D. 0.00773. 如果一个三角形的两边长分别为3和7,则第三边长可能是A.3B.4C.7D.104. 如果a b <,下列各式中正确的是A. 22ac bc <B. 11a b >C. 33a b ->-D. 44a b > 5. 如图,直线12//l l ,一直角三角板(90)ABC ACB ∠=︒放在平行线上,两直角边分别与1l 、2l 交于点D 、E ,现测得175∠=︒,则2∠的度数为A. 15°B. 25°C. 30°D. 35°6. 如图4,已知ABC DCB ∠=∠,下列所给条件不能证明ABC DCB ∆≅∆的是A. A D ∠=∠B. AB DC =C. ACB DBC ∠=∠D. AC BD =7. 下列给出4个命题:①内错角相等;②对顶角相等;③对于任意实数x ,代数式2610x x -+总是正数;④若三条线段a 、b 、c 满足a b c +>,则三条线段a 、b 、c 一定能组成三角形.其中正确命题的个数是A.1个B. 2个C. 3个D.4个8. 已知关于x 的方程33x m x +=+的解为非负数,且m 为正整数,则m 的取值为A. 1B.1、2C. 1、2、3D. 0、1、2、39. 某商场为促销某种商品,将定价为5元/件的该商品按如下方式销售:若购买不超过5件商品,按原价销售;若一次性购买超过5件,按原价的八折进行销售.小明现有29元,则最多可购买该商品A. 5件B. 6件C. 7件D. 8件10. 如图,ABC ∆中,,AB AC D =、E 分别在边AB 、AC 上,且满足AD AE =.下列结论中:①ABE ACD ∆≅∆,②AO 平分BAC ∠,③OB OC =, ④AO BC ⊥,⑤若1AD BD =,则1OD OC =;其中正确的有A. 2个B. 3个C. 4个D.5个二、填空题 本大题共8小题,每小题3分,共24分,把答案直接填在答题纸相对应位置上.11. 计算: 423228x y x y ÷7= .12. 若 2x =-是方程36ax y +=的解,则a 的值为 .1y =13. 已知123,35y x y x =-+=-,则当x 满足条件 时,12y y <.14. 若一个多边形的每一个内角都是144°,则这个多边形的是边数为 .15. 已知4a b -=,则228a b a --的值为 .16. 如图,ABC ADE ∆≅∆,BC 的延长线交DE 于点G ,若24,54,16B CAB DAC ∠=︒∠=︒∠=︒,则DGB ∠= .17. 如图,四边形ABCD 中,A B C ∠=∠=∠,点E 在AB 边上,且13ADE EDC ∠=∠,110BED ∠=︒,则A ∠= .18. 4个数,,,a b c d 排列成∣ac bd ∣,我们称之为二阶行列式.规定它的运算法则为: ∣ac bd ∣= ad bc -.若∣21x x -+32x x +-∣=-13,则x = . 三、解答题 本大题共10小题,共76分.把解答过程写在答题纸相对应的位置上,解答时应写出必要的计19. (本题满分9分,每小题3分)将下列各式分解因式:(1) 21245x x --; (2) 32363x x x -+; (3) 29()4()a x y x y ---.20.(本题满分5分)先化简再求值: 224(1)7(1)(1)3(1)x x x x +--++-,其中12x =-. 21.(本题满分8分,每小题4分)解不等式(组):(1) 3136x x -≥-,并将解集在数轴上表示出来; (2) 2x x >4-2 211132x x -≥- 22.(本题满分8分,每小题4分)解方程组 (1) 13102x y += (2) 6a b c -+= 24x y -= 423a b c ++=9318a b c -+=23.(本题满分7分)某中学团委组织学生去儿童福利院慰问,准备购买15个甲种文具和20个乙种文具,共需885元;后翻阅商场海报发现,下周甲、乙两种文具进行促销活动,甲种文具打八折销售、乙种文具打九折,且打折后两种文具的销售单价相同.(1)求甲、乙两种文具的原销售单价各为多少元?(2)购买打折后的15个甲种文具和20个乙种文具,共可节省多少钱?24.(本题满分7分)如图,在四边形ABCD 中,//,AD BC BD BC =,90A ∠=︒;(1)画出CBD ∆的高CE ;(2)请写出图中的一对全等三角形(不添加任何字母),并说明理由;(3)若2,5AD CB ==,求DE 的长.25.(本题满分7分)已知关于x 、y 的方程组 35x y a -=+的解满足x y >>0; 24x y a +=(1)求a 的取值范围; (2)化简3a a +-.26.(本题满分8分)如图1,已知90,ABC D ∠=︒是直线AB 上的一点,AD BC =,连结DC .以DC 为边,在CDB ∠的同侧作CDE ∠,使得CDE ABC ∠=∠,并截取DE CD =,连结AE .(1)求证: BDC AED ∆≅∆;并判断AE 和BC 的位置关系,说明理由;(2)若将题目中的条件“90ABC ∠=︒”改成“ABC x ∠=︒(0x <<180)”,①结论“BDC AED ∆≅∆”还成立吗?请说明理由;②试探索:当x 的值为多少时,直线AE BC ⊥.27.(本题满分8分)探索:在图1至图2中,已知ABC ∆的面积为a ,(1)如图1,延长ABC ∆的边BC 到点D ,使CD BC =,连接DA ;延长边CA 到点E ,使CA AE =,连接DE ;若DCE ∆的面积为1S ,则1S = (用含a 的代数式表示);(2)在图1的基础上延长AB 到点F ,使BF AB =,连接,FD FE ,得到DEF ∆ (如图2).若阴影部分的面积为2S ,则2S = (用含a 的代数式表示);(3)发现:像上面那样,将ABC ∆各边均顺次延长一倍,连接所得端点,得到DEF ∆ (如图2),此时,我们称ABC ∆向外扩展了一次.可以发现,扩展n 次后得到的三角形的面积是ABC ∆面积的 倍(用含n 的代数式表示);(4)应用:某市准备在市民广场一块足够大的空地上栽种牡丹花卉,工程人员进行了如下的图案设计:首先在ABC ∆的空地上种紫色牡丹,然后将ABC ∆向外扩展二次(如图3).在第一次扩展区域内种黄色牡丹,第二次扩展区域内种紫色牡丹,紫色牡丹花的种植成本为100元/平方米,黄色牡丹花的种植成本为95元/平方米.要使得种植费用不超过48700元,工程人员在设计时,三角形ABC 的面积至多为多少平方米?28.(本题满分9分)如图,E 、F 分别是AD 和BC 上的两点,EF 将四边形ABCD 分成两个边长为5cm 的正方形,90DEF EFB B D ∠=∠=∠=∠=︒;点H 是CD 上一点且CH =lcm ,点P 从点H 出发,沿HD 以lcm/s 的速度运动,同时点Q 从点A 出发,沿A →B →C 以5cm/s 的速度运动.任意一点先到达终点即停止运动;连结EP 、EQ .(1)如图1,点Q 在AB 上运动,连结QF ,当t = 时,//QF EP ; (2)如图2,若QE EP ⊥,求出t 的值; (3)试探究:当t 为何值时,EPD ∆的面积等于EQF ∆面积的7.。
【苏科版】2015—2016学年初一下数学期末考试试卷及答案
第二学期期终教学质量调研测试初一 数学本试卷由填空题、选择题和解答题三大题组成 ,共29题,满分130分.考试时间120分钟. 注意事项:1.答题前,考生务必将由己的考试号、学校、姓名、班级用0.5毫米黑色墨水签字笔填写在答题卡的相应位置上,井认真核对;2.答选择题须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;4.考生答题,必须答在答题纸上,保持答题纸清洁,不要折叠,不要弄破,答在试卷和草稿纸上无效。
一. 选择题(本大题共10小题,每小题3分,共30分,请将下列各题唯一正确的选项代号填涂在答题卡相应的位置上) 1.下列运算正确的是A. 326a a a ⋅=B. 224()a a ==C. 33(3)9a a -=-D. 459a a a +=2.不等式组24357x x >-⎧⎨-≤⎩的解集在数轴上可以表示为A B C D 3.下列算式能用平方差公式计算的是A .(2)(2b )a b a +- B. 11(1)(1)22x x +-- C. (3)(3)x y x y --+ D. ()()m n m n ---+4.下列各组线段能组成一个三角形的是A .4cm ,6cm ,11cm B.4cm ,5cm ,1cm C.3cm ,4cm ,5cm D.2cm ,3cm ,6cm5. 若实数a ,b ,c 在数轴上对应点的位置如图所示,则下列不等式成立的是( ) A. ac bc > B. ab cb >C. a c b c +>+D. a b c b +>+6.下列从左到右的变形,属于 分解因式的是A .2(3)(3)9a a a -+=- B. 25(1)5x x x x +-=+-C. 2(1)a a a a +=+D. 32x y x x y =⋅⋅7.一个多边形的内角和是1080°,这个多边形的边数是 A . 6 B. 7 C. 8 D. 9 8.如图,Rt △ABC 中,∠ACB=90°,DE 过点C 且平行于AB ,若∠BCE=35°,则∠A 的度数为A.35°B.45°C.55°D.65°9.下列命题:①同旁内角互补;②若21,10n n <-<则;③直角都相等; ④相等的角是对顶角.A .1个B .2个C .3个D .4个10.如图,宽为50cm 的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为 A.4002cm B.5002cm C.6002cm D.3002cm二.填空题(本大题共8小题,每小题3分,共24分) 11.53x x ÷=________.12.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000 000 076克,用科学记数法表示是__________克. 13.已知5,3,m n mn +==则22m n mn +=_________14.若三角形三条边长分别是1、a 、5(其中a 为整数),则a 的取值为________.15.如图,在△ABC 中,A ∠=60°,若剪去A ∠得到四边形BCDE ,则12______∠+∠=°16.已知2a b ab >=,且22+b =5a ,则______a b -=17.甲乙两队进行篮球对抗赛,比赛规定每队胜一场得3分,平一场得1分,负一场得0分.甲队与乙队一共比赛了10场,甲队保持了不败记录,得分不低于24分,甲队至少胜了_________场.18.现有若干张边长为a 的正方形A 型纸片,边长为b 的正方形B 型纸片,长宽为a 、b 的长方形C 型纸片,小明同学选取了2张A 型纸片,3张B 型纸片,7张C 型纸片拼成了一个长方形,则此长方形的周长为______.(用a 、b 代数式表示)三、解答题(本大题共10小题,满分76分,应写出必要的计算过程,推理步骤或文字说明) 19.(本题满分9分,每小题3分)将下列各式分解因式:(1)22363x xy y ++ (2)22()()a x y b x y ---(3)4234a a +-20.(本题满分5分)先化简,再求值:22(2)5()(3)a b a a b a b +++--,其中23,3a b ==-21.(本题满分8分,每小题4分)解下列方程组:(1)3423x y x y -=-⎧⎨-=-⎩ (2)26293418x y z x y z x y z +-=⎧⎪++=⎨⎪++=⎩22.(本题满分8分,(1)3分,(2)5分)解不等式(组):(1) 322;x x +≤- (2)2135342145x x x x --⎧>⎪⎪⎨+⎪->⎪⎩ 并把不等式组的解集在数轴上表示出来。
最新苏教版2015-2016学年七年级下期末数学试卷【优选】
苏州市立达中学2015-2016学年第二学期期末试卷初一数学一、选择题(本大题共8小题,每小题3分,共24分;在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列运算不正确的是( )A. 336x x x +=B. 633x x x ÷=C. 235x x x ⋅=D. 3412()x x -= 2.如图,//AB CD ,则根据图中标注的角,下列关系中成立的是( )A. 13∠=∠B. 23180∠+∠=︒C. 24180∠+∠<︒D. 35180∠+∠=︒3.不等式组 24357x x >-⎧⎨-≤⎩的解集在数轴上可以表示为()4. 20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵。
设男生有x 人,女生有y 人,根据题意,列方程组正确的是( )A. 52x y +=B. 52x y +=C. 20x y +=D. 20x y +=3220xy += 2320x y += 3252x y += 2352x y +=5.小明不慎将一块三角形的玻璃摔碎成如图的四块(即图中标有1, 2,3, 4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带( )A.第1块B.第2块C.第3块D.第4块6.下列命题:①两直线平行,同旁内角互补; ②三角形的外角和是180°; ③面积相等的三角形是全等三角形;④若1n <,则210n -<;其中,假命题的个数有( )A. 1个B. 2个C. 3个D. 4个7.如图,己知,AE CF AFD CEB =∠=∠,那么添加下列一个条件后,仍无法判定ADF CBE ∆≅∆的是( )A. A C ∠=∠B. AD CB =C. BE DF =D. //AD BC8.在锐角三角形ABC 中,AH 是边BC 上的高,分别以AB 、AC 为一边,向外作正方形ABDE 和ACFG ,连接,CE BG 和EG ,EG 与HA 的延长线交于点M ,则①BG CE =;②BG CE ⊥;③AM 是AEG ∆的中线; ④EAM ABC ∠=∠.其中正确的结论有( )个.A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共10小题,每小题2分,共20分,把答案填在答题卡相应横线上.)9.一种花瓣的花粉颗粒直径约为0.0000065米,将数据0.0000065用科学记数法表示为 .10.若二次三项式225x kx -+是完全平方式,则k 的值为 .11.“直角三角形的两个锐角互余”的逆命题是 .12.内角和等于外角和2倍的多边形是 边形.13.己知ABC ∆中,B ∠是A ∠的2倍,C ∠比A ∠大20°,则A ∠等于 °.14.己知三角形的三边长分别为2,1x -, 3,则三角形周长y 的取值范围是 .15.如图是重叠的两个直角三角形,将其中一个直角三角形沿BC 方向平移得到DEF ∆,如果AB =8cm, BE =4cm, DH =3cm ,则图中阴影部分面积为 cm 2.16.如图,有一个直角三角形ABC , 90,10,5C AC BC ∠=︒==,一条线段,,PQ AB P Q =两点分别在线段AC 和过点A 且垂直于AC 的射线AX 上运动,问AP = 时,ABC ∆和APQ ∆全等.17.如图,,,A B C 分别是线段111,,A B B C C A 的中点,若ABC ∆的面积是1,那么111A B C ∆的面积是.18.如图, ,,,ABC ACB AD BD CD ∠=∠分别平分ABC ∆的外角EAC ∠、内角ABC ∠、外角ACF ∠.以下结论: ①//AD BC ;②2ACB ADB ∠=∠;③BD 平分A D C ∠;④90ADC ABD ∠=︒-∠; ⑤12BDC BAC ∠=∠其中正确的结论是 . 三、解答题(本大题共9题,共56分,请写出必要的计算过程或推演步骤)19.(每小题3分,共9分)分解因式(1) 32242x x x -+ (2) 268x y xy y -+- (3) 22222()4x y x y +- 20.(本题满分5分) 先化简,再求值: 2(2)(2)3(2)x y x y x y +-+-,其中1,2x y ==-.21. (本题5分)解方程组 244523x y x y -=-⎧⎨-=-⎩ 22.(本题7分)如图,点,,,A B C D 在一条直线上,填写下列空格://CE DF (已知)F ∴∠=∠ ( )E F ∠=∠(已知)∴∠ E =∠( )∴ // ( ). 23.(本题6分)如图,在ABC ∆中, AB AC =.分别以,B C 为圆心,BC 长为半径在BC 下方画弧,设两弧交于点D ,与,AB AC 的延长线分别交于点,E F ,连接,,AD BD CD .求证:AD 平分BAC ∠.24.(本题7分)己知关于,x y 的方程组 24221x y m x y m +=⎧⎨+=+⎩(实数m 是常数). (1)若15x y -≤-≤,求m 的取值范围;(2)在(1)的条件下,化简: 23m m ++-25.(本题8分)如图,在ABC ∆中, ,90,AB CB ABC F =∠=︒为AB 延长线上一点,点E 在BC 上,且AE CF =.(1)若30CAE ∠=︒,求ACF ∠度数;(2)求证: AB CE BF =+.26.(本题满分9分)如图,在边长为8cm 的正方形ABCD 中,动点P 从点A 出发,沿线段AB 以每秒1 cm 的速度向点B 运动;同时动点Q 从点B 出发,沿线段BC 以每秒3cm 的速度向点C 运动.当点Q 到达C 点时,点P 同时停止,设运动时间为t 秒.(1)CQ 的长为 cm(用含t 的代数式表示);(2)连接DQ 并把DQ 沿DC 翻折交BC 延长线于点F ,连接,,DP DQ PQ .①若ADP DFQ S S ∆∆=,求t 的值;②当DP DF ⊥时,求t 的值,并判断PDQ ∆与FDQ ∆是否全等、PDQ ∠是否等于45°?附加题(本题10分):如图,Rt ABC ∆中,90,37,5,4,3C CAB AB AC BC ∠=︒∠=︒===,直线MN 经过点C ,交边AB 于点D ,分别过点,A B 作,AF MN BE MN ⊥⊥,垂足分别为点,E F ,设线段,BE AF 的长度分别为12,d d 。
2015-2016学年七年级下数学期末模拟试卷(苏科版)
七年级数学期末复习检测试题(苏科版)2016-6-28班级 姓名 成绩 一:选择题(本大题有9小题,共27分.)1.不等式组31220x x ->⎧⎨-≤⎩的解集在数轴上表示为( )2.下面是一名学生所做的4道练习题,他做对的个数是( )①(-3)0=1;②a3+a3=a6;③4m -4=414m ;④(xy2)3=x3y6,A .0B .1C .2D .33.把一张宽度相等的纸条按如图所示的方式折叠,则∠1的度数等于( ) A .65° B .55° C .45° D .50° 4.若3a-≤2a -,则a 一定满足( )A.a >0B.a <0C.a ≥0D.a ≤05、已知∠A=31∠B=41∠C ,则△ABC 的形状是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形 6.下列各式,能用平方差公式计算的是 ( ) A .()()11---a a B .()()33+--a aC .()()b a b a -+22D .()23--a7、已知()1122=++x x ,则x 的值是( ) A.0 B.-2 C.-2或0 D.-2、0、-1→ab ababa -b8、由下面的图形得到的乘法公式是( )A.()2222b ab a b a ++=+B. ()2222b ab a b a +-=-C.()()b a b a b a -+=-22 D.()()ab b a b a 422=--+9、一个多边形ABCDEF 纸片上剪去一个角∠BGD 后,得到 ∠1+∠2+∠3+∠4+∠5=430°则∠BGD =( ) A .60° B .70° C .80° D .90° 二:填空(本大题有9小题,每空1分,共10分.) 1.化简:(x +y)2-3(x2-2y2)= .2.如果2x ÷16y =8,则2x -8y = .(-2a5)÷(-a)2= . 3.三角形的两边长分别是3和6,第三边长为偶数,则三角形的周长为 .4.如图,将三角板直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3等于 度. 5.如图,∠A=65°,∠B=75°,将纸片的一角折叠,使点C•落在△ABC 外,若∠2=20° 则∠1的度数为 度.第4题第5题第7题6.分解因式:a4-1= .7.如图,AB//CD ,∠B =75°,∠D =35°,则∠E 的度数为= .8.已知关于x 、y 的方程组3326x ay x by -=⎧⎨+=⎩的解是21x y =⎧⎨=⎩ 则a +b = .9.关于x 的不等式0321x m x -≥⎧⎨--⎩ 的整数解共有3个,则m 的取值范围是 .三:解答题(本大题有7小题,共63分.) 1.计算:(本题有3小题,共15分.)(1) ()()10002101133213π-⎛⎫-⨯----+- ⎪⎝⎭(2)(4a -5b)2-2(4a -5b)(3a -2b).(3)已知94=+n m ,132=-n m ,求()()2232n m n m --+的值2.解方程组(本题5分.) 3.解不等式组,并写出不等式组的正整数解.(本题5分.)111234y x x y +⎧-⎪+=⎨⎪+=⎩()112241x x x -⎧≤⎪⎨⎪-<+⎩4.分解因式:(本大题有2小题,共10分.)(1)-9x3+81x (2)222224)(b a b a -+5.(本题共10分.)(1)如图(1),AB ∥CD ,点P 在AB 、CD 外部,若∠B =40°,∠D =15°,则∠BPD = .(2)如图(2),AB∥CD,点P在AB、CD内部,则∠B,∠BPD,∠D之间有何数量关系?证明你的结论;(3)在图(2)中,将直线AB绕点B按逆时针方向旋转一定角度交直线CD于点M,如图(3),若∠BPD=90°,∠BMD=40°,求∠B+∠D的度数.6.(本题共8分.)某地“梅花节”期间,某公司70名职工组团前往参观欣赏梅花,旅游景点规定:①门票每人60元,无优惠;②景区游玩可坐景点观光车,观光车有四座和十一座车,四座车每辆60元,十一座车每人10元.公司职工正好坐满每辆车且总费用不超过5000元,问公司租用的四座车和十一座车各多少辆?7.(本题共10分.)某公司准备把240吨白砂糖运往A、B两地,用大、小两种货车共20辆,恰好能一次性装完这批白砂糖,相关数据见下表:(1)求大、小两种货车各用多少辆?(2)如果安排10辆货车前往A地,其中大车有m辆,其余货车前往B地,且运往A地的白砂糖不少于115吨,①求m的取值范围;②请你设计出使总运费最少的货车调配方案,并求出最少总运费.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年度七年级数学第二学期期末模拟试卷 一、选择题(每题2分,共16分) 2016.6 1、下列运算中正确的是( ) A .22x x x += B .623x x x =⋅ C .428()x x = D .22(2)4x x -=- 2、下列多项式乘法中,可以用平方差公式计算的是( ) A. ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+a b b a 2121 B. ()()x x ++11 C. ()()b a b a -+- D. ()()22y x y x +- 3、如图2,已知直线AB//CD ,∠C=115°,∠A=25°,∠E=( ) A 、70° B 、80° C 、90° D 、100° 4、下列各式从左边到右边的变形是因式分解的是( ) A .(a +1)(a -1)=a 2-1 B .a 2-6a +9=(a -3)2 C .x 2+2x +1=x (x +2x )+1 D .-18x ·4y 3=-6x 2y 2·3x 2y 5、△ABC 中,∠A=13∠B=14∠C ,则△ABC 是 ( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形 6、 若关于x ,y 的二元一次方程组⎩⎨⎧=-=+k y x ,k y x 95的解也是二元一次方程632=+y x 的解,则k 的值为 ( ) A.43- B.43 C.34 D.34- 7、如图,在△ABC 中,AB=AC ,∠A=40°,点P 为△ABC 内的一点, 且∠PBC=∠PCA ,则∠BPC 的大小为 ( ) A .110° B .120° C .130° D .140° 8、 3(22+1)(24+1)…(232+1)+1计算结果的个位数字是 ( ) A .4 B .6 C .2 D .8 二、填空题(每题2分,共20分) 9.某种纸张的厚度为0.0000873 cm ,用科学记数法表示为________cm 。
10.将二元一次方程3x -5y =9化成y=kx+m ,则k= ,m=______. 11.若代数式x 2-6x +m 可化为(x 一n )2+1,则m -n = 12、若()23280m m x y --++=是关于x ,y 的二元一次方程,=m ________.。
13、若是xy m x 822++一个完全平方式,则m =__________. 14、 若代数式()(3)x m x ++的展开式中不含x 得一次项,则m 的值为________. 15、一个多边形截去一个角后,形成新多边形的内角和为2520°,则原多边形边数为________. 16、若关于x 的不等式组23335x x x a >-⎧⎨->⎩只有4个整数解,则a 的取值范围是_______. 17、若不等式组3241x a x x >⎧⎨+<-⎩的解集是x>3,则a 的取值范围是_______. 18、如图,小亮从A 点出发,沿直线前进了5米后向左转30°,再沿直线前进5米,又向左转30°,……照这样走下去,他第一次回到出发地A 点时,一共走了 米.
19、已知a 2+a -3=0,那么a 2(a +4)的值是
考场号_____________考试号_____________班级_____________姓名_____________成绩_____________ ------------------------------------------------------------装-----------订-----------线-------------------------------------------------------------
20、 已知:234x t y t
=+⎧⎨=-⎩,则x 与y 的关系式是 .
三、解答题(共64分)
21.(6分)计算:
⑴()()201220112
0201120128125.04122
⨯-+⎪⎭⎫ ⎝⎛---- ⑵)2)(2(c b a c b a --+-
22、(8分)解方程组: (1)34536x y x y -=⎧⎨+=⎩ (2) 54,2310,38.x y z x y z x y z --=⎧⎪+-=⎨⎪++=⎩
23、(4分)解不等式组,并把解集在数轴上表示出来。
()33121318x x x x -⎧+≥+⎪⎨⎪--<-⎩
24、 (12分)分解因式 (1) 1
3
x 2y -3y . (2)4x 2(x -y)+(y -x).
(3) (x 2+x )2-(x +1)2
. (4) 16)5(8)5(222+-+-x x
25.(5分)如果关于x 、y 的二元一次方程组35423x y a x y a +=+⎧⎨+=⎩
的解x 和y 的绝对值相等,请求出a 的值.
26.(6分)为某届奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷准备用8000元预订10张下表中比赛项目的门票.
(1)若全部资金用来预订男篮门票和乒乓球门票,问他可以订男篮门票和乒乓球门票各多少张?
(2)若在现有资金8000元允许的范围内和总票数不变的前提下,他想预订表中三种球类门票,其中男篮门票数与足球门票数相同,且乒乓球门票的费用不超过男篮门票的费用,求他能预订三种球类门票各多少张?
27.(本题满分6)
某公司准备把240吨白砂糖运往A、B两地,用大、小两种货车共20辆,恰好能一次性装完这批白砂糖,相关数据见下表:
(1)求大、小两种货车各用多少辆?
(2)如果安排10辆货车前往A地,其中大车有m辆,其余货车前往B地,且运往A地的白砂糖不少于115吨,
①求m的取值范围;
②请你设计出使总运费最少的货车调配方案,并求出最少总运费.
28.(6分)若m n
a a =(0a >且1a ≠,,m n 是正整数),则m n =。
你能利用上面的结论解决下面的2个问题吗?试试看,相信你一定行!
①如果2228162x x ⨯⨯=,求x 的值 ②如果28(27)3x -=,求x 的值
29. (5分)年春季我县大旱,导致大量农作物减产,下图是一对农民父子的对话内容,请根据对话内容分别求出该农户今年两块农田的产量分别是多少千克?
30.(6分)在数学中,为了简便,记1n k k =∑=1+2+3+…+(n -1)+n ,1
()n k x k =+∑=(x +1)
+(x +2)+…+(x +n).
(1)请你用以上记法表示:1+2+3+…+2011= ;
(2)化简并计算:10
1
()k x k =-∑;
(3)化简并计算:31
[k =∑(x -k)(x -k -1)].。