Kalman滤波在运动跟踪中的建模
卡尔曼滤波轨迹预测matlab
卡尔曼滤波是一种由芬兰控制理论专家卡尔曼(R.E.Kalman)于20世纪60年代提出的一种适用于线性动态系统的状态估计方法,它的原理是根据系统的数学模型通过观测数据对系统状态进行动态估计,具有对系统参数模型的误差进行校正、对系统运动的预测与跟踪的优点。
在今天的科学技术发展中,卡尔曼滤波已经广泛应用于航空航天、导航、通信、天文测量、生物医学工程等众多领域。
其中,在轨迹预测方面,卡尔曼滤波可以通过对目标的动态模型进行建模,结合观测数据,实现对目标位置的精确预测。
而在使用matlab进行卡尔曼滤波轨迹预测时,通常需要按照以下步骤进行操作:1. 建立系统模型在matlab中,首先需要根据目标运动的特点建立系统的动态模型。
这个过程通常会涉及到目标的运动方程、动态参数、观测误差等内容。
在建立好系统模型后,可以将系统模型表示为状态方程和观测方程。
2. 初始化滤波器参数在进行卡尔曼滤波之前,需要对滤波器的初始状态进行初始化,这包括系统状态向量的初始估计、系统噪声和观测噪声的协方差矩阵等参数的初始化。
3. 观测数据处理在实际应用中,通常会通过传感器或者其他设备获取目标的观测数据,这些数据需要进行预处理,包括去噪、滤波等操作,以提高滤波器的效果。
4. 卡尔曼滤波预测在完成上述准备工作后,就可以利用matlab中的卡尔曼滤波函数进行轨迹预测了。
这个过程通常包括对观测数据和系统模型进行融合,实现对目标轨迹的准确预测。
5. 评估与调整需要对滤波结果进行评估与调整。
这个过程包括对滤波器参数的调整优化以及与实际观测数据进行对比等步骤,以保证滤波器的准确性与稳定性。
总结来看,matlab在卡尔曼滤波轨迹预测中具有良好的适用性和灵活性,可以帮助用户快速、准确地实现对目标轨迹的预测与跟踪。
但在实际应用中,用户需要根据具体的系统模型和观测数据特点来合理选择滤波参数,以最大程度地发挥卡尔曼滤波的优势。
在进行卡尔曼滤波轨迹预测时,用户除了需要掌握matlab的基本操作以外,更需要对卡尔曼滤波理论有着深刻的理解与应用能力,这样才能更好地利用卡尔曼滤波来实现目标轨迹的准确预测与跟踪,为实际应用提供更好的支持与保障。
基于扩展卡尔曼滤波的目标跟踪定位算法及matlab程序实现
基于扩展卡尔曼滤波的目标跟踪定位算法及matlab程序实现扩展卡尔曼滤波(Extended Kalman Filter,EKF)是一种用于非线性系统状态估计的算法。
在目标跟踪定位中,它可以用于估计目标的运动轨迹。
下面是一个简单的基于扩展卡尔曼滤波的目标跟踪定位算法的描述,以及一个简化的MATLAB程序实现。
算法描述1. 初始化:设置初始状态估计值(例如位置和速度)以及初始的估计误差协方差矩阵。
2. 预测:根据上一时刻的状态估计值和模型预测下一时刻的状态。
3. 更新:结合观测数据和预测值,使用扩展卡尔曼滤波算法更新状态估计值和估计误差协方差矩阵。
4. 迭代:重复步骤2和3,直到达到终止条件。
MATLAB程序实现这是一个简化的示例,仅用于说明扩展卡尔曼滤波在目标跟踪定位中的应用。
实际应用中,您需要根据具体问题和数据调整模型和参数。
```matlab% 参数设置dt = ; % 时间间隔Q = ; % 过程噪声协方差R = 1; % 观测噪声协方差x_est = [0; 0]; % 初始位置估计P_est = eye(2); % 初始估计误差协方差矩阵% 模拟数据:观测位置和真实轨迹N = 100; % 模拟数据点数x_true = [0; 0]; % 真实轨迹初始位置for k = 1:N% 真实轨迹模型(这里使用简化的匀速模型)x_true(1) = x_true(1) + x_true(2)dt;x_true(2) = x_true(2);% 观测模型(这里假设有噪声)z = x_true + sqrt(R)randn; % 观测位置% 扩展卡尔曼滤波更新步骤[x_est, P_est] = ekf_update(x_est, P_est, z, dt, Q, R);end% 扩展卡尔曼滤波更新函数(这里简化为2D一维情况)function [x_est, P_est] = ekf_update(x_est, P_est, z, dt, Q, R)% 预测步骤:无观测时使用上一时刻的状态和模型预测下一时刻状态F = [1 dt; 0 1]; % 状态转移矩阵(这里使用简化的匀速模型)x_pred = Fx_est + [0; 0]; % 预测位置P_pred = FP_estF' + Q; % 预测误差协方差矩阵% 更新步骤:结合观测数据和预测值进行状态更新和误差协方差矩阵更新K = P_predinv(HP_pred + R); % 卡尔曼增益矩阵x_est = x_pred + K(z - Hx_pred); % 更新位置估计值P_est = (eye(2) - KH)P_pred; % 更新误差协方差矩阵end```这个示例代码使用扩展卡尔曼滤波对一个简化的匀速运动模型进行估计。
卡尔曼滤波实现目标跟踪
卡尔曼滤波实现目标跟踪1.系统模型x_k=A_k*x_{k-1}+B_k*u_k+w_k其中,x_k是目标的状态向量,A_k是系统状态转移矩阵,表示目标从k-1时刻到k时刻状态的变化;B_k是控制输入矩阵,表示外部输入对目标状态的影响;u_k是控制输入向量,表示外部输入的值;w_k是过程噪声,表示系统模型的误差。
2.观测模型观测模型描述了如何根据目标状态得到观测值。
观测模型可以用下面的观测方程表示:z_k=H_k*x_k+v_k其中,z_k是观测值,H_k是观测矩阵,表示目标状态到观测值的映射关系;v_k是观测噪声,表示观测数据的误差。
3.初始化在开始跟踪之前,需要对目标的状态进行初始化。
可以根据已有的观测数据和模型来初始化状态向量和协方差矩阵。
4.预测步骤在预测步骤中,根据系统模型和上一时刻的状态估计,可以预测目标的下一时刻状态。
预测的状态估计由下面的方程给出:x_k^-=A_k*x_{k-1}+B_k*u_k其中,x_k^-是预测的状态估计值。
同时,还需要预测状态估计值的协方差矩阵,可以使用下面的方程计算:P_k^-=A_k*P_{k-1}*A_k^T+Q_k其中,P_k^-是预测的协方差矩阵,Q_k是过程噪声的协方差矩阵。
5.更新步骤在更新步骤中,根据观测数据来修正预测的状态估计。
首先,计算创新(innovation)或者观测残差:y_k=z_k-H_k*x_k^-其中,y_k是观测残差。
然后,计算创新的协方差矩阵:S_k=H_k*P_k^-*H_k^T+R_k其中,S_k是创新的协方差矩阵,R_k是观测噪声的协方差矩阵。
接下来,计算卡尔曼增益:K_k=P_k^-*H_k^T*S_k^-1最后,更新估计的目标状态和协方差矩阵:x_k=x_k^-+K_k*y_kP_k=(I-K_k*H_k)*P_k^-其中,I是单位矩阵。
6.重复预测和更新步骤重复进行预测和更新步骤,可以得到目标的状态估计序列和协方差矩阵序列。
基于Kalman滤波器的车式移动机器人跟踪方法
型, 如文 献 『 3 】 中提 出 的直 接利 用 反 馈信 息 对 机器 人
进行控制 . 但 这种 控 制 方式 对 于需 要 知道 车 头 方 向
系统 状 态初 值 的情 况 下 , 利 用输 出信 号 的量 测 数 据 和系 统模 型方 程 , 实 时获 得 系统 状 态 变量 和 输 入 信 号 的最 优估 计 。 K a l m a n滤 波器 不仅 能对 目标 轨迹 进
程分 为 两 种基 本 策 略 :一 种是 对 机器 人 建 立 模 型 ,
并 通 过模 型进 行算 法 的应用 ; 另一 种 则 是不 建 立 模
动态 模 型精 度较 低 , 故很 少使 用 。K a l m a n滤 波是 在
已知 系 统 和量 测 的数 学模 型 、 量 测 噪 声统 计 特 性 及
w a s c a r r i e d o u t a f t e r mo d e l i n g , l i n e a r i z a t i o n a n d d i s e r e t i z a t i o n, a n d Ka lma n i f l t e r w a s i n t r o d u c e d t h e n .B u i l d i n g e x p e r i ・
l a - t i me r t a j e c t o i r e s a n d s t a t e s .
Ke y w o r d s : e a r - t y p e m o b i l e r o b o t ; m o d e l i n g ; K l a m a n i f l t e r ; m u l t i — t a r g e t t r a c k i n g ; t r a j e c t o y r o p t i mi z a t i o n
卡尔曼滤波实现目标跟踪
卡尔曼滤波实现目标跟踪卡尔曼滤波(Kalman Filtering)是一种应用于估计系统状态的数学算法,通过将历史测量值与系统模型进行融合,可以准确地预测系统的当前状态。
在目标跟踪领域,卡尔曼滤波被广泛用于在动态环境中估计目标的位置和速度。
在目标跟踪任务中,预测步骤通常根据目标物体的运动模型进行。
其中最常用的模型是线性模型,假设目标物体的运动是匀速直线运动。
在这种情况下,预测步骤可以通过简单地将当前位置和速度与时间增量相乘来计算下一个状态。
如果目标物体的运动模型是非线性的,可以使用扩展卡尔曼滤波(Extended Kalman Filtering)进行预测。
预测步骤的输出是卡尔曼滤波的预测状态和预测状态协方差矩阵。
预测状态表示目标物体在没有更新的情况下的最佳估计位置和速度。
预测状态协方差矩阵表示估计的不确定性。
更新步骤的输入是测量值和测量误差协方差矩阵。
测量值表示由传感器提供的目标位置信息,测量误差协方差矩阵表示测量值的不确定性。
在更新步骤中,首先计算卡尔曼增益。
卡尔曼增益是一个权重,用于在预测状态和测量值之间进行加权求和。
卡尔曼增益的计算根据预测状态协方差矩阵和测量误差协方差矩阵进行。
然后,使用卡尔曼增益将预测状态进行修正,得到更新状态。
更新状态表示目标物体在考虑了测量值的情况下的最佳估计位置和速度。
最后,通过计算更新状态协方差矩阵,更新步骤反映了估计的不确定性。
卡尔曼滤波在目标跟踪中的应用是非常广泛的。
它可以用于处理各种传感器的测量数据,如雷达、相机、激光扫描仪等。
卡尔曼滤波可以处理传感器测量数据中的噪声和不确定性,并生成最佳估计的目标位置和速度。
通过将卡尔曼滤波与运动模型结合使用,可以实现对目标物体的准确跟踪。
总结起来,卡尔曼滤波是一种基于数学算法的目标跟踪方法,通过融合历史测量值和系统模型,可以预测目标的状态,并修正预测结果。
卡尔曼滤波在目标跟踪任务中有广泛的应用,可以处理多种不确定性,并提供准确的目标位置和速度估计。
卡尔曼(kalman)滤波算法特点及其应用
Kalman滤波算法的特点:(1)由于Kalman滤波算法将被估计的信号看作在白噪声作用下一个随机线性系统的输出,并且其输入/输出关系是由状态方程和输出方程在时间域内给出的,因此这种滤波方法不仅适用于平稳随机过程的滤波,而且特别适用于非平稳或平稳马尔可夫序列或高斯-马尔可夫序列的滤波,所以其应用范围是十分广泛的。
(2)Kalman滤波算法是一种时间域滤波方法,采用状态空间描述系统。
系统的过程噪声和量测噪声并不是需要滤除的对象,它们的统计特征正是估计过程中需要利用的信息,而被估计量和观测量在不同时刻的一、二阶矩却是不必要知道的。
(3)由于Kalman滤波的基本方程是时间域内的递推形式,其计算过程是一个不断地“预测-修正”的过程,在求解时不要求存储大量数据,并且一旦观测到了新的数据,随即可以算的新的滤波值,因此这种滤波方法非常适合于实时处理、计算机实现。
(4)由于滤波器的增益矩阵与观测无关,因此它可预先离线算出,从而可以减少实时在线计算量。
在求滤波器增益矩阵时,要求一个矩阵的逆,它的阶数只取决于观测方程的维数,而该维数通常很小,这样,求逆运算是比较方便的。
另外,在求解滤波器增益的过程中,随时可以算出滤波器的精度指标P,其对角线上的元素就是滤波误差向量各分量的方差。
Kalman滤波的应用领域一般地,只要跟时间序列和高斯白噪声有关或者能建立类似的模型的系统,都可以利用Kalman滤波来处理噪声问题,都可以用其来预测、滤波。
Kalman滤波主要应用领域有以下几个方面。
(1)导航制导、目标定位和跟踪领域。
(2)通信与信号处理、数字图像处理、语音信号处理。
(3)天气预报、地震预报。
(4)地质勘探、矿物开采。
(5)故障诊断、检测。
(6)证券股票市场预测。
具体事例:(1)Kalman滤波在温度测量中的应用;(2)Kalman滤波在自由落体运动目标跟踪中的应用;(3)Kalman滤波在船舶GPS导航定位系统中的应用;(4)Kalman滤波在石油地震勘探中的应用;(5)Kalman滤波在视频图像目标跟踪中的应用;。
基于Kalman滤波器的二维运动目标跟踪
分 割 图像 域 内 的 目标 , 取 目标 特 征 并 在 给 定 区域 内 实现 连 续 跟 踪 。采 用 动 态 k l n滤 波 器 自适 应 的 更 新 目标 模 提 ama
维普资讯
第 2 卷 第 3 0 期
20 0 7年 9月
石
油 化
工
高
等
学
校
学
报
Vo1 .20
N o.3
J 0URNAL 0F P ETR0CHEM I CAL UNI VERS TI I ES
S p. 20 e 07
文 章 编 号 :0 6 9 X( O 7 O —0 0 —0 1 0 —3 6 2 O ) 3 0 8 4
F ENG — we Yi i,L i g n ,GUO ,Z OU e— p i IJ — o g Ge H P i e。
( I le e f Elcrc n r r to giern 1 Colg e tial d I, ma inEn n e ig,La z o i est f Teh o o o a ! fo n h u Un vr i o c n lgy,La z o nu 7 0 5 , y n h uGa s 3 0 0 P. Ch n R. ia; 2 .Colg f Auo t n,Da inMa ii ie st le eo tma i o l rt a meUnv riy,Da inLi o ig 1 6 2 la a nn 1 0 6,P. C ia; R. h n
Reev d 5 c i e Fe r ar 00 b u y 2 7:r v s d ar h 20 e ie 20 M c 07;ac e e pr l2 07 c ptd 5 A i 0
基于卡尔曼滤波的目标跟踪研究
基于卡尔曼滤波的目标跟踪研究摘要:随着计算机视觉和机器学习技术的发展,目标跟踪技术在许多领域中得到广泛应用。
卡尔曼滤波是一种经典的估计算法,可以用于目标跟踪,具有良好的估计性能和实时性。
本文主要介绍了卡尔曼滤波在目标跟踪领域的研究进展,包括基本原理、模型建立、算法优化等方面。
1.引言目标跟踪是计算机视觉和机器学习领域的一个重要研究方向。
在许多应用中,如视频监控、自动驾驶等,目标跟踪技术都扮演着重要的角色。
目标跟踪技术主要目的是在一段时间内通过图像或视频序列确定目标的位置、形状、尺寸等信息。
2.卡尔曼滤波的基本原理卡尔曼滤波是一种递归算法,用于估计线性系统的状态。
它基于贝叶斯滤波理论,将观测数据和系统动力学方程结合起来,通过迭代更新的方式获得对系统状态的估计。
卡尔曼滤波有两个主要的步骤:预测和更新。
预测步骤根据系统的动力学方程和上一时刻的状态估计,预测出当前时刻的状态。
更新步骤则根据观测数据和预测的状态,通过计算卡尔曼增益来更新状态估计。
3.卡尔曼滤波在目标跟踪中的应用目标跟踪问题可以看作是一个卡尔曼滤波问题,即通过观测数据预测目标的状态。
在目标跟踪中,系统动力学方程可以根据目标的运动模型来建立。
观测数据可以是目标在每一帧图像中的位置信息。
通过将这些信息输入到卡尔曼滤波器中,可以得到对目标状态的估计。
4.卡尔曼滤波在目标跟踪中的改进与优化尽管卡尔曼滤波在目标跟踪中取得了一定的成功,但还存在一些问题,如对目标运动模型的建模不准确、对观测数据的噪声假设过于理想等。
因此,研究者提出了许多改进和优化方法。
其中一种方法是引入非线性扩展的卡尔曼滤波,如扩展卡尔曼滤波(EKF)和无迹卡尔曼滤波(UKF)。
另一种方法是使用深度学习技术来提取更准确的特征表示,进一步改善目标跟踪性能。
5.实验与结果分析本节主要介绍了一些使用卡尔曼滤波进行目标跟踪的实验研究,并对其结果进行了分析。
实验结果表明,卡尔曼滤波在目标跟踪中具有较好的稳定性和精度。
卡尔曼滤波应用实例
卡尔曼滤波应用实例1. 介绍卡尔曼滤波是一种状态变量滤波技术,又称为按时间顺序处理信息的最优滤波。
最初,它是由罗伯特·卡尔曼(Robert Kalman)在国防领域开发的。
卡尔曼滤波是机器人领域中常用的滤波技术,用于估计变量,如机器人位置,轨迹,速度和加速度这些有不确定性的变量。
它利用一组测量值,通过机器学习的形式来观察目标,以生成模糊的概念模型。
2. 应用实例(1) 航迹跟踪:使用卡尔曼滤波可以进行航迹跟踪,这是一种有效的状态估计技术,可以处理带有动态噪声的状态变量跟踪问题。
它能够在航迹跟踪中进行有效的参数估计,而不受环境中持续噪声(如气动噪声)的影响。
(2) 模糊控制:模糊控制是控制系统设计中的一种重要方法,可用于解决动态非线性系统的控制问题。
卡尔曼滤波可用于控制模糊逻辑的控制政策估计。
它能够以更低的复杂性和高的控制精度来解决非线性控制问题,是一种高度有效的模糊控制方法(3) 定位和导航:使用卡尔曼滤波,可以实现准确的定位和导航,因为它可以将具有不确定性的位置信息转换为准确可信的信息。
这对于记录机器人的行走路径和定位非常重要,例如机器人搜索和地图构建中可以使用卡尔曼滤波来实现准确的定位和导航。
3. 结论从上文可以看出,卡尔曼滤波是一种非常强大的滤波技术,可以有效地解决各种由动态噪声引起的复杂问题。
它能够有效地解决估计(如机器人的位置和轨迹),控制(模糊控制)和定位(定位和导航)方面的问题。
而且,卡尔曼滤波技术具有计算速度快,参数估计效果好,能有效弥补传感器误差,还能够避免滤波状态混淆,精度较高等特点,可以在很多领域中广泛应用。
利用KALMAN滤波算法对运动目标进行定位与跟踪
大。本文在 WL S基础上对 系统再进行 Ka l ma n滤波 ,经过仿真 ,结果表 明,采用 WL S与 Ka l ma n滤波结合的新方法,系 统运行 收敛速度快 ,跟踪误差有 了明显下降。 关键词 :波达方 向( DO A) ;来 波到达 时间( T 0A ) ;卡 尔曼滤波 ;加权最小二乘算法
Ke y w o r d s : Di r e c t i o n o f Ar r i v a l f D oA ) ; T i me o f Ar r i v a l t T o A ) ; K a l ma n F i l t e r ;We i g h t L e a s t S q u a r e Al g o r i t h m
利用 K AL MA N 滤 波算 法对 运 动 目标进 行 定位 与 跟 踪
丁 卫安
空 军 空 降 兵 学 院 ,广 西 桂 林 5 4 1 0 0 3
摘
要 :通过 目标 D OA 与 T O A 的测 量,利用 WL S算法可 以实现运动 目标 的定位 与跟 踪,但是该 方法的跟踪误差较
Ka l ma n il f t e r c a r l q u i c k e n he t s y s t e m r u n n i n g a n d i mp r o v e he t a c c ra u c y o f t r a c k i n g r e s u l t .
Us i n g Ka l ma n F i l t e r Al g o r i t h m t O Lo c a t e a n d Tr a c k t h e Mo v i n g Ta r g e t
We i a n Di n g
卡尔曼滤波处理轨迹
卡尔曼滤波处理轨迹
卡尔曼滤波(Kalman filter)是一种最优化自回归数据处理算法,它广泛应用于各种领域,包括轨迹跟踪、控制系统、传感器数据融合、计算机图像处理等。
在处理车辆轨迹数据时,卡尔曼滤波可以平滑处理轨迹数据,减少数据噪声的影响。
在轨迹跟踪中,卡尔曼滤波将目标的运动模型表示为一组线性方程,并利用卡尔曼滤波对目标位置进行估计和预测。
由于目标的运动不确定性和测量噪声的存在,目标的真实状态很难被准确地测量。
因此,需要利用卡尔曼滤波来对目标状态进行估计和预测。
卡尔曼滤波的工作原理可以简化为两个阶段:预测阶段和更新阶段。
在预测阶段,卡尔曼滤波会根据上一时刻的状态估计,预测当前时刻的状态。
在更新阶段,卡尔曼滤波会根据当前的观测数据,对预测状态进行修正,得到最优的状态估计。
在处理车辆轨迹数据时,轨迹点实际上是对车辆实际状态的观测信息。
由于误差的存在,观测数据可能会与车辆的实际状态存在一定的偏差。
卡尔曼滤波可以结合以前的状态估计(即预测的当前轨迹点的位置)和当前的观测数据(记录的当前位置轨迹点),来进行当前状态的最优估计。
这样,卡尔曼滤波可以对轨迹数据进行平滑处理,减少数据噪声的影响,从而得到更加准确和可靠的轨迹数据。
总之,卡尔曼滤波是一种有效的轨迹处理方法,可以平滑处理轨迹数据,减少数据噪声的影响,提高轨迹的准确性和可靠性。
卡尔曼滤波器在运动目标中的跟踪
运动目标的跟踪面临许多挑战, 如目标运动的不确定性、噪声干 扰、遮挡等。
卡尔曼滤波器概述
01
02
03
定义
卡尔曼滤波器是一种高效 的递归滤波器,用于从一 系列测量中估计状态变量 的值。
特点
卡尔曼滤波器具有无偏性 和最小方差性,能够提供 状态变量的最优估计。
应用
卡尔曼滤波器广泛应用于 各种领域,如控制系统、 信号处理、金融预测等。
1
卡尔曼滤波器在运动目标跟踪中具有较高的跟踪 精度和鲁棒性,能够适应不同场景和条件下的运 动目标跟踪。
2
卡尔曼滤波器在实时性方面表现较好,能够快速 响应运动目标的变化,满足实时应用的需求。
3
卡尔曼滤波器在运动目标跟踪中具有广泛的应用 前景,可以应用于视频监控、自动驾驶、机器人 视觉等领域。
05
卡尔曼滤波器在运动目标跟踪 中的改进方向
根据实际观测结果和估计结果 不断更新卡尔曼滤波器的参数 ,提高运动目标跟踪的准确性
。
04
卡尔曼滤波器在运动目标跟踪 中的性能评估
性能评估指标
跟踪精度
衡量卡尔曼滤波器对运动目标位 置估计的准确性。
鲁棒性
评估卡尔曼滤波器在不同场景和 条件下对运动目标跟踪的稳定性
。
实时性
评估卡尔曼滤波器在运动目标跟 踪过程中的计算效率。
实验结果展示与分析
实验一
在不同速度和方向变化的运动目标跟踪中,卡尔曼滤波器能够准 确估计目标位置,并具有较好的鲁棒性。
实验二
在复杂背景和噪声干扰下,卡尔曼滤波器能够保持稳定的跟踪性能 ,并具有较好的抗干扰能力。
实验三
在实时性方面,卡尔曼滤波器能够快速响应运动目标的变化,并具 有较快的计算速度。
Kalman滤波理论在GNSS信号跟踪中的应用
.
岳滕 飞 高法 钦
张 可
( 浙江理工大学信息学院 , 浙江 杭州 3 1 0 0 0 0 )
( 电子科技 大 学综合 电子 系统技 术教 育部 重 点 实验 室 , 四川, 成都 6 1 1 7 3 1 )
摘 要
在 分析 传Βιβλιοθήκη 统 G NS S接 收机 跟 踪 环 路 的 基 础 上 , 对传 统 的 码 环 滤 波和 载 波 滤 波 在 复 杂 的 环 境 下精 度 不 高 的 问题 , 提出
r o nmen t i s l o w. a n e w wa y a c co r di ng t o t h e a na l ys i s o f t h e GNSS s i gna l s i n t h e ca r r i er t r ac k i n g l o op t o i mp r o v e t h e p r e ci — s i o n i s p r e s en t ed i n t h i s pa pe r , u si n g t h e ada pt i v e Ka l man f i l t e r r e pl a c e t h e PL L a nd t h e F LL t o e s t i ma t e t he t r ac k i n g er r o r .
运动目标跟踪算法综述
运动⽬标跟踪算法综述 运动⽬标跟踪是视频监控系统中不可缺少的环节。
在特定的场景中,有⼀些经典的算法可以实现⽐较好的⽬标跟踪效果。
本⽂介绍了⼀般的⽬标跟踪算法,对⼏个常⽤的算法进⾏对⽐,并详细介绍了粒⼦滤波算法和基于轮廓的⽬标跟踪算法。
最后简单介绍了⽬标遮挡的处理、多摄像头⽬标跟踪和摄像头运动下的⽬标跟踪。
⼀、⼀般的⽬标跟踪算法 ⼀般将⽬标跟踪分为两个部分:特征提取、⽬标跟踪算法。
其中提取的⽬标特征⼤致可以分为以下⼏种: 1)以⽬标区域的颜⾊直⽅图作为特征,颜⾊特征具有旋转不变性,且不受⽬标物⼤⼩和形状的变化影响,在颜⾊空间中分布⼤致相同。
2)⽬标的轮廓特征,算法速度较快,并且在⽬标有⼩部分遮挡的情况下同样有较好的效果。
3) ⽬标的纹理特征,纹理特征较轮廓特征跟踪效果会有所改善。
⽬标跟踪的算法⼤致可以分为以下四种: 1) 均值漂移算法,即meanshift算法,此⽅法可以通过较少的迭代次数快速找到与⽬标最相似的位置,效果也挺好的。
但是其不能解决⽬标的遮挡问题并且不能适应运动⽬标的的形状和⼤⼩变化等。
对其改进的算法有camshift算法,此⽅法可以适应运动⽬标的⼤⼩形状的改变,具有较好的跟踪效果,但当背景⾊和⽬标颜⾊接近时,容易使⽬标的区域变⼤,最终有可能导致⽬标跟踪丢失。
2) 基于Kalman滤波的⽬标跟踪,该⽅法是认为物体的运动模型服从⾼斯模型,来对⽬标的运动状态进⾏预测,然后通过与观察模型进⾏对⽐,根据误差来更新运动⽬标的状态,该算法的精度不是特⾼。
3) 基于粒⼦滤波的⽬标跟踪,每次通过当前的跟踪结果重采样粒⼦的分布,然后根据粒⼦的分布对粒⼦进⾏扩散,再通过扩散的结果来重新观察⽬标的状态,最后归⼀化更新⽬标的状态。
此算法的特点是跟踪速度特别快,⽽且能解决⽬标的部分遮挡问题,在实际⼯程应⽤过程中越来越多的被使⽤。
4) 基于对运动⽬标建模的⽅法。
该⽅法需要提前通过先验知识知道所跟踪的⽬标对象是什么,⽐如车辆、⾏⼈、⼈脸等。
Kalman滤波器在单运动目标自动跟踪中的应用
声,且为互不相关的高斯 白噪声向量系列 ,其协方差矩阵分 别为Q(k)和R(k)。为 了优化滤波器的响应,以获得最佳的预
测效果,Q(k)和 R(k)可 以调整为较小 的数值 。 (k+1,k)∈
~ , a(k)∈R 和 H(k)∈RTM 分别为状 态转移矩阵 输
入 矩阵和观测矩阵。
,
(昆明理工大学信息工程与 自动化学院,昆明 650051) (Faculty of Information Engineering and Automation,Kunming University of Science and Technology,
Kunmi ng 6500S1)
摘 要:在 系列 帧图像 中对运动 目标 以直方 图为模 型的模 板方法进行 匹配, 由干模板 匹配计算量 非常大,要想在 整幅
0 引言 在计算机视觉 中,利用视频序列相邻帧的强相 关性进行
变化检测,进而通过对变化图像的滤波确定运 动 目标,然后 利用一种快速 的目标跟踪算法,使用扩展的Kalman滤波器 预 测下一时刻 目标可能出现的位置,使用职 滤波器完成对 目标 运动速度 的修正,缩小 目标搜索范围,并且充分利用 目标检 测的结果 信息,简化 目标匹配算法,从而实现对 目标的快速 跟踪 【11。
Kalman滤波与预测的基本公式 如下 :
状态预测公式 :
维普资讯
文(k+lIk)= (k+l,k)k(kIk)
Kalman滤波器是一个线形递归滤波器,它基于系统 以前 的状态序列对下一个状态做最优估计,预测时具有无偏 、稳 定和最优 的特点。 1 Kalman滤 波 器 滤 波 的实 现
通常情况下 ,在一个有噪声的系统 中,我们用y,描述系统 在k时刻的状态 ,z 为在 k时刻观察 到的特征向量 通过 z 我 们可以对 y 的值有一个估计 ,如果我们还知道 Y 如何随时问 变化 ,我 们就会对y 有一个预测。这表明了一个预测反馈 的 机 制,这 种预测反馈机制就是 Kalman滤波的思想 。
卡尔曼滤波目标跟踪算法
卡尔曼滤波目标跟踪算法1. 引言1.1 背景介绍在目标跟踪领域,卡尔曼滤波算法是一种广泛应用的估计方法,它通过处理传感器测量数据和系统动态模型,实现对目标状态的预测和更新。
随着目标跟踪应用的普及和需求的增加,卡尔曼滤波算法在实时目标跟踪中发挥着重要作用。
卡尔曼滤波算法最初由R.E. Kalman和R.S. Bucy在20世纪60年代提出,被广泛应用于航空航天领域。
随着计算机技术的不断发展和普及,卡尔曼滤波算法被应用到了更多领域,包括机器人导航、目标追踪、人脸识别等。
在目标跟踪中,卡尔曼滤波算法能够通过对目标状态的动态建模和传感器测量的融合,实现对目标位置、速度等信息的精准估计。
这为实时目标跟踪系统提供了重要支持,使得系统能够更好地适应复杂环境和动态场景。
本文将介绍卡尔曼滤波算法的原理、在目标跟踪中的应用,同时分析其优缺点并提出改进的方法,最后通过案例分析展示其在实际应用中的效果。
通过本文的研究,可以更深入了解卡尔曼滤波目标跟踪算法的原理和实际应用,为进一步研究和应用提供参考和借鉴。
1.2 研究意义卡尔曼滤波目标跟踪算法在目标跟踪领域具有重要的研究意义。
目标跟踪是计算机视觉和机器人领域的重要研究方向,涉及到目标识别、运动估计、位置预测等问题。
传统的目标跟踪算法往往受限于噪声、运动模型不准确等因素,难以取得准确的跟踪结果。
而卡尔曼滤波算法通过对系统的动态模型和观测模型进行建模,并根据最小均方误差准则对系统状态进行优化估计,能够有效地解决这些问题。
卡尔曼滤波目标跟踪算法在目标跟踪任务中具有较高的准确性和鲁棒性,能够适应各种复杂的场景。
卡尔曼滤波算法还能够自适应地根据实时观测数据对系统进行调整,具有较强的实时性和稳定性。
深入研究和应用卡尔曼滤波目标跟踪算法可以为目标跟踪技术的发展提供重要的理论支持和技术保障,推动相关领域的进步和发展。
研究卡尔曼滤波目标跟踪算法不仅有助于提高目标跟踪的精度和效率,还对实际应用具有重要的意义。
卡尔曼滤波算法在雷达目标定位跟踪中的应用
卡尔曼滤波算法在雷达目标定位跟踪中的应用摘要:本文阐述了雷达跟踪系统中滤波器模型的建立方法,介绍了卡尔曼滤波器的工作原理,通过仿真方法,用卡尔曼滤波方法对单目标航迹进行预测,即搜索目标并记录目标的位置数据,对观测到的位置数据进行处理,自动生成航迹,并预测下一时刻目标的位置。
基于此方法的仿真实验获得了较为满意的结果,可以应用于雷达目标跟踪定位。
关键词:卡尔曼滤波;滤波模型;定位跟踪中图分类号:TN9591.引言雷达目标跟踪是整个雷达系统中的关键环节。
跟踪的任务是通过相关和滤波来确定目标的运动路径[1]。
在雷达中,人们通常只对跟踪目标感兴趣,但对目标位置、速度和加速度的测量随时都会产生噪声。
卡尔曼滤波器利用目标的动态信息去除噪声的影响,对目标位置进行较好的估计。
其可以是当前目标位置的估计滤波器、未来位置的预测、过去位置的插值或平滑。
随着计算机硬件技术和计算能力的迅速提高,卡尔曼滤波逐渐取代其他滤波方法成为ATC自动系统跟踪滤波的标准方法[2]。
卡尔曼滤波不需要独立于跟踪滤波过程的目标机动或跟踪效果检测,而是对其作统一处理,提高了算法的归一化程度。
卡尔曼滤波还可以将高度跟踪和水平位置跟踪结合起来,以考虑高度和水平方向之间可能存在的耦合。
本文从理论推导和仿真验证两方面探讨了卡尔曼滤波在单目标航迹预测中的应用,通过仿真对实验结果进行评价:卡尔曼滤波具有最佳的目标定位和跟踪精度。
1.Kalman滤波跟踪1.Kalman滤波模型•目标运动的动力学模型目标状态转移方程如下:状态转移方程描述了如何从当前时间目标的状态变量计算下一次的状态变量。
方程中的目标运动转移矩阵,反映了目标运动规律的基本部分,模型误差,反映了目标运动规律中不能被准确表达的随机偏差,是目标运动动力学模型的数学表达式。
•测量模型一般来说,传感器(雷达)可以直接检测到的目标参数并不是描述目标动力学的最合适的状态变量。
例如,二次雷达直接测量目标的俯仰角、方位角和斜距,而描述目标动力学最合适的状态变量是三维笛卡尔坐标及其导出量。
目标跟踪算法中的卡尔曼滤波
⽬标跟踪算法中的卡尔曼滤波在使⽤多⽬标跟踪算法时,接触到卡尔曼滤波,⼀直没时间总结下,现在来填坑。
1. 背景知识在理解卡尔曼滤波前,有⼏个概念值得考虑下:时序序列模型,滤波,线性动态系统1. 时间序列模型时间序列模型都可以⽤如下⽰意图表⽰:这个模型包含两个序列,⼀个是黄⾊部分的状态序列,⽤X表⽰,⼀个是绿⾊部分的观测序列(⼜叫测量序列、证据序列、观察序列,不同的书籍有不同的叫法,在这⾥统⼀叫观测序列。
)⽤Y表⽰。
状态序列反应了系统的真实状态,⼀般不能被直接观测,即使被直接观测也会引进噪声;观测序列是通过测量得到的数据,它与状态序列之间有规律性的联系。
上⾯序列中,假设初始时间为t1, 则X1,Y1是t1时刻的状态值和观测值,X2,Y2是t2时刻的状态值和观测值...,即随着时间的流逝,序列从左向右逐渐展开。
常见的时间序列模型主要包括三个:隐尔马尔科夫模型,卡尔曼滤波,粒⼦滤波。
2. 滤波时间序列模型中包括预测和滤波两步预测:指⽤当前和过去的数据来求取未来的数据。
对应上述序列图中,则是利⽤t1时刻X1,Y1的值,估计t2时刻X2值。
滤波:是⽤当前和过去的数据来求取当前的数据。
对应上述序列图中,则是先通过上⼀步的预测步骤得到X2的⼀个预测值,再利⽤t2时刻Y2的值对这个预测值进⾏纠正,得到最终的X2估计值。
(通俗讲,就是通过X1预测⼀个值, 通过传感器测量⼀个值Y2, 将两者进⾏融合得到最终的X2值)3.线性动态系统卡尔曼滤波⼜称为基于⾼斯过程的线性动态系统(Linear Dynamic System, LDS), 这⾥的⾼斯是指:状态变量X t和观测变量Y t都符合⾼斯分布;这⾥的线性是指:X t可以通过X t−1线性表⽰,Y t可以通过X t线性表⽰;如果⽤数学表达式来表达这两层含义如下:X t=FX t−1+w t−1,w t−1∼N(0,Q)上⾯表达式中F是⼀个矩阵,常称作状态转移矩阵,保证了X t和X t−1的线性关系(线性代数中,矩阵就是线性变换);w t−1常称作噪声,其服从均值为0,⽅差为Q的⾼斯分布,保证了X t服从⾼斯分布(因为⾼斯分布加上⼀个常数后依然是⾼斯分布)。
卡尔曼滤波(kalman)相关理论以及与HMM、最小二乘法关系
卡尔曼滤波(kalman)相关理论以及与HMM、最⼩⼆乘法关系⼀、什么是卡尔曼滤波 在雷达⽬标跟踪中,通常会⽤到Kalman滤波来形成航迹,以前没有学过机器学习相关知识,学习Kalman时,总感觉公式看完就忘,⽽且很多东西云⾥雾⾥并不能深⼊理解,最后也就直接套那⼏个递推公式了。
通过上⼀篇CRF,我们可以顺便回顾⼀下HMM,事实上,这⼏种算法和Kalman之间是有联系的,这个联系,据说是在PRML这本书的第13章⾥讲的线性动态系统(LDS)讲的,有机会⼀定好好拜读⼀下!那么什么是Kalman滤波呢? ⾸先,简单的理解就是:对于⼀个⽬标,它会具有⼀定的速度,如果是机动的,还会有加速度,不过这都不重要,重要是的,这个⽬标各个时刻的位置是我们需要关⼼的。
对于⽬标的找寻,尊寻⽅程:X(k)=A X(k-1)+B U(k)+W(k) 状态⽅程Z(k)=H*X(k)+V(k) 量测⽅程 卡尔曼滤波⽤到的线性离散状态和观测⽅程则如上,A表⽰的是状态转移矩阵,H表⽰的是观测矩阵,W和V都是满⾜⾼斯⽩噪声的分布,并且W和V是独⽴的,即E{w*v T} = 0。
⽽Kalman滤波的总体思路就是,我们⽤k-1时刻的估计值X^去预测k时刻的Z,然后⽤预测的值和实际观测到的值进⾏⽐对,⽤误差修正k+1时刻的估计⽅法。
其实讲到这⾥,可以回顾HMM模型,看以看到,模型中⽩圈代表了状态,⽽蓝圈代表了观测值,因此,可以看到Kalman和HMM其实是有⼀定的联系的。
⼆、Kalman和HMM之间的关系 其实,讲到这⾥,我就想说⼀下我理解的Kalman与HMM的关系,事实上,他们解决的问题模型都是如上图所⽰,只不过⼀个是利⽤最⼩均⽅误差准则进⾏估计,⼀个是利⽤最⼤后验进⾏估计。
事实上,HMM的预测问题中,就是⼀个最⼤的后验概率作为其似然函数,然后通过viterbi算法解的这个似然函数。
参考:、 当然上⾯都是我的私货,⽐较标准的答案:《Advanced Digital Signal Processing and Noise Reduction 4th Edition》 稍微翻译下: 相同点:马尔科夫性:两种都是基于马尔科夫过程,当前时刻的状态只与上⼀时刻有关系,譬如,当前时刻的位置只与上⼀时刻的位置有关;⾼斯观测:两者的量测值都符合⾼斯分布; 不同点:状态的连续性:Kalman的状态是连续值,⽽HMM的状态是可数的(类似于⼀个是线性回归、⼀个是逻辑回归,或者说⼀个是回归问题、⼀个是分类问题);马尔科夫状态模型:Kalman⽤状态转移矩阵+⾼斯的过程噪声演化马尔科夫过程,⽽HMM只有状态转移矩阵;隐藏层状态:Kalman的隐状态由于噪声的原因不可观察,⽽HMM由于隐层状态的转化没有噪声,也就是说,由观测值可推断HMM的隐藏层的状态,但是不能推断Kalman的状态究竟是哪⼀个;三、Kalman滤波公式 事实上,Kalman滤波的递推公式并不复杂,只要真正理解了最⼩均⽅误差估计,其递推公式就很好掌握了。
Kalman滤波追踪匀速运动目标
题目:对一作匀速直线运动的目标进行跟踪,即用Kalman滤波对目标运动状态进行估值分析:假设目标的运动方程为1x。
其过程方程和量测方程分别如下所=t3+示:kkTvzkk⨯=++x=+x+x())(k)()(kw)1((3)其中,)(kv为运动目标的过程噪声,为Gauss x为描述目标运动的状态;)(k白噪声;)w为量测噪声,为Gauss白噪声。
(k仿真参数设置如下:取运动目标的运动距离)P;)0(=x为状态量,初值的方差为1(k过程噪声)v为强度为0。
5的Gauss白噪声,量测噪声为强度为0.5的Gauss(k白噪声;通过Kalman滤波的结果如下:(1)实际值与测量值曲线(2)实际值与加噪声后的状态值曲线(3)过程噪声引起的状态值误差曲线(4)Kalman滤波的误差曲线(5)实际值与Kalman滤波后的状态值曲线结果分析:1.由图(3)和图(4)看出由国产噪声引起的误差与Kalman滤波后的误差基本上式一致的;问题:是否可以认为Klamn滤波对于改善系统估值误差没有帮助???2.由图(2)和图(5)同样可以得出如1中所述的结论;问题:是我的变成出现了问题还是什么其他的问题??备注:MATLAB程序% 追踪匀速直线运动的目标% clc;clear;close all;T = 0.05;STime = 10;t = 0:T:STime;v = 1*(rand(1,STime/T+1)-0.5);w = 1*(rand(1,STime/T+1)-0.5);% v = wgn(1,STime/T+1,0.5); % 过程噪声% w = wgn(1,STime/T+1,0.5); % 测量噪声x = 3*t+1;% 测量值(包含白噪声)z = x+w;figure;plot(t,x,'--');xlabel('Time (s)');ylabel('x(t)');hold on;plot(t,z,'r');hold off;legend('实际值','测量值');title('实际值与测量值');% 加了白噪声的实际值x_n(1) = x(1);for k = 1:STime/Tx_n(k+1) = x_n(k)+3*T+v(k+1);endfigure;plot(t,x,'--',t,x_n,'r');title('实际值与加噪声的状态值');xlabel('Time (s)');ylabel('x(t)'); legend('实际值','加噪后');figure;plot(t,x_n-x);title('过程噪声引起的状态值误差');xlabel('Time (s)');ylabel('误差');PP0 = 1;F = 1;B = 1;H = 1;Q = var(v);R = var(w);%初始误差状态Xk(1) = 0;for k=2:STime/T+1%卡尔曼滤波P = F*(PP0)*F'+B*Q*B';K = P*H'*inv(H*P*H'+R);PP0 = (eye(1,1)-K*H)*P;PP0 = (PP0+PP0')/2;zk(k-1) = x_n(k-1)-z(k-1);% 误差估计值Xk(k) = F*Xk(k-1)+K*(zk(k-1)-H*F*Xk(k-1));end% 滤波后的误差曲线figure;plot(t,Xk);title('滤波后的误差曲线');xlabel('Time (s)');ylabel('误差');% 滤波后的路线x_kalman = x+Xk;figure;plot(t,x,'--',t,x_kalman,'r');xlabel('Time (s)');ylabel('x(t)');legend('实际值','滤波后');title('实际值与滤波值');。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录一、kalman滤波简介 (2)二、kalman滤波基本原理 (2)三、Kalman滤波在运动跟踪中的应用的建模 (4)四、仿真结果 (7)1、kalman的滤波效果 (7)2、简单轨迹的kalman的预测效果 (8)3、椭圆运动轨迹的预测 (10)4、往返运动归轨迹的预测 (11)五、参数的选取 (12)附录: (14)Matlab程序: (14)C语言程序: (14)Kalman滤波在运动跟踪中的应用一、kalman滤波简介最佳线性滤波理论起源于40年代美国科学家Wiener和前苏联科学家Kолмогоров等人的研究工作,后人统称为维纳滤波理论。
从理论上说,维纳滤波的最大缺点是必须用到无限过去的数据,不适用于实时处理。
为了克服这一缺点,60年代Kalman把状态空间模型引入滤波理论,并导出了一套递推估计算法,后人称之为卡尔曼滤波理论。
卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法,其基本思想是:采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。
它适合于实时处理和计算机运算。
Kalman滤波是卡尔曼(R.E.kalman)于1960年提出的从与被提取信号的有关的观测量中通过算法估计出所需信号的一种滤波算法。
他把状态空间的概念引入到随机估计理论中,把信号过程视为白噪声作用下的—个线性系统的输出,用状方程来描述这种输入—输出关系,估计过程中利用系统状态方程、观测方程和白噪声激励(系统噪声和观测噪声)的统计特性形成滤波算法,由于所用的信息都是时域内的量,所以不但可以对平稳的一维随机过程进估计,也可以对非平稳的、多维随机过程进行估汁。
Kalman滤波是一套由计算机实现的实时递推算法.它所处理的对象是随机信号,利用系统噪声和观测噪声的统计特性,以系统的观测量作为滤波器的输入,以所要估计值(系统的状态或参数)作为滤波器的输出,滤波器的输入与输出之间是由时间更新和观测更新算法联系在一起的,根据系统方程和观测方程估计出所有需要处理的信号。
所以,Kalman滤波与常规滤波的涵义与方法不同,它实质上是一种最优估计法。
卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法),对于解决很大部分的问题,他是最优,效率最高甚至是最有用的二、kalman滤波基本原理Kalman滤波器是目标状态估计算法解决状态最优估计的一种常用方法具有计算量小、存储量低、实时性高的优点。
实际应用中,可以将物理系统的运行过程看作是一个状态转换过程,卡尔曼滤波将状态空间理论引入到对物理系统的数学建模过程中来。
其基本思想是给系统信号和噪声的状态空间建立方程和观测方程,只用信号的前一个估计值和最近一个观察值就可以在线性无偏最小方差估计准则下对信号的当前值做出最优估计。
设一系统所建立的模型为:状态方程:个离散控制过程的系统,X(k)=A X(k-1)+B U(k)+W(k)观测方程:系统的测量值Z(k)=H X(k)+V(k)上两式子中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。
A 和B是系统参数,对于多模型系统,他们为矩阵。
Z(k)是k时刻的测量值,H 是测量系统的参数,对于多测量系统,H为矩阵。
W(k)和V(k)分别表示过程和测量的噪声。
他们被假设成高斯白噪声(White Gaussian Noise),他们的covariance 分别是Q,R(这里我们假设他们不随系统状态变化而变化)。
对于满足上面的条件(线性随机微分系统,过程和测量都是高斯白噪声),卡尔曼滤波器是最优的信息处理器。
下面我们来用他们结合他们的covariances 来估算系统的最优化输出(类似上一节那个温度的例子)。
首先我们要利用系统的过程模型,来预测下一状态的系统。
假设现在的系统状态是k,根据系统的模型,可以基于系统的上一状态而预测出现在状态:X(k|k-1)=A X(k-1|k-1)+B U(k) (1)式(1)中,X(k|k-1)是利用上一状态预测的结果,X(k-1|k-1)是上一状态最优的结果,U(k)为现在状态的控制量,如果没有控制量,它可以为0。
到现在为止,我们的系统结果已经更新了,可是,对应于X(k|k-1)的covariance还没更新。
我们用P表示covariance:P(k|k-1)=A P(k-1|k-1) A’+Q (2)式(2)中,P(k|k-1)是X(k|k-1)对应的covariance,P(k-1|k-1)是X(k-1|k-1)对应的covariance,A’表示A的转置矩阵,Q是系统过程的covariance。
式子1,2就是卡尔曼滤波器5个公式当中的前两个,也就是对系统的预测。
现在我们有了现在状态的预测结果,然后我们再收集现在状态的测量值。
结合预测值和测量值,我们可以得到现在状态(k)的最优化估算值X(k|k):X(k|k)= X(k|k-1)+Kg(k)(Z(k)-H X(k|k-1)) (3)其中Kg为卡尔曼增益(Kalman Gain):Kg(k)= P(k|k-1) H’/(H P(k|k-1) H’ + R) (4)到现在为止,我们已经得到了k状态下最优的估算值X(k|k)。
但是为了要使卡尔曼滤波器不断的运行下去直到系统过程结束,我们还要更新k状态下X(k|k)的covariance:P(k|k)=(I-Kg(k)H)P(k|k-1) (5)其中I为1的矩阵,对于单模型单测量,I=1。
当系统进入k+1状态时,P(k|k)就是式子(2)的P(k-1|k-1)。
这样,算法就可以自回归的运算下去。
总结以上内容克制,Kalman 滤波器实现的主要五个方程为:(1)状态向量预报方程1~'~-=k k X A X(2)状态向量协方差预报方程11'--+=k T k k k k Q A P A P(3)Kalman 加权矩阵(或增益矩阵)1)'('-+=k T k k k T k k k R H P H H P K(4)状态向量更新方程)'~('~~k k k k k k X H Z K X X -+= (5)状态向量协方差更新方程')(k k k k P H K I P -=Kalman 滤波预估计就是用前面两个时间更新方程获得先验估计然后通过后面三个状态更新方程对先验估计矫正获得最优估计。
根据这5个公式,可以很容易的实现计算机的程序。
卡尔曼滤波的算法流程为:1. 预估计X(k)^= F(k,k-1)·X(k-1)2. 计算预估计协方差矩阵C(k)^=F(k,k-1)×C(k)×F(k,k-1)'+T(k,k-1)×Q(k)×T(k,k-1)' Q(k) = U(k)×U(k)'3. 计算卡尔曼增益矩阵K(k) = C(k)^×H(k)'×[H(k)×C(k)^×H(k)'+R(k)]^(-1)R(k) = N(k)×N(k)'4. 更新估计X(k)~=X(k)^+K(k)×[Y(k)-H(k)×X(k)^]5. 计算更新后估计协防差矩阵C(k)~ = [I-K(k)×H(k)]×C(k)^×[I-K(k)×H(k)]'+K(k)×R(k)×K(k)'6. X(k+1) = X(k)~C(k+1) = C(k)重复以上六个步骤。
三、 Kalman 滤波在运动跟踪中的应用的建模卡尔曼滤波器是一个对动态系统的状态序列进行线性最小误差估计的算法,一般用于线性系统。
一般在运动跟踪领域中摄像机相对于目标物体运动有时属于非线性系统,但由于在一般运动跟踪问题中图像采集时间间隔较短,可近似将单位时间内目标在图像中的运动看作匀速运动,采用卡尔曼滤波器可以实现对目标运动参数的估计。
对于复杂背景下运动目标识别与跟踪问题,要实现实时控制,对算法的实时性和准确性都有较高的要求。
如果目标识别算法都是基于像素的全局搜索,则存在显著缺点:1)全局搜索计算量大、耗时,实时性无法满足;2)全局搜索抗干扰能力差,容易受到背景中相似特征物体的干扰。
基于卡尔曼滤波器预测功能的运动目标快速跟踪算法可以通过预测目标物体在下一帧中的位置,将全局搜索问题转化为局部搜索,缩小搜索范围,提高算法的实时性。
在跟踪运动目标的过程中,由于目标物体单位时间内在图像中的运动可以看作匀速运动,所以可以采用目标某一时刻在图像中的位置和速度来表示目标的运动状态。
为了简化算法的计算复杂度,可以设计2个卡尔曼滤波器分别描述目标在X 轴和Y 轴方向上位置和速度的变化。
下面仅讨论X 轴方向上卡尔曼滤波器的实现过程,Y 轴方向上同理。
目标物体运动方程为:⎩⎨⎧+=+=++T a v v T v x x k k k k k k 11 式中k x ,k v ,k a 分别为目标在t=k 时刻的X 轴方向的位置、速度和加速度;T 为k 帧图像和k+1帧图像之间的时间间隔,T a k 可以当作白噪声处理。
写成矩阵形式如下:系统状态方程为:⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛++T a v x T v x k k k k k 010111卡尔曼滤波器系统状态矢量为:T k k k v x X ][+= 状态转移矩阵为:⎪⎪⎭⎫ ⎝⎛=101)(T k H 系统动态噪声矢量为:⎪⎪⎭⎫ ⎝⎛=T a w k k 0系统观测方程为:()⎪⎪⎭⎫ ⎝⎛=+k k k v x x 011卡尔曼滤波器系统观测矢量为:k k x Z =观测系数矩阵为:[]01=k H由观测方程可知,观测噪声为0,所以k R =0。
建立了上述系统状态方程和观测方程之后,就可以利用卡尔曼滤波方程式通过递推方法,不断预测目标在下一帧中的位置。
在t=k 时刻,对第k 帧图像利用目标识别算法识别出的目标位置记为k x ,当目标首次出现时,根据此时目标的观测位置初始化滤波器0'~X =[0x ,0]。
系统初始状态向量协方差矩阵可以在对角线上取较大值,取值根据实际测量情况来获得,但在滤波启动一段时间后影响就不大了。
取:⎪⎪⎭⎫ ⎝⎛=1000100P 。
系统动态噪声协方差为0Q ,可取为:⎪⎪⎭⎫ ⎝⎛=1000100Q 。
通过公式(1),计算得到目标在下一帧图像中的预测位置1'~X 。
在该位置附近,对下一帧图像进行局部搜索,识别出的目标质心位置即为1Z ,通过公式(2)至公式(5)完成对状态向量和状态向量协方差矩阵的更新,为目标位置的下一步预测做好准备,得出新的预测位置2'~X ,采用图像处理算法,在该位置进行局部搜索,从而得出新的目标质心位置2Z ,一直迭代计算下去,从而实现对目标物体的跟踪。