2017_2018版高中数学第一章三角函数8函数y=Asin(ωx+φ)的图像与性质(二)学案北师大版必修4

合集下载

2018版高中数学北师大版必修四学案第一章 8 函数y=Asin(ωx+φ)的图像与性质(一)

2018版高中数学北师大版必修四学案第一章 8 函数y=Asin(ωx+φ)的图像与性质(一)

学习目标.理解=(ω+φ)中ω、φ、对图像的影响.掌握=与=(ω+φ)图像间的变换关系,并能正确地指出其变换步骤.
知识点一φ(φ≠)对函数=(+φ),∈的图像的影响
思考如何由=()的图像变换得到=(+)的图像?
思考如何由=的图像变换得到=(+)的图像?
梳理如图所示,对于函数=(+φ)(φ≠)的图像,可以看作是把=的图像上所有的点向(当φ>时)或向(当φ<时)平行移动个单位长度而得到的.
知识点二ω(ω>)对函数=(ω+φ)的图像的影响
思考函数=,=和=的周期分别是什么?
思考当三个函数的函数值相同时,它们的取值有什么关系?
思考函数=ω的图像是否可以通过=的图像得到?
梳理如图所示,函数=(ω+φ)的图像,可以看作是把=(+φ)的图像上所有点的横坐标(当ω>时)或(当<ω<时)到原来的倍(纵坐标)而得到.
知识点三(>)对=(ω+φ)的图像的影响
思考对于同一个,函数=,=和=的函数值有何关系?
梳理如图所示,函数=(ω+φ)的图像,可以看作是把=(ω+φ)图像上所有点的纵坐标(当>时)或(当<<时)到原来的倍(横坐标不变)而得到.
知识点四函数=的图像与=(ω+φ)(>,ω>)的图像关系
正弦曲线=到函数=(ω+φ)的图像的变换过程:。

高中数学第1章三角函数8函数y=Asin(ωx+φ)的图像与性质第1课时函数y=Asin(ωx+φ)的图像课件北师大版

高中数学第1章三角函数8函数y=Asin(ωx+φ)的图像与性质第1课时函数y=Asin(ωx+φ)的图像课件北师大版
1 的图像上所有点的横坐标缩短(当 ω>1 时)或伸长(当 0<ω<1 时)到原来的 ω 倍 (纵坐标不变)而得到的.
判断(正确的打“√”,错误的打“×”) (1)A 的大小决定了函数的振幅.( ) (2)ω 的大小与函数的周期有关.( ) (3)φ 的大小决定了函数与 y=sin x 的相对位置.( ) (4)b 的大小决定了函数图像偏离平衡位置的幅度.( ) 【解析】 由 A,ω,φ,b 的几何意义知全对. 【答案】 (1)√ (2)√ (3)√ (4)√
y
0
A
0
-A
0
第二步:在同一坐标系中描出各点.
第三步:用光滑的曲线把它们连接起来.
三角函数的图像变换
写出由 y=sin x 的图像变化到 y=3sin12x-π4的图像的不同方法步骤. 【导学号:66470026】
【精彩点拨】 变换过程可以先伸缩后平移,也可以先平移后伸缩.
由 y=sin x 的图像,通过变换得到 y=Asin(ωx+φ)的图像时,可以先相位变换, 后周期变换,也可以先周期变换,后相位变换.两种变换的顺序不同,变换的量 也有所不同,前者平移|φ|个单位,而后者则平移|ωφ|个单位.不论哪一种变换,都是 对字母 x 而言的,即看“变量”变化多少,而不是“角”变化多少.
0
π 2
π
3π 2

y 0 2 0 -2 0
描点作图,如图.
1.利用“五点法”作图像时,确定 x 的值是本题的关键.
2.用“五点法”作函数 y=Asin(ωx+φ)的图像的一般步骤:
第一步:列表. ωx+φ 0
π 2
π
3π 2

x -ωφ 2πω-ωφ ωπ-ωφ 23ωπ -ωφ 2ωπ-ωφ

2017-2018版高中数学 第一章 三角函数 8 函数y=Asin(ωx+φ)的图像与性质(二) 北师大版必修4

2017-2018版高中数学 第一章 三角函数 8 函数y=Asin(ωx+φ)的图像与性质(二) 北师大版必修4
2.由函数y=Asin(ωx+φ)的部分图像确定解析式关键在于确定参数A,ω,
φ的值.
(1)一般可由图像上的最大值、最小值来确定|A|. (的2)交因点为从T=而2ω确π,定所T,以即往相往邻通的过最求高得点周与期最T来低确点定之ω间,的可距通离过为已T2知;曲相线邻与的x轴两 个最高点(或最低点)之间的距离为T.
答案
梳理
用“五点法”作y=Asin(ωx+φ) 的图像的步骤:
第一步:列表:
ωx+φ 0
π 2
πห้องสมุดไป่ตู้
3π 2

x
-ωφ 2πω-ωφ ωπ -ωφ 23ωπ-ωφ 2ωπ-ωφ
y
0
A
0
-A
0
第二步:在同一坐标系中描出各点. 第三步:用光滑曲线连接这些点,形成图像.
知识点二 函数y=Asin(ωx+φ),A>0,ω>0的性质
4.已知函数f(x)=sinωx+π3 (ω>0)的最小正周期为π,则该函数的图像
√A.关于点π3,0对称
B.关于直线 x=π4对称
C.关于点π4,0对称
D.关于直线 x=π3对称
解析 ω=2ππ=2,所以 f(x)=sin(2x+π3). 将 x=π3代入 f(x)=sin2x+π3,
解答
(2)求函数y=f(x)的单调区间及最值.
解答
当堂训练
1.函数y=Asin(ωx+φ)(A>0,0<φ<π)的图像的一段如图所示,它的解析式 可以是
√A.y=23sin(2x+23π)
B.y=23sin(2x+π3) C.y=23sin(2x-π3) D.y=23sin(2x+π4)
12345

高中数学第一章三角函数1.8函数y=Asin(ωx+φ)的图像

高中数学第一章三角函数1.8函数y=Asin(ωx+φ)的图像

又∵f(x)在[0,π2]上是单调函数, ∴T≥π,即2ωπ≥π,∴ω≤2.又∵ω>0, ∴当 k=1 时,ω=23; 当 k=2 时,ω=2. ∴φ=π2,ω=2 或 ω=23.
规律方法 函数 y=Asin(ωx+φ)综合应用的注意点 (1)对于平移问题,应特别注意要提取 x 的系数,即将 ωx+φ 变为 ωx+ωφ后再观察 x 的变化. (2)对于对称性、单调性问题应特别注意将 ωx+φ 看作整体,代入 一般表达式解出 x 的值. (3)对于值域问题同样是将 ωx+φ 看作整体,不同的是根据 x 的范 围求 ωx+φ 的范围,再依据图像求值域. (4)对于奇偶性问题,由 φ 来确定,φ=kπ(k∈Z)时是奇函数,φ=kπ +π2(k∈Z)时是偶函数.
(2)若函数 f(x)=2sin2x-π3+φ是偶函数,则 φ 的值可以是(
)

π
A. 6
B.2
C.π3
D.-π2
解析 (1)令 y=±1,即 sin2x+π3=±1,则 2x+π3=kπ+π2(k∈Z), ∴x=k2π+1π2(k∈Z),即对称轴方程为 x=k2π+1π2(k∈Z).令 y=0, 即 sin2x+π3=0,则 2x+π3=kπ(k∈Z),∴x=k2π-π6(k∈Z),∴函 数 y=sin2x+π3的图像的对称中心为k2π-π6,0(k∈Z).
解 ∵y=2sinπ4-x=-2sinx-π4, ∴函数 y=2sinπ4-x的递增区间就是函数 u=2sinx-π4的递减区间.
∴2kπ+π2≤x-π4≤2kπ+32π(k∈Z), 得 2kπ+34π≤x≤2kπ+74π(k∈Z), ∴函数 y=2sinπ4-x的递增区间为: 2kπ+34π,2kπ+74π(k∈Z).
题型三 函数 y=Asin(ωx+φ)性质的综合应用 【例 3】 已知函数 f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)是 R 上的偶函

(全国通用版)2018-2019高中数学-第一章-三角函数-1.5-函数y=Asin(ωx+φ)的图

(全国通用版)2018-2019高中数学-第一章-三角函数-1.5-函数y=Asin(ωx+φ)的图
得 x=2kπ+π3.k∈Z 当 k=0 时,x=π3,是 g(x)的一条对称轴.
4.要得到函数 y=cos2x 的图象,只需将 y=cos(2x+π4)的图象
A.向左平移π8个单位长度
B.向右平移π8个单位长度
C.向左平移π4个单位长度
D.向右平移π4个单位长度
( B)
[解析] 平移问题遵循“左加右减,只针对 x 而言”的原则.则 y=cos2x 只 需向左平移π8个单位即可.而 y=cos(2x+π4)需右移π8个单位,得到 y=cos2x.
( C)
A.y=sin(4x+38π)
B.y=sin(4x+π8)
C.y=sin4x
D.y=sinx
[解析] 分清对横坐标还是纵坐标所作的变换,左、右平移是对 x 变化,并 且是对单个的 x 进行变化,把 y=sin(2x+π4)的图象向右平移π8个单位长度,用(x -π8)代换原解析式中的 x,即得函数式 y=sin[2(x-π8)+π4],即 y=sin2x,再把 y= sin2x 的图象上的各点的横坐标缩短到原来的12,就得到解析式 y=sin2(2x),即 y =sin4x 的图象.
[知识点拨]函数 y=f(ωx)(ω>0)的图象,可以看作是把函数 y=f(x)的图象上 的点的横坐标缩短(当 ω>1 时)或伸长(当 0<ω<1 时)到原来的ω1 倍(纵坐标不变)而得 到的.
3.A(A>0)对y=Asin(ωx+φ),x∈R的图象的影响 如图所示,函数y=Asin(ωx+φ)的图象,可以看作是把y=sin(ωx+φ)的图象 上的所有点的______纵坐标伸长(当A>1时)或缩短(当0<A<1时)到原来的_____A_倍 (横坐标不变)而得到的.

函数y=Asin(ωx+ψ)的图像与性质

函数y=Asin(ωx+ψ)的图像与性质

函数y =Asin(ωx+φ)的图象与性质1.用五点法画y =A sin(ωx +φ)一个周期内的简图时,要找五个关键点,如下表所示.x -φω-φω+π2ωπ-φω3π2ω-φω 2π-φωωx +φ 0 π2π 3π2 2π y =A sin(ωx +φ)A-A2.函数y =A sin(ωx +φ)的有关概念y =A sin(ωx +φ)(A >0,ω>0),x ∈[0,+∞)表示一个振动量时振幅 周期 频率 相位 初相A T =2πω f =1T =ω2πωx +φ φ3.函数y =sin x 的图象经变换得到y =A sin(ωx +φ)的图象的两种途径强化训练1.判断下列结论正误(在括号内打“√”或“×”)(1)将函数y =3sin 2x 的图象左移π4个单位长度后所得图象的解析式是y =3sin ⎝ ⎛⎭⎪⎫2x +π4.( )(2)利用图象变换作图时“先平移,后伸缩”与“先伸缩,后平移”中平移的长度一致.( )(3)函数y =A cos(ωx +φ)的最小正周期为T ,那么函数图象的两个相邻对称中心之间的距离为T2.( )(4)由图象求解析式时,振幅A 的大小是由一个周期内图象中最高点的值与最低点的值确定的.( )2.(必修4P56T3改编)y =2sin ⎝ ⎛⎭⎪⎫12x -π3的振幅、频率和初相分别为( )A.2,4π,π3B.2,14π,π3C.2,14π,-π3D.2,4π,-π33.(必修4P62例4改编)某地农业监测部门统计发现:该地区近几年的生猪收购价格每四个月会重复出现.下表是今年前四个月的统计情况:月份x 1 2 3 4 收购价格y (元/斤)6765选用一个正弦型函数来近似描述收购价格(元/斤)与相应月份之间的函数关系为________________________.4.(2019·北京通州区模拟)函数y =2cos ⎝⎛⎭⎪⎫2x +π6的部分图象是( )5.(2016·全国Ⅰ卷)若将函数y =2sin ⎝ ⎛⎭⎪⎫2x +π6的图象向右平移14个周期后,所得图象对应的函数为( ) A.y =2sin ⎝ ⎛⎭⎪⎫2x +π4 B.y =2sin ⎝ ⎛⎭⎪⎫2x +π3 C.y =2sin ⎝ ⎛⎭⎪⎫2x -π4 D.y =2sin ⎝ ⎛⎭⎪⎫2x -π36.(2018·济南模拟改编)y =cos(x +1)图象上相邻的最高点和最低点之间的距离是________.考点一 函数y =A sin(ωx +φ)的图象及变换【例1】 某同学用“五点法”画函数f (x )=A sin(ωx +φ) ⎝ ⎛⎭⎪⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(1)请将上表数据补充完整,并直接写出函数f (x )的解析式;(2)将y =f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y =g (x )的图象.若y =g (x )图象的一个对称中心为⎝ ⎛⎭⎪⎫5π12,0,求θ的最小值.【训练1】 (1)(2017·全国Ⅰ卷)已知曲线C 1:y =cos x ,C 2:y =sin ⎝ ⎛⎭⎪⎫2x +2π3,则下面结论正确的是( ) A.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C.把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D.把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2(2)(2018·青岛调研)若把函数y =sin ⎝ ⎛⎭⎪⎫ωx -π6的图象向左平移π3个单位长度,所得到的图象与函数y =cos ωx 的图象重合,则ω的一个可能取值是( )A.2B.32C.23D.12考点二 求函数y =A sin(ωx +φ)的解析式【例2】 (1)(一题多解)函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π)的部分图象如图所示,则函数f (x )的解析式为________.(2)(2019·长郡中学、衡阳八中联考)函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的部分图象如图所示,已知A ⎝⎛⎭⎪⎫5π12,1,B ⎝ ⎛⎭⎪⎫11π12,-1,则f (x )图象的对称中心为( )A.⎝ ⎛⎭⎪⎫k π2+5π6,0(k ∈Z)B.⎝ ⎛⎭⎪⎫k π+5π6,0(k ∈Z)C.⎝ ⎛⎭⎪⎫k π2+π6,0(k ∈Z)D.⎝ ⎛⎭⎪⎫k π+π6,0(k ∈Z)【训练2】 (1)(2019·衡水中学一模)已知函数f (x )=-2cos ωx (ω>0)的图象向左平移φ⎝ ⎛⎭⎪⎫0<φ<π2个单位,所得的部分函数图象如图所示,则φ的值为( )A.π6 B.5π6 C.π12 D.5π12(2)(2019·山东省重点中学质检)已知函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,|φ|<π2,ω>0的图象的一部分如图所示,则f (x )图象的对称轴方程是________.考点三 y =A sin(ωx +φ)图象与性质的应用 角度1 三角函数模型的应用【例3-1】 如图,某大风车的半径为2米,每12秒旋转一周,它的最低点O 离地面1米,点O 在地面上的射影为A .风车圆周上一点M 从最低点O 开始,逆时针方向旋转40秒后到达P 点,则点P 到地面的距离是________米.角度2 三角函数性质与图象的综合应用【例3-2】 已知函数f (x )=2sin ωx cos ωx +23sin 2ωx -3(ω>0)的最小正周期为π. (1)求函数f (x )的单调递增区间;(2)将函数f (x )的图象向左平移π6个单位,再向上平移1个单位,得到函数y =g (x )的图象,若y =g (x )在[0,b ](b >0)上至少含有10个零点,求b 的最小值.【训练3】 (1)某城市一年中12个月的平均气温与月份的关系可近似地用函数y =a +A cos ⎣⎢⎡⎦⎥⎤π6(x -6)(x =1,2,3,…,12)来表示,已知6月份的月平均气温最高为28 ℃,12月份的月平均气温最低为18 ℃,则10月份的平均气温为________℃.(2)已知函数f (x )=5sin x cos x -53cos 2x +523(其中x ∈R),求:①函数f (x )的最小正周期; ②函数f (x )的单调区间; ③函数f (x )图象的对称轴和对称中心.类型1 三角函数的周期T 与ω的关系【例1】 为了使函数y =sin ωx (ω>0)在区间[0,1]上至少出现50次最大值,则ω的最小值为( ) A.98π B.1972π C.1992π D.100π类型2 三角函数的单调性与ω的关系【例2】 若函数f (x )=sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减,则ω的取值范围是( )A.0≤ω≤23B.0≤ω≤32C.23≤ω≤3D.32≤ω≤3类型3 三角函数对称性、最值与ω的关系【例3】 (1)(2019·枣庄模拟)已知f (x )=sin ωx -cos ωx ⎝ ⎛⎭⎪⎫ω>23,若函数f (x )图象的任何一条对称轴与x 轴交点的横坐标都不属于区间(π,2π),则ω的取值范围是________.(结果用区间表示)(2)已知函数f (x )=2sin ωx 在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值为-2,则ω的取值范围是________.【基础巩固题组】 一、选择题1.函数y =A sin(ωx +φ)的部分图象如图所示,则( )A.y =2sin ⎝ ⎛⎭⎪⎫2x -π6B.y =2sin ⎝ ⎛⎭⎪⎫2x -π3C.y =2sin ⎝ ⎛⎭⎪⎫x +π6D.y =2sin ⎝⎛⎭⎪⎫x +π3 2.(2019·杭州期中)将函数y =sin ⎝ ⎛⎭⎪⎫x +φ2·cos ⎝ ⎛⎭⎪⎫x +φ2的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的取值不可能是( )A.-3π4B.-π4C.π4D.5π43.(2019·咸阳模拟)已知点P (32,-332)是函数y =A sin(ωx +φ)(ω>0)图象上的一个最低点,M ,N 是与点P 相邻的两个最高点,若∠MPN =60°,则该函数的最小正周期是( ) A.3 B.4 C.5 D.64.(2018·天津卷)将函数y =sin ⎝⎛⎭⎪⎫2x +π5的图象向右平移π10个单位长度,所得图象对应的函数( )A.在区间⎣⎢⎡⎦⎥⎤-π4,π4上单调递增B.在区间⎣⎢⎡⎦⎥⎤-π4,0上单调递减C.在区间⎣⎢⎡⎦⎥⎤π4,π2上单调递增D.在区间⎣⎢⎡⎦⎥⎤π2,π上单调递减5.(2019·张家界模拟)将函数f (x )=3sin 2x -cos 2x 的图象向左平移t (t >0)个单位后,得到函数g (x )的图象,若g (x )=g ⎝ ⎛⎭⎪⎫π12-x ,则实数t 的最小值为( )A.5π24B.7π24C.5π12D.7π12二、填空题6.将函数y =sin x 的图象上所有的点向右平移π10个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是________________.7.(2018·沈阳质检)函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,则f ⎝ ⎛⎭⎪⎫π4=________.8.已知f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π3(ω>0),f ⎝ ⎛⎭⎪⎫π6=f ⎝ ⎛⎭⎪⎫π3,且f (x )在区间⎝ ⎛⎭⎪⎫π6,π3上有最小值,无最大值,则ω=____________________________________.三、解答题9.某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24). (1)求实验室这一天上午8时的温度; (2)求实验室这一天的最大温差.10.已知函数f (x )=3sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2≤φ<π2的图象关于直线x =π3对称,且图象上相邻最高点的距离为π.(1)求f ⎝ ⎛⎭⎪⎫π4的值; (2)将函数y =f (x )的图象向右平移π12个单位后,得到y =g (x )的图象,求g (x )的单调递减区间.11.(2019·天津和平区调研)已知x =π12是函数f (x )=3sin(2x +φ)+cos(2x +φ)(0<φ<π)图象的一条对称轴,将函数f (x )的图象向右平移3π4个单位长度后得到函数g (x )的图象,则函数g (x )在⎣⎢⎡⎦⎥⎤-π4,π6上的最小值为( )A.-2B.-1C.- 2D.- 312.函数f (x )=220sin 100πx -220sin ⎝ ⎛⎭⎪⎫100πx +2π3,且已知对任意x ∈R,有f (x 1)≤f (x )≤f (x 2)恒成立,则|x 2-x 1|的最小值为( ) A.50π B.1100π C.1100D.44013.(2019·广东省际名校联考)将函数f (x )=1-23·cos 2x -(sin x -cos x )2的图象向左平移π3个单位,得到函数y =g (x )的图象,若x ∈⎣⎢⎡⎦⎥⎤-π2,π2,则函数g (x )的单调递增区间是________.14.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示.(1)求函数f (x )的解析式;(2)将函数y =f (x )的图象上各点的纵坐标保持不变,横坐标缩短到原来的12倍,再把所得的函数图象向左平移π6个单位长度,得到函数y =g (x )的图象,求函数g (x )在区间⎣⎢⎡⎦⎥⎤0,π8上的最小值.15.(多填题)已知函数f (x )=23sinωx2cosωx2+2cos2ωx2-1(ω>0)的最小正周期为π,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,方程f (x )=m 恰有两个不同的实数解x 1,x 2,则x 1+x 2=________,f (x 1+x 2)=________.答 案 1.判断下列结论正误(在括号内打“√”或“×”) 【答案】 (1)× (2)× (3)√ (4)√【解析】 (1)将函数y =3sin 2x 的图象向左平移π4个单位长度后所得图象的解析式是y =3cos 2x .(2)“先平移,后伸缩”的平移单位长度为|φ|,而“先伸缩,后平移”的平移单位长度为⎪⎪⎪⎪⎪⎪φω.故当ω≠1时平移的长度不相等.2. 【答案】 C【解析】 由题意知A =2,f =1T =ω2π=14π,初相为-π3.3. 【答案】 y =6-cos π2x【解析】 设y =A sin(ωx +φ)+B (A >0,ω>0), 由题意得A =1,B =6,T =4,因为T =2πω,所以ω=π2,所以y =sin ⎝ ⎛⎭⎪⎫π2x +φ+6.因为当x =2时,y =7,所以sin(π+φ)+6=7,即sin φ=-1,则φ=-π2+2k π(k ∈Z),可取φ=-π2. 所以y =sin ⎝ ⎛⎭⎪⎫π2x -π2+6=6-cos π2x .4. 【答案】 A【解析】 由y =2cos ⎝ ⎛⎭⎪⎫2x +π6可知,函数的最大值为2,故排除D ;又因为函数图象过点⎝ ⎛⎭⎪⎫π6,0,故排除B ;又因为函数图象过点⎝ ⎛⎭⎪⎫-π12,2,故排除C. 5. 【答案】 D【解析】 函数y =2sin ⎝ ⎛⎭⎪⎫2x +π6的周期为π,将函数y =2sin ⎝ ⎛⎭⎪⎫2x +π6的图象向右平移14个周期即π4个单位,所得函数为y =2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π4+π6=2sin ⎝ ⎛⎭⎪⎫2x -π3,故选D. 6. 【答案】π2+4【解析】 相邻最高点与最低点的纵坐标之差为2,横坐标之差恰为半个周期π,故它们之间的距离为π2+4.【例1】【答案】见解析【解析】(1)根据表中已知数据,解得A =5,ω=2,φ=-π6.数据补全如下表:且函数解析式为f (x )=5sin ⎝⎛⎭⎪⎫2x -π6. (2)由(1)知f (x )=5sin ⎝⎛⎭⎪⎫2x -π6, 得g (x )=5sin ⎝⎛⎭⎪⎫2x +2θ-π6. 因为函数y =sin x 图象的对称中心为(k π,0)(k ∈Z).令2x +2θ-π6=k π,k ∈Z,解得x =k π2+π12-θ(k ∈Z). 由于函数y =g (x )的图象关于点⎝⎛⎭⎪⎫5π12,0成中心对称,所以令k π2+π12-θ=5π12(k ∈Z),解得θ=k π2-π3(k ∈Z). 由θ>0可知,当k =1时,θ取得最小值π6. 【训练1】【答案】 (1)D (2)A【解析】 (1)易知C 1:y =cos x =sin ⎝⎛⎭⎪⎫x +π2,把曲线C 1上的各点的横坐标缩短到原来的12倍,纵坐标不变,得到函数y =sin ⎝⎛⎭⎪⎫2x +π2的图象,再把所得函数的图象向左平移π12个单位长度,可得函数y =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π12+π2=sin ⎝ ⎛⎭⎪⎫2x +2π3的图象,即曲线C 2,因此D 项正确. (2)y =sin ⎝⎛⎭⎪⎫ωx +ω3π-π6和函数y =cos ωx 的图象重合,可得ω3π-π6=π2+2k π,k ∈Z,则ω=6k +2,k ∈Z.∴2是ω的一个可能值.【例2】【答案】 (1)f (x )=2sin ⎝⎛⎭⎪⎫2x +π3 (2)C 【解析】 (1)由题图可知A =2,法一 T 4=7π12-π3=π4, 所以T =π,故ω=2,因此f (x )=2sin(2x +φ),又⎝ ⎛⎭⎪⎫π3,0对应五点法作图中的第三个点,因此2×π3+φ=π+2k π(k ∈Z),所以φ=π3+2k π(k ∈Z).又|φ|<π2,所以φ=π3.故f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3.法二 以⎝ ⎛⎭⎪⎫π3,0为第二个“零点”,⎝ ⎛⎭⎪⎫7π12,-2为最小值点,列方程组⎩⎪⎨⎪⎧ω·π3+φ=π,ω·7π12+φ=3π2,解得⎩⎪⎨⎪⎧ω=2,φ=π3,故f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3.(2)T =2⎝ ⎛⎭⎪⎫11π12-5π12=π=2πω,∴ω=2,因此f (x )=sin(2x +φ).由五点作图法知A ⎝ ⎛⎭⎪⎫5π12,1是第二点,得2×5π12+φ=π2,2×5π12+φ=π2+2k π(k ∈Z),所以φ=-π3+2k π(k ∈Z),又|φ|<π2,所以φ=-π3,∴f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3.由2x -π3=k π(k ∈Z),得x =k π2+π6(k ∈Z).∴f (x )图象的对称中心为⎝ ⎛⎭⎪⎫k π2+π6,0(k ∈Z).【训练2】【答案】 (1)C (2)x =k π2+π6(k ∈Z)【解析】 (1)由题图知,T =2⎝ ⎛⎭⎪⎫11π12-5π12=π,∴ω=2πT =2,∴f (x )=-2cos 2x ,∴f (x +φ)=-2cos(2x +2φ),则由图象知,f ⎝ ⎛⎭⎪⎫512π+φ=-2cos ⎝ ⎛⎭⎪⎫56π+2φ=2.∴5π6+2φ=2k π+π(k ∈Z),则φ=π12+k π(k ∈Z).又0<φ<π2,所以φ=π12.(2)由图象知A =2,又1=2sin(ω×0+φ),即sin φ=12, 又|φ|<π2,∴φ=π6. 又11π12×ω+π6=2π,∴ω=2, ∴f (x )=2sin ⎝⎛⎭⎪⎫2x +π6, 令2x +π6=π2+k π(k ∈Z),得x =k π2+π6(k ∈Z). ∴f (x )=2sin ⎝⎛⎭⎪⎫2x +π6的对称轴方程为x =k π2+π6(k ∈Z). 【例3-1】【答案】 4【解析】 以圆心O 1为原点,以水平方向为x 轴方向,以竖直方向为y 轴方向建立平面直角坐标系,则根据大风车的半径为2米,圆上最低点O 离地面1米,12秒转动一周,设∠OO 1P =θ,运动t (秒)后与地面的距离为f (t ),又周期T =12,所以θ=π6t , 则f (t )=3+2sin ⎝⎛⎭⎪⎫θ-π2=3-2cos π6t (t ≥0), 当t =40 s 时,f (t )=3-2cos ⎝ ⎛⎭⎪⎫π6×40=4. 【例3-2】【答案】见解析【解析】(1)f (x )=2sin ωx cos ωx +3(2sin 2ωx -1)=sin 2ωx -3cos 2ωx =2sin ⎝⎛⎭⎪⎫2ωx -π3. 由最小正周期为π,得ω=1,所以f (x )=2sin ⎝⎛⎭⎪⎫2x -π3, 由2k π-π2≤2x -π3≤2k π+π2(k ∈Z), 整理得k π-π12≤x ≤k π+5π12(k ∈Z),所以函数f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z). (2)将函数f (x )的图象向左平移π6个单位,再向上平移1个单位,得到y =2sin 2x +1的图象; 所以g (x )=2sin 2x +1.令g (x )=0,得x =k π+7π12或x =k π+11π12(k ∈Z), 所以在[0,π]上恰好有两个零点,若y =g (x )在[0,b ]上有10个零点,则b 不小于第10个零点的横坐标即可.所以b 的最小值为4π+11π12=59π12. 【训练3】【答案】 20.5【解析】 因为当x =6时,y =a +A =28;当x =12时,y =a -A =18,所以a =23,A =5,所以y =f (x )=23+5cos ⎣⎢⎡⎦⎥⎤π6(x -6), 所以当x =10时,f (10)=23+5cos ⎝ ⎛⎭⎪⎫π6×4 =23-5×12=20.5. 【答案】见解析【解析】①因为f (x )=52sin 2x -532(1+cos 2x )+532=5(12sin 2x -32cos 2x )=5sin ⎝⎛⎭⎪⎫2x -π3, 所以函数的最小正周期T =2π2=π. ②由2k π-π2≤2x -π3≤2k π+π2(k ∈Z), 得k π-π12≤x ≤k π+5π12(k ∈Z), 所以函数f (x )的递增区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z). 由2k π+π2≤2x -π3≤2k π+3π2(k ∈Z), 得k π+5π12≤x ≤k π+11π12(k ∈Z), 所以函数f (x )的递减区间为⎣⎢⎡⎦⎥⎤k π+5π12,k π+11π12(k ∈Z). ③由2x -π3=k π+π2(k ∈Z),得x =k π2+5π12(k ∈Z), 所以函数f (x )的对称轴方程为x =k π2+5π12(k ∈Z).由2x -π3=k π(k ∈Z),得x =k π2+π6(k ∈Z), 所以函数f (x )的对称中心为⎝⎛⎭⎪⎫k π2+π6,0(k ∈Z). 【例1】【答案】 B【解析】 由题意,至少出现50次最大值即至少需用4914个周期,所以1974T =1974·2πω≤1,所以ω≥1972π.【例2】【答案】 D【解析】 令π2+2k π≤ωx ≤32π+2k π(k ∈Z),得π2ω+2k πω≤x ≤3π2ω+2k πω,因为f (x )在⎣⎢⎡⎦⎥⎤π3,π2上单调递减,所以⎩⎪⎨⎪⎧π2ω+2k πω≤π3,π2≤3π2ω+2k πω,得6k +32≤ω≤4k +3. 又ω>0,所以k ≥0,又6k +32<4k +3,得0≤k <34,所以k =0. 故32≤ω≤3. 【例3】【答案】 (1)⎣⎢⎡⎦⎥⎤34,78 (2)⎩⎨⎧⎭⎬⎫ω|ω≤-2或ω≥32 【解析】 (1)f (x )=sin ωx -cos ωx =2sin ⎝⎛⎭⎪⎫ωx -π4, 令ωx -π4=π2+k π(k ∈Z),解得x =3π4ω+k πω(k ∈Z). 当k =0时,3π4ω≤π,即34≤ω, 当k =1时,3π4ω+πω≥2π,即ω≤78. 综上,34≤ω≤78. (2)显然ω≠0,分两种情况:若ω>0,当x ∈⎣⎢⎡⎦⎥⎤-π3,π4时,-π3ω≤ωx ≤π4ω. 因函数f (x )=2sin ωx 在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值为-2,所以-π3ω≤-π2,解得ω≥32. 若ω<0,当x ∈⎣⎢⎡⎦⎥⎤-π3,π4时,π4ω≤ωx ≤-π3ω, 因函数f (x )=2sin ωx 在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值为-2,所以π4ω≤-π2,解得ω≤-2. 综上所述,符合条件的实数ω≤-2或ω≥32. 【基础巩固题组】1. 【答案】 A【解析】 由题图可知,A =2,T =2⎣⎢⎡⎦⎥⎤π3-⎝ ⎛⎭⎪⎫-π6=π, 所以ω=2,由五点作图法知2×π3+φ=π2+2k π(k ∈Z), 所以φ=-π6,所以函数的解析式为y =2sin ⎝⎛⎭⎪⎫2x -π6. 2. 【答案】 B【解析】 将y =sin ⎝⎛⎭⎪⎫x +φ2cos ⎝ ⎛⎭⎪⎫x +φ2=12sin(2x +φ)的图象向左平移π8个单位后得到的图象对应的函数为y =12sin ⎝ ⎛⎭⎪⎫2x +π4+φ,由题意得π4+φ=k π+π2(k ∈Z),∴φ=k π+π4(k ∈Z),当k =-1,0,1时,φ的值分别为-3π4,π4,5π4,φ的取值不可能是-π4. 3. 【答案】 D【解析】 由P 是函数y =A sin(ωx +φ)(ω>0)图象上的一个最低点,M ,N 是与P 相邻的两个最高点,知|MP |=|NP |,又∠MPN =60°,所以△MPN 为等边三角形.由P (32,-332),得|MN |=2×3323×2=6. ∴该函数的最小正周期T =6.4. 【答案】 A【解析】 y =sin ⎝ ⎛⎭⎪⎫2x +π5=sin 2⎝ ⎛⎭⎪⎫x +π10,将其图象向右平移π10个单位长度,得到函数y =sin 2x 的图象.由2k π-π2≤2x ≤2k π+π2,k ∈Z,得k π-π4≤x ≤k π+π4,k ∈Z.令k =0,可知函数y =sin 2x 在区间⎣⎢⎡⎦⎥⎤-π4,π4上单调递增. 5. 【答案】 B【解析】 由题意得,f (x )=2sin ⎝⎛⎭⎪⎫2x -π6, 则g (x )=2sin ⎝⎛⎭⎪⎫2x +2t -π6, 从而2sin ⎝ ⎛⎭⎪⎫2x +2t -π6=2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π12-x +2t -π6=-2sin(2x -2t )=2sin(2x -2t +π),又t >0, 所以当2t -π6=-2t +π+2k π(k ∈Z)时,即t =7π24+k π2(k ∈Z),实数t min =724π.6. 【答案】 y =sin ⎝ ⎛⎭⎪⎫12x -π10―————————―→横坐标伸长到原来的2倍y =sin ⎝ ⎛⎭⎪⎫12x -π10.7. 【答案】 3【解析】 由图象可知A =2,34T =11π12-π6=3π4,∴T =π,∴ω=2.∵当x =π6时,函数f (x )取得最大值,∴2×π6+φ=π2+2k π(k ∈Z),∴φ=π6+2k π(k ∈Z),∵0<φ<π,∴φ=π6,∴f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6,则f ⎝ ⎛⎭⎪⎫π4=2sin ⎝ ⎛⎭⎪⎫π2+π6=2cos π6= 3.8. 【答案】 143【解析】 依题意,x =π6+π32=π4时,y 有最小值,∴sin ⎝ ⎛⎭⎪⎫π4·ω+π3=-1,∴π4ω+π3=2k π+3π2 (k ∈Z).∴ω=8k +143 (k ∈Z),因为f (x )在区间⎝ ⎛⎭⎪⎫π6,π3上有最小值,无最大值,所以π3-π4≤πω,即ω≤12,令k =0,得ω=143. 9. 【答案】见解析【解析】(1)f (8)=10-3cos ⎝ ⎛⎭⎪⎫π12×8-sin ⎝ ⎛⎭⎪⎫π12×8 =10-3cos 2π3-sin 2π3=10-3×⎝ ⎛⎭⎪⎫-12-32=10. 故实验室上午8时的温度为10 ℃.(2)因为f (t )=10-2(32cos π12t +12sin π12t ) =10-2sin ⎝ ⎛⎭⎪⎫π12t +π3, 又0≤t <24,所以π3≤π12t +π3<7π3,-1≤sin ⎝ ⎛⎭⎪⎫π12t +π3≤1. 当t =2时,sin ⎝ ⎛⎭⎪⎫π12t +π3=1; 当t =14时,sin ⎝ ⎛⎭⎪⎫π12t +π3=-1. 于是f (t )在[0,24)上取得最大值12,取得最小值8.故实验室这一天的最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃.10. 【答案】见解析【解析】(1)因为f (x )的图象上相邻最高点的距离为π,所以f (x )的最小正周期T =π,从而ω=2πT=2. 又f (x )的图象关于直线x =π3对称, 所以2×π3+φ=k π+π2(k ∈Z), 因为-π2≤φ<π2,所以k =0, 所以φ=π2-2π3=-π6,所以f (x )=3sin ⎝⎛⎭⎪⎫2x -π6, 则f ⎝ ⎛⎭⎪⎫π4=3sin ⎝⎛⎭⎪⎫2×π4-π6=3sin π3=32. (2)将f (x )的图象向右平移π12个单位后,得到f ⎝ ⎛⎭⎪⎫x -π12的图象, 所以g (x )=f ⎝ ⎛⎭⎪⎫x -π12=3sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12-π6=3sin ⎝ ⎛⎭⎪⎫2x -π3. 当2k π+π2≤2x -π3≤2k π+3π2(k ∈Z),即k π+5π12≤x ≤k π+11π12(k ∈Z)时,g (x )单调递减. 因此g (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π+5π12,k π+11π12(k ∈Z). 11. 【答案】 B【解析】 ∵x =π12是f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6+φ图象的一条对称轴,∴π3+φ=k π+π2(k ∈Z),即φ=k π+π6(k ∈Z). ∵0<φ<π,∴φ=π6,则f (x )=2sin ⎝⎛⎭⎪⎫2x +π3, ∴g (x )=-2sin ⎝ ⎛⎭⎪⎫2x -π6在⎣⎢⎡⎦⎥⎤-π4,π6上的最小值为g ⎝ ⎛⎭⎪⎫π6=-1. 12. 【答案】 C【解析】 f (x )=220sin 100πx -220sin ⎝⎛⎭⎪⎫100πx +2π3 =220⎣⎢⎡⎦⎥⎤sin 100πx -⎝⎛⎭⎪⎫sin 100πx ·cos 2π3+cos 100πx sin 2π3 =220⎝ ⎛⎭⎪⎫sin 100πx +12sin 100πx -32cos 100πx =2203⎝ ⎛⎭⎪⎫32sin 100πx -12cos 100πx =2203×sin ⎝ ⎛⎭⎪⎫100πx -π6, 则由对任意x ∈R,有f (x 1)≤f (x )≤f (x 2)恒成立得当x =x 2时,f (x )取得最大值,当x =x 1时,f (x )取得最小值,所以|x 2-x 1|的最小值为12T =12×2π100π=1100(T 为f (x )的最小正周期),故选C. 13. 【答案】 ⎣⎢⎡⎦⎥⎤-5π12,π12 【解析】 ∵f (x )=1-23cos 2 x -(sin x -cos x )2=sin 2x -3cos 2x -3=2sin ⎝ ⎛⎭⎪⎫2x -π3-3, ∴g (x )=2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π3-π3-3=2sin ⎝ ⎛⎭⎪⎫2x +π3-3, 由-π2+2k π≤2x +π3≤π2+2k π(k ∈Z), 得-5π12+k π≤x ≤π12+k π(k ∈Z), ∵x ∈⎣⎢⎡⎦⎥⎤-π2,π2, ∴函数g (x )在⎣⎢⎡⎦⎥⎤-π2,π2上的单调递增区间是⎣⎢⎡⎦⎥⎤-5π12,π12.14. 【答案】见解析【解析】(1)设函数f (x )的最小正周期为T ,由题图可知A =1,T 2=2π3-π6=π2, 即T =π,所以π=2πω,解得ω=2, 所以f (x )=sin(2x +φ),又过点⎝ ⎛⎭⎪⎫π6,0, 由0=sin ⎝ ⎛⎭⎪⎫2×π6+φ可得π3+φ=2k π(k ∈Z), 则φ=2k π-π3(k ∈Z),因为|φ|<π2,所以φ=-π3, 故函数f (x )的解析式为f (x )=sin ⎝⎛⎭⎪⎫2x -π3. (2)根据条件得g (x )=sin ⎝⎛⎭⎪⎫4x +π3, 当x ∈⎣⎢⎡⎦⎥⎤0,π8时,4x +π3∈⎣⎢⎡⎦⎥⎤π3,5π6, 所以当x =π8时,g (x )取得最小值,且g (x )min =12. 15. 【答案】 π31 【解析】 函数f (x )=23sin ωx 2cos ωx 2+2cos 2ωx 2-1=3sin ωx +cos ωx =2sin ⎝⎛⎭⎪⎫ωx +π6. 由T =2πω=π,可得ω=2,∴f (x )=2sin ⎝⎛⎭⎪⎫2x +π6. ∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴π6≤2x +π6≤7π6,∴-1≤f (x )≤2. 画出f (x )的图象(图略),结合图象知x 1+x 2=π3, 则f (x 1+x 2)=f ⎝ ⎛⎭⎪⎫π3=2sin ⎝ ⎛⎭⎪⎫2π3+π6=2sin 5π6=1.。

高中数学第一章三角函数1.8函数y=Asin(wx+φ)的图像与性质(2)课件1北师大版必修4

高中数学第一章三角函数1.8函数y=Asin(wx+φ)的图像与性质(2)课件1北师大版必修4


故函数的值域为[- ,2].
上的值域.
第十五页,共51页。
【方法技巧】函数y=Asin(ωx+φ)+b的值域(最值)的求解策略 (1)x∈R时:把“ωx+φ”视为一个整体(zhěngtǐ),结合函数y=Asinx+b中sinx的有界 性求其值域. (2)x∈[a,b]时:把“ωx+φ”视为一个整体(zhěngtǐ),先依据x∈[a,b],求出“ωx+φ”的 范围,在此基础上类比函数y=Asinx+b值域的求法,结合函数单调性或函数图像 求解.
3因为x08由2知函数fx在02上是增加的在28上是减少的所以当x2时fx有最大值为当x8时fx有最小值为1故fx的值域为1类型二函数yasinx性质的综合应用典例已知函数fxasinxa00的图像在y轴上的截距为1它在y轴右侧的第一个最大值点和最小值点分别为解题探究1怎样确定周期和a的值
1.8 函数y=Asin(ωx+φ)的图像(tú xiànɡ)与性
误的是 ( )
A.图像C关于直线x=- 对称 B.图像C关于点 对称12
C.函数f(x)在区间
内是增加的
D.由y=3cos2x得图像向右平移(pínɡ yí) 个单位长度可以得到图像C
第二十七页,共51页。
【解析】选C.A,B经验证可知正确(zhèngquè),C中当 不是正弦函数的单调区间,错误; D中y=3cos2x得图像向右平移 5个单位长度可以得到y=3cos
12 因为 正确(zhèngquè).
第二十八页,共51页。
【补偿(bǔcháng)训练】已知函数f(x)=2sin
(ω>0)的最小正周期为
π.
(1)求函数f(x)的递增区间.

高中数学第一章三角函数1.5函数y=Asin(ωxφ)的图象课

高中数学第一章三角函数1.5函数y=Asin(ωxφ)的图象课

关系?
提示y=Asin(ωx+φ)的图象可以由函数y=sin(ωx+φ)的图象经过上
下伸缩变换得到.




思维辨析
2.填空:如图,函数y=Asin(ωx+φ)的图象,可以看作是把y=sin(ωx+φ) 的图象上所有点的纵坐标伸长(当A>1时)或缩短(当0<A<1时)到原 来的A倍(横坐标不变)而得到的.
1.作出函数y=Asin(ωx+φ)的图象可有哪些方法?如果用图象变换 法,那么是先平移后伸缩还是先伸缩后平移呢?
提示作函数y=Asin(ωx+φ)的图象,可以用“五点法”,也可根据图象 间的关系通过变换法得到;如果用图象变换法,那么既可以先平移 后伸缩,也可以先伸缩后平移.
2.填空:(1)五点法:①列表 ωx+φ 通常取 0,π2,π,32π,2π 这五个值 ;②描点;③连线.
数( )的图象.
A.y=sin
������
+
π 5
C.y=sin
π 5
-������
B.y=sin
������-
π 5
D.y=sin
5������-
π 5
解析将函数 y=sin x 的图象向右平移π5个单位,可以得到函数
y=sin
������-
π 5
的图象.
答案B




思维辨析
二、ω(ω>0)对函数y=sin(ωx+φ)的图象的影响
伸缩变换得到.




思维辨析
2.填空:如图,函数y=sin(ωx+φ)的图象,可以看作是把y=sin(x+φ)

2017_2018学年高中数学第一章三角函数1.8.1函数y=Asin(ωxφ)的图像变换课件北师大版必修4

2017_2018学年高中数学第一章三角函数1.8.1函数y=Asin(ωxφ)的图像变换课件北师大版必修4

π 3
, 所以ω=2, φ=− .
3
π
题型一
题型二
题型三
题型四
题型二
利用图像变换求函数解析式
π
【例 2】 将函数 y=sin x 的图像上所有的点向右平移 10 个单位长度, 再把所得各点的横坐标伸长到原来的 2 倍( 纵坐标不变), 所得图像的函数解析式是( A.y=sin 2������- 10 B. ������ = sin 2������- 5 C.y=sin
π π 8 π 4
3π 8
ቤተ መጻሕፍቲ ባይዱ
π 4
的图像向右平移
π 8
个单位长度, 再把所得图像上各点的横坐标缩短到原来的一半, )
π 8
B. ������ = sin 4������ + D.y=sin x
解析:把函数 y=sin 2������ + 4 的图像向右平移 8 个单位长度, 得 到函数 y=sin 2 ������+ = sin 2x 的图像, 再把所得图像上各点的 横坐标缩短到原来的一半, 则得到函数 y=sin 4x 的图像.
1 2 π 6 1 2 π 12
)
解析:y=sin x 的图像上所有点的横坐标缩短为原来的 2 倍(纵坐 标不变), 所得图像的函数解析式为 y=sin 2x, 再将此函数图像向右平 移 个单位长度, 所得图像的函数解析式为 y=sin 2 ������6 π π 6
1
,
即y=sin 2������答案:B
π 4 π π 4
π
+ 1.
题型一
题型二
题型三
题型四
(方法二)y=sin x y=sin 3������ + 4

高中数学第一章三角函数8函数y=Asin(ωx+φ)的图像与性质(二)学案北师大版必修4(2021

高中数学第一章三角函数8函数y=Asin(ωx+φ)的图像与性质(二)学案北师大版必修4(2021

2018-2019学年高中数学第一章三角函数8 函数y=Asin(ωx+φ)的图像与性质(二)学案北师大版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年高中数学第一章三角函数8 函数y=Asin(ωx+φ)的图像与性质(二)学案北师大版必修4)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年高中数学第一章三角函数8 函数y=Asin(ωx+φ)的图像与性质(二)学案北师大版必修4的全部内容。

§8函数y=A sin(ωx+φ)的图像与性质(二)学习目标 1.会用“五点法”画函数y=A sin(ωx+φ)的图像。

2。

能根据y=A sin(ωx+φ)的部分图像,确定其解析式。

3.了解y=A sin(ωx+φ)的图像的物理意义,能指出简谐运动中的振幅、周期、相位、初相.知识点一“五点法”作函数y=A sin(ωx+φ)(A>0,ω>0)的图像思考1 用“五点法”作y=sin x,x∈[0,2π]时,五个关键点的横坐标依次取哪几个值?答案依次为0,错误!,π,错误!,2π.思考2 用“五点法”作y=A sin(ωx+φ)时,五个关键的横坐标取哪几个值?答案用“五点法"作函数y=A sin(ωx+φ)(x∈R)的简图,先令t=ωx+φ,再由t取0,错误!,π,错误!,2π即可得到所取五个关键点的横坐标依次为-错误!,-错误!+错误!,-错误!+错误!,-错误!+错误!,-错误!+错误!。

梳理用“五点法”作y=A sin(ωx+φ) 的图像的步骤:第一步:列表:ωx+φ0错误!π错误!2πx-错误!错误!-错误!错误!-错误!错误!-错误!错误!-错误!y0 A 0 -A 0第二步:在同一坐标系中描出各点。

2017_2018学年高中数学第一章三角函数1.8.2函数y=Asinωx+φ的性质课件北师大版必修420171103367

2017_2018学年高中数学第一章三角函数1.8.2函数y=Asinωx+φ的性质课件北师大版必修420171103367

题型一
题型二
题型三
题型四
解:(方法一)由图可知, A=3, ������
π
π 3
, 0 , ������
5π 6
,0 ,

3 5π 6
������ + ������ = π,
������ = 2, π 解得 ������ = π , 所以y=3sin 2������ + 3 . ������ + ������ = 2π, 3
1 2
(3)当函数 y=A sin(ωx+φ)+b 为偶函数(φ>0)时, φ 至少为 2 , 故 y= sin 2������ + 2
π
π
+ 4 = 2 cos 2x+ 4 为偶函数.
1 π 5 1 π 5
5
1
5
故应将函数 f (x)= 2 sin 2������ + 6 + 4
1
的图像至少向左平移至与函数y= 2 sin 2������ + 2 + 4 的图像重合时, 函数才为偶函数. 由函数图像平移知 f (x)= 2 sin 2������ + 6 + 4 的图像 y= 2 sin 2������ + 2 + 4 的图像, 故函数 f (x)的图像至少 向左平移 6 个单位长度后, 所得图像的函数才为偶函数.
π 6
故所求函数的图像可由y=3sin 2x 的图像向左平移 6
π π 3
= 3sin 2������ +
.
题型一
题型二
题型三
题型四
反思根据图像求函数y=Asin(ωx+φ)的解析式的难点在于确定初相 φ,其基本方法是利用特殊点,通过待定系数法、逐个确定法或图像 变换法求解.

高中数学第一章三角函数1.8函数y=asin(ωx+φ)的图象

高中数学第一章三角函数1.8函数y=asin(ωx+φ)的图象

类型二
三角函数的图象变换
π y=-2cos 2x+6
[例 2] 由函数 y=cosx 的图象如何得到函数 +2 的图象.
π 7π 【解】 y=-2cos 2x+6 +2=2cos 2x+ 6 +2 7 =2cos2x+12π+2.
π 1 5.简谐振动 y=2sin4x+6的频率和相位分别是________.
π 1 2π π 解析:简谐振动 y=2sin 4x+6 的周期是 T= 4 =2,相位是 4x π 1 2 +6,频率 f=T=π. 2 π 答案:π,4x+6
课堂探究 互动讲练 类型一 “五点法”作函数 y=Asin(ωx+φ)的图象 π [例 1] 用“五点法”画函数 y=2sin3x+6的简图.
|自我尝试| 1.判断正误.(正确的打“√”,错误的打“×”) (1)将函数 y=sinωx 的图像向右平移 φ(φ>0)个单位长度,得到 函数 y=sin(ωx-φ)的图像.( × ) (2)要得到函数 y=sinωx(ω>0)的图像, 只需将函数 y=sinx 上所 有点的横坐标变为原来的 ω 倍.( × ) (3)将函数 y=sinx 图像上各点的纵坐标变为原来的 A(A>0)倍, 便得到函数 y=Asinx 的图像.( √ ) π (4)将函数 y=sinx 的图像向左平移2个单位长度,得到函数 y= cosx 的图像.( √ )
5π π 2π 解析:由图可知,A=2,T=2 12+12 =π,所以 ω= T =2, π 所以 f(x)=2sin(2x+φ),将点-12,2代入 f(x)=2sin(2x+φ),得 2 π =2sin-6+φ.
π π ∴φ-6=2kπ+2,k∈Z. 2π 2 即 φ=2kπ+ 3 ,由 k=0,得 φ=3π, 2π 所以 y=2sin 2x+ 3 . 答案:A

2017_2018版高中数学第一章三角函数8函数y=Asin(ωx+φ)的图像与性质学案北师大版必修

2017_2018版高中数学第一章三角函数8函数y=Asin(ωx+φ)的图像与性质学案北师大版必修
试探2 向左平移 个单位.
梳理 左 右 |φ|
知识点二
试探1 2π,π,4π.
试探2 当三个函数的函数值相同时,y=sin 2x中x的取值是y=sinx中x取值的 ,y=sin x中x的取值是y=sinx中x取值的2倍.
试探3 能够,只要“伸”或“缩”y=sinx的图像即可.
梳理 缩短 伸长 不变
知识点三
8 函数y=Asin(ωx+φ)的图像与性质(一)
学习目标 1.明白得y=Asin(ωx+φ)中ω、φ、A对图像的阻碍.2.把握y=sinx与y=Asin(ωx+φ)图像间的变换关系,并能正确地指出其变换步骤.
知识点一φ(φ≠0)对函数y=sin(x+φ),x∈R的图像的阻碍
试探1 如何由y=f(x)的图像变换取得y=f(x+a)的图像?
C.向左平移 个单位D.向右平移 个单位
类型二 伸缩变换
例2 将函数y=sin 的图像上所有的点的横坐标缩短到原先的 (纵坐标不变)而取得的函数解析式为________________.
反思与感悟 横向伸缩变换,只变ω,φ不发生转变.
跟踪训练2 把函数y=sinx(x∈R)的图像上所有的点向左平移 个单位长度,再把所得图像上所有点的横坐标缩短到原先的 (纵坐标不变),取得的图像所表示的函数是( )
试探2 如何由y=sinx的图像变换取得y=sin(x+ )的图像?
梳理 如下图,关于函数y=sin(x+φ)(φ≠0)的图像,能够看做是把y=sinx的图像上所有的点向______(当φ>0时)或向____(当φ<0时)平行移动____个单位长度而取得的.
知识点二ω(ω>0)对函数y=sin(ωx+φ)的图像的阻碍
注意:两种途径的变换顺序不同,其中变换的量也有所不同:(1)是先相位变换后周期变换,平移|φ|个单位.(2)是先周期变换后相位变换,平移 个单位,这是很易犯错的地址,应专门注意.

2018版高中数学 第一章 三角函数 1.3.3 第1课时 函数y=Asin(ωx+φ)的图象及变换

2018版高中数学 第一章 三角函数 1.3.3 第1课时 函数y=Asin(ωx+φ)的图象及变换

第1课时 函数y =A sin(ωx +φ)的图象及变换学习目标 1.理解y =A sin(ωx +φ)中ω、φ、A 对图象的影响.2.掌握y =sin x 与y =A sin(ωx +φ)的图象间的变换关系,并能正确地指出其变换步骤.知识点一 φ(φ≠0)对函数y =sin(x +φ),x ∈R 的图象的影响 思考1 如何由y =f (x )的图象变换得到y =f (x +a )的图象?思考2 如何由y =sin x 的图象变换得到y =sin(x +π6)的图象?梳理 如图所示,对于函数y =sin(x +φ)(φ≠0)的图象,可以看作是把y =sin x 的图象上所有的点向______(当φ>0时)或向______(当φ<0时)平行移动______个单位长度而得到的.知识点二 ω(ω>0)对函数y =sin(ωx +φ)的图象的影响思考1 函数y =sin x ,y =sin 2x 和y =sin 12x 的周期分别是什么?思考2 当三个函数的函数值相同时,它们x 的取值有什么关系?思考3 函数y =sin ωx 的图象是否可以通过y =sin x 的图象得到?梳理 如图所示,函数y =sin(ωx +φ)的图象,可以看作是把y =sin(x +φ)的图象上所有点的横坐标________(当ω>1时)或____________(当0<ω<1时)到原来的________倍(纵坐标________)而得到.知识点三 A (A >0)对y =A sin(ωx +φ)的图象的影响思考 对于同一个x ,函数y =2sin x ,y =sin x 和y =12sin x 的函数值有何关系?梳理 如图所示,函数y =A sin(ωx +φ)的图象,可以看作是把y =sin(ωx +φ)图象上所有点的纵坐标______(当A >1时)或______(当0<A <1时)到原来的______倍(横坐标不变)而得到.知识点四 函数y =sin x 的图象与y =A sin(ωx +φ)(A >0,ω>0)的图象关系 正弦曲线y =sin x 到函数y =A sin(ωx +φ)的图象的变换过程:y =sin x 的图象――――――――――→向左φ>或向右φ<平移|φ|个单位长度y =sin(x +φ)的图象―――――――――――――→所有点的横坐标变为原来的1ω倍纵坐标不变y =sin(ωx +φ)的图象―――――――――――――→所有点的纵坐标变为原来的A 倍横坐标不变y =A sin(ωx +φ)的图象.类型一 平移变换例1 函数y =sin ⎝⎛⎭⎪⎫x -π6的图象可以看作是由y =sin x 的图象经过怎样的变换而得到的?反思与感悟 对平移变换应先观察函数名是否相同,若函数名不同则先化为同名函数.再观察x 前系数,当x 前系数不为1时,应提取系数确定平移的单位和方向,方向遵循左加右减,且从ωx →ωx +φ的平移量为|φω|个单位.跟踪训练1 要得到y =cos ⎝ ⎛⎭⎪⎫2x -π4的图象,只要将y =sin 2x 的图象向左平移________个单位长度. 类型二 伸缩变换例2 将函数y =sin ⎝ ⎛⎭⎪⎫x +π3的图象上所有的点的横坐标缩短到原来的12(纵坐标不变)而得到的函数解析式为________.反思与感悟 横向伸缩变换,只变ω,φ不发生变化.跟踪训练2 将函数y =sin(x -π3)图象上各点的纵坐标不变,横坐标伸长为原来的5倍,可得到函数__________的图象. 类型三 图象变换的综合应用例3 把函数y =f (x )的图象上的各点向右平移π6个单位,再把横坐标伸长到原来的2倍,再把纵坐标缩短到原来的23倍,所得图象的解析式是y =2sin ⎝ ⎛⎭⎪⎫12x +π3,求f (x )的解析式.反思与感悟 (1)已知变换途径及变换后的函数解析式,求变换前函数图象的解析式,宜采用逆变换的方法.(2)已知函数f (x )图象的伸缩变换情况,求变换前后图象的解析式.要明确伸缩的方向及量,然后确定出A 或ω即可.跟踪训练3 将函数y =2sin(x +π3)的图象向左平移m (m >0)个单位长度后,所得图象对应的函数为偶函数,则m 的最小值为________.1.函数y =cos x 图象上各点的纵坐标不变,把横坐标变为原来的2倍,得到图象的解析式为y =cos ωx ,则ω的值为________.2.为了得到函数y =sin ⎝⎛⎭⎪⎫x +π3的图象,只需把函数y =sin x 的图象上所有的点向左平移________个单位.3.要得到y =sin ⎝ ⎛⎭⎪⎫x 2+π3的图象,只要将函数y =sin x 2的图象向左平移________个单位.4.将函数y =sin(-2x )的图象向左平移π4个单位长度,所得函数图象的解析式为__________________.5.函数y =sin ⎝ ⎛⎭⎪⎫5x -π2的图象向右平移π4个单位长度,再把所得图象上各点的横坐标缩短为原来的12,所得图象的函数解析式为____________.1.由y =sin x 的图象,通过变换可得到函数y =A sin(ωx +φ)(A >0,ω>0)的图象,其变化途径有两条:(1)y =sin x ――――→相位变换y =sin(x +φ)――――→周期变换y =sin(ωx +φ)――――→振幅变换y =A sin(ωx +φ).(2)y =sin x ――――→周期变换y =sin ωx ――――→相位变换y =sin[ω(x +φω)]=sin(ωx +φ)――――→振幅变换y =A sin(ωx +φ).注意 两种途径的变换顺序不同,其中变换的量也有所不同:(1)是先相位变换后周期变换,平移|φ|个单位.(2)是先周期变换后相位变换,平移|φ|ω个单位,这是易出错的地方,应特别注意.2.类似地,y =A cos(ωx +φ) (A >0,ω>0)的图象也可由y =cos x 的图象变换得到.答案精析问题导学 知识点一思考1 向左(a >0)或向右(a <0)平移|a |个单位. 思考2 向左平移π6个单位.梳理 左 右 |φ| 知识点二思考1 2π,π,4π.思考2 当三个函数的函数值相同时,y =sin 2x 中x 的取值是y =sin x 中x 取值的12,y =sin 12x 中x 的取值是y =sin x 中x 取值的2倍.思考3 可以,只要“伸”或“缩”y =sin x 的图象即可. 梳理 缩短 伸长 1ω不变 知识点三思考 对于同一个x ,y =2sin x 的函数值是y =sin x 的函数值的2倍,而y =12sin x 的函数值是y =sin x 的函数值的12.梳理 伸长 缩短 A 题型探究例1 解 函数y =sin ⎝ ⎛⎭⎪⎫x -π6的图象,可以看作是把曲线y =sin x 上所有的点向右平移π6个单位长度而得到的. 跟踪训练1π8例2 y =sin ⎝ ⎛⎭⎪⎫2x +π3 跟踪训练2 y =sin(15x -π3)例3 解y =2sin ⎝ ⎛⎭⎪⎫12x +π3――――――――――→纵坐标伸长到原来的32倍y =3sin ⎝ ⎛⎭⎪⎫12x +π3――――――――――→横坐标缩短到原来的12倍 y =3sin ⎝⎛⎭⎪⎫x +π3―――――――→向左平移π6个单位 y =3sin ⎝⎛⎭⎪⎫x +π6+π3=3sin ⎝ ⎛⎭⎪⎫x +π2=3cos x .所以f (x )=3cos x . 跟踪训练3 π6当堂训练 1.12 2.π3 3.2π34.y =-cos 2x 5.y =sin ⎝⎛⎭⎪⎫10x -7π4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8 函数y=Asin(ωx+φ)的图像与性质(二)学习目标 1.会用“五点法”画函数y=A sin(ωx+φ)的图像.2.能根据y=A sin(ωx+φ)的部分图像,确定其解析式.3.了解y=A sin(ωx+φ)的图像的物理意义,能指出简谐运动中的振幅、周期、相位、初相.知识点一“五点法”作函数y=A sin(ωx+φ)(A>0,ω>0)的图像思考1 用“五点法”作y=sin x,x∈[0,2π]时,五个关键点的横坐标依次取哪几个值?思考2 用“五点法”作y=A sin(ωx+φ)时,五个关键的横坐标取哪几个值?梳理用“五点法”作y=A sin(ωx+φ) 的图像的步骤:第一步:列表:第二步:在同一坐标系中描出各点.第三步:用光滑曲线连接这些点,形成图像.知识点二函数y=A sin(ωx+φ),A>0,ω>0的性质知识点三 函数y =A sin(ωx +φ),A >0,ω>0中参数的物理意义类型一 用“五点法”画y =A sin(ωx +φ)的图像例1 利用五点法作出函数y =3sin(12x -π3)在一个周期内的图像.反思与感悟 (1)用“五点法”作图时,五点的确定,应先令ωx +φ分别为0,π2,π,3π2,2π,解出x ,从而确定这五点.(2)作给定区间上y =A sin(ωx +φ)的图像时,若x ∈[m ,n ],则应先求出ωx +φ的相应范围,在求出的范围内确定关键点,再确定x ,y 的值,描点、连线并作出函数的图像. 跟踪训练1 已知f (x )=1+2sin(2x -π4),画出f (x )在x ∈[-π2,π2]上的图像.类型二 由图像求函数y =A sin(ωx +φ)的解析式例2 如图是函数y =A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的图像,求A ,ω,φ的值,并确定其函数解析式.反思与感悟 若设所求解析式为y =A sin(ωx +φ),则在观察函数图像的基础上,可按以下规律来确定A ,ω,φ.(1)由函数图像上的最大值、最小值来确定|A |.(2)由函数图像与x 轴的交点确定T ,由T =2π|ω|,确定ω.(3)确定函数y =A sin(ωx +φ)的初相φ的值的两种方法①代入法:把图像上的一个已知点代入(此时A ,ω已知)或代入图像与x 轴的交点求解.(此时要注意交点在上升区间上还是在下降区间上)②五点对应法:确定φ值时,往往以寻找“五点法”中的第一个零点⎝ ⎛⎭⎪⎫-φω,0作为突破口.“五点”的ωx +φ的值具体如下:“第一点”(即图像上升时与x 轴的交点)为ωx +φ=0; “第二点”(即图像的“峰点”)为ωx +φ=π2;“第三点”(即图像下降时与x 轴的交点)为ωx +φ=π; “第四点”(即图像的“谷点”)为ωx +φ=3π2;“第五点”为ωx +φ=2π.跟踪训练2 函数y =A sin(ωx +φ)的部分图像如图所示,则其解析式为( )A .y =2sin ⎝⎛⎭⎪⎫2x -π6 B .y =2sin ⎝⎛⎭⎪⎫2x -π3C .y =2sin ⎝ ⎛⎭⎪⎫x +π6D .y =2sin ⎝⎛⎭⎪⎫x +π3类型三 函数y =A sin(ωx +φ)性质的应用 例3 已知函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的图像过点P (π12,0),图像上与P 点最近的一个最高点的坐标为(π3,5).(1)求函数解析式; (2)指出函数的递增区间; (3)求使y ≤0的x 的取值范围.反思与感悟 有关函数y =A sin(ωx +φ)的性质的问题,要充分利用正弦曲线的性质,要特别注意整体代换思想.跟踪训练3 设函数f (x )=sin(2x +φ)(-π<φ<0),函数y =f (x )的图像的一条对称轴是直线x =π8.(1)求φ的值;(2)求函数y =f (x )的单调区间及最值.1.函数y =A sin(ωx +φ)(A >0,0<φ<π)的图像的一段如图所示,它的解析式可以是( )A .y =23sin(2x +2π3)B .y =23sin(2x +π3)C .y =23sin(2x -π3)D .y =23sin(2x +π4)2.函数y =-2sin(π4-x2)的周期、振幅、初相分别是( )A .2π,-2,π4B .4π,-2,π4C .2π,2,-π4D .4π,2,-π43.下列表示函数y =sin ⎝ ⎛⎭⎪⎫2x -π3在区间⎣⎢⎡⎦⎥⎤-π2,π上的简图正确的是( )4.已知函数f (x )=sin ⎝⎛⎭⎪⎫ωx +π3(ω>0)的最小正周期为π,则该函数的图像( ) A .关于点⎝ ⎛⎭⎪⎫π3,0对称B .关于直线x =π4对称C .关于点⎝ ⎛⎭⎪⎫π4,0对称 D .关于直线x =π3对称5.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,-π2<φ<π2)的部分图像如图所示.(1)求f (x )的解析式; (2)写出f (x )的递增区间.1.利用“五点”作图法作函数y =A sin(ωx +φ)的图像时,要先令“ωx +φ”这一个整体依次取0,π2,π,32π,2π,再求出x 的值,这样才能得到确定图像的五个关键点,而不是先确定x 的值,后求“ωx +φ”的值.2.由函数y =A sin(ωx +φ)的部分图像确定解析式关键在于确定参数A ,ω,φ的值. (1)一般可由图像上的最大值、最小值来确定|A |.(2)因为T =2πω,所以往往通过求得周期T 来确定ω,可通过已知曲线与x 轴的交点从而确定T ,即相邻的最高点与最低点之间的距离为T2;相邻的两个最高点(或最低点)之间的距离为T .(3)从寻找“五点法”中的第一个零点(-φω,0)(也叫初始点)作为突破口,以y =A sin(ωx+φ)(A >0,ω>0)为例,位于递增区间上离y 轴最近的那个零点最适合作为“五点”中的第一个点.3.在研究y =A sin(ωx +φ)(A >0,ω>0)的性质时,注意采用整体代换的思想,如函数在ωx +φ=π2+2k π(k ∈Z )时取得最大值,在ωx +φ=3π2+2k π(k ∈Z )时取得最小值.答案精析问题导学 知识点一思考1 依次为0,π2,π,3π2,2π.思考2 用“五点法”作函数y =A sin(ωx +φ)(x ∈R )的简图,先令t =ωx +φ,再由t 取0,π2,π,3π2,2π即可得到所取五个关键点的横坐标依次为-φω,-φω+π2ω,-φω+πω,-φω+3π2ω,-φω+2πω. 知识点二 R [-A ,A ] 2πω x =π2ω+k π-φω(k ∈Z ) 奇 偶 知识点三A2πω ω2πωx +φ φ 题型探究例1 解 依次令x 2-π3=0,π2,π,3π2,2π,列出下表:描点,连线,如图所示.跟踪训练1 解 (1)∵x ∈[-π2,π2],∴2x -π4∈[-54π,34π].列表如下:(2)描点,连线,如图所示.例2 解 方法一 (逐一定参法) 由图像知振幅A =3, 又T =5π6-(-π6)=π,∴ω=2πT=2.由点⎝ ⎛⎭⎪⎫-π6,0可知,-π6×2+φ=0, 得φ=π3,∴y =3sin ⎝ ⎛⎭⎪⎫2x +π3.方法二 (待定系数法)由图像知A =3,又图像过点⎝ ⎛⎭⎪⎫π3,0和⎝ ⎛⎭⎪⎫5π6,0,根据五点作图法原理(以上两点可判为“五点法”中的第三点和第五点),有⎩⎪⎨⎪⎧π3·ω+φ=π,5π6·ω+φ=2π,解得⎩⎪⎨⎪⎧ω=2,φ=π3.∴y =3sin ⎝ ⎛⎭⎪⎫2x +π3.方法三 (图像变换法)由T =π,点⎝ ⎛⎭⎪⎫-π6,0,A =3可知, 图像是由y =3sin 2x 向左平移π6个单位长度而得到的,∴y =3sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π6,即y =3sin ⎝ ⎛⎭⎪⎫2x +π3. 跟踪训练2 A例3 解 (1)∵图像最高点的坐标为(π3,5),∴A =5.∵T 4=π3-π12=π4,∴T =π, ∴ω=2πT=2,∴y =5sin(2x +φ).代入点(π3,5),得sin(2π3+φ)=1,∴2π3+φ=2k π+π2,k ∈Z . 令k =0,则φ=-π6,∴y =5sin(2x -π6).(2)∵函数的递增区间满足2k π-π2≤2x -π6≤2k π+π2(k ∈Z ),∴2k π-π3≤2x ≤2k π+2π3(k ∈Z ),∴k π-π6≤x ≤k π+π3(k ∈Z ).∴函数的递增区间为[k π-π6,k π+π3](k ∈Z ). (3)∵5sin(2x -π6)≤0,∴2k π-π≤2x -π6≤2k π(k ∈Z ),∴k π-5π12≤x ≤k π+π12(k ∈Z ).故所求x 的取值范围是[k π-5π12,k π+π12](k ∈Z ).跟踪训练3 解 (1)由2x +φ=k π+π2,k ∈Z ,得x =k π2+π4-φ2,令k π2+π4-φ2=π8,得φ=k π+π4,k ∈Z . ∵-π<φ<0,∴φ=-3π4.(2)由(1)知,f (x )=sin ⎝⎛⎭⎪⎫2x -3π4. 由2k π-π2≤2x -3π4≤2k π+π2(k ∈Z ),得k π+π8≤x ≤k π+5π8(k ∈Z ),故函数的递增区间是⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z ).同理可得函数的递减区间是⎣⎢⎡⎦⎥⎤k π+5π8,k π+9π8(k ∈Z ).当2x -3π4=2k π+π2(k ∈Z ),即x =k π+5π8(k ∈Z )时,函数取得最大值1;当2x -3π4=2k π-π2(k ∈Z ),即x =k π+π8(k ∈Z )时,函数取得最小值-1.当堂训练1.A 2.D 3.A 4.A5.解 (1)易知A =2,T =4×[2-(-2)]=16, ∴ω=2πT =π8,∴f (x )=2sin(π8x +φ),将点(-2,0)代入得sin(-π4+φ)=0, 令-π4+φ=0,∴φ=π4,∴f (x )=2sin(π8x +π4).(2)由-π2+2k π≤π8x +π4≤π2+2k π,k ∈Z ,解得16k -6≤x ≤16k +2,k ∈Z ,∴f(x)的递增区间为[16k-6,16k+2],k∈Z.11。

相关文档
最新文档