趋势面分析-完整版

合集下载

第四章 趋势面分析

第四章 趋势面分析

n
偏差平方和
SD
i 1
(z
i
2 zi)
设p次趋势面分析的系数个数为k(不包括b0), 假设(因变量和自变量及其高次幂和交叉乘 积幂之间不相关,则偏回归系数全为0):
H 0 : b1 b2 bk 0
统计量:
SR k F ~ F k, n k 1) ( SD (n k 1)
结果
(1)趋势面方程
ˆ z b0 b1 x b2 y
(2)残差
ˆ ei zi zi
做出趋势面和残差 图
3926500
3926000
3925500
3925000
20487000
20487500
20488000
20488500
20489000
20489500
三、有关趋势面系数


的几点说明 多项式中 P次多项式包含P-1次多项式 对于P次多项式
ˆ z b0 b1 x b2 y b3 x b4 xy b5 y bk y
2 2
p
p与k有如下关系: k=(p+1+2)p/2=(p+3)p/2
第三节 趋势面分析的系数检验
2、趋势面方程
ˆ z b0 b1 x b2 y
对每个点有
ˆ zi b0 b1 xi b2 yi
i=1 ,2,...n

3、关键
求取最符合真实面的最隹方程,即求 取最隹的 b0,b1 ,b2
4、方法
(1)最小二乘法
ˆ Q (Z i zi ) (Z i b0 b1 xi b2 yi )

趋势面分析法

趋势面分析法

一、趋势面分析法(2007-03-06 14:45:57)转载下面将就趋势面分析、克里金、形函数法三种算法作简单介绍,以后将进一步整理一些资料,介绍更多优秀的实用算法。

一、趋势面分析法趋势面分析法是针对大量离散点信息,从整体插值角度出发,来进行趋势渐变特征分析的最简单的方法。

趋势面分析一般是采取多项式进行回归分析。

趋势面通常应用多项式回归,主要是因为多项式回归的求解比较简单,通常可以得到显示的数学解答。

回归方法采用最小二乘法原理,其本质就是对回归函数在某个区间上的极值求取。

M阶N项多项式趋势面基本可以表示以下形式:要注意在上式中,是参变量,但不是每个参变量都是独立参变量。

在实际分析中,M一般取1,2,3。

一般来说来M不取超过3以上的高阶,主要基于两方面,一是高阶求解相对复杂,二是高级很难赋予物理意义。

N取多参变量在生产实践中是很常见的。

对于任何一组离散型数据,多项式趋势面到底取多少阶和多少个参变量,有一个临界限制:就是不管你取多少阶和多少个参变量,只要待求趋势面中的独立参变量总数小于或者等于已知离散控制点的数量就可以。

事实上,趋势面分析并不限制只取多项式趋势面,可以取任何函数构成的趋势面,如以下形式:上式为任意函数,为待求参变量。

在实际应用中,即使碰到了用一般多项式趋势面解决不了的拟合问题,往往也不采取以上方法,因为其求取复杂和费时。

通常做法是大致估算出其函数形式,将原始数据进行相应转换,然后再采取多项式趋势面方法来进行分析和求解。

在空间分析中,最简单的趋势面分析函数大致有以下一些类型。

1、空间趋势平面模型。

数学函数如下所示:2、简单二次曲面模型。

数学函数如下所示:或3、复杂二次曲面模型。

数学函数如下所示:所谓趋势面,顾名思义只是从趋势上来进行拟合,严格意义说它是平滑函数。

一般趋势面不经过原始数据点,除非趋势面中待求参变量的个数与已知离散控制点所确定的线性不相关方程组的个数相等。

趋势面分析中另一个重要特性就是揭示了分析区域中不同于总趋势的最大偏离部分。

趋势面分析

趋势面分析

趋势面分析一什么叫趋势面分析?趋势面分析就是对反映区域性表化的、反映局部性变化的、反应随机性变化的三部分信息进行分析:排除随机干扰部分,找出区域性变化趋势,突出局部异常。

二数学原理利用多元回归原理,计算出一个数学曲面来拟合数据中区域性变化的趋势,即:趋势面---常用等值线给出。

本次上机实习采用多项式趋势面,对于一组地质数据,用SPASS做出趋势面后,还可以此为基础将这组数据的剩余部分分解出来,做出反映局部性变化的剩余图;进一步去掉随机干扰,就可以做出反应局部异常的的异常图,达到得出局部构造的目的。

三SPASS具体操作步骤及结果1 输入原始数据2 建立一个New plot然后在Plot界面用Grid打开之前建立的数据(可以修改各种参数设定)之后得到一个grid格式的数据和一个分析报告,下一步使用,进行趋势面绘制,用Map工具打开该数据Active Data: 18Univariate Statistics————————————————————————————————————————————X Y Z ————————————————————————————————————————————Count: 18 18 181%%-tile: 2.48 1.22 2005%%-tile: 2.48 1.22 20010%%-tile: 3.77 1.32 21425%%-tile: 3.93 2.33 23350%%-tile: 4.55 2.85 25075%%-tile: 4.58 3.11 26590%%-tile: 4.71 3.2 27895%%-tile: 4.99 3.21 61399%%-tile: 4.99 3.21 613Minimum: 2.48 1.22 200 Maximum: 5.04 3.58 690Mean: 4.29388888889 2.62611111111 289.288888889 Median: 4.55 2.85 250.05 Geometric Mean: 4.24766170066 2.51385012227 271.255793835 Harmonic Mean: 4.19054009746 2.37707222857 260.43837365 Root Mean Square: 4.33183756236 2.71356980951 317.188853664 Trim Mean (10%%): N/A N/A N/A Interquartile Mean: 4.36555555556 2.79 246.5 Midrange: 3.76 2.4 445 Winsorized Mean: 4.33166666667 2.61 248.566666667 TriMean: 4.4025 2.785 249.5Variance: 0.346589869281 0.494472222222 17916.0433987 Standard Deviation: 0.588718837206 0.703187188608 133.85082517 Interquartile Range: 0.65 0.78 32Range: 2.56 2.36 490Mean Difference: 0.610392156863 0.771045751634 104.483660131 Median Abs. Deviation: 0.33 0.315 16.55Average Abs. Deviation: 0.401666666667 0.498333333333 59.2111111111 Quartile Dispersion: 0.0763807285546 0.1433823529410.0642570281124Relative Mean Diff.: 0.142153691597 0.293607436628 0.3611741209Standard Error: 0.138762360667 0.165742809836 31.5489420484 Coef. of Variation: 0.137106211278 0.267767493018 0.462689132943 Skewness: -1.44662719199 -0.822714806649 2.2207762572 Kurtosis: 5.36832306757 2.26851523564 6.39084247191Sum: 77.29 47.27 5207.2Sum Absolute: 77.29 47.27 5207.2Sum Squares: 337.7667 132.5423 1810957.84 Mean Square: 18.7648166667 7.36346111111 100608.768889 ————————————————————————————————————————————Inter-Variable Covariance————————————————————————————————X Y Z ————————————————————————————————X: 0.34658987 0.041551307 -30.09019Y: 0.041551307 0.49447222 2.7437778Z: -30.09019 2.7437778 17916.043 ————————————————————————————————Inter-Variable Correlation————————————————————————————————X Y Z ————————————————————————————————X: 1.000 0.100 -0.382Y: 0.100 1.000 0.029Z: -0.382 0.029 1.000 ————————————————————————————————Inter-Variable Rank Correlation————————————————————————————————X Y Z ————————————————————————————————X: 1.000 0.010 -0.097Y: 0.010 1.000 0.113Z: -0.097 0.113 1.000 ————————————————————————————————Principal Component Analysis————————————————————————————————————————PC1 PC2 PC3 ————————————————————————————————————————X: 0.216419756651 0.216419756651 0.976298964503Y: 0.976300385716 0.976300385716 -0.216419808238Z: 0.000213968453371 0.000213968453371 -0.216419808238Lambda: 17916.0943565 0.504284372067 0.285819896505 ————————————————————————————————————————Planar Regression: Z = AX+BY+CFitted Parameters ————————————————————————————————————————A B C ————————————————————————————————————————Parameter Value: -88.3733860188 12.9750614884 634.680436047 Standard Error: 54.3839287184 45.5310389559 253.339971028 ————————————————————————————————————————Inter-Parameter Correlations ————————————————————————————A B C ————————————————————————————A: 1.000 -0.100 -0.874B: -0.100 1.000 -0.379C: -0.874 -0.379 1.000 ————————————————————————————ANOVA Table ————————————————————————————————————————————————————Source df Sum of Squares Mean Square F ————————————————————————————————————————————————————Regression: 2 45811.1345603 22905.56728021.32779942978Residual: 15 258761.603217 17250.7735478Total: 17 304572.737778 ————————————————————————————————————————————————————Coefficient of Multiple Determination (R^2): 0.150411146101 Nearest Neighbor Statistics—————————————————————————————————Separation |Delta Z| —————————————————————————————————1%%-tile: 0.022********* 2.35%%-tile: 0.022********* 2.310%%-tile: 0.022********* 5.825%%-tile: 0.05 2050%%-tile: 0.128062484749 21.475%%-tile: 0.261725046566 2890%%-tile: 0.667607669219 41295%%-tile: 0.810246875958 41299%%-tile: 0.810246875958 412Minimum: 0.022********* 2.3Maximum: 1.58344561005 490Mean: 0.300678589751 107.561111111 Median: 0.135094594392 22.55Geometric Mean: 0.150505839521 34.1962482825 Harmonic Mean: 0.0760795138321 15.183145853Root Mean Square: 0.484349506498 198.11587939Trim Mean (10%%): N/A N/AInterquartile Mean: 0.156027058614 22.4333333333 Midrange: 0.802903144915 246.15Winsorized Mean: 0.241874303774 103.422222222 TriMean: 0.141962504016 22.7Variance: 0.152668408352 29308.774281 Standard Deviation: 0.390728049098 171.198055716 Interquartile Range: 0.211725046566 8Range: 1.56108493028 487.7Mean Difference: 0.367671560345 153.080392157 Median Abs. Deviation: 0.111396166834 6.55Average Abs. Deviation: 0.230993279821 91.9277777778 Quartile Dispersion: 0.6792044749 0.166666666667 Relative Mean Diff.: 1.2228059226 1.42319459678Standard Error: 0.0920954843723 40.3517687077 Coef. of Variation: 1.29948743415 1.59163524761 Skewness: 2.020******** 1.28865622044 Kurtosis: 6.73356292285 2.76519475547Sum: 5.41221461551 1936.1Sum Absolute: 5.41221461551 1936.1Sum Squares: 4.2227 706498.23Mean Square: 0.234594444444 39249.9016667 —————————————————————————————————Complete Spatial RandomnessLambda: 2.97934322034Clark and Evans: 1.0379*******Skellam: 79.0479539757Gridding RulesGridding Method: KrigingKriging Type: PointPolynomial Drift Order: 0Kriging std. deviation grid: noSemi-Variogram ModelComponent Type: LinearAnisotropy Angle: 0Anisotropy Ratio: 1Variogram Slope: 1Search ParametersNo Search (use all data): trueOutput GridGrid File Name: C:\Documents and Settings\Administrator\桌面\趋势面分析数据.grdGrid Size: 92 rows x 100 columnsTotal Nodes: 9200Filled Nodes: 9200Blanked Nodes: 0Blank Value: 1.70141E+038Grid GeometryX Minimum: 3.22X Maximum: 4.95X Spacing: 0.017474747474747Y Minimum: 1.66Y Maximum: 2.49Y Spacing: 0.0091208791208791Univariate Grid Statistics——————————————————————————————Z ——————————————————————————————Count: 92001%%-tile: 243.6708247515%%-tile: 270.52537986610%%-tile: 289.3649401625%%-tile: 320.7816334150%%-tile: 346.69170079275%%-tile: 403.41375589490%%-tile: 501.89518357495%%-tile: 550.0838342899%%-tile: 623.854749712Minimum: 231.02350996Maximum: 684.239353028Mean: 371.755313657Median: 346.697198378Geometric Mean: 363.519621072Harmonic Mean: 356.180238449Root Mean Square: 380.919972359Trim Mean (10%%): 365.903516549Interquartile Mean: 351.617078065Midrange: 457.631431494Winsorized Mean: 368.205042418TriMean: 354.394697722Variance: 6898.76197525Standard Deviation: 83.0587862616Interquartile Range: 82.6321224834Range: 453.215843068Mean Difference: 87.9557978576Median Abs. Deviation: 36.2856362208Average Abs. Deviation: 59.6216971292Quartile Dispersion: 0.114101972622Relative Mean Diff.: 0.236595939927Standard Error: 0.865947707481Coef. of Variation: 0.223423265816Skewness: 1.19083933754Kurtosis: 4.0676520973Sum: 3420148.88565Sum Absolute: 3420148.88565Sum Squares: 1334920233.15Mean Square: 145100.025342 ——————————————————————————————然后得到趋势面:然后加上颜色表示地下:还可以重点突出某一小区域的构造,改变参数即可; 两趋势面的对比如下:然后做出三维模型:这就是局部构造。

07 趋势面分析

07 趋势面分析

3.趋势面适度的逐次检验
逐次检验就是对相继两个阶次趋势面模型的适度性进 行比较。 为此要求出较高次多项式方程的回归平方和与较低次 多项式方程的回归平方和之差,将此差除以回归平方和的
自由度之差,得到由于多项式次数增高所产生的回归均方
差,然后除以较高次多项式的剩余均方差,得出相继两个 阶次趋势面模型的适度性比较检验值F。若所得的F是显著
如果计算二次趋势面,则趋势方程
ˆ z b0 b1 x b2 y b3 x 2 b4 xy b5 y 2
的待定系数有6个:b0,b1,b2,b3,b4,b5。其求解方法与前 相同,它们应满足以下方程组(矩阵形式):
1 xi y i 2 xi xi yi 2 yi
解此方程的: b0=1189.3 b1=-645.6 b2=502.4 b3=73.6 b4=-8.2 b5=-100 拟合方程为: z=1189.3-645.6x+502.4y+73.6x2-8.2xy-100y2 并可算得: S回=132081 f回=5 S剩=98910 f剩=18-5-1=12 S总=230911 于是得出: 拟合优度R2=132081/230911=57.2% 统计量F=132081×12/(98910×5)=3.2 若取α=0.05,查F分布表得Fα(5.12)=3.11,因此F>Fα, 用二次趋势面反映Z2层厚度的变异是显著的。
n
n
n
b0 yi b1 xi yi b2 yi zi yi
2 i 1 i 1 i 1 i 1
n
将方程组写成矩阵形式,则是
1 xi y i
x y b z x x y b z x x y y b z y

趋势面分析方法

趋势面分析方法

F检验
SS
( K 1) D (K ) R
MS
( K 1) D
( K 1) ( K 1) MS R / MS D
( K !) SS D /(n p 1)
SS
SS
(K ) (K ) MSR SSR /q
(K ) MS D (K ) SS D /( n q 1)
(K ) D
表3.6.1 多项式趋势面由K次增高至(K+1)次 的回归显著性检验
离差来源 (K+1) 次回归 (K+1) 次剩余 K次回归 K次剩余 由K次增 高至 (K+1) 次的回归 总离差 平方和
( K 1) SSR
自由度 p n – p– 1 q n– q– 1
均方差
( K 1) ( K !) MSR SSR /p
1 x 1 y1 2 x1 x1 y1 2 y1
1 x2 y2 2 x2
2 y2

x2 y 2
1 z1 z xn 2 yn 2 xn xn y n 2 yn zn
(2)再采用三次趋势面进行拟合,用 最小二乘法求得拟合方程为
z 48.810 37.557x 130.130y 8.389x 2 33.166xy
62.740y 2 4.133x 3 6.138x 2 y 2.566xy 2 9.785y 3
R 2 0.965, F 6.054
i 1 i 1 n n
(3.6.5)
③求Q对a0,a1,…,ap的偏导数,并 令其等于0,得正规方程组(式中 a0 , a1 ,, a p 为p+1个未知量)

趋势面分析

趋势面分析

第4节地理趋势面分析地理趋势面模型就是多维趋面的多项式拟合模型,它是趋势面拟合的重要而实用的方法之一,但只是有了计算机才能得以实现。

5.1地理趋势面分析概述1 地理趋势面模型的概念地理趋势面模型是以已知地理数据序列(含空间数据和属性数据)为基础,根据统计数学的最小二乘法原理和方法而建立的能反映地理要素空间分布趋势和分布规律的多项式型的回归模型。

2地理趋势面分析的概念地理趋势面分析是指以研究和建立地理趋势面分析的数学模型并用于模拟或者拟合地理要素的空间分布及变化趋势的数理统计方法,主要含义如下:1)地理趋势面分析的理论基础是数理统计学原理和方法;2)地理趋势面分析的数据基础是地理数据,包含地理空间数据和属性数据;3)地理趋势面分析的主要方法是多元回归分析法,即多元线性和多元非线性回归分析法,实质上还是数量统计学著名的最小二乘法;4)地理趋势面分析的核心任务是地理趋势面模型的建立和求解; 5)地理趋势面分析的主要目的是研究和分析地理实体的空间分布规律、变化过程及变化规律;6)地理趋势面分析的过程是资料收集与整理、模型建立和求解、模型检验、地理分析;3 地理趋势面与实际趋面的关系地理趋势面实质上是一个数学曲面,它是地理趋势面模型的模拟表达形式,其关系为:实际曲面=趋势面+剩余曲面对一点而言,就是:实测值=确定性函数值+随机性函数值=趋势值+剩余值4 类型地理趋势面数学模型的类型有多项式和富氏级两种,主要介绍多项式,根据多项式的元数和次数又可分为:二元一次多项式,二元二次多项式,二元三次多项式,……;三元一次多项式,三元二次多项式,三元三次多项式,……;. . . .. . . .. . . .K元一次多项式, K元二元多项式,K元三次多项式,……。

通常选用多项式作为多项式趋势面分析数学模型,这是因为由数学知识可知,任何函数在一定范围内总可以用多项式来逼近,并可以通过调整多项式的次数来满足趋势面分析的需要。

趋势面分析

趋势面分析

区域降水量的趋势面模拟1.趋势面分析基本原理与方法1.1趋势面分析原理趋势面分析,是利用数学曲面模拟地理系统要素在空间上的分布及变化趋势的一种数学方法。

它实质上是通过回归分析原理,运用最小二乘法拟合一个二维非线性函数,模拟地理要素在空间上的分布规律,展示地理要素在地域空间上的变化趋势。

趋势面分析的观测面由趋势面部分和残差部分组成。

趋势面部分反映区域性大范围内的变化情况,残差部分是实测值与趋势函数对应值之差,反映局部变化情况,二者结合其就有助于深入分析。

趋势面分析的一个基本要求,就是所选择的趋势面模型应该是剩余值最小,而趋势值最大,这样拟合度精度才能达到足够的准确性。

空间趋势面分析,正是从地理要素分布的实际数据中分解出趋势值和剩余值,从而揭示地理要素空间分布的趋势与规律。

对于变化较缓和的资料,可用低次数的趋势面进行分析;而对于变化复杂、起伏较多的资料,可用多项式阶次高些的趋势面;1.2趋势面模型的建立本例将降雨量(,)(1,2,...,)i i i z x y i n =作为因变量,地理位置坐标(,)i i x y 作为自变量,趋势拟合值为(,)i i iz x y ,则有: (,)(,)i i i i i iz x y z x y ε=+ (1) 趋势面分析的核心:从实际观测值出发推算趋势面,一般采用回归分析方法,使得残差平方和趋于最小,即:(2)2211[(,)(,)]min n ni i i i i ii i Q z x y z x y ε====-→∑∑这就是在最小二乘法意义下的趋势面拟合。

1.3趋势面模型的适度检验21R R T TSS SSR SS SS ==- (3) 其中,21()ni D ii SS z z==-∑21()ni R i SS zz ==-∑ 2211()()nni i T i D R i i SS z z z z SS SS ===-+-=+∑∑式中:SS D 为剩余平方和,它表示随机因素对z 的离差的影响;SS R 为回归平方和,它表示p 个自变量对因变量z 的离差的总影响。

第六章 趋势面分析

第六章   趋势面分析

156 第六章 趋势面分析地质工作中,经常要研究某些地质特征在空间中的分布规律.例如地形高度的分布情况, 某些金属元素含量的分布情况,地下水水位分布情况,岩层层面高度分布情况,污染物浓度 分布情况等等.通常使用纵横剖面图和立体图来表示,而最常见的是用等值线图来表示,等 值线图通常用一个点与周围最近点作线性插值求得.因此它不能充分反映区域性的趋势变化 和非线性变化,同时在一定程度上带有工作者的主观片面性.趋势面分析是对地质特征的空间分布进行研究和分析的一种方法,它是用某种形式的函 数所代表的曲面来逼近该地质特征的空间分布.这个函数从总体上反映了该地质特征的区域 性变化趋势,称为趋势面部分;地质特征的实测值与这个函数对应值之差,称为偏差部分.它 反映了局部性的变化.这就是说,把地质特征的实测值分解成两部分,趋势面部分和偏差部 分.趋势面部分用一个函数表示,它反映地质特征的总的区域性的变化规律(即区域背景), 可以认为是由大范围的系统性因素引起的;偏差部分反映了局部性的变化特点,可以认为由 局部因素和随机因素引起的,即地质现象中的局部异常.地质特征在平面位置上的分布可以用二元函数(,)u f x y =近似表示,地质特征在空间位置上的分布可以用三元函数(,,)u f x y z =近似表示.通常最常用的趋势面函数主要是多项式趋势面,因为多项式能够逼近任意连续函数,因此用多项式作趋势面能较好地反映连续变化的分布趋势,常常在地质科学研究中采用.如果所用的多项式是n 次多项式,则所得的趋势面叫做n 次多项式趋势面,简称n 次趋势面.一般说多项式次数愈高,则趋势面与实测数据偏差愈小,但是还不能说它与实际情况最符合,这还要在实践中检验.一般说变化较为缓和的资料配合较低次数的趋势面,就可以比较好地反映区域背景;而变化复杂起伏较多的资料,配合的趋势面可以适当高一些. 下面简单介绍多项式趋势面,其他形式的趋势面函数亦可用类似做法,这里就不介绍了。

2 趋势面分析

2 趋势面分析
三次:z b 0 b 1 x b 2 y + b 3 x 2 b 4 xy b 5 y 2 + b6x
3
b 7 x y b 8 xy
2
2
b 9y
3
………………………………………………
15
z b 0 b 1 x b 2y
1 趋势面分析的概念及类型
(3) 三元趋势分析
(4)
21
2 多项式趋势面分析的数学模型及计算
矩阵形式为:
n n xi i 1 n y i i 1

i 1 i 1 n
n
xi xi
2
i 1 n
xi yi
b0 n yi zi i 1 ni 1 n b1 xi yi zi xi i 1 i 1 n b n 2 2 y i z i y i i 1 i 1
n
(5 )
22
2 多项式趋势面分析的数学模型及计算
结果: 解(5)得 ,从而得二元一次趋势面方程并可计算出各观 察点的趋势值:
z i b 0 b1 x i b 2 y i ( i 1, 2 , n ) (6)
它就表示空间一个平面,其等值线图为一组平行线。偏 差值为:
ei z i z i
i 1 n
i 1

3
i 1 n
b 0 i 1 n 2 x i y i b1 i 1 n 3 yi b2 i 1 n 2 2 x i y i b3 i 1 n 3 x i y i b 4 i 1 n 4 y i b 5 i 1

07 趋势面分析

07 趋势面分析
总离差 SST
pq
( ( MSRI ) / MSDK 1)
表1 多项式趋势面的逐次检验
四、实例分析
以下是某地18口钻井资料,Z2层的厚度变化如表所示。
编号 1 2 3 4 坐标 x 4.21 3.93 5.04 3.85 y 2.85 1.7 1.55 1.11 厚度z/m 231 248.5 196 211 编号 10 11 12 13 坐标 x 4.59 4.59 4.1 4.68 y 3.22 3.23 2.84 2.75 厚度z/m 259 259.8 261.5 272
统计分析方法
—趋势面分析
一、趋势面分析原理
通常许多地理数据都包括以下三部分信息: ①反映区域性变化的:数据中反映总体的规律性变 化的部分,如由地质区域构造、区域岩相、区域背景等 大区域因素所决定。 ②反映局部性变化的:它反映局部范围的变化特征。 ③反映随机性变化的:它是由各种随机因素造成的 偏差。 趋势面是一种抽象的数学曲面,它抽象并过滤掉了 一些随机因素的影响,使地理要素的空间分布规律明显 化,以便找出区域性变化趋势,突出局部异常。
趋势面分析的基本原则:所选择的趋势面模型应
该是剩余值最小,而趋势值最大,这样拟合度精度才
能达到足够的准确性。 通常采用的拟合曲面有两种:一种是多项式趋势 面,另一种是以傅里叶级数为基础得出的拟合面,叫 做调和趋势面,它常用于具有周期性变化的地理数据。
二、多项式趋势面的计算
计算多项式趋势面与计算多项式回归在数学上是完全 一样的,现以一次趋势面为例进行分析计算。 设有一组(n个点)地理观测数据,观测点的横坐标为xi, 纵坐标为yi,观测值为zi,(i=1,2,···,n),现用一次 趋势面
( ( MSRK 1) / MSDK 1)

计量地理学 第六章 趋势面分析模型

计量地理学 第六章  趋势面分析模型

第六章趋势面分析模型所谓趋势就是排除了偶然变化和局部起伏以后的比较规则的变化。

趋势面分析趋势面分析是研究地理系统要素(变量)空间变化规律的有力工具,在地理系统的研究和分析中已经得到广泛的应用。

第一节趋势面分析的原理和数学模型一.趋势面分析概述地理系统调查所获得的观测数据中一般都包含着三种分量:地理系统的最重要特征之一就具有区域性。

在散点图上,显示地理要素特征的点的空间分布呈波浪状起伏,此时若以回归平面代表其趋势,并不贴切,而应以曲面表示其趋势才较为贴切。

用数学的方法,以数学模型来模拟(或拟合)地理数据的空间分布及其区域性变化趋势的方法,称为趋势面分析。

在地理系统中,大量的地理数学模型都是非线性模型,通常寻求这些非线性模型的函数表达式比较困难。

这时可采用趋势面来拟合回归方程,计算趋势面的数学表达式主要有多项式函数和傅里叶级数,最常用的是多项式函数。

趋势面是一种光滑的数学曲面,它能集中地代表地理数据在大范围内的空间变化趋势。

趋势面实际曲面=趋势面+剩余曲面某观测点上的观测值在利用趋势面分析拟合回归模型进行地理预测时,所选择的趋势面模型必须使剩余值比较小,回归平方和比较大,这样拟合度较高,预测结果才能达到足够的准确性。

二、趋势面分析的数学原理1、趋势面分析的原理设以z i(x i,y i)表示某一地理特征值在空间上的分布,其中(x i,y i)是平面上点的坐标。

任一观测点x i可分解为两个部分为了使趋势面更好地逼近原始地理数据,常采用最小二乘法原理,使每一个观测值z i与趋势值z i的残差平方和最小。

Q=∑(z i-z i,)2 min根据高斯-马尔科夫定理,最小二乘法给出了多项式系数的最佳线性无偏估计值,这些估计值使残差平方和达到最小。

通常选用多项式趋势面方程,这是因为任何函数在一定范围内总可以用多项式来逼近,并可调整多项式的次数来满足趋势面分析的需要。

一般来说,多项式的次数越高则趋势值越接近于观测值,而剩余值越小。

第四章 趋势面分析

第四章 趋势面分析
方法原理及研究过程与多项式趋势面相同, 方法原理及研究过程与多项式趋势面相同 , 不 付立叶级数。 同之处是数学模型 — 付立叶级数。故仅对作如下 说明: 说明: 一、趋势面分析的功能 调和趋势面分析的数学模型是正弦和余弦函数的 调和趋势面分析的数学模型是正弦和余弦函数的 组合,它具有波动的特征。 组合,它具有波动的特征。
2tπ x 2kπ y 2tπ x 2kπ y + Ctk sin z = F(x, y) = ∑∑[ Etk cos cos cos L H L H t =0 k =0 2tπ x 2kπ y 2tπ x 2kπ y +Ptk cos sin +Wtk sin sin ] L H L H
r s
20
1 1 X= M 1
x1 M
y1 x12 M M
x1 y1 M
3 y12 x1 x12 y1 x1 y12
2 2 3 2 2 x2 y2 x2 x2 y2 y2 x2 x2 y2 x2 y2
M
M
M
M
2 2 3 2 2 xn yn xn xn yn yn xn xn yn xn yn
16
中划分正异常时, 或 为异常下限 为异常下限, 从∆zi+中划分正异常时,e+ (或2s+)为异常下限, ∆zi+ >异常下限为正异常点 。 异常下限为正异常点 异常下限为 为异常上限, 中划分负异常时, 或 从∆zi-中划分负异常时,e-(或-2s-)为异常上限, 为异常上限 ∆zi- <异常上限为负异常点 。 异常上限为负异常点 异常上限为 根据异常上、下限可以在偏差图上圈出正、负异 根据异常上、下限可以在偏差图上圈出正、 常区,即趋势面异常分布图。 常区, 趋势面异常分布图。 注意:异常限仅仅是一个统计估计值, 注意:异常限仅仅是一个统计估计值,因此它可 统计估计值 以被修正。实际工作中可根据资料情况改变其大小。 以被修正。实际工作中可根据资料情况改变其大小。 一般控制异常点数<总点数的 总点数的20% 。 一般控制异常点数 总点数的

第5章 趋势面分析

第5章 趋势面分析

1 Ri = M
第一节
何谓趋势面分析
“趋势”是指事物发展的总的 趋势” 趋向, 趋向,它不受局部因素的影响而由 总的规律所支配, 总的规律所支配,包含着与空间地 理坐标(x,y)相关的三部分信息: 理坐标(x,y)相关的三部分信息:
①反映区域性变化的:数据中反 反映区域性变化的: 映总体的规律性变化的部分, 映总体的规律性变化的部分,由地质 区域构造、区域岩相、 区域构造、区域岩相、区域背景等大 区域因素所决定。 区域因素所决定。 反映局部性变化的: ②反映局部性变化的:反映局部 范围的变化特征。 范围的变化特征。 反映随机性变化的: ③反映随机性变化的:它是由各 种随机因素造成的偏差。 种随机因素造成的偏差。
学习重点、难点 学习重点、
重点 趋势面方程求法, 趋势面方程求法,趋势图形与剩余图形
的分析与应用 难点 其意义 观测数据做趋势与剩余分析, 观测数据做趋势与剩余分析,深入理解
学时, 课时安排 5学时,课外完成习题 背景知识 相关专业知识 线性代数 数理统计
学习方法 讲授与讨论
问题
油田在勘探/开发过程中, 油田在勘探 开发过程中,无论是储层的顶底 开发过程中 面深度(构造起伏)、砂体有效厚度, 面深度(构造起伏)、砂体有效厚度,还是孔隙 )、砂体有效厚度 度、渗透率和含油饱和度等都随空间坐标位置不 同而发生变化(空间坐标的函数),对于具有一 同而发生变化(空间坐标的函数),对于具有一 ), 定观测或勘探的区域,由于区域背景非水平平面, 定观测或勘探的区域,由于区域背景非水平平面, 因此局部变化的确切位置被歪曲, 因此局部变化的确切位置被歪曲,根据实测数据 你能够用什么方法突出它们的区域变化趋势和确 定局部变化的正确位置,以指导有效勘探 开发 开发? 定局部变化的正确位置,以指导有效勘探/开发?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档