Preparation and characterization of thermo-responsive amphiphilic triblock copolymer anddrug release

合集下载

银纳米粒子制备与表征实验的绿色化改进及教学设计

银纳米粒子制备与表征实验的绿色化改进及教学设计

大 学 化 学Univ. Chem. 2024, 39 (3), 258收稿:2023-09-18;录用:2023-10-19;网络发表:2023-10-25*通讯作者,Email:********************基金资助:南京信息工程大学2023年度教改课题(2023XYBJG09)•化学实验• doi: 10.3866/PKU.DXHX202309057 银纳米粒子制备与表征实验的绿色化改进及教学设计郭永明*,李杰,刘朝勇南京信息工程大学化学与材料学院,南京 210044摘要:绿色改进了银纳米粒子制备和表征的实验。

以茶叶水为还原剂和稳定剂,考查了茶叶水的含量、溶液的pH 值和反应温度对银纳米粒子制备的影响,让学生理解实验条件对银纳米粒子制备产生的影响。

利用分光光度计表征了银纳米粒子的光学性质,验证了银纳米粒子溶液吸光度与浓度的关系及丁达尔现象,并利用激光粒度分析仪测定了其粒径。

本实验贴近生活、内容丰富、紧跟前沿且符合绿色化学理念,有利于激发学生学习兴趣和培养实践技能、思辨能力和创新意识。

关键词:银纳米粒子;制备;改进;绿色;教学设计中图分类号:G64;O6Green Improvement and Educational Design in the Synthesis and Characterization of Silver NanoparticlesYongming Guo *, Jie Li, Chaoyong LiuSchool of Chemistry and Materials, Nanjing University of Information Science and Technology, Nanjing 210044, China.Abstract: An eco-friendly modification has been implemented in the experiment of preparation and characterization of silver nanoparticles. Using tea water as both reducing agent and stabilizer, the study explored the effects of tea water concentration, pH of solution, and reaction temperature on the preparation of silver nanoparticles, thereby helping students to understand the effects of experimental conditions on the preparation of silver nanoparticles. The optical properties of silver nanoparticles were characterized by a spectrophotometer. And the relationship between absorbance and concentration of silver nanoparticle solution and Tyndall effect were demonstrated. Furthermore, the size of silver nanoparticles was determined using a laser particle size analyzer. The improved experiment is closely aligned with everyday life, rich in content, and closely following academic frontier. It also adheres to the principles of green chemistry, making it advantageous for stimulating students’ interest in learning and cultivating practical skills, critical thinking ability and innovative awareness.Key Words: Silver nanoparticles; Preparation; Improvement; Green; Teaching design随着纳米科技的飞速发展,各种纳米材料不断涌现出来,为让学生更好地了解纳米科技的发展成就和培养学生的创新意识,有必要将有关纳米科技成果引入到本科教学中[1,2]。

代谢工程改造酵母生产多不饱和脂肪酸的研究进展

代谢工程改造酵母生产多不饱和脂肪酸的研究进展

第3期庄森炀等:磷酸锆辅助催化水解菌糠制备纳米纤维素晶体的性能·871·简便高效、设备腐蚀性小等优点,同时以食用菌产业的废弃物菌糠为原料制备高附加值的纳米纤维素,不仅能延长食用菌产业链条,提高菌糠的利用率,从而提高食用菌生产的效益,而且实现废物再利用,变废为宝,形成农业循环经济,从而净化生产环境,促进生态农业的发展。

(1)通过单因素探索实验及正交实验得较优工艺条件:超声时间5h、温度75℃及稀硫酸浓度为12.269%,CNCs的得率为42.80%。

(2)菌糠纳米纤维素晶体呈棒状,直径10~30nm。

与天然纤维素相比,菌糠纳米纤维素晶体的FTIR谱图的特征峰无明显变化,说明CNCs基本化学结构未改变。

菌糠纳米纤维素晶体仍属于纤维素Ⅰ型,结晶度由63.79% 增加到81.04%。

参考文献[1] TANG L,HUANG B,LU Q,et al. Ultrasonication-assistedmanufacture of cellulose nanocrystals esterified with acetic acid[J].Bioresource Technology,2013,127:100-105.[2] LU Q,TANG L,LIN F,et al. Preparation and characterization ofcellulose nanocrystals via ultrasonication-assisted FeCl3-catalyzedhydrolysis[J]. Cellulose,2014,21(5):3497-3506.[3] TORVINEN K,SIEVÄNEN J,HJELT T,et al. Smooth and flexiblefiller-nanocellulose composite structure for printed electronics applications[J]. Cellulose,2012,19(3):821-829.[4] OKAHISA Y,ABE K,NOGI M,et al. Effects of delignification inthe production of plant-based cellulose nanofibers for optically transparent nanocomposites[J]. Composites Science and Technology,2011,71(10):1342-1347.[5] ZAMAN M,LIU H,XIAO H,et al. Hydrophilic modification ofpolyester fabric by applying nanocrystalline cellulose containing surface finish[J]. Carbohydrate Polymers,2013,91(2):560-567.[6] GAO W,LIANG J,PIZZUL L,et al. Evaluation of spent mushroomsubstrate as substitute of peat in Chinese biobeds[J]. InternationalBiodeterioration & Biodegradation,2015,98:107-112.[7] 汪水平,王文娟. 菌糠饲料的开发和利用[J]. 粮食与饲料工业,2003(6):37-39.[8] 李加友,苗淑杏,姚祥坦. 蘑菇菌糠二次增效发酵及其作物栽培应用[J]. 食用菌学报,2008,15(3):75-79.[9] BAHETI V,ABBASI R,MILITKY J. Ball milling of jute fibrewastes to prepare nanocellulose[J]. World Journal of Engineering,2012,9(1):45-50.[10] 刘鹤,王丹,商士斌,等. 纤维素纳米晶须与水性聚氨酯复合材料的性能[J]. 化工进展,2010,29(s1):236-239.[11] NIDETZKY B,STEINER W. A new approach for modelingcellulase-cellulose adsorption and the kinetics of the enzymatic hydrolysis of microcrystalline cellulose[J]. Biotechnology and Bioengineering,1993,42(4):469-479.[12] 饶小平. 晶态混合磷酸锆的超分子插层组装[D]. 重庆:西南师范大学,2004.[13] 李颖,刘可,华伟明,等. 苯磺酸修饰的层柱磷酸锆的制备及催化应用[J]. 高等学校化学学报,2011,32(3):731-737. [14] 卢麒麟. 巨菌草制备纳米纤维素的研究[D]. 福州:福建农林大学,2013.[15] ALEMDAR A,SAIN M. Isolation and characterization of nanofibersfrom agricultural residues-wheat straw and soy hulls[J]. BioresourceTechnology,2008,99(6):1664-1671.[16] OH S Y,YOO D I,SHIN Y,et al. Crystalline structure analysis ofcellulose treated with sodium hydroxide and carbon dioxide by meansof X-ray diffraction and FTIR spectroscopy[J]. Carbohydrate Research,2005,340(15):2376-2391.[17] QUA E H,HORNSBY P R,SHARMA H S S,et al. Preparation andcharacterisation of cellulose nanofibres[J]. Journal of Materials Science,2011,46(18):6029-6045.CHEMICAL INDUSTRY AND ENGINEERING PROGRESS 2016年第35卷第3期·872·化工进展代谢工程改造酵母生产多不饱和脂肪酸的研究进展孙美莉,刘虎虎,邬文嘉,任路静,黄和,纪晓俊(南京工业大学生物与制药工程学院,材料化学工程国家重点实验室,江苏南京 211816)摘要:多不饱和脂肪酸因其在食品和医药领域的广泛作用而得到人们极大的关注,当前利用微生物发酵生产多不饱和脂肪酸具有诸多优点,由于酵母生产迅速且生物量较高,利用酵母生产多不饱和脂肪酸已成为人们关注的热点。

加工调和技术助力油品升级

加工调和技术助力油品升级
营风险。 据了解,金陵石化调和技术运用后,5月9日首批3万吨
欧V标准柴油发往香港后,航空煤油又相继出口美国和加拿 大,目前多家订单正在洽谈中,金陵石化油品被国际市场看 好,公司也在为大批量生产高端油品做积极准备。金陵石化 是国内华东地区主要石油加工企业,2013年实际原油加工量 预计1650万吨以上。鉴于我国原油供应紧张的实际,公司近 80%的原油需要从国外进口,油源产地分散,每年加工的原 油品种高达30多个,原油性质千差万别。“以往,每加工一 批原油就要对加工系统工艺参数进行调整,既不利于操作也 增加了生产成本,产品质量也不稳定。现在这种状况将得到 改善。”邢献杰历数往事时,仍是一脸无奈。
Ab s tract: AThe ce ramic p articles o f b arium titan ate w as s yn the size d b y trad itio n al s ol-g e l meth o d ,effects o f d iffere nt temp eratu re on the mo rp ho lo g y a nd the a bs o rbing p ro p ertie s is s tu d ie d in th is p ap e r, electro les s p latin g o f n ickel-co b alt o n the su rface o f th e o b tain ed p owe r was p erformed us ing pallad ium-free activatio n ,th e b ariu m titan iu m comp o sites is o b taine d. Th e mo rp h o lo g y a nd p article s ize were ch aracterize d b y TEM an d SEM,th e crystal p h as e of the s amp le was an alyzed by XRD an d th e micro wave ab so rb in g p rop erties were stu d ied b y vecto r n etwo rk an alyzer. Th e resu lts s ho ws th at th e crystal p h ase o f th e s amp le was ap pro ximate ly s in g le sq u are sh ap e, u nifo rm s ize, a nd the re is a small reu n io n ;th e ab s orp tio n p e ak o f b arium titana te p owd ers is 3 .7 d B-3.8d B wh en th e ca lcinatio n temp eratu re is 85 0℃.Bu t it is also fou n d that the ab so rb ing pro p erties o f comp o sites increas ed g rad u ally with th e ra tio of nicke l an d co b alt re du cin g .Wh en th e ratio o f n ickel-cob alt is 1:4 , th e ba rium titanate (850 ℃) co mp osites h as th e b est p erformance, th e ab so rp tio n cap acity is 6.5-6.8d B.

三氯化六氨合钴实验现象解释

三氯化六氨合钴实验现象解释

三氯化六氨合钴实验现象解释三氯化六氨合钴,常用的化学试剂之一,是一种暗红色结晶物质,也称作氰化钴(III)盐。

在化学实验中,它常用于检测铁离子或铜离子的存在,并可用于气体检测,催化剂制备等。

其化学式为 [Co(NH3)6]Cl3,分子量为267.5。

实验现象:将三氯化六氨合钴溶于水中时,溶液呈现出红色,当加入氨水后,溶液颜色由红转为深蓝色,放置一段时间后,深蓝色溶液会逐渐变为浅蓝色,最终慢慢变为粉色。

解释:三氯化六氨合钴的红色溶液是由于配合物[Co(NH3)6]3+的颜色引起的。

在配合物中,铵离子作为配体,与铵离子形成包围金属离子的八面体结构,从而形成了三氯化六氨合钴的复合物。

这个配合物呈现红色,属于吸收绿色光的背景,从而使红色光被反射和传播。

当加入氨水后,会发生反应,生成[Co(NH3)6]2+ 配合物。

这个配合物由氨分子包围六个铵离子和一个钴离子,会使得该化合物的分子体积更大,这样就会使它吸收与[Co(NH3)6]3+ 配合物不同的波长的光,由红色变成更深的蓝色。

此外,三氯化六氨合钴的盐酸根离子(HCl)也会从溶液中分离,且生成的氯化钴离子会使溶液的酸度降低,从而使[Co(NH3)6]2+ 的酸-碱指数发生变化,使其吸收不同的波长。

慢慢深蓝色的配合物溶液会在空气中发生氧化反应,发生了一系列氧化还原反应,氨分子逐渐分解,生成一些氮气和氢气气泡,在溶液中释放出了氢离子,这些氢离子能作为邻近氨分子的酸基而影响其配位性质。

氧气会在配合物溶液中催化反应,使得氢氧化钴离子生成,由于其水溶性不佳,逐渐从溶液中析出,溶液变浅蓝色。

随后,氢氧化钴离子不断发生水解反应,最终形成了一种粉色的物质,这是水合铵离子的染色。

参考文献:1. Swati Anand, Jainendra Jain. A simple method for the preparation of Co(NH3)63+ and its use as chiral selector[J]. Journal ofChromatography A, 2002, 958(1-2):289-295.2. Sun D, Duan Y, Li X, et al. Preparation and Characterization of Co(NH3)63+@TiO2Hybrids with Enhanced Photocatalytic Activity[J]. ChemistrySelect, 2017, 2(18): 5106-5111.3. Roger L. DeKock, David E. Drown. A Study of the Resonance AbsorptionSpectrum of Tris(ethylenediamine)cobalt(III) Ion[J]. Journal of the American Chemical Society, 1955, 77(1): 246-251.。

以丙烯酸为功能性单体的苯丙乳液聚合及其性能研究

以丙烯酸为功能性单体的苯丙乳液聚合及其性能研究

以丙烯酸为功能性单体的苯丙乳液聚合及其性能研究徐丽丽;刘增伟;马凤国【摘要】以苯乙烯与丙烯酸丁酯为共聚单体,丙烯酸为功能性单体,通过半连续种子乳液聚合制备稳定的苯丙乳液.研究表明:当NaHCO3质量配比在0.19%~0.3%时,乳液稳定性好;当丙烯酸质量配比小于2.0时,乳液粒径分布窄,平均粒径为0.18 μm,乳液流动性较好,高于2.5时,乳液粒径变大且分布变宽,乳液呈膏状、流动性差;当丙烯酸质量配比增大时,乳液黏度呈逐渐上升趋势;随着氨水质量配比的增加,乳液黏度逐渐增大,但达到一定量后保持不变;随剪切速率增大,乳液呈明显的剪切变稀趋势,说明乳液为假塑性流体.【期刊名称】《丝绸》【年(卷),期】2015(052)005【总页数】5页(P11-15)【关键词】苯丙乳液;剪切速率;黏度;粒径【作者】徐丽丽;刘增伟;马凤国【作者单位】青岛科技大学高分子科学与工程学院,山东青岛266042;青岛科技大学橡塑材料与工程教育部重点实验室,山东青岛266042【正文语种】中文【中图分类】TS959.9;TQ317.4因社会环境安全需求,具有无毒、无味、污染少等优点的水溶性乳液逐渐占领市场[1-4],而苯丙乳液有较好的耐水性、耐候性、耐碱性等优点,且价格低廉,相对于其他水溶性乳液有着更高的性价比而倍受青睐[5-7],在涂料、纺织、黏合剂等领域有广泛应用[8-11]。

近年来关于苯丙乳液合成方法及其性能的研究越来越多,稳定性是评判乳液质量的首要条件,而通过测量粒径大小及粒径分布对表征乳液稳定性好差直接而有效,并且乳液黏度高低能直接影响其储存稳定性及施工性,所以研究乳液的粒径及其分布和表观黏度具有重要意义[12]。

本文拟合成适于织物后整理的苯丙胶乳液,以苯乙烯(St)、丙烯酸丁酯(BA)为主要单体,利用半连续种子乳液聚合方法制得苯丙乳液,主要讨论了影响乳液稳定及黏度的相关因素,具体分析了pH缓冲剂NaHCO3、氨水、丙烯酸、剪切速率等对乳液稳定性及其黏度影响。

中英文催化剂的制备与表征(catalysis and physical properties)

中英文催化剂的制备与表征(catalysis and physical properties)

Introduction to this subject
➢ Preparation, characterization and application of a catalyst is crucial to innovate a novel catalyst.是发明一个新催化剂的关键。
➢ Catalyst is usually not the same with other chemicals, especially pure chemicals.催化剂一般与其他化学品一样,特别是纯化学品。
Definition of Catalyst
➢ Ostwald (德国)的观点 催化剂是一种能够改变化学反应的速度,而它本身又不 参与最终产物的 物质。 (流行)
➢ IUPAC定义: 催化剂能够加速反应速率而不改变反应的标准Gibbs自 有焓变化。
➢ 国内新近定义 催化时加速反应速度、控制反应方向或产物构成,而不 影响化学平衡的一类作用。起这种作用的物质称为催化 剂,它不在主反应的化 学计量式中反映出来,即在反应 中不被消耗。
Ideal surface is not perfect
理想的表面是不完美的
扭结
阶梯空位
阶梯位
台阶吸附的原子 台阶空位
球的堆积模型表示不完美表面
Heterogeneous Catalyst
* Metals (Transition metals, IB metals);金属
Fe Co Ni Ru Rh Cu Ag Au Pd Os Ir Pt
Mechanism for heterogeneous Catalysis
Heterogeneous Catalysis
➢ Heterogeneous mechanism is difficult to investigated in the laboratory. Disappearance of reactants and appearance of products are easily followed, but important features such as the rates and energetic of adsorption, structure of active sites, the nature of active intermediates, require separate experimentation using a constantly changing arsenal of techniques. 非均相机理的实验室研究非常困难。反应物的消耗和产物的生成比 较容易追踪,但许多重要的因素比如速度和吸附能,活性位结构、 活性中间体特点等需要通过大量的单因素实验来得出。

姚菊明,男,1970年12月出生,工学博士,教授,博士生导

姚菊明,男,1970年12月出生,工学博士,教授,博士生导
(7) Yao, J.M.; Yanagisawa, S.; Asakura, T. Design, expression and characterization of collagen-like proteins based on the cell adhesive and crosslinking sequences derived from native collagens. J. Biochem., 2004, 136, 643-649.
(2) Asakura, T.; Yao, J.M.; Yamane, T.; Umemura, K.; Ulrich A. S. Heterogeneous structure of silk fibers from Bombyx mori resolved by 13C solid-state NMR spectroscopy. J. Am. Chem. Soc., 2002, 124, 8794-8795.
(7) Liu, L.; Liu, J.Y. Wang, M.Q.; Min, S.J.; Cai, Y.R.; Zhu, L.J.; Yao, J.M. Preparation and characterization of nano-hydroxyapatite/silk fibroin porous scaffolds. J. Biomater. Sci. Polymer Edn., 2008, 19, 325-338.
(15) 金君, 梅丹平, 夏年鑫, 王秀华, 蔡玉荣, 姚菊明. 类牙釉状丝胶蛋白/羟基磷灰石复合材料的合成及表征. 化学学报(已录用)
三、参编论著:
(1) Yao, J.M. and Asakura, T. Silks, In Encyclopedia of Biomaterials and Biomedical Engineering (Eds., Wnek, G.E. and Bowlin, G.L.). Marcel Dekker, Inc., New York, 2004, pp 1363-1370.

论文英文写作

论文英文写作
SCI论文类型
论著(original articles)
综述(review)
会议摘要(meeting abstract) 评述类论文(comments) 读者来信(letters) 假说和观点类论文(hypothesis) 病例报道(case report)
SCI论文写作原则
试比较一下题名: a) Study of the solubility of polymers (聚合物的溶解性研 究) b) Study on the thermodynamic problem of polychlorotrifluoroethylene dissolution (聚氯三氟乙烯 的溶解热力学问题)
③ 陈述句式题名
由完整的句子组成,往往具有判断式的语意,即:使用一般 现在时在题名中提出结论,正文中却探讨性地论证。
④ 疑问句式题名
多用于评论性论文,使用探讨性的疑问句型显得比较生动, 激发读者兴趣。
例:
Dynamic capabilities: what are they? (动态能力:它们是 什么?)
SCI论文写作技巧
• 用词
熟悉、具体、简单、短句式
• 时态
过去时 现在时或现在完成时
• 词性
代词: is, this, these, those, that, which 冠词:a, an, the 动词:词性变化-ing, ed, en, d, t
• 标点
句号. 逗号, 括号(插入/附加) 所有格’ 连字符省略号…… 冒号:引号
Isolation of antigens from monkeys using complementfixation techniques (猴子使用补体固定技术分离的抗原) • 介词问题 ① “of”,“ for” 和 “in” 的使用 of——所有关系, for——目的、用途 例如: A design method of sliding mode robust controller with feed forward compensator is presented (提出了一种具有前馈补 偿的滑模鲁棒控制器设计方法)

化工专业英语(期末练习题)

化工专业英语(期末练习题)

PRACTICE一,英译汉Hydrolyze —水解 Alkane —烷烃 Evaporation —蒸发 Aluminum —Al Oxidation —氧化反应 Methylamine —甲胺 Halogen —卤素 carbon dioxide 混合物 binary compounds 二元化合物 Cyclohexane —环己烷 monophase 单相的 polyethylene 聚乙烯 stainless steel 不锈钢 aminobenzene 苯胺 1. The Ideal-Gas Equation of State 理想气体状态方程 2. The First Law of Thermodynamics 热力学第一定律 3. Reaction Rates 反应速率 4. Activation Energy 活化能 5. Separatory Funnel 分液漏斗 6. Homogeneous Catalysis 均相催化7. Conjugate Acid-Base Pairs 共轭酸碱对 8. The Common-Ion Effects 同离子效应9. The Solubility-Product Constant 溶度积常数 二,命名 1. 甲烷 methane2. 2-甲基-3-乙基辛烷 3-ethyl- 2-methyloctane3. 2-乙基-1,3-丁二烯 2- ethyl -1, 3-butadiene4. 环己烷 Cyclohexane5. 对二甲苯 paraxylene6. 乙酸甲酯 Methyl acetate7. 醋酸 Acetic acid8. 丙酮Acetone C H 3C H C H 2C H 2 C H 2C H C H 3C H 2C H 3C H3三,翻译命名2-methylbutane 2-甲基丁烷3-ethyl-2-methylheptane 3-乙基-2-甲基庚烷 4-ethyl-2-methylhexane 2-甲基-4-乙基己烷4-ethyl-2,2-dimethylhexane2,2-二甲基-4-乙基己烷5,5-bis(l,2-dimethylpropyl)nonane 5,5-二(1,2-二甲基丙基)壬烷2-hexyl-l,3-butadiene 2-己基-1,3-丁二烯 Benzyl 苄基(苯甲基) Phenyl 苯基 ethyl chloride 氯化乙基 2-fluoropropanemethanol 甲醇 ethanol 乙醇 1,2-ethanedioltrimethylamine 三甲胺 phenylmethanal ethanoyl chloride 四,翻译短句1. Acetylene (乙炔) is hydrocarbon especially high in heat value.乙炔烃特别是高热值2. It is common knowledge that bodies are lighter in water than they are in air.大家都知道,水中的物体比在空中更轻。

新型碳气凝胶的制备及表征

新型碳气凝胶的制备及表征

新型碳气凝胶的制备及表征何蕊;刘振法【摘要】以氨水作为间苯二酚和甲醛反应的催化剂,经溶胶-凝胶制备有机气凝胶,再经过常温常压干燥、高温碳化形成碳气凝胶.采用X射线衍射、比表面仪、扫描电镜能谱分析仪对样品进行表征.结果表明:以氨水为催化剂所得碳气凝胶比表面积在900m2/g左右,呈现连续颗粒状.%Carbon aerogels are prepared by sol-gel process via reaction of resorcinol and formaldehyde with ammonia water as catalyst and afterward ambient drying followed by carbonization. The structure of products is characterized by X-ray diffraction, gas physisorption, scanning electron microscopy and energy spectrum analysis. Results indicte that the carbon aerogels with ammonia as catalyst show a coarser surface, and its specific surface area is about 900 m2/g, presenting continuous granular.【期刊名称】《河北科技大学学报》【年(卷),期】2013(034)001【总页数】4页(P26-29)【关键词】碳气凝胶;催化剂;氨水【作者】何蕊;刘振法【作者单位】河北省科学院能源研究所,河北石家庄050081;河北省科学院能源研究所,河北石家庄050081【正文语种】中文【中图分类】O648碳气凝胶是一种由高聚物分子构成的多空非晶凝聚态材料,可以用在力学、热学、光学及声学等方面,具有独特的性能和用途。

火星土壤仿真样neu mars-1的制备及性质表征

火星土壤仿真样neu mars-1的制备及性质表征
1. Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), Northeastern University, Shenyang 110819, China;
2. State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China; 3. Institute of Inorganic Chemistry, Slovak Academy of Sciences, Bratislava 84536, Slovakia
Trans. Nonferrous Met. Soc. China 30(2020) 212−222
Preparation and characterization of Martian soil simulant NEU Mars-1
Jin-zhao GUAN1, Ai-min LIU1, Kai-yu XIE1, Zhong-ning SHI2, Blanka KUBIKOVA3
1 Introduction
Expanding humanity’s space for survival and utilizing outer space resources are important for the future development of society, economy, science, technology and civilization. Mars is one of the planets in the solar system that are most similar to Earth. It has Earth-like alternating seasons, and a day on Mars is approximately as long as that on Earth [1]. Recent studies indicated that eight erosive scarps were detected on Mars and a substantial amount of water was found [2], suggesting that Mars may have an environment suitable for developing life and providing hope for the future colonization of the planet. Martian soil is mainly formed by physical weathering due to

Preparation and Characterization of Component Materials for Intermediate Temperature Solid Oxide

Preparation and Characterization of Component Materials for Intermediate Temperature Solid Oxide

( !" #$%&’() *+ ,$(-./$’0 $12 ,-($’’&.3/%$’ 413/1--./13 ,5&16/13 71/8-.0/() *+ 9%/-1%- $12 :-%;1*’*3) ,5&16/13 <=>>?@ ,A;/1$;B" C$(/*1$’ 413/1--./13 D$E*.$(*.) *+ F$%&&6 ,-($’’&.3) ,5&16/13 <=>>?@,A;/1$ )
!"#$%&’ "( $&$) )&$*+,
-. /0 1 2,,3450 67784, 9450 1::;,30 <=
> > > > > > > > > >
>
> > > > > > > > > > > > > > > > > >
> > >
!"#$%"%&’() %)* +,%"%-&#"’.%&’() (/ +(0$()#)& 1%&#"’%23 /(" 4)&#"0#*’%&# 5#0$#"%6 ! &7"# 8(2’* 9:’*# ;7#2 +#22 <= >2=-’)#6?’&"%&# !"(-#33

英文文献翻译

英文文献翻译

Preparation and characterization of Ag-TiO2 hybrid clusters powders[1](Ag-TiO2混合团簇粉末的制备和表征)Abstract:液相电弧放电法被用于制备纳米Ag-TiO2复合超细粉末。

XRD和TEM图表明颗粒呈葫芦状形态,分布狭窄。

我们讨论了实验条件对产品的影响,比较了这种方法制备的粉末和其他γ射线辐照法制备的粉末。

Introduction:材料合成技术,提高了研究特定电子和光学特性的能力。

这也导致了设备和不同效应的快速发展,如集成光学型偏振器[1]和量子霍耳效应。

所需的长度尺度对于这些结构的控制是在纳米级别的[ 2 ]。

科学家面临的一个新的挑战是半导体量子点的生长,它具有新的光学响应,引起了对其基础物理方面和三阶非线性光致发光的应用等的研究兴趣。

这方面的一个例子是Ag-TiO2复合材料通过胶体方法合成[ 3 ]或由γ射线辐照法合成[ 4 ]。

对比其他制备超细金属颗粒的方法,γ射线辐照法能在室温的环境压力下产生粉末。

在这封信中,我们开发了一种新的方法,即液相电弧放电法,用以制备纳米复合材料,当它经水热处理可以得到纳米级别的超细粉。

Preparation and photocatalytic activity of immobilized composite photocatalyst (titania nanoparticle/activated carbon)[2]固定化复合光催化剂(TiO2纳米颗粒/活性炭)的制备和光催化活性研究Abstract:制备了一种固定化复合光催化剂——TiO2纳米颗粒/活性炭(AC),并研究了它在降解纺织染料的光催化活性。

AC通过油菜籽壳制备。

碱性红18(BR18)和碱性红46(BR46)被用来作为模型染料。

并采用了傅里叶变换红外(FTIR),波长色散X射线光谱(WDX),扫描电子显微镜(SEM),紫外可见分光光度法,化学需氧量(COD)和离子色谱(IC)分析。

超临界二氧化碳在工业上的应用

超临界二氧化碳在工业上的应用

超临界二氧化碳在工业上的应用摘要:超临界二氧化碳具有其他超临界流体不可比拟的优势,因此,引起了研究者广泛的兴趣。

本文简单的介绍了超临界二氧化碳的优点,如具有两极性、良好的流动性和扩散性等。

综述了超临界二氧化碳在降低高分子聚合物粘度中的应用以及在制备微孔塑料中应用、原理和研究进展,超临界二氧化碳作为绿色的介质,将会有更广阔的应用价值。

关键词:超临界二氧化碳增塑性发泡剂粘度在最近几年来,超临界流体因对高分子聚合物的优异增塑作用、优良的传递性能和参数可调节性,使超临界流体得到了突飞猛进的发展,并具有更高的应用价值。

在众多超临界流体中,超临界二氧化碳具有其他超临界流体不可比拟的优势,因为我们就与二氧化碳接触,其无毒、无味、非可燃性物质,并且二氧化碳的超临界条件比较低,工业上易于达到,并且超临界二氧化碳具有良好的流动性和扩散性。

当超临界二氧化碳参与反应时,体现了优异的溶解速率和传质速率。

超临界二氧化碳即可以与极性物质相容也可与非极性物质相容,由于超临界二氧化碳具有优良的特征,因此引起了的许多化学科研工作者地兴趣,到目前为止,超临界二氧化碳主要以优良的增塑性和发泡性应用于挤出成型中。

一、超临界二氧化碳在改变高分子聚合物粘度中的应用众所周知,高分子聚合物的粘度的高时,加工高分子聚合物成型是不利的,因此,需要改变高分子聚合物的粘度,首先我们先到的是增加温度来降低高分子聚合物的粘度,但这是往往也会增加成本,增大能耗,如果向高分子聚合物中加入低粘度塑化剂来降低其粘度,但很难分离出低粘度塑化剂,这将成品的性能和质量,使成品存在许多缺陷[1]。

但超临界二氧化碳能够降低高分子聚合物的粘度,这是因为二氧化碳的超临界条件比较低,很容易达到,在二氧化碳变为超临界流体,使高分子聚合物的粘度降低,同时在低温度下达到熔融状态,并具有等量的流体性质,从而提高熔体流动特性,使挤出速度增加[2]。

在二氧化碳气体变为超临界流体时,在这个过程中,二氧化碳是吸收热量,使环境温度降低,熔体温度降低,挤出速度和热能吸收率都将增大,从而使挤出物的物理性能提高,并且还能降低能量损失。

北大考研-工学院研究生导师简介-王习东

北大考研-工学院研究生导师简介-王习东

爱考机构-北大考研-工学院研究生导师简介-王习东王习东目前任职:教授、博士生导师北京大学工学院能源与资源工程系、系主任北京大学资源高效与循环利用研究中心主任北京市“固体废弃物资源化技术与管理”重点实验室主任电话:86-10-82529083电子邮箱:教育经历:北京科技大学学士、硕士瑞典皇家工学院博士研究领域:(1)资源高效与循环利用(2)能源与环境材料背景资料:多年来,主要从事资源利用与环境材料的教学、研究工作。

先后主讲了本科生、硕士生、博士生课程等16门。

在资源综合利用物理化学与材料制备物理化学等领域做出了一定成绩。

承担或完成了包括国家杰出青年科学基金课题、国家“863”课题、国家“973”课题,国家攻关课题以及国家自然科学基金重点与面上课题在内的国家与省部级课题10余项,通过鉴定6项;申报国家发明专利30多项;获得国家与省部级科学技术奖励6项。

在国内外重要学术期刊发表学术论文100余篇,其中被“SCI”收录60余篇;出版学术专著2部。

2003年晋升教授,同年批准为博士生导师;2004年获得国家杰出青年科学基金;2005年获国务院颁发的政府特殊津贴,2006年入选“新世纪百千万人才工程”国家级人选。

获得荣誉:1996年,安徽省科技进步二等奖(排名第三)1997年,国家科技进步三等奖,(排名第三)2002年,北京市科技进步二等奖(排名第二)2002年,中国冶金科学技术二等奖(排名第二)2005年,北京市自然科学二等奖(排名第一)2006年,教育部提名国家自然科学二等奖(排名第一)发表论文(部分)[1]StudiesonthePEG-AssistedHydrothermalSynthesisandGrowthMechanismofZnOMicrorodandM esoporousMicrosphereArraysontheSubstrate,CRYSTALGROWTH&DESIGN2010,10(4):1500-15 07[2]EffectsofpretreatmentofsubstratesonthepreparationoflargescaleZnOnanotubearrays,RAREMETALS2010,29(1):21-25[3]ControllableSynthesisofHigh-puritybeta-SiAlONPowder,JOURNALOFINORGANICMATERI ALS2009,24(6):1163-1167[4]PreparationandCharacterizationofTiO2NanorodArraysviaHydrothermalApproach,RAREMETA LMATERIALSANDENGINEERING,2009,38:1060-1063[5]Thermodynamicstudyandsynthesesof-SiAlONceramics,ScienceinChinaSeriesE,2009,52(11):3122-3127[6]Copperextractionfromcopperorebyelectro-reductioninmoltenCaCl2-NaCl,ELECTROCHIMICA ACTA,2009,vol.54(18):4397-4402[7]ActivityofVO1.5inCaO-SiO2-MgO-Al2O3SlagsatLowVanadiumContentsandLowOxygenPress ures,STEELRESEARCHINTERNATIONAL,2009,Vol.80(4):251-255[8]ASimpleTwo-ParameterCorrelationModelforAqueousElectrolyteSolutionsacrossaWideRangeof Temperatures,JOURNALOFCHEMICALANDENGINEERINGDATA,2009,vol.54(2):179-186 [9]ThermodynamicActivityofChromiumOxideinCaO-SiO2-MgO-Al2O3-CrOxMelts,STEELRES EARCHINTERNATIONAL,2009,vol.80(3):202-208[10]HydrothermalsynthesisofSnO2nanoflowerarraysandtheiropticalproperties,SCRIPTAMATERI ALIA,2009vol.61(3):234-236[11]TheEffectoftheTextureandtheDensityofZnOSeedLayerontheOrientationofZnONanorodArrays, JOURNALOFNANOSCIENCEANDNANOTECHNOLOGY,2009,vol.9(10):5920-5926[12]HydrothermalPreparationandCharacterizationofNanocrystallinePorousTinDioxideThinFilms,J OURNALOFNANOSCIENCEANDNANOTECHNOLOGY,2009,vol.9(10):5770-5775[13]HydrothermalsynthesisandcharacterizationofTiO2nanorodarraysonglasssubstrates,MATERIA LSRESEARCHBULLETIN,2009,vol.44(6):1232-1237[14]PreparationandpropertiesofananoTiO2/Fe3O4compositesuperparamagneticphotocatalyst,RAR EMETALS,2009,Vol.28(5):423-427[15]EstimationofFreezingPointDepression,BoilingPointElevation,andVaporizationEnthalpiesofEle ctrolyteSolutions,INDUSTRIAL&ENGINEERINGCHEMISTRYRESEARCH,2009,vol.48(4):22 29-2235[16]Template-freehydrothermalsynthesisofsingle-crystallineSnO2nanocauliflowersandtheiroptical properties,RAREMETALS,2009,Vol.28(5):449-254[17]ThermalExpansionofMagnesiumAluminumOxynitride,HIGHTEMPERATUREMATERIALS ANDPROCESSES,2008,vol.27(2):97-101[18]EffectsofPVPonthepreparationandgrowthmechanismofmonodispersedNinanoparticles,RARE METALS,2008,vol.27(6):642-647[19]ThePreparationandCharacterizationofβ-SiAlONNanostructureWhiskers,JofNanomaterials,vol.2008,ArticleID282187[20]ExtensionoftheThree-Particle-InteractionModelforElectrolyteSolutions,MaterialsandManufact uringProcesses,23:737–742,2008[21]CorrelationandPredictionofThermodynamicPropertiesofSomeComplexAqueousElectrolytesby theModifiedThree-Characteristic-ParameterCorrelationModel,J.Chem.Eng.Data,2008,53,950–958[22]CorrelationandPredictionofThermodynamicPropertiesofNonaqueousElectrolytesbytheModifie dTCPCModel,J.Chem.Eng.Data2008,53,149–159[23]Effectsofpreparingconditionsontheelectrodepositionofwell-alignedZnOnanorodarrays,Electroc himicaActa,2008,53(14):4633-4641[24]ThermodynamicevaluationandhydrothermalpreparationofKxNa-xNbO3,RareMetals,2008,27(4) :371-377[25]Anewthree-particle-interactionmodeltopredictthethermodynamicpropertiesofdifferentelectroly tes,JournalofChemicalThermodynamics,v39,n4,April,2007,p602-612[26]Density-controlledhydrothermalgrowthofwell-alignedZnOnanorodarrays,Nanotechnology,v18, n3,Jan24,2007,p035605[27]Correlationandpredictionofactivityandosmoticcoefficientsofaqueouselectrolytesat298.15Kbyth emodifiedTCPCmodel;JournalofChemicalandEngineeringData,v52,n2,2007,p538-547[28]SynthesisandcharacterizationofMgAlON-BNcomposites,InternationalJournalofMaterialsResea rch,v98,n1,January,2007,p64-71[29]SynthesisandmicrostructureofLa-dopedCeriananoparticles,J.NanoscienceandNanotechnology, V.7No.8,2007,p2883-2888[30]Phaserelationshipofcomplexmulti-componentsystemchromatecleanerproduction,ProgressinNat uralScience,V17,No.72007,p838-844[31]SynthesisandthermodynamicanalysisofNan0-La2O3,ProgressinNaturalScience,V17,No.72007, p838-844[32]Compleximpedancestudyonnano-CeO2coatingTiO2,MATERIALS&DESIGN,2006,27(6):489-493[33]Optimizationofprocessparameterspreparinghollowfibrousnickelplaquebyweb-basedANN-GAs ystem,ACTAMETALLURGICASINICA,2005,41(12):1293-1297[34]Synthesis,evaluationandcharacterizationofaluminaceramicswithelongatedgrains,CERAMICSI NTERNATIONAL,2005,31(7):953-958[35]PropertiesandstructureofAlON-VNcompositessynthesizedbyhot-pressingtechnique,RAREME TALMATERIALSANDENGINEERING,2005,JUN.34:451-454[36]PreparationandferroelectricpropertiesofPZTfibers,CeramicsInternational,2005(31):281-286[37]Kineticstudiesofoxidationofγ-AlON-TiNcompositesJournalofAlloysandCompounds,2005,387(1-2):74-81[38]StudyoftheAlON-VNcompositeceramics,KeyEngineeringMaterials,Vols280-283,2005,1139-1 142[39]ManufactureandpropertiesofAlON-TiNparticulatecomposites,KeyEngineeringMaterials,Vols2 80-283,2005,1133-1138[40]ThermodynamicstudyofK2CrO4-K2AlO2-KOH-H2OandNa2CrO4-Na2AlO2-NaOH-H2Osys tems,J.ofUniv.Sci.Tech.Beijing,2004,(6):500-504.[41]Synthesis,MicrostructuresandPropertiesOfAluminumOxynitride,MaterialsScienceandEngineer ingA,2003,245-250[42]Influenceofdifferentseedsontransformationofaluminumhydroxidesandmorphologyofaluminagr ainsbyhot-pressing,MATERIALS&DESIGN,2003,24(3):209-214[43]SynthesisofTiN/AlONCompositeCeramics,J.Mineral,MetallurgyandMaterials,2003,10(1),49-5 3[44]Modelstoestimateviscositiesofternarymetallicmeltsandtheircomparisons,ScienceinChina,2003, (3):280-289[45]OxygenSwnsitivitynano-CeO2coatingTiO2materials,SensorsandActuatorsB,2003,92(1-2):167 -170[46]SilicaPhotonicCrystalswithQuasi-fullBandGapintheVisibleRegionPreparedinEthanol,Progressi nNaturalScience,2003,(9):717-720[47]Hightoughnessaluminaceramicswithelongatedgrainsdevelopedfromseeds,ScienceinChinaSerie sE2003,46(5):527-536[48]Kineticstudiesoftheoxidationof-aluminumoxynitride,MetallurgicalandMaterialsTransactionsB, V33B,April,2002:201~207[49]Estimationofviscosityofternary-metallicmelts,MetallurgicalandMaterialsTransactionsA,V33A, No.5,2002:201~207[50]SynthesisandcharacterisationofMgAlON,Z.Metallkde(InternationalJournalofMaterialsResearc handAdvancedTechniques),V93,No.6,2002,540-544[51]KineticstudyofoxidationofMgAlONandacomparisonoftheoxidationbehaviorofAlON,MgAlON, O’SiAlON-ZrO2andBN-ZCMceramics,Z.Metallkd(InternationalJournalofMaterialsResearchandAdv ancedTechniques),V93,No.6,2002,545-553[52]Slagcorrosionofgammaaluminumoxynitride,SteelResearch,V73,No.3,2002,91~96[53]PreparationofnanostructuredCeO2CoatedTiO2,MaterialsScienceandTechnology,V18,No.3,200 2,345~348[54]Investigationofconvertorsludgepelletsforsteelmaking,J.ofUniversityofSci.andTech.Beijing,No. 3,2002,266~269[55]Experimentalstudyandoptimizationofflamegunningparametersforsteelmakingfurnaces,Naihuo Cailiao,2002,36(6):318-321。

英文标题格式及举例

英文标题格式及举例

英文标题格式及举例英文标题格式及举例英文标题是在学术界和商界中使用频率非常高的一种文字格式,它往往是一篇文章或者一份报告的开端,也是吸引读者注意力的重要因素之一。

然而,许多人在编写英文标题时往往不知道如何下手,不同的文章类型、目的和读者群体可能需要不同的标题风格。

因此,本文将为大家介绍英文标题的基本格式和举例,以帮助读者更好地理解和应用英文标题。

基本格式:英文标题的基本格式是“主题-分支-具体信息”,其中主题是文章或报告的核心内容,分支是主题所属的类别或范畴,具体信息则是主题的细节或者关键问题。

下面是具体的格式和举例:1.主题-分支-具体信息举例:Preparation and Characterization of Silicon Nanoparticles Synthesized by Plasma-Enhanced Chemical Vapor Deposition解析:主题是“Preparation and Characterization o f Silicon Nanoparticles”,分支是“Synthesized byPlasma-Enhanced Chemical Vapor Deposition”,具体信息是文章讨论的具体实验过程和结果。

2.分支: 主题-具体信息举例:Environmental Management System: Challenges and Opportunities for Small and Medium Enterprises解析:分支是“Environmental ManagementSyst em”,主题是“Challenges and Opportunities for Small and Medium Enterprises”,具体信息是文章介绍的具体内容和现状。

3.主题: 分支-具体信息举例:Digital Marketing Strategy: An Analysis of Social Media Advertising for Retail Industry 解析:主题是“Digital Marketing Strategy”,分支是“An Analysis of Social Media Advertising”,具体信息是文章针对零售业进行的案例分析和探讨。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Colloids and Surfaces B:Biointerfaces 72(2009)94–100Contents lists available at ScienceDirectColloids and Surfaces B:Biointerfacesj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /c o l s u r fbPreparation and characterization of thermo-responsive amphiphilic triblock copolymer and its self-assembled micelle for controlled drug releaseTianhong Qu,Airong Wang,Jinfang Yuan,Jiahua Shi,Qingyu Gao ∗Institute of Fine Chemical and Engineering,Henan University,Kaifeng,475001,Henan,People’s Republic of Chinaa r t i c l e i n f o Article history:Received 14December 2008Received in revised form 24March 2009Accepted 24March 2009Available online 2April 2009Keywords:Thermo-responsive micelles Amphiphilic triblock copolymer Preparation Self-assemblyControlled drug releasea b s t r a c tAn amphiphilic thermo-responsive ABA triblock copolymer,poly(methyl methacrylate)-b-poly(N-isopropylacrylamide-co-poly(ethylene-glycol)methyl ether methacrlate)-b-poly(methyl methacrylate)(PMMA-b-P(NIPAM-co-PEGMEMA)-b-PMMA),was designed and synthesized via reversible addition frag-mentation chain transfer (RAFT)polymerization,and subsequently characterized by FT-IR,1H NMR and GPC.The copolymer can disperse in water and self-assemble into nanoscaled micelles in a “flower-like”arrangement at room temperature;the hydrophobic PMMA tucks in the core while the hydrophilic and improved biocompatible P(NIPAM-co-PEGMEMA)forms a thermosensitive outer shell.The resulting micelles were investigated using fluorescence spectroscopy,dynamic light scattering technique (DLS)and transmission electron microscopy (TEM).The copolymer exhibited a lower critical solution temperature (LCST)of around 39◦C via optical transmittance measurements.Notably,there was no copolymer precip-itation observed at the LCST,which was propitious to in vivo use of the micelle.The micelles loaded with folic acid as a model drug showed a desired thermo-responsive drug release behavior.It was found that the rate and amount (maximum percentage 85%)of the drug release was much higher above the LCST than that (maximum percentage 36%)below the LCST.These results indicate that the thermosensitive triblock copolymer possesses promising potential applications as a “smart”drug carrier in biomedical science.©2009Elsevier B.V.All rights reserved.1.IntroductionIn recent years,stimuli-responsive polymeric micelles have been regarded as one of the most promising carriers for drug deliv-ery.These micelles,which are sensitive to environmental stimuli such as pH [1,2],ionic strength [3],temperature [4–6],ultravi-olet light [7],and magnetic field [8],have been developed and actively investigated for applications in effective cancer chemother-apy [1,2,4–12].Thermo-responsive polymeric micelles are used commonly because temperature is easy to be controlled and has practical advantages in vitro and in vivo [9–12].Core–shell (corona)type thermo-responsive polymeric micelles are formed by self-assembly of amphiphilic block copolymers having both thermo-responsive hydrophilic segments and hydrophobic seg-ments in aqueous media [4–6].Thermo-responsive polymeric micelles combine both passive targeting to tissue sites with their small size and the potential active targeting with their switchable physicochemical characteristic [11,12].The drug release mechanism of cancer chemotherapy using the thermo-responsive polymeric micelles is as follows.Polymeric micelles loaded with drugs in a∗Corresponding author.Tel.:+863783881589;fax:+863783881589.E-mail addresses:qingyugao@ ,huobolinzi@ (Q.Gao).nanosized range (<200nm)exhibit prolonged circulation in the systemic circulation by reducing nonselective reticuloendothelial system (RES)scavenge [13,14]while showing enhanced permeabil-ity and retention effects (EPR effects)at tumour sites for passive targeting below a critical temperature [15,16].Subsequently,the thermo-responsive outer shells of the micelles undergo a phase-transition and shrink by local heating up to the critical temperature at the target sites.This transition of micelle properties may induce selective drug activity at the heated target site.Simultaneously,this strategy can achieve temporal drug delivery control by localized temperature increments.To date,a series of thermo-responsive polymers have been studied as potential pharmaceutical delivery agents [5,6,17–20].Most thermo-responsive (co)polymers are synthesized from poly(N-isopropylacrylamide)P(NIPAM),since it undergoes a sharp coil-to-globule phase-transition at a critical temperature,namely,lower critical solution temperature (LCST)of 32◦C,close to phys-iological temperature,37◦C [21].Moreover,the LCST can be modulated via copolymerization with hydrophobic or hydrophilic monomers [22–25].However,in vivo use of such micelles may be hampered by the fact that at the LCST,the shell formed by the temperature-responsive block loses hydrophilicity and the whole copolymer molecule becomes hydrophobic,which could result in the copolymer precipitation and reduce their biocom-0927-7765/$–see front matter ©2009Elsevier B.V.All rights reserved.doi:10.1016/j.colsurfb.2009.03.020T.Qu et al./Colloids and Surfaces B:Biointerfaces72(2009)94–10095Scheme1.The formation and behavior of the thermosensitive polymeric micelles self-assembled from triblock copolymer PMMA-b-P(NIPAM-co-PEGMEMA)-b-PMMA to temperature stimuli.patibility in the circulation[18,19].To overcome this limitation, we designed and synthesized an amphiphilic thermo-responsive ABA triblock copolymer consisting of poly(methyl methacrylate)-b-poly(N-isopropylacrylamide-co-poly(ethylene glycol)methyl ether methacrylate)-b-poly(methyl methacrylate)(PMMA-b-P(NIPAM-co-PEGMEMA)-b-PMMA)by reversible addition fragmentation chain transfer(RAFT)polymerization.Here,we introduced a hydrophilic biocompatible long side chain poly(ethylene gly-col)methyl ether methacrylate monomer into P(NIPAM)segments to raise the LCST and improve the biocompatibility of the thermo-responsive polymeric micelles.At room temperature, the ABA triblock copolymer can self-assemble into nanoscaled micelles adopting a“flower-like”arrangement with hydropho-bic PMMA A-blocks at the core and a improved biocompatible hydrophilic P(NIPAM-co-PEGMEMA)B-block on the shell in water (Scheme1).The controlled release of folic acid(FA)model drug using the thermo-responsive micelles was also studied in detail. The novel thermo-responsive PMMA-b-P(NIPAM-co-PEGEMA)-b-PMMA polymeric micelles seem to be of great promise as a“smart”drug delivery system.2.Materials and methods2.1.MaterialsS,S -Bis(␣,␣ -dimethyl-␣ -acetic acid)trithiocarbonte(BDATC) was synthesized according to a literature[26].N-Isopropylacrylamide(NIPAM),poly(ethylene glycol)methyl ether methacrylate(PEGMEMA,Mn=475g/mol)were purchased from Acros Organics and used as received.Methyl methacrylate (MMA)and1,4-dioxane were procured from Shanghai Chenfu Chemical Co.,Ltd.and Tianjin No.1Chemical Reagent Factory, respectively,and were distilled under reduced pressure before use. N,N -Azobisisobutyronitrile(AIBN)obtained from Beijing Chemical Industry was used after recrystallization with95%ethanol.Folic acid(FA)was obtained from Acros Organics(Geel,Belgium).All other analytical agents and solvents were used as received.2.2.Synthesis of the triblock copolymerThe triblock copolymer PMMA-b-P(NIPAM-co-PEGMEMA)-b-PMMA was synthesized in two steps via RAFT polymerization. Firstly,PMMA-CTA-PMMA was prepared using BDATC as a chain transfer agent(CTA):MMA(7.52g),BDATC(0.1417g)and AIBN (0.0137g)were dissolved in1,4-dioxane(15ml)in a25ml of reaction tube.The mixed solution was degassed by bubbling with nitrogen for30min and sealed.The polymerization was carried out at75◦C for 4.5h,and quenched by cooling in ice water bath.The precursor polymer was precipitated out from excessive methanol and purified twice using methanol before drying under vacuum.Secondly,the triblock copolymer PMMA-b-P(NIPAM-co-PEGMEMA)-b-PMMA was synthesized in the presence of PMMA-CTA-PMMA as a macromolecular chain transfer agent: NIPAM(2.5g),PEGMEMA(0.5508g),PMMA-CTA-PMMA(1.0g), AIBN(0.0041g)were dissolved in1,4-dioxane(18ml)in a25ml of reaction tube.The treatment and polymerization of the mixture are similar to thefirst step.The polymerization was stopped by freezing after12h.The product was precipitated out from exces-sive cold diethyl ether and purified twice in diethyl ether and warm water,respectively,before drying under vacuum.Finally,the resulting copolymer MMA-b-P(NIPAM-co-PEG-MEMA)-b-PMMA was collected.The synthesis of the triblock copolymer PMMA-b-P(NIPAM-co-PEGMEM A)-b-PMMA is illustrated in Scheme2.2.3.Characterization of the copolymerFT-IR spectrum of the copolymer was recorded on AVATAR-360 FT-IR at a resolution of4cm−1using KBr pellet.1H NMR spectrum was recorded on a EW360L400nuclear mag-netic resonance(NMR)instrument at400MHz,using CDCl3as the solvent.The molecular weights and their distribution of the polymers were determined by gel permeation chromatography(GPC,Waters, MA,polystyrene standards)in THF at an elution rate of1ml/min at 25◦C.2.4.Fluorescence measurementsThe CMC of the triblock copolymer in deionized water was determined with afluorescent probe technique and pyrene was used as a hydrophobicfluorescent probe.The pyrene solution in acetone(6×10−4M,5␮m,prepared prior to use)was added to 5ml of aqueous polymer solutions with different concentrations (from1×10−5to0.2mg/ml).The acetone was then removed under reduced pressure at30◦C for2h,resulting in the same pyrene con-centrations(6×10−7M)in all of the aqueous polymer solutions. All solutions were equilibrated for24h at room temperature,prior to measurements.Fluorescence spectra were recorded by an F-7000fluorescence spectrophotometer(Hitachi,Tokyo,Japan).For the measurements,the scanning speed of pyrene excitation spec-tra was set at240nm/min.Excitation and emission slit widths were set at2.5nm and5.0nm,respectively.The emission spectra were recorded from350nm to550nm with an excitation wavelength of340nm.From the pyrene emission spectra,the intensity(peak height)ratios(I3/I1)of the third band(392nm,I3)to thefirst band (373nm,I1)were analyzed as a function of polymer concentra-tion.A CMC value was taken from the intersection of the tangent to the curve at the inflection with the horizontal tangent through the points at low concentrations.96T.Qu et al./Colloids and Surfaces B:Biointerfaces 72(2009)94–100Scheme 2.The synthesis of the triblock copolymer PMMA-b-P(NIPAM-co-PEGMEMA)-b-PMMA.2.5.Micelles formation and characterizationThe micelle of the triblock copolymer was prepared by a dial-ysis method.8mg of triblock polymers were dissolved in 2ml of N ,N -dimethylformamide (DMF)at room temperature.The solution was put into a dialysis bag (MWCO =8000–14,000)and dialyzed against 1000ml distilled water at room temperature for 2days.The water was replaced overnight.After dialysis,the solution in the dial-ysis bag was collected and freeze-dried for 48h.3mg of lyophilized micelles were dispersed in 10ml distilled water.The micellar solu-tions were firstly kept for a week at room temperature,and then were characterized by dynamic light scattering instrument (DLS)and transmission electron microscopy (TEM)after filtering through a 0.45␮m pore-sized syringe filter.The size distribution of micelles was determined by Nano-ZS90laser nanogranulomertric analysis instrument (Malvern Instrument,Watts,UK).3replicates were per-formed for each measurement and an average value was obtained.TEM sample was prepared by dipping a copper grid with carbon film into the prepared aqueous nanoparticles solution.After deposition,the aqueous solution was blotted away with a strip of filter paper and dried in air.TEM observation of the micelles was conducted on a JEM-100cX II instrument (J.P.)operating at an acceleration voltage of 80kV.2.6.Optical transmittance measurementsOptical transmittance of aqueous polymer solutions at various temperatures was measured at 500nm with a UV–vis spectrom-eter (UV-540,US).Sample cell was thermostated in a refrigerated circulator bath at various temperatures from 25◦C to 45◦C prior to measurements.The LCST values of polymer solutions were deter-mined at the temperatures showing an optical transmittance of 50%.2.7.Drug loading and in vitro releasePMMA-b-P(NIPAM-co-PEGMEMA)-b-PMMA copolymers (8mg)and FA (4mg)were dissolved in 2ml of DMF,respectively,and both solutions were mixed.The mixed solution was poured into a dialysis bag (MWCO =8000–14,000)and dialyzed against 1000ml distilled water for 48h.To determine the drug loading content (DLC)and entrapment efficiency (EE),the drug-loaded micellar solution waslyophilized and then dissolved in DMF and finally measured with a UV–vis spectrophotometer at 286nm,using a standard calibration curve experimentally obtained with FA/DMF solutions.The DLC and EE of the micelles was calculated based on the following formulas [1,6,27]:DLC (wt.%)=mass of drug encapsulated in micelles mass of drug-loaded micelles×100(1)EE (%)=mass of drug encapsulated in micelles the initial mass of drug before dialysis×100(2)To study in vitro drug release,the dialysis bags were directly immersed into phosphate buffer solutions (PBS)at pH 7.4,and tem-perature was controlled at 25◦C or 37◦C.Periodically,aliquots of 5ml of buffered solution outside the dialysis bag are removed for UV–vis analysis and replaced with the same volume fresh PBS in order to hold the volume of solutions constant.The amount of drug released from micelles at different temperatures was measured by UV absorbance at 286nm.3.Results and discussion3.1.The composition of the PMMA-b-P(NIPAM-co-PEGMEMA)-b-PMMA copolymersThe FT-IR spectrum of the triblock copolymers is shown in Fig.1.Absorbance of N H,OCHN ,N C and CH(CH 3)2bending frequency in PNIPAM segments occurs at 3443cm −1,1652cm −1,1555cm −1and 1384cm −1,respectively.The bands at 2975cm −1and 1149cm −1are the characteristic bands of C O C in PEGMEMA units.1728cm −1is the absorbance of C O stretch vibration of ester groups.1H NMR was used to further characterize the structure of the PMMA-b-P(NIPAM-co-PEGMEMA)-b-PMMA copolymer.The struc-tural formula of the copolymer and the 1H NMR spectrum of the triblock copolymer are shown in Fig.2.All chemical shifts are given in parts per million (ppm)relative to the solvent signal.Clearly,all characteristic 1H NMR signals of PMMA segments (ıa 3.07,ıb 1.57,ıc 1.38),PNIAM segments (ıd 1.76,ıe 2.01,ıf 7.97,ıg 3.95,ıh 1.08),PEGMEMA segments (ıi 1.85,ıj 1.37)could be clearly observed.T.Qu et al./Colloids and Surfaces B:Biointerfaces72(2009)94–10097Fig. 1.FT-IR spectrum of PMMA-b-P(NIPAM-co-PEGMEMA)-b-PMMA triblock copolymer.Fig. 2.1H NMR spectrum of the block copolymer PMMA-b-P(NIPAM-co-PEGMEMA)-b-PMMA.The molecular weight(Mn)and molecular weight distribu-tion(MW/Mn)of the triblock copolymer were determined by GPC system equipped with laser light scattering detector(LSD) and deflection refractive index detector(DRID).The Mn and its distribution of PMMA-CTA-PMMA and PMMA-b-P(NIPAM-co-PEGMEMA)-b-PMMA is summarized in Table1,respectively.From Table1,the molecular weight distribution of PMMA-CTA-PMMA block is a little wider than that of the polymer obtained from a typ-ical RAFT polymerization.This is probably because the structure of MMA is similar to that of BDATC,which results in the decrease in chain transfer constant of BDATC.All results above show that the target copolymer PMMA-b-P(NIPAM-co-PEGMEMA)-b-PMMA was obtained.Table1GPC data of PMMA-CTA-PMMA and triblock copolymer PMMA-b-P(NIPAM-co-PEGMEMA)-b-PMMA(the feed molar ratio of NIPAM to PEGMEMA=20/1).Polymer Mn a Mw/Mn b PMMA-CTA-PMMA7,6501.3 PMMA-b-P(NIPAM-co-PEGMEMA)-b-PMMA27,400 1.14a Weight-averaged molecular weight.b Number-averaged molecular weight.Fig.3.The plot of I3/I1ratio as a function of logarithm of polymer concentrations (log C)in aqueous solutions.3.2.Micelle formation of the triblock copolymersAmphiphilic polymers consisting of hydrophilic block and hydrophobic block can self-assemble to form core–shell(corona) structure micelles in aqueous media.The formation of micelles from PMMA-b-P(NIPAM-co-PEGMEMA)-b-PMMA was examined by the detection of CMC relying on afluorescence technique.A polymeric concentration showing a discontinuous change influorescence intensity or in an intensity ratio(I3/I1)is defined as the CMC.Fig.3 shows the plot of I3/I1ratios as a function of logarithm of the triblock copolymer concentration(log C)in aqueous solutions.From the plot of the I3/I1ratio versus polymer concentrations,the I3/I1ratio has no obvious change below a certain concentration,while the I3/I1ratio increases remarkably above that concentration,which indicates the formation of micelles.Hence,this concentration of10.5mg/l is the CMC of PMMA-b-P(NIPAM-co-PEGMEMA)-b-PMMA micelle,as cal-culated from Fig.3.The low CMC value means that the nanoscaled core–shell-corona micelles can be formed at a lower polymer con-centration,which is suitable for the drug delivery in dilute aqueous media such as bodyfluids.3.3.Temperature sensitivity of the polymeric solutionAn ideal LCST would be slightly higher than the normal human body temperature so localized temperature increments could induce the deformation of the micelles to trigger the release of enclosed drug molecules.It is well known that PNIPAM exhibits a LCST of around32◦C in aqueous solution.Especially,the LCST can be regulated via introducing hydrophobic or hydrophilic monomers hinging on a critical hydrophilic/hydrophobic balance between the chemical groups on the polymer.In this study,a hydrophilic comonomer poly(ethylene glycol)methyl ether methacrylate(PEG-MEMA)was employed to modulate the LCST of the copolymer.The LCST of the triblock copolymer increased with the feed molar ratio of NIPAM to PEGMEMA decrease.As shown in Fig.4,when the feed molar ratio is20/1,19/1and18/1,the LCST of the triblock copoly-mer is39◦C,40.9◦C and42.7◦C,respectively.The cause is that the formation of stronger hydrogen bonds between the thermosensi-tive segment and water resulting from the incorporation of a more hydrophilic PEGMEMA,which allowed the thermosensitive seg-ment dehydration more difficult,leading to an increase in the LCST. In addition,we also investigated the relationship between the LCST of the copolymer and its concentration.From Fig.5,the copoly-mer concentration has little effect on its LCST.Moreover,we also98T.Qu et al./Colloids and Surfaces B:Biointerfaces 72(2009)94–100Fig.4.LCST determined by UV–vis transmittance of 0.3mg/ml of aqueous triblock copolymer solution at 520nm.These triblock copolymers had different feed molar ratio of NIPAM to PEGMEMA:20/1(a);19/1(b);18/1(c),respectively.found that the transmittance of triblock copolymer solution did not decrease to zero but retained 15%at 50◦C (above the LCST)and no concomitant precipitation occurred.This can be explained by the core–shell-corona structure of the resulting micelles formed above the LCST (Scheme 1).Above the LCST,a thin hydrophilic corona was formed from the long side chain PEGMEMA units,which inhibited the further intermicellar aggregation and precipitation.3.4.Characterization and the effects of temperature on the polymer micellesFig.6shows the TEM image of the 0.3mg/ml of the polymeric micelle.It was observed that the micelles showed well-defined spherical shape with core–shell (corona)structure and nanosize ranging from 70nm to 100nm in the solid state.To investi-gate the hydrodynamic diameters and their distribution of the self-assembled micelles and the effect of temperature on the diameters,0.3mg/ml of the resulting polymeric micelles solutions were determined at different temperatures such as 25◦CandFig.5.LCST determined by UV–vis transmittance of aqueous triblock copolymer (feed molar ratio of NIPAM to PEGMEMA:20/1)solutions at 520nm.[Poly-mer]=0.5mg/ml ( ),0.25mg/ml (᭹)and 0.20mg/ml,respectively.Fig.6.TEM image of the polymeric micelles formed from self-assembly of PMMA-b-P(NIPAM-co-PEGMEMA)-b-PMMA in aqueous solution at roomtemperature.Fig.7.Size distribution of the micelles self-assembled from PMMA-b-P(NIPAM-co-PEGMEMA)-b-PMMA triblock copolymer in aqueous solution at different temperatures.45◦C by DLS,respectively.The results are diagramed in Fig.7and summarized in Table 2.It was shown that the micelles formed were well dispersed as nanoscaled micelles and had a narrow size distribution.From Fig.7and Table 2,average hydrated diam-eters of the polymeric micelles were about 150nm at 25◦C and 110nm at 45◦C,respectively.The sizes of micelles at 45◦C became much smaller than that at 25◦C.It is because that P(NIPAM-co-PEGMEMA)blocks as the hydrophilic corona extend freelyTable 2Diameter and polydistribution index (PDI)of the polymeric micelles in aqueous solution responding to the temperature.Temperature Diameter a ±sd (nm)PDI ±sd 25◦C 150.3±1.80.125±0.01445◦C110.6±0.90.214±0.061aDetermined by DLS.The averaged hydrodynamic diameter of micelles in water with copolymer concentration at 0.3mg/ml.T.Qu et al./Colloids and Surfaces B:Biointerfaces72(2009)94–10099Fig.8.Temperature-responsive drug release from PMMA-b-P(NIPAM-co-PEGMEMA)-b-PMMA polymeric micelles in PBSs(pH7.4)at25◦C(a),37◦C (b)and41◦C(c),respectively.below the LCST(at25◦C),whereas the hydrophilic blocks shrink above the LCST(at45◦C).These results also prove that polymeric PMMA-b-P(NIPAM-co-PEGMEMA)-b-PMMA micelles have an appropriate thermo-responsiveness and the potential application as an“intelligent”drug carrier for controlled drug release.3.5.Drug loading and in vitro drug releaseIt is well known that water-insoluble drugs could be phys-ically incorporated and stabilized in the micellar hydrophobic inner core by hydrophobic interaction[6,18].FA is an anti-cancer drug having poor solubility in distilled water or strong acidic (pH<4)aqueous solution,but it is soluble in weak acid(pH>6) or alkaline aqueous solution.In view of the thermo-responsive property of PMMA-b-P(NIPAM-co-PEGMEMA)-b-PMMA micelles, we utilized self-assembly of the copolymer(Feed molar ratio (NIPAM/PEGMEMA)=20/1)and FA to prepare FA-loaded micelles in distilled water by a dialysis technique,and investigated their potential application in controlled drug release.In this case,FA was physically entrapped and stabilized in the hydrophobic cores of the micelles by hydrophobic interaction during dialysis against water. The experimental results showed that FA was successfully incorpo-rated into polymeric micelles,and the DLC and EE was about19% and38%,respectively.To evaluate the effect of the temperature stimulus on release of FA from the thermo-responsive micelles,PBSs with the same ionic strength(I=0.15)and pH7.4were used as dialysis aqueous solution in this work.The temperature was maintained at25◦C(below the LCST),37◦C(physiological temperature)and41◦C(above the LCST), respectively.The drug release profiles from micelles are shown in Fig.8.Curves a,b,and c were the release profiles of FA at25◦C(a), 37◦C(b)and41◦C(c),respectively.It was clearly observed that FA release rate and amount increased with increasing tempera-ture under a constant pH value(7.4)condition.For curves b(37◦C) and c(41◦C),there were both a similar burst release for initial5h, followed by a gradual release up to15h,followed by an almost constant release from the micelles for the studied period of45h. Moreover,the drug release amount(maximum percentage85%)at 41◦C(c,above the LCST)was larger than that(maximum percentage 58%)at37◦C(b,below the LCST).However,for curves a(25◦C),the release of FA was always very low and the maximum drug release percentage was no higher than36%.This can be explained by the core–shell(corona)micellar struc-ture.The thermo-responsive shell(corona)of the micelle is very important for drug release at a temperature above the LCST.The hydrophilic P(NIPAM-co-PEGMEMA)segments in the shells of the micelles that were fully extended below the LCST stabilized the drug in the micellar core.However,when the temperature was raised above the LCST,PNIPAM segments in the shells of the micelles tend to shrink and become hydrophobic and further underwent a microphase-separation.The thickness of the micellar corona layer decreased with the temperature increasing,whilst the motion of FA molecules was speeded up by the slack of hydrophobic inter-action between the core and drug due to the deformation of micelles at higher temperature,leading to the much faster drug release from the micelles above the LCST than that below the LCST.Moreover,the higher the temperature was,the greater the final release amount of the drug was.The initial burst release may be attributed to the release of unstable FA molecules dis-tributed in shells of the micelles.Based on the results above, the thermo-sensitive PMMA-b-P(NIPAM-co-PEGMEMA)-b-PMMA copolymer micelles would have a great potential application as an “intelligent”drug carrier in biomedicinefield.4.ConclusionsIn this study,we synthesized a novel thermo-sensitive amphiphilic ABA triblock copolymer composed of PMMA,P(NIPAM-co-PEGMEMA)and PMMA by RAFT polymerization.The structure and composition of the copolymer characterized by FT-IR,1H NMR and GPC.The nanosized thermo-responsive micelles with a core–shell(corona)structure and regularly spherical shape were obtained by self-assembly from the triblock copolymer in aque-ous solution.The property of the thermo-sensitive micelles such as CMC,LCST and size were investigated.The micelles loaded with FA showed a remarkable thermo-responsive drug release behavior, which indicates that the thermo-sensitive PMMA-b-P(NIPAM-co-PEG-MEMA)-b-PMMA copolymer micelles seems to be of great promise as a drug delivery system.AcknowledgementThanks for National Natural Science Foundation of China pro-viding the fund(Grant Number:50273010).References[1]P.Satturwar,M.N.Eddine,F.Ravenelle,J.C.Leroux,Eur.J.Pharm.Biopharm.65(2007)379–387.[2]K.Na,K.H.Lee,Y.H.Bae,J.Control.Release97(2004)513–525.[3]J.Christophe,A.Z.Lefaux,J.Polym.Sci.Part B:Polym.Phys.42(2004)3654.[4]F.Kohori,K.Sakai,T.Aoyagi,M.Yokoyama,Y.Sakurai,T.Okano,J.Control.Release55(1998)87–98.[5]J.E.Chung,M.Yokoyama,M.Yamato,T.Aoyagi,Y.Sakurai,T.Okano,J.Control.Release62(1999)115–127.[6]C.Y.Choi,S.Y.Chae,J.W.Nah,Polymer47(2006)4571–4580.[7]K.Sofia,K.Anatol,L.Jukka,K.Bengt,J.Appl.Polym.Sci.92(2004)2833.[8]B.S.Kim,J.M.Qiu,J.P.Wang,T.A.Taton,Nano Lett.5(2005)1987–1991.[9]N.Nishiyama,K.Kataoka,Pharmacol.Ther.112(2006)630–648.[10]D.Schmaljohann,Adv.Drug Deliv.Rev.58(2006)1655–1670.[11]N.Rapoport,Prog.Polym.Sci.32(2007)962–990.[12]S.Ganta,H.Devalapally,A.Shahiwala,M.Amiji,J.Control.Release126(2008)187–204.[13]H.M.Yang,R.Reisfeld,Proc.Natl.Acad.Sci.U.S.A.85(1988)1189–1193.[14]P.Thédrez,J.C.Saccavini,D.Nolibé,et al.,Cancer Res.49(1989)3081–3086.[15]T.N.Palmer,V.J.Caride,M.A.Caldecourt,J.Twickler,V.Abdullah,Biochim.Bio-phys.Acta797(1984)363–368.[16]H.Maeda,J.Wu,T.Sawa,Y.Matsumura,K.Hori,J.Control.Release65(2000)271–284.[17]X.W.Lia,W.G.Liua,G.X.Yea,B.Q.Zhanga,D.W.Zhua,K.D.Yaoa,Z.Q.Liub,X.Z.Sheng,Biomaterials26(2005)7002–7011.[18]H.Wei,X.Z.Zhang,H.Cheng,W.Q.Chen,S.X.Cheng,R.X.Zhuo,J.Control.Release116(2006)266–274.[19]Z.M.O.Rzaev,S.Dincer,E.Piskin,Prog.Polym.Sci.32(2007)534–595.100T.Qu et al./Colloids and Surfaces B:Biointerfaces72(2009)94–100[20]H.Wei,X.Z.Zhang,C.Cheng,S.X.Cheng,R.X.Zhuo,Biomaterials28(2007)99–107.[21]M.Heskins,J.E.Guillet,J.Macromol.Sci.Chem.A2(1968)1441–1455.[22]S.Q.Liu,Y.W.Tong,Y.Y.Yang,Biomaterials26(2005)5064–5074.[23]O.Soga,C.F.V.Nostrum,W.E.Hennink,Biomacromolecules5(2004)818–821.[24]J.S.Park,K.Kataoka,Macromolecules39(2006)6622–6630.[25]T.Mori,M.Nakashima,Y.Fukuda,K.Minagawa,M.Tanaka,Y.Maeda,Langmuir22(2006)4336–4342.[26]i,D.Filla,R.Shea,Macromolecules35(2002)6754–6756.[27]W.Y.Seow,J.M.Xue,Y.Y.Yang,Biomaterials28(2007)1730–1740.。

相关文档
最新文档