2018高考数学江苏专版三维二轮专题复习训练:6个解答题综合仿真练(四)含解析
2018高考数学江苏专版三维二轮专题复习训练:6个解答题专项强化练(四) 数 列 Word版含解析
6个解答题专项强化练(四) 数 列1、已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4、(1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n -1}的前n 项和(n ∈N *)、解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q 、 由已知b 2+b 3=12,得b 1(q +q 2)=12, 而b 1=2,所以q 2+q -6=0、 又因为q >0,解得q =2、 所以b n =2n 、由b 3=a 4-2a 1,可得3d -a 1=8、① 由S 11=11b 4,可得a 1+5d =16、②由①②,解得a 1=1,d =3,由此可得a n =3n -2、所以数列{a n }的通项公式为a n =3n -2,数列{b n }的通项公式为b n =2n 、 (2)设数列{a 2n b 2n -1}的前n 项和为T n , 由a 2n =6n -2,b 2n -1=2×4n -1, 得a 2n b 2n -1=(3n -1)×4n ,故T n =2×4+5×42+8×43+…+(3n -1)×4n ,4T n =2×42+5×43+8×44+…+(3n -4)×4n +(3n -1)×4n +1,上述两式相减,得-3T n =2×4+3×42+3×43+…+3×4n -(3n -1)×4n +1 =12×(1-4n )1-4-4-(3n -1)×4n +1=-(3n -2)×4n +1-8、 故T n =3n -23×4n +1+83、所以数列{a 2n b 2n -1}的前n 项和为3n -23×4n +1+83、2、已知数列{a n }满足:a 1=12,a n +1-a n =p ·3n -1-nq ,n ∈N *,p ,q ∈R 、(1)若q =0,且数列{a n }为等比数列,求p 的值;(2)若p =1,且a 4为数列{a n }的最小项,求q 的取值范围、 解:(1)∵q =0,a n +1-a n =p ·3n -1, ∴a 2=a 1+p =12+p ,a 3=a 2+3p =12+4p ,由数列{a n }为等比数列,得⎝⎛⎭⎫12+p 2=12⎝⎛⎭⎫12+4p ,解得p =0或p =1、 当p =0时,a n +1=a n ,∴a n =12,符合题意;当p =1时,a n +1-a n =3n -1,∴a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=12+(1+3+…+3n -2)=12+1-3n -11-3=12·3n -1, ∴a n +1a n =3、符合题意、 ∴p 的值为0或1、(2)法一:若p =1,则a n +1-a n =3n -1-nq ,∴a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=12+(1+3+…+3n -2)-[1+2+…+(n-1)]q =12[3n -1-n (n -1)q ]、∵数列{a n }的最小项为a 4,∴对任意的n ∈N *,有12[3n -1-n (n -1)q ]≥a 4=12(27-12q )恒成立,即3n -1-27≥(n 2-n -12)q 对任意的n ∈N *恒成立、 当n =1时,有-26≥-12q ,∴q ≥136; 当n =2时,有-24≥-10q ,∴q ≥125; 当n =3时,有-18≥-6q ,∴q ≥3; 当n =4时,有0≥0,∴q ∈R ;当n ≥5时,n 2-n -12>0,所以有q ≤3n -1-27n 2-n -12恒成立,令c n =3n -1-27n 2-n -12(n ≥5,n ∈N *),则c n +1-c n =2(n 2-2n -12)3n -1+54n(n 2-16)(n 2-9)>0,即数列{c n }为递增数列,∴q ≤c 5=274、综上所述,q 的取值范围为⎣⎡⎦⎤3,274、 法二:∵p =1,∴a n +1-a n =3n -1-nq , 又a 4为数列{a n }的最小项,∴⎩⎪⎨⎪⎧ a 4-a 3≤0,a 5-a 4≥0,即⎩⎪⎨⎪⎧9-3q ≤0,27-4q ≥0,∴3≤q ≤274、 此时a 2-a 1=1-q <0,a 3-a 2=3-2q <0, ∴a 1>a 2>a 3≥a 4、当n ≥4时,令b n =a n +1-a n ,b n +1-b n =2·3n -1-q ≥2·34-1-274>0,∴b n +1>b n ,∴0≤b 4<b 5<b 6<…, 即a 4≤a 5<a 6<a 7<…、综上所述,当3≤q ≤274时,a 4为数列{a n }的最小项,即q 的取值范围为⎣⎡⎦⎤3,274、 3、数列{a n }的前n 项和为S n ,a 1=2,S n =a n ⎝⎛⎭⎫n 3+r (r ∈R,n ∈N *)、 (1)求r 的值及数列{a n }的通项公式; (2)设b n =na n(n ∈N *),记{b n }的前n 项和为T n 、①当n ∈N *时,λ<T 2n -T n 恒成立,求实数λ的取值范围;②求证:存在关于n 的整式g (n ),使得∑i =1n -1(T n +1)=T n ·g (n )-1对一切n ≥2,n ∈N *都成立、解:(1)当n =1时,S 1=a 1⎝⎛⎭⎫13+r ,∴r =23,∴S n =a n ⎝⎛⎭⎫n 3+23、当n ≥2时,S n -1=a n -1⎝⎛⎭⎫n 3+13、 两式相减,得a n =n +23a n -n +13a n -1,∴a na n -1=n +1n -1(n ≥2)、 ∴a 2a 1·a 3a 2·…·a n a n -1=31×42×53×…×nn -2×n +1n -1, 即a n a 1=n (n +1)2、 ∴a n =n (n +1)(n ≥2), 又a 1=2适合上式、 ∴a n =n (n +1)、 (2)①∵a n =n (n +1),∴b n =1n +1,T n =12+13+…+1n +1、∴T 2n =12+13+…+12n +1,∴T 2n -T n =1n +2+1n +3+…+12n +1、令B n =T 2n -T n =1n +2+1n +3+…+12n +1、 则B n +1=1n +3+1n +4+…+12n +3、∴B n +1-B n =12n +2+12n +3-1n +2=3n +4(2n +2)(2n +3)(n +2)>0、∴B n +1>B n ,∴B n 单调递增, 故(B n )min =B 1=13,∴λ<13、∴实数λ的取值范围为⎝⎛⎭⎫-∞,13、 ②证明:∵T n =12+13+…+1n +1,∴当n ≥2时,T n -1=12+13+…+1n ,∴T n -T n -1=1n +1, 即(n +1)T n -nT n -1=T n -1+1、∴当n ≥2时,∑i =1n -1 (T n +1)=(3T 2-2T 1)+(4T 3-3T 2)+(5T 4-4T 3)+…+[(n +1)T n -nT n -1]=(n +1)T n -2T 1=(n +1)T n -1、∴存在关于n 的整式g (n )=n +1,使得∑i =1n -1 (T n +1)=T n ·g (n )-1对一切n ≥2,n ∈N *都成立、4、已知数列{a n }满足a 1=12,对任意的正整数m ,p ,都有a m +p =a m ·a p 、(1)证明:数列{a n }是等比数列; (2)若数列{b n }满足a n =b 12+1-b 222+1+b 323+1-b 424+1+…+(-1)n +1b n 2n +1,求数列{b n }的通项公式;(3)在(2)的条件下,设c n =2n +λb n ,则是否存在实数λ,使得数列{c n }是单调递增数列?若存在,求出实数λ的取值范围;若不存在,请说明理由、解:(1)证明:∵对任意的正整数m ,p ,都有a m +p =a m ·a p ,∴令m =n ,p =1,得a n +1=a 1·a n , 从而a n +1a n =a 1=12,∴数列{a n }是首项和公比都为12的等比数列、(2)由(1)可知,a n =12n 、由a n =b 12+1-b 222+1+b 323+1-b 424+1+…+(-1)n +1b n2n +1得,a n -1=b 12+1-b 222+1+b 323+1-b 424+1+…+(-1)n·b n -12n -1+1(n ≥2),故a n -a n -1=(-1)n +1b n2n +1(n ≥2),故b n =(-1)n ⎝⎛⎭⎫12n +1(n ≥2)、当n =1时,a 1=b 12+1,解得b 1=32,不符合上式、∴b n=⎩⎨⎧32,n =1,(-1)n⎝⎛⎭⎫12n+1,n ≥2,n ∈N *.(3)∵c n =2n +λb n ,∴当n ≥2时,c n =2n +(-1)n ⎝⎛⎭⎫12n +1λ, 当n ≥3时,c n -1=2n -1+(-1)n -1⎝ ⎛⎭⎪⎫12n -1+1λ, 根据题意,当n ≥3时,c n -c n -1=2n -1+(-1)n λ·⎝⎛⎭⎫2+32n >0,即(-1)n λ>-2n -132n+2、 ①当n 为大于等于4的偶数时,有λ>-2n -132n+2恒成立,又2n -132n +2随着n 的增大而增大,此时⎝ ⎛⎭⎪⎪⎫2n -132n +2min =12835,即λ>-12835, 故λ的取值范围为⎝⎛⎭⎫-12835,+∞、 ②当n 为大于等于3的奇数时,有λ<2n -132n+2恒成立,此时⎝ ⎛⎭⎪⎪⎫2n -132n +2min =3219,即λ<3219、 故λ的取值范围为⎝⎛⎭⎫-∞,3219; ③当n =2时,由c 2-c 1=⎝⎛⎭⎫22+54λ-⎝⎛⎭⎫2+32λ>0,得λ<8、综上可得,实数λ的取值范围为⎝⎛⎭⎫-12835,3219、 5、已知各项不为零的数列{a n }的前n 项和为S n ,且a 1=1,S n =pa n a n +1(n ∈N *),p ∈R 、 (1)若a 1,a 2,a 3成等比数列,求实数p 的值; (2)若a 1,a 2,a 3成等差数列, ①求数列{a n }的通项公式;②在a n 与a n +1间插入n 个正数,共同组成公比为q n 的等比数列,若不等式(q n )(n+1)(n +a )≤e(e 为自然对数的底数)对任意的n ∈N *恒成立,求实数a 的最大值、 解:(1)当n =1时,a 1=pa 1a 2,a 2=1p ;当n =2时,a 1+a 2=pa 2a 3,a 3=a 1+a 2pa 2=1+1p 、由a 22=a 1a 3,得1p 2=1+1p ,即p 2+p -1=0, 解得p =-1±52、(2)①因为a 1,a 2,a 3成等差数列,所以2a 2=a 1+a 3,得p =12,故a 2=2,a 3=3,所以S n =12a n a n +1、当n ≥2时,a n =S n -S n -1=12a n a n +1-12a n -1a n ,因为a n ≠0,所以a n +1-a n -1=2、故数列{a n }的所有奇数项组成以1为首项,2为公差的等差数列,其通项公式a n =1+⎝ ⎛⎭⎪⎫n +12-1×2=n ,同理,数列{a n }的所有偶数项组成以2为首项,2为公差的等差数列, 其通项公式是a n =2+⎝⎛⎭⎫n 2-1×2=n , 所以数列{a n }的通项公式是a n =n 、②由①知,a n =n ,在n 与n +1间插入n 个正数,组成公比为q n 的等比数列,故有n +1=nq n +1n, 即q n =⎝ ⎛⎭⎪⎫n +1n 1n +1,所以(q n )(n +1)(n +a )≤e,即⎝ ⎛⎭⎪⎫n +1n n +a ≤e,两边取对数得(n +a )ln ⎝ ⎛⎭⎪⎫n +1n ≤1,分离参数得a ≤1ln ⎝ ⎛⎭⎪⎫n +1n -n 恒成立 、 令n +1n =x ,x ∈(1,2],则a ≤1ln x -1x -1,x ∈(1,2],令f (x )=1ln x -1x -1,x ∈(1,2],则f ′(x )=(ln x )2-(x -1)2x(ln x )2(x -1)2,下证ln x ≤x -1x,x ∈(1,2], 令g (x )=x -1x -2ln x ,x ∈[1,+∞), 则g ′(x )=(x -1)2x 2>0,所以g (x )>g (1)=0,即2ln x <x -1x ,用x 替代x 可得ln x <x -1x,x ∈(1,2],所以f ′(x )=(ln x )2-(x -1)2x(ln x )2(x -1)2<0,所以f (x )在(1,2]上递减, 所以a ≤f (2)=1ln 2-1、所以实数a 的最大值为1ln 2-1、6、设三个各项均为正整数的无穷数列{a n },{b n },{c n }、记数列{b n },{c n }的前n 项和分别为S n ,T n ,若对任意的n ∈N *,都有a n =b n +c n ,且S n >T n ,则称数列{a n }为可拆分数列、(1)若a n =4n ,且数列{b n },{c n }均是公比不为1的等比数列,求证:数列{a n }为可拆分数列; (2)若a n =5n ,且数列{b n },{c n }均是公差不为0的等差数列,求所有满足条件的数列{b n },{c n }的通项公式;(3)若数列{a n },{b n },{c n }均是公比不为1的等比数列,且a 1≥3,求证:数列{a n }为可拆分数列、解:(1)证明:由a n =4n =4·4n -1=3·4n -1+4n -1,令b n =3·4n -1,c n =4n -1、则{b n }是以3为首项,4为公比的等比数列,{c n }是以1为首项,4为公比的等比数列, 故S n =4n-1,T n =4n -13、所以对任意的n ∈N *,都有a n =b n +c n ,且S n >T n 、 所以数列{a n }为可拆分数列、(2)设数列{b n },{c n }的公差分别为d 1,d 2、 由a n =5n ,得b 1+(n -1)d 1+c 1+(n -1)d 2=(d 1+d 2)n +b 1+c 1-d 1-d 2=5n 对任意的n ∈N *都成立、所以⎩⎪⎨⎪⎧ d 1+d 2=5,b 1+c 1-d 1-d 2=0,即⎩⎪⎨⎪⎧d 1+d 2=5,b 1+c 1=5,①由S n >T n ,得nb 1+n (n -1)2d 1>nc 1+n (n -1)2d 2,则⎝⎛⎭⎫d 12-d 22n 2+⎝⎛⎭⎫b 1-c 1-d 12+d 22n >0、 由n ≥1,得⎝⎛⎭⎫d 12-d 22n +⎝⎛⎭⎫b 1-c 1-d 12+d 22>0对任意的n ∈N *成立、 则d 12-d 22≥0且⎝⎛⎭⎫d 12-d 22+⎝⎛⎭⎫b 1-c 1-d 12+d 22>0即d 1≥d 2且b 1>c 1、 ② 由数列{b n },{c n }各项均为正整数,则b 1,c 1,d 1,d 2均为正整数,当d 1=d 2时,由d 1+d 2=5,得d 1=d 2=52∉N *,不符合题意,所以d 1>d 2、 ③联立①②③,可得⎩⎪⎨⎪⎧ d 1=4,d 2=1,b 1=4,c 1=1或⎩⎪⎨⎪⎧d 1=4,d 2=1,b 1=3,c 1=2或⎩⎪⎨⎪⎧ d 1=3,d 2=2,b 1=4,c 1=1或⎩⎪⎨⎪⎧d 1=3,d 2=2,b 1=3,c 1=2.所以⎩⎪⎨⎪⎧ b n =4n ,c n =n 或⎩⎪⎨⎪⎧ b n =4n -1,c n =n +1或⎩⎪⎨⎪⎧b n =3n +1,c n =2n -1或⎩⎪⎨⎪⎧b n =3n ,c n =2n .(3)证明:设a n =a 1q n -1,a 1∈N *,q >0,q ≠1,则q ≥2、 当q 为无理数时,a 2=a 1q 为无理数,与a n ∈N *矛盾、故q 为有理数,设q =ba (a ,b 为正整数,且a ,b 互质)、此时a n =a 1·b n -1a n -1、则对任意的n ∈N *,a n -1均为a 1的约数,则a n -1=1,即a =1, 故q =ba =b ∈N *,所以q ∈N *,q ≥2、所以a n =a 1q n -1=(a 1-1)q n -1+q n -1, 令b n =(a 1-1)·q n -1,c n =q n -1、则{b n },{c n }各项均为正整数、因为a 1≥3, 所以a 1-1≥2>1,则S n >T n , 所以数列{a n }为可拆分数列、。
2018年高考数学江苏专版三维二轮专题复习教学案:专题四+数列+Word版含答案
江苏新高考数列在江苏高考中地位十分突出,考分比例远远大于课时比例,常在压轴题位置考查代数论证能力.江苏卷数列解答题始终与特殊数列密切联系,源于课本,高于课本,不搞“递推式”“数列不等式”之类的超教学范围的知识考查,导向非常好.但由于能力考查要求较高,多年来造成区分度很差的困惑.2013年的数列解答题降低了难度,但2014年又回升了.到2015年不仅是超纲了,而且难度也加大了,2016年把数列、集合结合命题,难度较大,2017年考查数列的新定义问题和论证等差数列,难度也不低.数列题的常规类型可分两类:一类是判断、证明某个数列是等差、等比数列;另一类是已知等差、等比数列求基本量.这个基本量涵义很广泛,有项、项数、公差、公比、通项、和式以及它们的组合式,甚至还包括相关参数.但江苏考题真正的难度在等差、等比数列的性质灵活运用上.第1课时数列中的基本量计算(基础课)[常考题型突破]等差、等比数列的基本运算[必备知识]1.通项公式等差数列:a n=a1+(n-1)d;等比数列:a n=a1·q n-1.2.求和公式等差数列:S n=n(a1+a n)2=na1+n(n-1)2d;等比数列:S n=a1(1-q n)1-q=a1-a n q1-q(q≠1).[题组练透]1.(2017·镇江期末)已知数列{a n}为等比数列,且a1+1,a3+4,a5+7成等差数列,则公差d=________.解析:设等比数列{a n}的公比为q,则a 3=a 1q 2,a 5=a 1q 4,由a 1+1,a 3+4,a 5+7成等差数列, 得2(a 1q 2+4)=a 1+1+a 1q 4+7, 即q 2=1.所以d =a 1q 2+4-a 1-1=3. 答案:32.(2017·镇江调研)S n 是等差数列{a n }的前n 项和,若S n S 2n =n +14n +2,则a 3a 5=________. 解析:因为S n S 2n =n +14n +2,所以令n =1可得,S 1S 2=26=13,即a 12a 1+d =13,化简可得d =a 1,所以a 3a 5=a 1+2d a 1+4d =3a 15a 1=35.答案:353.(2017·苏北四市期末)已知等比数列{a n }的前n 项和为S n ,若S 2=2a 2+3,S 3=2a 3+3,则公比q 的值为________.解析:因为S 2=2a 2+3,S 3=2a 3+3,所以a 3=2a 3-2a 2,所以a 3-2a 2=a 1q 2-2aq =0,所以q 2-2q =0,q ≠0,则公比q =2.答案:24.(2017·江苏高考)等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8=________.解析:设等比数列{a n}的公比为q ,则由S 6≠2S 3,得q ≠1,则⎩⎪⎨⎪⎧S 3=a 1(1-q 3)1-q=74,S 6=a 1(1-q 6)1-q=634,解得⎩⎪⎨⎪⎧q =2,a 1=14, 则a 8=a 1q 7=14×27=32.答案:325.(2017·苏锡常镇一模)设等比数列{a n }的前n 项和为S n ,若S 3,S 9,S 6成等差数列,且a 2+a 5=4,则a 8的值为________.解析:因为等比数列{a n }的前n 项和为S n ,若S 3,S 9,S 6成等差数列,且a 2+a 5=4,所以⎩⎪⎨⎪⎧2×a 1(1-q 9)1-q =a 1(1-q 3)1-q +a 1(1-q 6)1-q ,a 1q +a 1q 4=4, 解得a 1q =8,q 3=-12,所以a 8= a 1q 7=(a 1q )(q 3)2=8×14=2.答案:2 [方法归纳]等差(比)数列基本运算的策略(1)在等差(比)数列中,首项a 1和公差d (公比q )是两个最基本的元素.(2)在进行等差(比)数列项的运算时,若条件和结论间的联系不明显,则均可化成关于a 1和d (q )的方程组求解,但要注意消元法及整体代换法,以减少计算量.等差、等比数列的性质[必备知识]等差数列等比数列性 质(1)若m ,n ,p ,q ∈N *, 且m +n =p +q ,则a m +a n =a p +a q (1)若m ,n ,p ,q ∈N *, 且m +n =p +q , 则a m ·a n =a p ·a q (2)a n =a m +(n -m )d(2)a n =a m q n-m(3)S m ,S 2m -S m ,S 3m -S 2m ,…仍成等差数列(3)S m ,S 2m -S m ,S 3m -S 2m ,…仍成等比数列(S m ≠0)[题组练透]1.(2017·苏州考前模拟)已知等比数列{a n }满足a n >0,n ∈N *,且a 5·a 2n -5=22n (n ≥3),则当n ≥1时,log 2a 1+log 2a 3+…+log 2a 2n -1=________.解析:由a 5·a 2n -5=22n (n ≥3),得a 2n =22n ,则a n =2n ,故log 2a 1+log 2a 3+…+log 2a 2n -1=1+3+…+(2n -1)=n 2.答案:n 22.已知数列{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________. 解析:∵a 3+a 5=2a 4,∴a 4=0. ∵a 1=6,a 4=a 1+3d ,∴d =-2.∴S 6=6a 1+6×(6-1)2d =6.答案:63.(2017·南通二调)已知{a n }是公差不为0的等差数列,S n 是其前n 项和.若a 2a 3=a 4a 5,S 9=27,则a 1的值是________.解析:因为等差数列{a n }满足S 9=27,所以S 9=9a 5=27,所以a 5=3,因为a 2a 3=a 4a 5,所以(a 5-3d )(a 5-2d )=(a 5-d )a 5,4a 5d =6d 2,又因为等差数列{a n }的公差不为0,所以d =2,所以a 1=a 5-4d =3-4×2=-5.答案:-54.设公差为d 的等差数列{a n }的前n 项和为S n ,若a 1=1,-217<d <-19,则当S n 取最大值时,n 的值为________.解析:法一:∵S n =n +n (n -1)2d ,∴S n =d2n 2+⎝⎛⎭⎫1-d 2n . ∵函数y =d 2x 2+⎝⎛⎭⎫1-d 2x 的图象的对称轴方程为x =-1d +12,且开口向下,又-217<d <-19,∴9<-1d +12<192.∴S n 取最大值时,n 的值为9.法二:由a n =a 1+(n -1)d =1+(n -1)d >0, 得n -1<1-d. ∵19<-d <217,∴172<1-d<9. 又n ∈N *,∴n -1≤8,即n ≤9.故S 9最大. 答案:9 [方法归纳](1)等差、等比数列性质的应用的关键是抓住项与项之间的关系及项的序号之间的关系,从这些特点入手选择恰当的性质进行求解.(2)应牢固掌握等差、等比数列的性质,特别是等差数列中“若m +n =p +q ,则a m +a n =a p +a q ”这一性质与求和公式S n =n (a 1+a n )2的综合应用. [课时达标训练] [A 组——抓牢中档小题]1.(2017·南通三模)设等差数列{a n }的前n 项和为S n .若公差d =2,a 5=10,则S 10的值是________.解析:法一:因为等差数列{a n }中a 5=a 1+4d =10,d =2,所以a 1=2,所以S 10=10×2+10(10-1)2×2=110.法二:在等差数列{a n }中,a 6=a 5+d =12,所以S 10=10(a 1+a 10)2=5(a 5+a 6)=5×(10+12)=110.答案:1102.(2017·全国卷Ⅲ改编)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为________.解析:设等差数列{a n }的公差为d ,因为a 2,a 3,a 6成等比数列,所以a 2a 6=a 23, 即(a 1+d )(a 1+5d )=(a 1+2d )2. 又a 1=1,所以d 2+2d =0. 又d ≠0,则d =-2,所以数列{a n }前6项的和S 6=6×1+6×52×(-2)=-24. 答案:-243.(2017·北京高考)若等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,则a 2b 2=________.解析:设等差数列{a n }的公差为d ,等比数列{b n }的公比为q , 则a 4=-1+3d =8,解得d =3; b 4=-1·q 3=8,解得q =-2.所以a 2=-1+3=2,b 2=-1×(-2)=2, 所以a 2b 2=1.答案:14.已知公差为d 的等差数列{a n }的前n 项和为S n ,若S 5S 3=3,则a 5a 3的值为________.解析:由题意S 5S 3=5a 1+10d3a 1+3d =3,化简得d =4a 1,则a 5a 3=a 1+4d a 1+2d =17a 19a 1=179. 答案:1795.(2017·全国卷Ⅱ)等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则∑k =1n1S k=________.解析:设等差数列{a n }的首项为a 1,公差为d ,依题意有⎩⎪⎨⎪⎧ a 1+2d =3,4a 1+6d =10,解得⎩⎪⎨⎪⎧a 1=1,d =1,所以S n =n (n +1)2,1S n =2n (n +1)=2⎝⎛⎭⎫1n -1n +1, 因此∑k =1n1S k =2⎝⎛⎭⎫1-12+12-13+…+1n -1n +1=2n n +1. 答案:2nn +16.(2017·盐城期中)在数列{a n }中,a 1=-2101,且当2≤n ≤100时,a n +2a 102-n =3×2n恒成立,则数列{a n }的前100项和S 100=________.解析:因为当2≤n ≤100时,a n +2a 102-n =3×2n 恒成立,所以a 2+2a 100=3×22,a 3+2a 99=3×23,…,a 100+2a 2=3×2100,以上99个等式相加, 得3(a 2+a 3+…+a 100)=3(22+23+…+2100)=3(2101-4),所以a 2+a 3+…+a 100=2101-4,又因为a 1=-2101,所以S 100=a 1+(a 2+a 3+…+a 100)=-4. 答案:-47.(2017·常州前黄中学国际分校月考)在数列{a n }中,a n +1=a n1+3a n,a 1=2,则a 20=________.解析:由a n +1=a n 1+3a n ,a 1=2,可得1a n +1=1a n+3,所以⎩⎨⎧⎭⎬⎫1a n 是以12为首项,3为公差的等差数列.即1a n =12+3(n -1),可得a n =26n -5,所以a 20=2115. 答案:21158.(2017·苏州期中)已知数列{a n }满足:a n +1=a n (1-a n +1),a 1=1,数列{b n }满足:b n =a n ·a n +1,则数列{b n }的前10项的和S 10=________.解析:因为a n +1=a n (1-a n +1),a 1=1,所以1a n +1-1a n=1,1a 1=1,所以数列⎩⎨⎧⎭⎬⎫1a n 是以1为首项,1为公差的等差数列,所以1a n =n ,所以b n =1n (n +1)=1n -1n +1,所以数列{b n }的前10项的和S 10=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫110-111=1-111=1011. 答案:10119.已知{a n }为等差数列,若a 11a 10<-1,且它的前n 项和S n 有最大值,那么当S n 取得最小正值时,n =________.解析:由a 11a 10<-1,得a 11+a 10a 10<0,且它的前n 项和S n 有最大值,则a 10>0,a 11<0,a 11+a 10<0,则S 19>0,S 20<0,那么当S n 取得最小正值时,n =19.答案:1910.设S n 是等差数列{a n }的前n 项和,S 10=16,S 100-S 90=24,则S 100=________. 解析:依题意,S 10,S 20-S 10,S 30-S 20,…,S 100-S 90依次成等差数列,设该等差数列的公差为d .又S 10=16,S 100-S 90=24,因此S 100-S 90=24=16+(10-1)d =16+9d ,解得d =89,因此S 100=10S 10+10×92d =10×16+10×92×89=200.答案:20011.(2017·扬州期末)在正项等比数列{a n }中,若a 4+a 3-2a 2-2a 1=6,则a 5+a 6的最小值为________.解析:令a 1+a 2=t (t >0),则a 4+a 3-2a 2-2a 1=6可化为tq 2-2t =6(其中q 为公比),所以a 5+a 6=tq 4=6q 2-2q 4=6⎣⎡⎦⎤4q 2-2+(q 2-2)+4≥6⎣⎢⎡⎦⎥⎤24q 2-2×(q 2-2)+4=48(当且仅当q =2时等号成立). 答案:4812.设数列{a n }的前n 项和为S n ,已知a 1=1,a n +1=2S n +2n ,则数列{a n }的通项公式a n =________.解析:当n ≥2时,a n +1-a n =2(S n -S n -1)+2n -2n -1=2a n +2n -1,从而a n +1+2n =3(a n+2n -1).又a 2=2a 1+2=4,a 2+2=6,故数列{a n +1+2n }是以6为首项,3为公比的等比数列,从而a n +1+2n =6×3n -1,即a n +1=2×3n -2n ,又a 1=1=2×31-1-21-1,故a n =2×3n -1-2n -1.答案:2×3n -1-2n -113.数列{a n }中,若对∀n ∈N *,a n +a n +1+a n +2=k (k 为常数),且a 7=2,a 9=3,a 98=4,则该数列的前100项的和等于________.解析:由a n +a n +1+a n +2=k ,a n +1+a n +2+a n +3=k ,得a n +3=a n . 从而a 7=a 1=2,a 9=a 3=3,a 98=a 2=4. 因此a 1+a 2+a 3=9.所以S 100=33(a 1+a 2+a 3)+a 1=33×9+2=299. 答案:29914.(2017·南京考前模拟)数列{a n }中,a n =2n -1,现将{a n }中的项依原顺序按第k 组有2k 项的要求进行分组:(1,3),(5,7,9,11),(13,15,17,19,21,23),…,则第n 组中各数的和为________.解析:设数列{a n }的前n 项和为S n ,则S n =n 2,因为2+4+…+2n =n ( n +1)=n 2+n,2+4+…+2( n -1)=n ( n -1)=n 2-n .所以第n 组中各数的和为S n 2+n -S n 2-n =( n 2+n )2-(n 2-n )2=4n 3.答案:4n 3[B 组——力争难度小题]1.在等差数列{a n }中,若任意两个不等的正整数k ,p 都有a k =2p +1,a p =2k +1,数列{a n }的前n 项和记为S n .若k +p =m ,则S m =________.(用m 表示)解析:设数列{a n }的公差为d , 由题意,a 1+(k -1)d =2p +1,① a 1+(p -1)d =2k +1,② 两式相减,得(p -k )d =2(k -p ). 又k -p ≠0,所以d =-2. 则a 1=2p +2k -1=2m -1. 因此S m =ma 1+m (m -1)2d =m (2m -1)-m (m -1)=m 2. 答案:m 22.(2016·全国乙卷)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.解析:设等比数列{a n }的公比为q ,则由a 1+a 3=10,a 2+a 4=q (a 1+a 3)=5,知q =12.∵a 1+a 1q 2=10,∴a 1=8.故a 1a 2…a n =a n1q1+2+…+(n -1)=23n ·⎝⎛⎭⎫12n n(-1)2=n n n n n 2273++22222=2--.记t =-n 22+7n 2=-12(n 2-7n ),结合n ∈N *可知n =3或4时,t 有最大值6. 又y =2t 为增函数,从而a 1a 2…a n 的最大值为26=64. 答案:643.(2017·南京考前模拟)已知函数f (x )=(x -2)3,数列{a n }是公差不为0的等差数列,若∑11i =1f (a i )=0,则数列{a n }的前11项和S 11为________.解析:f (x )=(x -2)3为增函数,且关于点(2,0)中心对称,则f (2+x )+f (2-x )=0.设数列{a n }的公差为d ,若a 6>2,则f (a 6)>0,f (a 5)+f (a 7)=f (a 6-d )+f (a 6+d )>f (2-d )+f (2+d )=0,即f (a 5)+f (a 7)>0,同理,f (a 4)+f (a 8)>0,…,f (a 1)+f (a 11)>0,则∑11i =1f (a i )>0;同理,若a 6<2,则∑11i =1f (a i )<0,所以a 6=2.所以S 11=11a 6=22. 答案:224.(2017·全国卷Ⅰ改编)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是________.解析:设第一项为第1组,接下来的两项为第2组,再接下来的三项为第3组,依此类推,则第n 组的项数为n ,前n 组的项数和为n (n +1)2.由题意可知,N >100,令n (n +1)2>100, 得n ≥14,n ∈N *,即N 出现在第13组之后.易得第n 组的所有项的和为1-2n 1-2=2n -1,前n 组的所有项的和为2(1-2n )1-2-n =2n +1-n -2.设满足条件的N 在第k +1(k ∈N *,k ≥13)组,且第N 项为第k +1组的第t (t ∈N *)个数, 若要使前N 项和为2的整数幂,则第k +1组的前t 项的和2t -1应与-2-k 互为相反数,即2t -1=k +2, ∴2t =k +3, ∴t =log 2(k +3), ∴当t =4,k =13时,N =13×(13+1)2+4=95<100,不满足题意;当t =5,k =29时,N =29×(29+1)2+5=440;当t >5时,N >440. 答案:440第2课时等差、等比数列的综合问题(能力课) [常考题型突破]等差、等比数列的综合运算[例1] n 项和为S n ,且a 1=1,a 2=2,设b n =a 2n -1+a 2n .(1)若数列{b n }是公比为3的等比数列,求S 2n ; (2)若对任意n ∈N *,Sn =a 2n +n2恒成立,求数列{a n }的通项公式; (3)若S 2n =3(2n -1),数列{a n a n +1}为等比数列,求数列{a n }的通项公式. [解] (1)由题意,b 1=a 1+a 2=1+2=3,则S 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n -1+a 2n )=b 1+b 2+…+b n =3(1-3n )1-3=3n +1-32.(2)当n ≥2时,由2S n =a 2n +n , 得2S n -1=a 2n -1+n -1,两式相减得2a n =a 2n +n -(a 2n -1+n -1)=a 2n -a 2n -1+1,整理得(a n -1)2-a 2n -1=0, 即(a n -a n -1-1)(a n +a n -1-1)=0, 故a n -a n -1=1或a n +a n -1=1.(*)下面证明a n +a n -1=1对任意的n ∈N *恒不成立. 事实上,因为a 1+a 2=3, 所以a n +a n -1=1不恒成立;若存在n ∈N *,使a n +a n -1=1,设n 0是满足上式最小的正整数,即an 0+an 0-1=1,显然n 0>2,且an 0-1∈(0,1),则an 0-1+an 0-2≠1,则由(*)式知,an 0-1-an 0-2=1,则an 0-2<0,矛盾.故a n +a n -1=1对任意的n ∈N *恒不成立,所以a n -a n -1=1对任意的n ∈N *恒成立.因此{a n }是以1为首项,1为公差的等差数列,所以a n =1+(n -1)=n . (3)设等比数列{a n a n +1}的公比为q ,则当n ≥2时,a n a n +1a n -1a n =a n +1a n -1=q .即{a 2n -1},{a 2n }分别是以1,2为首项,公比为q 的等比数列;故a 3=q ,a 4=2q .令n =2,有S 4=a 1+a 2+a 3+a 4=1+2+q +2q =9,则q =2.当q =2时,a 2n -1=2n -1,a 2n =2×2n -1=2n ,b n =a 2n -1+a 2n =3×2n -1,此时S 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n -1+a 2n )=b 1+b 2+…+b n =3(1-2n )1-2=3(2n -1).综上所述,a n=⎩⎨⎧2n -12,当n 为奇数,2n2,当n 为偶数.[方法归纳]已知数列{a n },{b n }满足2S n =(a n +2)b n ,其中S n 是数列{a n }的前n 项和. (1)若数列{a n }是首项为23,公比为-13的等比数列,求数列{b n }的通项公式;(2)若b n =n ,a 2=3,求数列{a n }的通项公式;(3)在(2)的条件下,设c n =a nb n,求证:数列{c n }中的任意一项总可以表示成该数列其他两项之积.解:(1)因为a n =23×⎝⎛⎭⎫-13n -1=-2⎝⎛⎭⎫-13n , S n =23⎣⎡⎦⎤1-⎝⎛⎭⎫-13n 1-⎝⎛⎭⎫-13=12⎣⎡⎦⎤1-⎝⎛⎭⎫-13n ,所以b n =2S na n +2=1-⎝⎛⎭⎫-13n -2⎝⎛⎭⎫-13n +2=12. (2)若b n =n ,则2S n =na n +2n ,① 所以2S n +1=(n +1)a n +1+2(n +1),② 由②-①得2a n +1=(n +1)a n +1-na n +2, 即na n =(n -1)a n +1+2,③当n ≥2时,(n -1)a n -1=(n -2)a n +2,④由④-③得(n -1)a n -1+(n -1)a n +1=2(n -1)a n , 即a n -1+a n +1=2a n ,由2S 1=a 1+2,得a 1=2,又a 2=3,所以数列{a n }是首项为2,公差为3-2=1的等差数列,故数列{a n }的通项公式是a n =n +1.(3)证明:由(2)得c n =n +1n ,对于给定的n ∈N *,若存在k ≠n ,t ≠n ,k ,t ∈N *,使得c n =c k ·c t ,只需n +1n =k +1k ·t +1t ,即1+1n =⎝⎛⎭⎫1+1k ·⎝⎛⎭⎫1+1t , 即1n =1k +1t +1kt ,则t =n (k +1)k -n , 取k =n +1,则t =n (n +2),所以对数列{c n }中的任意一项c n =n +1n ,都存在c n +1=n +2n +1和c n 2+2n =n 2+2n +1n 2+2n ,使得c n =c n +1·c n 2+2n .等差、等比数列的判定与证明[例2] n n a 2n -na 2n +1=0,设数列{b n }满足b n =a 2nt n .(1)求证:数列⎩⎨⎧⎭⎬⎫a n n 为等比数列; (2)若数列{b n }是等差数列,求实数t 的值;(3)若数列{b n }是等差数列,前n 项和为S n ,对任意的n ∈N *,均存在m ∈N *,使得8a 21S n -a 41n 2=16b m 成立,求满足条件的所有整数a 1的值.[解] (1)证明:由题意得4(n +1)a 2n =na 2n +1,因为数列{a n }各项均为正, 得a 2n +1n +1=4·a 2n n ,所以a n +1n +1=2·a nn ,因此a n +1n +1a n n =2,所以⎩⎨⎧⎭⎬⎫a n n 是以a 1为首项,公比为2的等比数列.(2)由(1)得a n n=a 1·2n -1,即a n =a 1·2n -1·n , 所以b n =a 2nt n =a 21·4n -1·n tn,如果数列{b n }是等差数列,则2b 2=b 1+b 3, 即2·a 21·2·42-1t 2=a 21·40t +a 21·3·43-1t 3,整理得16t 2=1t +48t 3,则t 2-16t +48=0, 解得t =4或t =12. 当t =4时,b n =a 21·n 4,因为b n +1-b n =a 21(n +1)4-a 21n 4=a 214,所以数列{b n }是等差数列,符合题意; 当t =12时,b n =a 21n4·3n ,因为b 2+b 4=2a 214·32+4a 214·34=22a 214·34=11162a 21,2b 3=2·a 21·34·33=a 2118,b 2+b 4≠2b 3,所以数列{b n }不是等差数列,t =12不符合题意, 综上,如果数列{b n }是等差数列,则t =4.(3)由(2)得b n =a 21n 4,对任意的n ∈N *,均存在m ∈N *,使8a 21S n -a 41n 2=16b m , 则8·a 414·n (n +1)2-a 41n 2=16a 21m 4,所以m =na 214.当a 1=2k ,k ∈N *时,m =4k 2n4=k 2n ,对任意的n ∈N *,m ∈N *,符合题意; 当a 1=2k -1,k ∈N *,当n =1时,m =4k 2-4k +14=k 2-k +14∉N *,故不合题意.综上,当a 1=2k ,k ∈N *,对任意的n ∈N *,均存在m ∈N *,使8a 21S n -a 41n 2=16b m .[方法归纳]已知数列{a n }的前n 项和为S n ,数列{b n },{c n }满足(n +1)b n =a n +1-S nn ,(n +2)c n =a n +1+a n +22-S nn ,其中n ∈N *. (1)若数列{a n }是公差为2的等差数列,求数列{c n }的通项公式;(2)若存在实数λ,使得对一切n ∈N *,有b n ≤λ≤c n ,求证:数列{a n }是等差数列. 解:(1)因为数列{a n }是公差为2的等差数列, 所以a n =a 1+2(n -1),S nn =a 1+n -1. 因为(n +2)c n =a 1+2n +a 1+2(n +1)2-(a 1+n -1)=n +2,所以c n =1.(2)证明:由(n +1)b n =a n +1-S nn ,得n (n +1)b n =na n +1-S n ,(n +1)(n +2)b n +1=(n +1)a n +2-S n +1,两式相减,并化简得a n +2-a n +1=(n +2)b n +1-nb n .从而(n +2)c n =a n +1+a n +22-S n n =a n +1+a n +22-[a n +1-(n +1)b n ]=a n +2-a n +12+(n +1)b n =(n +2)b n +1-nb n 2+(n +1)b n =n +22(b n +b n +1),因此c n =12(b n +b n +1).因为对一切n ∈N *,有b n ≤λ≤c n ,所以λ≤c n =12(b n +b n +1)≤λ,故b n =λ,c n =λ.所以(n +1)λ=a n +1-S nn ,① (n +2)λ=12(a n +1+a n +2)-S n n ,②②-①得12(a n +2-a n +1)=λ,即a n +2-a n +1=2λ,故a n +1-a n =2λ(n ≥2).又2λ=a 2-S 11=a 2-a 1,则a n +1-a n =2λ(n ≥1).所以数列{a n }是等差数列.特殊数列的判定[例3] (2017·n a n -k +a n -k +1+…+a n -1+a n +1+…+a n +k -1+a n +k =2ka n ,对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列. [证明] (1)因为{a n }是等差数列,设其公差为d , 则a n =a 1+(n -1)d ,从而,当n≥4时,a n-k+a n+k=a1+(n-k-1)d+a1+(n+k-1)d=2a1+2(n-1)d=2a n,k=1,2,3,所以a n-3+a n-2+a n-1+a n+1+a n+2+a n+3=6a n,因此等差数列{a n}是“P(3)数列”.(2)数列{a n}既是“P(2)数列”,又是“P(3)数列”,因此,当n≥3时,a n-2+a n-1+a n+1+a n+2=4a n,①当n≥4时,a n-3+a n-2+a n-1+a n+1+a n+2+a n+3=6a n.②由①知,a n-3+a n-2=4a n-1-(a n+a n+1),③a n+2+a n+3=4a n+1-(a n-1+a n).④将③④代入②,得a n-1+a n+1=2a n,其中n≥4,所以a3,a4,a5,…是等差数列,设其公差为d′.在①中,取n=4,则a2+a3+a5+a6=4a4,所以a2=a3-d′,在①中,取n=3,则a1+a2+a4+a5=4a3,所以a1=a3-2d′,所以数列{a n}是等差数列.[方法归纳]设数列{a n}的前n项的和为S n.定义:若∀n∈N*,∃m∈N*,S n=a m,则称数列{a n}为H数列.(1)求证:数列{(n-2)d}(n∈N*,d为常数)是H数列;(2)求证:数列{(n-3)d}(n∈N*,d为常数,d≠0)不是H数列.证明:(1)∵a n=(n-2)d,∴S n=n(-1+n-2)2d=n(n-3)2d.令n(n-3)2d=(m-2)d.(*)当d=0时,存在正整数m满足(*).当d≠0时,m=2+n(n-3)2,∵∀n∈N*,n(n-3)2∈Z,∴m∈Z,且n(n-3)2≥-1,∴m≥1,m∈N*,故存在m∈N*满足(*).所以数列{(n -2)d }是H 数列. (2)数列{(n -3)d }的前n 项之和为S n =n (-2+n -3)2d =n (n -5)2d .令n (n -5)2d =(m -3)d . 因为d ≠0,所以m =3+n (n -5)2,当n =2时,m =0,故{(n -3)d }不是H 数列. [课时达标训练]1.(2017·苏州期中)已知等比数列{a n }的公比q >1,满足:a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项.(1)求数列{a n }的通项公式;(2)若b n =a n log 12a n ,S n =b 1+b 2+…+b n ,求使S n +n ·2n +1>62成立的正整数n 的最小值.解:(1)∵a 3+2是a 2,a 4的等差中项, ∴2(a 3+2)=a 2+a 4,代入a 2+a 3+a 4=28,可得a 3=8, ∴a 2+a 4=20,∴⎩⎪⎨⎪⎧a 1q 2=8,a 1q +a 1q 3=20, 解得⎩⎪⎨⎪⎧a 1=2,q =2或⎩⎪⎨⎪⎧a 1=32,q =12,∵q >1,∴⎩⎪⎨⎪⎧a 1=2,q =2,∴数列{a n }的通项公式为a n =2n .(2)∵b n =a n log 12a n =2n log 122n =-n ·2n ,∴S n =-(1×2+2×22+…+n ·2n ),①2S n =-(1×22+2×23+…+(n -1)·2n +n ·2n +1),② ②-①得S n =2+22+23+…+2n -n ·2n +1 =2(1-2n )1-2-n ·2n +1=2n +1-2-n ·2n +1.∵S n +n ·2n +1>62,∴2n +1-2>62, ∴n +1>6,n >5,∴使S n +n ·2n +1>62成立的正整数n 的最小值为6.2.已知数列{a n },{b n }均为各项都不相等的数列,S n 为{a n }的前n 项和,a n +1b n =S n +1(n ∈N *).(1)若a 1=1,b n =n2,求a 4的值;(2)若{a n }是公比为q 的等比数列,求证:存在实数λ,使得{b n +λ}为等比数列. 解:(1)由a 1=1,b n =n2,知a 2=4,a 3=6,a 4=8.(2)证明:法一:显然公比q ≠1,因为a n +1b n =S n +1,所以a 1q nb n =a 1(1-q n )1-q+1,所以q nb n =11-q +1a 1-q n 1-q,即b n =⎝⎛⎭⎫11-q +1a 1⎝⎛⎭⎫1q n -11-q , 所以存在实数λ=11-q, 使得b n +λ=⎝⎛⎭⎫11-q +1a 1⎝⎛⎭⎫1q n,又b n +λ≠0(否则{b n }为常数数列,与题意不符), 所以当n ≥2时,b n +λb n -1+λ=1q ,此时{b n +λ}为等比数列,所以存在实数λ=11-q,使得{b n +λ}为等比数列. 法二:因为a n +1b n =S n +1,① 所以当n ≥2时,a n b n -1=S n -1+1,② ①-②得,a n +1b n -a n b n -1=a n ,③ 由③得,b n =a n a n +1b n -1+a n a n +1=1q b n -1+1q ,所以b n +11-q =1q ⎝⎛⎭⎫b n -1+11-q .又b n +11-q≠0(否则{b n }为常数数列,与题意不符), 所以存在实数λ=11-q,使得{b n +λ}为等比数列. 3.设数列{H n }的各项均为不相等的正整数,其前n 项和为Q n ,称满足条件“对任意的m ,n ∈N *,均有(n -m )·Q n +m =(n +m )(Q n -Q m )”的数列{H n }为“好”数列.(1)试分别判断数列{a n },{b n }是否为“好”数列,其中a n =2n -1,b n =2n -1,n ∈N *,并给出证明;(2)已知数列{c n }为“好”数列,其前n 项和为T n . ①若c 2 016=2 017,求数列{c n }的通项公式;②若c 1=p ,且对任意给定的正整数p ,s (s >1),有c 1,c s ,c t 成等比数列,求证:t ≥s 2. 解:(1)若a n =2n -1,则S n =n 2,所以(n -m )S n +m =(n -m )(n +m )2,而(n +m )(S n -S m )=(n +m )(n 2-m 2)=(n +m )2(n -m ), 所以(n -m )S n +m =(n +m )(S n -S m )对任意的m ,n ∈N *均成立, 即数列{a n }是“好”数列.若b n =2n -1,则S n =2n -1,取n =2,m =1, 则(n -m )S n +m =S 3=7,(n +m )(S n -S m )=3b 2=6, 此时(n -m )S n +m ≠(n +m )(S n -S m ), 即数列{b n }不是“好”数列.(2)因为数列{c n }为“好”数列,取m =1, 则(n -1)T n +1=(n +1)(T n -T 1), 即2T n =(n -1)c n +1+(n +1)c 1恒成立. 当n ≥2时,有2T n -1=(n -2)c n +nc 1,两式相减,得2c n =(n -1)c n +1-(n -2)c n +c 1(n ≥2), 即nc n =(n -1)c n +1+c 1(n ≥2), 所以(n -1)c n -1=(n -2)c n +c 1(n ≥3),所以nc n -(n -1)c n -1=(n -1)c n +1-(n -2)c n (n ≥3), 即(2n -2)c n =(n -1)c n -1+(n -1)c n +1(n ≥3), 即2c n =c n -1+c n +1(n ≥3),当n =2时,有2T 2=c 3+3c 1,即2c 2=c 3+c 1, 所以2c n =c n -1+c n +1对任意的n ≥2,n ∈N *恒成立, 所以数列{c n }是等差数列. 设数列{c n }的公差为d ,①若c 2 016=2 017,则c 1+2 015d =2 017, 即d =2 017-c 12 015,因为数列{c n }的各项均为不相等的正整数, 所以d ∈N *,所以d =1,c 1=2,所以c n =n +1. ②证明:若c 1=p ,则c n =dn +p -d , 由c 1,c s ,c t 成等比数列,得c 2s =c 1c t , 所以(ds +p -d )2=p (dt +p -d ),即(p -d )(2ds +p -d -p )+d (ds 2-pt )=0, 化简得,p (t +1-2s )=d (s -1)2, 即d =t +1-2s (s -1)2p .因为p 是任意给定的正整数,要使d ∈N *,必须t +1-2s (s -1)2∈N *, 不妨设k =t +1-2s(s -1)2,由于s 是任意给定的正整数,所以t =k (s -1)2+2s -1≥(s -1)2+2s -1=s 2. 故不等式得证.4.(2017·常州前黄中学国际分校月考)已知数列{a n }是公差为正数的等差数列,其前n 项和为S n ,且a 2·a 3=15,S 4=16.(1)求数列{a n }的通项公式; (2)数列{b n }满足b 1=a 1,b n +1-b n =1a n a n +1. ①求数列{b n }的通项公式;②是否存在正整数m ,n (m ≠n ),使得b 2,b m ,b n 成等差数列?若存在,求出m ,n 的值;若不存在,请说明理由.解:(1)设数列{a n }的公差为d ,则d >0.由a 2·a 3=15,S 4=16,得⎩⎪⎨⎪⎧(a 1+d )(a 1+2d )=15,4a 1+6d =16,解得⎩⎪⎨⎪⎧ a 1=1,d =2或⎩⎪⎨⎪⎧a 1=7,d =-2(舍去). 所以a n =2n -1.(2)①∵b 1=a 1,b n +1-b n =1a n a n +1, ∴b 1=a 1=1,b n +1-b n =1a n a n +1=1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1,即b 2-b 1=12⎝⎛⎭⎫1-13,b 3-b 2=12⎝⎛⎭⎫13-15,…,b n -b n -1=12⎝⎛⎭⎫12n -3-12n -1(n ≥2),累加得:b n -b 1=12⎝⎛⎭⎫1-12n -1=n -12n -1, ∴b n =b 1+n -12n -1=1+n -12n -1=3n -22n -1.b 1=1也符合上式. 故b n =3n -22n -1,n ∈N *. ②假设存在正整数m ,n (m ≠n ),使得b 2,b m ,b n 成等差数列, 则b 2+b n =2b m .又b 2=43,b n =3n -22n -1=32-14n -2,b m =32-14m -2,∴43+⎝⎛⎭⎫32-14n -2=2⎝⎛⎭⎫32-14m -2, 即12m -1=16+14n -2, 化简得:2m =7n -2n +1=7-9n +1. 当n +1=3,即n =2时,m =2,不合题意,舍去; 当n +1=9,即n =8时,m =3,符合题意.∴存在正整数m =3,n =8,使得b 2,b m ,b n 成等差数列.5.(2017·镇江丹阳高级中学期初考试)已知数列{a n }满足a 1=1,a 2=r (r >0),且{a n a n +1}是公比为q (q >0)的等比数列,设b n =a 2n -1+a 2n (n ∈N *).(1)求使a n a n +1+a n +1a n +2>a n +2a n +3(n ∈N *)成立的q 的取值范围; (2)求数列{b n }的前n 项和S n ;(3)试证明:当q ≥2时,对任意正整数n ≥2,S n 不可能是数列{b n }中的某一项. 解:(1)依题意得q n -1+q n >q n +1, ∵q >0,∴q 2-q -1<0, ∴0<q <5+12. (2)∵b n +1b n =a 2n +1+a 2n +2a 2n -1+a 2n =a 2n a 2n +1a 2n +a 2n +1a 2n +2a 2n +1a 2n -1+a 2n =a 2n -1a 2n a 2n q +a 2n a 2n +1a 2n +1q a 2n -1+a 2n =q (q >0),且b 1=a 1+a 2=1+r >0,∴ 数列{b n }是以1+r 为首项,q 为公比的等比数列, ∴S n =⎩⎪⎨⎪⎧n (1+r ),q =1,(1+r )(1-q n )1-q ,q ≠1.(3)证明:当q ≥2时,S n =(1+r )(1-q n )1-q,∵S n -a n +1=(1+r )(1-q n )1-q -(1+r )q n =1+r 1-q [(1-q n )-q n (1-q )]=1+r1-q [1+q n (q -2)]<0,∴S n <a n +1,又S n =a 1+a 2+…+a n ,a n >0,n ∈N *,∴S n >a n ,故当q ≥2时,对任意正整数n ≥2,S n 不可能是数列{b n }中的某一项.6.(2017·南通二调)设数列{a n }的前n 项和为S n (n ∈N *),且满足:①|a 1|≠|a 2|;②r (n -p )S n +1=()n 2+n a n +(n 2-n -2)a 1,其中r ,p ∈R ,且r ≠0.(1)求p 的值;(2)数列{a n }能否是等比数列?请说明理由; (3)求证:当r =2时,数列{a n }是等差数列. 解:(1)n =1时,r (1-p )S 2=2a 1-2a 1=0, 因为|a 1|≠|a 2|,所以S 2≠0, 又r ≠0,所以p =1.(2)数列{a n }不是等比数列.理由如下: 假设{a n }是等比数列,公比为q ,当n =2时,rS 3=6a 2,即ra 1(1+q +q 2)=6a 1q , 所以r (1+q +q 2)=6q ,①当n =3时,2rS 4=12a 3+4a 1,即2ra 1(1+q +q 2+q 3)=12a 1q 2+4a 1, 所以r (1+q +q 2+q 3)=6q 2+2,②由①②得q =1,与|a 1|≠|a 2|矛盾,所以假设不成立. 故{a n }不是等比数列.(3)证明:当r =2时,易知a 3+a 1=2a 2. 由2(n -1)S n +1=(n 2+n )a n +(n 2-n -2)a 1,得 n ≥2时,2S n +1=n (n +1)a n n -1+(n +1)(n -2)a 1n -1,①2S n +2=(n +1)(n +2)a n +1n +(n -1)(n +2)a 1n,② ②-①得,2a n +2=(n +1)(n +2)a n +1n -n (n +1)a n n -1+(n 2-n +2)a 1n (n -1), 即2(a n +2-a 1)=(n +1)(n +2)(a n +1-a 1)n -n (n +1)(a n -a 1)n -1, 两边同除(n +1)得,2(a n +2-a 1)n +1=(n +2)(a n +1-a 1)n -n (a n -a 1)n -1, 即a n +2-a 1n +1-a n +1-a 1n =n 2⎝ ⎛⎭⎪⎫a n +1-a 1n -a n -a 1n -1 =n (n -1)2×2⎝ ⎛⎭⎪⎫a n -a 1n -1-a n -1-a 1n -2 =……=n (n -1)×…×3×22×2×…×2⎝ ⎛⎭⎪⎫a 3-a 13-1-a 2-a 12-1=0, 所以a n -a 1n -1=a n -1-a 1n -2=…=a 2-a 11,令a 2-a 1=d ,则a n -a 1n -1=d (n ≥2).所以a n=a1+(n-1)d(n≥2).又n=1时,也适合上式,所以a n=a1+(n-1)d(n∈N*).所以a n+1-a n=d(n∈N*).所以当r=2时,数列{a n}是等差数列.第3课时数列的综合应用(能力课)[常考题型突破]数列与不等式问题[例1](2017·南京考前模拟)若各项均为正数的数列{a n}的前n项和为S n,且2S n=a n +1 (n∈N*).(1)求数列{a n}的通项公式;(2)若正项等比数列{b n},满足b2=2,2b7+b8=b9,求T n=a1b1+a2b2+…+a n b n;(3)对于(2)中的T n,若对任意的n∈N*,不等式λ(-1)n<12n+1(T n+21)恒成立,求实数λ的取值范围.[解](1)因为2S n=a n+1,所以4S n=(a n+1)2,且a n>0,则4a1=(a1+1)2,解得a1=1,又4S n+1=(a n+1+1)2,所以4a n+1=4S n+1-4S n=(a n+1+1)2-(a n+1)2,即(a n+1+a n)(a n+1-a n)-2(a n+1+a n)=0,因为a n>0,所以a n+1+a n≠0,所以a n+1-a n=2,所以{a n}是公差为2的等差数列,又a1=1,所以a n=2n-1.(2) 设数列{b n}的公比为q,因为2b7+b8=b9,所以2+q=q2,解得q=-1(舍去)或q =2,由b2=2,得b1=1,即b n=2n-1.记A=a1b1+a2b2+…+a n b n=1×1+3×2+5×22+…+(2n-1)×2n-1,则2A=1×2+3×22+5×23+…+(2n-1)×2n,两式相减得-A=1+2(2+22+…+2n-1)-(2n-1)×2n,故A=(2n-1)×2n-1-2(2+22+…+2n-1)=(2n-1)×2n-1-2(2n-2)=(2n-3)×2n +3所以T n =a 1b 1+a 2b 2+…+a n b n =(2n -3)·2n +3.(3)不等式λ(-1)n <12n +1(T n +21)可化为(-1)n λ<n -32+62n -1.当n 为偶数时,λ<n -32+62n -1,记g (n )=n -32+62n -1.即λ<g (n )min . g (n +2)-g (n )=2+62n +1-62n -1=2-92n ,当n =2时,g (n +2)<g (n ),n ≥4时,g (n +2)>g (n ), 即g (4)<g (2),当n ≥4时,g (n )单调递增,g (n )min =g (4)=134,即λ<134. 当n 为奇数时,λ>32-n -62n -1,记h (n )=32-n -62n -1,所以λ>h (n )max .h (n +2)-h (n )=-2-62n +1+62n -1=-2+92n ,当n =1时,h (n +2)>h (n ),n ≥3时,h (n +1)<h (n ),即h (3)>h (1),n ≥3时,h (n )单调递减,h (n )max =h (3)=-3,所以λ>-3. 综上所述,实数λ的取值范围为⎝⎛⎭⎫-3,134. [方法归纳]已知数列{a n }满足a 1=6,a 2=20,且a n -1·a n +1=a 2n -8a n +12(n ∈N *,n ≥2).(1)证明:数列{a n +1-a n }为等差数列; (2)令c n =(n +1)a n na n +1+na n +1(n +1)a n,数列{c n }的前n 项和为T n ,求证:2n <T n <2n +23.证明:(1)当n =2时,a 1·a 3=a 22-8a 2+12,所以a 3=42.当n ≥2时,由a n -1·a n +1=a 2n -8a n +12, 得a n ·a n +2=a 2n +1-8a n +1+12,两式相减得a 2n +1-a 2n -8a n +1+8a n =a n a n +2-a n -1a n +1, 所以a 2n +a n a n +2-8a n =a 2n +1+a n -1a n +1-8a n +1,即a n (a n +a n +2-8)=a n +1(a n +1+a n -1-8),所以a n +a n +2-8a n +1=a n +1+a n -1-8a n =…=a 3+a 1-8a 2=2.所以a n +2+a n -8=2a n +1, 即a n +2-2a n +1+a n =8, 即(a n +2-a n +1)-(a n +1-a n )=8, 当n =1时,也满足此式. 又a 2-a 1=14,所以数列{a n +1-a n }是以14为首项,8为公差的等差数列. (2)由(1)知a n +1-a n =14+8(n -1)=8n +6.由a 2-a 1=8×1+6,a 3-a 2=8×2+6,…,a n -a n -1=8×(n -1)+6,累加得a n -a 1=8×[1+2+3+…+(n -1)]+6(n -1)=8×(n -1)(1+n -1)2+6(n -1)=4n 2+2n -6,所以a n =4n 2+2n .所以c n =(n +1)a n na n +1+na n +1(n +1)a n =2n +12n +3+2n +32n +1=⎝⎛⎭⎫1-22n +3+⎝⎛⎭⎫1+22n +1=2+2⎝⎛⎭⎫12n +1-12n +3,所以T n =2n +2⎝⎛⎭⎫13-15+⎝⎛⎭⎫15-17+…+⎝⎛⎭⎫12n +1-12n +3=2n +2⎝⎛⎭⎫13-12n +3, 又13>13-12n +3=2n +3-33(2n +3)=2n 3(2n +3)>0, 所以2n <T n <2n +23.数列中的范围与最值问题[例2] n n S n ,T n ,满足对一切n ∈N *,都有S n +3=T n .(1)若a 1≠b 1,试分别写出一个符合条件的数列{a n }和{b n };(2)若a 1+b 1=1,数列{c n }满足:c n =4a n +λ(-1)n -1·2b n ,求最大的实数λ,使得当n ∈N *,恒有c n +1≥c n 成立.[解] (1)设数列{a n },{b n }的公差分别是d 1,d 2.则S n +3=(n +3)a 1+(n +3)(n +2)2d 1, T n =nb 1+n (n -1)2d 2.∵对一切n ∈N *,有S n +3=T n ,∴(n +3)a 1+(n +3)(n +2)2d 1=nb 1+n (n -1)2d 2,即d 12n 2+⎝⎛⎭⎫a 1+52d 1n +3a 1+3d 1=d 22n 2+⎝⎛⎭⎫b 1-12d 2n . ∴⎩⎪⎨⎪⎧d 12=d 22,a 1+52d 1=b 1-12d 2,3a 1+3d 1=0.即⎩⎪⎨⎪⎧d 2=d 1,a 1=-d 1,b 1=2d 1.故答案不唯一.例如取d 1=d 2=2,a 1=-2,b 1=4, 得a n =2n -4(n ∈N *),b n =2n +2(n ∈N *). (2)∵a 1+b 1=1,又由(1),可得d 1=d 2=1,a 1=-1,b 1=2. ∴a n =n -2,b n =n +1. ∴c n =4n -2+λ(-1)n -12n +1.∴c n +1-c n =4n -1+λ(-1)n 2n +2-4n -2-λ(-1)n -12n +1=3·4n -2+λ(-1)n (2n +2+2n +1)=316·22n+6λ(-1)n ·2n . ∵当n ∈N *时,c n +1≥c n 恒成立, 即当n ∈N *时,316·22n +6λ(-1)n ·2n ≥0恒成立. ∴当n 为正奇数时,λ≤132·2n 恒成立, 而132·2n ≥116.∴λ≤116; 当n 为正偶数时,λ≥-132·2n恒成立, 而-132·2n ≤-18,∴λ≥-18. ∴-18≤λ≤116,∴λ的最大值是116.[方法归纳][变式训练](2017·南京三模)已知常数p >0,数列{a n }满足a n +1=|p -a n |+2a n +p ,n ∈N *. (1)若a 1=-1,p =1, ①求a 4的值;②求数列{a n }的前n 项和S n .(2)若数列{a n }中存在三项a r ,a s ,a t (r ,s ,t ∈N *,r <s <t )依次成等差数列,求a 1p 的取值范围.解:(1)因为p =1,所以a n +1=|1-a n |+2a n +1. ①因为a 1=-1,所以a 2=|1-a 1|+2a 1+1=1, a 3=|1-a 2|+2a 2+1=3, a 4=|1-a 3|+2a 3+1=9.②因为a 2=1,a n +1=|1-a n |+2a n +1, 所以当n ≥2时,a n ≥1,从而a n +1=|1-a n |+2a n +1=a n -1+2a n +1=3a n , 于是有a n =3n -2(n ≥2) .故当n ≥2时,S n =-1+a 2+a 3+…+a n =-1+1-3n -11-3=3n -1-32 ,当n =1时,S 1=-1,符合上式,故S n =3n -1-32,n ∈N *.(2)因为a n +1-a n =|p -a n |+a n +p ≥p -a n +a n +p =2p >0, 所以a n +1>a n ,即数列{a n }单调递增. (ⅰ)当a 1p≥1时,有a 1≥p ,于是a n ≥a 1≥p ,所以a n +1=|p -a n |+2a n +p =a n -p +2a n +p =3a n ,所以a n =3n -1a 1.若{a n }中存在三项a r ,a s ,a t (r ,s ,t ∈N *,r <s <t )依次成等差数列,则有2a s =a r +a t , 即2×3s -1=3r -1+3t -1. (*)因为s ≤t -1,所以2×3s -1=23×3s <3t -1<3r -1+3t -1,即(*)不成立.故此时数列{a n }中不存在三项依次成等差数列. (ⅱ)当-1<a 1p<1时,有-p <a 1<p .此时a 2=|p -a 1|+2a 1+p =p -a 1+2a 1+p =a 1+2p >p , 于是当n ≥2时,a n ≥a 2>p ,从而a n +1=|p -a n |+2a n +p =a n -p +2a n +p =3a n . 所以a n =3n -2a 2=3n -2(a 1+2p ) (n ≥2).若{a n }中存在三项a r ,a s ,a t (r ,s ,t ∈N *,r <s <t )依次成等差数列, 由(ⅰ)可知,r =1,于是有2×3s -2(a 1+2p )=a 1+3t -2(a 1+2p ). 因为2≤s ≤t -1, 所以a 1 a 1+2p=2×3s -2-3t -2=29×3s -13×3t -1<0.因为2×3s -2-3t-2是整数,所以a 1a 1+2p≤-1,于是a 1≤-a 1-2p ,即a 1≤-p ,与-p <a 1<p 相矛盾. 故此时数列{a n }中不存在三项依次成等差数列. (ⅲ)当a 1p ≤-1时,则有a 1≤-p <p ,a 1+p ≤0,于是a 2=|p -a 1|+2a 1+p =p -a 1+2a 1+p =a 1+2p ,a 3=|p -a 2|+2a 2+p =|p +a 1|+2a 1+5p =-p -a 1+2a 1+5p =a 1+4p , 此时2a 2=a 1+a 3,则a 1,a 2,a 3成等差数列. 综上可知,a 1p ≤-1.故a 1p 的取值范围为(-∞,-1].。
2018年高考数学江苏专版三维二轮专题复习教学案专题六 应用题 Word版含答案
江苏新高考“在考查基础知识的同时,侧重考查能力”是高考的重要意向,而应用能力的考查又是近二十年来的能力考查重点.江苏卷一直在坚持以建模为主.所以如何由实际问题转化为数学问题的建模过程的探索应是复习的关键.应用题的载体很多,前几年主要考函数建模,以三角、导数、不等式知识解决问题年应用考题()是解不等式模型,年应用考题()可以理解为一次函数模型,也可以理解为条件不等式模型,这样在建模上增添新意,还是有趣的,、年应用考题()都先构造函数,再利用导数求解、年应用考题是立体几何模型,年应用考题需利用空间中的垂直关系和解三角形的知识求解.[常考题型突破][例](·江苏高考)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥-,下部的形状是正四棱柱-(如图所示),并要求正四棱柱的高是正四棱锥的高的倍.()若= ,= ,则仓库的容积是多少?()若正四棱锥的侧棱长为 ,则当为多少时,仓库的容积最大? [解]()由=知==. 因为==,所以正四棱锥-的体积锥=··=××=();正四棱柱-的体积柱=·=×=().所以仓库的容积=锥+柱=+=(). ()设= ,= , 则<<,=.连结. 因为在△中, +=,所以+=,即=(-).于是仓库的容积=柱+锥=·+·==(-),<<,从而′=(-)=(-).令′=,得=或=-(舍去).当<<时,′>,是单调增函数;当<<时,′<,是单调减函数.故当=时,取得极大值,也是最大值.因此,当=时,仓库的容积最大.[方法归纳]解函数应用题的四步骤[变式训练].(·苏锡常镇二模)某科研小组研究发现:一棵水蜜桃树的产量(单位:百千克)与肥料费用(单位:百元)满足如下关系:=-,且投入的肥料费用不超过百元.此外,还需要投入其他成本(如施肥的人工费等)百元.已知这种水蜜桃的市场售价为元千克(即百元百千克),且市场需求始终供不应求.记该棵水蜜桃树获得的利润为()(单位:百元).()求利润函数()的函数关系式,并写出定义域;()当投入的肥料费用为多少时,该水蜜桃树获得的利润最大?最大利润是多少?解:()()=--=--(≤≤).()法一:()=--=-≤-=.当且仅当=(+)时,即=时取等号.故()=.答:当投入的肥料费用为元时,种植水蜜桃树获得的最大利润是元.法二:′()=-,由′()=,得=.故当∈()时,′()>,()在()上单调递增;当∈()时,′()<,()在()上单调递减.所以当=时,()取得极大值,也是最大值,故()=()=.。
2018年高考数学江苏专版三维二轮专题复习训练:14个填空题综合仿真练(四)
14个填空题综合仿真练(四)1.已知集合A ={1,2,3},B ={2,4,5},则集合A ∪B 中的元素的个数为________. 解析:集合A ={1,2,3},B ={2,4,5},则A ∪B ={1,2,3,4,5},所以A ∪B 中元素的个数为5.答案:5 2.复数z =21-i(其中i 是虚数单位),则复数z 的共轭复数为________. 解析:z =21-i =2(1+i )(1-i )(1+i )=1+i ,则复数z 的共轭复数为1-i.答案:1-i3.如图是一个算法的流程图,则输出的k 的值为________.解析:阅读流程图,当k =2,3,4,5时,k 2-7k +10≤0,一直进行循环,当k =6时,k 2-7k +10>0,此时终止循环,输出k =6.答案:64.在数字1,2,3,4中随机选两个,则选中的数字中至少有一个是偶数的概率为________. 解析:在数字1,2,3,4中随机选两个,基本事件总数n =6,选中的数字中至少有一个是偶数的对立事件是选中的两个数字都是奇数,所以选中的数字中至少有一个是偶数的概率为P =1-16=56.答案:565.双曲线x 25-y 24=1的右焦点与左准线之间的距离是____________.解析:由已知得,双曲线的右焦点为(3,0),左准线方程为x =-53,所以右焦点与左准线之间的距离是3-⎝⎛⎭⎫-53=143. 答案:1436.下表是关于青年观众的性别与是否喜欢戏剧的调查数据,人数如表所示:喜欢戏剧的男性青年观众”的人中抽取了8人,则n 的值为________.解析:由题意,得840=n 40+10+40+60,所以n =30.答案:307.若实数x ,y 满足⎩⎪⎨⎪⎧x +y -1≥0,y -x -1≤0,x ≤1,则z =2x +3y 的最大值为________.解析:由约束条件⎩⎪⎨⎪⎧x +y -1≥0,y -x -1≤0,x ≤1,作出可行域如图,化目标函数z =2x +3y 为y =-23x +13z ,由图可知,当直线y =-23x +13z 过点A 时,直线在y 轴上的截距最大,联立⎩⎪⎨⎪⎧x =1,y -x -1=0,解得A (1,2),故z max =8.答案:88.底面边长为2,侧棱长为3的正四棱锥的体积为________. 解析:取点O 为底面ABCD 的中心,则SO ⊥平面ABCD ,取BC的中点E ,连结OE ,SE ,则OE =BE =1,在Rt △SBE 中,SE =SB 2-BE 2=2,在Rt △SOE 中,SO =SE 2-OE 2=1,从而该正四棱锥的体积V =13S 四边形ABCD ·SO =13×2×2×1=43.答案:439.在平面直角坐标系xOy 中,已知圆C :x 2+(y -3)2=2,点A 是x 轴上的一个动点,AP ,AQ 分别切圆C 于P ,Q 两点,则线段PQ 长的取值范围为________.解析:法一:由题意知,当A 在原点时,PQ 最小,此时,sin ∠PAC=23,cos ∠PAC =73,cos ∠PAQ =59, 故cos ∠PCQ =-59,∴PQ =PC 2+QC 2-2×PC ×QC ×cos ∠PCQ =2+2-2×2×2×⎝⎛⎭⎫-59=2143, 当A 点离原点无限远时,PQ 接近于22,∴PQ 的取值范围为⎣⎡⎭⎫2143,22.法二:设CA =x ,x ∈[3,+∞),则PA =x 2-2,sin ∠ACP =PACA =x 2-2x =1-2x2, 所以PQ =2CP ·sin ∠ACP =22·1-2x2.因为x ∈[3,+∞),所以y =1-2x 2在[3,+∞)上为增函数,所以2143≤PQ <2 2. 答案:⎣⎡⎭⎫2143,2210.若函数f (x )=⎩⎪⎨⎪⎧x +2x ,x ≤0,ax -ln x ,x >0,在其定义域上恰有两个零点,则正实数a 的值为________.解析:易知函数f (x )在(-∞,0]上有一个零点,所以由题意得方程ax -ln x =0在(0,+∞)上恰有一解,即a =ln x x 在(0,+∞)上恰有一解. 令g (x )=ln xx ,由g ′(x )=1-ln x x 2=0,得x =e ,当x ∈(0,e)时,g (x )单调递增,当x ∈(e ,+∞)时,g (x )单调递减,所以g (x )在x =e 处取得极大值也为最大值,作出y =g (x )与y =a 的图象(图略),知当正实数a =g (x )max 时两函数有一个交点,所以a =g (e)=1e.答案:1e11.设直线l 是曲线y =4x 3+3ln x 的切线,则直线l 的斜率的最小值为________. 解析:y ′=12x 2+3x(x >0),令g (x )=12x 2+3x ,则g ′(x )=24x -3x2,令g ′(x )=0,得x =12,故当x ∈⎝⎛⎭⎫0,12时,g ′(x )<0,当x ∈⎝⎛⎭⎫12,+∞时,g ′(x )>0,所以当x =12时,g (x )取得最小值g ⎝⎛⎭⎫12=9,故y ′=12x 2+3x 的最小值为9,即直线l 的斜率的最小值为9.答案:912.扇形AOB 中,弦AB =1,C 为劣弧AB 上的动点,AB 与OC 交于点P ,则OP ―→·BP―→的最小值是________.解析:设弦AB 的中点为M ,则OP ―→·BP ―→=(OM ―→+MP ―→)·BP ―→=MP ―→·BP ―→, 若MP ―→,BP ―→同向,则OP ―→·BP ―→>0; 若MP ―→,BP ―→反向,则OP ―→·BP ―→<0,故OP ―→·BP ―→的最小值在MP ―→,BP ―→反向时取得,此时|MP ―→|+|BP ―→|=12,OP ―→·BP ―→=-|MP ―→|·|BP ―→|≥-⎝ ⎛⎭⎪⎫|MP ―→|+|BP ―→|22=-116, 当且仅当|MP ―→|=|BP ―→|=14时取等号,即OP ―→·BP ―→的最小值是-116.答案:-11613.在平面直角坐标系xOy 中,已知A (cos α,sin α),B (cos β,sin β)是直线y =3x +2上的两点,则tan(α+β)的值为________.解析:由题意,α,β是方程3cos x -sin x +2=0的两根.设f (x )=3cos x -sin x +2, 则f ′(x )=-3sin x -cos x .令f ′(x )=0,得tan x 0=-33, 所以α+β=2x 0,所以tan(α+β)=- 3. 答案:- 314.已知函数f (x )=|x -a |-3x +a -2有且仅有三个零点,且它们成等差数列,则实数a 的取值集合为________.解析:f (x )=⎩⎨⎧x -3x-2,x ≥a ,-x -3x +2a -2,x <a ,当x ≥a 时,由x -3x -2=0,得x 1=-1,x 2=3,结合图形知,①当a <-1时,x 3,-1,3成等差数列,则x 3=-5,代入-x -3x +2a -2=0得,a =-95; ②当-1≤a ≤3时,方程-x -3x +2a -2=0,即x 2+2(1-a )x +3=0,设方程的两根为x 3,x 4,且x 3<x 4,则x 3x 4=3,且x 3+3=2x 4,解得x 4=3±334, 又x 3+x 4=2(a -1),所以a =5+3338.③当a >3时,显然不符合.所以a 的取值集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-95,5+3338. 答案:⎩⎨⎧⎭⎬⎫-95,5+3338。
2018年高考数学江苏专版三维二轮专题复习训练:6个解答题综合仿真练(二)
6个解答题综合仿真练(二)1.已知向量a =(2cos α,sin 2α),b =(2sin α,t ),α∈⎝⎛⎭⎫0,π2. (1)若a -b =⎝⎛⎭⎫25,0,求t 的值;(2)若t =1,且a·b =1,求tan ⎝⎛⎭⎫2α+π4的值. 解:(1)因为向量a =(2cos α,sin 2α),b =(2sin α,t ), 且a -b =⎝⎛⎭⎫25,0,所以cos α-sin α=15,t =sin 2α. 由cos α-sin α=15,得(cos α-sin α)2=125,即1-2sin αcos α=125,从而2sin αcos α=2425.所以(cos α+sin α)2=1+2sin αcos α=4925.因为α∈⎝⎛⎭⎫0,π2,所以cos α+sin α=75. 所以sin α=(cos α+sin α)-(cos α-sin α)2=35,从而t =sin 2α=925. (2)因为t =1,且a·b =1,所以4sin αcos α+sin 2α=1,即4sin αcos α=cos 2α. 因为α∈⎝⎛⎭⎫0,π2,所以cos α≠0,从而tan α=14. 所以tan 2α=2tan α1-tan 2α=815. 从而tan ⎝⎛⎭⎫2α+π4=tan 2α+tan π41-tan 2α·tan π4=815+11-815=237. 2.如图,四棱锥P -ABCD 中,PD =PC ,底面ABCD 是直角梯形,AB ⊥BC ,AB ∥CD ,CD =2AB ,点M 是CD 的中点.求证:(1)AM ∥平面PBC ; (2)CD ⊥PA .证明:(1)在直角梯形ABCD 中,AB ∥CD ,CD =2AB ,点M 是CD 的中点,故AB ∥CM ,且AB =CM ,所以四边形ABCM 是平行四边形,所以AM ∥BC .又BC ⊂平面PBC ,AM ⊄平面PBC ,所以AM ∥平面PBC .(2)连结PM ,因为PD =PC ,点M 是CD 的中点, 所以CD ⊥PM , 又AB ⊥BC ,所以平行四边形ABCM 是矩形,所以CD ⊥AM , 又PM ⊂平面PAM ,AM ⊂平面PAM , PM ∩MA =M ,所以CD ⊥平面PAM . 又PA ⊂平面PAM ,所以CD ⊥PA .3.在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b 2=1(a >b >0)的焦距为2,离心率为22,椭圆的右顶点为A . (1)求椭圆的标准方程;(2)过点D (2,-2)作直线PQ 交椭圆于两个不同点P ,Q ,求证:直线AP ,AQ 的斜率之和为定值.解:(1)由已知得c =1,又e =c a =22,则a =2,b 2=a 2-c 2=1, 所以椭圆的标准方程为x 22+y 2=1.(2)证明:设直线PQ 的方程为y =k (x -2)-2,P (x 1,y 1),Q (x 2,y 2),由⎩⎨⎧y =k (x -2)-2,x 22+y 2=1,消去y ,整理得(2k 2+1)x 2-(42k 2+42k )x +4k 2+8k +2=0,所以x 1+x 2=42k 2+42k 2k 2+1,x 1x 2=4k 2+8k +22k 2+1,所以y 1+y 2=k (x 1+x 2)-22k -22=-22-22k2k 2+1,又A (2,0),所以k AP +k AQ =y 1x 1-2+y 2x 2-2=y 1x 2+y 2x 1-2(y 1+y 2)x 1x 2-2(x 1+x 2)+2,由y 1x 2+y 2x 1=[k (x 1-2)- 2 ]x 2+[k (x 2-2)- 2 ]x 1=2kx 1x 2-(2k +2)(x 1+x 2)=-4k2k 2+1, 故k AP +k AQ =y 1x 2+y 2x 1-2(y 1+y 2)x 1x 2-2(x 1+x 2)+2=-4k2k 2+1-2×-22-22k 2k 2+14k 2+8k +22k 2+1-2×42k 2+42k2k 2+1+2=1,所以直线AP ,AQ 的斜率之和为定值1.4.如图所示,某公路AB 一侧有一块空地△OAB ,其中OA =3 km ,OB =3 3 km ,∠AOB =90°.当地政府拟在中间开挖一个人工湖△OMN ,其中M ,N 都在边AB 上(M ,N 不与A ,B 重合,M 在A ,N 之间),且∠MON =30°.(1)若M 在距离A 点2 km 处,求点M ,N 之间的距离;(2)为节省投入资金,人工湖△OMN 的面积要尽可能小.试确定M 的位置,使△OMN 的面积最小,并求出最小面积.解:(1)在△OAB 中,因为OA =3,OB =33,∠AOB =90°,所以∠OAB =60°. 在△OAM 中,由余弦定理得OM 2=AO 2+AM 2-2AO ·AM ·cos A =7, 所以OM =7,所以cos ∠AOM =OA 2+OM 2-AM 22OA ·OM =277,在△OAN 中,sin ∠ONA =sin(∠A +∠AON )=sin(∠AOM +90°)=cos ∠AOM =277. 在△OMN 中,由MN sin 30°=OM sin ∠ONA ,得MN =7277×12=74.(2)法一:设AM =x,0<x <3.在△OAM 中,由余弦定理得OM 2=AO 2+AM 2-2AO ·AM ·cos A =x 2-3x +9, 所以OM =x 2-3x +9,所以cos ∠AOM =OA 2+OM 2-AM 22OA ·OM =6-x 2x 2-3x +9,在△OAN 中,sin ∠ONA =sin(∠A +∠AON )=sin(∠AOM +90°)=cos ∠AOM =6-x2x 2-3x +9.由ON sin ∠OAB =OA sin ∠ONA ,得ON =36-x2x 2-3x +9·32=3 3 x 2-3x +96-x. 所以S △OMN =12OM ·ON ·sin ∠MON=12·x 2-3x +9·3 3 x 2-3x +96-x·12=33(x 2-3x +9)4(6-x ),0<x <3.令6-x =t ,则x =6-t,3<t <6,则S △OMN =33(t 2-9t +27)4t =334⎝⎛⎭⎫t -9+27t ≥334·⎝⎛⎭⎫2t ·27t -9=27(2-3) 4.当且仅当t =27t ,即t =33,x =6-33时等号成立,S △OMN 的最小值为27(2-3) 4.所以M 的位置为距离A 点6-3 3 km 处,可使△OMN 的面积最小,最小面积是27(2-3)4km 2. 法二:设∠AOM =θ,0<θ<π3,在△OAM 中,由OM sin ∠OAB =OAsin ∠OMA,得OM =332sin ()θ+60°.在△OAN 中,由ON sin ∠OAB =OAsin ∠ONA,得ON =332sin ()θ+90°=332cos θ.所以S △OMN =12OM ·ON ·sin ∠MON=12·332sin ()θ+60°·332cos θ·12 =2716sin ()θ+60°cos θ=278sin θcos θ+83cos 2θ=274sin 2θ+43cos 2θ+43=278sin ()2θ+60°+43,0<θ<π3.当2θ+60°=90°,即θ=15°时,S △OMN 的最小值为27(2-3)4. 所以应设计∠AOM =15°,可使△OMN 的面积最小,最小面积是27(2-3)4 km 2.5.已知数列{a i }共有m (m ≥3)项,该数列前i 项和为S i ,记r i =2S i -S m (i ≤m ,i ∈N *). (1)当m =10时,若数列{a i }的通项公式为a i =2i +1,求数列{r i }的通项公式; (2)若数列{r i }的通项公式为r i =2i (i ≤m ,i ∈N *), ①求数列{a i }的通项公式;②数列{a i }中是否存在不同的三项按一定次序排列构成等差数列,若存在求出所有的项,若不存在请说明理由.解:(1)因为S i =3+(2i +1)2·i =i 2+2i, 所以由题意得r i =2S i -S 10=2i 2+4i -120(i ≤10,i ∈N *). (2)①因为r i =2S i -S m =2i , r i +1=2S i +1-S m =2i +1,两式相减得a i +1=2i -1,所以数列{a i }从第2项开始是以1为首项,2为公比的等比数列,即a i =2i -2(2≤i ≤m ,i ∈N *).又2a 1=2+S m ,即a 1=2+(a 2+a 3+…+a m )=2+1-2m -11-2=2m -1+1.所以数列{a i }的通项公式为a i ={ 2m -1+1,i =1,i -2,2≤i ≤m ,i ∈N *.②数列{a i }中任意三项都不能构成等差数列,理由如下:因为数列{a i }从第2项开始是以2为公比的等比数列,所以若存在三项构成等差数列,不妨设为a p ,a q ,a r (2≤p <q <r ≤m ,p ,q ,r ∈N *),则有2a q =a p +a r ,即2·2q -2=2p -2+2r-2,2q -p +1=1+2r -p .因为q -p +1∈N *,r -p ∈N *,所以上式左边为偶数,右边为奇数,此时无解. 所以数列{a i }从第2项至第m 项中不可能存在三项构成等差数列,所以若数列{a i }中存在三项构成等差数列,则只能是a 1和第2项至第m 项中的两项,不妨设为a p ,a q (2≤p <q ≤m ,p ∈N *,q ∈N *).因为0<a p <a q ≤a m <a 1.所以a p ,a q ,a 1若构成等差数列,只能是a q 为等差中项, 故有2·2q -2=2p -2+(2m -1+1),因为左边=2q -1≤2m -1,右边>2m -1,所以该情况下也无解.因此,数列{a i }中任意三项都不能构成等差数列.6.设函数f (x )=2a ln x +(1-a )x 2-bx (a ≠1),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行.(1)求b 的值;(2)当a ≤12时,求函数f (x )的单调区间;(3)若存在x ≥1使得f (x )<2aa -1成立,求a 的取值范围.解:(1)f ′(x )=2ax+2(1-a )x -b , 由题设知f ′(1)=2a +2(1-a )-b =0,解得b =2. (2)f (x )的定义域为(0,+∞), 由(1)知,f (x )=2a ln x +(1-a )x 2-2x ,f ′(x )=2(1-a )(x -1)⎝⎛⎭⎫x -a1-a x .由f ′(x )=0,解得x =1或x =a1-a .因为a ≤12,所以1-a >0,a 1-a ≤1.①当a1-a≤0,即a ≤0时, x ∈(0,1]时,f ′(x )≤0,f (x )单调递减; x ∈[1,+∞)时,f ′(x )≥0,f (x )单调递增. ②当0<a 1-a<1,即0<a <12时,x ∈⎝⎛⎦⎤0,a1-a 时,f ′(x )≥0,f (x )单调递增;x ∈⎣⎡⎦⎤a1-a ,1时,f ′(x )≤0,f (x )单调递减; x ∈[1,+∞)时,f ′(x )≥0,f (x )单调递增. ③当a 1-a=1,即a =12时,x ∈(0,+∞)时,f ′(x )≥0,f (x )单调递增.综上所述,当a ≤0时,f (x )的单调递减区间为(0,1],单调递增区间为[1,+∞); 当0<a <12时,f (x )的单调递减区间为⎣⎡⎦⎤a 1-a ,1,单调递增区间为⎝⎛⎦⎤0,a 1-a ,[1,+∞);当a =12时,f (x )的单调递增区间为(0,+∞),无单调递减区间.(3)①若a ≤12,由(2)知f (x )在[1,+∞)上单调递增,所以存在x ≥1使得f (x )<2a a -1成立的充要条件为f (1)<2aa -1,即-a -1<2aa -1,解得-2-1<a <2-1.②若12<a <1,则a 1-a >1,故当x ∈⎝⎛⎭⎫1,a1-a 时,f ′(x )<0;当x ∈⎝⎛⎭⎫a1-a ,+∞时,f ′(x )>0,f (x )在⎝⎛⎭⎫1,a 1-a 上单调递减,在⎝⎛⎭⎫a1-a ,+∞上单调递增.所以存在x ≥1使得f (x )<2a a -1成立的充要条件为f ⎝⎛⎭⎫a 1-a <2aa -1. 而f ⎝⎛⎭⎫a 1-a =2a ln a 1-a +a 21-a +2a a -1>2aa -1,所以不符合题意.③若a >1,因为存在x =1,即f (1)=-a -1<2a a -1成立.所以a >1适合题意.综上,a 的取值范围是(-2-1,2-1)∪(1,+∞).。
江苏专版2018年高考数学二轮专题复习训练:6个解答题综合仿真练(六)(含解析)
6个解答题综合仿真练(六)1.如图,在四棱锥E -ABCD 中,平面EAB ⊥平面ABCD ,四边形ABCD为矩形,EA ⊥EB ,点M ,N 分别是AE ,CD 的中点.求证:(1)MN ∥平面EBC ; (2)EA ⊥平面EBC .证明:(1)取BE 中点F ,连结CF ,MF ,又M 是AE 的中点, 所以MF 綊12AB .又N 是矩形ABCD 边CD 的中点,所以NC 綊12AB ,所以MF 綊NC ,所以四边形MNCF 是平行四边形,所以MN ∥CF . 又MN ⊄平面EBC ,CF ⊂平面EBC , 所以MN ∥平面EBC .(2)在矩形ABCD 中,BC ⊥AB ,又平面EAB ⊥平面ABCD ,平面ABCD ∩平面EAB =AB ,BC ⊂平面ABCD , 所以BC ⊥平面EAB .又EA ⊂平面EAB ,所以BC ⊥EA .又EA ⊥EB ,BC ∩EB =B ,EB ⊂平面EBC ,BC ⊂平面EBC ,所以EA ⊥平面EBC . 2.△ABC 中,AB ―→·AC ―→=27S △ABC (S △ABC 表示△ABC 的面积).(1)若BC =2,求△ABC 外接圆的半径; (2)若B -C =π4,求sin B 的值.解:(1)因为AB ―→·AC ―→=27S △ABC ,所以AB ·AC ·cos A =27·12AB ·AC ·sin A ,即cos A =17sin A ,又因为cos 2A +sin 2A =1,A ∈(0,π), 解得sin A =7210,cos A =210. 设△ABC 外接圆的半径为R , 则2R =BC sin A =27210=1027,所以R =527,即△ABC 外接圆的半径为527. (2)因为A +B +C =π,所以sin(B +C )=sin(π-A )=sin A =7210, cos(B +C )=cos(π-A )=-cos A =-210, 则cos 2B =cos[(B +C )+(B -C )] =cos ⎣⎡⎦⎤(B +C )+π4 =cos(B +C )cos π4-sin(B +C )sin π4=-210×22-7210×22=-45. 又cos 2B =1-2sin 2B ,所以sin 2B =1-cos 2B2=1+452=910,又因为B ∈(0,π), 所以sin B >0,所以sin B =31010. 3.如图是一座桥的截面图,桥的路面由三段曲线构成,曲线AB 和曲线DE 分别是顶点在路面A ,E 的抛物线的一部分,曲线BCD 是圆弧,已知它们在接点B ,D 处的切线相同,若桥的最高点C 到水平面的距离H =6米,圆弧的弓高h =1米,圆弧所对的弦长BD =10米.(1)求BCD 所在圆的半径; (2)求桥底AE 的长.解:(1)设BCD 所在圆的半径为r (r >0), 由题意得r 2=52+(r -1)2,∴r =13. 答:BCD 所在圆的半径为13米.(2)以线段AE 所在直线为x 轴,线段AE 的中垂线为y 轴,建立如图所示的平面直角坐标系.∵H =6米,BD =10米,弓高h =1米,∴B (-5,5),D (5,5),C (0,6),设BCD 所在圆的方程为x 2+(y -b )2=r 2(r >0),则⎩⎪⎨⎪⎧ (6-b )2=r 2,52+(5-b )2=r 2,∴⎩⎪⎨⎪⎧b =-7,r =13.∴BCD 的方程为x 2+(y +7)2=169(5≤y ≤6). 设曲线AB 所在抛物线的方程为y =a (x -m )2, ∵点B (-5,5)在曲线AB 上, ∴5=a (5+m )2,①又BCD 与曲线段AB 在接点B 处的切线相同,且BCD 在点B 处的切线的斜率为512,由y =a (x -m )2,得y ′=2a (x -m ), ∴2a (-5-m )=512, ∴2a (5+m )=-512,② 由①②得m =-29, ∴A (-29,0),E (29,0).∴桥底AE =29-(-29)=58米. 答:桥底AE 的长58米.4.如图,已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的左顶点A (-2,0),且点⎝⎛⎭⎫-1,32在椭圆上,F 1,F 2分别是椭圆的左、右焦点.过点A 作斜率为k (k >0)的直线交椭圆E 于另一点B ,直线BF 2交椭圆E 于点C .(1)求椭圆E 的标准方程;(2)若△CF 1F 2为等腰三角形,求点B 的坐标; (3)若F 1C ⊥AB ,求k 的值. 解:(1)由题意得⎩⎪⎨⎪⎧a =2,a 2=b 2+c 2,14+94b 2=1,解得⎩⎪⎨⎪⎧a =2,b =3,c =1.∴椭圆E 的标准方程为x 24+y 23=1.(2)∵△CF 1F 2为等腰三角形,且k >0, ∴点C 在x 轴下方,若F 1C =F 2C ,则C (0,-3);若F 1F 2=CF 2,则CF 2=2,∴C (0,-3);若F 1C =F 1F 2,则CF 1=2,∴C (0,-3), ∴C (0,-3).∴直线BC 的方程y =3(x -1),由⎩⎪⎨⎪⎧y =3(x -1),x 24+y 23=1,得⎩⎨⎧x =0,y =-3或⎩⎨⎧x =85,y =335.∴B ⎝⎛⎭⎫85,335. (3)设直线AB 的方程为y =k (x +2),由⎩⎪⎨⎪⎧y =k (x +2),x 24+y 23=1消去y ,得(3+4k 2)x 2+16k 2x +16k 2-12=0, ∴x A ·x B =-2x B =16k 2-123+4k 2,∴x B =-8k 2+63+4k 2,∴y B =k (x B +2)=12k3+4k 2,∴B ⎝ ⎛⎭⎪⎫-8k 2+63+4k 2,12k 3+4k 2. 若k =12,则B ⎝⎛⎭⎫1,32, ∴C ⎝⎛⎭⎫1,-32, ∵F 1(-1,0),∴kCF 1=-34,∴F 1C 与AB 不垂直; ∴k ≠12,∵F 2(1,0),kBF 2=4k 1-4k2,kCF 1=-1k , ∴直线BF 2的方程为y =4k1-4k 2(x -1), 直线CF 1的方程为y =-1k (x +1),由⎩⎨⎧y =4k1-4k 2(x -1),y =-1k (x +1),解得⎩⎪⎨⎪⎧x =8k 2-1,y =-8k .∴C (8k 2-1,-8k ).由点C 在椭圆上,得(8k 2-1)24+(-8k )23=1,即(24k 2-1)(8k 2+9)=0,即k 2=124,∵k >0,∴k =612. 5.数列{a n }的前n 项和为S n ,且满足S n =4-a n . (1)求证:数列{a n }为等比数列,并求通项公式a n ; (2)是否存在自然数c 和k ,使得a k +1S k -c>1成立?若存在,请求出c 和k 的值; 若不存在,请说明理由.解:(1)证明:当n =1时,S 1+a 1=4,得a 1=2, 由S n =4-a n ,① 得S n +1=4-a n +1,②②-①得,S n +1-S n =a n -a n +1,即a n +1=12a n,所以a n +1a n =12,且a 1=2,所以数列{a n }是首项为2,公比为12的等比数列,且a n =12n -2.(2)法一:因为a n =12n -2,所以a k +1=12k -1,S k =4⎝⎛⎭⎫1-12k , 要使a k +1S k -c =24(2k -1)-c ·2k >1成立,只要使(c -4)2k +6(c -4)2k +4<0(*)成立,当c ≥4时,不等式(*)不成立;(也可以根据S k =4⎝⎛⎭⎫1-12k >c ,且2≤S k <4,所以c 的可能取值为0,1,2,3) 当c =0时,1<2k <32,不存在自然数k 使(*)成立;当c =1时,43<2k <2,不存在自然数k 使(*)成立;当c =2时,2<2k <3,不存在自然数k 使(*)成立; 当c =3时,4<2k <6,不存在自然数k 使(*)成立. 综上所述,不存在自然数c ,k ,使a k +1S k -c>1成立.法二:要使a k +1S k -c >1,只要S k +1-cS k -c>2,即只要c -⎝⎛⎭⎫32S k -2c -S k<0,因为S k =4⎝⎛⎭⎫1-12k <4, 所以S k -⎝⎛⎭⎫32S k -2=2-12S k >0, 故只要32S k -2<c <S k .①因为S k +1>S k , 所以32S k -2≥32S 1-2=1.又S k <4,故要使①成立,c 只能取2或3.当c =2时,因为S 1=2,所以当k =1时,c <S k 不成立,从而①不成立. 当k ≥2时,因为32S 2-2=52>c ,由S k <S k +1,得32S k -2<32S k +1-2,故当k ≥2时,32S k -2>c ,从而①不成立.当c =3时,因为S 1=2,S 2=3,所以当k =1,k =2时,c <S k 不成立,从而①不成立. 因为32S 3-2=134>c ,又32S k -2<32S k +1-2,所以当k ≥3时,32S k -2>c ,从而①不成立.综上所述,不存在自然数c ,k ,使a k +1S k -c>1成立. 6.已知二次函数f (x )=ax 2+bx +1,g (x )=a 2x 2+bx +1. (1)若f (x )≥g (x )对任意实数x 恒成立,求实数a 的取值范围;(2)若函数f (x )有两个不同零点x 1,x 2,函数g (x )有两个不同零点x 3,x 4. ①若x 3<x 1<x 4,试比较x 2,x 3,x 4的大小关系; ②若x 1=x 3<x 2,m ,n ,p ∈(-∞,x 1),f ′(m )g (n )=f ′(n )g (p )=f ′(p )g (m ),求证:m =n =p . 解:(1)因为f (x )≥g (x )对任意实数x 恒成立, 所以ax 2≥a 2x 2对任意实数x 恒成立, 所以a 2-a ≤0,解得0≤a ≤1.又由题意可得a ≠0,所以实数a 的取值范围为(0,1].(2)①因为函数g (x )的图象开口向上,且其零点为x 3,x 4, 故g (x )<0,得x 3<x <x 4.因为x 1,x 2是f (x )的两个不同零点, 故f (x 1)=f (x 2)=0.因为x 3<x 1<x 4,故g (x 1)<0=f (x 1), 于是(a 2-a )x 21<0.注意到x 1≠0,故a 2-a <0. 因为g (x 2)-f (x 2)=(a 2-a )x 22<0, 故g (x 2)<f (x 2)=0,从而x 3<x 2<x 4, 于是x 3<x 2<x 4.②证明:记x 1=x 3=t ,故f (t )=at 2+bt +1=0,g (t )=a 2t 2+bt +1=0,于是(a -a 2)t 2=0. 因为a ≠0,且t ≠0,故a =1. 所以f (x )=g (x )且函数图象开口向上.所以当x ∈(-∞,x 1)时,f (x )单调递减,f ′(x )单调递增且f ′(x )<0,g (x )单调递减且g (x )>0.若m >n ,则f ′(n )<f ′(m )<0,于是1g (n )>1g (p )>0,从而g (p )>g (n )>0,故n >p .同上,当n >p 时,可推得p >m .所以p >m >n >p ,矛盾.所以m >n 不成立. 同理,n >m 亦不成立. 所以m =n .同理,n =p . 所以m =n =p .。
2018年高考数学江苏专版三维二轮专题复习教学案:专题四_数列
江苏新高考数列在江苏高考中地位十分突出,考分比例远远大于课时比例,常在压轴题位置考查代数论证能力.江苏卷数列解答题始终与特殊数列密切联系,源于课本,高于课本,不搞“递推式”“数列不等式”之类的超教学范围的知识考查,导向非常好.但由于能力考查要求较高,多年来造成区分度很差的困惑.2013年的数列解答题降低了难度,但2014年又回升了.到2015年不仅是超纲了,而且难度也加大了,2016年把数列、集合结合命题,难度较大,2017年考查数列的新定义问题和论证等差数列,难度也不低.数列题的常规类型可分两类:一类是判断、证明某个数列是等差、等比数列;另一类是已知等差、等比数列求基本量.这个基本量涵义很广泛,有项、项数、公差、公比、通项、和式以及它们的组合式,甚至还包括相关参数.但江苏考题真正的难度在等差、等比数列的性质灵活运用上.第1课时数列中的基本量计算(基础课)[常考题型突破][必备知识]1.通项公式等差数列:a n=a1+(n-1)d;等比数列:a n=a1·q n-1.2.求和公式 等差数列:S n =n (a 1+a n )2=na 1+n (n -1)2d ; 等比数列:S n =a 1(1-q n )1-q =a 1-a n q1-q(q ≠1).[题组练透]1.(2017·镇江期末)已知数列{a n }为等比数列,且a 1+1,a 3+4,a 5+7成等差数列,则公差d =________.解析:设等比数列{a n }的公比为q , 则a 3=a 1q 2,a 5=a 1q 4,由a 1+1,a 3+4,a 5+7成等差数列, 得2(a 1q 2+4)=a 1+1+a 1q 4+7, 即q 2=1.所以d =a 1q 2+4-a 1-1=3. 答案:32.(2017·镇江调研)S n 是等差数列{a n }的前n 项和,若S n S 2n =n +14n +2,则a 3a 5=________. 解析:因为S n S 2n =n +14n +2,所以令n =1可得,S 1S 2=26=13,即a 12a 1+d =13,化简可得d =a 1,所以a 3a 5=a 1+2d a 1+4d =3a 15a 1=35.答案:353.(2017·苏北四市期末)已知等比数列{a n }的前n 项和为S n ,若S 2=2a 2+3,S 3=2a 3+3,则公比q 的值为________.解析:因为S 2=2a 2+3,S 3=2a 3+3,所以a 3=2a 3-2a 2,所以a 3-2a 2=a 1q 2-2aq =0,所以q 2-2q =0,q ≠0,则公比q =2.答案:24.(2017·江苏高考)等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8=________.解析:设等比数列{a n}的公比为q ,则由S 6≠2S 3,得q ≠1,则⎩⎪⎨⎪⎧S 3=a 1(1-q 3)1-q=74,S 6=a 1(1-q 6)1-q=634,解得⎩⎪⎨⎪⎧q =2,a 1=14, 则a 8=a 1q 7=14×27=32.答案:325.(2017·苏锡常镇一模)设等比数列{a n }的前n 项和为S n ,若S 3,S 9,S 6成等差数列,且a 2+a 5=4,则a 8的值为________.解析:因为等比数列{a n }的前n 项和为S n ,若S 3,S 9,S 6成等差数列,且a 2+a 5=4, 所以⎩⎪⎨⎪⎧2×a 1(1-q 9)1-q =a 1(1-q 3)1-q +a 1(1-q 6)1-q ,a 1q +a 1q 4=4, 解得a 1q =8,q 3=-12,所以a 8= a 1q 7=(a 1q )(q 3)2=8×14=2.答案:2 [方法归纳][必备知识][题组练透]1.(2017·苏州考前模拟)已知等比数列{a n }满足a n >0,n ∈N *,且a 5·a 2n -5=22n (n ≥3),则当n ≥1时,log 2a 1+log 2a 3+…+log 2a 2n -1=________.解析:由a 5·a 2n -5=22n (n ≥3),得a 2n =22n ,则a n =2n ,故log 2a 1+log 2a 3+…+log 2a 2n -1=1+3+…+(2n -1)=n 2.答案:n 22.已知数列{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________. 解析:∵a 3+a 5=2a 4,∴a 4=0. ∵a 1=6,a 4=a 1+3d ,∴d =-2. ∴S 6=6a 1+6×(6-1)2d =6.答案:63.(2017·南通二调)已知{a n }是公差不为0的等差数列,S n 是其前n 项和.若a 2a 3=a 4a 5,S 9=27,则a 1的值是________.解析:因为等差数列{a n }满足S 9=27,所以S 9=9a 5=27,所以a 5=3,因为a 2a 3=a 4a 5,所以(a 5-3d )(a 5-2d )=(a 5-d )a 5,4a 5d =6d 2,又因为等差数列{a n }的公差不为0,所以d =2,所以a 1=a 5-4d =3-4×2=-5.答案:-54.设公差为d 的等差数列{a n }的前n 项和为S n ,若a 1=1,-217<d <-19,则当S n 取最大值时,n 的值为________.解析:法一:∵S n =n +n (n -1)2d ,∴S n =d2n 2+⎝⎛⎭⎫1-d 2n . ∵函数y =d 2x 2+⎝⎛⎭⎫1-d 2x 的图象的对称轴方程为x =-1d +12,且开口向下,又-217<d <-19,∴9<-1d +12<192.∴S n 取最大值时,n 的值为9.法二:由a n =a 1+(n -1)d =1+(n -1)d >0,得n -1<1-d. ∵19<-d <217,∴172<1-d<9. 又n ∈N *,∴n -1≤8,即n ≤9.故S 9最大. 答案:9 [方法归纳](1)等差、等比数列性质的应用的关键是抓住项与项之间的关系及项的序号之间的关系,从这些特点入手选择恰当的性质进行求解.(2)应牢固掌握等差、等比数列的性质,特别是等差数列中“若m +n =p +q ,则a m +a n =a p +a q ”这一性质与求和公式S n =n (a 1+a n )2的综合应用. [课时达标训练] [A 组——抓牢中档小题]1.(2017·南通三模)设等差数列{a n }的前n 项和为S n .若公差d =2,a 5=10,则S 10的值是________.解析:法一:因为等差数列{a n }中a 5=a 1+4d =10,d =2,所以a 1=2,所以S 10=10×2+10(10-1)2×2=110.法二:在等差数列{a n }中,a 6=a 5+d =12,所以S 10=10(a 1+a 10)2=5(a 5+a 6)=5×(10+12)=110.答案:1102.(2017·全国卷Ⅲ改编)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为________.解析:设等差数列{a n }的公差为d ,因为a 2,a 3,a 6成等比数列,所以a 2a 6=a 23, 即(a 1+d )(a 1+5d )=(a 1+2d )2. 又a 1=1,所以d 2+2d =0. 又d ≠0,则d =-2,所以数列{a n }前6项的和S 6=6×1+6×52×(-2)=-24. 答案:-243.(2017·北京高考)若等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,则a 2b 2=________.解析:设等差数列{a n }的公差为d ,等比数列{b n }的公比为q ,则a 4=-1+3d =8,解得d =3; b 4=-1·q 3=8,解得q =-2.所以a 2=-1+3=2,b 2=-1×(-2)=2, 所以a 2b 2=1.答案:14.已知公差为d 的等差数列{a n }的前n 项和为S n ,若S 5S 3=3,则a 5a 3的值为________.解析:由题意S 5S 3=5a 1+10d3a 1+3d =3,化简得d =4a 1,则a 5a 3=a 1+4d a 1+2d =17a 19a 1=179. 答案:1795.(2017·全国卷Ⅱ)等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则∑k =1n1S k =________.解析:设等差数列{a n }的首项为a 1,公差为d ,依题意有⎩⎪⎨⎪⎧ a 1+2d =3,4a 1+6d =10,解得⎩⎪⎨⎪⎧a 1=1,d =1,所以S n =n (n +1)2,1S n =2n (n +1)=2⎝⎛⎭⎫1n -1n +1,因此∑k =1n1S k =2⎝⎛⎭⎫1-12+12-13+…+1n -1n +1=2n n +1. 答案:2nn +16.(2017·盐城期中)在数列{a n }中,a 1=-2101,且当2≤n ≤100时,a n +2a 102-n =3×2n恒成立,则数列{a n }的前100项和S 100=________.解析:因为当2≤n ≤100时,a n +2a 102-n =3×2n 恒成立,所以a 2+2a 100=3×22,a 3+2a 99=3×23,…,a 100+2a 2=3×2100,以上99个等式相加, 得3(a 2+a 3+…+a 100)=3(22+23+…+2100)=3(2101-4),所以a 2+a 3+…+a 100=2101-4,又因为a 1=-2101,所以S 100=a 1+(a 2+a 3+…+a 100)=-4. 答案:-47.(2017·常州前黄中学国际分校月考)在数列{a n }中,a n +1=a n1+3a n,a 1=2,则a 20=________.解析:由a n +1=a n1+3a n ,a 1=2,可得1a n +1=1a n +3, 所以⎩⎨⎧⎭⎬⎫1a n 是以12为首项,3为公差的等差数列.即1a n =12+3(n -1),可得a n =26n -5,所以a 20=2115. 答案:21158.(2017·苏州期中)已知数列{a n }满足:a n +1=a n (1-a n +1),a 1=1,数列{b n }满足:b n =a n ·a n +1,则数列{b n }的前10项的和S 10=________.解析:因为a n +1=a n (1-a n +1),a 1=1,所以1a n +1-1a n=1,1a 1=1,所以数列⎩⎨⎧⎭⎬⎫1a n 是以1为首项,1为公差的等差数列,所以1a n =n ,所以b n =1n (n +1)=1n -1n +1,所以数列{b n }的前10项的和S 10=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫110-111=1-111=1011. 答案:10119.已知{a n }为等差数列,若a 11a 10<-1,且它的前n 项和S n 有最大值,那么当S n 取得最小正值时,n =________.解析:由a 11a 10<-1,得a 11+a 10a 10<0,且它的前n 项和S n 有最大值,则a 10>0,a 11<0,a 11+a 10<0,则S 19>0,S 20<0,那么当S n 取得最小正值时,n =19.答案:1910.设S n 是等差数列{a n }的前n 项和,S 10=16,S 100-S 90=24,则S 100=________. 解析:依题意,S 10,S 20-S 10,S 30-S 20,…,S 100-S 90依次成等差数列,设该等差数列的公差为d .又S 10=16,S 100-S 90=24,因此S 100-S 90=24=16+(10-1)d =16+9d ,解得d =89,因此S 100=10S 10+10×92d =10×16+10×92×89=200.答案:20011.(2017·扬州期末)在正项等比数列{a n }中,若a 4+a 3-2a 2-2a 1=6,则a 5+a 6的最小值为________.解析:令a 1+a 2=t (t >0),则a 4+a 3-2a 2-2a 1=6可化为tq 2-2t =6(其中q 为公比),所以a 5+a 6=tq 4=6q 2-2q 4=6⎣⎡⎦⎤4q 2-2+(q 2-2)+4≥6⎣⎢⎡⎦⎥⎤24q 2-2×(q 2-2)+4=48(当且仅当q =2时等号成立). 答案:4812.设数列{a n }的前n 项和为S n ,已知a 1=1,a n +1=2S n +2n ,则数列{a n }的通项公式a n =________.解析:当n ≥2时,a n +1-a n =2(S n -S n -1)+2n -2n -1=2a n +2n -1,从而a n +1+2n =3(a n+2n -1).又a 2=2a 1+2=4,a 2+2=6,故数列{a n +1+2n }是以6为首项,3为公比的等比数列,从而a n +1+2n =6×3n -1,即a n +1=2×3n -2n ,又a 1=1=2×31-1-21-1,故a n =2×3n -1-2n -1.答案:2×3n -1-2n -113.数列{a n }中,若对∀n ∈N *,a n +a n +1+a n +2=k (k 为常数),且a 7=2,a 9=3,a 98=4,则该数列的前100项的和等于________.解析:由a n +a n +1+a n +2=k ,a n +1+a n +2+a n +3=k ,得a n +3=a n . 从而a 7=a 1=2,a 9=a 3=3,a 98=a 2=4. 因此a 1+a 2+a 3=9.所以S 100=33(a 1+a 2+a 3)+a 1=33×9+2=299. 答案:29914.(2017·南京考前模拟)数列{a n }中,a n =2n -1,现将{a n }中的项依原顺序按第k 组有2k 项的要求进行分组:(1,3),(5,7,9,11),(13,15,17,19,21,23),…,则第n 组中各数的和为________.解析:设数列{a n }的前n 项和为S n ,则S n =n 2,因为2+4+…+2n =n ( n +1)=n 2+n,2+4+…+2( n -1)=n ( n -1)=n 2-n .所以第n 组中各数的和为S n 2+n -S n 2-n =( n 2+n )2-(n 2-n )2=4n 3.答案:4n 3[B 组——力争难度小题]1.在等差数列{a n }中,若任意两个不等的正整数k ,p 都有a k =2p +1,a p =2k +1,数列{a n }的前n 项和记为S n .若k +p =m ,则S m =________.(用m 表示)解析:设数列{a n }的公差为d , 由题意,a 1+(k -1)d =2p +1,① a 1+(p -1)d =2k +1,② 两式相减,得(p -k )d =2(k -p ). 又k -p ≠0,所以d =-2.则a 1=2p +2k -1=2m -1. 因此S m =ma 1+m (m -1)2d =m (2m -1)-m (m -1)=m 2. 答案:m 22.(2016·全国乙卷)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.解析:设等比数列{a n }的公比为q ,则由a 1+a 3=10,a 2+a 4=q (a 1+a 3)=5,知q =12.∵a 1+a 1q 2=10,∴a 1=8.故a 1a 2…a n =a n1q1+2+…+(n -1)=23n ·⎝⎛⎭⎫12n n(-1)2=n nn n n 2273++22222=2--.记t =-n 22+7n 2=-12(n 2-7n ),结合n ∈N *可知n =3或4时,t 有最大值6. 又y =2t 为增函数,从而a 1a 2…a n 的最大值为26=64. 答案:643.(2017·南京考前模拟)已知函数f (x )=(x -2)3,数列{a n }是公差不为0的等差数列,若∑11i =1f (a i )=0,则数列{a n }的前11项和S 11为________.解析:f (x )=(x -2)3为增函数,且关于点(2,0)中心对称,则f (2+x )+f (2-x )=0.设数列{a n }的公差为d ,若a 6>2,则f (a 6)>0,f (a 5)+f (a 7)=f (a 6-d )+f (a 6+d )>f (2-d )+f (2+d )=0,即f (a 5)+f (a 7)>0,同理,f (a 4)+f (a 8)>0,…,f (a 1)+f (a 11)>0,则∑11i =1f (a i )>0;同理,若a 6<2,则∑11i =1f (a i )<0,所以a 6=2.所以S 11=11a 6=22. 答案:224.(2017·全国卷Ⅰ改编)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是________.解析:设第一项为第1组,接下来的两项为第2组,再接下来的三项为第3组,依此类推,则第n 组的项数为n ,前n 组的项数和为n (n +1)2.由题意可知,N >100,令n (n +1)2>100, 得n ≥14,n ∈N *,即N 出现在第13组之后.易得第n 组的所有项的和为1-2n 1-2=2n -1,前n 组的所有项的和为2(1-2n )1-2-n =2n +1-n -2.设满足条件的N 在第k +1(k ∈N *,k ≥13)组,且第N 项为第k +1组的第t (t ∈N *)个数, 若要使前N 项和为2的整数幂,则第k +1组的前t 项的和2t -1应与-2-k 互为相反数,即2t -1=k +2, ∴2t =k +3, ∴t =log 2(k +3), ∴当t =4,k =13时,N =13×(13+1)2+4=95<100,不满足题意; 当t =5,k =29时,N =29×(29+1)2+5=440;当t >5时,N >440. 答案:440第2课时等差、等比数列的综合问题(能力课) [常考题型突破][例1] n 项和为S n ,且a 1=1,a 2=2,设b n =a 2n -1+a 2n .(1)若数列{b n }是公比为3的等比数列,求S 2n ;(2)若对任意n ∈N *,S n =a 2n +n2恒成立,求数列{a n }的通项公式;(3)若S 2n =3(2n -1),数列{a n a n +1}为等比数列,求数列{a n }的通项公式. [解] (1)由题意,b 1=a 1+a 2=1+2=3,则S 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n -1+a 2n )=b 1+b 2+…+b n =3(1-3n )1-3=3n +1-32.(2)当n ≥2时,由2S n =a 2n +n , 得2S n -1=a 2n -1+n -1,两式相减得2a n =a 2n +n -(a 2n -1+n -1)=a 2n -a 2n -1+1,整理得(a n -1)2-a 2n -1=0, 即(a n -a n -1-1)(a n +a n -1-1)=0, 故a n -a n -1=1或a n +a n -1=1.(*)下面证明a n +a n -1=1对任意的n ∈N *恒不成立. 事实上,因为a 1+a 2=3, 所以a n +a n -1=1不恒成立;若存在n ∈N *,使a n +a n -1=1,设n 0是满足上式最小的正整数,即an 0+an 0-1=1,显然n 0>2,且an 0-1∈(0,1),则an 0-1+an 0-2≠1,则由(*)式知,an 0-1-an 0-2=1,则an 0-2<0,矛盾.故a n +a n -1=1对任意的n ∈N *恒不成立,所以a n -a n -1=1对任意的n ∈N *恒成立.因此{a n }是以1为首项,1为公差的等差数列,所以a n =1+(n -1)=n . (3)设等比数列{a n a n +1}的公比为q ,则当n ≥2时,a n a n +1a n -1a n =a n +1a n -1=q .即{a 2n -1},{a 2n }分别是以1,2为首项,公比为q 的等比数列; 故a 3=q ,a 4=2q .令n =2,有S 4=a 1+a 2+a 3+a 4=1+2+q +2q =9,则q =2.当q =2时,a 2n -1=2n -1,a 2n =2×2n -1=2n ,b n =a 2n -1+a 2n =3×2n -1,此时S 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n -1+a 2n )=b 1+b 2+…+b n =3(1-2n )1-2=3(2n -1).综上所述,a n=⎩⎨⎧2n -12,当n 为奇数,2n2,当n 为偶数.[方法归纳]已知数列{a n },{b n }满足2S n =(a n +2)b n ,其中S n 是数列{a n }的前n 项和. (1)若数列{a n }是首项为23,公比为-13的等比数列,求数列{b n }的通项公式;(2)若b n =n ,a 2=3,求数列{a n }的通项公式;(3)在(2)的条件下,设c n =a nb n,求证:数列{c n }中的任意一项总可以表示成该数列其他两项之积.解:(1)因为a n =23×⎝⎛⎭⎫-13n -1=-2⎝⎛⎭⎫-13n , S n =23⎣⎡⎦⎤1-⎝⎛⎭⎫-13n 1-⎝⎛⎭⎫-13=12⎣⎡⎦⎤1-⎝⎛⎭⎫-13n ,所以b n =2S na n +2=1-⎝⎛⎭⎫-13n -2⎝⎛⎭⎫-13n +2=12. (2)若b n =n ,则2S n =na n +2n ,① 所以2S n +1=(n +1)a n +1+2(n +1),② 由②-①得2a n +1=(n +1)a n +1-na n +2, 即na n =(n -1)a n +1+2,③当n ≥2时,(n -1)a n -1=(n -2)a n +2,④ 由④-③得(n -1)a n -1+(n -1)a n +1=2(n -1)a n , 即a n -1+a n +1=2a n ,由2S 1=a 1+2,得a 1=2,又a 2=3,所以数列{a n }是首项为2,公差为3-2=1的等差数列,故数列{a n }的通项公式是a n =n +1.(3)证明:由(2)得c n =n +1n ,对于给定的n ∈N *,若存在k ≠n ,t ≠n ,k ,t ∈N *,使得c n =c k ·c t ,只需n +1n =k +1k ·t +1t , 即1+1n =⎝⎛⎭⎫1+1k ·⎝⎛⎭⎫1+1t ,即1n =1k +1t +1kt ,则t =n (k +1)k -n , 取k =n +1,则t =n (n +2),所以对数列{c n }中的任意一项c n =n +1n ,都存在c n +1=n +2n +1和c n 2+2n =n 2+2n +1n 2+2n ,使得c n =c n +1·c n 2+2n .[例2] n n a 2n -na 2n +1=0,设数列{b n }满足b n =a 2ntn .(1)求证:数列⎩⎨⎧⎭⎬⎫a n n 为等比数列; (2)若数列{b n }是等差数列,求实数t 的值;(3)若数列{b n }是等差数列,前n 项和为S n ,对任意的n ∈N *,均存在m ∈N *,使得8a 21S n -a 41n 2=16b m 成立,求满足条件的所有整数a 1的值.[解] (1)证明:由题意得4(n +1)a 2n =na 2n +1,因为数列{a n }各项均为正, 得a 2n +1n +1=4·a 2n n ,所以a n +1n +1=2·a n n , 因此a n +1n +1a n n =2,所以⎩⎨⎧⎭⎬⎫a n n 是以a 1为首项,公比为2的等比数列.(2)由(1)得a n n=a 1·2n -1,即a n =a 1·2n -1·n , 所以b n =a 2nt n =a 21·4n -1·n tn, 如果数列{b n }是等差数列,则2b 2=b 1+b 3, 即2·a 21·2·42-1t 2=a 21·40t +a 21·3·43-1t 3,整理得16t 2=1t +48t 3,则t 2-16t +48=0, 解得t =4或t =12. 当t =4时,b n =a 21·n 4,因为b n +1-b n =a 21(n +1)4-a 21n 4=a 214,所以数列{b n }是等差数列,符合题意; 当t =12时,b n =a 21n4·3n ,因为b 2+b 4=2a 214·32+4a 214·34=22a 214·34=11162a 21,2b 3=2·a 21·34·33=a 2118,b 2+b 4≠2b 3,所以数列{b n }不是等差数列,t =12不符合题意, 综上,如果数列{b n }是等差数列,则t =4.(3)由(2)得b n =a 21n 4,对任意的n ∈N *,均存在m ∈N *,使8a 21S n -a 41n 2=16b m , 则8·a 414·n (n +1)2-a 41n 2=16a 21m 4,所以m =na 214.当a 1=2k ,k ∈N *时,m =4k 2n4=k 2n ,对任意的n ∈N *,m ∈N *,符合题意; 当a 1=2k -1,k ∈N *,当n =1时,m =4k 2-4k +14=k 2-k +14∉N *,故不合题意.综上,当a 1=2k ,k ∈N *,对任意的n ∈N *,均存在m ∈N *,使8a 21S n -a 41n 2=16b m .[方法归纳]已知数列{a n }的前n 项和为S n ,数列{b n },{c n }满足(n +1)b n =a n +1-S nn ,(n +2)c n =a n +1+a n +22-S nn ,其中n ∈N *. (1)若数列{a n }是公差为2的等差数列,求数列{c n }的通项公式;(2)若存在实数λ,使得对一切n ∈N *,有b n ≤λ≤c n ,求证:数列{a n }是等差数列. 解:(1)因为数列{a n }是公差为2的等差数列, 所以a n =a 1+2(n -1),S nn =a 1+n -1. 因为(n +2)c n =a 1+2n +a 1+2(n +1)2-(a 1+n -1)=n +2,所以c n =1.(2)证明:由(n +1)b n =a n +1-S nn,得n (n +1)b n =na n +1-S n ,(n +1)(n +2)b n +1=(n +1)a n +2-S n +1,两式相减,并化简得a n +2-a n +1=(n +2)b n +1-nb n .从而(n +2)c n =a n +1+a n +22-S n n =a n +1+a n +22-[a n +1-(n +1)b n ]=a n +2-a n +12+(n +1)b n =(n +2)b n +1-nb n 2+(n +1)b n =n +22(b n +b n +1),因此c n =12(b n +b n +1).因为对一切n ∈N *,有b n ≤λ≤c n ,所以λ≤c n =12(b n +b n +1)≤λ,故b n =λ,c n =λ.所以(n +1)λ=a n +1-S nn ,①(n +2)λ=12(a n +1+a n +2)-S n n ,②②-①得12(a n +2-a n +1)=λ,即a n +2-a n +1=2λ,故a n +1-a n =2λ(n ≥2).又2λ=a 2-S 11=a 2-a 1,则a n +1-a n =2λ(n ≥1).所以数列{a n }是等差数列.[例3] (2017·n a n -k +a n -k +1+…+a n -1+a n +1+…+a n +k -1+a n +k =2ka n ,对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列. [证明] (1)因为{a n }是等差数列,设其公差为d , 则a n =a 1+(n -1)d ,从而,当n ≥4时,a n -k +a n +k =a 1+(n -k -1)d +a 1+(n +k -1)d =2a 1+2(n -1)d =2a n ,k =1,2,3,所以a n -3+a n -2+a n -1+a n +1+a n +2+a n +3=6a n , 因此等差数列{a n }是“P (3)数列”.(2)数列{a n}既是“P(2)数列”,又是“P(3)数列”,因此,当n≥3时,a n-2+a n-1+a n+1+a n+2=4a n,①当n≥4时,a n-3+a n-2+a n-1+a n+1+a n+2+a n+3=6a n.②由①知,a n-3+a n-2=4a n-1-(a n+a n+1),③a n+2+a n+3=4a n+1-(a n-1+a n).④将③④代入②,得a n-1+a n+1=2a n,其中n≥4,所以a3,a4,a5,…是等差数列,设其公差为d′.在①中,取n=4,则a2+a3+a5+a6=4a4,所以a2=a3-d′,在①中,取n=3,则a1+a2+a4+a5=4a3,所以a1=a3-2d′,所以数列{a n}是等差数列.[方法归纳]设数列{a n}的前n项的和为S n.定义:若∀n∈N*,∃m∈N*,S n=a m,则称数列{a n}为H数列.(1)求证:数列{(n-2)d}(n∈N*,d为常数)是H数列;(2)求证:数列{(n-3)d}(n∈N*,d为常数,d≠0)不是H数列.证明:(1)∵a n=(n-2)d,∴S n=n(-1+n-2)2d=n(n-3)2d.令n(n-3)2d=(m-2)d.(*)当d=0时,存在正整数m满足(*).当d≠0时,m=2+n(n-3)2,∵∀n∈N*,n(n-3)2∈Z,∴m∈Z,且n(n-3)2≥-1,∴m≥1,m∈N*,故存在m∈N*满足(*).所以数列{(n-2)d}是H数列.(2)数列{(n-3)d}的前n项之和为S n=n(-2+n-3)2d=n(n-5)2d.令n(n-5)2d=(m-3)d.因为d ≠0,所以m =3+n (n -5)2,当n =2时,m =0,故{(n -3)d }不是H 数列. [课时达标训练]1.(2017·苏州期中)已知等比数列{a n }的公比q >1,满足:a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项.(1)求数列{a n }的通项公式;(2)若b n =a n log 12a n ,S n =b 1+b 2+…+b n ,求使S n +n ·2n +1>62成立的正整数n 的最小值.解:(1)∵a 3+2是a 2,a 4的等差中项, ∴2(a 3+2)=a 2+a 4,代入a 2+a 3+a 4=28,可得a 3=8, ∴a 2+a 4=20,∴⎩⎪⎨⎪⎧a 1q 2=8,a 1q +a 1q 3=20,解得⎩⎪⎨⎪⎧a 1=2,q =2或⎩⎪⎨⎪⎧a 1=32,q =12,∵q >1,∴⎩⎪⎨⎪⎧a 1=2,q =2,∴数列{a n }的通项公式为a n =2n .(2)∵b n =a n log 12a n =2n log 122n =-n ·2n ,∴S n =-(1×2+2×22+…+n ·2n ),①2S n =-(1×22+2×23+…+(n -1)·2n +n ·2n +1),② ②-①得S n =2+22+23+…+2n -n ·2n +1 =2(1-2n )1-2-n ·2n +1=2n +1-2-n ·2n +1.∵S n +n ·2n +1>62,∴2n +1-2>62, ∴n +1>6,n >5,∴使S n +n ·2n +1>62成立的正整数n 的最小值为6.2.已知数列{a n },{b n }均为各项都不相等的数列,S n 为{a n }的前n 项和,a n +1b n =S n +1(n ∈N *).(1)若a 1=1,b n =n2,求a 4的值;(2)若{a n }是公比为q 的等比数列,求证:存在实数λ,使得{b n +λ}为等比数列. 解:(1)由a 1=1,b n =n2,知a 2=4,a 3=6,a 4=8.(2)证明:法一:显然公比q ≠1,因为a n +1b n =S n +1,所以a 1q nb n =a 1(1-q n )1-q+1,所以q nb n =11-q +1a 1-q n 1-q,即b n =⎝⎛⎭⎫11-q +1a 1⎝⎛⎭⎫1q n -11-q , 所以存在实数λ=11-q, 使得b n +λ=⎝⎛⎭⎫11-q +1a 1⎝⎛⎭⎫1q n ,又b n +λ≠0(否则{b n }为常数数列,与题意不符), 所以当n ≥2时,b n +λb n -1+λ=1q ,此时{b n +λ}为等比数列,所以存在实数λ=11-q,使得{b n +λ}为等比数列. 法二:因为a n +1b n =S n +1,① 所以当n ≥2时,a n b n -1=S n -1+1,② ①-②得,a n +1b n -a n b n -1=a n ,③ 由③得,b n =a n a n +1b n -1+a n a n +1=1q b n -1+1q ,所以b n +11-q =1q ⎝⎛⎭⎫b n -1+11-q .又b n +11-q≠0(否则{b n }为常数数列,与题意不符), 所以存在实数λ=11-q,使得{b n +λ}为等比数列. 3.设数列{H n }的各项均为不相等的正整数,其前n 项和为Q n ,称满足条件“对任意的m ,n ∈N *,均有(n -m )·Q n +m =(n +m )(Q n -Q m )”的数列{H n }为“好”数列.(1)试分别判断数列{a n },{b n }是否为“好”数列,其中a n =2n -1,b n =2n -1,n ∈N *,并给出证明;(2)已知数列{c n }为“好”数列,其前n 项和为T n . ①若c 2 016=2 017,求数列{c n }的通项公式;②若c 1=p ,且对任意给定的正整数p ,s (s >1),有c 1,c s ,c t 成等比数列,求证:t ≥s 2. 解:(1)若a n =2n -1,则S n =n 2, 所以(n -m )S n +m =(n -m )(n +m )2,而(n +m )(S n -S m )=(n +m )(n 2-m 2)=(n +m )2(n -m ), 所以(n -m )S n +m =(n +m )(S n -S m )对任意的m ,n ∈N *均成立, 即数列{a n }是“好”数列.若b n =2n -1,则S n =2n -1,取n =2,m =1, 则(n -m )S n +m =S 3=7,(n +m )(S n -S m )=3b 2=6, 此时(n -m )S n +m ≠(n +m )(S n -S m ), 即数列{b n }不是“好”数列.(2)因为数列{c n }为“好”数列,取m =1, 则(n -1)T n +1=(n +1)(T n -T 1), 即2T n =(n -1)c n +1+(n +1)c 1恒成立. 当n ≥2时,有2T n -1=(n -2)c n +nc 1,两式相减,得2c n =(n -1)c n +1-(n -2)c n +c 1(n ≥2), 即nc n =(n -1)c n +1+c 1(n ≥2), 所以(n -1)c n -1=(n -2)c n +c 1(n ≥3),所以nc n -(n -1)c n -1=(n -1)c n +1-(n -2)c n (n ≥3), 即(2n -2)c n =(n -1)c n -1+(n -1)c n +1(n ≥3), 即2c n =c n -1+c n +1(n ≥3),当n =2时,有2T 2=c 3+3c 1,即2c 2=c 3+c 1, 所以2c n =c n -1+c n +1对任意的n ≥2,n ∈N *恒成立, 所以数列{c n }是等差数列. 设数列{c n }的公差为d ,①若c 2 016=2 017,则c 1+2 015d =2 017, 即d =2 017-c 12 015,因为数列{c n }的各项均为不相等的正整数, 所以d ∈N *,所以d =1,c 1=2,所以c n =n +1. ②证明:若c 1=p ,则c n =dn +p -d , 由c 1,c s ,c t 成等比数列,得c 2s =c 1c t , 所以(ds +p -d )2=p (dt +p -d ),即(p -d )(2ds +p -d -p )+d (ds 2-pt )=0, 化简得,p (t +1-2s )=d (s -1)2, 即d =t +1-2s (s -1)2p .因为p 是任意给定的正整数,要使d ∈N *,必须t +1-2s(s -1)2∈N *,不妨设k =t +1-2s(s -1)2,由于s 是任意给定的正整数,所以t =k (s -1)2+2s -1≥(s -1)2+2s -1=s 2. 故不等式得证.4.(2017·常州前黄中学国际分校月考)已知数列{a n }是公差为正数的等差数列,其前n 项和为S n ,且a 2·a 3=15,S 4=16.(1)求数列{a n }的通项公式; (2)数列{b n }满足b 1=a 1,b n +1-b n =1a n a n +1. ①求数列{b n }的通项公式;②是否存在正整数m ,n (m ≠n ),使得b 2,b m ,b n 成等差数列?若存在,求出m ,n 的值;若不存在,请说明理由.解:(1)设数列{a n }的公差为d ,则d >0.由a 2·a 3=15,S 4=16,得⎩⎪⎨⎪⎧(a 1+d )(a 1+2d )=15,4a 1+6d =16,解得⎩⎪⎨⎪⎧ a 1=1,d =2或⎩⎪⎨⎪⎧a 1=7,d =-2(舍去). 所以a n =2n -1.(2)①∵b 1=a 1,b n +1-b n =1a n a n +1, ∴b 1=a 1=1,b n +1-b n =1a n a n +1=1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1,即b 2-b 1=12⎝⎛⎭⎫1-13,b 3-b 2=12⎝⎛⎭⎫13-15,…,b n -b n -1=12⎝⎛⎭⎫12n -3-12n -1(n ≥2),累加得:b n -b 1=12⎝⎛⎭⎫1-12n -1=n -12n -1, ∴b n =b 1+n -12n -1=1+n -12n -1=3n -22n -1.b 1=1也符合上式. 故b n =3n -22n -1,n ∈N *. ②假设存在正整数m ,n (m ≠n ),使得b 2,b m ,b n 成等差数列, 则b 2+b n =2b m .又b 2=43,b n =3n -22n -1=32-14n -2,b m =32-14m -2,∴43+⎝⎛⎭⎫32-14n -2=2⎝⎛⎭⎫32-14m -2, 即12m -1=16+14n -2,化简得:2m =7n -2n +1=7-9n +1. 当n +1=3,即n =2时,m =2,不合题意,舍去; 当n +1=9,即n =8时,m =3,符合题意.∴存在正整数m =3,n =8,使得b 2,b m ,b n 成等差数列.5.(2017·镇江丹阳高级中学期初考试)已知数列{a n }满足a 1=1,a 2=r (r >0),且{a n a n +1}是公比为q (q >0)的等比数列,设b n =a 2n -1+a 2n (n ∈N *).(1)求使a n a n +1+a n +1a n +2>a n +2a n +3(n ∈N *)成立的q 的取值范围; (2)求数列{b n }的前n 项和S n ;(3)试证明:当q ≥2时,对任意正整数n ≥2,S n 不可能是数列{b n }中的某一项. 解:(1)依题意得q n -1+q n >q n +1, ∵q >0,∴q 2-q -1<0, ∴0<q <5+12. (2)∵b n +1b n =a 2n +1+a 2n +2a 2n -1+a 2n =a 2n a 2n +1a 2n +a 2n +1a 2n +2a 2n +1a 2n -1+a 2n =a 2n -1a 2n a 2n q +a 2n a 2n +1a 2n +1q a 2n -1+a 2n =q (q >0),且b 1=a 1+a 2=1+r >0,∴ 数列{b n }是以1+r 为首项,q 为公比的等比数列, ∴S n =⎩⎪⎨⎪⎧n (1+r ),q =1,(1+r )(1-q n )1-q ,q ≠1.(3)证明:当q ≥2时,S n =(1+r )(1-q n )1-q,∵S n -a n +1=(1+r )(1-q n )1-q -(1+r )q n =1+r 1-q [(1-q n )-q n (1-q )]=1+r1-q [1+q n (q -2)]<0,∴S n <a n +1,又S n =a 1+a 2+…+a n ,a n >0,n ∈N *,∴S n >a n ,故当q ≥2时,对任意正整数n ≥2,S n 不可能是数列{b n }中的某一项.6.(2017·南通二调)设数列{a n }的前n 项和为S n (n ∈N *),且满足:①|a 1|≠|a 2|;②r (n -p )S n +1=()n 2+n a n +(n 2-n -2)a 1,其中r ,p ∈R ,且r ≠0.(1)求p 的值;(2)数列{a n }能否是等比数列?请说明理由; (3)求证:当r =2时,数列{a n }是等差数列. 解:(1)n =1时,r (1-p )S 2=2a 1-2a 1=0,因为|a 1|≠|a 2|,所以S 2≠0, 又r ≠0,所以p =1.(2)数列{a n }不是等比数列.理由如下: 假设{a n }是等比数列,公比为q ,当n =2时,rS 3=6a 2,即ra 1(1+q +q 2)=6a 1q , 所以r (1+q +q 2)=6q ,①当n =3时,2rS 4=12a 3+4a 1,即2ra 1(1+q +q 2+q 3)=12a 1q 2+4a 1, 所以r (1+q +q 2+q 3)=6q 2+2,②由①②得q =1,与|a 1|≠|a 2|矛盾,所以假设不成立. 故{a n }不是等比数列.(3)证明:当r =2时,易知a 3+a 1=2a 2. 由2(n -1)S n +1=(n 2+n )a n +(n 2-n -2)a 1,得 n ≥2时,2S n +1=n (n +1)a n n -1+(n +1)(n -2)a 1n -1,①2S n +2=(n +1)(n +2)a n +1n +(n -1)(n +2)a 1n,② ②-①得,2a n +2=(n +1)(n +2)a n +1n -n (n +1)a n n -1+(n 2-n +2)a 1n (n -1), 即2(a n +2-a 1)=(n +1)(n +2)(a n +1-a 1)n -n (n +1)(a n -a 1)n -1,两边同除(n +1)得,2(a n +2-a 1)n +1=(n +2)(a n +1-a 1)n -n (a n -a 1)n -1, 即a n +2-a 1n +1-a n +1-a 1n =n 2⎝ ⎛⎭⎪⎫a n +1-a 1n -a n -a 1n -1 =n (n -1)2×2⎝ ⎛⎭⎪⎫a n -a 1n -1-a n -1-a 1n -2=…… =n (n -1)×…×3×22×2×…×2⎝ ⎛⎭⎪⎫a 3-a 13-1-a 2-a 12-1=0, 所以a n -a 1n -1=a n -1-a 1n -2=…=a 2-a 11,令a 2-a 1=d ,则a n -a 1n -1=d (n ≥2). 所以a n =a 1+(n -1)d (n ≥2). 又n =1时,也适合上式, 所以a n =a 1+(n -1)d (n ∈N *).所以a n+1-a n=d(n∈N*).所以当r=2时,数列{a n}是等差数列.第3课时数列的综合应用(能力课)[常考题型突破][例1](2017·南京考前模拟)若各项均为正数的数列{a n}的前n项和为S n,且2S n=a n +1 (n∈N*).(1)求数列{a n}的通项公式;(2)若正项等比数列{b n},满足b2=2,2b7+b8=b9,求T n=a1b1+a2b2+…+a n b n;(3)对于(2)中的T n,若对任意的n∈N*,不等式λ(-1)n<12n+1(T n+21)恒成立,求实数λ的取值范围.[解](1)因为2S n=a n+1,所以4S n=(a n+1)2,且a n>0,则4a1=(a1+1)2,解得a1=1,又4S n+1=(a n+1+1)2,所以4a n+1=4S n+1-4S n=(a n+1+1)2-(a n+1)2,即(a n+1+a n)(a n+1-a n)-2(a n+1+a n)=0,因为a n>0,所以a n+1+a n≠0,所以a n+1-a n=2,所以{a n}是公差为2的等差数列,又a1=1,所以a n =2n -1.(2) 设数列{b n }的公比为q ,因为2b 7+b 8=b 9,所以2+q =q 2,解得q =-1(舍去)或q =2,由b 2=2,得b 1=1,即b n =2n -1.记A =a 1b 1+a 2b 2+…+a n b n =1×1+3×2+5×22+…+(2n -1)×2n -1, 则2A =1×2+3×22+5×23+…+(2n -1)×2n , 两式相减得-A =1+2(2+22+…+2n -1)-(2n -1)×2n ,故A =(2n -1)×2n -1-2(2+22+…+2n -1)=(2n -1)×2n -1-2(2n -2)=(2n -3)×2n+3所以T n =a 1b 1+a 2b 2+…+a n b n =(2n -3)·2n +3.(3)不等式λ(-1)n <12n +1(T n +21)可化为(-1)n λ<n -32+62n -1.当n 为偶数时,λ<n -32+62n -1,记g (n )=n -32+62n -1.即λ<g (n )min . g (n +2)-g (n )=2+62n +1-62n -1=2-92n ,当n =2时,g (n +2)<g (n ),n ≥4时,g (n +2)>g (n ), 即g (4)<g (2),当n ≥4时,g (n )单调递增,g (n )min =g (4)=134,即λ<134. 当n 为奇数时,λ>32-n -62n -1,记h (n )=32-n -62n -1,所以λ>h (n )max .h (n +2)-h (n )=-2-62n +1+62n -1=-2+92n ,当n =1时,h (n +2)>h (n ),n ≥3时,h (n +1)<h (n ),即h (3)>h (1),n ≥3时,h (n )单调递减,h (n )max =h (3)=-3,所以λ>-3. 综上所述,实数λ的取值范围为⎝⎛⎭⎫-3,134. [方法归纳]已知数列{a n }满足a 1=6,a 2=20,且a n -1·a n +1=a 2n -8a n +12(n ∈N *,n ≥2).(1)证明:数列{a n +1-a n }为等差数列; (2)令c n =(n +1)a n na n +1+na n +1(n +1)a n,数列{c n }的前n 项和为T n ,求证:2n <T n <2n +23.证明:(1)当n =2时,a 1·a 3=a 22-8a 2+12, 所以a 3=42.当n ≥2时,由a n -1·a n +1=a 2n -8a n +12, 得a n ·a n +2=a 2n +1-8a n +1+12,两式相减得a 2n +1-a 2n -8a n +1+8a n =a n a n +2-a n -1a n +1, 所以a 2n +a n a n +2-8a n =a 2n +1+a n -1a n +1-8a n +1,即a n (a n +a n +2-8)=a n +1(a n +1+a n -1-8),所以a n +a n +2-8a n +1=a n +1+a n -1-8a n =…=a 3+a 1-8a 2=2.所以a n +2+a n -8=2a n +1, 即a n +2-2a n +1+a n =8, 即(a n +2-a n +1)-(a n +1-a n )=8, 当n =1时,也满足此式. 又a 2-a 1=14,所以数列{a n +1-a n }是以14为首项,8为公差的等差数列. (2)由(1)知a n +1-a n =14+8(n -1)=8n +6.由a 2-a 1=8×1+6,a 3-a 2=8×2+6,…,a n -a n -1=8×(n -1)+6,累加得a n -a 1=8×[1+2+3+…+(n -1)]+6(n -1)=8×(n -1)(1+n -1)2+6(n -1)=4n 2+2n -6,所以a n =4n 2+2n .所以c n =(n +1)a n na n +1+na n +1(n +1)a n =2n +12n +3+2n +32n +1=⎝⎛⎭⎫1-22n +3+⎝⎛⎭⎫1+22n +1=2+2⎝⎛⎭⎫12n +1-12n +3,所以T n =2n +2⎝⎛⎭⎫13-15+⎝⎛⎭⎫15-17+…+⎝⎛⎭⎫12n +1-12n +3=2n +2⎝⎛⎭⎫13-12n +3,又13>13-12n +3=2n +3-33(2n +3)=2n 3(2n +3)>0, 所以2n <T n <2n +23.[例2] n n S n ,T n ,满足对一切n ∈N *,都有S n +3=T n .(1)若a 1≠b 1,试分别写出一个符合条件的数列{a n }和{b n };(2)若a 1+b 1=1,数列{c n }满足:c n =4a n +λ(-1)n -1·2b n ,求最大的实数λ,使得当n ∈N *,恒有c n +1≥c n 成立.[解] (1)设数列{a n },{b n }的公差分别是d 1,d 2. 则S n +3=(n +3)a 1+(n +3)(n +2)2d 1, T n =nb 1+n (n -1)2d 2.∵对一切n ∈N *,有S n +3=T n ,∴(n +3)a 1+(n +3)(n +2)2d 1=nb 1+n (n -1)2d 2,即d 12n 2+⎝⎛⎭⎫a 1+52d 1n +3a 1+3d 1=d 22n 2+⎝⎛⎭⎫b 1-12d 2n . ∴⎩⎪⎨⎪⎧d 12=d 22,a 1+52d 1=b 1-12d 2,3a 1+3d 1=0.即⎩⎪⎨⎪⎧d 2=d 1,a 1=-d 1,b 1=2d 1.故答案不唯一.例如取d 1=d 2=2,a 1=-2,b 1=4, 得a n =2n -4(n ∈N *),b n =2n +2(n ∈N *). (2)∵a 1+b 1=1,又由(1),可得d 1=d 2=1,a 1=-1,b 1=2. ∴a n =n -2,b n =n +1. ∴c n =4n -2+λ(-1)n -12n +1.∴c n +1-c n =4n -1+λ(-1)n 2n +2-4n -2-λ(-1)n -12n +1=3·4n -2+λ(-1)n (2n +2+2n +1)=316·22n +6λ(-1)n ·2n . ∵当n ∈N *时,c n +1≥c n 恒成立, 即当n ∈N *时,316·22n +6λ(-1)n ·2n ≥0恒成立. ∴当n 为正奇数时,λ≤132·2n 恒成立, 而132·2n ≥116.∴λ≤116; 当n 为正偶数时,λ≥-132·2n恒成立, 而-132·2n ≤-18,∴λ≥-18. ∴-18≤λ≤116,∴λ的最大值是116.[方法归纳][变式训练](2017·南京三模)已知常数p >0,数列{a n }满足a n +1=|p -a n |+2a n +p ,n ∈N *. (1)若a 1=-1,p =1, ①求a 4的值;②求数列{a n }的前n 项和S n .(2)若数列{a n }中存在三项a r ,a s ,a t (r ,s ,t ∈N *,r <s <t )依次成等差数列,求a 1p 的取值范围.解:(1)因为p =1,所以a n +1=|1-a n |+2a n +1. ①因为a 1=-1,所以a 2=|1-a 1|+2a 1+1=1, a 3=|1-a 2|+2a 2+1=3, a 4=|1-a 3|+2a 3+1=9.②因为a 2=1,a n +1=|1-a n |+2a n +1, 所以当n ≥2时,a n ≥1,从而a n +1=|1-a n |+2a n +1=a n -1+2a n +1=3a n , 于是有a n =3n -2(n ≥2) .故当n ≥2时,S n =-1+a 2+a 3+…+a n =-1+1-3n -11-3=3n -1-32 ,当n =1时,S 1=-1,符合上式,故S n =3n -1-32,n ∈N *.(2)因为a n +1-a n =|p -a n |+a n +p ≥p -a n +a n +p =2p >0, 所以a n +1>a n ,即数列{a n }单调递增. (ⅰ)当a 1p≥1时,有a 1≥p ,于是a n ≥a 1≥p ,所以a n +1=|p -a n |+2a n +p =a n -p +2a n +p =3a n ,所以a n =3n -1a 1.若{a n }中存在三项a r ,a s ,a t (r ,s ,t ∈N *,r <s <t )依次成等差数列,则有2a s =a r +a t , 即2×3s -1=3r -1+3t -1. (*)因为s ≤t -1,所以2×3s -1=23×3s <3t -1<3r -1+3t -1,即(*)不成立.故此时数列{a n }中不存在三项依次成等差数列. (ⅱ)当-1<a 1p<1时,有-p <a 1<p .此时a 2=|p -a 1|+2a 1+p =p -a 1+2a 1+p =a 1+2p >p , 于是当n ≥2时,a n ≥a 2>p ,从而a n +1=|p -a n |+2a n +p =a n -p +2a n +p =3a n . 所以a n =3n -2a 2=3n -2(a 1+2p ) (n ≥2).若{a n }中存在三项a r ,a s ,a t (r ,s ,t ∈N *,r <s <t )依次成等差数列, 由(ⅰ)可知,r =1,于是有2×3s -2(a 1+2p )=a 1+3t -2(a 1+2p ).因为2≤s ≤t -1, 所以a 1 a 1+2p=2×3s -2-3t -2=29×3s -13×3t -1<0.因为2×3s -2-3t-2是整数,所以a 1a 1+2p≤-1,于是a 1≤-a 1-2p ,即a 1≤-p ,与-p <a 1<p 相矛盾. 故此时数列{a n }中不存在三项依次成等差数列. (ⅲ)当a 1p ≤-1时,则有a 1≤-p <p ,a 1+p ≤0, 于是a 2=|p -a 1|+2a 1+p =p -a 1+2a 1+p =a 1+2p ,a 3=|p -a 2|+2a 2+p =|p +a 1|+2a 1+5p =-p -a 1+2a 1+5p =a 1+4p , 此时2a 2=a 1+a 3,则a 1,a 2,a 3成等差数列. 综上可知,a 1p ≤-1.故a 1p 的取值范围为(-∞,-1].[例3] n ∈N *),其中m ,a ,b 均为实常数.(1)若m =0,且a 4,3a 3,a 5成等差数列. ①求ba的值;②若a =2,令b n =⎩⎪⎨⎪⎧a n ,n 为奇数,2log 2a n -1,n 为偶数,求数列{b n }的前n 项和S n ;(2)是否存在常数λ,使得a n +a n +2=λa n +1对任意的n ∈N *都成立?若存在,求出实数λ的值(用m ,a ,b 表示);若不存在,请说明理由.[解] (1)①因为m =0, 所以a 2n +1=a n a n +2,所以正项数列{a n }是等比数列,不妨设其公比为q . 又a 4,3a 3,a 5成等差数列, 所以q 2+q =6,解得q =2或q =-3(舍去),。
(江苏专版)2018年高考数学二轮复习6个解答题综合仿真练(二)
6个解答题综合仿真练(二)1.已知向量a =(2cos α,sin 2α),b =(2sin α,t ),α∈⎝ ⎛⎭⎪⎫0,π2.(1)若a -b =⎝ ⎛⎭⎪⎫25,0,求t 的值;(2)若t =1,且a·b =1,求tan ⎝⎛⎭⎪⎫2α+π4的值. 解:(1)因为向量a =(2cos α,sin 2α),b =(2sin α,t ), 且a -b =⎝ ⎛⎭⎪⎫25,0,所以cos α-sin α=15,t =sin 2α.由cos α-sin α=15,得(cos α-sin α)2=125,即1-2sin αcos α=125,从而2sin αcos α=2425.所以(cos α+sin α)2=1+2sin αcos α=4925.因为α∈⎝ ⎛⎭⎪⎫0,π2,所以cos α+sin α=75.所以sin α=α+sin α-α-sin α2=35, 从而t =sin 2α=925.(2)因为t =1,且a·b =1,所以4sin αcos α+sin 2α=1,即4sin αcos α=cos 2α. 因为α∈⎝ ⎛⎭⎪⎫0,π2,所以cos α≠0,从而tan α=14.所以tan 2α=2tan α1-tan 2α=815. 从而tan ⎝⎛⎭⎪⎫2α+π4=tan 2α+tanπ41-tan 2α·tan π4=815+11-815=237.2.如图,四棱锥P ABCD 中,PD =PC ,底面ABCD 是直角梯形,AB ⊥BC ,AB ∥CD ,CD =2AB ,点M 是CD 的中点.求证:(1)AM ∥平面PBC ; (2)CD ⊥PA .证明:(1)在直角梯形ABCD 中,AB ∥CD ,CD =2AB ,点M 是CD 的中点,故AB ∥CM ,且AB =CM ,所以四边形ABCM 是平行四边形,所以AM ∥BC.又BC ⊂平面PBC ,AM ⊄平面PBC , 所以AM ∥平面PBC .(2)连结PM ,因为PD =PC ,点M 是CD 的中点, 所以CD ⊥PM , 又AB ⊥BC ,所以平行四边形ABCM 是矩形,所以CD ⊥AM , 又PM ⊂平面PAM ,AM ⊂平面PAM ,PM ∩MA =M ,所以CD ⊥平面PAM .又PA ⊂平面PAM ,所以CD ⊥PA .3.在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b2=1(a >b >0)的焦距为2,离心率为22,椭圆的右顶点为A . (1)求椭圆的标准方程;(2)过点D (2,-2)作直线PQ 交椭圆于两个不同点P ,Q ,求证:直线AP ,AQ 的斜率之和为定值.解:(1)由已知得c =1,又e =c a =22, 则a =2,b 2=a 2-c 2=1, 所以椭圆的标准方程为x 22+y 2=1.(2)证明:设直线PQ 的方程为y =k (x -2)-2,P (x 1,y 1),Q (x 2,y 2),由⎩⎨⎧y =k x -2-2,x 22+y 2=1,消去y ,整理得(2k 2+1)x 2-(42k 2+42k )x +4k 2+8k +2=0,所以x 1+x 2=42k 2+42k 2k 2+1,x 1x 2=4k 2+8k +22k 2+1, 所以y 1+y 2=k (x 1+x 2)-22k -22=-22-22k2k 2+1, 又A (2,0),所以k AP +k AQ =y 1x 1-2+y 2x 2-2=y 1x 2+y 2x 1-2y 1+y 2x 1x 2-2x 1+x 2+2,由y 1x 2+y 2x 1=[k (x 1-2)- 2 ]x 2+[k (x 2-2)- 2 ]x 1=2kx 1x 2-(2k +2)(x 1+x 2)=-4k2k 2+1,故k AP +k AQ =y 1x 2+y 2x 1-2y 1+y 2x 1x 2-2x 1+x 2+2=-4k 2k 2+1-2×-22-22k 2k 2+14k 2+8k +22k 2+1-2×42k 2+42k2k 2+1+2=1, 所以直线AP ,AQ 的斜率之和为定值1.4.如图所示,某公路AB 一侧有一块空地△OAB ,其中OA =3 km ,OB =3 3 km ,∠AOB =90°.当地政府拟在中间开挖一个人工湖△OMN ,其中M ,N 都在边AB 上(M ,N 不与A ,B 重合,M 在A ,N 之间),且∠MON =30°.(1)若M 在距离A 点2 km 处,求点M ,N 之间的距离;(2)为节省投入资金,人工湖△OMN 的面积要尽可能小.试确定M 的位置,使△OMN 的面积最小,并求出最小面积.解:(1)在△OAB 中,因为OA =3,OB =33,∠AOB =90°,所以∠OAB =60°. 在△OAM 中,由余弦定理得OM 2=AO 2+AM 2-2AO ·AM ·cos A =7, 所以OM =7,所以cos ∠AOM =OA 2+OM 2-AM 22OA ·OM =277,在△OAN 中,sin ∠ONA =sin(∠A +∠AON )=sin(∠AOM +90°)=cos ∠AOM =277.在△OMN 中,由MN sin 30°=OM sin ∠ONA ,得MN =7277×12=74.(2)法一:设AM =x,0<x <3.在△OAM 中,由余弦定理得OM 2=AO 2+AM 2-2AO ·AM ·cos A =x 2-3x +9, 所以OM =x 2-3x +9,所以cos ∠AOM =OA 2+OM 2-AM 22OA ·OM =6-x2x 2-3x +9, 在△OAN 中,sin ∠ONA =sin(∠A +∠AON )=sin(∠AOM +90°)=cos ∠AOM =6-x2x 2-3x +9. 由ON sin ∠OAB =OAsin ∠ONA ,得ON =36-x2x 2-3x +9·32=3 3 x 2-3x +96-x. 所以S △OMN =12OM ·ON ·sin∠MON=12·x 2-3x +9·3 3 x 2-3x +96-x ·12 =33x 2-3x +-x,0<x <3.令6-x =t ,则x =6-t,3<t <6, 则S △OMN=33t 2-9t +4t=334⎝ ⎛⎭⎪⎫t -9+27t ≥334·⎝⎛⎭⎪⎫2t ·27t -9=-3 4.当且仅当t =27t,即t =33,x =6-33时等号成立,S △OMN 的最小值为-3 4.所以M 的位置为距离A 点6-3 3 km 处,可使△OMN 的面积最小,最小面积是-3 4km 2.法二:设∠AOM =θ,0<θ<π3,在△OAM 中,由OM sin ∠OAB =OAsin ∠OMA ,得OM =332sin ()θ+60°.在△OAN 中,由ON sin ∠OAB =OAsin ∠ONA ,得ON =332sin ()θ+90°=332cos θ.所以S △OMN =12OM ·ON ·sin∠MON=12·332sin ()θ+60°·332cos θ·12 =2716sin ()θ+60°cos θ=278sin θcos θ+83cos 2θ=274sin 2θ+43cos 2θ+43=278sin ()2θ+60°+43,0<θ<π3.当2θ+60°=90°,即θ=15°时,S △OMN 的最小值为-34.所以应设计∠AOM =15°,可使△OMN 的面积最小,最小面积是-3 4km 2.5.已知数列{a i }共有m (m ≥3)项,该数列前i 项和为S i ,记r i =2S i -S m (i ≤m ,i ∈N *). (1)当m =10时,若数列{a i }的通项公式为a i =2i +1,求数列{r i }的通项公式; (2)若数列{r i }的通项公式为r i =2i(i ≤m ,i ∈N *), ①求数列{a i }的通项公式;②数列{a i }中是否存在不同的三项按一定次序排列构成等差数列,若存在求出所有的项,若不存在请说明理由.解:(1)因为S i =3+i +2·i =i 2+2i,所以由题意得r i =2S i -S 10=2i 2+4i -120(i ≤10,i ∈N *). (2)①因为r i =2S i -S m =2i,r i +1=2S i +1-S m =2i +1,两式相减得a i +1=2i -1,所以数列{a i }从第2项开始是以1为首项,2为公比的等比数列,即a i =2i -2(2≤i ≤m ,i ∈N *).又2a 1=2+S m ,即a 1=2+(a 2+a 3+…+a m )=2+1-2m -11-2=2m -1+1.所以数列{a i }的通项公式为a i ={ 2m -1+1,i =1,i -2,2≤i ≤m ,i ∈N *.②数列{a i }中任意三项都不能构成等差数列,理由如下:因为数列{a i }从第2项开始是以2为公比的等比数列,所以若存在三项构成等差数列,不妨设为a p ,a q ,a r (2≤p <q <r ≤m ,p ,q ,r ∈N *),则有2a q =a p +a r ,即2·2q -2=2p -2+2r -2,2q -p +1=1+2r -p.因为q -p +1∈N *,r -p ∈N *,所以上式左边为偶数,右边为奇数,此时无解. 所以数列{a i }从第2项至第m 项中不可能存在三项构成等差数列,所以若数列{a i }中存在三项构成等差数列,则只能是a 1和第2项至第m 项中的两项,不妨设为a p ,a q (2≤p <q ≤m ,p ∈N *,q ∈N *).因为0<a p <a q ≤a m <a 1.所以a p ,a q ,a 1若构成等差数列,只能是a q 为等差中项, 故有2·2q -2=2p -2+(2m -1+1),因为左边=2q -1≤2m -1,右边>2m -1,所以该情况下也无解.因此,数列{a i }中任意三项都不能构成等差数列.6.设函数f (x )=2a ln x +(1-a )x 2-bx (a ≠1),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行.(1)求b 的值;(2)当a ≤12时,求函数f (x )的单调区间;(3)若存在x ≥1使得f (x )<2aa -1成立,求a 的取值范围. 解:(1)f ′(x )=2ax+2(1-a )x -b ,由题设知f ′(1)=2a +2(1-a )-b =0,解得b =2. (2)f (x )的定义域为(0,+∞),由(1)知,f (x )=2a ln x +(1-a )x 2-2x ,f ′(x )=-ax -⎝ ⎛⎭⎪⎫x -a 1-a x.由f ′(x )=0,解得x =1或x =a1-a . 因为a ≤12,所以1-a >0,a1-a ≤1.①当a1-a≤0,即a ≤0时, x ∈(0,1]时,f ′(x )≤0,f (x )单调递减; x ∈[1,+∞)时,f ′(x )≥0,f (x )单调递增. ②当0<a 1-a <1,即0<a <12时,x ∈⎝⎛⎦⎥⎤0,a 1-a 时,f ′(x )≥0,f (x )单调递增; x ∈⎣⎢⎡⎦⎥⎤a 1-a ,1时,f ′(x )≤0,f (x )单调递减;x ∈[1,+∞)时,f ′(x )≥0,f (x )单调递增. ③当a 1-a =1,即a =12时,x ∈(0,+∞)时,f ′(x )≥0,f (x )单调递增.综上所述,当a ≤0时,f (x )的单调递减区间为(0,1],单调递增区间为[1,+∞);当0<a <12时,f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤a 1-a ,1,单调递增区间为⎝ ⎛⎦⎥⎤0,a 1-a ,[1,+∞); 当a =12时,f (x )的单调递增区间为(0,+∞),无单调递减区间.(3)①若a ≤12,由(2)知f (x )在[1,+∞)上单调递增,所以存在x ≥1使得f (x )<2a a -1成立的充要条件为f (1)<2a a -1, 即-a -1<2aa -1,解得-2-1<a <2-1.②若12<a <1,则a 1-a >1,故当x ∈⎝ ⎛⎭⎪⎫1,a 1-a 时,f ′(x )<0;当x ∈⎝⎛⎭⎪⎫a 1-a ,+∞时,f ′(x )>0,f (x )在⎝⎛⎭⎪⎫1,a 1-a 上单调递减,在⎝ ⎛⎭⎪⎫a 1-a ,+∞上单调递增.所以存在x ≥1使得f (x )<2a a -1成立的充要条件为f ⎝ ⎛⎭⎪⎫a 1-a <2a a -1.而f ⎝ ⎛⎭⎪⎫a 1-a =2a ln a 1-a +a 21-a +2a a -1>2a a -1,所以不符合题意.③若a >1,因为存在x =1,即f (1)=-a -1<2aa -1成立.所以a >1适合题意. 综上,a 的取值范围是(-2-1,2-1)∪(1,+∞).。
(新)江苏专版2018年高考数学二轮复习6个解答题综合仿真练一
6个解答题综合仿真练(一)1.在三角形ABC 中,角A ,B ,C 所对的边分别是a ,b ,c .已知b =3,c =2. (1)若2a ·cos C =3,求a 的值;(2)若c b =cos C 1+cos B ,求cos C 的值.解:(1)由余弦定理得,2a ·a 2+b 2-c 22ab=3,将b =3,c =2代入,解得a =2. (2)由正弦定理,得sin C sin B =cos C1+cos B ,即sin C +sin C cos B =sin B cos C ,则sin C =sin B cos C -cos B sin C =sin(B -C ). 因为0<C <B <π,所以0<B -C <π, 所以C =B -C ,则B =2C .由正弦定理可得b sin B =c sin C =b2sin C cos C ,将b =3,c =2代入,解得cos C =34.2.如图,在四棱锥P ABCD 中,四边形ABCD 为平行四边形,AC ,BD 相交于点O ,点E 为PC 的中点,OP =OC ,PA ⊥PD .求证:(1)PA ∥平面BDE; (2)平面BDE ⊥平面PCD .证明:(1)连结OE ,因为O 为平行四边形ABCD 对角线的交点,所以O 为AC 的中点.又因为E 为PC 的中点, 所以OE ∥PA .又因为OE ⊂平面BDE ,PA ⊄平面BDE , 所以PA ∥平面BDE .(2)因为OE ∥PA ,PA ⊥PD ,所以OE ⊥PD . 因为OP =OC ,E 为PC 的中点,所以OE ⊥PC .又因为PD ⊂平面PCD ,PC ⊂平面PCD ,PC ∩PD =P ,所以OE ⊥平面PCD . 又因为OE ⊂平面BDE ,所以平面BDE ⊥平面PCD .3.如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b2=1(a >b >0)的离心率为23,C 为椭圆上位于第一象限内的一点.(1)若点C 的坐标为⎝ ⎛⎭⎪⎫2,53,求a ,b 的值; (2)设A 为椭圆的左顶点,B 为椭圆上一点,且AB ―→=12OC ―→,求直线AB 的斜率.解:(1)因为椭圆的离心率为23,所以a 2-b 2a =23,即b 2a 2=59. ①又因为点C ⎝ ⎛⎭⎪⎫2,53在椭圆上,所以4a 2+259b 2=1. ②由①②解得a 2=9,b 2=5. 因为a >b >0,所以a =3,b = 5.(2)法一:由(1)知,b 2a 2=59,所以椭圆方程为x 2a 2+9y 25a2=1,即5x 2+9y 2=5a 2.设直线OC 的方程为x =my (m >0),B (x 1,y 1),C (x 2,y 2). 由{ x =my ,5x 2+9y 2=5a 2消去x ,得5m 2y 2+9y 2=5a 2,所以y 2=5a 25m 2+9.因为y 2>0,所以y 2=5a5m 2+9. 因为AB ―→=12OC ―→,所以AB ∥OC .可设直线AB 的方程为x =my -a .由{ x =my -a ,5x 2+9y 2=5a 2消去x ,得(5m 2+9)y 2-10amy =0,所以y =0或y =10am 5m 2+9,得y 1=10am5m 2+9.因为AB ―→=12OC ―→,所以(x 1+a ,y 1)=⎝ ⎛⎭⎪⎫12x 2,12y 2,于是y 2=2y 1,即5a5m 2+9=20am 5m 2+9(m >0),所以m =35. 所以直线AB 的斜率为1m =533.法二:由(1)可知,椭圆方程为5x 2+9y 2=5a 2, 则A (-a ,0).设B (x 1,y 1),C (x 2,y 2).由AB ―→=12OC ―→,得(x 1+a ,y 1)=⎝ ⎛⎭⎪⎫12x 2,12y 2,所以x 1=12x 2-a ,y 1=12y 2.因为点B ,C 都在椭圆5x 2+9y 2=5a 2上,所以⎩⎨⎧5x 22+9y 22=5a 2,5⎝ ⎛⎭⎪⎫12x 2-a 2+9⎝ ⎛⎭⎪⎫y 222=5a 2.解得x 2=a 4,y 2=5a43,所以直线AB 的斜率k =y 2x 2=533.4.如图,半圆AOB 是某市休闲广场的平面示意图,半径OA 的长为10.管理部门在A ,B 两处各安装一个光源,其相应的光强度分别为4和9.根据光学原理,地面上某点处照度y 与光强度I 成正比,与光源距离x 的平方成反比,即y =kIx2(k 为比例系数).经测量,在弧AB 的中点C 处的照度为130.(C 处的照度为A ,B 两处光源的照度之和)(1)求比例系数k 的值;(2)现在管理部门计划在半圆弧AB 上,照度最小处增设一个光源P ,试问新增光源P 安装在什么位置?解:(1)因为半径OA 的长为10,点C 是弧AB 的中点, 所以OC ⊥AB ,AC =BC =10 2. 所以C 处的照度为y =4k 1022+9k 1022=130,解得比例系数k =2 000.(2)设点P 在半圆弧AB 上,且P 距光源A 为x , 则PA ⊥PB ,由AB =20,得PB =400-x 2(0<x <20). 所以点P 处的照度为y =8 000x 2+18 000400-x 2(0<x <20).所以y ′=-16 000x3+36 000x400-x22 =4 000×9x 4-4400-x22x 3400-x 22=20 000×x 2-160x 2+800x 3400-x 22.由y ′=0,解得x =410. 当0<x <410时,y ′<0,y =8 000x 2+18 000400-x2为减函数; 当410<x <20时,y ′>0,y =8 000x 2+18 000400-x 2为增函数.所以x =410时,y 取得极小值,也是最小值.所以新增光源P 安装在半圆弧AB 上且距A 为410(距B 为415)的位置. 5.已知函数f (x )=(a -3)x -a -2ln x (a ∈R).(1)若函数f (x )在(1,+∞)上为单调增函数,求实数a 的最小值;(2)已知不等式f (x )+3x ≥0对任意x ∈(0,1]都成立,求实数a 的取值范围. 解:(1)法一:因为f ′(x )=a -3-2x(x >0),当a ≤3时,f ′(x )<0,f (x )在(0,+∞)上单调递减; 当a >3时,由f ′(x )<0,得0<x <2a -3,f (x )在⎝ ⎛⎭⎪⎫0,2a -3上单调递减,由f ′(x )>0,得x >2a -3,f (x )在⎝ ⎛⎭⎪⎫2a -3,+∞上单调递增.因为函数f (x )在(1,+∞)上为单调增函数, 所以a >3且2a -3≤1,所以a ≥5, 所以实数a 的最小值为5.法二:因为函数f (x )在(1,+∞)上为单调增函数, 所以f ′(x )=a -3-2x≥0在(1,+∞)上恒成立,所以a ≥3+2x在(1,+∞)上恒成立,又当x >1时,3+2x<5,所以a ≥5,所以实数a 的最小值为5.(2)令g (x )=f (x )+3x =a (x -1)-2ln x ,x ∈(0,1], 所以g ′(x )=a -2x.①当a ≤2时,由于x ∈(0,1],所以2x≥2,所以g ′(x )≤0,g (x )在(0,1]上单调递减,所以g (x )min =g (1)=0,所以对任意x ∈(0,1],g (x )≥g (1)=0, 即对任意x ∈(0,1]不等式f (x )+3x ≥0都成立,所以a ≤2;②当a >2时,由g ′(x )<0,得0<x <2a,g (x )在⎝ ⎛⎭⎪⎫0,2a 上单调递减;由g ′(x )>0,得x >2a,g (x )在⎝ ⎛⎦⎥⎤2a ,1上单调递增.所以,存在2a∈(0,1),使得g ⎝ ⎛⎭⎪⎫2a <g (1)=0,不合题意.综上所述,实数a 的取值范围为(-∞,2]. 6.已知数列{a n }的前n 项和为S n ,且S n =2a n -1. (1)求数列{a n }的通项公式;(2)记集合M ={n |n (n +1)≥λa n ,n ∈N *},若M 中有3个元素,求λ的取值范围; (3)是否存在等差数列{b n },使得a 1b n +a 2b n -1+a 3b n -2+…+a n b 1=2n +1-n -2对一切n ∈N *都成立?若存在,求出b n ;若不存在,说明理由.解:(1)当n =1时,S 1=2a 1-1,得a 1=1. 当n ≥2时,由S n =2a n -1,① 得S n -1=2a n -1-1,② ①-②,得a n =2a n -1,即a na n -1=2(n ≥2). 因此{a n }是首项为1,公比为2的等比数列,所以a n =2n -1.(2)由已知可得λ≤n n +12n -1,令f (n )=n n +12n -1,则f (1)=2,f (2)=3,f (3)=3,f (4)=52,f (5)=158,下面研究f (n )=n n +12n -1的单调性,因为f (n +1)-f (n )=n +1n +22n-n n +12n -1=n +12-n2n,所以,当n ≥3时,f (n +1)-f (n )<0,f (n +1)<f (n ), 即f (n )单调递减. 因为M 中有3个元素, 所以不等式λ≤n n +12n -1解的个数为3,所以2<λ≤52,即λ的取值范围为⎝ ⎛⎦⎥⎤2,52.(3)设存在等差数列{b n }使得条件成立,则当n =1时,有a 1b 1=22-1-2=1,所以b 1=1. 当n =2时,有a 1b 2+a 2b 1=23-2-2=4,所以b 2=2. 所以等差数列{b n }的公差d =1,所以b n =n . 设S =a 1b n +a 2b n -1+a 3b n -2+…+a n b 1,S =1·n +2(n -1)+22(n -2)+…+2n -2·2+2n -1·1,③所以2S =2·n +22(n -1)+23(n -2)+…+2n -1·2+2n·1,④④-③,得S =-n +2+22+23+…+2n -1+2n=-n +21-2n1-2=2n +1-n -2,所以存在等差数列{b n },且b n =n 满足题意.。
2018年高考数学江苏专版三维二轮专题复习训练6个解答题专项强化练及答案(6份)
6个解答题专项强化练(一) 三角函数与解三角形1.已知向量m =(cos α,-1),n =(2,sin α),其中α∈⎝⎛⎭⎪⎫0,π2,且m ⊥n .(1)求cos 2α的值; (2)若sin(α-β)=1010,且β∈⎝⎛⎭⎪⎫0,π2,求角β的值.解:法一:(1)由m ⊥n 得,2cos α-sin α=0,即sin α=2cos α,代入sin 2α+cos 2α=1,得cos 2α=15,又α∈⎝⎛⎭⎪⎫0,π2,所以cos α=55,sin α=255, 所以cos 2α=cos 2α-sin 2α=⎝⎛⎭⎪⎫552-⎝ ⎛⎭⎪⎫2552=-35. (2)由α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2,得α-β∈⎝ ⎛⎭⎪⎫-π2,π2.因为sin(α-β)=1010,所以cos(α-β)=31010. 所以sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β) =255×31010-55×1010=22. 因为β∈⎝⎛⎭⎪⎫0,π2,所以β=π4.法二:(1)由m ⊥n 得,2cos α-sin α=0,tan α=2,故cos 2α=cos 2α-sin 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α=1-41+4=-35. (2)由(1)知,2cos α-sin α=0,且sin 2α+cos 2α=1,α∈⎝⎛⎭⎪⎫0,π2, 所以sin α=255,cos α=55, 由α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2,得α-β∈⎝ ⎛⎭⎪⎫-π2,π2. 因为sin(α-β)=1010,所以cos(α-β)=31010.所以cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =55×31010+255×1010=22. 因为β∈⎝ ⎛⎭⎪⎫0,π2,所以β=π4.2.在△ABC 中,∠A =60°,c =37a .(1)求sin C 的值;(2)若a =7,求△ABC 的面积.解:(1)在△ABC 中,因为∠A =60°,c =37a ,所以由正弦定理得sin C =c sin A a =37×32=3314. (2)因为a =7,所以c =37×7=3.由余弦定理a 2=b 2+c 2-2bc cos A , 得72=b 2+32-2b ×3×12,解得b =8或b =-5(舍去).所以△ABC 的面积S =12bc sin A =12×8×3×32=6 3.3.已知函数f (x )=sin 2x -cos 2x -23sin x cos x (x ∈R).(1)求f ⎝ ⎛⎭⎪⎫2π3的值;(2)求f (x )的最小正周期及单调递增区间. 解:(1)由题意,f (x )=-cos 2x -3sin 2x =-2⎝⎛⎭⎪⎫32sin 2x +12cos 2x =-2sin ⎝ ⎛⎭⎪⎫2x +π6,故f ⎝ ⎛⎭⎪⎫2π3=-2sin ⎝ ⎛⎭⎪⎫4π3+π6=-2sin 3π2=2.(2)由(1)知f (x )=-2sin ⎝⎛⎭⎪⎫2x +π6. 则f (x )的最小正周期是π. 由正弦函数的性质: 令π2+2k π≤2x +π6≤3π2+2k π,k ∈Z ,解得π6+k π≤x ≤2π3+k π,k ∈Z ,所以f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤π6+k π,2π3+k π(k ∈Z).4.如图,在△ABC 中,D 为边BC 上一点,AD =6,BD =3,DC =2.(1)若AD ⊥BC ,求∠BAC 的大小; (2)若∠ABC =π4,求△ADC 的面积. 解:(1)设∠BAD =α,∠DAC =β. 因为AD ⊥BC ,AD =6,BD =3,DC =2, 所以tan α=12,tan β=13,所以tan ∠BAC =tan(α+β)=tan α+tan β1-tan αtan β=12+131-12×13=1.又∠BAC ∈(0,π), 所以∠BAC =π4.(2)设∠BAD =α.在△ABD 中,∠ABC =π4,AD =6,BD =3. 由正弦定理得AD sinπ4=BD sin α,解得sin α=24.因为AD >BD ,所以α为锐角,从而cos α=1-sin 2α=144. 因此sin ∠ADC =sin ⎝ ⎛⎭⎪⎫α+π4=sin αcos π4+cos αsin π4=22×⎝ ⎛⎭⎪⎫24+144=1+74. 所以△ADC 的面积S =12×AD ×DC ×sin∠ADC =12×6×2×1+74=+72.5.设函数f (x )=sin ⎝⎛⎭⎪⎫ωx -π6+sin ⎝ ⎛⎭⎪⎫ωx -π2,其中0<ω<3.已知f ⎝ ⎛⎭⎪⎫π6=0.(1)求ω;(2)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数y=g(x)的图象,求g(x)在⎣⎢⎡⎦⎥⎤-π4,3π4上的最小值.解:(1)因为f(x)=sin⎝⎛⎭⎪⎫ωx-π6+sin⎝⎛⎭⎪⎫ωx-π2,所以f(x)=32sin ωx-12cos ωx-cos ωx=32sin ωx-32cos ωx=3⎝⎛⎭⎪⎫12sin ωx-32cos ωx=3sin⎝⎛⎭⎪⎫ωx-π3.因为f⎝⎛⎭⎪⎫π6=0,所以ωπ6-π3=kπ,k∈Z.故ω=6k+2,k∈Z.又0<ω<3,所以ω=2.(2)由(1)得f(x)=3sin⎝⎛⎭⎪⎫2x-π3,所以g(x)=3sin⎝⎛⎭⎪⎫x+π4-π3=3sin⎝⎛⎭⎪⎫x-π12.因为x∈⎣⎢⎡⎦⎥⎤-π4,3π4,所以x-π12∈⎣⎢⎡⎦⎥⎤-π3,2π3,当x-π12=-π3,即x=-π4时,g(x)取得最小值-32.6.在△ABC中,a,b,c分别为角A,B,C的对边.若向量m=(a,cos A),向量n=(cos C,c),且m·n=3b cos B.(1)求cos B的值;(2)若a,b,c成等比数列,求1tan A +1tan C的值.解:(1)因为m·n=3b cos B,所以a cos C+c cos A=3b cos B.由正弦定理,得sin A cos C+sin C cos A=3sin B cos B,所以sin(A +C )=3sin B cos B , 所以sin B =3sin B cos B . 因为B 是△ABC 的内角, 所以sin B ≠0, 所以cos B =13.(2)因为a ,b ,c 成等比数列,所以b 2=ac . 由正弦定理,得sin 2B =sin A sinC . 因为cos B =13,B 是△ABC 的内角,所以sin B =223.所以1tan A +1tan C =cos A sin A +cos C sin C=cos A sin C +sin A cos C sin A sin C =A +Csin A sin C=sin B sin A sin C =sin B sin 2B =1sin B =324.6个解答题专项强化练(二) 空间中位置关系的证明1.在长方体ABCD A1B 1C 1D 1中,AB =BC =EC =12AA 1.求证:(1)AC 1∥平面BDE ; (2)A 1E ⊥平面BDE .证明:(1)连结AC 交BD 于点O ,连结OE . 在长方体ABCD A 1B 1C 1D 1中,因为四边形ABCD 为正方形,所以点O 为AC 的中点,因为AA 1∥CC 1且AA 1=CC 1,又EC =12AA 1,所以EC =12CC 1,即点E 为CC 1的中点,于是在△CAC 1中,AC 1∥OE . 又因为OE ⊂平面BDE ,AC 1⊄平面BDE , 所以AC 1∥平面BDE .(2)连结B 1E .设AB =a ,则在△BB 1E 中,BE =B 1E =2a ,BB 1=2a . 所以BE 2+B 1E 2=BB 21 ,所以B 1E ⊥BE .由ABCD A 1B 1C 1D 1为长方体,得A 1B 1⊥平面BB 1C 1C .因为BE ⊂平面BB 1C 1C ,所以A 1B 1⊥BE . 因为B 1E ∩A 1B 1=B 1,B 1E ⊂平面A 1B 1E ,A 1B 1⊂平面A 1B 1E ,所以BE ⊥平面A 1B 1E . 又因为A 1E ⊂平面A 1B 1E, 所以A 1E ⊥BE . 同理A 1E ⊥DE .又因为BE ∩DE =E ,BE ⊂平面BDE ,DE ⊂平面BDE , 所以A 1E ⊥平面BDE .2.如图,在四棱锥P ABCD 中,底面ABCD 是矩形,平面PAD ⊥平面ABCD ,AP=AD ,M ,N 分别为棱PD ,PC 的中点.求证:(1)MN ∥平面PAB; (2)AM ⊥平面PCD .证明:(1)因为M ,N 分别为棱PD ,PC 的中点, 所以MN ∥DC,又因为底面ABCD 是矩形,所以AB ∥DC , 所以MN ∥AB .又AB ⊂平面PAB ,MN ⊄平面PAB , 所以MN ∥平面PAB .(2)因为AP =AD ,M 为PD 的中点, 所以AM ⊥PD .因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,CD ⊥AD ,CD ⊂平面ABCD , 所以CD ⊥平面PAD .又AM ⊂平面PAD ,所以CD ⊥AM .因为CD ∩PD =D ,CD ⊂平面PCD ,PD ⊂平面PCD , 所以AM ⊥平面PCD .3.如图,已知四棱锥P ABCD 的底面ABCD 是平行四边形,PA ⊥平面ABCD ,M 是AD 的中点,N 是PC 的中点.(1)求证:MN ∥平面PAB ;(2)若平面PMC ⊥平面PAD ,求证:CM ⊥AD .=12BC ,由证明:(1)取PB 的中点E ,连结EA ,EN ,在△PBC 中,EN ∥BC 且ENAM =12AD ,AD ∥BC ,AD =BC ,得EN ∥AM ,EN =AM .∴四边形ENMA 是平行四边形, ∴MN ∥AE .又MN ⊄平面PAB ,AE ⊂平面PAB , ∴MN ∥平面PAB .(2)过点A作PM的垂线,垂足为H.∵平面PMC⊥平面PAD,平面PMC∩平面PAD=PM,AH⊥PM,AH⊂平面PAD,∴AH⊥平面PMC,又CM⊂平面PMC,∴AH⊥CM.∵PA⊥平面ABCD,CM⊂平面ABCD,∴PA⊥CM.∵PA∩AH=A,PA⊂平面PAD,AH⊂平面PAD,∴CM⊥平面PAD.∵AD⊂平面PAD,∴CM⊥AD.4.如图,在直三棱柱ABCA1B1C1中,BC⊥AC,D,E分别是AB,AC的中点.求证:(1)B1C1∥平面A1DE;(2)平面A1DE⊥平面ACC1A1.证明:(1)因为D,E分别是AB,AC的中点,所以DE∥BC,又因为在三棱柱ABCA1B1C1中,B1C1∥BC,所以B1C1∥DE.又B1C1⊄平面A1DE,DE⊂平面A1DE,所以B1C1∥平面A1DE.(2)在直三棱柱ABCA1B1C1中,CC1⊥底面ABC,又DE⊂底面ABC,所以CC1⊥DE.又BC⊥AC,DE∥BC,所以DE⊥AC,又CC1⊂平面ACC1A1,AC⊂平面ACC1A1,且CC1∩AC=C,所以DE⊥平面ACC1A1.又DE⊂平面A1DE,所以平面A1DE⊥平面ACC1A1.5.如图,在三棱锥PABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.(1)求证:PA⊥BD;(2)求证:平面BDE⊥平面PAC;(3)当PA∥平面BDE时,求三棱锥EBCD的体积.解:(1)证明:因为PA⊥AB,PA⊥BC,AB∩BC=B,又因为BD ⊂平面ABC , 所以PA ⊥BD .(2)证明:因为AB =BC ,D 为AC 的中点, 所以BD ⊥AC .由(1)知,PA ⊥BD ,又AC ∩PA =A , 所以BD ⊥平面PAC . 因为BD ⊂平面BDE , 所以平面BDE ⊥平面PAC .(3)因为PA ∥平面BDE ,平面PAC ∩平面BDE =DE , 所以PA ∥DE . 因为D 为AC 的中点,所以DE =12PA =1,BD =DC = 2.由(1)知,PA ⊥平面ABC , 所以DE ⊥平面ABC .所以三棱锥E BCD 的体积V =16BD ·DC ·DE =13.6.由四棱柱ABCD A 1B 1C 1D 1截去三棱锥C 1B 1CD 1后得到的几何体如图所示.四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,A 1E ⊥平面ABCD .(1)证明:A 1O ∥平面B 1CD 1;(2)设M 是OD 的中点,证明:平面A 1EM ⊥平面B 1CD 1. 证明:(1)取B 1D 1的中点O 1,连结CO 1,A 1O 1,因为ABCD A 1B 1C 1D 1是四棱柱, 所以A 1O 1∥OC ,A 1O 1=OC , 因此四边形A 1OCO 1为平行四边形, 所以A 1O ∥O 1C ,因为O 1C ⊂平面B 1CD 1,A 1O ⊄平面B 1CD 1,(2)因为E ,M 分别为AD ,OD 的中点, 所以EM ∥AO . 因为AO ⊥BD , 所以EM ⊥BD ,又A 1E ⊥平面ABCD ,BD ⊂平面ABCD , 所以A 1E ⊥BD , 因为B 1D 1∥BD ,所以EM ⊥B 1D 1,A 1E ⊥B 1D 1,又A 1E ⊂平面A 1EM ,EM ⊂平面A 1EM ,A 1E ∩EM =E , 所以B 1D 1⊥平面A 1EM , 又B 1D 1⊂平面B 1CD 1, 所以平面A 1EM ⊥平面B 1CD 1.6个解答题专项强化练(三) 解析几何1.已知圆M :x 2+y 2-2x +a =0.(1)若a =-8,过点P (4,5)作圆M 的切线,求该切线方程;(2)若AB 为圆M 的任意一条直径,且OA ―→·OB ―→=-6(其中O 为坐标原点),求圆M 的半径. 解:(1)若a =-8,则圆M 的标准方程为(x -1)2+y 2=9,圆心M (1,0),半径为3. 若切线斜率不存在,圆心M 到直线x =4的距离为3,所以直线x =4为圆M 的一条切线; 若切线斜率存在,设切线方程为y -5=k (x -4),即kx -y -4k +5=0,则圆心到直线的距离为|k -4k +5|k 2+1=3,解得k =815,即切线方程为8x -15y +43=0.所以切线方程为x =4或8x -15y +43=0.(2)圆M 的方程可化为(x -1)2+y 2=1-a ,圆心M (1,0),则OM =1,半径r =1-a (a <1). 因为AB 为圆M 的任意一条直径,所以MA ―→=-MB ―→,且|MA ―→|=|MB ―→|=r ,则OA ―→·OB ―→=(OM ―→+MA ―→)·(OM ―→+MB ―→)=(OM ―→-MB ―→)·(OM ―→+MB ―→)=OM ―→2-MB ―→2=1-r 2, 又因为OA ―→·OB ―→=-6,解得r =7,所以圆M 的半径为7.2.如图,在平面直角坐标系xOy 中,已知椭圆x 2a +y 2b=1(a >b >0)的左焦点为F (-1,0),且经过点⎝ ⎛⎭⎪⎫1,32. (1)求椭圆的标准方程;(2)已知椭圆的弦AB 过点F ,且与x 轴不垂直.若D 为x 轴上的一点,DA =DB ,求ABDF的值. 解:(1)法一:由题意,得⎩⎪⎨⎪⎧c =1,1a 2+94b 2=1,a 2=b 2+c 2,解得⎩⎪⎨⎪⎧a 2=4,b 2=3.所以椭圆的标准方程为x 24+y 23=1.法二:由题意,知2a =+2+⎝ ⎛⎭⎪⎫322+-2+⎝ ⎛⎭⎪⎫322=4,所以a =2. 又c =1,a 2=b 2+c 2,所以b =3, 所以椭圆的标准方程为x 24+y 23=1.(2)法一:设直线AB 的方程为y =k (x +1). ①当k =0时,AB =2a =4,FD =FO =1,所以ABDF=4;②当k ≠0时,设A (x 1,y 1),B (x 2,y 2),AB 的中点为M (x 0,y 0),把直线AB 的方程代入椭圆方程,整理得(3+4k 2)x 2+8k 2x +4k 2-12=0,所以x 1+x 2=-8k 23+4k 2,x 1·x 2=4k 2-123+4k 2,所以x 0=-4k23+4k 2,所以y 0=k (x 0+1)=3k3+4k2,所以AB 的垂直平分线方程为y -3k 3+4k =-1k ⎝ ⎛⎭⎪⎫x +4k 23+4k 2. 因为DA =DB ,所以点D 为AB 的垂直平分线与x 轴的交点,所以D ⎝ ⎛⎭⎪⎫-k 23+4k 2,0, 所以DF =-k 23+4k 2+1=3+3k23+4k 2.又因为AB =1+k 2|x 1-x 2|=1+k 2·x 1+x 22-4x 1x 2=12+12k23+4k2,所以AB DF=4.综上,得AB DF的值为4.法二:①若直线AB 与x 轴重合,则AB DF=4; ②若直线AB 不与x 轴重合,设A (x 1,y 1),B (x 2,y 2),AB 的中点为M (x 0,y 0),由⎩⎪⎨⎪⎧x 214+y 213=1,x 224+y 223=1,两式相减得x 21-x 224+y 21-y 223=0,所以x 1-x 2x 04+y 1-y 2y 03=0,所以直线AB 的斜率为y 1-y 2x 1-x 2=-3x 04y 0, 所以直线AB 的垂直平分线方程为y -y 0=4y 03x 0(x -x 0).因为DA =DB ,所以点D 为AB 的垂直平分线与x 轴的交点,所以D ⎝ ⎛⎭⎪⎫x 04,0,所以DF =x 04+1.因为椭圆的左准线的方程为x =-4,离心率为12,由AFx 1+4=12,得AF =12(x 1+4), 同理BF =12(x 2+4).所以AB =AF +BF =12(x 1+x 2)+4=x 0+4,所以AB DF=4. 综上,得AB DF的值为4.3.如图,在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b2=1(a >b >0)的右顶点和上顶点分别为A ,B ,M 为线段AB 的中点,且OM ―→·AB ―→=-32b 2.(1)求椭圆的离心率;(2)若a =2,四边形ABCD 内接于椭圆,AB ∥DC .记直线AD ,BC 的斜率分别为k 1,k 2,求证:k 1k 2为定值.解:(1)由题意,A (a,0),B (0,b ),由M 为线段AB 的中点得M ⎝ ⎛⎭⎪⎫a 2,b 2.所以OM ―→=⎝ ⎛⎭⎪⎫a 2,b 2,AB ―→=(-a ,b ).因为OM ―→·AB ―→=-32b 2,所以⎝ ⎛⎭⎪⎫a 2,b 2·(-a ,b )=-a 22+b 22=-32b 2, 整理得a 2=4b 2,即a =2b .因为a 2=b 2+c 2,所以3a 2=4c 2,即3a =2c . 所以椭圆的离心率e =c a =32. (2)证明:法一:由a =2得b =1, 故椭圆方程为x 24+y 2=1.从而A (2,0),B (0,1),直线AB 的斜率为-12.因为AB ∥DC ,故可设DC 的方程为y =-12x +m ,D (x 1,y 1),C (x 2,y 2).联立方程⎩⎪⎨⎪⎧y =-12x +m ,x24+y 2=1,消去y ,得x 2-2mx +2m 2-2=0,所以x 1+x 2=2m ,从而x 1=2m -x 2. 直线AD 的斜率k 1=y 1x 1-2=-12x 1+m x 1-2,直线BC 的斜率k 2=y 2-1x 2=-12x 2+m -1x 2,所以k 1k 2=-12x 1+m x 1-2·-12x 2+m -1x 2=14x 1x 2-12m -x 1-12mx 2+m m -x 1-x 2=14x 1x 2-12m x 1+x 2+12x 1+m m -x 1x 2-2x 2=14x 1x 2-12m ·2m +12m -x 2+m m -x 1x 2-2x 2=14x 1x 2-12x 2x 1x 2-2x 2=14, 即k 1k 2为定值14.法二:由a =2得b =1,故椭圆方程为x 24+y 2=1.从而A (2,0),B (0,1),直线AB 的斜率为-12.设C (x 0,y 0),则x 204+y 20=1.因为AB ∥CD ,故CD 的方程为y =-12(x -x 0)+y 0.联立方程⎩⎪⎨⎪⎧y =-12x -x 0+y 0,x24+y 2=1,消去y ,得x 2-(x 0+2y 0)x +2x 0y 0=0,解得x =x 0或x =2y 0. 所以点D 的坐标为⎝ ⎛⎭⎪⎫2y 0,12x 0.所以k 1k 2=12x 02y 0-2·y 0-1x 0=14,即k 1k 2为定值14.4.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F (-1,0),左准线方程为x =-2.(1)求椭圆C 的标准方程;(2)已知直线l 交椭圆C 于A ,B 两点.①若直线l 经过椭圆C 的左焦点F ,交y 轴于点P ,且满足PA ―→=λAF ―→,PB ―→=μBF ―→.求证:λ+μ为定值;②若A ,B 两点满足OA ⊥OB (O 为坐标原点),求△AOB 面积的取值范围.解:(1)由题设知c =1,-a 2c=-2,解得a 2=2,b 2=1,∴椭圆C 的标准方程为x 22+y 2=1.(2)①证明:由题设知直线l 的斜率存在,设直线l 的方程为y =k (x +1),则P (0,k ). 设A (x 1,y 1),B (x 2,y 2),把直线l 的方程代入椭圆的方程得x 2+2k 2(x +1)2=2, 整理得(1+2k 2)x 2+4k 2x +2k 2-2=0, ∴x 1+x 2=-4k 21+2k 2,x 1x 2=2k 2-21+2k2.由PA ―→=λAF ―→,PB ―→=μBF ―→知,λ=-x 11+x 1,μ=-x 21+x 2,∴λ+μ=-x 1+x 2+2x 1x 21+x 1+x 2+x 1x 2=--4k 21+2k 2+4k 2-41+2k 21+-4k 21+2k 2+2k 2-21+2k 2=--4-1=-4(定值). ②当直线OA ,OB 分别与坐标轴重合时,易知△AOB 的面积S =22, 当直线OA ,OB 的斜率均存在且不为零时,设OA :y =kx ,OB :y =-1kx ,A (x 1,y 1),B (x 2,y 2),将y =kx 代入椭圆C 得到x 2+2k 2x 2=2,∴x 21=22k 2+1,y 21=2k 22k 2+1,同理x 22=2k 22+k ,y 22=22+k,故△AOB 的面积S =OA ·OB2=k 2+2k 2+k 2+.令t =k 2+1∈(1,+∞), 故S =t 2t -t +=12+1t -1t2. 再令u =1t∈(0,1),则S =1-u 2+u +2=1-⎝ ⎛⎭⎪⎫u -122+94∈⎣⎢⎡⎭⎪⎫23,22.综上所述,S ∈⎣⎢⎡⎦⎥⎤23,22.5.如图,在平面直角坐标系xOy 中,已知椭圆C :x 24+y 23=1的左、右顶点分别为A ,B ,过右焦点F 的直线l 与椭圆C 交于P ,Q 两点(点P 在x 轴上方).(1)若QF =2FP ,求直线l 的方程;(2)设直线AP ,BQ 的斜率分别为k 1,k 2.是否存在常数λ,使得k 1=λk 2?若存在,求出λ的值;若不存在,请说明理由.解:(1)因为a 2=4,b 2=3,所以c =a 2-b 2=1,所以F 的坐标为(1,0), 设P (x 1,y 1),Q (x 2,y 2),直线l 的方程为x =my +1, 代入椭圆方程,消去x ,得(4+3m 2)y 2+6my -9=0, 则y 1=-3m +61+m 24+3m 2,y 2=-3m -61+m 24+3m 2. 若QF =2FP ,则-y 2=2y 1,即y 2+2y 1=0, 所以-3m -61+m 24+3m 2+2×-3m +61+m24+3m 2=0, 解得m =255,故直线l 的方程为5x -2y -5=0. (2)由(1)知,y 1+y 2=-6m 4+3m 2,y 1y 2=-94+3m2, 所以my 1y 2=-9m 4+3m 2=32(y 1+y 2),所以k 1k 2=y 1x 1+2·x 2-2y 2=y 1my 2-y 2my 1+=32y 1+y 2-y 132y 1+y 2+3y 2=13, 故存在常数λ=13,使得k 1=13k 2.6.如图,已知椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,其离心率e=12,左准线方程为x =-8. (1)求椭圆的方程;(2)过F 1的直线交椭圆于A ,B 两点,I 1,I 2分别为△F 1AF 2,△F 1BF 2的内心. ①求四边形F 1I 1F 2I 2与△AF 2B 的面积比;②是否存在定点C ,使CA ―→·CB ―→为常数?若存在,求出点C 的坐标;若不存在,说明理由.解:(1)由题意⎩⎪⎨⎪⎧c a =12,a2c =8,解得a =4,c =2,故b =23,所以椭圆的方程为x 216+y 212=1.(2)①设△F 1AF 2的内切圆半径为r , 则S △F 1I 1F 2=12·F 1F 2·r =12·2c ·r =2r ,S △F 1AF 2=12·(AF 1+AF 2+F 1F 2)·r =12·(2a +2c )·r =6r ,∴S △F 1I 1F 2∶S △F 1AF 2=1∶3, 同理S △F 1I 2F 2∶S △F 1BF 2=1∶3, ∴S 四边形F 1I 1F 2I 2∶S △AF 2B =1∶3.②假设存在定点C (s ,t ),使得CA ―→·CB ―→为常数.若直线AB 存在斜率,设AB 的方程为y =k (x +2),A (x 1,y 1),B (x 2,y 2),联立方程⎩⎪⎨⎪⎧y =k x +,x 216+y 212=1,消去y ,得(3+4k 2)x 2+16k 2x +16k 2-48=0,由此得x 1+x 2=-16k 23+4k 2,x 1x 2=16k 2-483+4k 2,∴CA ―→·CB ―→=(x 1-s ,y 1-t )·(x 2-s ,y 2-t ) =(x 1-s )(x 2-s )+(y 1-t )(y 2-t )=(x 1-s )(x 2-s )+[k (x 1+2)-t ][k (x 2+2)-t ] =(1+k 2)x 1x 2+(2k 2-tk -s )(x 1+x 2)+s 2+t 2+4k 2-4tk =+k2k 2-3+4k2+k 2-tk -s-16k23+4k2+s 2+t 2+4k 2-4tk =-12tk -12s -333+4k2+s 2+t 2+4s -5. ∵与k 无关,∴⎩⎪⎨⎪⎧-12t =0,-12s -33=0,即⎩⎪⎨⎪⎧s =-114,t =0,此时CA ―→·CB ―→=-13516;若直线AB 不存在斜率,则A 与B 的坐标为(-2,±3),CA ―→·CB ―→=(s +2,t -3)·(s +2,t +3)=(s +2)2+t 2-9,将⎩⎪⎨⎪⎧s =-114,t =0代入,此时CA ―→·CB ―→=-13516也成立.综上所述,存在定点C ⎝ ⎛⎭⎪⎫-114,0,使得CA ―→·CB ―→为常数. 6个解答题专项强化练(四) 数 列1.已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4.(1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n -1}的前n 项和(n ∈N *).解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q . 由已知b 2+b 3=12,得b 1(q +q 2)=12, 而b 1=2,所以q 2+q -6=0. 又因为q >0,解得q =2. 所以b n =2n.由b 3=a 4-2a 1,可得3d -a 1=8.① 由S 11=11b 4,可得a 1+5d =16.②由①②,解得a 1=1,d =3,由此可得a n =3n -2.所以数列{a n }的通项公式为a n =3n -2,数列{b n }的通项公式为b n =2n. (2)设数列{a 2n b 2n -1}的前n 项和为T n , 由a 2n =6n -2,b 2n -1=2×4n -1,得a 2n b 2n -1=(3n -1)×4n,故T n =2×4+5×42+8×43+…+(3n -1)×4n,4T n =2×42+5×43+8×44+…+(3n -4)×4n +(3n -1)×4n +1,上述两式相减,得-3T n =2×4+3×42+3×43+…+3×4n-(3n -1)×4n +1=-4n1-4-4-(3n -1)×4n +1=-(3n -2)×4n +1-8.故T n =3n -23×4n +1+83.所以数列{a 2n b 2n -1}的前n 项和为3n -23×4n +1+83. 2.已知数列{a n }满足:a 1=12,a n +1-a n =p ·3n -1-nq ,n ∈N *,p ,q ∈R.(1)若q =0,且数列{a n }为等比数列,求p 的值;(2)若p =1,且a 4为数列{a n }的最小项,求q 的取值范围. 解:(1)∵q =0,a n +1-a n =p ·3n -1,∴a 2=a 1+p =12+p ,a 3=a 2+3p =12+4p ,由数列{a n }为等比数列,得⎝ ⎛⎭⎪⎫12+p 2=12⎝ ⎛⎭⎪⎫12+4p ,解得p =0或p =1.当p =0时,a n +1=a n ,∴a n =12,符合题意;当p =1时,a n +1-a n =3n -1,∴a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=12+(1+3+…+3n -2)=12+1-3n -11-3=12·3n -1,∴a n +1a n=3.符合题意. ∴p 的值为0或1.(2)法一:若p =1,则a n +1-a n =3n -1-nq ,∴a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=12+(1+3+…+3n -2)-[1+2+…+(n -1)]q =12[3n -1-n (n -1)q ].∵数列{a n }的最小项为a 4,∴对任意的n ∈N *,有12[3n -1-n (n -1)q ]≥a 4=12(27-12q )恒成立,即3n -1-27≥(n 2-n -12)q 对任意的n ∈N *恒成立.当n =1时,有-26≥-12q ,∴q ≥136; 当n =2时,有-24≥-10q ,∴q ≥125; 当n =3时,有-18≥-6q ,∴q ≥3; 当n =4时,有0≥0,∴q ∈R ;当n ≥5时,n 2-n -12>0,所以有q ≤3n -1-27n 2-n -12恒成立,令c n =3n -1-27n 2-n -12(n ≥5,n ∈N *),则c n +1-c n =n 2-2n -n -1+54nn -n ->0, 即数列{c n }为递增数列,∴q ≤c 5=274. 综上所述,q 的取值范围为⎣⎢⎡⎦⎥⎤3,274.法二:∵p =1,∴a n +1-a n =3n -1-nq ,又a 4为数列{a n }的最小项,∴⎩⎪⎨⎪⎧a 4-a 3≤0,a 5-a 4≥0,即⎩⎪⎨⎪⎧9-3q ≤0,27-4q ≥0,∴3≤q ≤274. 此时a 2-a 1=1-q <0,a 3-a 2=3-2q <0, ∴a 1>a 2>a 3≥a 4.当n ≥4时,令b n =a n +1-a n ,b n +1-b n =2·3n -1-q ≥2·34-1-274>0, ∴b n +1>b n ,∴0≤b 4<b 5<b 6<…, 即a 4≤a 5<a 6<a 7<….综上所述,当3≤q ≤274时,a 4为数列{a n }的最小项,即q 的取值范围为⎣⎢⎡⎦⎥⎤3,274. 3.数列{a n }的前n 项和为S n ,a 1=2,S n =a n ⎝ ⎛⎭⎪⎫n3+r (r ∈R ,n ∈N *).(1)求r 的值及数列{a n }的通项公式; (2)设b n =n a n(n ∈N *),记{b n }的前n 项和为T n .①当n ∈N *时,λ<T 2n -T n 恒成立,求实数λ的取值范围;②求证:存在关于n 的整式g (n ),使得∑i =1n -1(T n +1)=T n ·g (n )-1对一切n ≥2,n ∈N *都成立.解:(1)当n =1时,S 1=a 1⎝ ⎛⎭⎪⎫13+r ,∴r =23, ∴S n =a n ⎝ ⎛⎭⎪⎫n 3+23.当n ≥2时,S n -1=a n -1⎝ ⎛⎭⎪⎫n 3+13. 两式相减,得a n =n +23a n -n +13a n -1,∴a n a n -1=n +1n -1(n ≥2). ∴a 2a 1·a 3a 2·…·a n a n -1=31×42×53×…×n n -2×n +1n -1,即a n a 1=n n +2.∴a n =n (n +1)(n ≥2), 又a 1=2适合上式. ∴a n =n (n +1). (2)①∵a n =n (n +1), ∴b n =1n +1,T n =12+13+…+1n +1. ∴T 2n =12+13+…+12n +1,∴T 2n -T n =1n +2+1n +3+…+12n +1. 令B n =T 2n -T n =1n +2+1n +3+…+12n +1. 则B n +1=1n +3+1n +4+…+12n +3. ∴B n +1-B n =12n +2+12n +3-1n +2=3n +4n +n +n +>0.∴B n +1>B n ,∴B n 单调递增, 故(B n )min =B 1=13,∴λ<13.∴实数λ的取值范围为⎝ ⎛⎭⎪⎫-∞,13.②证明:∵T n =12+13+…+1n +1,∴当n ≥2时,T n -1=12+13+…+1n ,∴T n -T n -1=1n +1, 即(n +1)T n -nT n -1=T n -1+1.∴当n ≥2时,∑i =1n -1(T n +1)=(3T 2-2T 1)+(4T 3-3T 2)+(5T 4-4T 3)+…+[(n +1)T n -nT n -1]=(n +1)T n -2T 1=(n +1)T n -1.∴存在关于n 的整式g (n )=n +1,使得∑i =1n -1(T n +1)=T n ·g (n )-1对一切n ≥2,n ∈N *都成立.4.已知数列{a n }满足a 1=12,对任意的正整数m ,p ,都有a m +p =a m ·a p .(1)证明:数列{a n }是等比数列;(2)若数列{b n }满足a n =b 12+1-b 222+1+b 323+1-b 424+1+…+(-1)n +1b n2n+1,求数列{b n }的通项公式;(3)在(2)的条件下,设c n =2n+λb n ,则是否存在实数λ,使得数列{c n }是单调递增数列?若存在,求出实数λ的取值范围;若不存在,请说明理由.解:(1)证明:∵对任意的正整数m ,p ,都有a m +p =a m ·a p ,∴令m =n ,p =1,得a n +1=a 1·a n , 从而a n +1a n =a 1=12, ∴数列{a n }是首项和公比都为12的等比数列.(2)由(1)可知,a n =12n .由a n =b 12+1-b 222+1+b 323+1-b 424+1+…+(-1)n +1b n2n+1得,a n -1=b 12+1-b 222+1+b 323+1-b 424+1+…+(-1)n·b n -12n -1+1(n ≥2), 故a n -a n -1=(-1)n +1b n2+1(n ≥2),故b n =(-1)n ⎝ ⎛⎭⎪⎫12n +1(n ≥2).当n =1时,a 1=b 12+1,解得b 1=32,不符合上式.∴b n=⎩⎪⎨⎪⎧32,n =1,-n⎝ ⎛⎭⎪⎫12n+1,n ≥2,n ∈N *.(3)∵c n =2n+λb n ,∴当n ≥2时,c n =2n +(-1)n ⎝ ⎛⎭⎪⎫12n +1λ,当n ≥3时,c n -1=2n -1+(-1)n -1⎝ ⎛⎭⎪⎫12n -1+1λ, 根据题意,当n ≥3时,c n -c n -1=2n -1+(-1)nλ·⎝ ⎛⎭⎪⎫2+32n >0,即(-1)nλ>-2n -132n+2.①当n 为大于等于4的偶数时,有λ>-2n -132n +2恒成立,又2n -132n +2随着n 的增大而增大,此时⎝ ⎛⎭⎪⎪⎫2n -132n +2min =12835,即λ>-12835, 故λ的取值范围为⎝ ⎛⎭⎪⎫-12835,+∞. ②当n 为大于等于3的奇数时,有λ<2n -132n +2恒成立,此时⎝ ⎛⎭⎪⎪⎫2n -132n +2min =3219,即λ<3219. 故λ的取值范围为⎝⎛⎭⎪⎫-∞,3219;③当n =2时,由c 2-c 1=⎝ ⎛⎭⎪⎫22+54λ-⎝ ⎛⎭⎪⎫2+32λ>0,得λ<8.综上可得,实数λ的取值范围为⎝ ⎛⎭⎪⎫-12835,3219. 5.已知各项不为零的数列{a n }的前n 项和为S n ,且a 1=1,S n =pa n a n +1(n ∈N *),p ∈R. (1)若a 1,a 2,a 3成等比数列,求实数p 的值; (2)若a 1,a 2,a 3成等差数列, ①求数列{a n }的通项公式;②在a n 与a n +1间插入n 个正数,共同组成公比为q n 的等比数列,若不等式(q n )(n +1)(n +a )≤e(e 为自然对数的底数)对任意的n ∈N *恒成立,求实数a 的最大值.解:(1)当n =1时,a 1=pa 1a 2,a 2=1p;当n =2时,a 1+a 2=pa 2a 3,a 3=a 1+a 2pa 2=1+1p. 由a 22=a 1a 3,得1p 2=1+1p,即p 2+p -1=0,解得p =-1±52. (2)①因为a 1,a 2,a 3成等差数列,所以2a 2=a 1+a 3,得p =12,故a 2=2,a 3=3,所以S n =12a n a n +1.当n ≥2时,a n =S n -S n -1=12a n a n +1-12a n -1a n ,因为a n ≠0,所以a n +1-a n -1=2.故数列{a n }的所有奇数项组成以1为首项,2为公差的等差数列, 其通项公式a n =1+⎝⎛⎭⎪⎫n +12-1×2=n ,同理,数列{a n }的所有偶数项组成以2为首项,2为公差的等差数列, 其通项公式是a n =2+⎝ ⎛⎭⎪⎫n2-1×2=n , 所以数列{a n }的通项公式是a n =n .②由①知,a n =n ,在n 与n +1间插入n 个正数,组成公比为q n 的等比数列,故有n +1=nq n +1n , 即q n =⎝⎛⎭⎪⎫n +1n 1n +1,所以(q n )(n +1)(n +a )≤e,即⎝⎛⎭⎪⎫n +1n n +a ≤e,两边取对数得(n +a )ln ⎝ ⎛⎭⎪⎫n +1n ≤1,分离参数得a ≤1ln ⎝ ⎛⎭⎪⎫n +1n -n 恒成立 .令n +1n =x ,x ∈(1,2],则a ≤1ln x -1x -1,x ∈(1,2], 令f (x )=1ln x -1x -1,x ∈(1,2],则f ′(x )=x 2-x -2xx 2x -2,下证ln x ≤x -1x ,x ∈(1,2], 令g (x )=x -1x -2ln x ,x ∈[1,+∞), 则g ′(x )=x -2x 2>0,所以g (x )>g (1)=0,即2ln x <x -1x,用x 替代x 可得ln x <x -1x,x ∈(1,2],所以f ′(x )=x 2-x -2x x 2x -2<0,所以f (x )在(1,2]上递减, 所以a ≤f (2)=1ln 2-1. 所以实数a 的最大值为1ln 2-1.6.设三个各项均为正整数的无穷数列{a n },{b n },{c n }.记数列{b n },{c n }的前n 项和分别为S n ,T n ,若对任意的n ∈N *,都有a n =b n +c n ,且S n >T n ,则称数列{a n }为可拆分数列.(1)若a n =4n,且数列{b n },{c n }均是公比不为1的等比数列,求证:数列{a n }为可拆分数列;(2)若a n =5n ,且数列{b n },{c n }均是公差不为0的等差数列,求所有满足条件的数列{b n },{c n }的通项公式;(3)若数列{a n },{b n },{c n }均是公比不为1的等比数列,且a 1≥3,求证:数列{a n }为可拆分数列. 解:(1)证明:由a n =4n=4·4n -1=3·4n -1+4n -1,令b n =3·4n -1,c n =4n -1.则{b n }是以3为首项,4为公比的等比数列,{c n }是以1为首项,4为公比的等比数列, 故S n =4n-1,T n =4n-13.所以对任意的n ∈N *,都有a n =b n +c n ,且S n >T n . 所以数列{a n }为可拆分数列.(2)设数列{b n },{c n }的公差分别为d 1,d 2. 由a n =5n ,得b 1+(n -1)d 1+c 1+(n -1)d 2=(d 1+d 2)n +b 1+c 1-d 1-d 2=5n 对任意的n ∈N *都成立.所以⎩⎪⎨⎪⎧d 1+d 2=5,b 1+c 1-d 1-d 2=0,即⎩⎪⎨⎪⎧d 1+d 2=5,b 1+c 1=5, ①由S n >T n ,得nb 1+n n -2d 1>nc 1+n n -2d 2,则⎝ ⎛⎭⎪⎫d 12-d 22n 2+⎝⎛⎭⎪⎫b 1-c 1-d 12+d 22n >0.由n ≥1,得⎝ ⎛⎭⎪⎫d 12-d 22n +⎝⎛⎭⎪⎫b 1-c 1-d 12+d 22>0对任意的n ∈N *成立.则d 12-d 22≥0且⎝ ⎛⎭⎪⎫d 12-d 22+⎝ ⎛⎭⎪⎫b 1-c 1-d 12+d 22>0即d 1≥d 2且b 1>c 1. ② 由数列{b n },{c n }各项均为正整数,则b 1,c 1,d 1,d 2均为正整数,当d 1=d 2时,由d 1+d 2=5,得d 1=d 2=52∉N *,不符合题意,所以d 1>d 2. ③联立①②③,可得⎩⎪⎨⎪⎧d 1=4,d 2=1,b 1=4,c 1=1或⎩⎪⎨⎪⎧d 1=4,d 2=1,b 1=3,c 1=2或⎩⎪⎨⎪⎧d 1=3,d 2=2,b 1=4,c 1=1或⎩⎪⎨⎪⎧d 1=3,d 2=2,b 1=3,c 1=2.所以⎩⎪⎨⎪⎧ b n =4n ,c n =n或⎩⎪⎨⎪⎧b n =4n -1,c n =n +1或⎩⎪⎨⎪⎧b n =3n +1,c n =2n -1或⎩⎪⎨⎪⎧b n =3n ,c n =2n .(3)证明:设a n =a 1qn -1,a 1∈N *,q >0,q ≠1,则q ≥2.当q 为无理数时,a 2=a 1q 为无理数,与a n ∈N *矛盾. 故q 为有理数,设q =b a(a ,b 为正整数,且a ,b 互质).此时a n =a 1·b n -1an -1.则对任意的n ∈N *,an -1均为a 1的约数,则an -1=1,即a =1,故q =b a=b ∈N *,所以q ∈N *,q ≥2. 所以a n =a 1qn -1=(a 1-1)qn -1+qn -1,令b n =(a 1-1)·q n -1,c n =qn -1.则{b n },{c n }各项均为正整数.因为a 1≥3, 所以a 1-1≥2>1,则S n >T n , 所以数列{a n }为可拆分数列.6个解答题专项强化练(五) 函 数1.已知函数f (x )=x |2a -x |+2x ,a ∈R.(1)若a =0,判断函数y =f (x )的奇偶性,并加以证明; (2)若函数f (x )在R 上是增函数,求实数a 的取值范围;(3)若存在实数a ∈[-2,2],使得关于x 的方程f (x )-tf (2a )=0有三个不相等的实数根,求实数t 的取值范围.解:(1)函数y =f (x )为奇函数. 证明如下:当a =0时,f (x )=x |x |+2x , 所以f (-x )=-x |x |-2x =-f (x ), 所以函数y =f (x )为奇函数.(2)f (x )=⎩⎪⎨⎪⎧x 2+-2a x ,x ≥2a ,-x 2++2a x ,x <2a ,当x ≥2a 时,y =f (x )的对称轴为x =a -1; 当x <2a 时,y =f (x )的对称轴为x =a +1, 所以当a -1≤2a ≤a +1时,f (x )在R 上是增函数, 即-1≤a ≤1时,函数f (x )在R 上是增函数.(3)方程f (x )-tf (2a )=0的解即为方程f (x )=tf (2a )的解. ①当-1≤a ≤1时,函数f (x )在R 上是增函数,所以关于x 的方程f (x )=tf (2a )不可能有三个不相等的实数根. ②当a >1时,即2a >a +1>a -1,所以f (x )在(-∞,a +1)上单调递增,在(a +1,2a )上单调递减,在(2a ,+∞)上单调递增, 所以当f (2a )<tf (2a )<f (a +1)时,关于x 的方程f (x )=tf (2a )有三个不相等的实数根, 即4a <t ·4a <(a +1)2,因为a >1,所以1<t <14⎝ ⎛⎭⎪⎫a +1a +2.设h (a )=14⎝ ⎛⎭⎪⎫a +1a +2(a >1),因为存在a ∈[-2,2],使得关于x 的方程f (x )=tf (2a )有三个不相等的实数根, 所以1<t <h (a )max .又可证h (a )=14⎝ ⎛⎭⎪⎫a +1a +2在(1,2]上单调递增,所以h (a )max =h (2)=98,所以1<t <98.③当a <-1时,即2a <a -1<a +1,所以f (x )在(-∞,2a )上单调递增,在(2a ,a -1)上单调递减,在(a -1,+∞)上单调递增, 所以当f (a -1)<tf (2a )<f (2a )时,关于x 的方程f (x )=tf (2a )有三个不相等的实数根, 即-(a -1)2<t ·4a <4a ,因为a <-1,所以1<t <-14⎝ ⎛⎭⎪⎫a +1a -2,设g (a )=-14⎝ ⎛⎭⎪⎫a +1a -2,因为存在a ∈[-2,2],使得关于x 的方程f (x )=tf (2a )有三个不相等的实数根, 所以1<t <g (a )max ,又可证g (a )=-14⎝ ⎛⎭⎪⎫a +1a -2在[-2,-1)上单调递减, 所以g (a )max =98,所以1<t <98.综上,实数t 的取值范围为⎝ ⎛⎭⎪⎫1,98.2.已知函数f (x )=a ln x -bx 3,其中a ,b 为实数,b ≠0,e 为自然对数的底数,e =2.718 28…. (1)当a <0,b =-1时,设函数f (x )的最小值为g (a ),求g (a )的最大值; (2)若关于x 的方程f (x )=0在区间(1,e]上有两个不同实数解,求a b的取值范围. 解:(1)当b =-1时,函数f (x )=a ln x +x 3(x >0),则f ′(x )=a x +3x 2=a +3x 3x,令f ′(x )=0,得x =3-a3,因为a <0时,3-a3>0,所以f ′(x ),f (x )随x 的变化情况如下表:所以g (a )=f ⎝ ⎛⎭⎪⎫ 3-a 3=a ln 3-a 3-a 3 =a 3ln ⎝ ⎛⎭⎪⎫-a 3-a3,令t (x )=-x ln x +x ,则t ′(x )=-ln x ,令t ′(x )=0,得x =1, 且当x =1时,t (x )有最大值1, 所以g (a )的最大值为1,此时a =-3.(2)因为方程a ln x -bx 3=0在区间(1,e]上有两个不同实数解,所以a b =x 3ln x在区间(1,e]上有两个不同的实数解,即函数y =a b 的图象与函数m (x )=x 3ln x的图象有两个不同的交点,因为m ′(x )=x 2x -x 2,令m ′(x )=0,得x =3e ,所以m ′(x ),m (x )随x 的变化情况如下表:所以当x ∈(1,3e)时,m (x )∈(3e ,+∞), 当x ∈(3e ,e]时,m (x )∈(3e ,e 3],结合函数图象知a ,b 满足的关系式为3e<a b≤e 3, 即a b的取值范围为(3e ,e 3].3.已知函数f (x )=ax 2-x -ln x ,a ∈R. (1)当a =38时,求函数f (x )的最小值;(2)若-1≤a ≤0,证明:函数f (x )有且只有一个零点; (3)若函数f (x )有两个零点,求实数a 的取值范围. 解:(1)当a =38时,f (x )=38x 2-x -ln x (x >0),所以f ′(x )=34x -1-1x =x +x -4x,令f ′(x )=0,得x =2, 当x ∈(0,2)时,f ′(x )<0; 当x ∈(2,+∞)时,f ′(x )>0,所以函数f (x )在(0,2)上单调递减,在(2,+∞)上单调递增. 所以当x =2时,f (x )有最小值f (2)=-12-ln 2.(2)证明:由f (x )=ax 2-x -ln x (x >0),得f ′(x )=2ax -1-1x =2ax 2-x -1x.所以当a ≤0时,f ′(x )=2ax 2-x -1x<0,函数f (x )在(0,+∞)上单调递减,所以当a ≤0时,函数f (x )在(0,+∞)上最多有一个零点. 因为当-1≤a ≤0时,f (1)=a -1<0,f ⎝ ⎛⎭⎪⎫1e =e 2-e +a e 2>0, 所以当-1≤a ≤0时,函数f (x )在(0,+∞)上有零点. 综上,当-1≤a ≤0时,函数f (x )有且只有一个零点.(3)由(2)知,当a ≤0时,函数f (x )在(0,+∞)上最多有一个零点. 因为函数f (x )有两个零点,所以a >0. 由f (x )=ax 2-x -ln x (x >0), 得f ′(x )=2ax 2-x -1x,令g (x )=2ax 2-x -1. 因为g (0)=-1<0,2a >0,所以函数g (x )在(0,+∞)上只有一个零点,设为x 0. 当x ∈(0,x 0)时,g (x )<0,f ′(x )<0; 当x ∈(x 0,+∞)时,g (x )>0,f ′(x )>0. 所以函数f (x )在(0,x 0)上单调递减; 在(x 0,+∞)上单调递增.要使得函数f (x )在(0,+∞)上有两个零点,。
2018年高考数学江苏专版三维二轮专题复习训练:6个解答题专项强化练(二)
6个解答题专项强化练(二) 空间中位置关系的证明1.在长方体ABCD -A1B 1C 1D 1中,AB =BC =EC =12AA 1.求证: (1)AC 1∥平面BDE ;(2)A 1E ⊥平面BDE .证明:(1)连结AC 交BD 于点O ,连结OE .在长方体ABCD -A 1B 1C 1D 1中,因为四边形ABCD 为正方形,所以点O 为AC 的中点,因为AA 1∥CC 1且AA 1=CC 1,又EC =12AA 1, 所以EC =12CC 1, 即点E 为CC 1的中点,于是在△CAC 1中,AC 1∥OE .又因为OE ⊂平面BDE ,AC 1⊄平面BDE ,所以AC 1∥平面BDE .(2)连结B 1E .设AB =a ,则在△BB 1E 中,BE =B 1E =2a ,BB 1=2a .所以BE 2+B 1E 2=BB 21 ,所以B 1E ⊥BE .由ABCD -A 1B 1C 1D 1为长方体,得A 1B 1⊥平面BB 1C 1C .因为BE ⊂平面BB 1C 1C ,所以A 1B 1⊥BE .因为B 1E ∩A 1B 1=B 1,B 1E ⊂平面A 1B 1E ,A 1B 1⊂平面A 1B 1E ,所以BE ⊥平面A 1B 1E . 又因为A 1E ⊂平面A 1B 1E, 所以A 1E ⊥BE .同理A 1E ⊥DE .又因为BE ∩DE =E ,BE ⊂平面BDE ,DE ⊂平面BDE ,所以A 1E ⊥平面BDE .2.如图,在四棱锥P -ABCD 中,底面ABCD 是矩形,平面PAD ⊥平面ABCD ,AP =AD ,M ,N 分别为棱PD ,PC 的中点.求证:(1)MN ∥平面PAB;(2)AM ⊥平面PCD .证明:(1)因为M ,N 分别为棱PD ,PC 的中点,所以MN ∥DC,又因为底面ABCD 是矩形,所以AB ∥DC ,所以MN ∥AB .又AB ⊂平面PAB ,MN ⊄平面PAB ,所以MN ∥平面PAB .(2)因为AP =AD ,M 为PD 的中点,因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,CD ⊥AD ,CD ⊂平面ABCD , 所以CD ⊥平面PAD .又AM ⊂平面PAD ,所以CD ⊥AM .因为CD ∩PD =D ,CD ⊂平面PCD ,PD ⊂平面PCD ,所以AM ⊥平面PCD .3.如图,已知四棱锥P -ABCD 的底面ABCD 是平行四边形,PA ⊥平面ABCD ,M 是AD 的中点,N 是PC 的中点.(1)求证:MN ∥平面PAB ;(2)若平面PMC ⊥平面PAD ,求证:CM ⊥AD .证明:(1)取PB 的中点E ,连结EA ,EN ,在△PBC 中,EN ∥BC 且EN =12BC ,由AM =12AD ,AD ∥BC ,AD =BC ,得EN ∥AM ,EN =AM . ∴四边形ENMA 是平行四边形,∴MN ∥AE .又MN ⊄平面PAB ,AE ⊂平面PAB ,∴MN ∥平面PAB .(2)过点A 作PM 的垂线,垂足为H .∵平面PMC ⊥平面PAD ,平面PMC ∩平面PAD =PM ,AH ⊥PM ,AH ⊂平面PAD ,∴AH ⊥平面PMC ,又CM ⊂平面PMC ,∴AH ⊥CM .∵PA ⊥平面ABCD ,CM ⊂平面ABCD ,∴PA ⊥CM .∵PA ∩AH =A ,PA ⊂平面PAD ,AH ⊂平面PAD ,∴CM ⊥平面PAD .∵AD ⊂平面PAD ,∴CM ⊥AD .4.如图,在直三棱柱ABC -A1B 1C 1中,BC ⊥AC ,D ,E 分别是AB ,AC的中点.求证:(1)B 1C 1∥平面A 1DE ;(2)平面A 1DE ⊥平面ACC 1A 1.证明:(1)因为D ,E 分别是AB ,AC 的中点,又因为在三棱柱ABC-A1B1C1中,B1C1∥BC,所以B1C1∥DE.又B1C1⊄平面A1DE,DE⊂平面A1DE,所以B1C1∥平面A1DE.(2)在直三棱柱ABC-A1B1C1中,CC1⊥底面ABC,又DE⊂底面ABC,所以CC1⊥DE.又BC⊥AC,DE∥BC,所以DE⊥AC,又CC1⊂平面ACC1A1,AC⊂平面ACC1A1,且CC1∩AC=C,所以DE⊥平面ACC1A1.又DE⊂平面A1DE,所以平面A1DE⊥平面ACC1A1.5.如图,在三棱锥P-ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.(1)求证:PA⊥BD;(2)求证:平面BDE⊥平面PAC;(3)当PA∥平面BDE时,求三棱锥E-BCD的体积.解:(1)证明:因为PA⊥AB,PA⊥BC,AB∩BC=B,所以PA⊥平面ABC.又因为BD⊂平面ABC,所以PA⊥BD.(2)证明:因为AB=BC,D为AC的中点,所以BD⊥AC.由(1)知,PA⊥BD,又AC∩PA=A,所以BD⊥平面PAC.因为BD⊂平面BDE,所以平面BDE⊥平面PAC.(3)因为PA∥平面BDE,平面PAC∩平面BDE=DE,所以PA∥DE.因为D为AC的中点,所以DE=12PA=1,BD=DC= 2.由(1)知,PA⊥平面ABC,所以DE⊥平面ABC.所以三棱锥E-BCD的体积V=16BD·DC·DE=13.6.由四棱柱ABCD-A1B1C1D1截去三棱锥C1-B1CD1后得到的几何体如图所示.四边形ABCD为正方形,O为AC与BD的交点,E为AD的中点,A1E⊥平面ABCD.(1)证明:A1O∥平面B1CD1;(2)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.证明:(1)取B1D1的中点O1,连结CO1,A1O1,因为ABCD-A1B1C1D1是四棱柱,所以A1O1∥OC,A1O1=OC,因此四边形A1OCO1为平行四边形,所以A1O∥O1C,因为O1C⊂平面B1CD1,A1O⊄平面B1CD1,所以A1O∥平面B1CD1.(2)因为E,M分别为AD,OD的中点,所以EM∥AO.因为AO⊥BD,所以EM⊥BD,又A1E⊥平面ABCD,BD⊂平面ABCD,所以A1E⊥BD,因为B1D1∥BD,所以EM⊥B1D1,A1E⊥B1D1,又A1E⊂平面A1EM,EM⊂平面A1EM,A1E∩EM=E,所以B1D1⊥平面A1EM,又B1D1⊂平面B1CD1,所以平面A1EM⊥平面B1CD1.。
2018年高考数学江苏专版3维2轮专题复习训练:6个解答题综合仿真练(3) Word版含解析-
6个解答题综合仿真练(三)1.已知向量m =(3cos x ,-1),n =(sin x ,cos 2x ). (1)当x =π3时,求m·n 的值;(2)若x ∈⎣⎡⎦⎤0,π4,且m·n =33-12,求cos 2x 的值. 解:(1)当x =π3时,m =⎝⎛⎭⎫32,-1,n =⎝⎛⎭⎫32,14,所以m·n =34-14=12.(2)m·n =3cos x sin x -cos 2x =32sin 2x -12cos 2x -12=sin ⎝⎛⎭⎫2x -π6-12, 若m·n =33-12,则sin ⎝⎛⎭⎫2x -π6-12=33-12, 即sin ⎝⎛⎭⎫2x -π6=33, 因为x ∈⎣⎡⎦⎤0,π4,所以-π6≤2x -π6≤π3, 所以cos ⎝⎛⎭⎫2x -π6=63, 则cos 2x =cos ⎣⎡⎦⎤⎝⎛⎭⎫2x -π6+π6=cos ⎝⎛⎭⎫2x -π6×cos π6-sin ⎝⎛⎭⎫2x -π6sin π6=63×32-33×12=32-36. 2.如图,在四棱锥P -ABCD 中,底面ABCD 是矩形,点E 在棱PC 上(异于点P ,C ),平面ABE 与棱PD 交于点F .(1)求证:AB ∥EF ;(2)若平面PAD ⊥平面ABCD ,求证:AF ⊥EF . 证明:(1)因为底面ABCD 是矩形,所以AB ∥CD . 又因为AB ⊄平面PDC ,CD ⊂平面PDC , 所以AB ∥平面PDC .又因为AB ⊂平面ABEF ,平面ABEF ∩平面PDC =EF , 所以AB ∥EF .(2)因为底面ABCD 是矩形,所以AB ⊥AD .又因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,AB ⊂平面ABCD , 所以AB ⊥平面PAD .又AF ⊂平面PAD ,所以AB ⊥AF . 又由(1)知AB ∥EF ,所以AF ⊥EF .3.一个玩具盘由一个直径为2米的半圆O 和一个矩形ABCD 构成,AB =1米,如图所示.小球从A 点出发以大小为5v 的速度沿半圆O 轨道滚到某点E 处后,经弹射器以6v 的速度沿与点E 处的切线垂直的方向弹射到落袋区BC 内,落点记为F .设∠AOE =θ弧度,小球从A 到F 所需时间为T .(1)试将T 表示为θ的函数T (θ),并写出定义域; (2)求时间T 最短时cos θ的值.解:(1)如图,过O 作OG ⊥BC 于G ,则OG =1,OF =OG sin θ=1sin θ,EF =1+1sin θ,AE =θ,所以T (θ)=AE 5v +EF 6v =θ5v +16v sin θ+16v,θ∈⎣⎡⎦⎤π4,3π4. (2)由(1)知,T (θ)=θ5v +16v sin θ+16v ,θ∈⎣⎡⎦⎤π4,3π4, T ′(θ)=15v -cos θ6v sin 2θ=6sin 2 θ-5cos θ30v sin 2 θ=-(2cos θ+3)(3cos θ-2)30v sin 2 θ,记cos θ0=23,θ0∈⎣⎡⎦⎤π4,3π4, 则T (θ),T ′(θ)随θ的变化情况如表所示:故当cos θ=23时,时间T 最短.4.如图,在平面直角坐标系xOy 中,焦点在x 轴上的椭圆C :x 28+y 2b2=1经过点(b,2e ),其中e 为椭圆C 的离心率.过点T (1,0)作斜率为k (k >0)的直线l 交椭圆C 于A ,B 两点(A 在x 轴下方).(1)求椭圆C 的标准方程;(2)过点O 且平行于l 的直线交椭圆C 于点M ,N ,求AT ·BTMN 2的值; (3)记直线l 与y 轴的交点为P .若AP ―→=25TM ―→,求直线l 的斜率k .解:(1)因为椭圆C :x 28+y 2b 2=1经过点(b,2e ),所以b 28+4e 2b2=1.因为e 2=c 2a 2=c 28,所以b 28+c 22b2=1,又a 2=b 2+c 2,b 28+8-b22b2=1,解得b 2=4或b 2=8(舍去). 所以椭圆C 的方程为x 28+y 24=1.(2)设A (x 1,y 1),B (x 2,y 2).因为T (1,0),则直线l 的方程为y =k (x -1).联立直线l 与椭圆方程⎩⎪⎨⎪⎧y =k (x -1),x 28+y 24=1,消去y ,得(2k 2+1)x 2-4k 2x +2k 2-8=0,所以x 1+x 2=4k 22k 2+1,x 1x 2=2k 2-82k 2+1.因为MN ∥l ,所以直线MN 的方程为y =kx ,联立直线MN 与椭圆方程⎩⎪⎨⎪⎧y =kx ,x 28+y 24=1,消去y 得(2k 2+1)x 2=8,解得x 2=82k 2+1.因为MN ∥l ,所以AT ·BT MN 2=(1-x 1)·(x 2-1)(x M -x N )2,因为(1-x 1)·(x 2-1)=-[x 1x 2-(x 1+x 2)+1]=72k 2+1,(x M -x N )2=4x 2=322k 2+1.所以AT ·BT MN 2=72k 2+1×2k 2+132=732.(3)在y =k (x -1)中,令x =0,则y =-k ,所以P (0,-k ), 从而AP ―→=(-x 1,-k -y 1),TM ―→=(x 2-1,y 2), ∵AP ―→=25TM ―→,∴-x 1=25(x 2-1),即x 1+25x 2=25,①由(2)知x 1+x 2=4k 22k 2+1,②联立①②得x 1=-4k 2+23(2k 2+1),x 2=16k 2-23(2k 2+1).又x 1x 2=2k 2-82k 2+1,∴50k 4-83k 2-34=0, 解得k 2=2或k 2=-1750(舍去).又因为k >0,所以k = 2.5.定义:从一个数列{a n }中抽取若干项(不少于三项)按其在{a n }中的次序排列的一列数叫做{a n }的子数列,成等差(比)的子数列叫做{a n }的等差(比)子列.(1)求数列1,12,13,14,15的等比子列;(2)设数列{a n }是各项均为实数的等比数列,且公比q ≠1. ①试给出一个{a n },使其存在无穷项的等差子列(不必写出过程); ②若{a n }存在无穷项的等差子列,求q 的所有可能值.解:(1)显然从数列中抽取四项或五项时,不存在等比子列,当抽取三项时,设所求等比子数列含原数列中的连续项的个数为k (1≤k ≤3,k ∈N *),当k =2时,①设1n ,1n +1,1m 成等比数列,则1(n +1)2=1n ×1m ,即m =n +1n +2, 当且仅当n =1时,m ∈N *,此时m =4,所求等比子数列为1,12,14;②设1m ,1n ,1n +1成等比数列,则1n 2=1n +1×1m ,即m =n +1+1n +1-2∉N *;当k =3时,数列1,12,13;12,13,14;13,14,15均不成等比数列;当k =1时,显然数列1,13,15不成等比数列.综上,所求等比子数列为1,12,14.(2)①形如:a 1,-a 1,a 1,-a 1,a 1,-a 1,…(a 1≠0,q =-1)均存在无穷项, 等差子数列: a 1,a 1,a 1,… 或-a 1,-a 1,-a 1. ②设{an k }(k ∈N *,n k ∈N *)为{a n }的等差子数列,公差为d , 当|q |>1时,|q |n >1,取n k >1+log |q ||d ||a 1|(|q |-1),从而|q |n k -1>|d ||a 1|(|q |-1),故|an k +1-an k |=|a 1qn k +1-1-a 1qn k -1| =|a 1||q |n k -1·|qn k +1-n k -1| ≥|a 1||q |n k -1(|q |-1)>|d |,这与|an k +1-an k |=|d |矛盾,故舍去. 当|q |<1时,|q |n <1,取n k >1+log |q ||d |2|a 1|, 从而|q |n k -1<|d |2|a 1|,故|an k +1-an k |=|a 1||q |n k -1|qn k +1-n k -1|≤ |a 1||q |n k -1||q |n k +1-n k +1|<2|a 1||q |n k -1<|d |, 这与|an k +1-an k |=|d |矛盾,故舍去. 又q ≠1,故只可能q =-1, 结合①知,q 的所有可能值为-1.6.已知函数f (x )=mx +x ln x (m >0),g (x )=ln x -2. (1)当m =1时,求函数f (x )的单调增区间;(2)设函数h (x )=f (x )-xg (x )-2,x >0.若函数y =h (h (x ))的最小值是322,求m 的值;(3)若函数f (x ),g (x )的定义域都是[1,e],对于函数f (x )的图象上的任意一点A ,在函数g (x )的图象上都存在一点B ,使得OA ⊥OB ,其中e 是自然对数的底数,O 为坐标原点.求m 的取值范围.解:(1)当m =1时,f (x )=1x +x ln x ,f ′(x )=-1x 2+ln x +1.因为f ′(x )在(0,+∞)上单调递增,且f ′(1)=0, 所以当x >1时,f ′(x )>0;当0<x <1时,f ′(x )<0. 所以函数f (x )的单调增区间是(1,+∞).(2)h (x )=m x +2x -2,则h ′(x )=2-m x 2=2x 2-mx 2,令h ′(x )=0,得x =m2, 当0<x < m2时,h ′(x )<0,函数h (x )在⎝⎛⎭⎫0, m 2上单调递减; 当x >m2时,h ′(x )>0,函数h (x )在⎝⎛⎭⎫ m2,+∞上单调递增. 所以h (x )min =h ⎝⎛⎭⎫m 2=22m - 2. ①当2(2m -1)≥m 2,即m ≥49时, 函数y =h (h (x ))的最小值h (22m -2) =2⎣⎢⎡⎦⎥⎤m 2(2m -1)+2(2m -1)-1=322,即17m -26m +9=0,解得m =1或m =917(舍去),所以m =1.②当0<2(2m -1)<m 2,即14<m <49时, 函数y =h (h (x ))的最小值h ⎝⎛⎭⎫m 2=2(2m -1)=322,解得m =54(舍去).综上所述,m 的值为1.(3)由题意知,k OA =mx 2+ln x ,k OB =ln x -2x .考虑函数y =ln x -2x ,因为y ′=3-ln xx 2>0在[1,e]上恒成立,所以函数y =ln x -2x 在[1,e]上单调递增, 故k OB ∈⎣⎡⎦⎤-2,-1e ,所以k OA ∈⎣⎡⎦⎤12,e , 即12≤mx2+ln x ≤e 在[1,e]上恒成立, 即x 22-x 2ln x ≤m ≤x 2(e -ln x )在[1,e]上恒成立. 设p (x )=x 22-x 2ln x ,则p ′(x )=-2x ln x ≤0在[1,e]上恒成立, 所以p (x )在[1,e]上单调递减,所以m ≥p (1)=12.设q (x )=x 2(e -ln x ),则q ′(x )=x (2e -1-2ln x )≥x (2e -1-2ln e)>0在[1,e]上恒成立, 所以q (x )在[1,e]上单调递增,所以m ≤q (1)=e. 综上所述,m 的取值范围为⎣⎡⎦⎤12,e .。
2018高考数学江苏专版三维二轮专题复习训练:6个解答题综合仿真练(四) Word版含解析
6个解答题综合仿真练(四)1、如图,四棱锥P -ABCD 中, 底面ABCD 为菱形,且PA ⊥底面ABCD ,PA =AC ,E 是PA 的中点,F 是PC 的中点、(1)求证:PC ∥平面BDE ;(2)求证:AF ⊥平面BDE 、证明:(1)连结OE ,因为O 为菱形ABCD 对角线的交点,所以O 为AC 的中点、又因为E 为PA 的中点,所以OE ∥PC 、又因为OE ⊂平面BDE ,PC ⊄平面BDE ,所以PC ∥平面BDE 、(2)因为PA =AC ,△PAC 是等腰三角形,又F 是PC 的中点,所以AF ⊥PC 、又OE ∥PC ,所以AF ⊥OE 、又因为PA ⊥底面ABCD ,BD ⊂平面ABCD ,所以PA ⊥BD 、又因为AC ,BD 是菱形ABCD 的对角线,所以AC ⊥BD 、因为PA ∩AC =A ,所以BD ⊥平面PAC ,因为AF ⊂平面PAC ,所以AF ⊥BD 、因为OE ∩BD =O ,所以AF ⊥平面BDE 、2、在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a 2+c 2+2ac =b 2,sin A =1010、 (1)求sin C 的值;(2)若a =2,求△ABC 的面积、解:(1)由a 2+c 2+2ac =b 2,得cos B =a 2+c 2-b 22ac =-22, 又B ∈(0,π),所以B =3π4、 因为sin A =1010,且B 为钝角,所以cos A =31010, 所以sin C =sin ⎝⎛⎭⎫A +3π4=1010×⎝⎛⎭⎫-22+31010×22=55、 (2)由正弦定理得a sin A =c sin C,所以c =a sin C sin A =2×551010=22, 所以△ABC 的面积S △ABC =12ac sin B =12×2×22×22=2、 3、已知椭圆M :x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A ,B ,一个焦点为F (-1,0),点F 到相应准线的距离为3、经过点F 的直线l 与椭圆M 交于C ,D 两点、(1)求椭圆M 的方程;(2)记△ABD 与△ABC 的面积分别为S 1和S 2,求|S 1-S 2|的最大值、解:(1)由焦点F (-1,0)知c =1,又a 2c-c =3, 所以a 2=4,从而b 2=a 2-c 2=3、所以椭圆M 的方程为x 24+y 23=1、 (2)若直线l 的斜率不存在,则直线l 的方程为x =-1,此时S 1=S 2,|S 1-S 2|=0;若直线l 的斜率存在,可设直线l 的方程为y =k (x +1),k ≠0,C (x 1,y 1),D (x 2,y 2)、联立⎩⎪⎨⎪⎧y =k (x +1),x 24+y 23=1,消去y ,得(3+4k 2)x 2+8k 2x +4k 2-12=0, 所以x 1+x 2=-8k 23+4k 2、 此时|S 1-S 2|=12·AB ·||y 1|-|y 2||=2|y 1+y 2| =2|k (x 1+1)+k (x 2+1)|=2|k ||(x 1+x 2)+2|=2|k |⎪⎪⎪⎪⎪⎪-8k 23+4k 2+2=2|k |⎪⎪⎪⎪63+4k 2=12|k |3+4k 2、 因为k ≠0,所以|S 1-S 2|=123|k |+4|k |≤1223|k |·4|k |=1243=3, 当且仅当3|k |=4|k |,即k =±32时取等号、 所以|S 1-S 2|的最大值为3、4、如图,矩形ABCD 是一个历史文物展览厅的俯视图,点E 在AB 上,在梯形BCDE 区域内部展示文物,DE 是玻璃幕墙,游客只能在△ADE 区域内参观、在AE 上点P 处安装一可旋转的监控摄像头,∠MPN 为监控角,其中M ,N 在线段DE (含端点)上,且点M 在点N 的右下方、经测量得知:AD =6米,AE =6米,AP =2米,∠MPN =π4、记∠EPM =θ(弧度),监控摄像头的可视区域△PMN 的面积为S 平方米、(1)求S 关于θ的函数关系式,并写出θ的取值范围;⎝⎛⎭⎫参考数据:tan 54≈3 (2)求S 的最小值、解:(1)法一:在△PME 中,∠EPM =θ,PE =AE -AP =4米,∠PEM =π4,∠PME =3π4-θ, 由正弦定理得PM sin ∠PEM =PE sin ∠PME, 所以PM =PE ·sin ∠PEM sin ∠PME =22sin ⎝⎛⎭⎫3π4-θ=4sin θ+cos θ, 在△PNE 中,由正弦定理得PN sin ∠PEN =PE sin ∠PNE, 所以PN =PE ·sin ∠PEN sin ∠PNE =22sin ⎝⎛⎭⎫π2-θ=22cos θ, 所以△PMN 的面积S =12PM ·PN ·sin ∠MPN =4cos 2θ+sin θcos θ=41+cos 2θ2+12sin 2θ =8sin 2θ+cos 2θ+1=82sin ⎝⎛⎭⎫2θ+π4+1, 当M 与E 重合时,θ=0; 当N 与D 重合时,tan ∠APD =3, 即∠APD =54,θ=3π4-54,所以0≤θ≤3π4-54、 综上可得,S =82sin ⎝⎛⎭⎫2θ+π4+1,θ∈⎣⎡⎦⎤0,3π4-54、 法二:在△PME 中,∠EPM =θ,PE =AE -AP =4米,∠PEM =π4,∠PME =3π4-θ, 由正弦定理得ME sin θ=PE sin ∠PME, 所以ME =PE ·sin θsin ∠PME =4sin θsin ⎝⎛⎭⎫3π4-θ=42sin θsin θ+cos θ, 在△PNE 中,由正弦定理得NE sin ∠EPN =PE sin ∠PNE,所以NE =PE ·sin ⎝⎛⎭⎫θ+π4sin ⎝⎛⎭⎫π2-θ=4sin ⎝⎛⎭⎫θ+π4cos θ =22(sin θ+cos θ)cos θ, 所以MN =NE -ME =22cos 2θ+sin θcos θ, 又点P 到DE 的距离为d =4sin π4=22, 所以△PMN 的面积S =12MN ·d =4cos 2θ+sin θcos θ=41+cos 2θ2+12sin 2θ =8sin 2θ+cos 2θ+1=82sin ⎝⎛⎭⎫2θ+π4+1, 当M 与E 重合时,θ=0;当N 与D 重合时,tan ∠APD =3,即∠APD =54,θ=3π4-54, 所以0≤θ≤3π4-54、 综上可得,S =82sin ⎝⎛⎭⎫2θ+π4+1,θ∈⎣⎡⎦⎤0,3π4-54、 (2)当2θ+π4=π2,即θ=π8∈⎣⎡⎦⎤0,3π4-54时,S 取得最小值为82+1=8(2-1)、 所以可视区域△PMN 面积的最小值为8(2-1)平方米、5、设a >0且a ≠1,函数f (x )=a x +x 2-x ln a -a 、(1)当a =e 时,求函数f (x )的单调区间;(2)求函数f (x )的最小值;(3)指出函数f (x )的零点个数,并说明理由、解:(1)当a =e 时,f (x )=e x +x 2-x -e,f ′(x )=e x +2x -1、设g (x )=e x +2x -1,则g (0)=0,且g ′(x )=e x +2>0、所以g (x )在(-∞,+∞)上单调递增,当x >0时,g (x )>g (0)=0;当x <0时,g (x )<g (0)=0、即当x >0时,f ′(x )>0;当x <0时,f ′(x )<0、综上,函数f (x )的单调递增区间是(0,+∞),单调递减区间是(-∞,0)、(2)f′(x)=a x ln a+2x-ln a=(a x-1)ln a+2x,①当a>1时,若x>0,则a x>1,ln a>0,所以f′(x)>0,若x<0,则a x<1,ln a>0,所以f′(x)<0、②当0<a<1时,若x>0,则a x<1,ln a<0,所以f′(x)>0,若x<0,则a x>1,ln a<0,所以f′(x)<0,所以f(x)在(-∞,0)上单调递减,(0,+∞)上单调递增、所以f(x)min=f(0)=1-a、(3)由(2)得,a>0,a≠1,f(x)min=1-a、①若1-a>0,即0<a<1时,f(x)min=1-a>0,函数f(x)不存在零点、②若1-a<0,即a>1时,f(x)min=1-a<0、f(x)的图象在定义域内是不间断的曲线,f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增、f(a)=a a+a2-a ln a-a>a2-a ln a-a=a(a-ln a-1)、令t(a)=a-ln a-1(a>1),t′(a)=1-1a>0,所以t(a)在(1,+∞)上单调递增;所以t(a)>t(1)=0、所以f(a)>0、故f(x)在(0,a)上有一个零点、又f(-a)=a-a+a2+a ln a-a>a2-a=a(a-1)>0,故f(x)在(-a,0)上有一个零点、所以f(x)在(-∞,0)上和(0,+∞)上各有一个零点,即f(x)有2个零点、综上,当0<a<1时,函数f(x)不存在零点;当a>1时,函数f(x)有2个零点、6、已知数列{a n}的通项公式a n=2n-(-1)n,n∈N*、设an1,an2,…,an i(其中n1<n2<…<n i,i ∈N*)成等差数列、(1)若i=3、①当n1,n2,n3为连续正整数时,求n1的值;②当n1=1时,求证:n3-n2为定值;(2)求i的最大值、解:(1)①依题意,an1,an1+1,an1+2成等差数列,即2an1+1=an1+an1+2,从而2[2n1+1-(-1)n1+1]=2n1-(-1)n1+2n1+2-(-1)n1+2,当n1为奇数时,解得2n1=-4,不存在这样的正整数n1;当n1为偶数时,解得2n1=4,所以n1=2、②证明:依题意,a1,an2,an3成等差数列,即2an2=a1+an3,从而2[2n2-(-1)n2]=3+2n3-(-1)n3,当n2,n3均为奇数时,2n2-2n3-1=1,左边为偶数,故矛盾;当n2,n3均为偶数时,2n2-1-2n3-2=1,左边为偶数,故矛盾;当n2为偶数,n3奇数时,2n2-2n3-1=3,左边为偶数,故矛盾;当n2为奇数,n3偶数时,2n2+1-2n3=0,即n3-n2=1、(2)设a s,a r,a t(s<r<t)成等差数列,则2a r=a s+a t,即2[2r-(-1)r]=2s-(-1)s+2t-(-1)t,整理得,2s+2t-2r+1=(-1)s+(-1)t-2(-1)r,若t=r+1,则2s=(-1)s-3(-1)r,因为2s≥2,所以(-1)s-3(-1)r只能为2或4,所以s只能为1或2;若t≥r+2,则2s+2t-2r+1≥2s+2r+2-2r+1≥2+24-23=10,(-1)s+(-1)t-2(-1)r≤4,故矛盾,综上,只能a1,a r,a r+1成等差数列或a2,a r,a r+1成等差数列,其中r为奇数,从而i的最大值为3、。
2018年高考数学江苏专版三维二轮专题复习教学案:专题六 应用题 Word版含答案
江苏新高考“在考查基础知识的同时,侧重考查能力”是高考的重要意向,而应用能力的考查又是近二十年来的能力考查重点.江苏卷一直在坚持以建模为主.所以如何由实际问题转化为数学问题的建模过程的探索应是复习的关键.应用题的载体很多,前几年主要考函数建模,以三角、导数、不等式知识解决问题.2013年应用考题(3)是解不等式模型,2014年应用考题(2)可以理解为一次函数模型,也可以理解为条件不等式模型,这样在建模上增添新意,还是有趣的,2015、2016年应用考题(2)都先构造函数,再利用导数求解.2016、2017年应用考题是立体几何模型,2017年应用考题需利用空间中的垂直关系和解三角形的知识求解.[常考题型突破][例1](2016·江苏高考)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P-A1B1C1D1,下部的形状是正四棱柱ABCD-A1B1C1D1(如图所示),并要求正四棱柱的高O1O是正四棱锥的高PO1的4倍.(1)若AB=6 m,PO1=2 m,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6 m,则当PO1为多少时,仓库的容积最大?[解](1)由PO1=2知O1O=4PO1=8.因为A1B1=AB=6,所以正四棱锥P-A1B1C1D1的体积V锥=13·A1B21·PO1=13×62×2=24(m3);正四棱柱ABCD-A1B1C1D1的体积V柱=AB2·O1O=62×8=288(m3).所以仓库的容积V=V锥+V柱=24+288=312(m3).(2)设A1B1=a m,PO1=h m,则0<h<6,O1O=4h.连结O1B1.因为在Rt△PO1B1中,O1B21+PO21=PB21,所以⎝⎛⎭⎫2a 22+h 2=36, 即a 2=2(36-h 2).于是仓库的容积V =V 柱+V 锥=a 2·4h +13a 2·h =133a 2h =263(36h -h 3),0<h <6,从而V ′=263(36-3h 2)=26(12-h 2). 令V ′=0,得h =23或h =-23(舍去). 当0<h <23时,V ′>0,V 是单调增函数; 当23<h <6时,V ′<0,V 是单调减函数. 故当h =23时,V 取得极大值,也是最大值. 因此,当PO 1=2 3 m 时,仓库的容积最大. [方法归纳]解函数应用题的四步骤[变式训练]1.(2017·苏锡常镇二模)某科研小组研究发现:一棵水蜜桃树的产量w (单位:百千克)与肥料费用x (单位:百元)满足如下关系:w =4-3x +1,且投入的肥料费用不超过5百元.此外,还需要投入其他成本(如施肥的人工费等)2x 百元.已知这种水蜜桃的市场售价为16元/千克(即16百元/百千克),且市场需求始终供不应求.记该棵水蜜桃树获得的利润为L (x )(单位:百元).(1)求利润函数L (x )的函数关系式,并写出定义域;(2)当投入的肥料费用为多少时,该水蜜桃树获得的利润最大?最大利润是多少? 解:(1)L (x )=16⎝⎛⎭⎫4-3x +1-x -2x =64-48x +1-3x (0≤x ≤5).(2)法一:L (x )=64-48x +1-3x =67-⎣⎡⎦⎤48x +1+3(x +1)≤67-248x +1·3(x +1)=43. 当且仅当48x +1=3(x +1)时,即x =3时取等号.故L (x )max =43.答:当投入的肥料费用为300元时,种植水蜜桃树获得的最大利润是4 300元. 法二:L ′(x )=48(x +1)2-3,由L ′(x )=0,得x =3. 故当x ∈(0,3)时,L ′(x )>0,L (x )在(0,3)上单调递增; 当x ∈(3,5)时,L ′(x )<0,L (x )在(3,5)上单调递减. 所以当x =3时,L (x )取得极大值,也是最大值, 故L (x )max =L (3)=43.答:当投入的肥料费用为300元时,种植水蜜桃树获得的最大利润是4 300元. 2.(2017·南通三模)如图,半圆AOB 是某爱国主义教育基地一景点的平面示意图,半径OA 的长为1百米.为了保护景点,基地管理部门从道路l 上选取一点C ,修建参观线路C -D -E -F ,且CD ,DE ,EF 均与半圆相切,四边形CDEF 是等腰梯形.设DE =t 百米,记修建每1百米参观线路的费用为f (t )万元,经测算f (t )=⎩⎨⎧5,0<t ≤13,8-1t ,13<t <2.(1)用t 表示线段EF 的长; (2)求修建该参观线路的最低费用.解:(1)法一:设DE 与半圆相切于点Q ,则由四边形CDEF 是等腰梯形知OQ ⊥l ,DQ =QE ,以OF 所在直线为x 轴,OQ 所在直线为y 轴,建立如图所示的平面直角坐标系xOy .由题意得,点E 的坐标为⎝⎛⎭⎫t 2,1, 设直线EF 的方程为y -1=k ⎝⎛⎭⎫x -t2(k <0), 即kx -y +1-12tk =0.因为直线EF 与半圆相切,所以圆心O 到直线EF 的距离为⎪⎪⎪⎪1-12tk k 2+1=1,解得k =4tt 2-4.代入y -1=k ⎝⎛⎭⎫x -t 2可得,点F 的坐标为⎝⎛⎭⎫t 4+1t ,0.所以EF =⎝⎛⎭⎫t 4+1t -t 22+1=t 4+1t, 即EF =t 4+1t (0<t <2).法二:设EF 切圆O 于点G ,连结OG ,过点E 作EH ⊥AB ,垂足为H .因为EH =OG ,∠OFG =∠EFH ,∠GOF =∠HEF , 所以Rt △EHF ≌Rt △OGF ,所以HF =FG =EF -12t .由EF 2=1+HF 2=1+⎝⎛⎭⎫EF -12t 2, 所以EF =t 4+1t (0<t <2).答:EF 的长为⎝⎛⎭⎫t 4+1t 百米.(2)设修建该参观线路的费用为y 万元. ①当0<t ≤13时,y =5⎣⎡⎦⎤2⎝⎛⎭⎫t 4+1t +t =5⎝⎛⎭⎫32t +2t , 由y ′=5⎝⎛⎭⎫32-2t 2<0,得y 在⎝⎛⎦⎤0,13上单调递减. 所以当t =13时,y 取最小值为32.5.②当13<t <2时,y =⎝⎛⎭⎫8-1t ⎣⎡⎦⎤2⎝⎛⎭⎫t 4+1t +t =12t +16t -32-2t 2, 所以y ′=12-16t 2+4t 3=4(t -1)(3t 2+3t -1)t 3,因为13<t <2,所以3t 2+3t -1>0,所以当t ∈⎝⎛⎭⎫13,1时,y ′<0;当t ∈(1,2)时,y ′>0, 所以y 在⎝⎛⎭⎫13,1上单调递减;在(1,2)上单调递增. 所以当t =1时,y 取最小值为24.5. 由①②知,y 取最小值为24.5.答:修建该参观线路的最低费用为24.5万元.[例2] 预计销售Q (万件)与广告费x (万元)之间的函数关系为Q =4x +1x +1(x ≥0).已知生产此产品的年固定投入为4.5万元,每生产1万件此产品仍需再投入32万元,且能全部销售完.若每件销售价定为:“平均每件生产成本的150%”与“年平均每件所占广告费的25%”之和.(1)试将年利润W (万元)表示为年广告费x (万元)的函数;(2)当年广告费投入多少万元时,企业年利润最大?最大利润为多少? [解] (1)由题意可得,产品的生产成本为(32Q +4.5)万元, 每件销售价为32Q +4.5Q ×150%+xQ ×25%. ∴年销售收入为⎝⎛⎭⎫32Q +4.5Q ×150%+x Q ×25%·Q =32⎝⎛⎭⎫32Q +92+14x . ∴年利润W =32⎝⎛⎭⎫32Q +92+14x -⎝⎛⎭⎫32Q +92-x =12⎝⎛⎭⎫32Q +92-34x =16Q +94-34x =16·4x +1x +1+94-34x (x ≥0).(2)令x +1=t (t ≥1),则W =16·4t -3t +94-34(t -1)=64-48t +3-34t =67-3⎝⎛⎭⎫16t +t 4. ∵t ≥1,∴16t +t 4≥216t ·t4=4,即W ≤55, 当且仅当16t =t4,即t =8时,W 有最大值55,此时x =7.即当年广告费为7万元时,企业年利润最大,最大值为55万元. [方法归纳](2017·苏州期末)某湿地公园内有一条河,现打算建一座桥(如图1)将河两岸的路连接起来,剖面设计图纸(图2)如下,其中,点A ,E 为x 轴上关于原点对称的两点,曲线段BCD 是桥的主体,C 为桥顶,并且曲线段BCD 在图纸上的图形对应函数的解析式为y =84+x 2(x ∈[-2,2]),曲线段AB ,DE 均为开口向上的抛物线段,且A ,E 分别为两抛物线的顶点.设计时要求:保持两曲线在各衔接处(B ,D )的切线的斜率相等.(1)求曲线段AB 在图纸上对应函数的解析式,并写出定义域;(2)车辆从A 经B 到C 爬坡,定义车辆上桥过程中某点P 所需要的爬坡能力为:M =(该点P 与桥顶间的水平距离)×(设计图纸上该点P 处的切线的斜率)其中M P 的单位:米.若该景区可提供三种类型的观光车:①游客踏乘;②蓄电池动力;③内燃机动力,它们的爬坡能力分别为0.8米,1.5米,2.0米,用已知图纸上一个单位长度表示实际长度1米,试问三种类型的观光车是否都可以顺利过桥?解:(1)由题意A 为抛物线的顶点,设A (a,0)(a <-2),则可设方程为y =λ(x -a )2(a ≤x ≤-2,λ>0),y ′=2λ(x -a ).∵曲线段BCD 在图纸上的图形对应函数的解析式为y =84+x 2(x ∈[-2,2]), ∴y ′=-16x (4+x 2)2,且B (-2,1),则曲线在B 处的切线斜率为12,∴⎩⎪⎨⎪⎧λ(-2-a )2=1,2λ(-2-a )=12,∴a =-6,λ=116, ∴曲线段AB 在图纸上对应函数的解析式为y =116(x +6)2(-6≤x ≤-2).(2)设P 为曲线段AC 上任意一点.①P 在曲线段AB 上时,则通过该点所需要的爬坡能力(M P )1=(-x )·18(x +6) =-18[(x+3)2-9],在[-6,-3]上为增函数,[-3,-2]上是减函数,所以爬坡能力最大为98米;②P 在曲线段BC 上时,则通过该点所需要的爬坡能力(M P )2=(-x )·-16x (4+x 2)2=16x 2(4+x 2)2(x∈[-2,0]),设t =x 2,t ∈[0,4],(M P )2=y =16t(4+t )2. 当t =0时,y =0;当0<t ≤4时,y =1616t +t +8≤1(t =4取等号),此时最大为1米.由上可得,最大爬坡能力为98米.∵0.8<98<1.5<2,∴游客踏乘不能顺利通过该桥,蓄电池动力和内燃机动力能顺利通过该桥.[例3] (2017·器Ⅱ的高均为32 cm ,容器Ⅰ的底面对角线AC 的长为107 cm ,容器Ⅱ的两底面对角线EG ,E 1G 1的长分别为14 cm 和62 cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12 cm.现有一根玻璃棒l ,其长度为40 cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l 放在容器Ⅰ中,l 的一端置于点A 处,另一端置于侧棱CC 1上,求l 没入水中部分的长度;(2)将l 放在容器Ⅱ中,l 的一端置于点E 处,另一端置于侧棱GG 1上,求l 没入水中部分的长度.[解] (1)由正棱柱的定义知,CC1⊥平面ABCD ,所以平面A 1ACC 1⊥平面ABCD ,CC 1⊥AC .如图,记玻璃棒的另一端落在CC 1上点M 处. 因为AC =107,AM =40,所以MC =402-(107)2=30,从而sin ∠MAC =34.记AM 与水面的交点为P 1,过P 1作P 1Q 1⊥AC ,Q 1为垂足,则P 1Q 1⊥平面ABCD ,故P 1Q 1=12,从而AP 1=P 1Q 1sin ∠MAC=16.答:玻璃棒l 没入水中部分的长度为16 cm.(如果将“没入水中部分”理解为“水面以上部分”,则结果为24 cm) (2)如图,O ,O1是正棱台的两底面中心. 由正棱台的定义知,OO 1⊥平面EFGH ,所以平面E 1EGG 1⊥平面EFGH ,O 1O ⊥EG .同理,平面E 1EGG 1⊥平面E 1F 1G 1H 1,O 1O ⊥E 1G 1. 记玻璃棒的另一端落在GG 1上点N 处. 过G 作GK ⊥E 1G 1,K 为垂足, 则GK =OO 1=32.因为EG =14,E 1G 1=62, 所以KG 1=62-142=24,从而GG 1=KG 21+GK 2=242+322=40.设∠EGG 1=α,∠ENG =β,则sin α=sin ⎝⎛⎭⎫π2+∠KGG 1=cos ∠KGG 1=45. 因为π2<α<π,所以cos α=-35.在△ENG 中,由正弦定理可得40sin α=14sin β, 解得sin β=725.因为0<β<π2,所以cos β=2425.于是sin ∠NEG =sin(π-α-β)=sin(α+β)=sin αcos β+cos αsin β=45×2425+⎝⎛⎭⎫-35×725=35. 记EN 与水面的交点为P 2,过P 2作P 2Q 2⊥EG ,Q 2为垂足,则P 2Q 2⊥平面EFGH , 故P 2Q 2=12,从而EP 2=P 2Q 2sin ∠NEG=20.答:玻璃棒l 没入水中部分的长度为20 cm.(如果将“没入水中部分”理解为“水面以上部分”,则结果为20 cm) [方法归纳]如图,经过村庄A 有两条夹角为60°的公路AB ,AC ,根据规划拟在两条公路之间的区域内建一工厂P ,分别在两条公路边上建两个仓库M ,N (异于村庄A ),要求PM =PN =MN =2(单位:千米).记∠AMN =θ.(1)将AN ,AM 用含θ的关系式表示出来;(2)如何设计(即AN ,AM 为多长),使得工厂产生的噪声对居民的影响最小(即工厂与村庄的距离AP 最大)?解:(1)由已知得∠MAN =60°,∠AMN =θ,MN =2, 在△AMN 中,由正弦定理得MN sin 60°=AN sin θ=AMsin (120°-θ),所以AN =433sin θ,AM =433sin(120°-θ)=433sin(θ+60°). (2)在△AMP 中,由余弦定理可得AP 2=AM 2+MP 2-2AM ·MP ·cos ∠AMP =163sin 2(θ+60°)+4-1633sin(θ+60°)cos(θ+60°) =83[1-cos(2θ+120°)]-833sin(2θ+120°)+4 =-83[3sin(2θ+120°)+cos(2θ+120°)]+203=203-163sin(2θ+150°),0<θ<120°, 当且仅当2θ+150°=270°,即θ=60°时,工厂产生的噪声对居民的影响最小,此时AN =AM =2.[课时达标训练]1.(2017·苏锡常镇一模)某单位将举办庆典活动,要在广场上竖立一形状为等腰梯形的彩门BADC (如图),设计要求彩门的面积为S (单位:m 2),高为h (单位:m)(S ,h 为常数),彩门的下底BC 固定在广场地面上,上底和两腰由不锈钢支架构成,设腰和下底的夹角为α,不锈钢支架的长度和记为l .(1)请将l 表示成关于α的函数l =f (α); (2)当α为何值时l 最小?并求l 的最小值. 解:(1)过D 作DH ⊥BC 于点H (图略), 则∠DCB =α⎝⎛⎭⎫0<α<π2,DH =h, 设AD =x , 则DC =h sin α,CH =h tan α,BC =x +2h tan α, 因为S =12⎝⎛⎭⎫x +x +2h tan α·h ,则x =S h -h tan α. 所以l =f (α)=2DC +AD =Sh +h ⎝⎛⎭⎫2sin α-1tan α⎝⎛⎭⎫0<α<π2. 答:l 表示成关于α的函数为l =f (α)=Sh +h ⎝⎛⎭⎫2sin α-1tan α⎝⎛⎭⎫0<α<π2.(2)f ′(α)=h ·⎝⎛⎭⎫-2cos αsin 2α--1sin 2α=h ·1-2cos αsin 2α, 令f ′(α)=h ·1-2cos αsin 2α=0,得α=π3. 列表如下:所以l min =f ⎝⎛⎭⎫π3=3h +Sh .答:当α=π3时,l 有最小值为3h +S h .2.如图是某设计师设计的Y 型饰品的平面图,其中支架OA ,OB ,OC两两成120°,OC =1,AB =OB +OC ,且OA >OB .现设计师在支架OB 上装点普通珠宝,普通珠宝的价值为M ,且M 与OB 长成正比,比例系数为k (k 为正常数);在△AOC 区域(阴影区域)内镶嵌名贵珠宝,名贵珠宝的价值为N ,且N 与△AOC 的面积成正比,比例系数为43k .设OA =x ,OB =y .(1)求y 关于x 的函数解析式,并写出OA 的取值范围; (2)求N -M 的最大值及相应的x 的值. 解:(1)因为OA =x ,OB =y ,AB =y +1, 由余弦定理得,x 2+y 2-2xy cos 120°=(y +1)2, 解得y =x 2-12-x.由x >0,y >0得,1<x <2,又x >y ,得x >x 2-12-x ,得1<x <1+32, 所以OA 的取值范围是⎝⎛⎭⎪⎫1,1+32.(2)设M =kOB =ky ,N =43k ·S △AOC =3kx , 则N -M =k (3x -y )=k ⎝ ⎛⎭⎪⎫3x -x 2-12-x . 设2-x =t ∈⎝ ⎛⎭⎪⎫3-32,1,则N -M =k ⎣⎡⎦⎤3(2-t )-(2-t )2-1t=k ⎣⎡⎦⎤10-⎝⎛⎭⎫4t +3t ≤k ⎝⎛⎭⎫10-24t ·3t =(10-43)k .当且仅当4t =3t ,即t =32∈⎝ ⎛⎭⎪⎫3-32,1时取等号,此时x =2-32, 所以当x =2-32时,N -M 的最大值是(10-43)k . 3.(2017·南京、盐城二模)在一张足够大的纸板上截取一个面积为3 600平方厘米的矩形纸板ABCD ,然后在矩形纸板的四个角上切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸盒(如图).设小正方形边长为x 厘米,矩形纸板的两边AB ,BC 的长分别为a 厘米和b 厘米,其中a ≥b .(1)当a =90时,求纸盒侧面积的最大值;(2)试确定a ,b ,x 的值,使得纸盒的体积最大,并求出最大值.解:(1)因为矩形纸板ABCD 的面积为3 600,故当a =90时,b =40,从而包装盒子的侧面积S =2×x (90-2x )+2×x (40-2x )=-8x 2+260x ,x ∈(0,20).因为S =-8x 2+260x =-8(x -16.25)2+2 112.5,故当x =16.25时,纸盒侧面积最大,最大值为2 112.5平方厘米.(2)包装盒子的体积V =(a -2x )(b -2x )x =x [ab -2(a +b )x +4x 2],x ∈⎝⎛⎭⎫0,b2,b ≤60. V =x [ab -2(a +b )x +4x 2]≤x (ab -4abx +4x 2) =x (3 600-240x +4x 2)=4x 3-240x 2+3 600x , 当且仅当a =b =60时等号成立. 设f (x )=4x 3-240x 2+3 600x ,x ∈(0,30). 则f ′(x )=12(x -10)(x -30).于是当0<x <10时,f ′(x )>0,所以f (x )在(0,10)上单调递增; 当10<x <30时,f ′(x )<0,所以f (x )在(10,30)上单调递减. 因此当x =10时,f (x )有最大值f (10)=16 000,此时a =b =60,x =10. 答:当a =b =60,x =10时纸盒的体积最大,最大值为16 000立方厘米.4.(2017·南通、泰州一调)如图,某机械厂要将长6 m ,宽2 m 的长方形铁皮ABCD 进行裁剪.已知点F 为AD 的中点,点E 在边BC 上,裁剪时先将四边形CDFE 沿直线EF 翻折到MNFE 处(点C ,D 分别落在直线BC 下方点M ,N 处,FN 交边BC 于点P ),再沿直线PE 裁剪.(1)当∠EFP =π4时,试判断四边形MNPE 的形状,并求其面积;(2)若使裁剪得到的四边形MNPE 面积最大,请给出裁剪方案,并说明理由. 解:(1)当∠EFP =π4时,由条件得∠EFP =∠EFD =∠FEP =π4,所以∠FPE =π2,即FN ⊥BC ,所以四边形MNPE 为矩形,且四边形MNPE 的面积S =PN ·MN =2(m 2). (2)法一:设∠EFD =θ⎝⎛⎭⎫0<θ<π2,由条件,知∠EFP =∠EFD =∠FEP =θ. 所以PF =2sin (π-2θ)=2sin 2θ,NP =NF -PF =3-2sin 2θ,ME =3-2tan θ. 由⎩⎪⎨⎪⎧3-2sin 2θ>0,3-2tan θ>0,0<θ<π2,得⎩⎪⎨⎪⎧sin 2θ>23,tan θ>23, (*)0<θ<π2.所以四边形MNPE 面积为S =12(NP +ME )MN=12⎣⎡⎦⎤3-2sin 2θ+⎝⎛⎭⎫3-2tan θ×2=6-2tan θ-2sin 2θ =6-2tan θ-2(sin 2θ+cos 2θ)2sin θcos θ=6-⎝⎛⎭⎫tan θ+3tan θ≤6-2tan θ·3tan θ=6-2 3.当且仅当tan θ=3tan θ,即tan θ=3,θ=π3时取“=”. 此时,(*)成立.答:当∠EFD =π3时,沿直线PE 裁剪,四边形MNPE 面积最大,最大值为()6-23m 2.法二:设BE =t m,3<t <6,则ME =6-t . 因为∠EFP =∠EFD =∠FEP ,所以PE =PF ,即(3-BP )2+22=t -BP .所以BP =13-t 22(3-t ),NP =3-PF =3-PE =3-(t -BP )=3-t +13-t 22(3-t ).由⎩⎪⎨⎪⎧3<t <6,13-t 22(3-t )>0,3-t +13-t 22(3-t )>0,得⎩⎪⎨⎪⎧3<t <6,t >13, (*)t 2-12t +31<0.所以四边形MNPE 面积为S =12(NP +ME )MN =12⎣⎢⎡⎦⎥⎤3-t +13-t 22(3-t )+(6-t )×2=3t 2-30t +672(3-t )=6-⎣⎡⎦⎤32(t -3)+2t -3≤6-2 3.当且仅当32(t -3)=2t -3,即t =3+43=3+233时取“=”. 此时,(*)成立. 答:当点E 距B 点3+233 m 时,沿直线PE 裁剪,四边形MNPE 面积最大,最大值为(6-23)m 2.5.(2017·南京三模)在一水域上建一个演艺广场.演艺广场由看台Ⅰ,看台Ⅱ,三角形水域ABC ,及矩形表演台BCDE 四个部分构成(如图).看台Ⅰ,看台Ⅱ是分别以AB ,AC 为直径的两个半圆形区域,且看台Ⅰ的面积是看台Ⅱ的面积的3倍;矩形表演台BCDE 中,CD =10米;三角形水域ABC 的面积为4003平方米.设∠BAC =θ.(1)求BC 的长(用含θ的式子表示);(2)若表演台每平方米的造价为0.3万元,求表演台的最低造价. 解:(1)因为看台Ⅰ的面积是看台Ⅱ的面积的3倍,所以AB =3AC . 在△ABC 中,S △ABC =12AB ·AC ·sin θ=4003,所以AC 2=800sin θ. 由余弦定理可得BC 2=AB 2+AC 2-2AB ·AC ·cos θ=4AC 2-23AC 2 cos θ=(4-23cos θ) 800sin θ , 即BC =(4-23cos θ)·800sin θ=402-3cos θsin θ.所以BC =402-3cos θsin θ,θ∈(0,π).(2)设表演台的总造价为W 万元.因为CD =10 m ,表演台每平方米的造价为0.3万元, 所以W =3BC =1202-3cos θsin θ,θ∈(0,π).记f (θ)=2-3cos θsin θ,θ∈(0,π).则f ′(θ)=3-2cos θsin 2θ.由f ′(θ)=0,解得θ=π6.当θ∈⎝⎛⎭⎫0,π6时,f ′(θ)<0; 当θ∈⎝⎛⎭⎫π6,π时,f ′(θ)>0. 故f (θ)在⎝⎛⎭⎫0,π6上单调递减,在⎝⎛⎭⎫π6,π上单调递增, 从而当θ=π6时,f (θ)取得最小值,最小值为f ⎝⎛⎭⎫π6=1. 所以W min =120(万元).答:表演台的最低造价为120万元.6.如图,OA 是南北方向的一条公路,OB 是北偏东45°方向的一条公路,某风景区的一段边界为曲线C .为方便游客观光,拟过曲线C 上某点P 分别修建与公路OA ,OB 垂直的两条道路PM ,PN ,且PM ,PN 的造价分别为5万元/百米、40万元/百米.建立如图所示的平面直角坐标系xOy ,则曲线C 符合函数y =x +42x 2(1≤x ≤9)模型,设PM =x ,修建两条道路PM ,PN 的总造价为f (x )万元.题中所涉及长度单位均为百米.(1)求f (x )的解析式;(2)当x 为多少时,总造价f (x )最低?并求出最低造价.解:(1)在题中的平面直角坐标系中,因为曲线C 的方程为y =x +42x 2(1≤x ≤9),PM =x ,所以点P 的坐标为⎝⎛⎭⎫x ,x +42x 2. 又直线OB 的方程为x -y =0, 则点P 到直线x -y =0的距离为⎪⎪⎪⎪x -⎝⎛⎭⎫x +42x 22=⎪⎪⎪⎪42x 22=4x 2. 又PM 的造价为5万元/百米,PN 的造价为40万元/百米, 所以两条道路的总造价为f (x )=5x +40×4x 2=5⎝⎛⎭⎫x +32x 2(1≤x ≤9).(2)因为f (x )=5⎝⎛⎭⎫x +32x 2, 所以f ′(x )=5⎝⎛⎭⎫1-64x 3=5(x 3-64)x 3. 令f ′(x )=0,得x =4,列表如下:所以当x =4且最小值为f (4)=5⎝⎛⎭⎫4+3242=30. 即当x =4时,总造价f (x )最低, 且最低造价为30万元.(注:利用三次基本不等式f (x )=5⎝⎛⎭⎫x +32x 2=5⎝⎛⎭⎫x 2+x 2+32x 2≥5×338=30,当且仅当x 2=x 2=32x2,即x =4时等号成立,照样给分.)。
2018高考数学江苏专版三维二轮专题复习训练:6个解答题专项强化练(四)数列含解析
6个解答题专项强化练(四) 数 列1、已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4.(1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n -1}的前n 项和(n ∈N *)、解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q . 由已知b 2+b 3=12,得b 1(q +q 2)=12, 而b 1=2,所以q 2+q -6=0. 又因为q >0,解得q =2. 所以b n =2n .由b 3=a 4-2a 1,可得3d -a 1=8.① 由S 11=11b 4,可得a 1+5d =16.②由①②,解得a 1=1,d =3,由此可得a n =3n -2.所以数列{a n }的通项公式为a n =3n -2,数列{b n }的通项公式为b n =2n . (2)设数列{a 2n b 2n -1}的前n 项和为T n , 由a 2n =6n -2,b 2n -1=2×4n -1,得a 2n b 2n -1=(3n -1)×4n ,故T n =2×4+5×42+8×43+…+(3n -1)×4n ,4T n =2×42+5×43+8×44+…+(3n -4)×4n +(3n -1)×4n +1,上述两式相减,得-3T n =2×4+3×42+3×43+…+3×4n -(3n -1)×4n +1=12×(1-4n )1-4-4-(3n -1)×4n +1=-(3n -2)×4n +1-8.故T n =3n -23×4n +1+83.所以数列{a 2n b 2n -1}的前n 项和为3n -23×4n +1+83. 2、已知数列{a n }满足:a 1=12,a n +1-a n =p ·3n -1-nq ,n ∈N *,p ,q ∈R.(1)若q =0,且数列{a n }为等比数列,求p 的值;(2)若p =1,且a 4为数列{a n }的最小项,求q 的取值范围、 解:(1)∵q =0,a n +1-a n =p ·3n -1,∴a 2=a 1+p =12+p ,a 3=a 2+3p =12+4p ,由数列{a n }为等比数列,得⎝⎛⎭⎫12+p 2=12⎝⎛⎭⎫12+4p ,解得p =0或p =1.当p =0时,a n +1=a n ,∴a n =12,符合题意;当p =1时,a n +1-a n =3n -1,∴a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=12+(1+3+…+3n -2)=12+1-3n -11-3=12·3n -1, ∴a n +1a n =3.符合题意、∴p 的值为0或1.(2)法一:若p =1,则a n +1-a n =3n -1-nq ,∴a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=12+(1+3+…+3n -2)-[1+2+…+(n-1)]q =12[3n -1-n (n -1)q ]、∵数列{a n }的最小项为a 4,∴对任意的n ∈N *,有12[3n -1-n (n -1)q ]≥a 4=12(27-12q )恒成立,即3n -1-27≥(n 2-n -12)q 对任意的n ∈N *恒成立、当n =1时,有-26≥-12q ,∴q ≥136;当n =2时,有-24≥-10q ,∴q ≥125;当n =3时,有-18≥-6q ,∴q ≥3; 当n =4时,有0≥0,∴q ∈R ;当n ≥5时,n 2-n -12>0,所以有q ≤3n -1-27n 2-n -12恒成立,令c n =3n -1-27n 2-n -12(n ≥5,n ∈N *),则c n +1-c n =2(n 2-2n -12)3n -1+54n(n 2-16)(n 2-9)>0,即数列{c n }为递增数列,∴q ≤c 5=274. 综上所述,q 的取值范围为⎣⎡⎦⎤3,274. 法二:∵p =1,∴a n +1-a n =3n -1-nq ,又a 4为数列{a n }的最小项,∴⎩⎪⎨⎪⎧ a 4-a 3≤0,a 5-a 4≥0,即⎩⎪⎨⎪⎧9-3q ≤0,27-4q ≥0,∴3≤q ≤274. 此时a 2-a 1=1-q <0,a 3-a 2=3-2q <0, ∴a 1>a 2>a 3≥a 4.当n ≥4时,令b n =a n +1-a n ,b n +1-b n =2·3n -1-q ≥2·34-1-274>0,∴b n +1>b n ,∴0≤b 4<b 5<b 6<…, 即a 4≤a 5<a 6<a 7<…. 综上所述,当3≤q ≤274时,a 4为数列{a n }的最小项, 即q 的取值范围为⎣⎡⎦⎤3,274. 3、数列{a n }的前n 项和为S n ,a 1=2,S n =a n ⎝⎛⎭⎫n 3+r (r ∈R,n ∈N *)、 (1)求r 的值及数列{a n }的通项公式; (2)设b n =na n(n ∈N *),记{b n }的前n 项和为T n .①当n ∈N *时,λ<T 2n -T n 恒成立,求实数λ的取值范围;②求证:存在关于n 的整式g (n ),使得∑i =1n -1(T n +1)=T n ·g (n )-1对一切n ≥2,n ∈N *都成立、解:(1)当n =1时,S 1=a 1⎝⎛⎭⎫13+r ,∴r =23, ∴S n =a n ⎝⎛⎭⎫n 3+23.当n ≥2时,S n -1=a n -1⎝⎛⎭⎫n 3+13. 两式相减,得a n =n +23a n -n +13a n -1, ∴a n a n -1=n +1n -1(n ≥2)、 ∴a 2a 1·a 3a 2·…·a n a n -1=31×42×53×…×nn -2×n +1n -1, 即a n a 1=n (n +1)2. ∴a n =n (n +1)(n ≥2), 又a 1=2适合上式、 ∴a n =n (n +1)、 (2)①∵a n =n (n +1),∴b n =1n +1,T n =12+13+…+1n +1.∴T 2n =12+13+…+12n +1,∴T 2n -T n =1n +2+1n +3+…+12n +1.令B n =T 2n -T n =1n +2+1n +3+…+12n +1. 则B n +1=1n +3+1n +4+…+12n +3. ∴B n +1-B n =12n +2+12n +3-1n +2=3n +4(2n +2)(2n +3)(n +2)>0.∴B n +1>B n ,∴B n 单调递增, 故(B n )min =B 1=13,∴λ<13.∴实数λ的取值范围为⎝⎛⎭⎫-∞,13. ②证明:∵T n =12+13+…+1n +1,∴当n ≥2时,T n -1=12+13+…+1n ,∴T n -T n -1=1n +1, 即(n +1)T n -nT n -1=T n -1+1.∴当n ≥2时,∑i =1n -1(T n +1)=(3T 2-2T 1)+(4T 3-3T 2)+(5T 4-4T 3)+…+[(n +1)T n -nT n -1]=(n +1)T n -2T 1=(n +1)T n -1.∴存在关于n 的整式g (n )=n +1,使得∑i =1n -1 (T n +1)=T n ·g (n )-1对一切n ≥2,n ∈N *都成立、4、已知数列{a n }满足a 1=12,对任意的正整数m ,p ,都有a m +p =a m ·a p .(1)证明:数列{a n }是等比数列; (2)若数列{b n }满足a n =b 12+1-b 222+1+b 323+1-b 424+1+…+(-1)n +1b n 2n +1,求数列{b n }的通项公式;(3)在(2)的条件下,设c n =2n +λb n ,则是否存在实数λ,使得数列{c n }是单调递增数列?若存在,求出实数λ的取值范围;若不存在,请说明理由、解:(1)证明:∵对任意的正整数m ,p ,都有a m +p =a m ·a p ,∴令m =n ,p =1,得a n +1=a 1·a n , 从而a n +1a n=a 1=12,∴数列{a n }是首项和公比都为12的等比数列、(2)由(1)可知,a n =12n .由a n =b 12+1-b 222+1+b 323+1-b 424+1+…+(-1)n +1b n 2n +1得, a n -1=b 12+1-b 222+1+b 323+1-b 424+1+…+(-1)n ·b n -12n -1+1(n ≥2), 故a n -a n -1=(-1)n+1b n2n+1(n ≥2), 故b n =(-1)n ⎝⎛⎭⎫12n +1(n ≥2)、 当n =1时,a 1=b 12+1,解得b 1=32,不符合上式、∴b n=⎩⎨⎧32,n =1,(-1)n⎝⎛⎭⎫12n+1,n ≥2,n ∈N *.(3)∵c n =2n +λb n ,∴当n ≥2时,c n =2n +(-1)n ⎝⎛⎭⎫12n +1λ, 当n ≥3时,c n -1=2n -1+(-1)n -1⎝⎛⎭⎫12n -1+1λ,根据题意,当n ≥3时,c n -c n -1=2n -1+(-1)nλ·⎝⎛⎭⎫2+32n >0,即(-1)n λ>-2n -132n+2. ①当n 为大于等于4的偶数时,有λ>-2n -132n+2恒成立,又2n -132n +2随着n 的增大而增大,此时⎝ ⎛⎭⎪⎪⎫2n -132n +2min =12835,即λ>-12835, 故λ的取值范围为⎝⎛⎭⎫-12835,+∞. ②当n 为大于等于3的奇数时,有λ<2n -132n+2恒成立,此时⎝ ⎛⎭⎪⎪⎫2n -132n +2min =3219,即λ<3219. 故λ的取值范围为⎝⎛⎭⎫-∞,3219; ③当n =2时,由c 2-c 1=⎝⎛⎭⎫22+54λ-⎝⎛⎭⎫2+32λ>0,得λ<8. 综上可得,实数λ的取值范围为⎝⎛⎭⎫-12835,3219. 5、已知各项不为零的数列{a n }的前n 项和为S n ,且a 1=1,S n =pa n a n +1(n ∈N *),p ∈R. (1)若a 1,a 2,a 3成等比数列,求实数p 的值; (2)若a 1,a 2,a 3成等差数列, ①求数列{a n }的通项公式;②在a n 与a n +1间插入n 个正数,共同组成公比为q n 的等比数列,若不等式(q n )(n+1)(n +a )≤e(e 为自然对数的底数)对任意的n ∈N *恒成立,求实数a 的最大值、 解:(1)当n =1时,a 1=pa 1a 2,a 2=1p ; 当n =2时,a 1+a 2=pa 2a 3,a 3=a 1+a 2pa 2=1+1p . 由a 22=a 1a 3,得1p 2=1+1p ,即p 2+p -1=0,解得p =-1±52. (2)①因为a 1,a 2,a 3成等差数列,所以2a 2=a 1+a 3,得p =12,故a 2=2,a 3=3,所以S n =12a n a n +1.当n ≥2时,a n =S n -S n -1=12a n a n +1-12a n -1a n ,因为a n ≠0,所以a n +1-a n -1=2.故数列{a n }的所有奇数项组成以1为首项,2为公差的等差数列, 其通项公式a n =1+⎝⎛⎭⎫n +12-1×2=n ,同理,数列{a n }的所有偶数项组成以2为首项,2为公差的等差数列, 其通项公式是a n =2+⎝⎛⎭⎫n 2-1×2=n , 所以数列{a n }的通项公式是a n =n .②由①知,a n =n ,在n 与n +1间插入n 个正数,组成公比为q n 的等比数列,故有n +1=nq n +1n ,即q n =⎝⎛⎭⎫n +1n 1n +1, 所以(q n )(n+1)(n +a )≤e,即⎝⎛⎭⎫n +1n n +a ≤e,两边取对数得(n +a )ln ⎝⎛⎭⎫n +1n ≤1,分离参数得a ≤1ln ⎝⎛⎭⎫n +1n -n 恒成立 . 令n +1n =x ,x ∈(1,2],则a ≤1ln x -1x -1,x ∈(1,2], 令f (x )=1ln x -1x -1,x ∈(1,2], 则f ′(x )=(ln x )2-(x -1)2x(ln x )2(x -1)2,下证ln x ≤x -1x,x ∈(1,2], 令g (x )=x -1x -2ln x ,x ∈[1,+∞), 则g ′(x )=(x -1)2x 2>0,所以g (x )>g (1)=0,即2ln x <x -1x ,用x 替代x 可得ln x <x -1x ,x ∈(1,2],所以f ′(x )=(ln x )2-(x -1)2x(ln x )2(x -1)2<0,所以f (x )在(1,2]上递减, 所以a ≤f (2)=1ln 2-1. 所以实数a 的最大值为1ln 2-1.6、设三个各项均为正整数的无穷数列{a n },{b n },{c n }、记数列{b n },{c n }的前n 项和分别为S n ,T n ,若对任意的n ∈N *,都有a n =b n +c n ,且S n >T n ,则称数列{a n }为可拆分数列、(1)若a n =4n ,且数列{b n },{c n }均是公比不为1的等比数列,求证:数列{a n }为可拆分数列; (2)若a n =5n ,且数列{b n },{c n }均是公差不为0的等差数列,求所有满足条件的数列{b n },{c n }的通项公式;(3)若数列{a n },{b n },{c n }均是公比不为1的等比数列,且a 1≥3,求证:数列{a n }为可拆分数列、解:(1)证明:由a n =4n =4·4n -1=3·4n -1+4n -1,令b n =3·4n -1,c n =4n -1.则{b n }是以3为首项,4为公比的等比数列,{c n }是以1为首项,4为公比的等比数列, 故S n =4n-1,T n =4n -13.所以对任意的n ∈N *,都有a n =b n +c n ,且S n >T n . 所以数列{a n }为可拆分数列、 (2)设数列{b n },{c n }的公差分别为d 1,d 2. 由a n =5n ,得b 1+(n -1)d 1+c 1+(n -1)d 2=(d 1+d 2)n +b 1+c 1-d 1-d 2=5n 对任意的n ∈N *都成立、所以⎩⎪⎨⎪⎧ d 1+d 2=5,b 1+c 1-d 1-d 2=0,即⎩⎪⎨⎪⎧d 1+d 2=5,b 1+c 1=5,① 由S n >T n ,得nb 1+n (n -1)2d 1>nc 1+n (n -1)2d 2,则⎝⎛⎭⎫d 12-d 22n 2+⎝⎛⎭⎫b 1-c 1-d 12+d 22n >0. 由n ≥1,得⎝⎛⎭⎫d 12-d 22n +⎝⎛⎭⎫b 1-c 1-d 12+d 22>0对任意的n ∈N *成立、 则d 12-d 22≥0且⎝⎛⎭⎫d 12-d 22+⎝⎛⎭⎫b 1-c 1-d 12+d 22>0即d 1≥d 2且b 1>c 1. ② 由数列{b n },{c n }各项均为正整数,则b 1,c 1,d 1,d 2均为正整数,当d 1=d 2时,由d 1+d 2=5,得d 1=d 2=52∉N *,不符合题意,所以d 1>d 2. ③联立①②③,可得⎩⎪⎨⎪⎧ d 1=4,d 2=1,b 1=4,c 1=1或⎩⎪⎨⎪⎧d 1=4,d 2=1,b 1=3,c 1=2 或⎩⎪⎨⎪⎧ d 1=3,d 2=2,b 1=4,c 1=1或⎩⎪⎨⎪⎧d 1=3,d 2=2,b 1=3,c 1=2.所以⎩⎪⎨⎪⎧ b n =4n ,c n =n 或⎩⎪⎨⎪⎧ b n =4n -1,c n =n +1或⎩⎪⎨⎪⎧b n =3n +1,c n =2n -1 或⎩⎪⎨⎪⎧b n =3n ,c n =2n . (3)证明:设a n =a 1q n -1,a 1∈N *,q >0,q ≠1,则q ≥2.当q 为无理数时,a 2=a 1q 为无理数,与a n ∈N *矛盾、 故q 为有理数,设q =ba (a ,b 为正整数,且a ,b 互质)、 此时a n =a 1·b n -1an -1.则对任意的n ∈N *,a n-1均为a 1的约数,则a n -1=1,即a =1,故q =ba =b ∈N *,所以q ∈N *,q ≥2.所以a n =a 1q n -1=(a 1-1)q n -1+q n -1,令b n =(a 1-1)·q n -1,c n =q n -1.则{b n },{c n }各项均为正整数、因为a 1≥3, 所以a 1-1≥2>1,则S n >T n ,所以数列{a n}为可拆分数列、。
2018年高考数学江苏专版复习训练:6个解答题综合仿真练(一) 含解析
6个解答题综合仿真练(一)1.在三角形ABC 中,角A ,B ,C 所对的边分别是a ,b ,c.已知b =3,c =2. (1)若2a ·cos C =3,求a 的值; (2)若c b =cos C 1+cos B ,求cos C 的值.解:(1)由余弦定理得,2a ·a 2+b 2-c 22ab =3,将b =3,c =2代入,解得a =2. (2)由正弦定理,得sin C sin B =cos C1+cos B, 即sin C +sin Ccos B =sin Bcos C ,则sin C =sin Bcos C -cos Bsin C =sin(B -C). 因为0<C<B<π,所以0<B -C<π, 所以C =B -C ,则B =2C. 由正弦定理可得b sin B =c sin C =b 2sin Ccos C, 将b =3,c =2代入,解得cos C =34.2.如图,在四棱锥P -ABCD 中,四边形ABCD 为平行四边形,AC ,BD 相交于点O ,点E 为PC 的中点,OP =OC ,PA ⊥PD.求证:(1)PA ∥平面BDE; (2)平面BDE ⊥平面PCD.证明:(1)连结OE ,因为O 为平行四边形ABCD 对角线的交点,所以O 为AC 的中点.又因为E 为PC 的中点, 所以OE ∥PA.又因为OE ⊂平面BDE ,PA ⊄平面BDE , 所以PA ∥平面BDE.(2)因为OE ∥PA ,PA ⊥PD ,所以OE ⊥PD. 因为OP =OC ,E 为PC 的中点,所以OE ⊥PC.又因为PD ⊂平面PCD ,PC ⊂平面PCD ,PC ∩PD =P ,所以OE ⊥平面PCD.又因为OE ⊂平面BDE ,所以平面BDE ⊥平面PCD. 3.如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b 2=1(a>b>0)的离心率为23,C 为椭圆上位于第一象限内的一点.(1)若点C 的坐标为⎝⎛⎭⎪⎫2,53,求a ,b 的值;(2)设A 为椭圆的左顶点,B 为椭圆上一点,且AB ―→=12OC ―→,求直线AB 的斜率.解:(1)因为椭圆的离心率为23,所以a 2-b 2a =23,即b 2a 2=59. ①又因为点C ⎝ ⎛⎭⎪⎫2,53在椭圆上,所以4a 2+259b 2=1. ②由①②解得a 2=9,b 2=5. 因为a>b>0,所以a =3,b = 5.(2)法一:由(1)知,b 2a 2=59,所以椭圆方程为x 2a 2+9y 25a 2=1,即5x 2+9y 2=5a 2.设直线OC 的方程为x =my(m>0),B(x 1,y 1),C(x 2,y 2). 由{ x =my , 5x 2+9y 2=5a 2消去x ,得5m 2y 2+9y 2=5a 2,所以y 2=5a 25m 2+9.因为y 2>0,所以y 2=5a5m 2+9.因为AB ―→=12OC ―→,所以AB ∥OC.可设直线AB 的方程为x =my -a.由{ x =my -a , 5x 2+9y 2=5a 2消去x ,得(5m 2+9)y 2-10amy =0,所以y =0或y =10am 5m 2+9,得y 1=10am5m 2+9. 因为AB ―→=12OC ―→,所以(x 1+a ,y 1)=⎝ ⎛⎭⎪⎫12x 2,12y 2,于是y 2=2y 1,即5a 5m 2+9=20am 5m 2+9(m>0),所以m =35.。
2018年高考数学江苏专版训练:6个解答题综合仿真练(一)含解析
6个解答题综合仿真练(一)1.在三角形ABC 中,角A ,B ,C 所对的边分别是a ,b ,c.已知b =3,c =2.(1)若2a ·cos C =3,求a 的值;(2)若c b =cos C 1+cos B,求cos C 的值. 解:(1)由余弦定理得,2a ·a 2+b 2-c 22ab=3, 将b =3,c =2代入,解得a =2.(2)由正弦定理,得sin C sin B =cos C 1+cos B, 即sin C +sin Ccos B =sin Bcos C ,则sin C =sin Bcos C -cos Bsin C =sin(B -C).因为0<C<B<π,所以0<B -C<π,所以C =B -C ,则B =2C.由正弦定理可得b sin B =c sin C =b 2sin Ccos C, 将b =3,c =2代入,解得cos C =34.2.如图,在四棱锥P -ABCD 中,四边形ABCD 为平行四边形,AC ,BD 相交于点O ,点E 为PC 的中点,OP =OC ,PA⊥PD.求证:(1)PA ∥平面BDE;(2)平面BDE ⊥平面PCD.证明:(1)连结OE ,因为O 为平行四边形ABCD 对角线的交点,所以O 为AC 的中点.又因为E 为PC 的中点,所以OE ∥PA.又因为OE ⊂平面BDE ,PA ⊄平面BDE ,所以PA ∥平面BDE.(2)因为OE ∥PA ,PA ⊥PD ,所以OE ⊥PD.因为OP =OC ,E 为PC 的中点,所以OE ⊥PC.又因为PD ⊂平面PCD ,PC ⊂平面PCD ,PC ∩PD =P ,所以OE ⊥平面PCD. 又因为OE ⊂平面BDE ,所以平面BDE ⊥平面PCD.3.如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b 2=1(a>b>0)的离心率为23,C 为椭圆上位于第一象限内的一点. (1)若点C 的坐标为⎝⎛⎭⎪⎪⎫2,53,求a ,b 的值; (2)设A 为椭圆的左顶点,B 为椭圆上一点,且AB ―→=12OC ―→,求直线AB 的斜率.解:(1)因为椭圆的离心率为23, 所以a 2-b 2a =23,即b 2a 2=59. ①又因为点C ⎝⎛⎭⎪⎪⎫2,53在椭圆上,所以4a 2+259b 2=1. ② 由①②解得a 2=9,b 2=5.因为a>b>0,所以a =3,b = 5.(2)法一:由(1)知,b 2a 2=59,所以椭圆方程为x 2a 2+9y 25a 2=1,即5x 2+9y 2=5a 2. 设直线OC 的方程为x =my(m>0),B(x 1,y 1),C(x 2,y 2). 由{ x =my ,5x 2+9y 2=5a 2消去x ,得5m 2y 2+9y 2=5a 2,所以y 2=5a 25m 2+9.因为y 2>0,所以y 2=5a 5m 2+9.因为AB ―→=12OC ―→,所以AB ∥OC.可设直线AB 的方程为x =my -a. 由{ x =my -a ,5x 2+9y 2=5a 2消去x ,得(5m 2+9)y 2-10amy =0,所以y =0或y =10am5m 2+9,得y 1=10am 5m 2+9.因为AB ―→=12OC ―→,所以(x 1+a ,y 1)=⎝ ⎛⎭⎪⎪⎫12x 2,12y 2,于是y 2=2y 1, 即5a 5m 2+9=20am 5m 2+9(m>0),所以m =35. 所以直线AB 的斜率为1m =533. 法二:由(1)可知,椭圆方程为5x 2+9y 2=5a 2,则A(-a ,0).。
2018高考数学江苏专版三维二轮专题复习训练:6个解答题专项强化练(六) 应用题 Word版含解析
6个解答题专项强化练(六) 应用题1、某辆汽车以x 千米/小时的速度在高速公路上匀速行驶(高速公路行车安全要求为60≤x ≤120)时,每小时的油耗(所需要的汽油量)为15⎝⎛⎭⎫x -k +4 500x 升,其中k 为常数,且60≤k ≤100、(1)若汽车以120千米/小时的速度行驶时,每小时的油耗为11、5升,欲使每小时的油耗不超过9升,求x 的取值范围;(2)求该汽车行驶100千米的油耗的最小值、 解:(1)由题意可得当x =120时, 15⎝⎛⎭⎫120-k +4 500120=11、5, 解得k =100,由15⎝⎛⎭⎫x -100+4 500x ≤9, 即x 2-145x +4 500≤0,解得45≤x ≤100, 又60≤x ≤120,可得60≤x ≤100,所以当每小时的油耗不超过9升时,x 的取值范围为[60,100]、 (2)设该汽车行驶100千米油耗为y 升,则y =100x ·15⎝⎛⎭⎫x -k +4 500x =20-20k x +90 000x 2(60≤x ≤120), 令t =1x,则t ∈⎣⎡⎦⎤1120,160, 即有y =90 000t 2-20kt +20=90 000⎝⎛⎭⎫t -k 9 0002+20-k 2900,对称轴为t =k9 000、 由60≤k ≤100,可得k9 000∈⎣⎡⎤1150,190、 ①若k 9 000≥1120,即75≤k <100,则当t =k 9 000,即x =9 000k 时,y min =20-k 2900;②若k 9 000<1120,即60≤k <75,则当t =1120,即x =120时,y min =1054-k6、答:当75≤k <100时,该汽车行驶100千米的油耗的最小值为20-k 2900升;当60≤k <75时,该汽车行驶100千米的油耗的最小值为1054-k6升、2、如图,某公园有三条观光大道AB ,BC ,AC 围成直角三角形,其中直角边BC =200 m,斜边AB =400 m,现有甲、乙、丙三位小朋友分别在AB ,BC ,AC 大道上嬉戏,所在位置分别记为点D ,E ,F 、(1)若甲、乙都以每分钟100 m 的速度从点B 出发在各自的大道上奔走,到大道的另一端时即停,乙比甲迟2分钟出发,当乙出发1分钟后,求此时甲乙两人之间的距离;(2)设∠CEF =θ,乙、丙之间的距离是甲、乙之间距离的2倍,且∠DEF =π3,请将甲、乙之间的距离y 表示为θ的函数,并求甲、乙之间的最小距离、解:(1)依题意得BD =300,BE =100, 在△ABC 中,cos B =BC AB =12,∴B =π3,在△BDE 中,由余弦定理得:DE 2=BD 2+BE 2-2BD ·BE ·cos B =3002+1002-2×300×100×12=70 000,∴DE =1007、答:此时甲、乙两人之间的距离为1007 m 、 (2)由题意,得EF =2DE =2y ,∠BDE =∠CEF =θ, 在Rt △CEF 中,CE =EF ·cos ∠CEF =2y cos θ, 在△BDE 中,由正弦定理得BE sin ∠BDE =DE sin ∠DBE ,即200-2y cos θsin θ=y sin π3,∴y =10033cos θ+sin θ=503sin ⎝⎛⎭⎫θ+π3,0<θ<π2,所以当θ=π6时,y 有最小值503、答:甲、乙之间的最小距离为50 3 m 、3、现需要设计一个仓库,它的上部是底面圆半径为5米的圆锥,下部是底面圆半径为5米的圆柱,且该仓库的总高度为5米、经过预算,制造该仓库的圆锥侧面、圆柱侧面用料的单价分别为4百元/米2、1百元/米2、(1)记仓库的侧面总造价为y 百元,①设圆柱的高为x 米,试将y 表示为关于x 的函数y =f (x );②设圆锥母线与其轴所在直线所成角为θ,试将y 表示为关于θ的函数y =g (θ); (2)问当圆柱的高度为多少米时,该仓库的侧面总造价(单位:百元)最少? 解:(1)①由题可知,圆柱的高为x 米,且x ∈(0,5),则该仓库的侧面总造价y =(2π×5×x )×1+⎣⎡⎦⎤12×2π×5×(5-x )2+25×4=10πx +20πx 2-10x +50,x ∈(0,5)、②由题可知,圆锥母线与轴所在直线所成角为θ,且θ∈⎝⎛⎭⎫π4,π2, 则该仓库的侧面总造价y =2π×5×5⎝⎛⎭⎫1-1tan θ×1+⎝⎛⎭⎫12×2π×5×5sin θ×4=50π⎝ ⎛⎭⎪⎫1+2-cos θsin θ,θ∈⎝⎛⎭⎫π4,π2、 (2)由②,令h (θ)=2-cos θsin θ,θ∈⎝⎛⎭⎫π4,π2, 则h ′(θ)=1-2cos θsin 2θ、令h ′(θ)=0,得cos θ=12,所以θ=π3、则h ′(θ),h (θ)随θ的变化情况如表所示:当θ=π3时,h (θ)取得最小值,侧面总造价y 最小,此时圆柱的高度为5-5tan θ=5-533米、答:当圆柱的高度为5-533米时,该仓库的侧面总造价最少、4、如图所示,某街道居委会拟在EF 地段的居民楼正南方向的空白地段AE 上建一个活动中心,其中AE =30米、活动中心东西走向,与居民楼平行、从东向西看活动中心的截面图的下部分是长方形ABCD ,上部分是以DC 为直径的半圆、为了保证居民楼住户的采光要求,活动中心在与半圆相切的太阳光线照射下落在居民楼上的影长GE 不超过52米,其中该太阳光线与水平线的夹角θ满足tan θ=34、 (1)若设计AB =18米,AD =6米,问能否保证上述采光要求?(2)在保证上述采光要求的前提下,如何设计AB 与AD 的长度,可使得活动中心的截面面积最大?(注:计算中π取3)解:如图所示,以点A 为坐标原点,AB 所在直线为x 轴、AD 所在直线为y 轴,建立平面直角坐标系、(1)因为AB =18,AD =6,所以半圆的圆心为H (9,6),半径r =9、 设太阳光线所在直线方程为y =-34x +b ,即3x +4y -4b =0, 则由|27+24-4b |32+42=9,解得b =24或b =32(舍去)、故太阳光线所在直线方程为y =-34x +24,令x =30,得EG =1、5米<2、5米、 所以此时能保证上述采光要求、(2)设AD =h 米,AB =2r 米,则半圆的圆心为H (r ,h ),半径为r 、 法一:设太阳光线所在直线方程为y =-34x +b ,即3x +4y -4b =0,由|3r +4h -4b |32+42=r ,解得b =h +2r 或b =h -r2(舍去)、故太阳光线所在直线方程为y =-34x +h +2r ,令x =30,得EG =2r +h -452,由EG ≤52,得h ≤25-2r 、所以S =2rh +12πr 2=2rh +32r 2≤2r (25-2r )+32r 2=-52r 2+50r =-52(r -10)2+250≤250、当且仅当r =10时取等号、所以当AB =20米且AD =5米时,可使得活动中心的截面面积最大、法二:欲使活动中心内部空间尽可能大,则影长EG 恰为2、5米,则此时点G 为(30,2、5),设过点G 的上述太阳光线为l 1, 则l 1所在直线方程为y -52=-34(x -30),即3x +4y -100=0、由直线l 1与半圆H 相切,得r =|3r +4h -100|5、而点H (r ,h )在直线l 1的下方,则3r +4h -100<0, 即r =-3r +4h -1005,从而h =25-2r 、又S =2rh +12πr 2=2r (25-2r )+32r 2=-52r 2+50r =-52(r -10)2+250≤250、当且仅当r =10时取等号、所以当AB =20米且AD =5米时,可使得活动中心的截面面积最大、 5、某景区修建一栋复古建筑,其窗户设计如图所示、圆O 的圆心与矩形ABCD 对角线的交点重合,且圆与矩形上下两边相切(E 为上切点),与左右两边相交(F ,G 为其中两个交点),图中阴影部分为不透光区域,其余部分为透光区域、已知圆的半径为1 m,且AB AD ≥12、设∠EOF =θ,透光区域的面积为S 、(1)求S 关于θ的函数关系式,并求出定义域;(2)根据设计要求,透光区域与矩形窗面的面积比值越大越好、当该比值最大时,求边AB 的长度、解:(1)过点O 作OH ⊥FG 于点H ,则∠OFH =∠EOF =θ,所以OH =OF sin θ=sin θ,FH =OF cos θ=cos θ、所以S =4S △OFH +4S 扇形OEF =2sin θcos θ+4×12θ=sin 2θ+2θ,因为AB AD ≥12,所以sin θ≥12,所以定义域为⎣⎡⎭⎫π6,π2、 答:S 关于θ的函数关系式为S =sin 2θ+2θ,定义域为⎣⎡⎭⎫π6,π2、 (2)矩形窗面的面积为S 矩形=AD ·AB =2×2sin θ=4sin θ、则透光区域与矩形窗面的面积比值为2sin θcos θ+2θ4sin θ=cos θ2+θ2sin θ、设f (θ)=cos θ2+θ2sin θ,π6≤θ<π2、则f ′(θ)=-12sin θ+sin θ-θcos θ2sin 2θ=sin θ-θcos θ-sin 3θ2sin 2θ=sin θcos 2θ-θcos θ2sin 2θ=cos θ⎝⎛⎭⎫12sin 2θ-θ2sin 2θ、因为π6≤θ<π2,所以0<12sin 2θ≤12,所以12sin 2θ-θ<0,故f ′(θ)<0,所以函数f (θ)在⎣⎡⎭⎫π6,π2上单调递减、所以当θ=π6时,f (θ)有最大值π6+34,此时AB =2sin θ=1(m)、答:透光区域与矩形窗面的面积比值最大时,AB 的长度为1 m 、 6、一缉私艇巡航至距领海边界线l (一条南北方向的直线)3、8海里的A 处,发现在其北偏东30°方向相距4海里的B 处有一走私船正欲逃跑,缉私艇立即追击、已知缉私艇的最大航速是走私船最大航速的3倍、假设缉私艇和走私船均按直线方向以最大航速航行、(1)若走私船沿正东方向逃离,试确定缉私艇的追击方向,使得用最短时间在领海内拦截成功;(参考数据:sin 17°≈36,33≈5、744 6) (2)问:无论走私船沿何方向逃跑,缉私艇是否总能在领海内成功拦截?并说明理由、 解:(1)设缉私艇在C 处与走私船相遇(如图1),依题意,AC =3BC 、 在△ABC 中,由正弦定理得,sin ∠BAC =BC AC sin ∠ABC =sin 120°3=36、因为sin 17°≈36,所以∠BAC =17°、从而缉私艇应向北偏东47°方向追击、 在△ABC 中,由余弦定理得, cos 120°=42+BC 2-AC 28BC ,解得BC =1+334≈1、686 15、又B 到边界线l 的距离为3、8-4sin 30°=1、8、 因为1、686 15<1、8,所以能在领海上成功拦截走私船、 答:缉私艇应向北偏东47°方向追击、(2)法一:如图2,设走私船沿BC 方向逃跑,∠ABC =α, 缉私艇在C 截获走私船,并设BC =a ,则AC =3a 、由余弦定理得(3a )2=a 2+16-8a cos α、即cos α=2-a2a,所以sin α=5a 2-a 4-4a,1≤a ≤2、所以BC cos(α-120°)=a ⎝⎛⎭⎫-12cos α+32sin α =-12(2-a 2)+32·5a 2-a 4-4=12(a 2-2)+32·-⎝⎛⎭⎫a 2-522+94、 令t =a 2-52,-32≤t ≤32,再令t =32cos θ,0°≤θ≤180°、则BC cos(α-120°)=12t +14+32·94-t 2=34cos θ+334sin θ+14=32sin(θ+30°)+14≤1、75<1、8, 所以无论走私船沿何方向逃跑,缉私艇总能在领海内成功拦截、法二:如图3,以A 为原点,正北方向所在的直线为y 轴建立平面直角坐标系xOy 、则B (2,23),设缉私艇在P (x ,y )处(缉私艇恰好截住走私船的位置)与走私船相遇,则PAPB=3,即x 2+y 2(x -2)2+(y -23)2=3、整理得,⎝⎛⎭⎫x -942+⎝⎛⎭⎫y -9342=94, 所以点P (x ,y )的轨迹是以点⎝⎛⎭⎫94,934为圆心,32为半径的圆、因为圆心⎝⎛⎭⎫94,934到领海边界线l :x =3、8的距离为1、55,大于圆的半径32,所以缉私艇能在领海内截住走私船、 答:缉私艇总能在领海内成功拦截走私船、。
2018年高考数学江苏专版三维二轮专题复习训练:6个解答题综合仿真练(三)
6个解答题综合仿真练(三)1.已知向量m =(3cos x ,-1),n =(sin x ,cos 2x ). (1)当x =π3时,求m·n 的值;(2)若x ∈⎣⎡⎦⎤0,π4,且m·n =33-12,求cos 2x 的值. 解:(1)当x =π3时,m =⎝⎛⎭⎫32,-1,n =⎝⎛⎭⎫32,14,所以m·n =34-14=12.(2)m·n =3cos x sin x -cos 2x =32sin 2x -12cos 2x -12=sin ⎝⎛⎭⎫2x -π6-12, 若m·n =33-12,则sin ⎝⎛⎭⎫2x -π6-12=33-12, 即sin ⎝⎛⎭⎫2x -π6=33, 因为x ∈⎣⎡⎦⎤0,π4,所以-π6≤2x -π6≤π3, 所以cos ⎝⎛⎭⎫2x -π6=63, 则cos 2x =cos ⎣⎡⎦⎤⎝⎛⎭⎫2x -π6+π6=cos ⎝⎛⎭⎫2x -π6×cos π6-sin ⎝⎛⎭⎫2x -π6sin π6=63×32-33×12=32-36. 2.如图,在四棱锥P -ABCD 中,底面ABCD 是矩形,点E 在棱PC 上(异于点P ,C ),平面ABE 与棱PD 交于点F .(1)求证:AB ∥EF ;(2)若平面PAD ⊥平面ABCD ,求证:AF ⊥EF . 证明:(1)因为底面ABCD 是矩形,所以AB ∥CD . 又因为AB ⊄平面PDC ,CD ⊂平面PDC , 所以AB ∥平面PDC .又因为AB ⊂平面ABEF ,平面ABEF ∩平面PDC =EF , 所以AB ∥EF .(2)因为底面ABCD 是矩形,所以AB ⊥AD .又因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,AB ⊂平面ABCD , 所以AB ⊥平面PAD .又AF ⊂平面PAD ,所以AB ⊥AF . 又由(1)知AB ∥EF ,所以AF ⊥EF .3.一个玩具盘由一个直径为2米的半圆O 和一个矩形ABCD 构成,AB =1米,如图所示.小球从A 点出发以大小为5v 的速度沿半圆O 轨道滚到某点E 处后,经弹射器以6v 的速度沿与点E 处的切线垂直的方向弹射到落袋区BC 内,落点记为F .设∠AOE =θ弧度,小球从A 到F 所需时间为T .(1)试将T 表示为θ的函数T (θ),并写出定义域; (2)求时间T 最短时cos θ的值.解:(1)如图,过O 作OG ⊥BC 于G ,则OG =1,OF =OG sin θ=1sin θ,EF =1+1sin θ,AE =θ,所以T (θ)=AE 5v +EF 6v =θ5v +16v sin θ+16v,θ∈⎣⎡⎦⎤π4,3π4. (2)由(1)知,T (θ)=θ5v +16v sin θ+16v ,θ∈⎣⎡⎦⎤π4,3π4, T ′(θ)=15v -cos θ6v sin 2θ=6sin 2 θ-5cos θ30v sin 2 θ=-(2cos θ+3)(3cos θ-2)30v sin 2 θ,记cos θ0=23,θ0∈⎣⎡⎦⎤π4,3π4, 则T (θ),T ′(θ)随θ的变化情况如表所示:故当cos θ=23时,时间T 最短.4.如图,在平面直角坐标系xOy 中,焦点在x 轴上的椭圆C :x 28+y 2b 2=1经过点(b,2e ),其中e 为椭圆C 的离心率.过点T (1,0)作斜率为k (k >0)的直线l 交椭圆C 于A ,B 两点(A 在x 轴下方).(1)求椭圆C 的标准方程;(2)过点O 且平行于l 的直线交椭圆C 于点M ,N ,求AT ·BTMN 2的值; (3)记直线l 与y 轴的交点为P .若AP ―→=25TM ―→,求直线l 的斜率k .解:(1)因为椭圆C :x 28+y 2b2=1经过点(b,2e ),所以b 28+4e 2b2=1.因为e 2=c 2a 2=c 28,所以b 28+c 22b2=1,又a 2=b 2+c 2,b 28+8-b22b 2=1,解得b 2=4或b 2=8(舍去). 所以椭圆C 的方程为x 28+y 24=1.(2)设A (x 1,y 1),B (x 2,y 2).因为T (1,0),则直线l 的方程为y =k (x -1).联立直线l 与椭圆方程⎩⎪⎨⎪⎧y =k (x -1),x 28+y 24=1,消去y ,得(2k 2+1)x 2-4k 2x +2k 2-8=0,所以x 1+x 2=4k 22k 2+1,x 1x 2=2k 2-82k 2+1.因为MN ∥l ,所以直线MN 的方程为y =kx ,联立直线MN 与椭圆方程⎩⎪⎨⎪⎧y =kx ,x 28+y 24=1,消去y 得(2k 2+1)x 2=8,解得x 2=82k 2+1.因为MN ∥l ,所以AT ·BT MN 2=(1-x 1)·(x 2-1)(x M -x N )2, 因为(1-x 1)·(x 2-1)=-[x 1x 2-(x 1+x 2)+1]=72k 2+1,(x M -x N )2=4x 2=322k 2+1. 所以AT ·BT MN 2=72k 2+1×2k 2+132=732.(3)在y =k (x -1)中,令x =0,则y =-k ,所以P (0,-k ), 从而AP ―→=(-x 1,-k -y 1),TM ―→=(x 2-1,y 2), ∵AP ―→=25TM ―→,∴-x 1=25(x 2-1),即x 1+25x 2=25,①由(2)知x 1+x 2=4k 22k 2+1,②联立①②得x 1=-4k 2+23(2k 2+1),x 2=16k 2-23(2k 2+1).又x 1x 2=2k 2-82k 2+1,∴50k 4-83k 2-34=0,解得k2=2或k2=-1750(舍去).又因为k>0,所以k= 2.5.定义:从一个数列{a n}中抽取若干项(不少于三项)按其在{a n}中的次序排列的一列数叫做{a n}的子数列,成等差(比)的子数列叫做{a n}的等差(比)子列.(1)求数列1,12,13,14,15的等比子列;(2)设数列{a n}是各项均为实数的等比数列,且公比q≠1.①试给出一个{a n},使其存在无穷项的等差子列(不必写出过程);②若{a n}存在无穷项的等差子列,求q的所有可能值.解:(1)显然从数列中抽取四项或五项时,不存在等比子列,当抽取三项时,设所求等比子数列含原数列中的连续项的个数为k(1≤k≤3,k∈N*),当k=2时,①设1n,1n+1,1m成等比数列,则1(n+1)2=1n×1m,即m=n+1n+2,当且仅当n=1时,m∈N*,此时m=4,所求等比子数列为1,12,14;②设1m,1n,1n+1成等比数列,则1n2=1n+1×1m,即m=n+1+1n+1-2∉N*;当k=3时,数列1,12,13;12,13,14;13,14,15均不成等比数列;当k=1时,显然数列1,13,15不成等比数列.综上,所求等比子数列为1,12,14.(2)①形如:a1,-a1,a1,-a1,a1,-a1,…(a1≠0,q=-1)均存在无穷项,等差子数列:a1,a1,a1,…或-a1,-a1,-a1.②设{an k}(k∈N*,n k∈N*)为{a n}的等差子数列,公差为d,当|q|>1时,|q|n>1,取n k>1+log|q||d||a1|(|q|-1),从而|q|n k-1>|d||a1|(|q|-1),故|an k+1-an k|=|a1qn k+1-1-a1qn k-1| =|a1||q|n k-1·|qn k+1-n k-1|≥|a1||q|n k-1(|q|-1)>|d|,这与|an k+1-an k|=|d|矛盾,故舍去.当|q|<1时,|q|n<1,取n k>1+log|q||d|2|a1|,从而|q|n k-1<|d|2|a1|,故|an k+1-an k|=|a1||q|n k-1|qn k+1-n k-1|≤|a 1||q |n k -1||q |n k +1-n k +1|<2|a 1||q |n k -1<|d |, 这与|an k +1-an k |=|d |矛盾,故舍去. 又q ≠1,故只可能q =-1, 结合①知,q 的所有可能值为-1.6.已知函数f (x )=mx +x ln x (m >0),g (x )=ln x -2.(1)当m =1时,求函数f (x )的单调增区间;(2)设函数h (x )=f (x )-xg (x )-2,x >0.若函数y =h (h (x ))的最小值是322,求m 的值;(3)若函数f (x ),g (x )的定义域都是[1,e],对于函数f (x )的图象上的任意一点A ,在函数g (x )的图象上都存在一点B ,使得OA ⊥OB ,其中e 是自然对数的底数,O 为坐标原点.求m 的取值范围.解:(1)当m =1时,f (x )=1x +x ln x ,f ′(x )=-1x 2+ln x +1.因为f ′(x )在(0,+∞)上单调递增,且f ′(1)=0, 所以当x >1时,f ′(x )>0;当0<x <1时,f ′(x )<0. 所以函数f (x )的单调增区间是(1,+∞).(2)h (x )=m x +2x -2,则h ′(x )=2-m x 2=2x 2-mx 2,令h ′(x )=0,得x =m2, 当0<x < m 2时,h ′(x )<0,函数h (x )在⎝⎛⎭⎫0, m 2上单调递减; 当x >m2时,h ′(x )>0,函数h (x )在⎝⎛⎭⎫ m2,+∞上单调递增. 所以h (x )min =h ⎝⎛⎭⎫m 2=22m - 2. ①当2(2m -1)≥m 2,即m ≥49时, 函数y =h (h (x ))的最小值h (22m -2) =2⎣⎢⎡⎦⎥⎤m 2(2m -1)+2(2m -1)-1=322, 即17m -26m +9=0,解得m =1或m =917(舍去),所以m =1.②当0<2(2m -1)<m 2,即14<m <49时, 函数y =h (h (x ))的最小值h ⎝⎛⎭⎫m 2=2(2m -1)=322,解得m =54(舍去).综上所述,m 的值为1.(3)由题意知,k OA =mx 2+ln x ,k OB =ln x -2x .考虑函数y =ln x -2x ,因为y ′=3-ln xx 2>0在[1,e]上恒成立,所以函数y =ln x -2x 在[1,e]上单调递增,故k OB ∈⎣⎡⎦⎤-2,-1e ,所以k OA ∈⎣⎡⎦⎤12,e , 即12≤mx2+ln x ≤e 在[1,e]上恒成立, 即x 22-x 2ln x ≤m ≤x 2(e -ln x )在[1,e]上恒成立. 设p (x )=x 22-x 2ln x ,则p ′(x )=-2x ln x ≤0在[1,e]上恒成立, 所以p (x )在[1,e]上单调递减,所以m ≥p (1)=12.设q (x )=x 2(e -ln x ),则q ′(x )=x (2e -1-2ln x )≥x (2e -1-2ln e)>0在[1,e]上恒成立, 所以q (x )在[1,e]上单调递增,所以m ≤q (1)=e. 综上所述,m 的取值范围为⎣⎡⎦⎤12,e .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.如图 ,矩形 ABCD 是一个历史文物展览厅的俯视图 ,点 E 在 AB 上 ,在
梯形 BCDE 区域
内部展示文物 ,DE 是玻璃幕墙 ,游客只能在△ ADE 区域内参观、在 AE 上
点 P 处安装一可
旋转的监控摄像头 ,∠MPN 为监控角 ,其中 M ,N 在线段 DE (含端点 )上 ,且点
= 2|k|
- 8k2 3+ 4k2+ 2
=2|k|
6 3+ 4k2
=
12|k| 3+ 4k
2.
因为
k≠
0,所以
|S1-
S2|=
12 ≤ |3k|+ 4|k|
2
12 = 12 = 3, |3k|·4|k| 4 3
当且仅当 3 = 4|k|,即 k= ± 3时取等号、
|k|
2
所以 |S1- S2|的最大值为 3.
解: (1)法一: 在△ PME
中 ,∠ EPM
= θ,PE= AE
-AP
=
4
米 ,∠ PEM
=
π 4,∠
PME
=
3π- 4
θ,
由正弦定理得
PM sin∠ PEM
=
PE sin∠ PME
,
所以
PM
=
PE·sin∠PEM sin∠ PME
=
sin
22 34π-
= θ
sin
4 θ+
cos θ,
在△ PNE 中 ,
,
π
π
所以
NE
=
6 个解答题 综合仿真练 (四)
1.如图 ,四棱锥 P- ABCD 中 , 底面 ABCD 为菱形 , 且 PA ⊥底面 AC,E 是 PA 的中点 ,F 是 PC 的中点、
(1) 求证: PC∥平面 BDE ; (2) 求证: AF ⊥平面 BDE . 证明: (1)连结 OE,因为 O 为菱形 ABCD 对角线的交点 , 所以 O 为 AC 的中点、 又因为 E 为 PA 的中点 , 所以 OE ∥ PC. 又因为 OE ? 平面 BDE ,PC?平面 BDE , 所以 PC∥平面 BDE . (2) 因为 PA= AC,△ PAC 是等腰三角形 , 又 F 是 PC 的中点 ,所以 AF ⊥ PC. 又 OE∥ PC,所以 AF ⊥ OE. 又因为 PA⊥底面 ABCD ,BD? 平面 ABCD , 所以 PA⊥ BD. 又因为 AC,BD 是菱形 ABCD 的对角线 , 所以 AC⊥ BD. 因为 PA∩ AC= A,所以 BD ⊥平面 PAC, 因为 AF ? 平面 PAC,所以 AF ⊥ BD . 因为 OE ∩ BD= O,所以 AF ⊥平面 BDE .
M 在点 N 的右下
方、经测量得知:
AD =6
米 ,AE= 6
米 ,AP= 2
米 ,∠ MPN
=
π 4.记∠
EPM
= θ(弧度
),监控摄像头的可视区域△
PMN
的面积为 S 平方米、
(1) 求 S 关于 θ的函数关系式 ,并写出 θ的取值范围;
参考数据: tan5≈ 3 4
(2) 求 S 的最小值、
=
AE-
AP=
4
米 ,∠ PEMቤተ መጻሕፍቲ ባይዱ
=
π 4,∠
PME
=
3π- 4
θ,
由正弦定理得
sMinEθ=
PE sin∠ PME
,
所以
ME
=
sPinE∠·sPinMθE =
4sin θ sin 34π- θ
=
4 sin
2sin θ θ+ cosθ,
在△ PNE 中 ,由正弦定理得
NE sin∠ EPN
=
PE sin∠ PNE
又
B∈ (0,
π所), 以
B=
3π 4.
因为
sin A=
10 10 ,且 B 为钝角
,所以
3 10 cosA= 10 ,
所以
sin C= sin
A+
3π 4
=
10× 10
-
2 2
+3 10× 10
2= 2
5 5.
(2) 由正弦定理得
a sin
A=
c sin
C,
ABCD ,PA =
5
所以
c=
asin C sin A
=
2× 5 10
=2
2,
10
1
1
2
所以△ ABC 的面积 S△ABC= 2acsin B= 2× 2× 2 2× 2 = 2.
x2 y2 3、已知椭圆 M :a2+ b2= 1(a> b>0)的左、右顶点分别为 A,B,一个焦点为 F (- 1,0),点 F 到相应准线的距离
为 3.经过点 F 的直线 l 与椭圆 M 交于 C,D 两点、
联立
y= k x+ 1 , x42+ y32= 1,
消去 y,得 (3+4k2) x2+8k2x+ 4k2- 12= 0,
- 8k2 所以 x1+ x2= 3+ 4k2.
此时 |S1- S2|= 12·AB·||y1|- |y2||= 2|y1+ y2|
= 2|k(x1+ 1)+ k(x2+ 1)|= 2|k||(x1+ x2)+ 2|
由正弦定理得
PN sin∠ PEN
=
PE sin∠PNE
,
所以
PN
=
PE ·sin∠ PEN sin∠ PNE
=
22 sin π2-
θ
=
c2os2θ,
所以△ PMN
的面积
S=
12PM
·PN
·sin∠
MPN
=
cos2θ+
4 sin
= θcos θ
1+cos 2
4 2θ+
1 2sin
2θ
=
8
=
sin 2θ+ cos 2θ+ 1
(1) 求椭圆 M 的方程; (2) 记△ ABD 与△ ABC 的面积分别为 S1 和 S2,求 |S1- S2|的最大值、 解: (1)由焦点 F (- 1,0)知 c=1,又 ac2- c= 3, 所以 a2= 4,从而 b2= a2- c2= 3. 所以椭圆 M 的方程为 x42+ y32= 1. (2) 若直线 l 的斜率不存在 ,则直线 l 的方程为 x=- 1,此时 S1= S2,|S1- S2|= 0; 若直线 l 的斜率存在 ,可设直线 l 的方程为 y= k( x+ 1),k≠ 0,C(x1,y1),D( x2,y2)、
8
2sin
2θ+
π4 +
, 1
当 M 与 E 重合时 ,θ= 0;
当 N 与 D 重合时 ,tan∠ APD = 3,
即∠
APD =
5 4,θ=
34π-
5 4,所以
0≤
θ≤
34π-
5 4.
综上可得 ,S=
8
2sin
2θ+
π 4
+
,θ∈ 1
0,34π-
5 4
.
法二: 在△ PME
中 ,∠
EPM
= θ,PE
2、在△ ABC 中 ,角 A,B,C 的对边分别为
a,b,c,若 a2+ c2+
2ac= b2,sin A=
10 10 .
(1) 求 sin C 的值;
(2) 若 a= 2,求△ ABC 的面积、
解: (1)由 a2+ c2+ 2ac= b2,
得
a2+ c2- b2 cosB= 2ac =-
2 2,