人教A版高中数学选修2-2《导数综合练习题》
(完整版)最新【人教A版】高中数学选修2-2综合测试题【2】及答案
高中新课标数学选修(2-2)综合测试题一、选择题(每题小题5分)1.设y=2x -x ,则x ∈[0,1]上的最大值是( ) A 0 B -41 C 21 D 41 2.若质点P 的运动方程为S(t)=2t 2+t (S 的单位为米,t 的单位为秒),则当t=1时的瞬时速度为( )A 2米/秒B 3米/秒C 4米/秒D 5米/秒 3.曲线y=-313x -2在点(-1,35-)处切线的倾斜角为( )A 30º B 45º C 135º D 150º 4.函数y=-2x + 3x 的单调递减区间是( )A (-∞,-36) B (-36,36) C(-∞,-36)∪(36,+∞) D (36,+∞) 5.过曲线y=3x +1上一点(-1,0),且与曲线在该点处的切线垂直的直线方程是( ) A y=3x+3 B y=3x +3 C y=-3x -31D y=-3x-3 6.曲线y=313x 在点(1,31)处的切线与直线x+y-3=0的夹角为 A 30º B 45º C 60º D 90º7.已知函数)(x f =3x +a 2x +b 的图象在点P (1,0)处的切线与直线3x+y=0平行.则a 、b 的值分别为( ).A -3, 2B -3, 0C 3, 2D 3, -4 8.已知)(x f =a 3x +32x +2,若)1(/-f =4,则a 的值等于( ) A319 B 310 C 316 D 313 9.函数y = 3x -12x +16在 [-3,3]上的最大值、最小值分别是( ) A 6,0 B 32, 0 C 2 5, 6 D 32, 1610.已知a>0,函数y=3x -a x在[1,+∞)上是单调增函数,则a 的最大值为( ) A 0 B 1 C 2 D 311.已知)(x f =23x -62x +m (m 为常数),在[-2,2]上有最大值3,则此函数在[-2,2]上的最小值为( )A -37B -29C -5D -1112.已知)(x f =x +3x , 且x 1+x 2<0, x 2+x 3<0, x 3+x 1<0则( )A f(x 1)+f(x 2)+f(x 3)>0B f(x 1)+f(x 2)+f(x 3)<0C f(x 1)+f(x 2)+f(x 3)=0D f(x 1)+f(x 2)+f(x 3)符号不能确定. 二、填空题(每小题4分)13.过抛物线y=)(x f 上一点A (1,0)的切线的倾斜角为45°则)1(/f =__________. 14.函数)(x f =3x -3x 的递减区间是__________15.过点P(-1,2)且与曲线y=32x -4x +2在点M(1,1)处的切线平行的直线方程是__________.16.函数)(x f =x (1-2x )在[0,1]上的最大值为__________. 三、解答题17.已知函数)(x f =a 4x +b 2x +c 的图像经过点(0,1),且在x =1处的切线方程是y=x -2. 求)(x f 的解析式;12分18.证明:过抛物线y=a(x -x 1)(x -x 2)(a ≠0, x 1< x 2)上两点A(x 1,0),B(x 2,0)的切线与x 轴所成的锐角相等。
人教A版选修2-2高二数学测试(2-2,导数及其应用)答案.docx
东至三中2007-2008学年度高二数学单元试题(1)(选修2-2)导数及其应用测试题答案一、选择题:1-5:AABBD 6-10:DDCDC 11-12:CB二、填空题13.递增区间为:(-∞,13),(1,+∞)递减区间为(13-,1)(注:递增区间不能写成:(-∞,13)∪(1,+∞))14. 6 15.),2()1,(+∞⋃--∞ 16. 16 三、解答题17. 解;(1)∵曲线()y f x =上的点(1,(1))P f 处的切线方程为31y x =+,∴(1)3,(1)4f f '==。
而2()32f x x ax b '=++且函数()y f x =在2x =-时取极值,有(2)1240(1)323(1)14f a b f a b f a b c '-=-+=⎧⎪'=++=⎨⎪=+++=⎩,得2,4,5a b c ==-= (2)由题意知2()3f x x bx b '=-+,又函数()y f x =在区间[-2,1]上单调递增,所以()0f x '>在(-2,1)上恒成立。
即:163[(1)]1b x x >++--在(-2,1)上恒成立。
而1163[(1)]62(1)011x x x x++-≤-⨯⋅-=--,因此0b ≥18. 解:由函数的定义域可知, 210x -> 即11x -<<又222211()ln [ln(1)ln(1)]12x f x x x x +==+---,2222122()()21111x x x x f x x x x x -'=-=++-+- 令()0f x '>,得1x <-或01x <<综上所述,()f x 的单调递增区间为(0,1) 19.32500120075y x x =-+-(x N ∈)当x =产量为25件时,总利润最大。
(完整word)人教A版高中数学选修2-2《导数综合练习题》
导数练习题1.(本题满分12分)已知函数d x b a c bx ax x f +--++=)23()(23的图象如图所示.(I )求d c ,的值;(II )若函数)(x f 在2=x 处的切线方程为0113=-+y x ,求函数)(x f 的解析式;(III )在(II )的条件下,函数)(x f y =与mx x f y ++'=5)(31的图象有三个不同的交点,求m 的取值范围. 2.(本小题满分12分)已知函数)(3ln )(R a ax x a x f ∈--=. (I )求函数)(x f 的单调区间;(II )函数)(x f 的图象的在4=x 处切线的斜率为,23若函数]2)('[31)(23mx f x x x g ++=在区间(1,3)上不是单调函数,求m 的取值范围.3.(本小题满分14分)已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值. (I )求实数a 的取值范围;(II )若方程9)32()(2+-=a x f 恰好有两个不同的根,求)(x f 的解析式;(III )对于(II )中的函数)(x f ,对任意R ∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f .4.(本小题满分12分)已知常数0>a ,e 为自然对数的底数,函数x e x f x -=)(,x a x x g ln )(2-=. (I )写出)(x f 的单调递增区间,并证明a e a >; (II )讨论函数)(x g y =在区间),1(a e 上零点的个数. 5.(本小题满分14分)已知函数()ln(1)(1)1f x x k x =---+.(I )当1k =时,求函数()f x 的最大值;(II )若函数()f x 没有零点,求实数k 的取值范围;6.(本小题满分12分)已知2x =是函数2()(23)x f x x ax a e =+--的一个极值点(⋅⋅⋅=718.2e ). (I )求实数a 的值;(II )求函数()f x 在]3,23[∈x 的最大值和最小值.7.(本小题满分14分)已知函数)0,(,ln )2(4)(2≠∈-+-=a R a x a x x x f (I )当a=18时,求函数)(x f 的单调区间; (II )求函数)(x f 在区间],[2e e 上的最小值. 8.(本小题满分12分)已知函数()(6)ln f x x x a x =-+在(2,)x ∈+∞上不具有...单调性. (I )求实数a 的取值范围;(II )若()f x '是()f x 的导函数,设22()()6g x f x x '=+-,试证明:对任意两个不相等正数12x x 、,不等式121238|()()|||27g x g x x x ->-恒成立. 9.(本小题满分12分)已知函数.1,ln )1(21)(2>-+-=a x a ax x x f(I )讨论函数)(x f 的单调性;(II )证明:若.1)()(,),,0(,,521212121->--≠+∞∈<x x x f x f x x x x a 有则对任意10.(本小题满分14分)已知函数21()ln ,()(1),12f x x a xg x a x a =+=+≠-.(I )若函数(),()f x g x 在区间[1,3]上都是单调函数且它们的单调性相同,求实数a 的取值范围;(II )若(1,]( 2.71828)a e e ∈=L ,设()()()F x f x g x =-,求证:当12,[1,]x x a ∈时,不等式12|()()|1F x F x -<成立.11.(本小题满分12分)设曲线C :()ln f x x ex =-( 2.71828e =⋅⋅⋅),()f x '表示()f x 导函数. (I )求函数()f x 的极值;(II )对于曲线C 上的不同两点11(,)A x y ,22(,)B x y ,12x x <,求证:存在唯一的0x 12(,)x x ∈,使直线AB 的斜率等于0()f x '. 12.(本小题满分14分)定义),0(,,)1(),(+∞∈+=y x x y x F y ,(I )令函数22()(3,log (24))f x F x x =-+,写出函数()f x 的定义域;(II )令函数322()(1,log (1))g x F x ax bx =+++的图象为曲线C ,若存在实数b 使得曲线C 在)14(00-<<-x x 处有斜率为-8的切线,求实数a 的取值范围;(III )当,*x y ∈N 且x y <时,求证(,)(,)F x y F y x >.导数练习题答案1.(本题满分12分)已知函数d x b a c bx ax x f +--++=)23()(23的图象如图所示.(I )求d c ,的值;(II )若函数)(x f 在2=x 处的切线方程为0113=-+y x ,求函数)(x f 的解析式;(III )在(II )的条件下,函数)(x f y =与mx x f y ++'=5)(31的图象有三个不同的交点,求m 的取值范围.解:函数)(x f 的导函数为 b a c bx ax x f 2323)(2'--++= …………(2分) (I )由图可知 函数)(x f 的图象过点(0,3),且0)1('=f 得⎩⎨⎧==⇒⎩⎨⎧=--++=03023233c d b a c b a d …………(4分)(II )依题意3)2('-=f 且5)2(=f⎩⎨⎧=+--+-=--+534648323412b a b a b a b a解得 6,1-==b a 所以396)(23++-=x x x x f …………(8分) (III )9123)(2+-='x x x f .可转化为:()m x x x x x x +++-=++-534396223有三个不等实根,即:()m x x x x g -+-=8723与x 轴有三个交点; ()()()42381432--=+-='x x x x x g ,()m g m g --=-=⎪⎭⎫ ⎝⎛164,273. …………(10分) 当且仅当()01640276832<--=>-=⎪⎭⎫ ⎝⎛m g m g 且时,有三个交点, 故而,276816<<-m 为所求. …………(12分)2.(本小题满分12分)已知函数)(3ln )(R a ax x a x f ∈--=. (I )求函数)(x f 的单调区间;(II )函数)(x f 的图象的在4=x 处切线的斜率为,23若函数]2)('[31)(23mx f x x x g ++=在区间(1,3)上不是单调函数,求m 的取值范围.解:(I ))0()1()('>-=x xx a x f(2分)当(][)+∞>,1,1,0)(,0减区间为的单调增区间为时x f a当[)(];1,0,,1)(,0减区间为的单调增区间为时+∞<x f a 当a=1时,)(x f 不是单调函数 (5分)(II )32ln 2)(,22343)4('-+-=-==-=x x x f a a f 得 2)4()(',2)22(31)(223-++=∴-++=∴x m x x g x x mx x g (6分)2)0(',)3,1()(-=g x g 且上不是单调函数在区间Θ⎩⎨⎧><∴.0)3(',0)1('g g (8分)⎪⎩⎪⎨⎧>-<∴,319,3m m (10分))3,319(--∈m (12分)3.(本小题满分14分)已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值. (I )求实数a 的取值范围;(II )若方程9)32()(2+-=a x f 恰好有两个不同的根,求)(x f 的解析式;(III )对于(II )中的函数)(x f ,对任意R ∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f .解:(I ),23)(,00)0(2b ax x x f c f ++='=⇒=320)1(--=⇒='a b f),323)(1()32(23)(2++-=+-+='∴a x x a ax x x f由33210)(+-==⇒='a x x x f 或,因为当1=x 时取得极大值,所以31332-<⇒>+-a a ,所以)3,(:--∞的取值范围是a ;…………(4分) (依题意得:9)32(272-=+a ,解得:9-=a所以函数)(x f 的解析式是:x x x x f 159)(23+-=…………(10分)(III )对任意的实数βα,都有,2sin 22,2sin 22≤≤-≤≤-βα在区间[-2,2]有: 230368)2(,7)1(,7430368)2(=+-==-=---=-f f f ,7)1()(=f x f 的最大值是7430368)2()(-=---=-f x f 的最小值是 函数]2,2[)(-在区间x f 上的最大值与最小值的差等于81, 所以81|)sin 2()sin 2(|≤-βαf f .…………(14分) 4.(本小题满分12分)已知常数0>a ,e 为自然对数的底数,函数x e x f x -=)(,x a x x g ln )(2-=. (I )写出)(x f 的单调递增区间,并证明a e a >; (II )讨论函数)(x g y =在区间),1(a e 上零点的个数. 解:(I )01)(≥-='x e x f ,得)(x f 的单调递增区间是),0(+∞, …………(2分) ∵0>a ,∴1)0()(=>f a f ,∴a a e a >+>1,即a e a >. …………(4分)(II )a x a x a x x g )22)(22(22)(-+=-=',由0)(='x g ,得22ax =,列表当2x )222(a,无极大值. …………(6分)由(I )a e a >,∵⎪⎩⎪⎨⎧>>22a a e e aa ,∴22a e a>,∴22ae a >01)1(>=g ,0))(()(22>-+=-=a e a e a e e g a a a a …………(8分)(i )当122≤a,即20≤<a 时,函数)(x g y =在区间),1(a e 不存在零点 (ii )当122>a ,即2>a 时若0)2ln 1(2>-a a ,即e a 22<<时,函数)(x g y =在区间),1(a e 不存在零点若0)2ln 1(2=-a a ,即e a 2=时,函数)(x g y =在区间),1(a e 存在一个零点e x =;若0)2ln 1(2<-a a ,即e a 2>时,函数)(x g y =在区间),1(a e 存在两个零点;综上所述,)(x g y =在(1,)a e 上,我们有结论:当02a e <<时,函数()f x 无零点; 当2a e = 时,函数()f x 有一个零点; 当2a e >时,函数()f x 有两个零点.…………(12分) 5.(本小题满分14分)已知函数()ln(1)(1)1f x x k x =---+.(I )当1k =时,求函数()f x 的最大值;(II )若函数()f x 没有零点,求实数k 的取值范围; 解:(I )当1k =时,2()1x f x x -'=-)(x f 定义域为(1,+∞),令()0,2f x x '==得, ………………(2分)∵当(1,2),x ∈时()0f x '>,当(2,),x ∈+∞时()0f x '<, ∴()(1,2)f x 在内是增函数,(2,)+∞在上是减函数∴当2x =时,()f x 取最大值(2)0f = ………………(4分)(II )①当0k ≤时,函数ln(1)y x =-图象与函数(1)1y k x =--图象有公共点, ∴函数()f x 有零点,不合要求; ………………(8分) ②当0k >时,1()11()111kk x k kx k f x k x x x +-+-'=-==---- ………………(6分)令1()0,k f x x k +'==得,∵1(1,),()0,k x f x k +'∈>时1(1,),()0x f x k'∈++∞<时,∴1()(1,1)f x k+在内是增函数,1[1,)k++∞在上是减函数,∴()f x 的最大值是1(1)ln f k k+=-,∵函数()f x 没有零点,∴ln 0k -<,1k >,因此,若函数()f x 没有零点,则实数k 的取值范围(1,)k ∈+∞.………………(10分) 6.(本小题满分12分)已知2x =是函数2()(23)x f x x ax a e =+--的一个极值点(⋅⋅⋅=718.2e ). (I )求实数a 的值;(II )求函数()f x 在]3,23[∈x 的最大值和最小值.解:(I )由2()(23)x f x x ax a e =+--可得22()(2)(23)[(2)3]x x x f x x a e x ax a e x a x a e '=+++--=++--……(4分)∵2x =是函数()f x 的一个极值点,∴(2)0f '=∴2(5)0a e +=,解得5a =- ……………(6分) (II )由0)1)(2()(>--='x e x x x f ,得)(x f 在)1,(-∞递增,在),2(+∞递增,由0)(<'x f ,得)(x f 在在)2,1(递减∴2)2(e f =是()f x 在]3,23[∈x 的最小值; ……………(8分)2347)23(e f =,3)3(e f = ∵)23()3(,0)74(4147)23()3(23233f f e e e e e f f >>-=-=-∴()f x 在]3,23[∈x 的最大值是3)3(e f =. ……………(12分)7.(本小题满分14分)已知函数)0,(,ln )2(4)(2≠∈-+-=a R a x a x x x f (I )当a=18时,求函数)(x f 的单调区间; (II )求函数)(x f 在区间],[2e e 上的最小值. 解:(Ⅰ)x x x x f ln 164)(2--=,xx x x x x f )4)(2(21642)('-+=--= 2分由0)('>x f 得0)4)(2(>-+x x ,解得4>x 或2-<x 注意到0>x ,所以函数)(x f 的单调递增区间是(4,+∞) 由0)('<x f 得0)4)(2(<-+x x ,解得-2<x <4,注意到0>x ,所以函数)(x f 的单调递减区间是]4,0(. 综上所述,函数)(x f 的单调增区间是(4,+∞),单调减区间是]4,0( 6分 (Ⅱ)在],[2e e x ∈时,x a x x x f ln )2(4)(2-+-= 所以xax x x a x x f -+-=-+-=242242)('2,设a x x x g -+-=242)(2当0<a 时,有△=16+4×208)2(<=-a a ,此时0)(>x g ,所以0)('>x f ,)(x f 在],[2e e 上单调递增, 所以a e e e f x f -+-==24)()(2min 8分当0>a 时,△=08)2(2416>=-⨯-a a , 令0)('>x f ,即02422>-+-a x x ,解得221a x +>或221a x -<; 令0)('<x f ,即02422<-+-a x x , 解得221a -221ax +<<. ①若221a+≥2e ,即a ≥22)1(2-e 时, )(x f 在区间],[2e e 单调递减,所以a e e e f x f 244)()(242min -+-==.②若2221e ae <+<,即222)1(2)1(2-<<-e a e 时间, )(x f 在区间]221,[a e +上单调递减,在区间],221[2e a +上单调递增, 所以min )(xf )221(a f +=)221ln()2(322a a a a +-+--=. ③若221a+≤e ,即a <0≤22)1(-e 时,)(x f 在区间],[2e e 单调递增,所以a e e e f x f -+-==24)()(2min综上所述,当a ≥222)1(-e 时,a e a x f 244)(24min -+-=;当222)1(2)1(2-<<-e a e 时,)221ln()2(322)(min aa a a x f +-+--=; 当a ≤2)1(2-e 时,a e e x f -+-=24)(2min14分 8.(本小题满分12分)已知函数()(6)ln f x x x a x =-+在(2,)x ∈+∞上不具有...单调性. (I )求实数a 的取值范围;(II )若()f x '是()f x 的导函数,设22()()6g x f x x '=+-,试证明:对任意两个不相等正数12x x 、,不等式121238|()()|||27g x g x x x ->-恒成立. 解:(I )226()26a xx af x x xx-+'=-+=, ………………(2分)∵()f x 在(2,)x ∈+∞上不具有...单调性,∴在(2,)x ∈+∞上()f x '有正也有负也有0, 即二次函数226y x x a =-+在(2,)x ∈+∞上有零点 ………………(4分) ∵226y x x a =-+是对称轴是32x =,开口向上的抛物线,∴222620y a =⋅-⋅+<的实数a 的取值范围(,4)-∞ ………………(6分)(II )由(I )22()2a g x x x x =+-,方法1:2222()()62(0)a g x f x x x x x x '=-+=+->, ∵4a <,∴323233444244()22a x x g x x x x x x-+'=-+>-+=,…………(8分) 设2344()2h x x x =-+,3448124(23)()x h x x x x-'=-= ()h x 在3(0,)2是减函数,在3(,)2+∞增函数,当32x =时,()h x 取最小值3827∴从而()g x '3827>,∴38(())027g x x '->,函数38()27y g x x =-是增函数,12x x 、是两个不相等正数,不妨设12x x <,则22113838()()2727g x x g x x ->-∴212138()()()27g x g x x x ->-,∵210x x ->,∴1212()()3827g x g x x x ->- ∴1212()()g x g x x x --3827>,即121238|()()|||27g x g x x x ->- ………………(12分)方法2:11(,())M x g x 、22(,())N x g x 是曲线()y g x =上任意两相异点,121222121212()()2()2g x g x x x ax x x x x x -+=+--,12x x +>Q 4a <12221212122()22x x a a x x x x x x +∴+->+-1242x x >- ………(8分)设0t t =>,令32()244MN k u t t t ==+-,()4(32)u t t t '=-, 由()0u t '>,得2,3t >由()0u t '<得20,3t <<()u t ∴在)32,0(上是减函数,在),32(+∞上是增函数,)(t u ∴在32=t 处取极小值2738,38()27u t ∴≥,∴所以1212()()g x g x x x --3827>即121238|()()|||27g x g x x x ->- ………………(12分)9.(本小题满分12分)已知函数.1,ln )1(21)(2>-+-=a x a ax x x f(I )讨论函数)(x f 的单调性;(II )证明:若.1)()(,),,0(,,521212121->--≠+∞∈<x x x f x f x x x x a 有则对任意(1))(x f 的定义域为),0(+∞,xa x x x a ax x x a a x x f )1)(1(11)('2-+-=-+-=-+-= 2分(i )若2,11==-a a 即,则 .)1()('2xx x f -=故)(x f 在),0(+∞单调增加. (ii )若.0)(',)1,1(,21,1,11<-∈<<><-x f a x a a a 时则当故而)1,1()(,0)(',),1()1,0(->+∞∈-∈a x f x f x a x 在故时及当单调减少,在(0,a-1), ),1(+∞单调增加.(iii )若),1(),1,0(,)1,1()(,2,11+∞-->>-a a x f a a 在单调减少在同理可得即 单调增加.(II )考虑函数x x f x g +=)()( .ln )1(212x x a ax x +-+-= 由 .)11(1)1(121)1()('2---=---⋅≥-+--=a a xa x x a a x x g 由于单调增加在即故),0()(,0)(',5+∞><x g x g a a ,从而当021>>x x 时有 ,0)()(,0)()(212121>-+->-x x x f x f x g x g 即 故1)()(2121->--x x x f x f ,当210x x <<时,有1)()()()(12122121->--=--x x x f x f x x x f x f10.(本小题满分14分)已知函数21()ln ,()(1),12f x x a xg x a x a =+=+≠-.(I )若函数(),()f x g x 在区间[1,3]上都是单调函数且它们的单调性相同,求实数a 的取值范围;(II )若(1,]( 2.71828)a e e ∈=L ,设()()()F x f x g x =-,求证:当12,[1,]x x a ∈时,不等式12|()()|1F x F x -<成立.解:(I )(),()1a f x x g x a x''=+=+, ……………(2分)∵函数(),()f x g x 在区间[1,3]上都是单调函数且它们的单调性相同,∴当[1,3]x ∈时,2(1)()()()0a x a f x g x x++''⋅=≥恒成立, ……………(4分) 即2(1)()0a x a ++≥恒成立, ∴21a a x >-⎧⎨≥-⎩在[1,3]x ∈时恒成立,或21a a x<-⎧⎨≤-⎩在[1,3]x ∈时恒成立, ∵91x -≤≤-,∴1a >-或9a ≤- ………………(6分)(II )21()ln ,(1)2F x x a x a x =+-+,()(1)()(1)a x a x F x x a xx--'=+-+=∵()F x 定义域是(0,)+∞,(1,]a e ∈,即1a >∴()F x 在(0,1)是增函数,在(1,)a 实际减函数,在(,)a +∞是增函数 ∴当1x =时,()F x 取极大值1(1)2M F a ==--,当x a =时,()F x 取极小值21()ln 2m F a a a a a ==--, ………………(8分)∵12,[1,]x x a ∈,∴12|()()|||F x F x M m M m -≤-=- ………………(10分)设211()ln 22G a M m a a a =-=--,则()ln 1G a a a '=--,∴1[()]1G a a''=-,∵(1,]a e ∈,∴[()]0G a ''>∴()ln 1G a a a '=--在(1,]a e ∈是增函数,∴()(1)0G a G ''>=∴211()ln 22G a a a a =--在(1,]a e ∈也是增函数 ………………(12分)∴()()G a G e ≤,即2211(1)()1222e G a e e -≤--=-, 而22211(1)(31)1112222e e e ----=-<-=,∴()1G a M m =-< ∴当12,[1,]x x a ∈时,不等式12|()()|1F x F x -<成立. ………………(14分) 11.(本小题满分12分)设曲线C :()ln f x x ex =-( 2.71828e =⋅⋅⋅),()f x '表示()f x 导函数. (I )求函数()f x 的极值;(II )对于曲线C 上的不同两点11(,)A x y ,22(,)B x y ,12x x <,求证:存在唯一的0x 12(,)x x ∈,使直线AB 的斜率等于0()f x '. 解:(I )11()0ex f x e xx -'=-==,得1x e= 当x 变化时,()f x '与()f x 变化情况如下表:∴当1x e=时,()f x 取得极大值()2f e=-,没有极小值; …………(4分)(II )(方法1)∵0()AB f x k '=,∴2121021ln ln ()1x x e x x e x x x ----=-,∴21201ln 0x x xx x --= 即20211ln ()0x x x x x --=,设2211()ln ()xg x x x x x =--211211()ln ()x g x x x x x =--,1/211()ln 10x x g x x =->,1()g x 是1x 的增函数,∵12x x <,∴2122222()()ln()0x g x g x x x x x <=--=; 222211()ln ()x g x x x x x =--,2/221()ln 10x x g x x =->,2()g x 是2x 的增函数, ∵12x x <,∴1211111()()ln ()0xg x g x x x x x >=--=,∴函数2211()ln ()xg x x x x x =--在12(,)x x 内有零点0x , …………(10分)又∵22111,ln 0x x x x >∴>,函数2211()ln ()xg x x x x x =--在12(,)x x 是增函数, ∴函数2121()ln x x xg x x x -=-在12(,)x x 内有唯一零点0x ,命题成立…………(12分)(方法2)∵0()AB f x k '=,∴2121021ln ln ()1x x e x x e x x x ----=-, 即020112ln ln 0x x x x x x -+-=,012(,)x x x ∈,且0x 唯一设2112()ln ln g x x x x x x x =-+-,则1121112()ln ln g x x x x x x x =-+-, 再设22()ln ln h x x x x x x x =-+-,20x x <<,∴2()ln ln 0h x x x '=-> ∴22()ln ln h x x x x x x x =-+-在20x x <<是增函数 ∴112()()()0g x h x h x =<=,同理2()0g x >∴方程2112ln ln 0x x x x x x -+-=在012(,)x x x ∈有解 …………(10分)∵一次函数在12(,)x x 2112()(ln ln )g x x x x x x =-+-是增函数 ∴方程2112ln ln 0x x x x x x -+-=在012(,)x x x ∈有唯一解,命题成立………(12分) 注:仅用函数单调性说明,没有去证明曲线C 不存在拐点,不给分. 12.(本小题满分14分)定义),0(,,)1(),(+∞∈+=y x x y x F y ,(I )令函数22()(3,log (24))f x F x x =-+,写出函数()f x 的定义域;(II )令函数322()(1,log (1))g x F x ax bx =+++的图象为曲线C ,若存在实数b 使得曲线C 在)14(00-<<-x x 处有斜率为-8的切线,求实数a 的取值范围;(III )当,*x y ∈N 且x y <时,求证(,)(,)F x y F y x >. 解:(I )22log (24)0x x -+>,即2241x x -+> ……………………(2分)得函数()f x 的定义域是(1,3)-, ……………………(4分) (II )22322()(1,log (1))1,g x F x ax bx x ax bx =+++=+++设曲线00(41)C x x -<<-在处有斜率为-8的切线, 又由题设,23)(,0)1(log 2232b ax x x g bx ax x ++='>+++∴存在实数b 使得⎪⎩⎪⎨⎧>+++-<<--=++1114823020300020bx ax x x b ax x 有解, ……………………(6分)由①得,238020ax x b ---=代入③得082020<---ax x ,200028041x ax x ⎧++>⎪∴⎨-<<-⎪⎩由有解, ……………………(8分) 方法1:0082()()a x x <-+-,因为041x -<<-,所以0082()[8,10)()x x -+∈-, 当10a <时,存在实数b ,使得曲线C 在)14(00-<<-x x 处有斜率为-8的切线………………(10分)方法2:得08)1()1(208)4()4(222>+-⨯+-⨯>+-⨯+-⨯a a 或,1010,10.a a a ∴<<∴<或 ………………(10分) 方法3:是222(4)(4)802(1)(1)80a a ⎧⨯-+⨯-+≤⎪⎨⨯-+⨯-+≤⎪⎩的补集,即10a < ………………(10分)(III )令2)1ln(1)(,1,)1ln()(xx x xx h x x x x h +-+='≥+=由 又令,0),1ln(1)(>+-+=x x xxx p 0)1(11)1(1)(22<+-=+-+='∴x x x x x p , ),0[)(+∞∴在x p 单调递减. ……………………(12)分0()(0)0,1()0,x p x p x h x '∴><=∴≥<当时有当时有 ),1[)(+∞∴在x h 单调递减,x y y x y x x y yy x x y x )1()1(),1ln()1ln(,)1ln()1ln(,1+>+∴+>+∴+>+<≤∴有时, ).,(),(,x y F y x F y x N y x ><∈∴*时且当 ………………(14分)①②③。
人教A版高二数学选修2-2导数检测题
高中数学学习材料金戈铁骑整理制作高二数学选修2-2导数检测题一、选择题 1.函数21ln 2y x x =-的单调递减区间为( ) A .(]1,1- B .(]0,1 C .[)1,+∞ D .()0,+∞ 2.若f ′(x )=3,则 f (x 0-m )-f (x 0)3m等于( )A .3B .13C .-1D .13.若曲线2y x ax b =++在点(1,)b 处的切线方程是10x y -+=,则( )A .1,2a b =-=B .1,2a b ==C .1,2a b ==-D .1,2a b =-=- 4.设f (x )=x ln x ,若f ′(x 0)=2,则x 0的值为 ( )A .e 2B .eC .ln 22D .ln 25.已知ax x x f -=3)(在[1,+∞)上是单调增函数,则a 的最大值是 ( )A .0B .1C .2D .36.已知函数f (x )=x -sin x ,若x 1,x 2∈⎣⎡⎦⎤-π2,π2,且f (x 1)+f (x 2)>0,则下列不等式中正确的是( ) A .x 1>x 2 B .x 1<x 2 C .x 1+x 2>0 D .x 1+x 2<07.函数f (x )=x 3-3ax -a 在(0,1)内有最小值,则a 的取值范围为( )A .0≤a <1B .0<a <1C .-1<a <1D .0<a <128.设函数f (x )在R 上可导,其导函数为()f x ',且函数y =(1-x )()f x '的图象如图所示,则下列结论中一定成立的是 ( )A .函数f (x )有极大值f (2)和极小值f (1)B .函数f (x )有极大值f (-2)和极小值f (1)C .函数f (x )有极大值f (2)和极小值f (-2)D .函数f (x )有极大值f (-2)和极小值f (2)9.已知(),()f x g x 都是定义在R 上的函数,()0g x ≠,()()()()f x g x f x g x ''>,且()()xf x ag x =(0a >,且1)a ≠,(1)(1)5(1)(1)2f f g g -+=-.若数列(){}()f ng n 的前n 项和大于62,则n 的最小值为( )A .6B .7C .8D .910.已知函数1(),()ln 22x x f x e g x ==+的图象分别与直线y m =交于,A B 两点,则||AB 的最小值为( ) A .2 B .2ln2+ C .212e + D .32ln 2e -二、填空题11.()2321d xx -+=⎰ .12.已知函数()x x f x f cos sin 2+⎪⎭⎫⎝⎛'=π,则⎪⎭⎫⎝⎛4πf =_____ 13.已知函数)(x f 是R 上的偶函数,且在(0,+∞)上有()x f '>0,若0)1(=-f ,那么关于x 的不等式()0<x xf 的解集是_________14.函数2()ln(1)f x x a x =++有两个不同的极值点12,x x ,且12x x <,则实数a 的范围是15.已知函数()f x 的定义域为[]15,-,部分对应值如下表,()f x 的导函数()y f x '=的图象如图所示.下列关于()f x 的命题:①函数()f x 的极大值点为 0与4; ②函数()f x 在[]02,上是减函数;③如果当[]1x ,t ∈-时,()f x 的最大值是2,那么t 的最大值为4; ④当12a <<时,函数()y f x a =-有4个零点; ⑤函数a x f y -=)(零点的个数可能为0、1、2、3、4个. 其中正确命题的序号是 . 三、解答题16.已知函数a x x x x f +++-=93)(23. (1)求)(x f 的单调递减区间;(2)若)(x f 在区间]2,2[-上的最大值是20,求它在该区间上的最小值。
人教A版选修2-2导数练习题.docx
高中数学学习材料马鸣风萧萧*整理制作导数练习题1.(本题满分12分)已知函数d x b a c bx ax x f +--++=)23()(23的图象如图所示.(I )求d c ,的值;(II )若函数)(x f 在2=x 处的切线方程为0113=-+y x ,求函数)(x f 的解析式;(III )在(II )的条件下,函数)(x f y =与mx x f y ++'=5)(31的图象有三个不同的交点,求m 的取值范围. 2.(本小题满分12分)已知函数)(3ln )(R a ax x a x f ∈--=. (I )求函数)(x f 的单调区间;(II )函数)(x f 的图象的在4=x 处切线的斜率为,23若函数]2)('[31)(23mx f x x x g ++=在区间(1,3)上不是单调函数,求m 的取值范围.3.(本小题满分14分)已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值. (I )求实数a 的取值范围;(II )若方程9)32()(2+-=a x f 恰好有两个不同的根,求)(x f 的解析式;(III )对于(II )中的函数)(x f ,对任意R ∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f .4.(本小题满分12分)已知常数0>a ,e 为自然对数的底数,函数x e x f x -=)(,x a x x g ln )(2-=.(I )写出)(x f 的单调递增区间,并证明a e a >; (II )讨论函数)(x g y =在区间),1(a e 上零点的个数.5.(本小题满分14分)已知函数()ln(1)(1)1f x x k x =---+.(I )当1k =时,求函数()f x 的最大值;(II )若函数()f x 没有零点,求实数k 的取值范围; 6.(本小题满分12分)已知2x =是函数2()(23)x f x x ax a e =+--的一个极值点(⋅⋅⋅=718.2e ). (I )求实数a 的值;(II )求函数()f x 在]3,23[∈x 的最大值和最小值.7.(本小题满分14分)已知函数)0,(,ln )2(4)(2≠∈-+-=a R a x a x x x f (I )当a=18时,求函数)(x f 的单调区间; (II )求函数)(x f 在区间],[2e e 上的最小值. 8.(本小题满分12分)已知函数()(6)ln f x x x a x =-+在(2,)x ∈+∞上不具有...单调性. (I )求实数a 的取值范围;(II )若()f x '是()f x 的导函数,设22()()6g x f x x '=+-,试证明:对任意两个不相等正数12x x 、,不等式121238|()()|||27g x g x x x ->-恒成立. 9.(本小题满分12分)已知函数.1,ln )1(21)(2>-+-=a x a ax x x f(I )讨论函数)(x f 的单调性;(II )证明:若.1)()(,),,0(,,521212121->--≠+∞∈<x x x f x f x x x x a 有则对任意10.(本小题满分14分)已知函数21()ln ,()(1),12f x x a xg x a x a =+=+≠-.(I )若函数(),()f x g x 在区间[1,3]上都是单调函数且它们的单调性相同,求实数a 的取值范围;(II )若(1,]( 2.71828)a e e ∈=,设()()()F x f x g x =-,求证:当12,[1,]x x a ∈时,不等式12|()()|1F x F x -<成立. 11.(本小题满分12分)设曲线C :()ln f x x ex =-( 2.71828e =⋅⋅⋅),()f x '表示()f x 导函数. (I )求函数()f x 的极值;(II )对于曲线C 上的不同两点11(,)A x y ,22(,)B x y ,12x x <,求证:存在唯一的0x 12(,)x x ∈,使直线AB 的斜率等于0()f x '. 12.(本小题满分14分)定义),0(,,)1(),(+∞∈+=y x x y x F y ,(I )令函数22()(3,log (24))f x F x x =-+,写出函数()f x 的定义域;(II )令函数322()(1,log (1))g x F x ax bx =+++的图象为曲线C ,若存在实数b 使得曲线C 在)14(00-<<-x x 处有斜率为-8的切线,求实数a 的取值范围;(III )当,*x y ∈N 且x y <时,求证(,)(,)F x y F y x >.导数练习题答案1.(本题满分12分)已知函数d x b a c bx ax x f +--++=)23()(23的图象如图所示.(I )求d c ,的值;(II )若函数)(x f 在2=x 处的切线方程为0113=-+y x ,求函数)(x f 的解析式;(III )在(II )的条件下,函数)(x f y =与mx x f y ++'=5)(31的图象有三个不同的交点,求m 的取值范围.解:函数)(x f 的导函数为 b a c bx ax x f 2323)(2'--++= …………(2分)(I )由图可知 函数)(x f 的图象过点(0,3),且0)1('=f 得⎩⎨⎧==⇒⎩⎨⎧=--++=0323233c d b a c b a d …………(4分)(II )依题意3)2('-=f 且5)2(=f⎩⎨⎧=+--+-=--+534648323412b a b a b a b a解得 6,1-==b a 所以396)(23++-=x x x x f …………(8分) (III )9123)(2+-='x x x f .可转化为:()m x x x x x x +++-=++-534396223有三个不等实根,即:()m x x x x g -+-=8723与x 轴有三个交点; ()()()42381432--=+-='x x x x x g ,x⎪⎭⎫ ⎝⎛∞-32,32⎪⎭⎫⎝⎛432, 4()∞+,4()x g ' + 0 - 0 + ()x g增极大值减极小值增()m g m g --=-=⎪⎭⎫ ⎝⎛164,276832. …………(10分) 当且仅当()01640276832<--=>-=⎪⎭⎫ ⎝⎛m g m g 且时,有三个交点, 故而,276816<<-m 为所求. …………(12分)2.(本小题满分12分)已知函数)(3ln )(R a ax x a x f ∈--=. (I )求函数)(x f 的单调区间;(II )函数)(x f 的图象的在4=x 处切线的斜率为,23若函数]2)('[31)(23mx f x x x g ++=在区间(1,3)上不是单调函数,求m 的取值范围.解:(I ))0()1()('>-=x xx a x f(2分)当(][)+∞>,1,1,0)(,0减区间为的单调增区间为时x f a当[)(];1,0,,1)(,0减区间为的单调增区间为时+∞<x f a 当a=1时,)(x f 不是单调函数 (5分)(II )32ln 2)(,22343)4('-+-=-==-=x x x f a a f 得 2)4()(',2)22(31)(223-++=∴-++=∴x m x x g x x mx x g (6分)2)0(',)3,1()(-=g x g 且上不是单调函数在区间⎩⎨⎧><∴.0)3(',0)1('g g (8分)⎪⎩⎪⎨⎧>-<∴,319,3m m (10分))3,319(--∈m (12分)3.(本小题满分14分)已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值. (I )求实数a 的取值范围;(II )若方程9)32()(2+-=a x f 恰好有两个不同的根,求)(x f 的解析式;(III )对于(II )中的函数)(x f ,对任意R ∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f .解:(I ),23)(,00)0(2b ax x x f c f ++='=⇒=320)1(--=⇒='a b f),323)(1()32(23)(2++-=+-+='∴a x x a ax x x f由33210)(+-==⇒='a x x x f 或,因为当1=x 时取得极大值,所以31332-<⇒>+-a a ,所以)3,(:--∞的取值范围是a ;…………(4分) (II )由下表:x)1,(-∞1)332,1(+-a332+-a ),332(+∞+-a)(x f '+ 0 - 0 - )(x f递增极大值2--a递减极小值 2)32(276++a a递增依题意得:9)32()32(27622+-=++a a a ,解得:9-=a所以函数)(x f 的解析式是:x x x x f 159)(23+-=…………(10分)(III )对任意的实数βα,都有,2sin 22,2sin 22≤≤-≤≤-βα在区间[-2,2]有: 230368)2(,7)1(,7430368)2(=+-==-=---=-f f f ,7)1()(=f x f 的最大值是7430368)2()(-=---=-f x f 的最小值是 函数]2,2[)(-在区间x f 上的最大值与最小值的差等于81, 所以81|)sin 2()sin 2(|≤-βαf f .…………(14分) 4.(本小题满分12分)已知常数0>a ,e 为自然对数的底数,函数x e x f x -=)(,x a x x g ln )(2-=. (I )写出)(x f 的单调递增区间,并证明a e a >; (II )讨论函数)(x g y =在区间),1(a e 上零点的个数.解:(I )01)(≥-='x e x f ,得)(x f 的单调递增区间是),0(+∞, …………(2分) ∵0>a ,∴1)0()(=>f a f ,∴a a e a >+>1,即a e a >. …………(4分)(II )xa x a x x a x x g )22)(22(22)(-+=-=',由0)(='x g ,得22ax =,列表x)22,0(a 22a ),22(+∞a)(x g ' - 0 +)(x g单调递减 极小值 单调递增当22ax =时,函数)(x g y =取极小值)2ln 1(2)22(aa a g -=,无极大值. …………(6分)由(I )a e a >,∵⎪⎩⎪⎨⎧>>22a a e e aa ,∴22a e a>,∴22ae a >01)1(>=g ,0))(()(22>-+=-=a e a e a e e g a a a a …………(8分)(i )当122≤a,即20≤<a 时,函数)(x g y =在区间),1(a e 不存在零点 (ii )当122>a ,即2>a 时若0)2ln 1(2>-a a ,即e a 22<<时,函数)(x g y =在区间),1(a e 不存在零点若0)2ln 1(2=-a a ,即e a 2=时,函数)(x g y =在区间),1(a e 存在一个零点e x =;若0)2ln 1(2<-a a ,即e a 2>时,函数)(x g y =在区间),1(a e 存在两个零点;综上所述,)(x g y =在(1,)a e 上,我们有结论:当02a e <<时,函数()f x 无零点; 当2a e = 时,函数()f x 有一个零点; 当2a e >时,函数()f x 有两个零点.…………(12分) 5.(本小题满分14分)已知函数()ln(1)(1)1f x x k x =---+.(I )当1k =时,求函数()f x 的最大值;(II )若函数()f x 没有零点,求实数k 的取值范围; 解:(I )当1k =时,2()1x f x x -'=-)(x f 定义域为(1,+∞),令()0,2f x x '==得, ………………(2分)∵当(1,2),x ∈时()0f x '>,当(2,),x ∈+∞时()0f x '<, ∴()(1,2)f x 在内是增函数,(2,)+∞在上是减函数∴当2x =时,()f x 取最大值(2)0f = ………………(4分)(II )①当0k ≤时,函数ln(1)y x =-图象与函数(1)1y k x =--图象有公共点, ∴函数()f x 有零点,不合要求; ………………(8分)②当0k >时,1()11()111kk x k kx k f x k x x x +-+-'=-==---- ………………(6分)令1()0,k f x x k +'==得,∵1(1,),()0,k x f x k +'∈>时1(1,),()0x f x k'∈++∞<时,∴1()(1,1)f x k +在内是增函数,1[1,)k++∞在上是减函数,∴()f x 的最大值是1(1)ln f k k+=-,∵函数()f x 没有零点,∴ln 0k -<,1k >,因此,若函数()f x 没有零点,则实数k 的取值范围(1,)k ∈+∞.………………(10分) 6.(本小题满分12分)已知2x =是函数2()(23)x f x x ax a e =+--的一个极值点(⋅⋅⋅=718.2e ). (I )求实数a 的值;(II )求函数()f x 在]3,23[∈x 的最大值和最小值.解:(I )由2()(23)x f x x ax a e =+--可得22()(2)(23)[(2)3]x x x f x x a e x ax a e x a x a e '=+++--=++--……(4分)∵2x =是函数()f x 的一个极值点,∴(2)0f '=∴2(5)0a e +=,解得5a =- ……………(6分) (II )由0)1)(2()(>--='x e x x x f ,得)(x f 在)1,(-∞递增,在),2(+∞递增,由0)(<'x f ,得)(x f 在在)2,1(递减∴2)2(e f =是()f x 在]3,23[∈x 的最小值; ……………(8分)2347)23(e f =,3)3(e f = ∵)23()3(,0)74(4147)23()3(23233f f e e e e e f f >>-=-=-∴()f x 在]3,23[∈x 的最大值是3)3(e f =. ……………(12分)7.(本小题满分14分)已知函数)0,(,ln )2(4)(2≠∈-+-=a R a x a x x x f (I )当a=18时,求函数)(x f 的单调区间; (II )求函数)(x f 在区间],[2e e 上的最小值.解:(Ⅰ)x x x x f ln 164)(2--=,xx x x x x f )4)(2(21642)('-+=--= 2分由0)('>x f 得0)4)(2(>-+x x ,解得4>x 或2-<x 注意到0>x ,所以函数)(x f 的单调递增区间是(4,+∞) 由0)('<x f 得0)4)(2(<-+x x ,解得-2<x <4,注意到0>x ,所以函数)(x f 的单调递减区间是]4,0(. 综上所述,函数)(x f 的单调增区间是(4,+∞),单调减区间是]4,0( 6分 (Ⅱ)在],[2e e x ∈时,x a x x x f ln )2(4)(2-+-= 所以xax x x a x x f -+-=-+-=242242)('2, 设a x x x g -+-=242)(2当0<a 时,有△=16+4×208)2(<=-a a ,此时0)(>x g ,所以0)('>x f ,)(x f 在],[2e e 上单调递增, 所以a e e e f x f -+-==24)()(2min 8分当0>a 时,△=08)2(2416>=-⨯-a a , 令0)('>x f ,即02422>-+-a x x ,解得221a x +>或221a x -<; 令0)('<x f ,即02422<-+-a x x , 解得221a -221ax +<<. ①若221a+≥2e ,即a ≥22)1(2-e 时, )(x f 在区间],[2e e 单调递减,所以a e e e f x f 244)()(242min -+-==.②若2221e ae <+<,即222)1(2)1(2-<<-e a e 时间, )(x f 在区间]221,[a e +上单调递减,在区间],221[2e a +上单调递增, 所以min )(xf )221(a f +=)221ln()2(322a a a a +-+--=. ③若221a+≤e ,即a <0≤22)1(-e 时,)(x f 在区间],[2e e 单调递增,所以a e e e f x f -+-==24)()(2min综上所述,当a ≥222)1(-e 时,a e a x f 244)(24min -+-=;当222)1(2)1(2-<<-e a e 时,)221ln()2(322)(min aa a a x f +-+--=; 当a ≤2)1(2-e 时,a e e x f -+-=24)(2min14分 8.(本小题满分12分)已知函数()(6)ln f x x x a x =-+在(2,)x ∈+∞上不具有...单调性.(I )求实数a 的取值范围;(II )若()f x '是()f x 的导函数,设22()()6g x f x x '=+-,试证明:对任意两个不相等正数12x x 、,不等式121238|()()|||27g x g x x x ->-恒成立.解:(I )226()26a x x af x x x x-+'=-+=, ………………(2分)∵()f x 在(2,)x ∈+∞上不具有...单调性,∴在(2,)x ∈+∞上()f x '有正也有负也有0, 即二次函数226y x x a =-+在(2,)x ∈+∞上有零点 ………………(4分) ∵226y x x a =-+是对称轴是32x =,开口向上的抛物线,∴222620y a =⋅-⋅+<的实数a 的取值范围(,4)-∞ ………………(6分)(II )由(I )22()2a g x x xx =+-,方法1:2222()()62(0)a g x f x x x x x x '=-+=+->, ∵4a <,∴323233444244()22a x x g x x x x x x -+'=-+>-+=,…………(8分)设2344()2h x x x =-+,3448124(23)()x h x x x x -'=-=()h x 在3(0,)2是减函数,在3(,)2+∞增函数,当32x =时,()h x 取最小值3827∴从而()g x '3827>,∴38(())027g x x '->,函数38()27y g x x =-是增函数,12x x 、是两个不相等正数,不妨设12x x <,则22113838()()2727g x x g x x ->-∴212138()()()27g x g x x x ->-,∵210x x ->,∴1212()()3827g x g x x x ->-∴1212()()g x g x x x --3827>,即121238|()()|||27g x g x x x ->- ………………(12分)方法2:11(,())M x g x 、22(,())N x g x 是曲线()y g x =上任意两相异点,121222121212()()2()2g x g x x x ax x x x x x -+=+--,12122x x x x +>,4a <12223121212122()422()x x a a x x x x x x x x +∴+->+-31212442()x x x x >+- ………(8分)设121,0t t x x =>,令32()244MN k u t t t ==+-,()4(32)u t t t '=-, 由()0u t '>,得2,3t >由()0u t '<得20,3t <<()u t ∴在)32,0(上是减函数,在),32(+∞上是增函数,)(t u ∴在32=t 处取极小值2738,38()27u t ∴≥,∴所以1212()()g x g x x x --3827>即121238|()()|||27g x g x x x ->- ………………(12分) 9.(本小题满分12分)已知函数.1,ln )1(21)(2>-+-=a x a ax x x f(I )讨论函数)(x f 的单调性;(II )证明:若.1)()(,),,0(,,521212121->--≠+∞∈<x x x f x f x x x x a 有则对任意(1))(x f 的定义域为),0(+∞,xa x x x a ax x x a a x x f )1)(1(11)('2-+-=-+-=-+-= 2分(i )若2,11==-a a 即,则 .)1()('2xx x f -=故)(x f 在),0(+∞单调增加. (ii )若.0)(',)1,1(,21,1,11<-∈<<><-x f a x a a a 时则当故而)1,1()(,0)(',),1()1,0(->+∞∈-∈a x f x f x a x 在故时及当单调减少,在(0,a-1), ),1(+∞单调增加.(iii )若),1(),1,0(,)1,1()(,2,11+∞-->>-a a x f a a 在单调减少在同理可得即 单调增加.(II )考虑函数x x f x g +=)()( .ln )1(212x x a ax x +-+-= 由 .)11(1)1(121)1()('2---=---⋅≥-+--=a a xa x x a a x x g 由于单调增加在即故),0()(,0)(',5+∞><x g x g a a ,从而当021>>x x 时有 ,0)()(,0)()(212121>-+->-x x x f x f x g x g 即 故1)()(2121->--x x x f x f ,当210x x <<时,有1)()()()(12122121->--=--x x x f x f x x x f x f10.(本小题满分14分)已知函数21()ln ,()(1),12f x x a xg x a x a =+=+≠-.(I )若函数(),()f x g x 在区间[1,3]上都是单调函数且它们的单调性相同,求实数a 的取值范围;(II )若(1,]( 2.71828)a e e ∈=,设()()()F x f x g x =-,求证:当12,[1,]x x a ∈时,不等式12|()()|1F x F x -<成立.解:(I )(),()1a f x x g x a x''=+=+, ……………(2分)∵函数(),()f x g x 在区间[1,3]上都是单调函数且它们的单调性相同,∴当[1,3]x ∈时,2(1)()()()0a x a f x g x x++''⋅=≥恒成立, ……………(4分) 即2(1)()0a x a ++≥恒成立, ∴21a a x >-⎧⎨≥-⎩在[1,3]x ∈时恒成立,或21a a x<-⎧⎨≤-⎩在[1,3]x ∈时恒成立, ∵91x -≤≤-,∴1a >-或9a ≤- ………………(6分)(II )21()ln ,(1)2F x x a x a x =+-+,()(1)()(1)a x a x F x x a xx--'=+-+=∵()F x 定义域是(0,)+∞,(1,]a e ∈,即1a >∴()F x 在(0,1)是增函数,在(1,)a 实际减函数,在(,)a +∞是增函数 ∴当1x =时,()F x 取极大值1(1)2M F a ==--,当x a =时,()F x 取极小值21()ln 2m F a a a a a ==--, ………………(8分)∵12,[1,]x x a ∈,∴12|()()|||F x F x M m M m -≤-=- ………………(10分)设211()ln 22G a M m a a a =-=--,则()ln 1G a a a '=--,∴1[()]1G a a''=-,∵(1,]a e ∈,∴[()]0G a ''>∴()ln 1G a a a '=--在(1,]a e ∈是增函数,∴()(1)0G a G ''>=∴211()ln 22G a a a a =--在(1,]a e ∈也是增函数 ………………(12分)∴()()G a G e ≤,即2211(1)()1222e G a e e -≤--=-, 而22211(1)(31)1112222e e e ----=-<-=,∴()1G a M m =-< ∴当12,[1,]x x a ∈时,不等式12|()()|1F x F x -<成立. ………………(14分) 11.(本小题满分12分)设曲线C :()ln f x x ex =-( 2.71828e =⋅⋅⋅),()f x '表示()f x 导函数. (I )求函数()f x 的极值;(II )对于曲线C 上的不同两点11(,)A x y ,22(,)B x y ,12x x <,求证:存在唯一的0x 12(,)x x ∈,使直线AB 的斜率等于0()f x '. 解:(I )11()0ex f x e xx -'=-==,得1x e= 当x 变化时,()f x '与()f x 变化情况如下表:x1(0,)e1e1(,)e+∞ ()f x '+ 0 - ()f x单调递增极大值 单调递减∴当1x e=时,()f x 取得极大值1()2f e=-,没有极小值; …………(4分)(II )(方法1)∵0()AB f x k '=,∴2121021ln ln ()1x x e x x e x x x ----=-,∴21201ln 0x x xx x --= 即20211ln ()0x x x x x --=,设2211()ln ()xg x x x x x =--211211()ln ()x g x x x x x =--,1/211()ln 10x x g x x =->,1()g x 是1x 的增函数, ∵12x x <,∴2122222()()ln ()0xg x g x x x x x <=--=;222211()ln ()x g x x x x x =--,2/221()ln 10x x g x x =->,2()g x 是2x 的增函数, ∵12x x <,∴1211111()()ln ()0xg x g x x x x x >=--=,∴函数2211()ln ()xg x x x x x =--在12(,)x x 内有零点0x , …………(10分)又∵22111,ln 0x x x x >∴>,函数2211()ln ()xg x x x x x =--在12(,)x x 是增函数, ∴函数2121()ln x x xg x x x -=-在12(,)x x 内有唯一零点0x ,命题成立…………(12分)(方法2)∵0()AB f x k '=,∴2121021ln ln ()1x x e x x e x x x ----=-, 即020112ln ln 0x x x x x x -+-=,012(,)x x x ∈,且0x 唯一设2112()ln ln g x x x x x x x =-+-,则1121112()ln ln g x x x x x x x =-+-, 再设22()ln ln h x x x x x x x =-+-,20x x <<,∴2()ln ln 0h x x x '=-> ∴22()ln ln h x x x x x x x =-+-在20x x <<是增函数 ∴112()()()0g x h x h x =<=,同理2()0g x >∴方程2112ln ln 0x x x x x x -+-=在012(,)x x x ∈有解 …………(10分)∵一次函数在12(,)x x 2112()(ln ln )g x x x x x x =-+-是增函数 ∴方程2112ln ln 0x x x x x x -+-=在012(,)x x x ∈有唯一解,命题成立………(12分) 注:仅用函数单调性说明,没有去证明曲线C 不存在拐点,不给分.12.(本小题满分14分)定义),0(,,)1(),(+∞∈+=y x x y x F y ,(I )令函数22()(3,log (24))f x F x x =-+,写出函数()f x 的定义域;(II )令函数322()(1,log (1))g x F x ax bx =+++的图象为曲线C ,若存在实数b 使得曲线C 在)14(00-<<-x x 处有斜率为-8的切线,求实数a 的取值范围;(III )当,*x y ∈N 且x y <时,求证(,)(,)F x y F y x >. 解:(I )22log (24)0x x -+>,即2241x x -+> ……………………(2分)得函数()f x 的定义域是(1,3)-, ……………………(4分) (II )22322()(1,log (1))1,g x F x ax bx x ax bx =+++=+++设曲线00(41)C x x -<<-在处有斜率为-8的切线, 又由题设,23)(,0)1(log 2232b ax x x g bx ax x ++='>+++∴存在实数b 使得⎪⎩⎪⎨⎧>+++-<<--=++1114823020300020bx ax x x b ax x 有解, ……………………(6分)由①得,238020ax x b ---=代入③得082020<---ax x ,200028041x ax x ⎧++>⎪∴⎨-<<-⎪⎩由有解, ……………………(8分) 方法1:0082()()a x x <-+-,因为041x -<<-,所以0082()[8,10)()x x -+∈-, 当10a <时,存在实数b ,使得曲线C 在)14(00-<<-x x 处有斜率为-8的切线………………(10分)方法2:得08)1()1(208)4()4(222>+-⨯+-⨯>+-⨯+-⨯a a 或,1010,10.a a a ∴<<∴<或 ………………(10分) 方法3:是222(4)(4)802(1)(1)80a a ⎧⨯-+⨯-+≤⎪⎨⨯-+⨯-+≤⎪⎩的补集,即10a < ………………(10分)(III )令2)1ln(1)(,1,)1ln()(xx x xx h x x x x h +-+='≥+=由 又令,0),1ln(1)(>+-+=x x xxx p 0)1(11)1(1)(22<+-=+-+='∴x x x x x p , ),0[)(+∞∴在x p 单调递减. ……………………(12)分①②③0()(0)0,1()0,x p x p x h x '∴><=∴≥<当时有当时有),1[)(+∞∴在x h 单调递减,x y y x y x x y y y x x y x )1()1(),1ln()1ln(,)1ln()1ln(,1+>+∴+>+∴+>+<≤∴有时,).,(),(,x y F y x F y x N y x ><∈∴*时且当 ………………(14分)。
人教A版高中数学选修2-2第一章《导数的综合应用》专题训练(全解析)
导数的综合应用专题训练一.选择题:共10小题.在每个小题给出的四个选项中,只有一项是符合题目要求的. 1. 函数x x x f ln 2)(2-=的单调递减区间是A .)1,0(B .),1[+∞C .]1,(--∞和)1,0(D .)0,1[-和]1,0(2. 函数xe xf =)(的图象在点1-=x 处的切线与两坐标轴围成的三角形面积为A .e21B . e 1C . e 2D . e 43. 若a a bx ax x x f 7)(223--++=在1=x 处取得极大值10,则ab 的值为A .23-或21-B . 23-或21C . 23- D . 214. 已知)2sin(41)(2x x x f ++=π, )(x f '为)(x f 的导函数,则)(x f '的图象是A .B .C .D .5. 已知函数742)(23---=x x x x f ,其导函数为)(x f '.①)(x f 的单调减区间是)2,32(; ②)(x f 的极小值是15-;③函数)(x f 有且只有一个零点.其中真命题的个数为A .1个B .2个C .3个D .4个6. 若存在两个正实数x 、y ,使得等式033=-ay e x xy 成立,其中e 为自然对数的底数,则实数a 的取值范围为A . ),27[3+∞eB . ]27,0(3e C . ),8[2+∞e D .]8,0(2e7. 已知函数x b x x x f 2)(ln )(-+=(R b ∈).若存在]2,21[∈x ,使得0)()(>'+x f x x f ,则实数b 的取值范围是A .)23,(-∞ B .)3,(-∞ C .)49,(-∞ D .)2,(-∞ 8. 下列不等式对任意的),0(+∞∈x 恒成立的是A .02≥-x x B . 1sin +->x x C .ex e x≥ D .x x >ln 9. 设函数)(x f y ''=是)(x f y '=的导数.某同学经过探究发现,任意一个三次函数d cx bx ax x f +++=23)()0(≠a 都有对称中心))(,(00x f x ,其中0x 满足0)(0=''x f .已知函数12532131)(23-+-=x x x x f ,则)20172016()20172()20171(f f f +++Λ等于 A . 2013 B .2014 C . 2015 D .201610. 函数)(x f 的定义域是R ,2)0(=f ,对任意R x ∈,1)()(>'+x f x f ,则不等式1)(+>⋅x x e x f e 的解集为A .}0{>x xB .}0{<x xC .}11{>-<x x x 或D .}101{<<-<x x x 或 二.填空题:本大题共3小题.11. 已知函数bx ax x x f 33)(23++=在2=x 处有极值,其图像在1=x 处的切线平行于直线0526=++y x ,则)(x f 的极大值与极小值之差为_______.12. 当]1,2[-∈x 时,不等式03423≥++-x x ax 恒成立,则实数a 的取值范围是 . 13. 设函数bx ax x x f --=221ln )(,若1=x 是)(x f 的极大值点,则a 的取值范围为 .三.解答题:本大题共4小题. 解答应写出文字说明、证明过程或演算步骤.14.已知函数x a x x f ln )(2+=.(Ⅰ)当2-=a 时,求函数)(x f 的单调区间和极值; (Ⅱ)若函数xx f x g 2)()(+=在]2,1[上是减函数,求实数a 的取值范围.15.已知函数)1(ln )1()(2+-+-=x x a x x f ,(其中R a ∈,且a 为常数). (Ⅰ)当4=a 时,求函数)(x f y =的单调区间;(Ⅱ)若对于任意的),1(+∞∈x ,都有0)(>x f 成立,求a 的取值范围; (Ⅲ)若方程01)(=++a x f 在)2,1(∈x 上有且只有一个实根,求a 的取值范围.16.已知函数11ln )(+-+=bx xx a x f . (Ⅰ)若42=-b a ,则当2>a 时,讨论)(x f 单调性; (Ⅱ)若1-=b ,xx f x F 5)()(-=且当4-≥a 时,不等式2)(≥x F 在区间]4,1[上有解,求实数a 的取值范围.17.已知函数x x x ax x f ln )(2-+= )(R a ∈.(Ⅰ)若函数)(x f 在),0(+∞上单调递增,求实数a 的取值范围; (Ⅱ)若函数)(x f 有两个极值点1x ,2x 且21x x ≠,证明221e x x >.导数的综合应用专题训练参考答案11.4 12.]2,6[-- 13.),1(+∞-1.A 【解析】∵x x x f ln 2)(2-=,∴xx x x x x f )1)(1(222)(-+=-=', 令0)(<'x f ,得:10<<x ,∴函数的单调减区间是)1,0(.2.C 【解析】因为xe xf =')( ,所以函数在1-=x 处的切线斜率为ee k 11==-, 当1-=x 时,e ef 1)1(1==- ,所以切点的坐标为)1,1(e -, 所以切线方程为ex e e x e y 211)1(1+=++=,切线与x 轴交点为)0,2(-,与y 轴交点为)2,0(e,所以围成的三角形面积为ee S 22221=⨯⨯=.3.C 【解析】∵a a bx ax x x f 7)(223--++=,∴b ax x x f ++='23)(2,又a a bx ax x x f 7)(223--++=在1=x 处取得极大值10,∴⎩⎨⎧=='10)1(0)1(f f ,即⎩⎨⎧=--++=++10710232a ab a b a ,解得:⎩⎨⎧=-=12b a 或⎩⎨⎧=-=96b a , ① 当⎩⎨⎧=-=12b a 时,)1)(13(143)(2--=+-='x x x x x f ,当131<<x 时,0)(<'x f ;当1>x 时,0)(>'x f , ∴)(x f 在1=x 处取得极小值,与题意不符;② 当⎩⎨⎧=-=96b a 时,)3)(1(39123)(2--=+-='x x x x x f ,当1<x 时,0)(>'x f ;当31<<x 时,0)(<'x f , ∴)(x f 在1=x 处取得极大值,此时23-=a b . 4.A 【解析】因为x x x x x f cos 41)2sin(41)(22+=++=π, ∴x x x f sin 21)(-=',它是一个奇函数, 其图象关于原点对称,故排除B ,D . 又x x f cos 21)(-='',当33ππ<<-x 时,21cos >x ,∴0cos 21)(<-=''x x f ,故函数)(x f y '=在区间)3,3(ππ-上单调递减,故排除C .5.B 【解析】因为742)(23---=x x x x f ,所以443)(2--='x x x f ,令0443)(2=--='x x x f ,得32-=x ,2=x , 当0)(>'x f 时,得32-<x 或2>x 时,函数单调递增, 当0)(<'x f 时,即232<<-x 时,函数单调递减; 故当2=x 时,函数有极小值,极小值为15)2(-=f , 当32-=x 时,函数有极大值,极大值为0)32(<-f ,故函数只有一个零点, 则①错误,②③正确.6.A 【解析】由题意知3)(x y e a xy=,设x yt = )0(>t ,则3t e a t =,令3)(t e t f t =,4)3()(t t e t f t -=',当3>t 时,0)(>'t f ,当30<<t 时,0)(<'t f ,所以27)3()(3mine f t f ==,所以273e a ≥.7.C 【解析】因为0)()(>'+x f x x f ,即0])([>'x xf ,设)()(x xf x g =,所以0)(>'x g ,所以存在]2,21[∈x 满足函数)()(x xf x g =单调递增,因为222ln )()(b bx x x x xf x g +-+==,所以0221)(>-+='b x xx g , 即x x b 212+<,即存在]2,21[∈x ,满足x x b 212+<,max )21(2x x b +<,设x x x h 21)(+=,21)(2+-='xx h ,所以当2=x 时)(x h 取得最大值且29)(max =x h ,即292<b ,49<b .8.C 【解析】对选项A ,当2=x 时,不成立,故A 不正确.对选项B ,当π=x 时,0sin =π,01<+-π,所以1sin +->x x 不成立,故B 不正确.对于C ,令ex e x f x-=)(,则e e x f x-=')(,则当10<<x 时,0)(<'x f ,)(x f 单调递减;当1>x 时,0)(>'x f ,)(x f 单调递增,所以0)1()(min ==f x f ,故0)(≥-=ex e x f x ,即ex e x ≥.故C 正确.对于D ,当1=x 时,01ln =,所以x x >ln 不成立,故D 不正确. 综上可得选C .9.D 【解析】3)(2+-='x x x f ,12)(-=''x x f ,令012)(=-=''x x f ,解得21=x , 且1125213)21(21)21(31)21(23=-⨯+⨯-⨯=f ,所以函数)(x f 的对称中心为)1,21(M ,设Q P ,是函数)(x f 的图象上关于)1,21(M 中心对称的两点,则2)1()(=-+x f x f ,所以)20172016()20172()20171(f f f +++Λ=))20171()20172016(())20172015()20172(())20172016()20171([(21f f f f f f ++++++Λ =2016)20162(21=⨯⨯. 10.A 【解析】令)1)(()(-=x f e x g x,则0))(1)(()(>'+-='x f x f e x g x,所以函数)(x g 在R 上单调递增,而1)(+>⋅x x e x f e 等价于)0()(g x g >,因此0>x .11.4【解析】因为b ax x x f 363)(2++=',又)(x f 在2=x 处有极值,所以0)2(='f ,由图像在1=x 处的切线平行于直线0526=++y x 知3)1(-='f ,联立方程⎩⎨⎧-=++='=++='3363)1(031212)2(b a f b a f ,解得:1-=a ,0=b ,则)2(363)(2-=-='x x x x x f ,)(x f 极大值为0)0(=f ,极小值为4)2(-=f , 即)(x f 的极大值与极小值之差为4.12.]2,6[--【解析】(Ⅰ)显然0=x 时,对任意实数a ,已知不等式恒成立;令xt 1=, (Ⅱ)若10≤<x ,则原不等式等价于t t t x xx a +--=+--≥232343143,),1[+∞∈t , 令t t t t g +--=2343)(,则)1)(19(189)(2+--=+--='t t t t t g ,由于),1[+∞∈t , 故0)(≤'t g ,即函数)(t g 在),1[+∞上单调递减,最大值为6)1(-=g ,故只要6-≥a ; (Ⅲ)若02<≤-x ,则t t t x xx a +--=+--≤232343143,]21,(--∞∈t , 令t t t t g +--=2343)(,则)1)(19(189)(2+--=+--='t t t t t g ,在区间]21,(--∞上的极值点为1-=t ,且为极小值点,故函数)(t g 在]21,(--∞上有唯一的极小值点,也是最小值点,故只要2)1(-=-≤g a . 综上可知:若在]1,2[-上已知不等式恒成立,]2,6[--∈a . 13.),1(+∞-【解析】)(x f 的定义域为),0(+∞,b ax xx f --='1)(, 依题意可得01)1(=--='b a f ,解得a b -=1,∴xx a ax a ax x x f 1)1(11)(2+-+-=-+-=',(Ⅰ)若0≥a ,当10<<x 时,0)(>'x f ,)(x f 单调递增;当1>x 时,0)(<'x f ,)(x f 单调递减,所以1=x 是)(x f 的极大值点.(Ⅱ)若0<a ,由0)(='x f ,得1=x 或ax 1-=, 因为1=x 是)(x f 的极大值点,所以11>-a,解得01<<-a . 综合(Ⅰ)(Ⅱ)得a 的取值范围是),1(+∞-. 14.【解析】(Ⅰ)函数)(x f 的定义域为),0(+∞, 当2-=a ,x x x f ln 2)(2-=,xx x x x x f )1)(1(222)(-+=-=', 当10<<x 时,0)(<'x f ,)(x f 单调递减, 当1>x 时,0)(>'x f ,)(x f 单调递增, 所以)(x f 的递减区间是)1,0(,递增区间是),1(+∞,1)1()(==f x f 极小值,无极大值;(Ⅱ)由x x a x x g 2ln )(2++=,得222)(xx a x x g -+=', 又函数xx a x x g 2ln )(2++=为]2,1[上的单调减函数, 则0)(≤'x g 在]2,1[上恒成立,即不等式0222≤-+xx a x 在]2,1[上恒成立,即x x a 222+-≤在]2,1[上恒成立,令x x x h 22)(2+-=,则02-4)(2<-='x x x h ,所以xx x h 22)(2+-=在]2,1[为减函数,所以7)2()(min -==h x h ,7-≤a .15.【解析】(Ⅰ)函数)(x f 的定义域为),0(+∞由x a x x x a x x f )2)(1()11()1(2)(--=-+-='知, 当4=a 时,xx x x f )2)(1(2)(--=',所以函数)(x f 在)1,0(上单调递增,在)2,1(上单调递减,在),2(+∞上单调递增;(Ⅱ)由xa x x x a x x f )2)(1()11()1(2)(--=-+-='得, 当2≤a 时,因为0)(>'x f 对于),1(+∞∈x 恒成立,所以)(x f 在),1(+∞上单调递增, 所以0)1()(=>f x f ,此时命题成立;当2>a 时,因为)(x f 在)2,1(a 上单调递减,在),2(+∞a 上单调递增, 所以当)2,1(a x ∈时,有0)1()(=<f x f ,这与题设矛盾,不符. 故a 的取值范围是]2,(-∞;(Ⅲ)依题意,设1)()(++=a x f x g ,原题即为若)(x g 在)2,1(上有且只有一个零点,求a 的取值范围.显然函数)(x g 与)(x f 的单调性是一致的. 当0≤a 时,因为函数)(x g 在)2,1(上递增,由题意可知⎩⎨⎧>++=<+=01)2()2(01)1(a f g a g ,解得12ln 2-<<-a ; 当0>a 时,因为1)2(ln )1()(2+-++-=a x x a x x g , 当)2,1(∈x 时,总有0)(>x g ,此时方程没有实根。
[精品]新人教A版选修2-2高中数学第一章 导数及其应用 综合检测和答案
第一章导数及其应用综合检测时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2010·全国Ⅱ文,7)若曲线y=x2+ax+b在点(0,b)处的切线方程是x-y+1=0,则( )A.a=1,b=1B.a=-1,b=1C.a=1,b=-1D.a=-1,b=-1[答案] A[解析] y′=2x+a,∴y′|x=0=(2x+a)|x=0=a=1,将(0,b)代入切线方程得b=1.2.一物体的运动方程为s=2t sin t+t,则它的速度方程为( ) A.v=2sin t+2t cos t+1B.v=2sin t+2t cos tC.v=2sin tD.v=2sin t+2cos t+1[答案] A[解析] 因为变速运动在t0的瞬时速度就是路程函数y=s(t)在t0的导数,S′=2sin t+2t cos t+1,故选A.3.曲线y=x2+3x在点A(2,10)处的切线的斜率是( )A.4B.5C .6D .7 [答案] D[解析] 由导数的几何意义知,曲线y =x 2+3x 在点A (2,10)处的切线的斜率就是函数y =x 2+3x 在x =2时的导数,y ′|x =2=7,故选D.4.函数y =x |x (x -3)|+1( ) A .极大值为f (2)=5,极小值为f (0)=1 B .极大值为f (2)=5,极小值为f (3)=1 C .极大值为f (2)=5,极小值为f (0)=f (3)=1 D .极大值为f (2)=5,极小值为f (3)=1,f (-1)=-3 [答案] B[解析] y =x |x (x -3)|+1=⎩⎪⎨⎪⎧x 3-3x 2+1 (x <0或x >3)-x 3+3x 2+1 (0≤x ≤3)∴y ′=⎩⎪⎨⎪⎧3x 2-6x (x <0或x >3)-3x 2+6x (0≤x ≤3)x 变化时,f ′(x ),f (x )变化情况如下表:极大极小故应选B.5.(2009·安徽理,9)已知函数f(x)在R上满足f(x)=2f(2-x)-x2+8x-8,则曲线y=f(x)在点(1,f(1))处的切线方程是( ) A.y=2x-1B.y=xC.y=3x-2D.y=-2x+3[答案] A[解析] 本题考查函数解析式的求法、导数的几何意义及直线方程的点斜式.∵f(x)=2f(2-x)-x2+8x-8,∴f(2-x)=2f(x)-x2-4x+4,∴f(x)=x2,∴f′(x)=2x,∴曲线y=f(x)在点(1,f(1))处的切线斜率为2,切线方程为y -1=2(x-1),∴y=2x-1.6.函数f(x)=x3+ax2+3x-9,已知f(x)在x=-3时取得极值,则a等于( )A.2B.3C.4D.5[答案] D[解析] f′(x)=3x2+2ax+3,∵f(x)在x=-3时取得极值,∴x=-3是方程3x2+2ax+3=0的根,∴a=5,故选D.7.设f(x),g(x)分别是定义在R上的奇函数和偶函数.当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(-3)=0,则不等式f(x)g(x)<0的解集是( )A.(-3,0)∪(3,+∞)B.(-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-∞,-3)∪(0,3)[答案] D[解析] 令F(x)=f(x)·g(x),易知F(x)为奇函数,又当x<0时,f′(x)g(x)+f(x)g′(x)>0,即F′(x)>0,知F(x)在(-∞,0)内单调递增,又F(x)为奇函数,所以F(x)在(0,+∞)内也单调递增,且由奇函数知f(0)=0,∴F(0)=0.又由g(-3)=0,知g(3)=0∴F(-3)=0,进而F(3)=0于是F(x)=f(x)g(x)的大致图象如图所示∴F(x)=f(x)·g(x)<0的解集为(-∞,-3)∪(0,3),故应选D.8.下面四图都是同一坐标系中某三次函数及其导函数的图象,其中一定不正确的序号是( )A .①②B .③④C .①③D .①④ [答案] B[解析] ③不正确;导函数过原点,但三次函数在x =0不存在极值;④不正确;三次函数先增后减再增,而导函数先负后正再负.故应选B.9.(2010·湖南理,5)⎠⎜⎛241xd x 等于( )A .-2ln2B .2ln2C .-ln2D .ln2 [答案] D[解析] 因为(ln x )′=1x,所以 ⎠⎜⎛241x dx =ln x |42=ln4-ln2=ln2. 10.已知三次函数f (x )=13x 3-(4m -1)x 2+(15m 2-2m -7)x +2在x ∈(-∞,+∞)是增函数,则m 的取值范围是( )A .m <2或m >4B .-4<m <-2C .2<m <4D .以上皆不正确 [答案] D[解析] f ′(x )=x 2-2(4m -1)x +15m 2-2m -7,由题意得x 2-2(4m -1)x +15m 2-2m -7≥0恒成立,∴Δ=4(4m -1)2-4(15m 2-2m -7)=64m 2-32m +4-60m 2+8m +28 =4(m 2-6m +8)≤0, ∴2≤m ≤4,故选D.11.已知f (x )=x 3+bx 2+cx +d 在区间[-1,2]上是减函数,那么b +c ( )A .有最大值152B .有最大值-152C .有最小值152D .有最小值-152[答案] B[解析] 由题意f ′(x )=3x 2+2bx +c 在[-1,2]上,f ′(x )≤0恒成立.所以⎩⎪⎨⎪⎧f ′(-1)≤0f ′(2)≤0即⎩⎪⎨⎪⎧2b -c -3≥04b +c +12≤0令b +c =z ,b =-c +z ,如图过A ⎝⎛⎭⎪⎫-6,-32得z 最大,最大值为b +c =-6-32=-152.故应选B.12.设f (x )、g (x )是定义域为R 的恒大于0的可导函数,且f ′(x )g (x )-f (x )g ′(x )<0,则当a <x <b 时有( )A .f (x )g (x )>f (b )g (b )B .f (x )g (a )>f (a )g (x )C .f (x )g (b )>f (b )g (x )D .f (x )g (x )>f (a )g (x ) [答案] C[解析] 令F (x )=f (x )g (x )则F ′(x )=f ′(x )g (x )-f (x )g ′(x )g 2(x )<0 f (x )、g (x )是定义域为R 恒大于零的实数∴F (x )在R 上为递减函数,当x ∈(a ,b )时,f (x )g (x )>f (b )g (b )∴f (x )g (b )>f (b )g (x ).故应选C.二、填空题(本大题共4个小题,每小题4分,共16分.将正确答案填在题中横线上)13.⎠⎜⎛-2-1d x(11+5x )3=________. [答案]772[解析] 取F (x )=-110(5x +11)2,从而F ′(x )=1(11+5x )3则⎠⎜⎛-2-1d x(11+5x )3=F (-1)-F (-2)=-110×62+110×12=110-1360=772.14.若函数f (x )=ax 2-1x的单调增区间为(0,+∞),则实数a 的取值范围是________.[答案] a ≥0[解析] f ′(x )=⎝⎛⎭⎪⎫ax -1x ′=a +1x 2,由题意得,a +1x2≥0,对x ∈(0,+∞)恒成立,∴a ≥-1x2,x ∈(0,+∞)恒成立,∴a ≥0.15.(2009·陕西理,16)设曲线y =x n +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lg x n ,则a 1+a 2+…+a 99的值为________.[答案] -2[解析] 本小题主要考查导数的几何意义和对数函数的有关性质.k =y ′|x =1=n +1,∴切线l :y -1=(n +1)(x -1), 令y =0,x =nn +1,∴a n =lgnn +1,∴原式=lg 12+lg 23+…+lg 99100=lg 12×23×…×99100=lg 1100=-2.16.如图阴影部分是由曲线y =1x,y 2=x 与直线x =2,y =0围成,则其面积为________.[答案] 23+ln2[解析]由⎩⎪⎨⎪⎧y 2=x ,y =1x,得交点A (1,1)由⎩⎪⎨⎪⎧x =2y =1x得交点B ⎝⎛⎭⎪⎫2,12.故所求面积S =⎠⎜⎛01x d x +⎠⎜⎛121x d x =23x 32| 10+ln x | 21=23+ln2. 三、解答题(本大题共6个小题,共74分.解答应写出文字说明、证明过程或演算步骤)17.(本题满分12分)(2010·江西理,19)设函数f (x )=ln x +ln(2-x )+ax (a >0).(1)当a =1时,求f (x )的单调区间;(2)若f (x )在(0,1]上 的最大值为12,求a 的值.[解析] 函数f (x )的定义域为(0,2), f ′(x )=1x -12-x+a ,(1)当a =1时,f ′(x )=-x 2+2x (2-x ),所以f (x )的单调递增区间为(0,2),单调递减区间为(2,2);(2)当x ∈(0,1]时,f ′(x )=2-2xx (2-x )+a >0,即f (x )在(0,1]上单调递增,故f (x )在(0,1]上的最大值为f (1)=a ,因此a =12.18.(本题满分12分)求曲线y =2x -x 2,y =2x 2-4x 所围成图形的面积.[解析] 由⎩⎪⎨⎪⎧y =2x -x 2,y =2x 2-4x得x 1=0,x 2=2.由图可知,所求图形的面积为S =⎠⎜⎛02(2x -x 2)d x +|⎠⎜⎛02(2x 2-4x )d x |=⎠⎜⎛02(2x -x 2)d x -⎠⎜⎛02(2x 2-4x )d x . 因为⎝⎛⎭⎪⎫x 2-13x 3′=2x -x 2,⎝ ⎛⎭⎪⎫23x 3-2x 2′=2x 2-4x , 所以S =⎝ ⎛⎭⎪⎫x 2-13x 3⎪⎪⎪⎪2-⎝ ⎛⎭⎪⎫23x 3-2x 2⎪⎪⎪⎪2=4.19.(本题满分12分)设函数f (x )=x 3-3ax +b (a ≠0). (1)若曲线y =f (x )在点(2,f (2))处与直线y =8相切,求a ,b 的值;(2)求函数f (x )的单调区间与极值点.[分析] 考查利用导数研究函数的单调性,极值点的性质,以及分类讨论思想.[解析] (1)f ′(x )=3x 2-3a .因为曲线y =f (x )在点(2,f (2))处与直线y =8相切,所以⎩⎪⎨⎪⎧f ′(2)=0,f (2)=8.即⎩⎪⎨⎪⎧3(4-a )=0,8-6a +b =8.解得a =4,b =24.(2)f ′(x )=3(x 2-a )(a ≠0).当a <0时,f ′(x )>0,函数f (x )在(-∞,+∞)上单调递增,此时函数f (x )没有极值点.当a >0时,由f ′(x )=0得x =±a .当x ∈(-∞,-a )时,f ′(x )>0,函数f (x )单调递增; 当x ∈(-a ,a )时,f ′(x )<0,函数f (x )单调递减; 当x ∈(a ,+∞)时,f ′(x )>0,函数f (x )单调递增. 此时x =-a 是f (x )的极大值点,x =a 是f (x )的极小值点. 20.(本题满分12分)已知函数f (x )=12x 2+ln x .(1)求函数f (x )的单调区间; (2)求证:当x >1时,12x 2+ln x <23x 3.[解析] (1)依题意知函数的定义域为{x |x >0}, ∵f ′(x )=x +1x,故f ′(x )>0,∴f (x )的单调增区间为(0,+∞). (2)设g (x )=23x 3-12x 2-ln x ,∴g ′(x )=2x 2-x -1x,∵当x >1时,g ′(x )=(x -1)(2x 2+x +1)x>0,∴g (x )在(1,+∞)上为增函数, ∴g (x )>g (1)=16>0,∴当x >1时,12x 2+ln x <23x 3.21.(本题满分12分)设函数f (x )=x 3-92x 2+6x -a .(1)对于任意实数x, f ′(x )≥m 恒成立,求m 的最大值; (2)若方程f (x )=0有且仅有一个实根,求a 的取值范围. [分析] 本题主要考查导数的应用及转化思想,以及求参数的范围问题.[解析] (1)f ′(x )=3x 2-9x +6=3(x -1)(x -2).因为x ∈(-∞,+∞).f ′(x )≥m ,即3x 2-9x +(6-m )≥0恒成立.所以Δ=81-12(6-m )≤0,得m ≤-34,即m 的最大值为-34.(2)因为当x <1时,f ′(x )>0;当1<x <2时,f ′(x )<0;当x >2时f ′(x )>0.所以当x =1时,f (x )取极大值f (1)=52-a ,当x =2时,f (x )取极小值f (2)=2-a .故当f (2)>0或f (1)<0时,方程f (x )=0仅有一个实根,解得a <2或a >52.22.(本题满分14分)已知函数f (x )=-x 3+ax 2+1(a ∈R ).(1)若函数y =f (x )在区间⎝ ⎛⎭⎪⎫0,23上递增,在区间⎣⎢⎡⎭⎪⎫23,+∞上递减,求a 的值;(2)当x ∈[0,1]时,设函数y =f (x )图象上任意一点处的切线的倾斜角为θ,若给定常数a ∈⎝ ⎛⎭⎪⎫32,+∞,求θ的取值范围;(3)在(1)的条件下,是否存在实数m ,使得函数g (x )=x 4-5x 3+(2-m )x 2+1(m ∈R )的图象与函数y =f (x )的图象恰有三个交点.若存在,请求出实数m 的值;若不存在,试说明理由.[解析] (1)依题意f ′⎝ ⎛⎭⎪⎫23=0,由f ′(x )=-3x 2+2ax ,得-3⎝ ⎛⎭⎪⎫232+2a ·23=0,即a =1.(2)当x ∈[0,1]时,tan θ=f ′(x )=-3x 2+2ax =-3⎝⎛⎭⎪⎫x -a 32+a23.由a ∈⎝ ⎛⎭⎪⎫32,+∞,得a 3∈⎝ ⎛⎭⎪⎫12,+∞.①当a 3∈⎝ ⎛⎦⎥⎤12,1,即a ∈⎝ ⎛⎦⎥⎤32,3时,f ′(x )max =a 23,f (x )min =f ′(0)=0.此时0≤tan θ≤a 23.②当a3∈(1,+∞),即a ∈(3,+∞)时,f ′(x )max =f ′(1)=2a-3,f ′(x )min =f ′(0)=0,此时,0≤tan θ≤2a -3.又∵θ∈[0,π),∴当32<a ≤3时,θ∈⎣⎢⎡⎦⎥⎤0,arctan a 23,当a >3时,θ∈[0,arctan(2a -3)].(3)函数y =f (x )与g (x )=x 4-5x 3+(2-m )x 2+1(m ∈R )的图象恰有3个交点,等价于方程-x 3+x 2+1=x 4-5x 3+(2-m )x 2+1恰有3个不等实根,∴x 4-4x 3+(1-m )x 2=0,显然x =0是其中一个根(二重根),方程x 2-4x +(1-m )=0有两个非零不等实根,则⎩⎪⎨⎪⎧Δ=16-4(1-m )>01-m ≠0∴m >-3且m ≠1故当m >-3且m ≠1时,函数y =f (x )与y =g (x )的图象恰有3个交点.。
高中数学人教A选修2-2导数及其应用一测试题
高中数学人教A选修2-2导数及其应用一测试题《数学选修2-2》导数及其应用(一)第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是最符合题目要求的.)1、若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()limh f x h f x h h→+-- 的值为( )A.0()f x ' B.02()f x ' C.02()f x '- D.0 2、一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时速度是( )A.7米/秒B.6米/秒C.5米/秒 D.8米/秒3、曲线xxy 43-=在点(1,3)-处的切线倾斜角为( )A.34πB.2πC.4π D.6π 4、曲线3()2f x x x =+-在0p 处的切线平行于直线41y x =-,则0p 点的坐标为( )A.(1,0)B.(2,8)C.(2,8)和(1,4)--D.(1,0)和(1,4)--5、若()sin cos f x x α=-,则()f α'等于( ) A.cos α B .sin α C.sin cos αα+ D.2sin α6、若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( )A.430x y --=B.450x y +-=C.430x y -+=D.430x y ++=7、对正整数n ,设曲线)1(x x y n-=在2x =处的切线与y 轴交点的纵坐标为na ,则 数列1na n ⎧⎫⎨⎬+⎩⎭的前n 项和的公式是( ) A.2nB.22n- C.12n +D.122n +-8、已知32()967,f x ax x x =++-若(1)4f '-=,则a 的值等于( )A.193B.163C.103D.1339、二次函数()y f x =的图象过原点,且它的导函数()y f x '=的图象过第一、二、三象限的一条直线,则函数()y f x =的图象的顶点所在象限是( )A.第一B.第二C.第三D.第四10、已知函数)(x f y =的图象在点M (1,f (1))处的切线方程是x y 21=+2,则(1)(1)f f '+的值等于( ) A.1 B.52C.3D.011、下列式子不.正确的是( ) A.()23cos 6cos sin xx x x x x x'+=+-B.23112ln x x x x '⎛⎫-=- ⎪⎝⎭C. ()sin 22cos2x x '=D.2sin cos sin x x xx x '-⎛⎫=⎪⎝⎭12、设a ∈R ,函数()ee xxf x a -=+⋅的导函数是()f x ',且()f x '是奇函数.若曲线()y f x =的一条切线的斜率是32,则切点的横坐标为 ( ) A.ln 2 B.ln 2- C.ln 22 D.ln 22-第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中的横线上.)13、已知函数x x x f +-=2)(的图象上的一点)2,1(--A 及临近一点)2,1(y x B ∆+-∆+-则=∆∆xy. 14、曲线32242y xx x =--+在点(1,一3)处的切线方程是___________15、在平面直角坐标系xoy 中,点P 在曲线3:103C y x x =-+上,且在第二象限内,已知曲线C 在点P 处的切线的斜率为2,则点P 的坐标为 .16、已知函数)(x f 是定义在R 上的奇函数,0)1(=f ,0)()(2>-'x x f x f x (0)x >,则不等式()0f x >的解集是 .三、解答题(本大题共6小题,共74分,解答应写出必要的文字说明、证明过程及演算步骤.)17、(12分) 已知函数))(2ln(2)(2R a x axx f ∈-+=,设曲线)(x f y =在点))1(,1(f 处的切线为l ,若l 与圆41:22=+y x C 相切,求a的值.18、(12分) 设函数()cos(3)(0)f x x ϕϕπ=+<<,且()()f x f x '+为奇函数.(1)求ϕ的值; (2)求()'()f x f x +的最值.19、(12分)已知a ∈R ,函数2()()f x x x a =-,若(1)1f '=.(1)求a 的值并求曲线()y f x =在点(1,(1))f 处的切线方程()y g x =;(2)设()()()h x f x g x '=+,求()h x 在[0,1]上的最大值与最小值.20、(12分) 设函数3()f x axbx c =++(0)a ≠为奇函数,其图象在点(1,(1))f 处的切线与直线1870x y +-=垂直,导函数'()f x 的最小值为12. (1)求a ,b ,c 的值; (2)设2()()f x g x x =,当0x >时,求()g x 的最小值.21、(12分)设函数()b f x ax x=-,曲线()y f x =在点(2,(2))f 处的切线方程为74120x y --=.(1)求()f x 的解析式;(2)证明:曲线()y f x =上任一点处的切线与直线0x =和直线y x =所围成的三角形面积为定值,并求此定值.22、(14分)已知关于x 的方程sin ((0,1))xk k x=∈在(3,0)(0,3)-ππU 内有且仅有4个根,从小到大依次为1234,,,x x x x .(1)求证:44tan xx =;(2)是否存在常数k ,使得234,,x x x 成等差数列?若存在求出k 的值,否则说明理由.参考答案1.B 000000()()()()lim lim 2[]2h h f xh f x h f x h f x h h h→→+--+--=0000()()2lim2()2h f x h f x h f x h→+--'==.2.C ()21,(3)2315s t t s ''=-=⨯-=.3.A 21334,|1,tan 1,4x y xk y αα=''=-==-=-=π.4.D 设切点为0(,)P a b ,22()31,()314,1f x xk f a a a ''=+==+==±,把1a =-, 代入到3()2f x x x =+-得4b =-;把1a =,代入到3()2f x x x =+-得0b =,所以0(1,0)P 和(1,4)--.5.B ()sin ,()sin f x x f αα''==.6.A 与直线480x y +-=垂直的直线l 为40x y m -+=,即4y x =在某一点的导数为4,而34y x '=,所以4y x =在(1,1)处导数为4,此点的切线为430x y --=. 7.D ()()11222,:222(2)n n n x y n y n x --='=-++=-+-切线方程为,令0x =,求出切线与y 轴交点的纵坐标为()012ny n =+,所以21nna n =+,则数列1n a n ⎧⎫⎨⎬+⎩⎭的前n 项和()12122212nn nS +-==--8.B 2()3186f x axx '=++Q ,由(1)4,f '-=得31864a -+=,即163a =. 9.C 设2(),()2f x axbx f x ax b'=+=+,()f x 'Q 的图象是过第一、二、三象限的一条直线,故20,0a b >>,又22()24b b f x a x a a ⎛⎫=+-⎪⎝⎭,即项点2,24b b a a ⎛⎫-- ⎪⎝⎭在第三象限.10.C 由已知切点在切线上,所以f (1)=25221=+,切点处的导数为切线斜率,所以1(1)2f '=,所以(1)(1)f f '+=311.D2sin cos sin x x x x x x '-⎛⎫= ⎪⎝⎭12.A '()xxf x e ae -=-,()f x '是奇函数'(0)10f a =-=,∴1a =,有'()xxf x ee -=-,设切点为00(,)x y ,则0003'()2x x f x e e -=-=,得02x e =或012x e =-(舍去),∴0ln 2x=.13.3x -∆ 22(1)(1)y x x -+∆=--+∆+-+∆Q∴x x x x x y ∆-=∆-∆+-+∆+--=∆∆32)1()1(214.520x y +-= 易判断点(1,-3)在曲线32242y x x x =--+上,故切线的斜率()211|344|5x x k y x x =='==--=-,∴切线方程为()351y x +=--,即520x y +-=15.(-2,15) 231022y xx '=-=⇒=±,又点P 在第二象限内,∴2x =-,得点P 的坐标为(-2,15) 16.),1()0,1(+∞-Y 可得()'()f x f x x>,由导数的定义得,当01x <<时,()(1)()1f x f f x x x->-,又0)1(=f ,()(1)()xf x x f x <-,∴()0f x <;当1x >时,同理得()0f x <.又)(x f 是奇函数,画出它的图象得()0f x >⇒(1,0)(1,)x ∈-+∞U .17.解:依题意有:)2(222)(,)1(<-+='=x x ax x f a f , l∴的方程为02)1(2=-+--a y x a l Θ与圆相切,811211)1(4|2|2=⇒=+--∴a a a∴a 的值为118. 18.解:(1)()'()f x f x +3)33)x x ϕϕ=+-+52sin(3)6x πϕ=++,又0ϕ<<π,()'()f x f x +是奇函数,∴=ϕ6π. (2)由(1)得()'()f x f x +3)3x x=+π=-.∴()'()f x f x +的最大值为2,最小值为2-.19、解:(1)2()32f x x ax'=-,由(1)1f '=得321a -=,所以1a =;当1a =时,32()f x x x =-,(1)0f =,又(1)1f '=,所以曲线()y f x =在(1,(1))f 处的切线方程为01(1)y x -=⨯-,即()1g x x =-; (2)由(1)得22113()313()612h x xx x =--=--,又(0)1h =-,(1)1h =,113()612h =-, ∴()h x 在[0,1]上有最大值1,有最小值1312.20.解:(1)∵()f x 为奇函数,∴()()f x f x -=-,即33ax bx c ax bx c--+=---,∴0c =,又∵2'()3f x axb=+的最小值为12,∴12b =;又直线1870x y +-=的斜率为118- ,因此,'(1)318f a b =+=,∴2a =,∴2a =,12b =,0c =为所求. (2)由(1)得3()212f x x x=+,∴当x >时,2()()f x g x x =662()246x x x x =+≥⋅⋅=,∴()g x 的最小值为6.21.解:(1)方程74120x y --=可化为734y x =-. 当2x =时,12y =. 又2()bf x a x'=+, 于是1222744b a b a ⎧-=⎪⎪⎨⎪+=⎪⎩,,解得13a b =⎧⎨=⎩,故3()f x x x =-. (2)设0(,)P x y 为曲线上任一点,由231y x '=+知曲线在点0()P x y ,处的切线方程为002031()y y x x x ⎛⎫-=+- ⎪⎝⎭,即00200331()y xx x x x ⎛⎫⎛⎫--=+- ⎪ ⎪⎝⎭⎝⎭.xyOπ2π3π令0x =得06y x =-,从而得切线与直线0x =的交点坐标为060x⎛⎫- ⎪⎝⎭,. 令y x =得02y x x ==,从而得切线与直线y x =的交点坐标为0(22)x x ,. 所以点0(,)P x y 处的切线与直线0x =,y x =所围成的三角形面积为016262x x-=.故曲线()y f x =上任一点处的切线与直线x =,y x =所围成的三角形的面积为定值,此定值为6.22.解:(1)由原方程得sin (0)x kx x =≠,设函数()sin f x x=,()g x kx =(0)x ≠,它们的图象如图所示:方程得sin (0)x kx x =≠在(3,0)(0,3)-ππU 内有且仅有4个根,4x 必是函数()g x kx =与()sin f x x =在5(2,)2ππ内相切时切点的横坐标,即切点为44(,sin )x x ,()g x kx =是()sin f x x =的切线.由'()cos f x x =,∴4cos k x =,又∵44sin x kx =,于是44tan xx =.(2)由题设知23x x =-,又234,,x x x 成等差数列,得3242x x x =+,∴3413xx =.由33sin xkx =,得4411sin 33xkx =,即441sin 3sin 3xx =.由题设45(2,)2x π∈π,得425(,)336x ππ∈,∴413sin(,322x ∈,有43333sin(,322x ∈,即4333sin (,22x ∈,与4sin 1x <矛盾!故不存在常数k 使得234,,x x x 成等差数列。
人教A版高中数学选修2-2同步练习 导数的几何意义
第一章 1.1 1.1.3A 级 基础巩固一、选择题1.(2018·海市校级期末)已知函数y =f(x)的图象在点M(1,f(1))处的切线方程是y =12x +2,则f(1)+f′(1)的值等于( C )A .1B .52C .3D .0[解析] 由已知点M(1,f(1))在切线上,所以f(1)=12+2=52,切点处的导数为切线斜率,所以f′(x)=12,即f(1)+f ′(1)=3,故选C .2.曲线y =x 3+x -2在P 点处的切线平行于直线y =4x -1,则切线方程为( D ) A .y =4x B .y =4x -4 C .y =4x -8 D .y =4x 或y =4x -4[解析] y′=lim Δx→0 ΔyΔx=lim Δx→0[x +Δx3+x +Δx -2]-x 3+x -2Δx=lim Δx→0[(Δx)2+3xΔx+3x 2+1] =3x 2+1.由条件知,3x 2+1=4,∴x =±1,当x =1时,切点为(1,0),切线方程为y =4(x -1), 即y =4x -4.当x =-1时,切点为(-1,-4),切线方程为y +4=4(x +1), 即y =4x .3.已知曲线y =2x 3上一点A(1,2),则点A 处的切线斜率等于( D ) A .0 B .2 C .4D .6[解析] Δy=2(1+Δx)3-2×13=6Δx+6(Δx)2+(Δx)3,lim Δx→0Δy Δx=lim Δx→0[(Δx)2+6Δx+6]=6,故选D .4.(2018·济宁高二检测)设曲线y =ax 2在点(1,a)处的切线与直线2x -y -6=0平行,则a 等于( A )A .1B .12C .-12D .-1[解析] ∵y′|x =1=lim Δx→0 a1+Δx 2-a×12Δx=lim Δx→02aΔx+a Δx 2Δx =lim Δx→0 (2a +aΔx)=2a,∴2a =2,∴a =1.5.(2017·汉中高二检测)曲线y =13x 3-2在点⎝ ⎛⎭⎪⎫1,-53处切线的倾斜角为( B ) A .1 B .π4C .5π4D .-π4[解析] ∵y′=lim Δx→0[13x +Δx 3-2]-13x 3-2Δx=lim Δx→0[x 2+xΔx+13(Δx)2]=x 2,∴切线的斜率k =y′|x =1=1. ∴切线的倾斜角为π4,故应选B .6.设f ′(x 0)=0,则曲线y =f(x)在点(x 0,f(x 0))处的切线( B ) A .不存在 B .与x 轴平行或重合 C .与x 轴垂直D .与x 轴斜交[解析] 由导数的几何意义知B 正确,故应选B . 二、填空题7.已知f(x)=x 2+3x,则f ′(2)=7. [解析] f′(x)=lim Δx→0 x +Δx2+3x +Δx -x 2+3xΔx=lim Δx→02x +Δx+3=2x +3,∴f′(2)=7.8.曲线y =x 3在点(3,27)处的切线与两坐标轴所围成的三角形的面积为54. [解析] 因为f ′(3)=lim Δx→0 3+Δx 3-33Δx =27,所以在点(3,27)处的切线方程为y -27=27(x -3),即y =27x -54.此切线与x 轴、y 轴的交点分别为(2,0),(0,-54). 所以切线与两坐标轴围成的三角形的面积为 S =12×2×54=54. 三、解答题9.求曲线y =1x -x 上一点P ⎝⎛⎭⎪⎫4,-74处的切线方程. [解析] ∵y′=lim Δx→0⎝ ⎛⎭⎪⎫1x +Δx -1x -x +Δx-xΔx=lim Δx→0 -Δx x x +Δx -Δx x +Δx+xΔx=lim Δx→0 ⎝ ⎛⎭⎪⎫-1x x +Δx -1x +Δx+x=-1x 2-12x.∴y′|x =4=-116-14=-516,∴曲线在点P ⎝ ⎛⎭⎪⎫4,-74处的切线方程为:y +74=-516(x -4). 即5x +16y +8=0.10.已知曲线f(x)=x +1x 上一点A(2,52),用导数定义求函数f(x):(1)在点A 处的切线的斜率; (2)在点A 处的切线方程.[解析] (1)∵Δy=f(2+Δx)-f(2)=2+Δx+12+Δx -(2+12)=-Δx22+Δx +Δx ,Δy Δx =-Δx22+Δx +ΔxΔx =-122+Δx+1,∴lim Δx→0 Δy Δx =lim Δx→0[-122+Δx +1]=34,故点A 处的切线的斜率为34.(2)切线方程为y -52=34(x -2),即3x -4y +4=0.B 级 素养提升一、选择题1.(2018·开封高二检测)已知y =f(x)的图象如图,则f ′(x A )与f ′(x B )的大小关系是( B )A .f ′(x A )>f ′(xB ) B .f ′(x A )<f ′(x B )C .f ′(x A )=f ′(x B )D .不能确定[解析] 由图可知,曲线在点A 处的切线的斜率比曲线在点B 处的切线的斜率小,结合导数的几何意义知f ′(x A )<f ′(x B ),选B .2.设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处切线倾斜角的取值范围为[0,π4],则点P 横坐标的取值范围为( A )A .[-1,-12]B .[-1,0]C .[0,1]D .[12,1][解析] 考查导数的几何意义.由导数的定义可得y′=2x +2,且切线倾斜角θ∈[0,π4],∴切线的斜率k 满足0≤k≤1,即0≤2x+2≤1, ∴-1≤x≤-12.二、填空题3.如图,函数f(x)的图象是折线段ABC,其中A,B,C 的坐标分别为(0,4),(2,0),(6,4),则lim Δx→0 f1+Δx -f 1Δx=-2.[解析] 由导数的概念和几何意义知,lim Δx→0f 1+Δx -f 1Δx =f ′(1)=k AB =0-42-0=-2.4.(2018·全国卷Ⅱ理,13)曲线y =2ln(x +1)在点(0,0)处的切线方程为y =2x .[解析] ∵ y =2ln(x +1),∴ y′=2x +1.令x =0,得y′=2,由切线的几何意义得切线斜率为2,又切线过点(0,0),∴ 切线方程为y =2x .三、解答题5.(2016·天津联考)设函数f(x)=x 3+ax 2-9x -1(a<0),若曲线y =f(x)的斜率最小的切线与直线12x +y =6平行,求a 的值.[解析] ∵Δy=f(x 0+Δx)-f(x 0)=(x 0+Δx)3+a(x 0+Δx)2-9(x 0+Δx)-1-(x 30+ax 20-9x 0-1) =(3x 20+2ax 0-9)Δx+(3x 0+a)(Δx)2+(Δx)3, ∴Δy Δx=3x 20+2ax 0-9+(3x 0+a)Δx+(Δx)2. 当Δx 无限趋近于零时,Δy Δx 无限趋近于3x 20+2ax 0-9.即f ′(x 0)=3x 20+2ax 0-9, ∴f ′(x 0)=3(x 0+a 3)2-9-a23.当x 0=-a 3时,f ′(x 0)取最小值-9-a23.∵斜率最小的切线与12x +y =6平行, ∴该切线斜率为-12. ∴-9-a23=-12.解得a =±3.又a<0,∴a =-3.6.已知直线l :y =4x +a 和曲线C :y =f(x)=x 3-2x 2+3相切,求a 的值及切点坐标. [解析] 设直线l 与曲线C 相切于点P(x 0,y 0), ∵f′(x)=lim Δx→0 fx +Δx -f xΔx=lim Δx→0x +Δx3-2x +Δx 2+3-x 3-2x 2+3Δx=3x 2-4x,∴k =f′(x 0)=3x 20-4x 0. 由题意可知k =4,即3x 20-4x 0=4, 解得x 0=-23或x 0=2,∴切点的坐标为(-23,4927)或(2,3).当切点为(-23,4927)时,有4927=4×(-23)+a,解得a =12127.当切点为(2,3)时,有3=4×2+a,解得a =-5. ∴当a =12127时,切点坐标为(-23,4927);当a =-5时,切点坐标为(2,3).C 级 能力拔高已知曲线f(x)=x 2+1和g(x)=x 3+x 在其交点处两切线的夹角为θ,求cosθ.[解析] 由⎩⎪⎨⎪⎧y =x 2+1,y =x 3+x ,得x 3-x 2+x -1=0,即(x -1)(x 2+1)=0,解得x =1, 所以交点P(1,2).因为f′(1)=lim Δx→0 1+Δx 2+1-2Δx =2,所以其切线l 1的方程为y -2=2(x -1),即y =2x . 因为g′(1)=lim Δx→01+Δx3+1+Δx-1+1Δx=4,所以其切线l 2的方程为y -2=4(x -1), 即y =4x -2.取切线l 1的方向向量为a =(1,2),切线l 2的方向向量为b =(1,4), 则cosθ=a·b |a||b|=95×17=985=98585.。
高中数学人教A选修2-2导数及其应用一测试题
《数学选修2-2》导数及其应用(一)第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是最符合题目要求的.)1.若函数 在区间 内可导,且 则 的值为( ) A.0()f x ' B.02()f x ' C.02()f x '- D.02.一个物体的运动方程为 其中 的单位是米, 的单位是秒,那么物体在 秒末的瞬时速度是( )A.7米/秒B.6米/秒C.5米/秒D.8米/秒 3.曲线 在点 处的切线倾斜角为( )A.34π B.2π C.4π D.6π 4.曲线 在 处的切线平行于直线 ,则 点的坐标为( )A.(1,0)B.(2,8)C.(2,8)和(1,4)--D.(1,0)和(1,4)-- 5.若 ,则 等于( )A.cos αB.sin αC.sin cos αα+D.2sin α 6.若曲线 的一条切线 与直线 垂直,则 的方程为( )A.430x y --=B.450x y +-=C.430x y -+=D.430x y ++= 7、对正整数n ,设曲线)1(x x y n -=在2x =处的切线与y 轴交点的纵坐标为n a ,则 数列1n a n ⎧⎫⎨⎬+⎩⎭的前n 项和的公式是( ) A.2n B.22n - C.12n + D.122n +-8、已知32()967,f x ax x x =++-若(1)4f '-=,则a 的值等于( ) A.193 B.163 C.103 D.1339、二次函数()y f x =的图象过原点,且它的导函数()y f x '=的图象过第一、二、三象限的一条直线,则函数()y f x =的图象的顶点所在象限是( )A.第一B.第二C.第三D.第四10、已知函数)(x f y =的图象在点M (1,f (1))处的切线方程是x y 21=+2,则(1)(1)f f '+的值等于( )A.1B.52C.3D.0 11.下列式子不正确的是( )A.()23cos 6cos sin x x x x x x x '+=+- B.23112ln x x x x '⎛⎫-=- ⎪⎝⎭C.............D.12.设 ,函数 的导函数是 ,且 是奇函数.若曲线 的一条切线的斜率是 ,则切点的横坐标为 ( )A.ln 2B.ln 2-C.ln 22D.ln 22-第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中的横线上.)13.已知函数 的图象上的一点 及临近一点)2,1(y x B ∆+-∆+-则=∆∆xy. 14.曲线 在点(1,一3)处的切线方程是___________15、在平面直角坐标系 中,点P 在曲线 上,且在第二象限内,已知曲线C 在点P 处的切线的斜率为2,则点P 的坐标... .16.已知函数 是定义在R 上的奇函数, , ,则不等式 的解集是 .三、解答题(本大题共6小题,共74分,解答应写出必要的文字说明、证明过程及演算步骤.)17、(12分)已知函数))(2ln(2)(2R a x ax x f ∈-+=,设曲线)(x f y =在点))1(,1(f 处的切线为l ,若l 与圆41:22=+y x C 相切,求a 的值.18、(12分)设函数())(0)f x ϕϕπ=+<<,且()()f x f x '+为奇函数. (1)求ϕ的值;(2)求()'()f x f x +的最值.19、(12分)已知a ∈R ,函数2()()f x x x a =-,若(1)1f '=.(1)求a 的值并求曲线()y f x =在点(1,(1))f 处的切线方程()y g x =;(2)设()()()h x f x g x '=+,求()h x 在[0,1]上的最大值与最小值.20、(12分)设函数3()f x ax bx c =++(0)a ≠为奇函数,其图象在点(1,(1))f 处的切线与直线1870x y +-=垂直,导函数'()f x 的最小值为12.(1)求a ,b ,c 的值; (2)设2()()f x g x x =,当0x >时,求()g x 的最小值.21.(12分)设函数()bf x ax x=-,曲线()y f x =在点(2,(2))f 处的切线方程为74120x y --=. (1)求()f x 的解析式;(2)证明:曲线()y f x =上任一点处的切线与直线0x =和直线y x =所围成的三角形面积为定值,并求此定值.22.(14分)已知关于x 的方程sin ((0,1))xk k x=∈在(3,0)(0,3)-ππ内有且仅有4个根,从小到大依次为1234,,,x x x x .(1)求证:44tan x x =;(2)是否存在常数k ,使得234,,x x x 成等差数列?若存在求出k 的值,否则说明理由.参考答案1.B 000000()()()()limlim 2[]2h h f x h f x h f x h f x h h h →→+--+--=0000()()2lim 2()2h f x h f x h f x h→+--'==.2.C ()21,(3)2315s t t s ''=-=⨯-=.3.A 21334,|1,tan 1,4x y x k y αα=''=-==-=-=π. 4.D 设切点为0(,)P a b ,22()31,()314,1f x x k f a a a ''=+==+==±,把1a =-, 代入到3()2f x x x 得4b =-;把1a =,代入到3()2f x x x 得0b =,所以0(1,0)P 和(1,4)--.5.B ()sin ,()sin f x x f αα''==.6.A 与直线480x y +-=垂直的直线l 为40x y m -+=,即4y x =在某一点的导数为4,而34y x '=,所以4y x =在(1,1)处导数为4,此点的切线为430x y --=.7.D ()()11222,:222(2)n n n x y n y n x --='=-++=-+-切线方程为,令0x =,求出切线与y 轴交点的纵坐标为()012ny n =+,所以21n n a n =+,则数列1n a n ⎧⎫⎨⎬+⎩⎭的前n 项和()12122212n n n S +-==--8.B2()3186f x ax x '=++,由(1)4,f '-=得31864a -+=,即163a =. 9.C 设2(),()2f x ax bx f x ax b '=+=+,()f x '的图象是过第一、二、三象限的一条直线,故20,0a b >>,又22()24b b f x a x a a ⎛⎫=+- ⎪⎝⎭,即项点2,24b b a a ⎛⎫-- ⎪⎝⎭在第三象限. 10.C 由已知切点在切线上,所以f (1)=25221=+,切点处的导数为切线斜率,所以1(1)2f '=,所以(1)(1)f f '+=311.D 2sin cos sin x x x xx x '-⎛⎫= ⎪⎝⎭12.A '()x xf x e ae-=-,()f x '是奇函数'(0)10f a =-=,∴1a =,有'()x xf x e e-=-,设切点为00(,)x y ,则0003'()2xx f x e e -=-=,得02x e =或012xe =-(舍去),∴0ln 2x =. 13.3x -∆22(1)(1)y x x -+∆=--+∆+-+∆∴x xx x x y ∆-=∆-∆+-+∆+--=∆∆32)1()1(2 14.520x y +-= 易判断点(1,-3)在曲线32242y x x x =--+上,故切线的斜率()211|344|5x x k y x x =='==--=-,∴切线方程为()351y x +=--,即520x y +-=15.(-2,15) 231022y x x '=-=⇒=±,又点P 在第二象限内,∴2x =-,得点P 的坐标为(-2,15)16.),1()0,1(+∞- 可得()'()f x f x x>,由导数的定义得,当01x <<时, ()(1)()1f x f f x x x->-,又0)1(=f ,()(1)()xf x x f x <-,∴()0f x <;当1x >时, 同理得()0f x <.又)(x f 是奇函数,画出它的图象得()0f x >⇒(1,0)(1,)x ∈-+∞.17.解:依题意有:)2(222)(,)1(<-+='=x x ax x f a f , l ∴的方程为02)1(2=-+--a y x a l 与圆相切,811211)1(4|2|2=⇒=+--∴a a a ∴a 的值为118.18.解:(1)()'()f x f x +))ϕϕ=+-+5)6πϕ=++, 又0ϕ<<π,()'()f x f x +是奇函数,∴=ϕ6π.(2)由(1)得()'()f x f x +)=+π=-. ∴()'()f x f x +的最大值为2,最小值为2-.19、解:(1)2()32f x x ax '=-,由(1)1f '=得321a -=,所以1a =; 当1a =时,32()f x x x =-,(1)0f =,又(1)1f '=,所以曲线()y f x =在(1,(1))f 处的切线方程为01(1)y x -=⨯-,即()1g x x =-;(2)由(1)得22113()313()612h x x x x =--=--, 又(0)1h =-,(1)1h =,113()612h =-, ∴()h x 在[0,1]上有最大值1,有最小值1312. 20.解:(1)∵()f x 为奇函数,∴()()f x f x -=-,即33ax bx c ax bx c --+=---, ∴0c =,又∵2'()3f x ax b =+的最小值为12,∴12b =;又直线1870x y +-=的斜率为118- ,因此,'(1)318f a b =+=, ∴2a =, ∴2a =,12b =,0c =为所求.(2)由(1)得3()212f x x x =+,∴当0x >时,2()()f x g x x=62()2x x =+≥⋅=,∴()g x的最小值为.21.解:(1)方程74120x y --=可化为734y x =-. 当 时, .又 , 于是 解得.,故 .(2)设00(,)P x y 为曲线上任一点,由231y x'=+知曲线在点00()P x y ,处的切线方程为 002031()y y x x x ⎛⎫-=+- ⎪⎝⎭,即00200331()y x x x x x ⎛⎫⎛⎫--=+- ⎪ ⎪⎝⎭⎝⎭.令0x =得06y x =-,从而得切线与直线0x =的交点坐标为060x ⎛⎫- ⎪⎝⎭,. 令y x =得02y x x ==,从而得切线与直线y x =的交点坐标为00(22)x x ,. 所以点00(,)P x y 处的切线与直线0x =,y x =所围成的三角形面积为016262x x-=. 故曲线()y f x =上任一点处的切线与直线0x =,y x =所围成的三角形的面积为定值,此定值为6.22.解:(1)由原方程得sin (0)x kx x =≠,设函数()sin f x x =,()g x kx =(0)x ≠,它们的图象如图所示:方程得sin (0)x kx x =≠在(3,0)(0,3)-ππ内有且仅有4个根,4x 必是函数()g x kx =与()sin f x x =在5(2,)2ππ内相切时切点的横坐标,即切点为44(,sin )x x ,()g x kx =是()sin f x x =的切线. 由 ,∴ ,又∵ ,于是 .(2)由题设知23x x =-,又234,,x x x 成等差数列,得3242x x x =+,∴3413x x =. 由33sin x kx =,得4411sin 33x kx =,即441sin 3sin 3x x =. 由题设45(2,)2x π∈π,得425(,)336x ππ∈,∴41sin(,322x ∈,有433sin (,322x ∈,即43sin (,)22x ∈,与4sin 1x <矛盾! 故不存在常数k 使得234,,x x x 成等差数列。
人教A版选修2-2导数练习2.docx
山东省临沂一中周末自主小练习导数练习二1.若函数f (x )在区间(a ,b )内函数的导数为正,且f (b )≤0,则函数f(x )在(a ,b )内有( )(A )()0f x > (B )()0f x < (C )()0f x = (D )无法确定 2.已知()sin f x x =,则()'1f =( )(A )31+cos1 (B )31sin1+cos1 (C )31sin1-cos1 (D )sin1+cos1 3.已知函数3)1(3)1(3)(23+++-+=x m x m x x f 既有极大值,又有极小值,则m 的取值范围是( )(A )03<>m m 或 (B )03≤≥m m 或 (C )3>m (D )0<m4.设f 0(x )=sinx ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n +1(x )=f n ′(x ),n ∈N ,则f 2005(x )=( )(A )sin x (B )-sin x (C )cos x (D)-5.已知函数ƒ(x )=ax 3+bx 2+cx 的图象如右图所示,则有(A )a >0 ,c <0 (B )a >0,c >0 (C )a <0,c <0 (D )a <0,c 6.函数ey -= ( ) 72+68=t 249.求证:若0x >,则ln(1)1x x x+>+; 10.已知a 为实数,))(4()(2a x x x f --=。
⑴求导数)(x f ';⑵若0)1(=-'f ,求)(x f 在[-2,2] 上的最大值和最小值; ⑶若)(x f 在(-∞,-2]和[2,+∞)上都是递增的,求a 的取值范围。
11.(14分)如图,把边长为a 的正六边形纸板剪去相同的六个角,做成一个底面为正六边形的无盖六棱柱盒子,设高为h 所做成的盒子体积V(不计接缝). (1)写出体积V 与高h 的函数关系式;(2)当h a 为多少时,体积V 最大,最大值是多少?(C) (A) (B) 27.3x -y -11=0;8.1251610.解:⑴由原式得,44)(23a x ax x x f +--=∴.423)(2--='ax x x f⑵由0)1(=-'f 得21=a ,此时有43)(),21)(4()(22--='--=x x x f x x x f . 由0)1(=-'f 得34=x 或x=-1 , 又,0)2(,0)2(,29)1(,2750)34(==-=--=f f f f所以f(x)在[-2,2]上的最大值为,29最小值为.2750-⑶解法一:423)(2--='ax x x f 的图象为开口向上且过点(0,-4)的抛物线,由条件得,0)2(,0)2(≥'≥-'f f 即{480840aa +≥-≥ ∴-2≤a ≤2. 所以a 的取值范围为[-2,2].解法二:令0)(='x f 即,04232=--ax x 由求根公式得:1,212)3a x x x =<所以.423)(2--='ax x x f 在(]1,x ∞-和[)+∞,2x 上非负. 由题意可知,当x ≤-2或x ≥2时, )(x f '≥0, 从而x 1≥-2, x 2≤2,即⎪⎩⎪⎨⎧+≤+-≤+6122.6122a a a a 解不等式组得-2≤a ≤2.∴a 的取值范围是[-2,2]. 11.解:(1)六棱柱的底边长(h a 332-)cm , 底面积为(2332436⎪⎪⎭⎫ ⎝⎛-⋅h a )cm 2 ∴体积V =h h a ⋅⎪⎪⎭⎫ ⎝⎛-233223 =⎪⎭⎫ ⎝⎛+-h a ah h 223433332 (2)V ′=0433*******=⎪⎭⎫⎝⎛+-a ah h 得a h 63=或a h 23=(舍去)∴当a h 63 cm 时V 有最大值33a cm 3。
人教A版选修2-2《导数及其应用》训练题
《导数及其应用》训练题一、选择题(每小题5分,共50分)1.设函数()y f x =可导,则0(1)(1)lim 3x f x f x ∆→+∆-∆等于().A .'(1)fB .3'(1)fC .1'(1)3f D .以上都不对2.已知物体的运动方程是43214164S t t t =-+(t 表示时间,S 表示位移),则瞬时速度为0的时刻是().A .0秒、2秒或4秒B .0秒、2秒或16秒C .2秒、8秒或16秒D .0秒、4秒或8秒3.若曲线21y x =-与31y x =-在0x x =处的切线互相垂直,则0x 等于().A.6B.C .23D .23或04.若点P在曲线3233(34y x x x =-++上移动,经过点P 的切线的倾斜角为α,则角α的取值范围是().A .[0,]πB .2[0,)[,)23πππU C .2[,)3ππD .2[0,)(,)223πππU 5.设'()f x 是函数()f x 的导数,'(y f x =()y f x =的图像最有可 能的是().'()f x6.函数3()2fx x ax =+-在区间[1,)+∞内是增函数,则实数a 的取值范围是().A .[3,)+∞B .[3,)-+∞C .(3,)-+∞D .(,3)-∞-7.已知函数32()f x x px qx =--的图像与x 轴切于点(1,0),则()f x 的极大值、极小值分别为().A .427,0B .0,427C .427-,0D .0,427- 8.由直线21=x ,2=x ,曲线xy 1=及x 轴所围图形的面积是().A.415B.417C.2ln 21 D.2ln2 9.函数3()33f x x bx b =-+在(0,1)内有极小值,则().A .01b <<B .1b <C .0b >D .12b <10.21y ax =+的图像与直线y x =相切,则a 的值为().A .18B .14C .12D .1 二、填空题(每小题5分,共20分)11.由定积分的几何意义可知⎰--2224x =___________.12.函数)0(ln )(>=x x x x f 的单调递增区间是 .13.已知函数()ln f x ax x =-,若()1f x >在区间(1,)+∞内恒成立,则实数a 的范围为_______________.14.设函数()mf x x ax =+的导数为'()21f x x =+,则数列*1{}()()n f n ∈N 的前n 项和是______________.三、解答题(共6题,共80分)15.(本题12分) 求经过点(2,0)且与曲线1y x=相切的直线方程. C D16.(本题12分)已知1x >,求证:ln(1)x x >+.17.(本题14分)已知函数32()39f x x x x a =-+++,(Ⅰ)求()f x 的单调递减区间;(Ⅱ)若()f x 在区间[2,2]-上的最大值为20,求它在该区间上的最小值.18.(本题14分)已知函数432()41f x x x ax =-+-在区间[0,1]上单调递增,在区间[1,2]上单调递减,(Ⅰ)求a 的值;(Ⅱ)设2()1g x bx =-,若方程()()f x g x =的解集恰有3个元素,求b 的取值范围.19.(本题14分)某商品每件成本9元,售价30元,每星期卖出432件.如果降低价格。
人教A版选修 2-2 导数的计算 课时作业
人教A 版选修2-2 导数的计算 课时作业1.(福建省宁德市一中2018-2019学年期中)函数()()22sin f x ex x =+的导数是( ) A .()'4cos f x ex x =+ B .()'4cos f x ex x =-C .()2'8cos f x e x x =+D .()2'8cos f x e x x =-【答案】C【解析】根据题意,()()2222sin 4sin f x ex x e x x =+=+, 其导数()()()222'4'sin '8cos f x e x x e x x =+=+, 故选C 。
2.(甘肃省武威第一中学2018-2019学年月考)函数()ln f x x x =在点1x =处的切线斜率为( ) A .-1 B .0C .1D .2【答案】C【解析】函数()ln f x x x =,求导得()ln 1f x x ='+.所以()11f '=,即函数()ln f x x x =在点1x =处的切线斜率为1,故选C 。
3.(江西省临川第一中学2018-2019学年月考)直线1y kx =+与曲线3y x ax b =++相切于点()13A ,,则k 的值等于( )A .2B .1-C .1D .2-【答案】A【解析】因为直线1y kx =+与曲线3y x ax b =++相切于点(1,3)A ,所以直线1y kx =+经过点(1,3)A ,312k k ∴=+⇒=,故本题选A 。
4.(贵州省铜仁市第一中学2018-2019学年期中)曲线ln y x =在点A 处的切线与直线10x y -+=平行,则点A 的坐标为( )A .1e (,)B .10(,)C .1(,1)e- D .2(,2)e【答案】B【解析】设A 点的坐标为00(,ln )x x ,0011ln x x y x y k y xx ==⇒='⇒='=,由题意可知,切线与直线10x y -+=平行,所以00111x x =⇒=,所以点A 的坐标为(1,0),故本题选B 。
人教A版选修2-2高二数学测试(2-2,导数及其应用)
高中数学学习材料金戈铁骑整理制作东至三中2007-2008学年度高二数学单元试题(1)(选修2-2)导数及其应用测试题得分一、选择题(共12小题,每小题5分,共60分)1. 已知函数f (x )=ax 2+c ,且(1)f '=2,则a 的值为 A.1 B.2 C.-1 D. 0 【 】2. 已知函数()f x 在1x =处的导数为3,则()f x 的解析式可能为 【 】 A .(x-1)3+3(x-1) B .2(x-1)2C .2(x-1)D .x-1 3. 已知函数()f x 在1x =处的导数为1,则(1)(1)3limx f x f x x→--+= 【 】A .3B .23-C . 13D .32- 4.已知对任意实数x ,有()()f x f x -=-,()()g x g x -=,且0x >时,()0f x '>,()0g x '>,则0x <时 【 】A.()0f x '>,()0g x '> B.()0f x '>,()0g x '< C.()0f x '<,()0g x '> D.()0f x '<,()0g x '<5.函数)0,4(2cos π在点x y =处的切线方程是 【 】A .024=++πy xB .024=+-πy xC .024=--πy xD .024=-+πy x6. 设)(,)(3bx a f x x f -=的导数是 【 】 A )(3bx a - B 2)(32bx a b -- C 2)(3bx a b - D 2)(3bx a b -- 7.一质点做直线运动,由始点起经过ts 后的距离为s=41t 4-4t 3+16t 2,则速度为零的时刻是 A. 4s 末 B.8s 末 C.0s 与8s 末 D.0s,4s,8s 末 【 】8.函数313y x x =+- 有 【 】A.极小值-1,极大值1B. 极小值-2,极大值3C.极小值-1,极大值3D. 极小值-2,极大值29. 点P 在曲线323+-=x x y 上移动时,过点P 的切线的倾斜角的取值范围是 【 】 A ],0[π B ),43[)2,0(πππ⋃ C ]43,2[]2,0[πππ⋃ D ),43[]2,0[πππ⋃10.函数12)(2++=ax ax x f 在[-3,2]上有最大值4。
人教A版选修2-2高二选修2-2测试题(导数及其简单应用).docx
马鸣风萧萧高中数学学习材料马鸣风萧萧*整理制作高二选修2-2测试题(导数及其简单应用)一、选择题(本大题共有10小题,每小题5,共50分)2.若函数f(x)=2x 2+1,图象上P(1,3)及邻近上点Q(1+Δx,3+Δy), 则xy∆∆=( ) A 4 B 4Δx C 4+2Δx D 2Δx 3.若()()()kx f k x f x f k 2lim,20000--='→则的值为( )A .-2 B. 2 C.-1 D. 14、曲线y=x 3+x-2在点P 0处的切线平行于直线y=4x ,则点P 0的坐标是( ) A .(0,1) B.(1,0) C.(-1,-4)或(1,0) D.(-1,-4) 5.函数y=2x 3-3x 2-12x+5在[0,3]上的最大值与最小值分别是( ) A .5 , -15 B.5 , 4 C.-4 , -15 D.5 , -16 6.设y=x-lnx ,则此函数在区间(0,1)内为( )A .单调递增,B 、有增有减C 、单调递减,D 、不确定 9. 抛物线y =(1-2x)2在点x =32处的切线方程为( ) A. y =0 B .8x -y -8=0 C . x =1 D . y =0或者8x -y -8=010.函数()12ln 2+=x y 的导数是( ) A.1242+x x B. 1212+xC.()10ln 1242+x x D. ()ex x22log 124+二、填空题(每小题5分,共20分)11.若f(x)=x 3+3ax 2+3(a +2)x +1有极大值和极小值,则a 的取值范围是_________12.若函数a x x y +-=2323在[-1,1]上有最大值3,则该函数在[-1,1]上的最小值是______________三、解答题:本大题6小题,共80分,解答写出文字说明、证明过程或演算步骤)。
17. (本题满分14分)已知函数f(x)=4x 3+ax 2+bx +5在x=-1与x=32处有极值。
人教A版高中数学选修2-2同步练习 函数的极值与导数
第一章 1.3 1.3.2A 级 基础巩固一、选择题1.已知函数y =f(x)在定义域内可导,则函数y =f(x)在某点处的导数值为0是函数y =f(x)在这点处取得极值的( B )A .充分不必要条件B .必要不充分条件C .充要条件D .非充分非必要条件[解析] 根据导数的性质可知,若函数y =f(x)在这点处取得极值,则f ′(x)=0,即必要性成立;反之不一定成立,如函数f(x)=x 3在R 上是增函数,f ′(x)=3x 2,则f ′(0)=0,但在x =0处函数不是极值,即充分性不成立.故函数y =f(x)在某点处的导数值为0是函数y =f(x)在这点处取得极值的必要不充分条件,故选B . 2.函数y =2x 3-6x 2-18x +7( A )A .在x =-1处取得极大值17,在x =3处取得极小值-47B .在x =-1处取得极小值17,在x =3处取得极大值-47C .在x =-1处取得极小值-17,在x =3处取得极大值47D .以上都不对[解析] y′=6x 2-12x -18,令y′=0,解得x 1=-1,x 2=3.当x 变化时,f ′(x),f(x)的变化情况见下表:x (-∞,-1)-1 (-1,3) 3 (3,+∞) f ′(x) + 0 - 0 +f(x)极大值极小值3.函数y =14x 4-13x 3的极值点的个数为( B )A .0B .1C .2D .3[解析] y′=x 3-x 2=x 2(x -1),由y′=0得x 1=0,x 2=1. 当x 变化时,y′、y 的变化情况如下表x (-∞,0) 0 (0,1) 1 (1,+∞) y′ - 0 - 0 +y无极值极小值故选B .4.已知实数a 、b 、c 、d 成等比数列,且曲线y =3x -x 3的极大值点坐标为(b,c),则ad 等于( A ) A .2 B .1 C .-1D .-2[解析] ∵a 、b 、c 、d 成等比数列,∴ad =bc, 又(b,c)为函数y =3x -x 3的极大值点, ∴c =3b -b 3,且0=3-3b 2,∴⎩⎪⎨⎪⎧b =1,c =2,或⎩⎪⎨⎪⎧b =-1,c =-2.∴ad =2.5.已知f(x)=x 3+ax 2+(a +6)x +1有极大值和极小值,则a 的取值范围是( C ) A .-1<a<2 B .-3<a<6 C .a<-3或a>6D .a<-1或a>2[解析] f ′(x)=3x 2+2ax +a +6, ∵f(x)有极大值与极小值, ∴f ′(x)=0有两不等实根,∴Δ=4a 2-12(a +6)>0,∴a<-3或a>6.6.(2018·全国卷Ⅲ理,7)函数y =-x 4+x 2+2的图象大致为( D )ABCD[解析] f′(x)=-4x 3+2x,则f′(x)>0的解集为-∞,-22∪0,22,f(x)单调递增;f′(x)<0的解集为-22,0∪22,+∞,f(x)单调递减. 故选D . 二、填空题7.函数y =xe x在其极值点处的切线方程为y =-1e.[解析] y =f(x)=xe x ⇒f ′(x)=(1+x)e x,令f ′(x)=0⇒x =-1,此时f(-1)=-1e ,函数y =xe x在其极值点处的切线方程为y =-1e.8.若函数f(x)=x 3-2mx 2+m 2x 在x =1处取得极小值,则实数m =1. [解析] ∵f ′(x)=(3x -m)(x -m) 由题意得:f ′(1)=(3-m)(1-m)=0 ∴m =3或m =1.经检验知,当m =3时,在x =1处取得极大值. 当m =1时,在x =1处取得极小值.∴m =1. 三、解答题9.(2018·天津文,20)设函数f(x)=(x -t 1)(x -t 2)(x -t 3),其中t 1,t 2,t 3∈R,且t 1,t 2,t 3是公差为d 的等差数列.(1)若t 2=0,d =1,求曲线y =f(x)在点(0,f(0))处的切线方程; (2)若d =3,求f(x)的极值.[解析] (1)由已知,可得f(x)=x(x -1)(x +1)=x 3-x,故f′(x)=3x 2-1.因此f(0)=0,f′(0)=-1.又因为曲线y =f(x)在点(0,f(0))处的切线方程为y -f(0)=f′(0)(x-0),故所求切线方程为x +y =0.(2)由已知可得f(x)=(x -t 2+3)(x -t 2)(x -t 2-3)=(x -t 2)3-9(x -t 2)=x 3-3t 2x 2+(3t 22-9)x -t 32+9t 2. 故f′(x)=3x 2-6t 2x +3t 22-9.令f′(x)=0,解得x =t 2-3或x =t 2+3. 当x 变化时,f′(x),f(x)的变化情况如下表:函数f(x)的极小值为f(t 2+3)=(3)3-9×3=-63. 10.(2018·北京文,19)设函数f(x)=[ax 2-(3a +1)x +3a +2]e x. (1)若曲线y =f(x)在点(2,f(2))处的切线斜率为0,求a ; (2)若f(x)在x =1处取得极小值,求a 的取值范围. [解析] (1)解:因为f(x)=[ax 2-(3a +1)x +3a +2]e x, 所以f′(x)=[ax 2-(a +1)x +1]e x , f′(2)=(2a -1)e 2.由题设知f′(2)=0,即(2a -1)e 2=0,解得a =12.(2)解:由(1)得f′(x)=[ax 2-(a +1)x +1]e x=(ax -1)(x -1)e x.若a>1,则当x ∈1a ,1时,f′(x)<0;当x ∈(1,+∞)时,f′(x)>0. 所以f(x)在x =1处取得极小值. 若a≤1,则当x ∈(0,1)时,ax -1≤x-1<0, 所以f′(x)>0.所以1不是f(x)的极小值点. 综上可知,a 的取值范围是(1,+∞).B 级 素养提升一、选择题1.(2018·杭州二模)已知a >0且a≠1,则函数f(x)=(x -a)2lnx( C ) A .有极大值,无极小值 B .有极小值,无极大值 C .既有极大值,又有极小值 D .既无极大值,又无极小值[解析] ∵a >0 且 a≠1,函数 f (x)=(x -a)2lnx,∴f′(x)=2(x -a)lnx +x -a2x=(x -a)(2lnx +1-ax),由f′(x)=0,得x =a 或2lnx +1-ax =0,由方程2lnx +1-ax=0,作出g(x)=2lnx +1和h(x)=-ax的图象,结合图象得g(x)=2lnx +1和h(x)=-ax的图象有交点,∴方程2lnx +1-ax=0有解,由此根据函数的单调性和极值的关系得到: 函数f (x)=(x -a)2lnx 既有极大值,又有极小值. 故选C .2.对于三次函数f(x)=ax 3+bx 2+cx +d(a≠0),给出定义:设f ′(x)是函数y =f(x)的导数,f″(x)是f ′(x)的导数,若方程f″(x)=0有实数解x 0,则称点(x 0,f(x 0))为函数y =f(x)的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数g(x)=13x 3-12x 2+3x -512,则g(12017)+g(22017)+…+g(20162017)=( B )A .2015B .2016C .2017D .2018[解析] 函数的导数g′(x)=x 2-x +3, g″(x)=2x -1,由g″(x 0)=0得2x 0-1=0,解得x 0=12,而g(12)=1,故函数g(x)关于点(12,1)对称,∴g(x)+g(1-x)=2,故设g(12017)+g(22017)+…+g(20162017)=m,则g(20162017)+g(20152017)+…+g(12017)=m,两式相加得2×2016=2m,则m =2016.故选B . 二、填空题3.(2018·广西二模)若函数f(x)=x 3-3x 2-a(a≠0)只有2个零点,则a =0或-4. [解析] f(x)=f(x)=x 3-3x 2-a则f′(x)=3x 2-6x,令3x 2-6x =0,可得x =0或x =2,即函数有两个极值点, 函数f(x)=x 3-3x 2-a(a≠0)只有2个零点, 由f(0)=-a =0得a =0,由f(2)=8-12-a =0得a =-4,综上a =0或-4时,f(x)有且只有2个零点. 故答案为0或-4.4.(2018·全国一模)已知函数f(x)=xlnx +12x 2,x 0是函数f(x)的极值点,给出以下几个命题:①0<x 0<1e ;②x 0>1e ;③f(x 0)+x 0<0;④f(x 0)+x 0>0;其中正确的命题是①③.(填出所有正确命题的序号) [解析] ∵函数f(x)=xlnx +12x 2,(x >0)∴f′(x)=lnx +1+x,易得f′(x)=lnx +1+x 在(0,+∞)递增, ∴f′(1e )=1e >0,∵x→0,f′(x)→-∞,∴0<x 0<1e ,即①正确,②不正确;∵lnx 0+1+x 0=0∴f(x 0)+x 0=x 0lnx 0+12x 20+x 0=x 0(lnx 0+12x 0+1)=-12x 20<0,即③正确,④不正确.故答案为①③. 三、解答题5.(2018·保定二模)已知函数f(x)=alnx -bexx (a,b ∈R 且a≠0,e 为自然对数的底数).若曲线f(x)在点(e,f(e))处的切线斜率为0,且f(x)有极小值,求实数a 的取值范围.[解析] f(x)=alnx +be xx ,(x >0),求导f′(x)=a1-lnx -bexx -1x2,由f′(e)=0,则b =0,则f′(x)=a1-lnxx2, 当a >0时,f′(x)在(0,e)内大于0,在(e,+∞)内小于0, ∴f(x)在(0,e)内为增函数,在(e,+∞)为减函数, ∴f(x)有极大值无极小值;当a <0时,f(x)在(0,e)为减函数,在(e,+∞)为增函数, ∴f(x)有极小值无极大值; ∴实数a 的取值范围(-∞,0).6.(2018·全国卷Ⅲ理,21)已知函数f(x)=(2+x +ax 2)ln(1+x)-2x . (1)若a =0,证明:当-1<x <0时,f(x)<0;当x >0时,f(x)>0; (2)若x =0是f(x)的极大值点,求a .[解析] (1)证明:当a =0时,f(x)=(2+x)ln(1+x)-2x, f′(x)=ln(1+x)-x1+x. 设函数g(x)=f′(x)=ln(1+x)-x1+x,则g′(x)=x 1+x2.当-1<x <0时,g′(x)<0;当x >0时,g′(x)>0,故当x >-1时,g(x)≥g(0)=0,且仅当x =0时,g(x)=0,从而f′(x)≥0,且仅当x =0时,f′(x)=0.所以f(x)在(-1,+∞)单调递增.又f(0)=0,故当-1<x <0时,f(x)<0;当x >0时,f(x)>0. (2)解:(ⅰ)若a≥0,由(1)知,当x >0时,f(x)≥(2+x)ln(1+x)-2x >0=f(0), 这与x =0是f(x)的极大值点矛盾. (ⅱ)若a <0, 设函数h(x)=f x 2+x +ax 2=ln(1+x)-2x2+x +ax2.由于当|x|<min ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1,1|a|时,2+x +ax 2>0, 故h(x)与f(x)符号相同.又h(0)=f(0)=0,故x =0是f(x)的极大值点, 当且仅当x =0是h(x)的极大值点.h′(x)=11+x -22+x +ax 2-2x 1+2ax2+x +ax22=x2a 2x 2+4ax +6a +1x +1ax 2+x +22.若6a +1>0,则当0<x <-6a +14a ,且|x|<min ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1,1|a|时,h′(x)>0,故x =0不是h(x)的极大值点.若6a +1<0,则a 2x 2+4ax +6a +1=0存在根x 1<0, 故当x ∈(x 1,0),且|x|<min ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1,1|a|时,h′(x)<0, 所以x =0不是h(x)的极大值点. 若6a +1=0,则h′(x)=x3x -24x +1x 2-6x -122,则当x ∈(-1,0)时,h′(x)>0;当x ∈(0,1)时,h′(x)<0. 所以x =0是h(x)的极大值点,从而x =0是f(x)的极大值点. 综上,a =-16.C 级 能力拔高设函数f(x)=x 3-92x 2+6x -a .(1)对于任意实数x, f′(x)≥m 恒成立,求m 的最大值; (2)若方程f(x)=0有且仅有一个实根,求a 的取值范围. [解析] (1)f′(x)=3x 2-9x +6=3(x -1)(x -2),由题意可知当x ∈(-∞,+∞)时,f′(x)≥m 恒成立,即3x 2-9x +(6-m)≥0恒成立,所以Δ=81-12(6-m)≤0,解得m≤-34,即m 的最大值为-34.(2)因为当x<1时,f′(x)>0;当1<x<2时,f′(x)<0; 当x>2时,f′(x)>0,所以当x =1时,f(x)取极大值f(1)=52-a ;当x =2时,f(x)取极小值f(2)=2-a .故当f(2)>0或f(1)<0时,f(x)=0仅有一个实根, 解得a<2或a>52.。
人教A版选修2-2导数练习题.docx
导数练习题1.(本题满分12分)已知函数d x b a c bx ax x f +--++=)23()(23的图象如图所示.(I )求d c ,的值;(II )若函数)(x f 在2=x 处的切线方程为0113=-+y x ,求函数)(x f 的解析式;(III )在(II )的条件下,函数)(x f y =与mx x f y ++'=5)(31的图象有三个不同的交点,求m 的取值范围. 2.(本小题满分12分)已知函数)(3ln )(R a ax x a x f ∈--=. (I )求函数)(x f 的单调区间;(II )函数)(x f 的图象的在4=x 处切线的斜率为,23若函数]2)('[31)(23mx f x x x g ++=在区间(1,3)上不是单调函数,求m 的取值范围.3.(本小题满分14分)已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值. (I )求实数a 的取值范围;(II )若方程9)32()(2+-=a x f 恰好有两个不同的根,求)(x f 的解析式;(III )对于(II )中的函数)(x f ,对任意R ∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f .4.(本小题满分12分)已知常数0>a ,e 为自然对数的底数,函数x e x f x -=)(,x a x x g ln )(2-=. (I )写出)(x f 的单调递增区间,并证明a e a >; (II )讨论函数)(x g y =在区间),1(a e 上零点的个数.5.(本小题满分14分)已知函数()ln(1)(1)1f x x k x =---+.(I )当1k =时,求函数()f x 的最大值;(II )若函数()f x 没有零点,求实数k 的取值范围; 6.(本小题满分12分)已知2x =是函数2()(23)x f x x ax a e =+--的一个极值点(⋅⋅⋅=718.2e ). (I )求实数a 的值;(II )求函数()f x 在]3,23[∈x 的最大值和最小值.7.(本小题满分14分)已知函数)0,(,ln )2(4)(2≠∈-+-=a R a x a x x x f (I )当a=18时,求函数)(x f 的单调区间; (II )求函数)(x f 在区间],[2e e 上的最小值. 8.(本小题满分12分)已知函数()(6)ln f x x x a x =-+在(2,)x ∈+∞上不具有...单调性. (I )求实数a 的取值范围;(II )若()f x '是()f x 的导函数,设22()()6g x f x x '=+-,试证明:对任意两个不相等正数12x x 、,不等式121238|()()|||27g x g x x x ->-恒成立. 9.(本小题满分12分)已知函数.1,ln )1(21)(2>-+-=a x a ax x x f(I )讨论函数)(x f 的单调性;(II )证明:若.1)()(,),,0(,,521212121->--≠+∞∈<x x x f x f x x x x a 有则对任意10.(本小题满分14分)已知函数21()ln ,()(1),12f x x a xg x a x a =+=+≠-.(I )若函数(),()f x g x 在区间[1,3]上都是单调函数且它们的单调性相同,求实数a 的取值范围;(II )若(1,]( 2.71828)a e e ∈=,设()()()F x f x g x =-,求证:当12,[1,]x x a ∈时,不等式12|()()|1F x F x -<成立. 11.(本小题满分12分)设曲线C :()ln f x x ex =-( 2.71828e =⋅⋅⋅),()f x '表示()f x 导函数. (I )求函数()f x 的极值;(II )对于曲线C 上的不同两点11(,)A x y ,22(,)B x y ,12x x <,求证:存在唯一的0x 12(,)x x ∈,使直线AB 的斜率等于0()f x '. 12.(本小题满分14分)定义),0(,,)1(),(+∞∈+=y x x y x F y ,(I )令函数22()(3,log (24))f x F x x =-+,写出函数()f x 的定义域;(II )令函数322()(1,log (1))g x F x ax bx =+++的图象为曲线C ,若存在实数b 使得曲线C 在)14(00-<<-x x 处有斜率为-8的切线,求实数a 的取值范围;(III )当,*x y ∈N 且x y <时,求证(,)(,)F x y F y x >.导数练习题答案1.(本题满分12分)已知函数d x b a c bx ax x f +--++=)23()(23的图象如图所示.(I )求d c ,的值;(II )若函数)(x f 在2=x 处的切线方程为0113=-+y x ,求函数)(x f 的解析式;(III )在(II )的条件下,函数)(x f y =与mx x f y ++'=5)(31的图象有三个不同的交点,求m 的取值范围.解:函数)(x f 的导函数为 b a c bx ax x f 2323)(2'--++= …………(2分)(I )由图可知 函数)(x f 的图象过点(0,3),且0)1('=f 得⎩⎨⎧==⇒⎩⎨⎧=--++=0323233c d b a c b a d …………(4分)(II )依题意3)2('-=f 且5)2(=f⎩⎨⎧=+--+-=--+534648323412b a b a b a b a解得 6,1-==b a 所以396)(23++-=x x x x f …………(8分) (III )9123)(2+-='x x x f .可转化为:()m x x x x x x +++-=++-534396223有三个不等实根,即:()m x x x x g -+-=8723与x 轴有三个交点; ()()()42381432--=+-='x x x x x g ,x⎪⎭⎫ ⎝⎛∞-32,32⎪⎭⎫⎝⎛432, 4()∞+,4()x g ' + 0 - 0 + ()x g增极大值减极小值增()m g m g --=-=⎪⎭⎫ ⎝⎛164,276832. …………(10分) 当且仅当()01640276832<--=>-=⎪⎭⎫ ⎝⎛m g m g 且时,有三个交点, 故而,276816<<-m 为所求. …………(12分)2.(本小题满分12分)已知函数)(3ln )(R a ax x a x f ∈--=. (I )求函数)(x f 的单调区间;(II )函数)(x f 的图象的在4=x 处切线的斜率为,23若函数]2)('[31)(23mx f x x x g ++=在区间(1,3)上不是单调函数,求m 的取值范围.解:(I ))0()1()('>-=x xx a x f(2分)当(][)+∞>,1,1,0)(,0减区间为的单调增区间为时x f a当[)(];1,0,,1)(,0减区间为的单调增区间为时+∞<x f a 当a=1时,)(x f 不是单调函数 (5分)(II )32ln 2)(,22343)4('-+-=-==-=x x x f a a f 得 2)4()(',2)22(31)(223-++=∴-++=∴x m x x g x x mx x g (6分)2)0(',)3,1()(-=g x g 且上不是单调函数在区间⎩⎨⎧><∴.0)3(',0)1('g g (8分)⎪⎩⎪⎨⎧>-<∴,319,3m m (10分))3,319(--∈m (12分)3.(本小题满分14分)已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值. (I )求实数a 的取值范围;(II )若方程9)32()(2+-=a x f 恰好有两个不同的根,求)(x f 的解析式;(III )对于(II )中的函数)(x f ,对任意R ∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f .解:(I ),23)(,00)0(2b ax x x f c f ++='=⇒=320)1(--=⇒='a b f),323)(1()32(23)(2++-=+-+='∴a x x a ax x x f由33210)(+-==⇒='a x x x f 或,因为当1=x 时取得极大值,所以31332-<⇒>+-a a ,所以)3,(:--∞的取值范围是a ;…………(4分) (II )由下表:x)1,(-∞1)332,1(+-a332+-a ),332(+∞+-a)(x f '+ 0 - 0 - )(x f递增极大值2--a递减极小值 2)32(276++a a递增依题意得:9)32()32(27622+-=++a a a ,解得:9-=a所以函数)(x f 的解析式是:x x x x f 159)(23+-=…………(10分)(III )对任意的实数βα,都有,2sin 22,2sin 22≤≤-≤≤-βα在区间[-2,2]有: 230368)2(,7)1(,7430368)2(=+-==-=---=-f f f ,7)1()(=f x f 的最大值是7430368)2()(-=---=-f x f 的最小值是 函数]2,2[)(-在区间x f 上的最大值与最小值的差等于81, 所以81|)sin 2()sin 2(|≤-βαf f .…………(14分) 4.(本小题满分12分)已知常数0>a ,e 为自然对数的底数,函数x e x f x -=)(,x a x x g ln )(2-=. (I )写出)(x f 的单调递增区间,并证明a e a >; (II )讨论函数)(x g y =在区间),1(a e 上零点的个数.解:(I )01)(≥-='x e x f ,得)(x f 的单调递增区间是),0(+∞, …………(2分) ∵0>a ,∴1)0()(=>f a f ,∴a a e a >+>1,即a e a >. …………(4分)(II )xa x a x x a x x g )22)(22(22)(-+=-=',由0)(='x g ,得22ax =,列表x)22,0(a 22a ),22(+∞a)(x g ' - 0 +)(x g单调递减 极小值 单调递增当22ax =时,函数)(x g y =取极小值)2ln 1(2)22(aa a g -=,无极大值. …………(6分)由(I )a e a >,∵⎪⎩⎪⎨⎧>>22a a e e aa ,∴22a e a>,∴22ae a >01)1(>=g ,0))(()(22>-+=-=a e a e a e e g a a a a …………(8分)(i )当122≤a,即20≤<a 时,函数)(x g y =在区间),1(a e 不存在零点 (ii )当122>a ,即2>a 时若0)2ln 1(2>-a a ,即e a 22<<时,函数)(x g y =在区间),1(a e 不存在零点若0)2ln 1(2=-a a ,即e a 2=时,函数)(x g y =在区间),1(a e 存在一个零点e x =;若0)2ln 1(2<-a a ,即e a 2>时,函数)(x g y =在区间),1(a e 存在两个零点;综上所述,)(x g y =在(1,)a e 上,我们有结论:当02a e <<时,函数()f x 无零点; 当2a e = 时,函数()f x 有一个零点; 当2a e >时,函数()f x 有两个零点.…………(12分) 5.(本小题满分14分)已知函数()ln(1)(1)1f x x k x =---+.(I )当1k =时,求函数()f x 的最大值;(II )若函数()f x 没有零点,求实数k 的取值范围; 解:(I )当1k =时,2()1x f x x -'=-)(x f 定义域为(1,+∞),令()0,2f x x '==得, ………………(2分)∵当(1,2),x ∈时()0f x '>,当(2,),x ∈+∞时()0f x '<, ∴()(1,2)f x 在内是增函数,(2,)+∞在上是减函数∴当2x =时,()f x 取最大值(2)0f = ………………(4分)(II )①当0k ≤时,函数ln(1)y x =-图象与函数(1)1y k x =--图象有公共点, ∴函数()f x 有零点,不合要求; ………………(8分)②当0k >时,1()11()111kk x k kx k f x k x x x +-+-'=-==---- ………………(6分)令1()0,k f x x k +'==得,∵1(1,),()0,k x f x k +'∈>时1(1,),()0x f x k'∈++∞<时,∴1()(1,1)f x k +在内是增函数,1[1,)k++∞在上是减函数,∴()f x 的最大值是1(1)ln f k k+=-,∵函数()f x 没有零点,∴ln 0k -<,1k >,因此,若函数()f x 没有零点,则实数k 的取值范围(1,)k ∈+∞.………………(10分) 6.(本小题满分12分)已知2x =是函数2()(23)x f x x ax a e =+--的一个极值点(⋅⋅⋅=718.2e ). (I )求实数a 的值;(II )求函数()f x 在]3,23[∈x 的最大值和最小值.解:(I )由2()(23)x f x x ax a e =+--可得22()(2)(23)[(2)3]x x x f x x a e x ax a e x a x a e '=+++--=++--……(4分)∵2x =是函数()f x 的一个极值点,∴(2)0f '=∴2(5)0a e +=,解得5a =- ……………(6分) (II )由0)1)(2()(>--='x e x x x f ,得)(x f 在)1,(-∞递增,在),2(+∞递增,由0)(<'x f ,得)(x f 在在)2,1(递减∴2)2(e f =是()f x 在]3,23[∈x 的最小值; ……………(8分)2347)23(e f =,3)3(e f = ∵)23()3(,0)74(4147)23()3(23233f f e e e e e f f >>-=-=-∴()f x 在]3,23[∈x 的最大值是3)3(e f =. ……………(12分)7.(本小题满分14分)已知函数)0,(,ln )2(4)(2≠∈-+-=a R a x a x x x f (I )当a=18时,求函数)(x f 的单调区间; (II )求函数)(x f 在区间],[2e e 上的最小值.解:(Ⅰ)x x x x f ln 164)(2--=,xx x x x x f )4)(2(21642)('-+=--= 2分由0)('>x f 得0)4)(2(>-+x x ,解得4>x 或2-<x 注意到0>x ,所以函数)(x f 的单调递增区间是(4,+∞) 由0)('<x f 得0)4)(2(<-+x x ,解得-2<x <4,注意到0>x ,所以函数)(x f 的单调递减区间是]4,0(. 综上所述,函数)(x f 的单调增区间是(4,+∞),单调减区间是]4,0( 6分 (Ⅱ)在],[2e e x ∈时,x a x x x f ln )2(4)(2-+-= 所以xax x x a x x f -+-=-+-=242242)('2, 设a x x x g -+-=242)(2当0<a 时,有△=16+4×208)2(<=-a a ,此时0)(>x g ,所以0)('>x f ,)(x f 在],[2e e 上单调递增, 所以a e e e f x f -+-==24)()(2min 8分当0>a 时,△=08)2(2416>=-⨯-a a , 令0)('>x f ,即02422>-+-a x x ,解得221a x +>或221a x -<; 令0)('<x f ,即02422<-+-a x x , 解得221a -221ax +<<. ①若221a+≥2e ,即a ≥22)1(2-e 时, )(x f 在区间],[2e e 单调递减,所以a e e e f x f 244)()(242min -+-==.②若2221e ae <+<,即222)1(2)1(2-<<-e a e 时间, )(x f 在区间]221,[a e +上单调递减,在区间],221[2e a +上单调递增, 所以min )(xf )221(a f +=)221ln()2(322a a a a +-+--=. ③若221a+≤e ,即a <0≤22)1(-e 时,)(x f 在区间],[2e e 单调递增,所以a e e e f x f -+-==24)()(2min综上所述,当a ≥222)1(-e 时,a e a x f 244)(24min -+-=;当222)1(2)1(2-<<-e a e 时,)221ln()2(322)(min aa a a x f +-+--=; 当a ≤2)1(2-e 时,a e e x f -+-=24)(2min14分 8.(本小题满分12分)已知函数()(6)ln f x x x a x =-+在(2,)x ∈+∞上不具有...单调性.(I )求实数a 的取值范围;(II )若()f x '是()f x 的导函数,设22()()6g x f x x '=+-,试证明:对任意两个不相等正数12x x 、,不等式121238|()()|||27g x g x x x ->-恒成立.解:(I )226()26a x x af x x x x-+'=-+=, ………………(2分)∵()f x 在(2,)x ∈+∞上不具有...单调性,∴在(2,)x ∈+∞上()f x '有正也有负也有0, 即二次函数226y x x a =-+在(2,)x ∈+∞上有零点 ………………(4分) ∵226y x x a =-+是对称轴是32x =,开口向上的抛物线,∴222620y a =⋅-⋅+<的实数a 的取值范围(,4)-∞ ………………(6分)(II )由(I )22()2a g x x xx =+-,方法1:2222()()62(0)a g x f x x x x x x '=-+=+->, ∵4a <,∴323233444244()22a x x g x x x x x x -+'=-+>-+=,…………(8分)设2344()2h x x x =-+,3448124(23)()x h x x x x -'=-=()h x 在3(0,)2是减函数,在3(,)2+∞增函数,当32x =时,()h x 取最小值3827∴从而()g x '3827>,∴38(())027g x x '->,函数38()27y g x x =-是增函数,12x x 、是两个不相等正数,不妨设12x x <,则22113838()()2727g x x g x x ->-∴212138()()()27g x g x x x ->-,∵210x x ->,∴1212()()3827g x g x x x ->-∴1212()()g x g x x x --3827>,即121238|()()|||27g x g x x x ->- ………………(12分)方法2:11(,())M x g x 、22(,())N x g x 是曲线()y g x =上任意两相异点,121222121212()()2()2g x g x x x ax x x x x x -+=+--,12122x x x x +>,4a <12223121212122()422()x x a a x x x x x x x x +∴+->+-31212442()x x x x >+- ………(8分)设121,0t t x x =>,令32()244MN k u t t t ==+-,()4(32)u t t t '=-, 由()0u t '>,得2,3t >由()0u t '<得20,3t <<()u t ∴在)32,0(上是减函数,在),32(+∞上是增函数,)(t u ∴在32=t 处取极小值2738,38()27u t ∴≥,∴所以1212()()g x g x x x --3827>即121238|()()|||27g x g x x x ->- ………………(12分) 9.(本小题满分12分)已知函数.1,ln )1(21)(2>-+-=a x a ax x x f(I )讨论函数)(x f 的单调性;(II )证明:若.1)()(,),,0(,,521212121->--≠+∞∈<x x x f x f x x x x a 有则对任意(1))(x f 的定义域为),0(+∞,xa x x x a ax x x a a x x f )1)(1(11)('2-+-=-+-=-+-= 2分(i )若2,11==-a a 即,则 .)1()('2xx x f -=故)(x f 在),0(+∞单调增加. (ii )若.0)(',)1,1(,21,1,11<-∈<<><-x f a x a a a 时则当故而)1,1()(,0)(',),1()1,0(->+∞∈-∈a x f x f x a x 在故时及当单调减少,在(0,a-1), ),1(+∞单调增加.(iii )若),1(),1,0(,)1,1()(,2,11+∞-->>-a a x f a a 在单调减少在同理可得即 单调增加.(II )考虑函数x x f x g +=)()( .ln )1(212x x a ax x +-+-= 由 .)11(1)1(121)1()('2---=---⋅≥-+--=a a xa x x a a x x g 由于单调增加在即故),0()(,0)(',5+∞><x g x g a a ,从而当021>>x x 时有 ,0)()(,0)()(212121>-+->-x x x f x f x g x g 即 故1)()(2121->--x x x f x f ,当210x x <<时,有1)()()()(12122121->--=--x x x f x f x x x f x f10.(本小题满分14分)已知函数21()ln ,()(1),12f x x a xg x a x a =+=+≠-.(I )若函数(),()f x g x 在区间[1,3]上都是单调函数且它们的单调性相同,求实数a 的取值范围;(II )若(1,]( 2.71828)a e e ∈=,设()()()F x f x g x =-,求证:当12,[1,]x x a ∈时,不等式12|()()|1F x F x -<成立.解:(I )(),()1a f x x g x a x''=+=+, ……………(2分)∵函数(),()f x g x 在区间[1,3]上都是单调函数且它们的单调性相同,∴当[1,3]x ∈时,2(1)()()()0a x a f x g x x++''⋅=≥恒成立, ……………(4分) 即2(1)()0a x a ++≥恒成立, ∴21a a x >-⎧⎨≥-⎩在[1,3]x ∈时恒成立,或21a a x<-⎧⎨≤-⎩在[1,3]x ∈时恒成立, ∵91x -≤≤-,∴1a >-或9a ≤- ………………(6分)(II )21()ln ,(1)2F x x a x a x =+-+,()(1)()(1)a x a x F x x a xx--'=+-+=∵()F x 定义域是(0,)+∞,(1,]a e ∈,即1a >∴()F x 在(0,1)是增函数,在(1,)a 实际减函数,在(,)a +∞是增函数 ∴当1x =时,()F x 取极大值1(1)2M F a ==--,当x a =时,()F x 取极小值21()ln 2m F a a a a a ==--, ………………(8分)∵12,[1,]x x a ∈,∴12|()()|||F x F x M m M m -≤-=- ………………(10分)设211()ln 22G a M m a a a =-=--,则()ln 1G a a a '=--,∴1[()]1G a a''=-,∵(1,]a e ∈,∴[()]0G a ''>∴()ln 1G a a a '=--在(1,]a e ∈是增函数,∴()(1)0G a G ''>=∴211()ln 22G a a a a =--在(1,]a e ∈也是增函数 ………………(12分)∴()()G a G e ≤,即2211(1)()1222e G a e e -≤--=-, 而22211(1)(31)1112222e e e ----=-<-=,∴()1G a M m =-< ∴当12,[1,]x x a ∈时,不等式12|()()|1F x F x -<成立. ………………(14分) 11.(本小题满分12分)设曲线C :()ln f x x ex =-( 2.71828e =⋅⋅⋅),()f x '表示()f x 导函数. (I )求函数()f x 的极值;(II )对于曲线C 上的不同两点11(,)A x y ,22(,)B x y ,12x x <,求证:存在唯一的0x 12(,)x x ∈,使直线AB 的斜率等于0()f x '. 解:(I )11()0ex f x e xx -'=-==,得1x e= 当x 变化时,()f x '与()f x 变化情况如下表:x1(0,)e1e1(,)e+∞ ()f x '+ 0 - ()f x单调递增极大值 单调递减∴当1x e=时,()f x 取得极大值1()2f e=-,没有极小值; …………(4分)(II )(方法1)∵0()AB f x k '=,∴2121021ln ln ()1x x e x x e x x x ----=-,∴21201ln 0x x xx x --= 即20211ln ()0x x x x x --=,设2211()ln ()xg x x x x x =--211211()ln ()x g x x x x x =--,1/211()ln 10x x g x x =->,1()g x 是1x 的增函数, ∵12x x <,∴2122222()()ln ()0xg x g x x x x x <=--=;222211()ln ()x g x x x x x =--,2/221()ln 10x x g x x =->,2()g x 是2x 的增函数, ∵12x x <,∴1211111()()ln ()0xg x g x x x x x >=--=,∴函数2211()ln ()xg x x x x x =--在12(,)x x 内有零点0x , …………(10分)又∵22111,ln 0x x x x >∴>,函数2211()ln ()xg x x x x x =--在12(,)x x 是增函数, ∴函数2121()ln x x xg x x x -=-在12(,)x x 内有唯一零点0x ,命题成立…………(12分)(方法2)∵0()AB f x k '=,∴2121021ln ln ()1x x e x x e x x x ----=-, 即020112ln ln 0x x x x x x -+-=,012(,)x x x ∈,且0x 唯一设2112()ln ln g x x x x x x x =-+-,则1121112()ln ln g x x x x x x x =-+-, 再设22()ln ln h x x x x x x x =-+-,20x x <<,∴2()ln ln 0h x x x '=-> ∴22()ln ln h x x x x x x x =-+-在20x x <<是增函数 ∴112()()()0g x h x h x =<=,同理2()0g x >∴方程2112ln ln 0x x x x x x -+-=在012(,)x x x ∈有解 …………(10分)∵一次函数在12(,)x x 2112()(ln ln )g x x x x x x =-+-是增函数 ∴方程2112ln ln 0x x x x x x -+-=在012(,)x x x ∈有唯一解,命题成立………(12分) 注:仅用函数单调性说明,没有去证明曲线C 不存在拐点,不给分.12.(本小题满分14分)定义),0(,,)1(),(+∞∈+=y x x y x F y ,(I )令函数22()(3,log (24))f x F x x =-+,写出函数()f x 的定义域;(II )令函数322()(1,log (1))g x F x ax bx =+++的图象为曲线C ,若存在实数b 使得曲线C 在)14(00-<<-x x 处有斜率为-8的切线,求实数a 的取值范围;(III )当,*x y ∈N 且x y <时,求证(,)(,)F x y F y x >. 解:(I )22log (24)0x x -+>,即2241x x -+> ……………………(2分)得函数()f x 的定义域是(1,3)-, ……………………(4分) (II )22322()(1,log (1))1,g x F x ax bx x ax bx =+++=+++设曲线00(41)C x x -<<-在处有斜率为-8的切线, 又由题设,23)(,0)1(log 2232b ax x x g bx ax x ++='>+++∴存在实数b 使得⎪⎩⎪⎨⎧>+++-<<--=++1114823020300020bx ax x x b ax x 有解, ……………………(6分)由①得,238020ax x b ---=代入③得082020<---ax x ,200028041x ax x ⎧++>⎪∴⎨-<<-⎪⎩由有解, ……………………(8分) 方法1:0082()()a x x <-+-,因为041x -<<-,所以0082()[8,10)()x x -+∈-, 当10a <时,存在实数b ,使得曲线C 在)14(00-<<-x x 处有斜率为-8的切线………………(10分)方法2:得08)1()1(208)4()4(222>+-⨯+-⨯>+-⨯+-⨯a a 或,1010,10.a a a ∴<<∴<或 ………………(10分) 方法3:是222(4)(4)802(1)(1)80a a ⎧⨯-+⨯-+≤⎪⎨⨯-+⨯-+≤⎪⎩的补集,即10a < ………………(10分)(III )令2)1ln(1)(,1,)1ln()(xx x xx h x x x x h +-+='≥+=由 又令,0),1ln(1)(>+-+=x x xxx p 0)1(11)1(1)(22<+-=+-+='∴x x x x x p , ),0[)(+∞∴在x p 单调递减. ……………………(12)分①②③0()(0)0,1()0,x p x p x h x '∴><=∴≥<当时有当时有),1[)(+∞∴在x h 单调递减,x y y x y x x y y y x x y x )1()1(),1ln()1ln(,)1ln()1ln(,1+>+∴+>+∴+>+<≤∴有时,).,(),(,x y F y x F y x N y x ><∈∴*时且当 ………………(14分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数练习题1.(本题满分12分)已知函数d x b a c bx ax x f +--++=)23()(23的图象如图所示.(I )求d c ,的值;(II )若函数)(x f 在2=x 处的切线方程为0113=-+y x ,求函数)(x f 的解析式;(III )在(II )的条件下,函数)(x f y =与mx x f y ++'=5)(31的图象有三个不同的交点,求m 的取值范围. 2.(本小题满分12分)已知函数)(3ln )(R a ax x a x f ∈--=. (I )求函数)(x f 的单调区间;(II )函数)(x f 的图象的在4=x 处切线的斜率为,23若函数]2)('[31)(23mx f x x x g ++=在区间(1,3)上不是单调函数,求m 的取值范围.3.(本小题满分14分)已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值. (I )求实数a 的取值范围;(II )若方程9)32()(2+-=a x f 恰好有两个不同的根,求)(x f 的解析式;(III )对于(II )中的函数)(x f ,对任意R ∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f .4.(本小题满分12分)已知常数0>a ,e 为自然对数的底数,函数x e x f x -=)(,x a x x g ln )(2-=. (I )写出)(x f 的单调递增区间,并证明a e a >; (II )讨论函数)(x g y =在区间),1(a e 上零点的个数. 5.(本小题满分14分)已知函数()ln(1)(1)1f x x k x =---+.(I )当1k =时,求函数()f x 的最大值;(II )若函数()f x 没有零点,求实数k 的取值范围;6.(本小题满分12分)已知2x =是函数2()(23)x f x x ax a e =+--的一个极值点(⋅⋅⋅=718.2e ). (I )求实数a 的值;(II )求函数()f x 在]3,23[∈x 的最大值和最小值.7.(本小题满分14分)已知函数)0,(,ln )2(4)(2≠∈-+-=a R a x a x x x f (I )当a=18时,求函数)(x f 的单调区间; (II )求函数)(x f 在区间],[2e e 上的最小值. 8.(本小题满分12分)已知函数()(6)ln f x x x a x =-+在(2,)x ∈+∞上不具有...单调性. (I )求实数a 的取值范围;(II )若()f x '是()f x 的导函数,设22()()6g x f x x '=+-,试证明:对任意两个不相等正数12x x 、,不等式121238|()()|||27g x g x x x ->-恒成立. 9.(本小题满分12分)已知函数.1,ln )1(21)(2>-+-=a x a ax x x f(I )讨论函数)(x f 的单调性;(II )证明:若.1)()(,),,0(,,521212121->--≠+∞∈<x x x f x f x x x x a 有则对任意10.(本小题满分14分)已知函数21()ln ,()(1),12f x x a xg x a x a =+=+≠-.(I )若函数(),()f x g x 在区间[1,3]上都是单调函数且它们的单调性相同,求实数a 的取值范围;(II )若(1,]( 2.71828)a e e ∈=,设()()()F x f x g x =-,求证:当12,[1,]x x a ∈时,不等式12|()()|1F x F x -<成立.11.(本小题满分12分)设曲线C :()ln f x x ex =-( 2.71828e =⋅⋅⋅),()f x '表示()f x 导函数. (I )求函数()f x 的极值;(II )对于曲线C 上的不同两点11(,)A x y ,22(,)B x y ,12x x <,求证:存在唯一的0x 12(,)x x ∈,使直线AB 的斜率等于0()f x '. 12.(本小题满分14分)定义),0(,,)1(),(+∞∈+=y x x y x F y ,(I )令函数22()(3,log (24))f x F x x =-+,写出函数()f x 的定义域;(II )令函数322()(1,log (1))g x F x ax bx =+++的图象为曲线C ,若存在实数b 使得曲线C 在)14(00-<<-x x 处有斜率为-8的切线,求实数a 的取值范围;(III )当,*x y ∈N 且x y <时,求证(,)(,)F x y F y x >.导数练习题答案1.(本题满分12分)已知函数d x b a c bx ax x f +--++=)23()(23的图象如图所示.(I )求d c ,的值;(II )若函数)(x f 在2=x 处的切线方程为0113=-+y x ,求函数)(x f 的解析式;(III )在(II )的条件下,函数)(x f y =与mx x f y ++'=5)(31的图象有三个不同的交点,求m 的取值范围.解:函数)(x f 的导函数为 b a c bx ax x f 2323)(2'--++= …………(2分) (I )由图可知 函数)(x f 的图象过点(0,3),且0)1('=f 得⎩⎨⎧==⇒⎩⎨⎧=--++=03023233c d b a c b a d …………(4分)(II )依题意3)2('-=f 且5)2(=f⎩⎨⎧=+--+-=--+534648323412b a b a b a b a解得 6,1-==b a 所以396)(23++-=x x x x f …………(8分) (III )9123)(2+-='x x x f .可转化为:()m x x x x x x +++-=++-534396223有三个不等实根,即:()m x x x x g -+-=8723与x 轴有三个交点; ()()()42381432--=+-='x x x x x g ,()m g m g --=-=⎪⎭⎫ ⎝⎛164,273. …………(10分) 当且仅当()01640276832<--=>-=⎪⎭⎫ ⎝⎛m g m g 且时,有三个交点, 故而,276816<<-m 为所求. …………(12分)2.(本小题满分12分)已知函数)(3ln )(R a ax x a x f ∈--=. (I )求函数)(x f 的单调区间;(II )函数)(x f 的图象的在4=x 处切线的斜率为,23若函数]2)('[31)(23mx f x x x g ++=在区间(1,3)上不是单调函数,求m 的取值范围.解:(I ))0()1()('>-=x xx a x f(2分)当(][)+∞>,1,1,0)(,0减区间为的单调增区间为时x f a当[)(];1,0,,1)(,0减区间为的单调增区间为时+∞<x f a 当a=1时,)(x f 不是单调函数 (5分)(II )32ln 2)(,22343)4('-+-=-==-=x x x f a a f 得 2)4()(',2)22(31)(223-++=∴-++=∴x m x x g x x mx x g (6分)2)0(',)3,1()(-=g x g 且上不是单调函数在区间⎩⎨⎧><∴.0)3(',0)1('g g (8分)⎪⎩⎪⎨⎧>-<∴,319,3m m (10分))3,319(--∈m (12分)3.(本小题满分14分)已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值. (I )求实数a 的取值范围;(II )若方程9)32()(2+-=a x f 恰好有两个不同的根,求)(x f 的解析式;(III )对于(II )中的函数)(x f ,对任意R ∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f .解:(I ),23)(,00)0(2b ax x x f c f ++='=⇒=320)1(--=⇒='a b f),323)(1()32(23)(2++-=+-+='∴a x x a ax x x f由33210)(+-==⇒='a x x x f 或,因为当1=x 时取得极大值,所以31332-<⇒>+-a a ,所以)3,(:--∞的取值范围是a ;…………(4分) (依题意得:9)32(272-=+a ,解得:9-=a所以函数)(x f 的解析式是:x x x x f 159)(23+-=…………(10分)(III )对任意的实数βα,都有,2sin 22,2sin 22≤≤-≤≤-βα在区间[-2,2]有: 230368)2(,7)1(,7430368)2(=+-==-=---=-f f f ,7)1()(=f x f 的最大值是7430368)2()(-=---=-f x f 的最小值是 函数]2,2[)(-在区间x f 上的最大值与最小值的差等于81, 所以81|)sin 2()sin 2(|≤-βαf f .…………(14分) 4.(本小题满分12分)已知常数0>a ,e 为自然对数的底数,函数x e x f x -=)(,x a x x g ln )(2-=. (I )写出)(x f 的单调递增区间,并证明a e a >; (II )讨论函数)(x g y =在区间),1(a e 上零点的个数. 解:(I )01)(≥-='x e x f ,得)(x f 的单调递增区间是),0(+∞, …………(2分) ∵0>a ,∴1)0()(=>f a f ,∴a a e a >+>1,即a e a >. …………(4分)(II )a x a x a x x g )22)(22(22)(-+=-=',由0)(='x g ,得22ax =,列表当2x )222(a,无极大值. …………(6分)由(I )a e a >,∵⎪⎩⎪⎨⎧>>22a a e e aa ,∴22a e a>,∴22ae a >01)1(>=g ,0))(()(22>-+=-=a e a e a e e g a a a a …………(8分)(i )当122≤a,即20≤<a 时,函数)(x g y =在区间),1(a e 不存在零点 (ii )当122>a ,即2>a 时若0)2ln 1(2>-a a ,即e a 22<<时,函数)(x g y =在区间),1(a e 不存在零点若0)2ln 1(2=-a a ,即e a 2=时,函数)(x g y =在区间),1(a e 存在一个零点e x =;若0)2ln 1(2<-a a ,即e a 2>时,函数)(x g y =在区间),1(a e 存在两个零点;综上所述,)(x g y =在(1,)a e 上,我们有结论:当02a e <<时,函数()f x 无零点; 当2a e = 时,函数()f x 有一个零点; 当2a e >时,函数()f x 有两个零点.…………(12分) 5.(本小题满分14分)已知函数()ln(1)(1)1f x x k x =---+.(I )当1k =时,求函数()f x 的最大值;(II )若函数()f x 没有零点,求实数k 的取值范围; 解:(I )当1k =时,2()1x f x x -'=-)(x f 定义域为(1,+∞),令()0,2f x x '==得, ………………(2分)∵当(1,2),x ∈时()0f x '>,当(2,),x ∈+∞时()0f x '<, ∴()(1,2)f x 在内是增函数,(2,)+∞在上是减函数∴当2x =时,()f x 取最大值(2)0f = ………………(4分)(II )①当0k ≤时,函数ln(1)y x =-图象与函数(1)1y k x =--图象有公共点, ∴函数()f x 有零点,不合要求; ………………(8分) ②当0k >时,1()11()111kk x k kx k f x k x x x +-+-'=-==---- ………………(6分)令1()0,k f x x k +'==得,∵1(1,),()0,k x f x k +'∈>时1(1,),()0x f x k'∈++∞<时,∴1()(1,1)f x k+在内是增函数,1[1,)k++∞在上是减函数,∴()f x 的最大值是1(1)ln f k k+=-,∵函数()f x 没有零点,∴ln 0k -<,1k >,因此,若函数()f x 没有零点,则实数k 的取值范围(1,)k ∈+∞.………………(10分) 6.(本小题满分12分)已知2x =是函数2()(23)x f x x ax a e =+--的一个极值点(⋅⋅⋅=718.2e ). (I )求实数a 的值;(II )求函数()f x 在]3,23[∈x 的最大值和最小值.解:(I )由2()(23)x f x x ax a e =+--可得22()(2)(23)[(2)3]x x x f x x a e x ax a e x a x a e '=+++--=++--……(4分)∵2x =是函数()f x 的一个极值点,∴(2)0f '=∴2(5)0a e +=,解得5a =- ……………(6分) (II )由0)1)(2()(>--='x e x x x f ,得)(x f 在)1,(-∞递增,在),2(+∞递增,由0)(<'x f ,得)(x f 在在)2,1(递减∴2)2(e f =是()f x 在]3,23[∈x 的最小值; ……………(8分)2347)23(e f =,3)3(e f = ∵)23()3(,0)74(4147)23()3(23233f f e e e e e f f >>-=-=-∴()f x 在]3,23[∈x 的最大值是3)3(e f =. ……………(12分)7.(本小题满分14分)已知函数)0,(,ln )2(4)(2≠∈-+-=a R a x a x x x f (I )当a=18时,求函数)(x f 的单调区间; (II )求函数)(x f 在区间],[2e e 上的最小值. 解:(Ⅰ)x x x x f ln 164)(2--=,xx x x x x f )4)(2(21642)('-+=--= 2分由0)('>x f 得0)4)(2(>-+x x ,解得4>x 或2-<x 注意到0>x ,所以函数)(x f 的单调递增区间是(4,+∞) 由0)('<x f 得0)4)(2(<-+x x ,解得-2<x <4,注意到0>x ,所以函数)(x f 的单调递减区间是]4,0(. 综上所述,函数)(x f 的单调增区间是(4,+∞),单调减区间是]4,0( 6分 (Ⅱ)在],[2e e x ∈时,x a x x x f ln )2(4)(2-+-= 所以xax x x a x x f -+-=-+-=242242)('2,设a x x x g -+-=242)(2当0<a 时,有△=16+4×208)2(<=-a a ,此时0)(>x g ,所以0)('>x f ,)(x f 在],[2e e 上单调递增, 所以a e e e f x f -+-==24)()(2min 8分当0>a 时,△=08)2(2416>=-⨯-a a , 令0)('>x f ,即02422>-+-a x x ,解得221a x +>或221a x -<; 令0)('<x f ,即02422<-+-a x x , 解得221a -221ax +<<. ①若221a+≥2e ,即a ≥22)1(2-e 时, )(x f 在区间],[2e e 单调递减,所以a e e e f x f 244)()(242min -+-==.②若2221e ae <+<,即222)1(2)1(2-<<-e a e 时间, )(x f 在区间]221,[a e +上单调递减,在区间],221[2e a +上单调递增, 所以min )(xf )221(a f +=)221ln()2(322a a a a +-+--=. ③若221a+≤e ,即a <0≤22)1(-e 时,)(x f 在区间],[2e e 单调递增,所以a e e e f x f -+-==24)()(2min综上所述,当a ≥222)1(-e 时,a e a x f 244)(24min -+-=;当222)1(2)1(2-<<-e a e 时,)221ln()2(322)(min aa a a x f +-+--=; 当a ≤2)1(2-e 时,a e e x f -+-=24)(2min14分 8.(本小题满分12分)已知函数()(6)ln f x x x a x =-+在(2,)x ∈+∞上不具有...单调性. (I )求实数a 的取值范围;(II )若()f x '是()f x 的导函数,设22()()6g x f x x '=+-,试证明:对任意两个不相等正数12x x 、,不等式121238|()()|||27g x g x x x ->-恒成立. 解:(I )226()26a xx af x x xx-+'=-+=, ………………(2分)∵()f x 在(2,)x ∈+∞上不具有...单调性,∴在(2,)x ∈+∞上()f x '有正也有负也有0, 即二次函数226y x x a =-+在(2,)x ∈+∞上有零点 ………………(4分) ∵226y x x a =-+是对称轴是32x =,开口向上的抛物线,∴222620y a =⋅-⋅+<的实数a 的取值范围(,4)-∞ ………………(6分)(II )由(I )22()2a g x x x x =+-,方法1:2222()()62(0)a g x f x x x x x x '=-+=+->, ∵4a <,∴323233444244()22a x x g x x x x x x-+'=-+>-+=,…………(8分) 设2344()2h x x x =-+,3448124(23)()x h x x x x-'=-= ()h x 在3(0,)2是减函数,在3(,)2+∞增函数,当32x =时,()h x 取最小值3827∴从而()g x '3827>,∴38(())027g x x '->,函数38()27y g x x =-是增函数,12x x 、是两个不相等正数,不妨设12x x <,则22113838()()2727g x x g x x ->-∴212138()()()27g x g x x x ->-,∵210x x ->,∴1212()()3827g x g x x x ->- ∴1212()()g x g x x x --3827>,即121238|()()|||27g x g x x x ->- ………………(12分)方法2:11(,())M x g x 、22(,())N x g x 是曲线()y g x =上任意两相异点,121222121212()()2()2g x g x x x ax x x x x x -+=+--,12x x +>4a <12221212122()22x x a a x x x x x x +∴+->+-1242x x >- ………(8分)设0t t =>,令32()244MN k u t t t ==+-,()4(32)u t t t '=-, 由()0u t '>,得2,3t >由()0u t '<得20,3t <<()u t ∴在)32,0(上是减函数,在),32(+∞上是增函数,)(t u ∴在32=t 处取极小值2738,38()27u t ∴≥,∴所以1212()()g x g x x x --3827>即121238|()()|||27g x g x x x ->- ………………(12分)9.(本小题满分12分)已知函数.1,ln )1(21)(2>-+-=a x a ax x x f(I )讨论函数)(x f 的单调性;(II )证明:若.1)()(,),,0(,,521212121->--≠+∞∈<x x x f x f x x x x a 有则对任意(1))(x f 的定义域为),0(+∞,xa x x x a ax x x a a x x f )1)(1(11)('2-+-=-+-=-+-= 2分(i )若2,11==-a a 即,则 .)1()('2xx x f -=故)(x f 在),0(+∞单调增加. (ii )若.0)(',)1,1(,21,1,11<-∈<<><-x f a x a a a 时则当故而)1,1()(,0)(',),1()1,0(->+∞∈-∈a x f x f x a x 在故时及当单调减少,在(0,a-1), ),1(+∞单调增加.(iii )若),1(),1,0(,)1,1()(,2,11+∞-->>-a a x f a a 在单调减少在同理可得即 单调增加.(II )考虑函数x x f x g +=)()( .ln )1(212x x a ax x +-+-= 由 .)11(1)1(121)1()('2---=---⋅≥-+--=a a xa x x a a x x g 由于单调增加在即故),0()(,0)(',5+∞><x g x g a a ,从而当021>>x x 时有 ,0)()(,0)()(212121>-+->-x x x f x f x g x g 即 故1)()(2121->--x x x f x f ,当210x x <<时,有1)()()()(12122121->--=--x x x f x f x x x f x f10.(本小题满分14分)已知函数21()ln ,()(1),12f x x a xg x a x a =+=+≠-.(I )若函数(),()f x g x 在区间[1,3]上都是单调函数且它们的单调性相同,求实数a 的取值范围;(II )若(1,]( 2.71828)a e e ∈=,设()()()F x f x g x =-,求证:当12,[1,]x x a ∈时,不等式12|()()|1F x F x -<成立.解:(I )(),()1a f x x g x a x''=+=+, ……………(2分)∵函数(),()f x g x 在区间[1,3]上都是单调函数且它们的单调性相同,∴当[1,3]x ∈时,2(1)()()()0a x a f x g x x++''⋅=≥恒成立, ……………(4分) 即2(1)()0a x a ++≥恒成立, ∴21a a x >-⎧⎨≥-⎩在[1,3]x ∈时恒成立,或21a a x<-⎧⎨≤-⎩在[1,3]x ∈时恒成立, ∵91x -≤≤-,∴1a >-或9a ≤- ………………(6分)(II )21()ln ,(1)2F x x a x a x =+-+,()(1)()(1)a x a x F x x a xx--'=+-+=∵()F x 定义域是(0,)+∞,(1,]a e ∈,即1a >∴()F x 在(0,1)是增函数,在(1,)a 实际减函数,在(,)a +∞是增函数 ∴当1x =时,()F x 取极大值1(1)2M F a ==--,当x a =时,()F x 取极小值21()ln 2m F a a a a a ==--, ………………(8分)∵12,[1,]x x a ∈,∴12|()()|||F x F x M m M m -≤-=- ………………(10分)设211()ln 22G a M m a a a =-=--,则()ln 1G a a a '=--,∴1[()]1G a a''=-,∵(1,]a e ∈,∴[()]0G a ''>∴()ln 1G a a a '=--在(1,]a e ∈是增函数,∴()(1)0G a G ''>=∴211()ln 22G a a a a =--在(1,]a e ∈也是增函数 ………………(12分)∴()()G a G e ≤,即2211(1)()1222e G a e e -≤--=-, 而22211(1)(31)1112222e e e ----=-<-=,∴()1G a M m =-< ∴当12,[1,]x x a ∈时,不等式12|()()|1F x F x -<成立. ………………(14分) 11.(本小题满分12分)设曲线C :()ln f x x ex =-( 2.71828e =⋅⋅⋅),()f x '表示()f x 导函数. (I )求函数()f x 的极值;(II )对于曲线C 上的不同两点11(,)A x y ,22(,)B x y ,12x x <,求证:存在唯一的0x 12(,)x x ∈,使直线AB 的斜率等于0()f x '. 解:(I )11()0ex f x e xx -'=-==,得1x e= 当x 变化时,()f x '与()f x 变化情况如下表:∴当1x e=时,()f x 取得极大值()2f e=-,没有极小值; …………(4分)(II )(方法1)∵0()AB f x k '=,∴2121021ln ln ()1x x e x x e x x x ----=-,∴21201ln 0x x xx x --= 即20211ln ()0x x x x x --=,设2211()ln ()xg x x x x x =--211211()ln ()x g x x x x x =--,1/211()ln 10x x g x x =->,1()g x 是1x 的增函数,∵12x x <,∴2122222()()ln()0x g x g x x x x x <=--=; 222211()ln ()x g x x x x x =--,2/221()ln 10x x g x x =->,2()g x 是2x 的增函数, ∵12x x <,∴1211111()()ln ()0xg x g x x x x x >=--=,∴函数2211()ln ()xg x x x x x =--在12(,)x x 内有零点0x , …………(10分)又∵22111,ln 0x x x x >∴>,函数2211()ln ()xg x x x x x =--在12(,)x x 是增函数, ∴函数2121()ln x x xg x x x -=-在12(,)x x 内有唯一零点0x ,命题成立…………(12分)(方法2)∵0()AB f x k '=,∴2121021ln ln ()1x x e x x e x x x ----=-, 即020112ln ln 0x x x x x x -+-=,012(,)x x x ∈,且0x 唯一设2112()ln ln g x x x x x x x =-+-,则1121112()ln ln g x x x x x x x =-+-, 再设22()ln ln h x x x x x x x =-+-,20x x <<,∴2()ln ln 0h x x x '=-> ∴22()ln ln h x x x x x x x =-+-在20x x <<是增函数 ∴112()()()0g x h x h x =<=,同理2()0g x >∴方程2112ln ln 0x x x x x x -+-=在012(,)x x x ∈有解 …………(10分)∵一次函数在12(,)x x 2112()(ln ln )g x x x x x x =-+-是增函数 ∴方程2112ln ln 0x x x x x x -+-=在012(,)x x x ∈有唯一解,命题成立………(12分) 注:仅用函数单调性说明,没有去证明曲线C 不存在拐点,不给分. 12.(本小题满分14分)定义),0(,,)1(),(+∞∈+=y x x y x F y ,(I )令函数22()(3,log (24))f x F x x =-+,写出函数()f x 的定义域;(II )令函数322()(1,log (1))g x F x ax bx =+++的图象为曲线C ,若存在实数b 使得曲线C 在)14(00-<<-x x 处有斜率为-8的切线,求实数a 的取值范围;(III )当,*x y ∈N 且x y <时,求证(,)(,)F x y F y x >. 解:(I )22log (24)0x x -+>,即2241x x -+> ……………………(2分)得函数()f x 的定义域是(1,3)-, ……………………(4分) (II )22322()(1,log (1))1,g x F x ax bx x ax bx =+++=+++设曲线00(41)C x x -<<-在处有斜率为-8的切线, 又由题设,23)(,0)1(log 2232b ax x x g bx ax x ++='>+++∴存在实数b 使得⎪⎩⎪⎨⎧>+++-<<--=++1114823020300020bx ax x x b ax x 有解, ……………………(6分)由①得,238020ax x b ---=代入③得082020<---ax x ,200028041x ax x ⎧++>⎪∴⎨-<<-⎪⎩由有解, ……………………(8分) 方法1:0082()()a x x <-+-,因为041x -<<-,所以0082()[8,10)()x x -+∈-, 当10a <时,存在实数b ,使得曲线C 在)14(00-<<-x x 处有斜率为-8的切线………………(10分)方法2:得08)1()1(208)4()4(222>+-⨯+-⨯>+-⨯+-⨯a a 或,1010,10.a a a ∴<<∴<或 ………………(10分) 方法3:是222(4)(4)802(1)(1)80a a ⎧⨯-+⨯-+≤⎪⎨⨯-+⨯-+≤⎪⎩的补集,即10a < ………………(10分)(III )令2)1ln(1)(,1,)1ln()(xx x xx h x x x x h +-+='≥+=由 又令,0),1ln(1)(>+-+=x x xxx p 0)1(11)1(1)(22<+-=+-+='∴x x x x x p , ),0[)(+∞∴在x p 单调递减. ……………………(12)分0()(0)0,1()0,x p x p x h x '∴><=∴≥<当时有当时有 ),1[)(+∞∴在x h 单调递减,x y y x y x x y yy x x y x )1()1(),1ln()1ln(,)1ln()1ln(,1+>+∴+>+∴+>+<≤∴有时, ).,(),(,x y F y x F y x N y x ><∈∴*时且当 ………………(14分)①②③。