【课堂新坐标】(教师用书)2013-2014学年高中数学 2.2 超几何分布课后知能检测 苏教版选修2-3
【课堂新坐标】(教师用书)2013-2014学年高中数学1.2.3导学的四则运算法则课后知能检测新人教b版选修2-2
【课堂新坐标】(教师用书)2013-2014学年高中数学 1.2.3 导学的四则运算法则课后知能检测新人教B版选修2-2一、选择题1.(2013·深圳高二检测)函数y=cos (-x)的导数是( )A.cos x B.-cos xC.-sin x D.sin x【解析】y′=-sin (-x)(-x)′=-sin x.【答案】 C2.若f(x)=1-x2sin x,则f(x)的导数是( )A.-2x sin x--x2xsin2xB.-2x sin x+-x2xsin2xC.-2x sin x+-x2sin xD.-2x sin x--x2sin x【解析】f′(x)=-x2x--x2xsin2x=-2x sin x--x2cos xsin2x.【答案】 A3.曲线y=x3+11在点P(1,12)处的切线与y轴交点的纵坐标是( )A.-9 B.-3C.9 D.15【解析】∵y′=3x2,∴y′|x=1=3,切线方程为y-12=3(x-1),即y=3x+9,令x=0,得y=9.【答案】 C4.某市在一次降雨过程中,降雨量y(mm)与时间t(min)的函数关系可近似地表示为y =f(t)=10t,则在时刻t=40 min的降雨强度为( )A .20 mmB .400 mm C.12mm/min D.14 mm/min 【解析】 f ′(t )=1210t ·10=510t , ∴f ′(40)=5400=14. 【答案】 D 5.已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( )A .1B .2C .-1D .-2【解析】 设切点P (x 0,y 0),则y 0=x 0+1=ln(x 0+a ). 又由=1x 0+a=1,解得x 0+a =1, ∴y 0=0,x 0=-1,∴a =2.【答案】 B二、填空题6.(2013·广东高考)若曲线y =ax 2-ln x 在点(1,a )处的切线平行于x 轴,则a =________.【解析】 因为y ′=2ax -1x,所以y ′|x =1=2a -1.因为曲线在点(1,a )处的切线平行于x 轴,故其斜率为0,故2a -1=0,a =12. 【答案】 127.已知函数f (x )=f ′(π2)sin x +cos x ,则f ′(π4)=________. 【解析】 ∵f ′(x )=f ′(π2)cos x -sin x , ∴f ′(π2)=f ′(π2)cos π2-sin π2=-1, ∴f ′(x )=-cos x -sin x ,∴f ′(π4)=-cos π4-sin π4=- 2. 【答案】 - 28.曲线y =e-2x +1在点(0,2)处的切线与直线y =0和y =x 围成的三角形面积是________.【解析】 ∵y ′=-2e -2x ,∴y ′|x =0=-2,切线方程为y =-2x +2.∴所围成的三角形的三个顶点为(0,0),(1,0),(23,23). ∴S =12×1×23=13. 【答案】 13三、解答题9.已知函数f (x )=ln(ax +1)+1-x 1+x,x ≥0,其中a >0,若f ′(1)=0,求a 的值. 【解】 f ′(x )=[ln(ax +1)]′+(1-x 1+x)′ =a ax +1+-2+x 2,∴f ′(1)=aa +1-12=0, ∴a =1. 因此实数a 的值为1.10.若函数f (x )=e x x在x =c 处的导数值与函数值互为相反数,求c 的值. 【解】 由于f (x )=e x x ,∴f (c )=e c c, 又f ′(x )=e x ·x -e x x 2=e x x -x 2,∴f ′(c )=e c c -c 2.依题意知f (c )+f ′(c )=0,∴e c c +e cc -c 2=0,∴2c -1=0得c =12. 11.设函数f (x )=ax -b x,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.【解】 (1)由7x -4y -12=0得y =74x -3. 当x =2时,y =12,∴f (2)=2a -b 2=12, ①又f ′(x )=a +b x 2,∴f ′(2)=a +b 4=74. ② 由①②得⎩⎪⎨⎪⎧ 4a -b =1,4a +b =7,解之,得⎩⎪⎨⎪⎧ a =1,b =3.故f (x )=x -3x. (2)证明:设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 知, 曲线在点P (x 0,y 0)处的切线方程为y -y 0=(1+3x 20)(x -x 0), 即y -(x 0-3x 0)=(1+3x 20)(x -x 0). 令x =0得y =-6x 0,从而得切线与直线x =0的交点坐标为(0,-6x 0). 令y =x 得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形面积为12|-6x 0||2x 0|=6. 故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值,此定值为6.。
【课堂新坐标】(教师用书)2013-2014学年高中数学第二章统计综合检测新人教b版必修3
综合检测(二)第二章统计(时间:90分钟满分:120分)一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在一次数学测试中,有考生1 000名,现想了解这1 000名考生的数学成绩,从中抽取100名考生的数学成绩进行统计分析,在这个问题中,总体是指( ) A.1 000名考生B.1 000名考生的数学成绩C.100名考生的数学成绩D.100名考生【解析】总体是1 000名考生的数学成绩,样本是100名考生的数学成绩.【答案】 B2.在下列各图中,两个变量不具有任何关系的是( )A.①②B.①③C.②④D.④【解析】①具有函数关系;②③具有相关关系;④无关系.【答案】 D3.现有60瓶矿泉水,编号为1至60,若从中抽取6瓶检验,用系统抽样法确定所抽的编号分别为( )A.3,13,23,33,43,53B.2,14,26,38,42,56C.5,8,31,36,48,54D.5,10,15,20,25,30【解析】系统抽样也是等距抽样.【答案】 A4.(2013·安徽高考)某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是( )A .这种抽样方法是一种分层抽样B .这种抽样方法是一种系统抽样C .这五名男生成绩的方差大于这五名女生成绩的方差D .该班男生成绩的平均数小于该班女生成绩的平均数 【解析】 A ,不是分层抽样,因为抽样比不同. B ,不是系统抽样,因为随机询问,抽样间隔未知.C ,五名男生成绩的平均数是x =86+94+88+92+905=90,五名女生成绩的平均数是y =88+93+93+88+935=91,五名男生成绩的方差为s 21=15(16+16+4+4+0)=8,五名女生成绩的方差为s 22=15(9+4+4+9+4)=6,显然,五名男生成绩的方差大于五名女生成绩的方差.D ,由于五名男生和五名女生的成绩无代表性,不能确定该班男生和女生的平均成绩. 【答案】 C5.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品销售情况,需从这600个销售点中抽取一个容量为100的样本.记这项调查为①.在丙地区有20个特大型销售点,要从中抽7个,调查其销售收入和售后服务情况.记这项调查为②.则完成①②这两项调查应采用的抽样方法依次为( )A .分层抽样法,系统抽样法B .分层抽样法,简单随机抽样法C .系统抽样法,分层抽样法D .简单随机抽样法,分层抽样法【解析】 调查①中,由于四个地区产品销售情况有较大差别,故应用分层抽样法;调查②中总体与样本容量较小,故可用简单随机抽样法.【答案】 B6.(2013·江西高考)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )C .02D .01【解析】 由随机数表法的随机抽样的过程可知选出的5个个体是08,02,14,07,01,所以第5个个体的编号是01.【答案】 D7.一个容量为n 的样本,分成若干组,已知某组的频数和频率分别为32、0.25,则n 的值是( )A .240B .160C .128D .324【解析】 由32n=0.25得n =128.【答案】 C8.(2013·重庆高考)如图1是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的频率为( )图1A .0.2B .0.4C .0.5D .0.6【解析】 由题意知,这10个数据落在区间[22,30)内的有22、22、27、29,共4个,所以其频率为410=0.4,故选B.【答案】 B9.甲、乙两支曲棍球队在去年的国际比赛中,甲队平均每场进球数为 3.2,全年比赛进球个数的标准差为3;乙队平均每场进球数是1.8,全年比赛进球个数的标准差为0.3,则下列说法中正确的个数为( )①甲队的技术比乙队好;②乙队发挥比甲队稳定; ③乙队几乎每场都进球;④甲队的表现时好时坏. A .1 B .2 C .3D .4【解析】 由于甲队平均每场进球数远大于乙队,故①正确,但甲队标准差太大,故④正确.而乙队标准差仅为0.3,故②,③正确.从而知四个说法均正确,选D.【答案】 D10.一个社会调查机构就某地居民的月收入调查了20 000人,并根据所得数据画出了样本频率分布直方图(如图2所示).为了分析居民的收入与年龄、学历、职业等方面的关系,按月收入用分层抽样方法抽样,若从月收入[3 000,3 500](元)段中抽取了30人,则这20 000人中共抽取的人数为( )图2A .200B .100C .20 000D .40【解析】 由题意得,月收入在[3 000,3 500](元)段中的频率是0.0003×500=0.15,该收入段的人数是20 000×0.15=3 000,从中抽取了30人,说明从每100人中抽取1人,故共抽取20 000100=200(人).【答案】 A二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 11.天津市2013年家具销售额y 万元与新建住宅面积x ×103m 2呈线性相关,其回归方程为y ^=1.190 3x +185.109 3,若当年新建成的住宅面积为350×103m 2,则当年的家具销售额约为________万元.【解析】 当x =350时,y ^=1.190 3×350+185.109 3≈601.7万元. 【答案】 601.712.(2013·广州高一检测)一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为________.【解析】 抽取的男运动员的人数为2148+36×48=12.【答案】 1213.某赛季甲、乙两名篮球运动员各13场比赛得分情况用茎叶图表示如图3所示:根据上图,对这两名运动员的成绩进行.比较,下面四个结论中,正确的是________(填序号)①甲运动员得分的极差大于乙运动员得分的极差 ②甲运动员得分的中位数大于乙运动员得分的中位数 ③甲运动员得分的平均值大于乙运动员得分的平均值 ④甲运动员的成绩比乙运动员的成绩稳定【解析】 对①,甲运动员得分的极差为29,而乙运动员得分的极差为16,故①正确;对②,甲得分的中位数为30,而乙得分的中位数为26,故③正确;对③,由茎叶图知甲的平均值大于乙的平均值,故②正确;对④,从茎叶图中知乙更稳定,④错误.故选①②③.【答案】 ①②③14.为了了解商场某日旅游鞋的销售情况,抽取了部分顾客购鞋的尺寸,将所有数据整理后,画出频率分布直方图,如图4所示,已知从左至右前3个小组的频率之比为1∶2∶3,第4小组与第5小组的频率分别为0.175和0.075,第二小组的频数为10,则抽取的顾客人数是________.图4【解析】 前三组频率和为1-0.075-0.175=0.75.又前三组频率之比为1∶2∶3,所以第二组频率为26×0.75=0.25.又知第二组频数为10,则100.25=40(人),即为所抽样本人数.【答案】 40三、解答题(本大题共4小题,共50分.解答应写出文字说明、证明过程或演算步骤) 15.(本小题满分12分)(2013·课标全国卷Ⅰ)为了比较两种治疗失眠症的药(分别称为A 药,B 药)的疗效,随机地选取20位患者服用A 药,20位患者服用B 药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下:服用A 药的20位患者日平均增加的睡眠时间: 0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4服用B 药的20位患者日平均增加的睡眠时间:3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好? (2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?【解】 (1)设A 药观测数据的平均数为x ,B 药观测数据的平均数为y . 由观测结果可得x =120(0.6+1.2+1.2+1.5+1.5+1.8+2.2+2.3+2.3+2.4+2.5+2.6+2.7+2.7+2.8+2.9+3.0+3.1+3.2+3.5)=2.3,y =120(0.5+0.5+0.6+0.8+0.9+1.1+1.2+1.2+1.3+1.4+1.6+1.7+1.8+1.9+2.1+2.4+2.5+2.6+2.7+3.2)=1.6.由以上计算结果可得x >y ,因此可看出A 药的疗效更好. (2)由观测结果可绘制茎叶图如图:从以上茎叶图可以看出,A 药疗效的试验结果有710的叶集中在茎“2.”,“3.”上,而B 药疗效的试验结果有710的叶集中在茎“0.”,“1.”上,由此可看出A 药的疗效更好.16.(本小题满分12分)从高一学生中抽取50名参加调研考试,成绩的分组及各组的频数如下(单位:分):[40,50),2;[50,60),3;[60,70),10;[70,80),15;[80,90),12;[90,100),8 (1)列出样本的频率分布表; (2)画出频率分布直方图;(3)估计成绩在[70,80)分的学生所占总体的百分比; (4)估计成绩在[70,100)分的学生所占总体的百分比. 【解】 (1)频率分布表如下:(2)(3)由频率分布表可知成绩在[70,80)分的学生所占总体的百分比是30%.(4)由频率分布表可估计成绩在[70,100)分的学生所占总体的百分比是0.3+0.24+0.16=0.7=70%.17.(本小题满分13分)某校为了了解甲、乙两班的英语学习情况,从两班各抽出10名学生进行英语水平测试,成绩如下(单位:分):甲班:82 84 85 89 79 80 91 89 79 74 乙班:90 76 86 81 84 87 86 82 85 83 (1)求两个样本的平均数; (2)求两个样本的方差和标准差; (3)试分析比较两个班的学习情况.【解】 (1)x -甲=110(82+84+85+89+79+80+91+89+79+74)=83.2,x -乙=110(90+76+86+81+84+87+86+82+85+83)=84.(2)s 2甲=110[(82-83.2)2+(84-83.2)2+(85-83.2)2+(89-83.2)2+(79-83.2)2+(80-83.2)2+(91-83.2)2+(89-83.2)2+(79-83.2)2+(74-83.2)2]=26.36,s 2乙=110[(90-84)2+(76-84)2+(86-84)2+(81-84)2+(84-84)2+(87-84)2+(86-84)2+(82-84)2+(85-84)2+(83-84)2]=13.2,∴s 甲=26.36≈5.13,s 乙=13.2≈3.63.(3)由于x -甲<x -乙,则甲班比乙班平均水平低. 由于s 甲>s 乙,则甲班没有乙班稳定. ∴乙班的总体学习情况比甲班好.18.(本小题满分13分)测得10对某国父子身高(单位:英寸)如下:(2)如果父亲的身高为73英寸,估计儿子的身高.40 366.1340 331.76≈1.0.a ^=y -b ^x ≈67.01-1.0×66.8≈0.21.故所求的回归直线方程为y ^=x +0.21. (2)当x =73时,y ^=1.0×73+0.21=73.21.所以当父亲身高为73英寸时,估计儿子的身高约为73.21英寸.。
【课堂新坐标】(教师用书)2013-2014学年高中数学第二章解三角形教案北师大版必修5
第二章解三角形§1正弦定理与余弦定理1.1 正弦定理(教师用书独具)●三维目标1.知识与技能通过对任意三角形边长和角度的关系探索,掌握正弦定理的内容及其证明方法;会用正弦定理与三角形内角和定理解斜三角形的基本问题.2.过程与方法让学生从已有的几何知识出发,探究在任意三角形中,边与其对角的关系,引导学生观察、推导、比较,由特殊到一般归纳出正弦定理.3.情感、态度与价值观培养学生在方程思想指导下处理三角形问题的运算能力;培养学生合情推理探索数学规律的能力.●重点难点重点:正弦定理的探索的证明及其应用.难点:已知两边和其中一边的对角解三角形时判断个数.(教师用书独具)●教学建议已知两边和其中一边的对角解三角形时判断个数,此类问题有两个、一个、零个的情况,需要进行讨论,可做如下处理:在△ABC中,已知a,b和A时三角形解的情况:A为锐角A为钝角或直角图 像关系式 ①a =b sin A②a ≥b b sin A<a <b a <b sin Aa >ba ≤b解的个数 一解两解无解一解无解●教学流程创设问题情境,提出了2个问题⇒通过引导学生回答所提问题,理解正弦定理及三角形面积公式⇒通过例1及互动探究,使学生掌握利用正弦定理解三角形问题⇒通过例2及变式训练,使学生掌握三角形面积公式的应用⇒通过例3及变式训练,使学生掌握判断三角形的形状问题⇒归纳整理,进行课堂小结,整体认识本节课所学知识⇒完成当堂双基达标,巩固所学知识,并进行反馈、矫正(对应学生用书第32页)课标解读1.通过对特殊三角形边角间数量关系的研究,发现正弦定理,了解其向量证法(难点).2.掌握正弦定理,并能解决一些简单的三角形度量问题(重点).正弦定理【问题导思】在Rt △ABC 中,c 为斜边,试问a sin A ,b sin B ,csin C 的值相等吗?为什么?对于一般的三角形而言,a sin A ,b sin B ,csin C的值是否相等?【提示】 在Rt △ABC 中,∵sin A =a c ,sin B =b c且C =90°, ∴a sin A =b sin B =csin C.对一般的三角形而言,也相等. 语言表述 在一个三角形中,各边和它所对角的正弦的比相等符号表示 asin A =bsin B =csin C比值的 含义a sin A =b sin B =csin C=2R(其中R 为△ABC 的外接圆半径)变形(1)a =2R sin__A ,b =2R sin__B ,c =2R sin__C ;(2)sin A =a 2R ,sin B =b 2R ,sin C =c2R ;(3)a ∶b ∶c =sin__A ∶sin__B ∶sin__C.作用 揭示了三角形边、角之间的数量关系三角形面积公式【问题导思】在Rt △ABC 中,c 为斜边,三角形的面积与12ab sin C ,12bc sin A ,12ac sin B 的值相等吗?猜想一下在一般三角形中是否成立?【提示】 ∵C =90°,∴S △ABC =12ab =12ab sin C ,设边c 上的高为h , 则sin B =ha ,sin A =h b,∴S △ABC =12hc =12ac sin B =12bc sin A ,∴在Rt △ABC 中,c 为斜边,三角形的面积与12ab sin C ,12bc sin A ,12ac sin B 的值相等.猜想在一般三角形中也成立.三角形ABC 的面积:S =12ab sin__C=12bc sin__A =12ac sin__B .(对应学生用书第32页)利用正弦定理解三角形在△ABC 中,(1)若A =45°,B =30°,a =2,求b ,c 与C ; (2)若B =30°,b =5,c =53,求A 、C 与a .【思路探究】 (1)已知A ,B ,如何求C ?在正弦定理中b ,c 分别怎样表示? (2)已知B ,b ,c 运用正弦定理可先求出哪个量? 【自主解答】 (1)由三角形内角和定理,得:C =180°-(A +B )=180°-(45°+30°)=105°.由正弦定理a sin A =b sin B =csin C ,得b =a sin B sin A =2sin 30°sin 45°=2×1222=2,sin 105°=sin(60°+45°)=6+24, c =a sin C sin A =2sin 105°sin 45°=2×6+2422=3+1. (2)∵b =5,c =53,B =30°, ∴c ·si n B <b <c , ∴△ABC 有两解, 由正弦定理得:sin C =c sin B b =32, ∴C =60°或120°.当C =60°时,A =90°,易得a =10; 当C =120°时,A =30°,此时a =b =5.1.已知两角与任一边解三角形,可先利用三角形内角和定理求第三个角,再利用正弦定理求出两未知边.2.已知△ABC 的两边a ,b 和角A ,判断三角形解的个数,有以下两种方法: 法一 作图判断.作出已知角A ,边长b ,以点C 为圆心,以边长a 为半径画弧,与射线AB 的公共点(除去顶点A )的个数即为三角形解的个数.法二 根据三角函数的性质来判断. 由正弦定理,得sin B =b sin A a ,当b sin A a >1时,无解;当b sin Aa=1时,有一解;当b sin Aa<1时,如果a ≥b ,即A ≥B ,则B 一定为锐角,有一解;如果a <b ,即A <B ,有两解.本例(2)中,若B =60°,b =43,a =42,如何求解? 【解】 由正弦定理a sin A =b sin B =csin C,得 sin A =a sin Bb =42sin 60°43=22, 又a <b ,∴A =45°,C =180°-A -B =75°.∴c =b sin C sin B =43sin 75°sin 60°=43×2+6432=2(2+6).三角形的面积问题在△ABC 中,sin(C -A )=1,sin B =13.(1)求sin A 的值;(2)设AC =6,求△ABC 的面积.【思路探究】 (1)先寻找角A 、B 间的关系,再求sin A. (2)先由正弦定理求BC ,再代入三角形的面积公式求解. 【自主解答】 (1)由C -A =π2和A +B +C =π,得2A =π2-B ,0<A <π4.故cos 2A =sin B ,即1-2sin 2A =13,sin A =33.(2)由(1)得cos A =63. 又由正弦定理,得BC sin A =AC sin B ,BC =sin Asin BAC =32,又C =π2+A ,∴sin C =cos A =63.所以S △ABC =12AC ·BC ·sin C =12AC ·BC ·cos A=3 2.1.求三角形的面积是在已知两边及其夹角的情况下求得的,所以在解题中要有目的的为具备两边及其夹角的条件作准备.2.三角形面积计算公式(1)S =12a ·h a =12b ·h b =12c ·h c (h a 、h b 、h c 分别表示a ,b ,c 边上的高).(2)S =12ab sin C =12ac sin B =12bc sin A =abc 4R .(3)S =12r (a +b +c )(r 为内切圆半径).已知△ABC 中,AB →·AC →<0,S △ABC =154,|AB →|=3,|AC →|=5,则∠BAC =( ) A .30° B .120° C .150° D .30°或150° 【解析】 由S △ABC =154,得12×3×5sin ∠BAC =154,∴sin ∠BAC =12,又由AB →·AC →<0,得∠BAC >90°, ∴∠BAC =150°. 【答案】 C判断三角形的形状已知△ABC 中,b sin B =c sin C ,且sin 2A =sin 2B +sin 2C ,试判断三角形的形状.【思路探究】 利用正弦定理的变形(如a =2R sin A ),将条件中的角化为边,或将边化为角,从而进行判断.【自主解答】 法一 由b sin B =c sin C 得,2R sin 2B =2R sin 2C , 即sin 2B =sin 2C. ∵0<B <π,0<C <π, ∴sin B >0,sin C >0. ∴sin B =sin C ,∴B =C.又sin 2A =sin 2B +sin 2C ,A =π-(B +C )=π-2B , ∴sin 22B =2sin 2B. 即4sin 2B ·cos 2B =2sin 2B. ∴cos 2B =12.由A =π-2B ∈(0,π)知,0<B <π2.∴cos B =22,∴B =π4,A =π2. 故△ABC 是等腰直角三角形.法二 由b sin B =c sin C 得:b ·2R sin B =c ·2R sin C , ∴b 2=c 2,b =c .由sin 2A =sin 2B +sin 2C 得,(2R sin A )2=(2R sin B )2+(2R sin C )2, ∴a 2=b 2+c 2,结合b =c 知,△ABC 为等腰直角三角形.1.本题已知三角形中的边角关系式,判断三角形的形状,可考虑使用正弦定理,把关系式中的边化为角,再进行三角恒等变换求出三个角之间的关系式,然后给予判定.2.在正弦定理的推广中,a =2R sin A ,b =2R sin B ,c =2R sin C 是边化角的主要工具.其他变形还有角化边,如sin A =a 2R ,sin B =b 2R ,sin C =c2R ,借助正弦定理可以进行三角形形状的判断,三角恒等式的证明.在△ABC 中,已知a 2tan B =b 2tan A ,试判断三角形的形状.【解】 由已知得a 2sin B cos B =b 2sin Acos A,由正弦定理a =2R sin A ,b =2R sin B (R 为△ABC 的外接圆半径),得 4R 2sin 2A sinB cos B =4R 2sin 2B sin Acos A ,sin A cos A =sin B cos B , ∴sin 2A =sin 2B. ∴2A +2B =π或2A =2B. ∴A +B =π2或A -B =0.∴△ABC 为等腰三角形或直角三角形.(对应学生用书第34页)解三角形时忽视讨论致误在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且b =6,a =23,A =30°,求△ABC 的面积.【错解】 由正弦定理得: sin B =b sin A a =6×sin 30°23=32, ∴B =60°.故C =180°-A -B =180°-30°-60°=90°, 在Rt △ABC 中,C =90°,a =23,b =6, 故S △ABC =12ab =12×23×6=6 3.【错因分析】 上述解答错误之处在于在利用正弦定理求得sin B =32后直接得出B =60°,未对解的情况作出判断和讨论,从而导致丢解.【防范措施】 遇到已知两边及其中一边对角解三角形时一定要讨论. 【正解】 由正弦定理得, sin B =b sin A a =6×sin 30°23=32. 由b =6,a =23知,b >a ,∴B >A =30°. ∴B =60°或120°.(1)当B =60°时,C =180°-A -B =90°. ∴S △ABC =12ab =12×6×23=6 3.(2)当B =120°时,C =180°-A -B =30°. ∴S △ABC =12ab sin C =12×6×23×sin 30°=3 3.综合以上得△ABC 的面积为63或3 3.1.应用正弦定理可解决两类三角形问题:(1)已知三角形两角及一边;(2)已知两边及其中一边的对角. 2.已知两边及其中一边的对角解三角形时,要注意分类讨论.3.正弦定理揭示了三角形中边、角之间的数量关系,可以借助三角形外接圆的半径,用边表示角或用角表示边,从而在解决有关问题时,可利用其“化边为角”或“化角为边”.(对应学生用书第34页)1.在△ABC 中,一定成立的等式是( ) A .a sin A =b sin B B .a cos A =b cos B C .a sin B =b sin A D .a cos B =b cos A 【解析】 由正弦定理得a sin A =bsin B,∴a sin B =b sin A.【答案】 C2.在△ABC 中,A =30°,C =105°,b =8,则a 等于( )A .4B .4 2C .4 3D .4 5【解析】 由三角形内角和定理知B =180°-A -C =180°-30°-105°=45°.由正弦定理a sin A =b sin B ,得a =b sin A sin B =8·sin 30°sin 45°=4 2.【答案】 B3.在锐角△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,且3a =2c sin A ,则角C =________.【解析】 根据正弦定理,a sin A =csin C,由3a =2c sin A ,得3sin A =2sin C sin A , ∴sin C =32,而角C 是锐角,∴C =π3. 【答案】π34.在△ABC 中,求证:a 2sin 2B +b 2sin 2A =2ab sin C. 【证明】 由正弦定理得a 2sin 2B +b 2sin 2A ab =a b sin 2B +basin 2A=sin A ·sin 2B sin B +sin B ·sin 2Asin A=2(sin A ·cos B +sin B ·cos A ) =2sin(A +B )=2sin C ,故原式成立.(对应学生用书第97页)一、选择题1.在△ABC 中,下列a 与b sin A 的关系正确的是( ) A .a >b sin A B .a ≥b sin A C .a <b sin A D .a ≤b sin A 【解析】 由正弦定理得a sin A =bsin B,所以a =b sin Asin B,又因为sin B ∈(0,1], 所以a ≥b sin A. 【答案】 B2.△ABC 中,a =5,b =3,sin B =22,则符合条件的三角形有( ) A .1个 B .2个 C .3个 D .0个 【解析】 ∵a sin B =102, ∴a sin B <b =3<a =5, ∴符合条件的三角形有2个. 【答案】 B3.在△ABC 中,若A =75°,B =45°,c =6,则△ABC 的面积为( ) A .9+3 3 B.9(6-2)2C.9+332 D.9(6+2)2【解析】 ∵A =75°,B =45°,∴C =60°,b =c sin Bsin C=6×2232=26,∴S △ABC =12bc sin A =12×26×6×6+24=9+3 3.【答案】 A4.在△ABC 中,角A 、B 、C 的对边分别为a ,b ,c ,且a cos B +a cos C =b +c ,则△ABC 的形状是( )A .等边三角形B .锐角三角形C .钝角三角形D .直角三角形【解析】 ∵a cos B +a cos C =b +c ,故由正弦定理得,sin A cos B +sin A cos C =sin B +sin C =sin(A +C )+sin(A +B ), 化简得:cos A (sin B +sin C )=0,又sin B +sin C >0, ∴cos A =0,即A =π2,∴△ABC 为直角三角形. 【答案】 D5.(2012·天津高考)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知8b =5c ,C =2B ,则cos C =( )A.725 B .-725C .±725 D.2425【解析】 由b sin B =csin C ,且8b =5c ,C =2B ,所以5c sin 2B =8c sin B ,所以cos B=45.所以cos C =cos 2B =2cos 2B -1=725. 【答案】 A 二、填空题6.在△ABC 中,B =45°,C =60°,c =1,则最短边的边长等于________. 【解析】 由三角形内角和定理知:A =75°,由边角关系知B 所对的边b 为最小边,由正弦定理b sin B =c sin C 得b =c sin B sin C =1×2232=63.【答案】637.(2013·济南高二检测)已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,b =3,A +C =2B ,则sin C =________.【解析】 ∵A +B +C =180°,且A +C =2B ,∴B =60°. 由正弦定理得sin A =a sin B b =1×sin 60°3=12, 又a <b ,∴A =30°.∴C =180°-(30°+60°)=90°.即sin C =1. 【答案】 18.若△ABC 的面积为3,BC =2,C =60°,则边AB 的长度等于________. 【解析】 由于S △ABC =3,BC =2,C =60°, ∴3=12×2·AC ·32,∴AC =2,∴△ABC 为正三角形,∴AB =2. 【答案】 2 三、解答题9.在△ABC 中,c =6,A =45°,a =2,求b 和B ,C. 【解】 ∵a sin A =csin C,∴sin C =c sin A a =6×sin 45°2=32. ∵c sin A <a <c ,∴C =60°或C =120°. ∴当C =60°时,B =75°,b =c sin B sin C =6sin 75°sin 60°=3+1, ∴当C =120°时,B =15°,b =c sin B sin C =6sin 15°sin 120°=3-1. ∴b =3+1,B =75°,C =60°或b =3-1,B =15°,C =120°.10.在△ABC 中,如果lg a -lg c =lgsin B =-lg 2,且B 为锐角,判断此三角形的形状.【解】 由lg a -lg c =lgsin B =-lg 2, 得sin B =22,又B 为锐角, ∴B =45°,又a c =22,∴sin A sin C =22, ∴sin C =2sin A =2sin(135°-C ), ∴sin C =sin C +cos C , ∴cos C =0,即C =90°, 故此三角形是等腰直角三角形.11.在△ABC 中,已知tan B =3,cos C =13,AC =36,求△ABC 的面积.【解】 设△ABC 中AB 、BC 、CA 的长分别为c 、a 、b . 由tan B =3,得B =60°, ∴sin B =32,cos B =12. 又cos C =13,∴sin C =1-cos 2C =223,由正弦定理得c =b sin Csin B =36×22332=8.又∵sin A =sin(B +C )=sin B cos C +cos B sin C =36+23, ∴三角形面积S △ABC =12bc sin A =62+8 3.(教师用书独具)已知△ABC 的角A ,B ,C 所对的边分别为a ,b ,c ,且a cos C +12c =b ,(1)求角A 的大小;(2)若a =1,求△ABC 的周长l 的取值范围.【思路探究】 (1)本题可考虑把边化为角,通过寻找三角形角与角之间的关系求解; (2)将周长表示为三角形某内角的函数,通过求函数的值域来求周长的取值范围. 【自主解答】 (1)由a cos C +12c =b 和正弦定理得,sin A cos C +12sin C =sin B ,又sin B =sin(A +C )=sin A cos C +cos A sin C , ∴12sin C =cos A sin C , ∵sin C ≠0,∴cos A =12,∵0<A <π,∴A =π3.(2)由正弦定理得,b =a sin B sin A =23sin B , c =a sin C sin A =23sin C ,则l =a +b +c =1+23(sin B +sin C )=1+23[sin B +sin(A +B )]=1+2(32sin B +12cos B )=1+2sin(B +π6). ∵A =π3,∴B ∈(0,2π3),∴B +π6∈(π6,5π6),∴sin(B +π6)∈(12,1],∴△ABC 的周长l 的取值范围为(2,3].利用正弦定理可以实现边、角互化(1)将边转化为角:a =2R sin A ,b =2R sin B ,c =2R sin C ; (2)将角转化为边:sin A =a 2R ,sin B =b 2R ,sin C =c 2R.已知△ABC 的角A 、B 、C 的对边分别为a 、b 、c ,若1-c 2a =sin (B -C )sin (B +C ),求cosA +C2的值.【解】 由正弦定理以及sin A =sin(B +C ),得: 1-sin C 2sin A =sin (B -C )sin A, 整理得2sin A -sin C =2sin(B -C ), ∴4cos B sin C =sin C , 又sin C ≠0, ∴cos B =14,∴1-2sin 2B 2=14,sin B 2=64, ∴cosA +C2=cos π-B 2=sin B 2=64. 趣味材料中国南宋末年数学家秦九韶发现三斜求积公式,其著作《数书九章》卷五第二题即三斜求积.“问沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里,里法三百步,欲知为田几何?”答曰:“三百十五顷.”其术文是:“以小斜幂并大斜幂,减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂,减上,余四约之为实,……开平方得积.”若以大斜记为a ,中斜记为b ,小斜记为c ,秦九韶的方法相当于下面的一般公式:S =14[a 2c 2-(a 2+c 2-b 22)2],这里a >b >c .1.2 余弦定理(教师用书独具)●三维目标1.知识与技能掌握余弦定理的两种表示形式及余弦定理的向量方法;并会用余弦定理解决基本的解三角形问题.2.过程与方法利用向量数量积推出余弦定理并通过实践演算掌握运用余弦定理解决解三角形问题.3.情感、态度与价值观培养学生在方程思想指导下处理解三角形问题的运算能力;通过三角函数、余弦定理、向量的数量积等知识间的关系,来理解事物之间的普遍联系与辨证统一.●重点难点重点:余弦定理的发现和证明过程及应用.难点:正、余弦定理与三角函数、三角恒等变换的综合问题.(教师用书独具)●教学建议探究和证明余弦定理的过程既是本节课的重点,也是本节课的难点.学生已具备了勾股定理的知识,即当C=90°时,有c2=a2+b2,作为一般的情况,当C≠90°时,三角形的三边满足什么呢?学生一时很难找到思路.最容易想到的思路就是构造直角三角形,尝试用勾股定理去探究三角形的边角关系.用向量的数量积证明余弦定理更是学生想不到的,原因是学生很难将向量的知识与解三角形的知识相结合.因此教师在授课时可以适当点拨、启发.鼓励学生大胆的探索.在教学中引导学生从不同的途径去探索余弦定理的证明,这样既能开拓学生的视野,加深学生对余弦定理的理解,又能培养学生形成良好的思维习惯,从而突破本节难重点.●教学流程创设问题情境,提出问题⇒通过引导学生回答所提问题,结合勾股定理,理解余弦定理⇒通过例1及变式训练,使学生掌握利用余弦定理解三角形问题⇒通过例2及互动探究,使学生掌握、判断三角形形状问题⇒通过例3及变式训练,使学生掌握正、余弦定理的综合应用⇒归纳整理,进行课堂小结,整体认识所学知识⇒完成当堂双基达标,巩固所学知识,并进行反馈、矫正(对应学生用书第35页)课标解读1.了解用向量数量积证明余弦定理的方法,体会向量工具在解决三角形度量问题时的作用(难点). 2.掌握余弦定理,并能解决一些简单的三角形度量问题(重点).余弦定理【问题导思】图2-1-1如图2-1-1,在△ABC 中,设CB →=a ,CA →=b ,AB →=c ,如果C =90°,如何求AB 边的长?当C ≠90°,如何用向量的数量积表示AB 边的长?【提示】 利用勾股定理求AB 的边长. |c |2=c·c =(a -b )·(a -b )=a 2-2a·b +b 2=a 2+b 2-2|a ||b |cos C ∴c 2=a 2+b 2-2ab cos C. 余弦定理语言表述三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍.符号表示a 2=b 2+c 2-2bc cos__A ;b 2=a 2+c 2-2ac cos__B ; c 2=a 2+b 2-2ab cos__C.推论cos A =b 2+c 2-a 22bc;cos B =a 2+c 2-b 22ac ;cos C =a 2+b 2-c 22ab.作用 实现三角形边与角的互化.(对应学生用书第35页)利用余弦定理解三角形(1)在△ABC 中,若a =1,b =1,C =120°求c ;(2)已知△ABC 中,a ∶b ∶c =2∶6∶(3+1),求△ABC 各内角的度数. 【思路探究】 (1)直接利用余弦定理求解. (2)先根据比值设出各边的长,再利用余弦定理求解. 【自主解答】 (1)c 2=a 2+b 2-2ab cos C =1+1-2cos 120°=3, ∴c = 3.(2)∵a ∶b ∶c =2∶6∶(3+1), ∴令a =2k ,b =6k ,c =(3+1)k . 由余弦定理得cos A =b 2+c 2-a 22bc =6+(3+1)2-426(3+1)=22,∴A =45°.cos B =a 2+c 2-b 22ac =4+(3+1)2-62×2×(3+1)=12,∴B =60°.∴C =180°-A -B =180°-45°-60°=75°.1.本题(2)关键是根据已知条件设出三边,为使用余弦定理的推论求角创造条件. 2.余弦定理是刻画三角形两边及其夹角的余弦与第三边关系的定理.在余弦定理的每一个等式中均含有四个不同的量,它们分别是三角形的三边和一个角,知道其中的任意三个量,便可求得第四个量.(1)在△ABC 中,已知角A ,B ,C 所对的三边长分别为a ,b ,c ,若A =π4,b =2,S △ABC=2,求a .(2)在△ABC 中,a ∶b ∶c =2∶3∶13,求△ABC 中最大角的度数.【解】 (1)因为S △ABC =12bc sin A =12×2×22c =22c =2,所以c =2 2.根据余弦定理得a 2=b 2+c 2-2bc cos A =4+8-2×2×22×22=4,所以a =2. (2)∵a ∶b ∶c =2∶3∶13,∴令a =2k ,b =3k ,c =13k (k >0),由b <a <c ,知C 为△ABC 最大内角,cos C =a 2+b 2-c 22ab =4+3-132×2×3=-32,又0°<C <180°∴C =150°.判断三角形的形状在△ABC 中,已知(a +b +c )(a +b -c )=3ab ,且2cos A sin B =sin C ,确定△ABC 的形状.【思路探究】 可先把角的关系转化为边的关系,通过边来判断三角形的形状,也可把边的关系转化为角的关系,通过角来判断三角形的形状.【自主解答】 法一 由正弦定理得sin C sin B =cb ,由2cos A sin B =sin C ,有cos A =sin C 2sin B =c2b.又由余弦定理得cos A =b 2+c 2-a 22bc ,所以c 2b =b 2+c 2-a 22bc,即c 2=b 2+c 2-a 2,所以a 2=b 2,所以a =b . 又因为(a +b +c )(a +b -c )=3ab , 所以(a +b )2-c 2=3ab ,所以4b 2-c 2=3b 2,即b 2=c 2.所以b =c ,所以a =b =c . 所以△ABC 为等边三角形. 法二 因为A +B +C =180°, 所以sin C =sin(A +B ), 又因为2cos A sin B =sin C ,所以2cos A sin B =sin A cos B +cos A sin B , 所以sin(A -B )=0.又因为A 与B 均为△ABC 的内角,所以A =B. 又由(a +b +c )(a +b -c )=3ab 得(a +b )2-c 2=3ab , 所以a 2+b 2-c 2+2ab =3ab ,即a 2+b 2-c 2=ab .由余弦定理,得cos C =a 2+b 2-c 22ab =ab 2ab =12,又0°<C <180°,所以C =60°. 所以△ABC 为等边三角形.1.本题解法一利用了边的关系判断,解法二利用了角的关系判断.2.判断三角形的形状,应围绕三角形的边角关系进行思考,主要有以下两条途径:(1)利用正、余弦定理把已知条件转化为边边关系,通过因式分解、配方等得出边的相应关系;(2)利用正、余弦定理把已知条件转化为内角的三角函数间的关系,通过三角函数恒等变形,得出内角的关系,此时要注意应用A +B +C =π这个结论.若将例题中的条件改为“△ABC 中,b ,c 是角B 、C 的对边,且cos 2A 2=b +c 2c”,试判断△ABC 的形状.【解】 法一 ∵cos 2A 2=1+cos A2且cos 2A 2=b +c 2c, ∴1+cos A 2=b +c 2c ,即cos A =bc. 由正弦定理,得cos A =sin B sin C,∴cos A sin C =sin(A +C ),整理得sin A cos C =0. ∵sin A ≠0,∴cos C =0,∴C =π2.故△ABC 为直角三角形.法二 同法一得cos A =b c.由余弦定理得b 2+c 2-a 22bc =b c,整理得a 2+b 2=c 2,故△ABC 为直角三角形.正、余弦定理的综合应用在△ABC 中,C =2A ,a +c =10,cos A =34,求b .【思路探究】 先根据正弦定理求出a ,c 的值,再利用余弦定理建立b 的方程求b . 【自主解答】 由正弦定理得c a =sin C sin A =sin 2A sin A =2cos A =32, 又a +c =10, ∴a =4,c =6.由余弦定理a 2=b 2+c 2-2bc cos A 得b 2-9b +20=0, 解得b =4或b =5. 当b =4时, ∵a =4,∴A =B ,又C =2A 且A +B +C =180°, ∴A =45°与cos A =34矛盾,舍去,∴b =5.1.本题易忽视检验b =4的情况导致出错.2.余弦定理和正弦定理都是解三角形的重要工具,都可以实现三角形中的边角转化.在解决三角形中的综合问题时,要有意识地合理选择,一般情况下,如果条件中含有角的余弦或边的二次式,要考虑余弦定理;若条件中含有角的正弦或边的一次式,则考虑正弦定理.学习时应注意归纳总结正、余弦定理的应用技巧,如公式的正用、逆用以及变形用等,同时牢固掌握内角和定理的运用和三角变换的技巧.已知A 、B 、C 是△ABC 的三个内角,且满足(sin A +sin B )2-sin 2C =3sin A sin B. 求证:A +B =120°.【证明】 由(sin A +sin B )2-sin 2C =3sin A sin B 可得sin 2A +sin 2B -sin 2C =sin A sinB.由正弦定理得sin A =a 2R ,sin B =b 2R ,sin C =c2R,∴a 24R 2+b 24R 2-c 24R 2=a 2R ·b2R, 即a 2+b 2-c 2=ab .由余弦定理的推论得cos C =a 2+b 2-c 22ab =12,∴C =60°, ∴A +B =120°.(对应学生用书第37页)转化思想在三角形中的应用(12分)在△ABC 中,A 、B 、C 的对边分别为a 、b 、c ,且a cos A =b cos B =ccos C ,试判断△ABC 的形状.【思路点拨】 可以把角转化为边,也可以把边转化为角来处理. 【规范解答】 法一 由正弦定理a sin A =b sin B =csin C=2R 得:a =2R sin A ,b =2R sin B ,c =2R sin C.代入a cos A =b cos B =c cos C 中,得:2R sin A cos A =2R sin B cos B =2R sin C cos C,4分即sin A cos A =sin B cos B =sin C cos C, ∴tan A =tan B =tan C .10分又∵A 、B 、C 是△ABC 的内角,∴A =B =C. ∴△ABC 是等边三角形.12分 法二 由余弦定理得a ·2bcb 2+c 2-a 2=b ·2ac a 2+c 2-b 2=c ·2aba 2+b 2-c 2,6分∴b 2+c 2-a 2=a 2+c 2-b 2=a 2+b 2-c 2. 得a 2=b 2=c 2,即a =b =c .10分∴△ABC 是等边三角形.12分转化也称化归,它是将未知的,陌生的,复杂的问题转为已知的,熟悉的,简单的问题,从而使问题解决的数学思想.在解三角形时,若已知条件中含边角共存的关系式时,往往可利用正弦定理或余弦定理实现边角间的互化,从而发现各元素间的关系.1.余弦定理揭示了任意三角形边角之间的客观规律,也是解三角形的重要工具,可解决以下两类问题:(1)已知两边及其夹角,求第三边和其他两角; (2)已知三边求三角.2.判断三角形的形状,应围绕三角形的边角关系进行思考,依据已知条件中的边角关系判断时,可利用正弦定理或余弦定理转化为边的关系作代数运算,也可转化角的关系,通过三角变换求解.(对应学生用书第37页)1.在△ABC 中,已知a =5,b =4,C =120°,则c 为( ) A.41 B.61 C.41或61 D.21【解析】 ∵c 2=a 2+b 2-2ab cos 120°=25+16+2×5×4×12=61.∴c =61.【答案】 B2.在△ABC 中,若a =3+1,b =3-1,c =10,则△ABC 的最大角的度数为( ) A .60° B .90° C.120° D .150° 【解析】 ∵c >a >b ,∴C 是最大角,由余弦定理得:cos C =(3+1)2+(3-1)2-(10)22×(3+1)×(3-1)=8-104=-12.∴C =120°.【答案】 C3.若△ABC 的三个内角满足sin A ∶sin B ∶sin C =5∶11∶13,则△ABC ( ) A .一定是锐角三角形 B .一定是直角三角形 C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形 【解析】 由正弦定理知a ∶b ∶c =5∶11∶13, 设a =5k ,b =11k ,c =13k (k >0),由余弦定理知cos C =a 2+b 2-c 22ab =(5k )2+(11k )2-(13k )22×5k ×11k =-23110<0,∴C 为钝角.【答案】 C4.已知△ABC 的边长满足等式a 2-(b -c )2bc =1时,求A.【解】 由a 2-(b -c )2bc =1,得b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =bc 2bc =12,又0<A <π,所以A =π3.(对应学生用书第99页)一、选择题1.已知△ABC 中,A ,B ,C 的对边分别为a ,b ,c .若a =c =6+2,且A =75°,则b =( )A .2B .4+2 3C .4-2 3 D.6- 2【解析】 在△ABC 中,易知B =30°,由余弦定理得b 2=a 2+c 2-2ac cos 30°=4,∴b =2. 【答案】 A2.a 、b 、c 是△ABC 的三边,B =60°,那么a 2-ac +c 2-b 2的值( ) A .大于0 B .小于0 C .等于0 D .不确定【解析】 由余弦定理得b 2=a 2+c 2-2ac cos 60°=a 2+c 2-ac , 所以a 2-ac +c 2-b 2=(a 2+c 2-ac )-b 2=b 2-b 2=0. 【答案】 C3.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若c =2,b =6,B =120°,则a 等于( )A. 6 B .2 C. 3 D. 2【解析】 由余弦定理得,b 2=a 2+c 2-2ac ·cos B , ∴6=a 2+2+2a ,∴a =2或-22(舍去). 【答案】 D4.(2012·上海高考)在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .不能确定【解】 由正弦定理知a sin A =b sin B =csin C =2R ,∴sin A =a 2R ,sin B =b 2R ,sin C =c2R.∵sin 2A +sin 2B <sin 2C ,∴a 24R 2+b 24R 2<c 24R2,∴a 2+b 2<c 2,∴cos C =a 2+b 2-c 22ab<0,∴C 为钝角,∴△ABC 为钝角三角形. 【答案】 C5.△ABC 的三边长分别为AB =7,BC =5,CA =6,则AB →·BC →的值为( ) A .19 B .14 C .-18 D .-19【解析】 由余弦定理的推论cos B =AB 2+BC 2-AC 22AB ·BC =1935,又AB →·BC →=|AB →|·|BC →|·cos (π-B )=5×7×(-1935)=-19.【答案】 D 二、填空题6.在△ABC 中,若(a -c )(a +c )=b (b -c ),则A =________. 【解析】 由(a -c )(a +c )=b (b -c )得a 2-c 2=b 2-bc , 即b 2+c 2-a 2=bc 与余弦定理b 2+c 2-a 2=2bc cos A , 比较知cos A =12,∴A =60°.【答案】 60°7.在不等边三角形中,a 是最大的边,若a 2<b 2+c 2,则角A 的取值范围是________. 【解析】 ∵a 是最大边,∴A >π3,又a 2<b 2+c 2,由余弦定理cos A =b 2+c 2-a 22bc >0,∴A <π2,故π3<A <π2.【答案】 (π3,π2)8.(2012·北京高考)在△ABC 中,若a =2,b +c =7,cos B =-14,则b =________.【解析】 在△ABC 中,由b 2=a 2+c 2-2ac cos B 及b +c =7知,b 2=4+(7-b )2-2×2×(7-b )×(-14),整理得15b -60=0.∴b =4. 【答案】 4 三、解答题9.已知△ABC 的顶点为A (2,3),B (3,-2)和C (0,0),求∠AB C. 【解】 |AB |=(3-2)2+(-2-3)2=26, |BC |=(0-3)2+[0-(-2)]2=13, |CA |=(2-0)2+(3-0)2=13, 由余弦定理得cos ∠ABC =(13)2+(26)2-(13)22×13×26=22,又∵∠ABC ∈(0,π),∴∠ABC =π4.10.a 、b 、c 分别是△ABC 中角A 、B 、C 的对边,且(sin B +sin C +sin A )(sin B +sinC -sin A )=185sin B sin C ,边b 和c 是关于x 的方程x 2-9x +25cos A =0的两根(b >c ).(1)求角A 的正弦值; (2)求边a ,b ,c ; (3)判断△ABC 的形状.【解】 (1)∵(sin B +sin C +sin A )(sin B +sin C -sin A )=185sin B ·sin C.结合正弦定理得(b +c +a )(b +c -a )=185bc ,整理得b 2+c 2-a 2=85bc .由余弦定理得cos A =b 2+c 2-a 22bc =45,∴sin A =35.(2)由(1)知方程x 2-9x +25cos A =0, 可化为x 2-9x +20=0, 解之得x =5或x =4. ∵b >c ,∴b =5,c =4.由余弦定理知:a 2=b 2+c 2-2bc cos A , ∴a =3.(3)由(1)(2)知,a 2+c 2=b 2, ∴△ABC 为直角三角形.11.(2013·潍坊高二检测)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且2b ·cosA =c ·cos A +a ·cos C ,(1)求角A 的大小;(2)若a =7,b +c =4,求△ABC 的面积.【解】 (1)根据正弦定理2b ·cos A =c ·cos A +a ·cos C ⇒ 2cos A sin B =sin A cos C +cos A sin C =sin(A +C )=sin B , ∵sin B ≠0,∴cos A =12,又∵0°<A <180°,∴A =60°. (2)由余弦定理得:7=a 2=b 2+c 2-2bc ·cos 60°=b 2+c 2-bc =(b +c )2-3bc , 代入b +c =4得bc =3,故△ABC 面积为S =12bc sin A =334.(教师用书独具)在△ABC 中,角A 、B 、C 所对的边分别为a ,b ,c ,证明:a 2-b 2c 2=sin (A -B )sin C.【思路探究】 本题可考虑把边化为角,通过三角变换寻找等式左、右两边的联系. 【自主解答】 由余弦定理可知:a 2=b 2+c 2-2bc ·cos A ,b 2=a 2+c 2-2ac ·cos B则a 2-b 2=b 2-a 2-2bc ·cos A +2ac ·cos B , 整理得:a 2-b 2c 2=a cos B -b cos A c , 又a c =sin A sin C ,b c =sin B sin C, ∴a 2-b 2c 2=sin A cos B -cos A sin B sin C =sin (A -B )sin C.在△ABC 中,内角A 、B 、C 的对边长分别为a 、b 、c ,已知a 2-c 2=2b ,且sin A cos C =3cos A sin C ,求b .【解】 法一 ∵sin B =4cos A sin C , 由正弦定理,得b 2R =4cos A c2R,∴b =4c cos A ,由余弦定理得b =4c ·b 2+c 2-a 22bc,∴b 2=2(b 2+c 2-a 2),∴b 2=2(b 2-2b ),∴b =4. 法二 由余弦定理,得a 2-c 2=b 2-2bc cos A , ∵a 2-c 2=2b ,b ≠0,∴b =2c cos A +2,①由正弦定理,得b c =sin Bsin C,又由已知得,sin Bsin C =4cos A ,∴b =4c cos A .②由①②得b =4.§2三角形中的几何计算(教师用书独具)●三维目标1.知识与技能掌握正、余弦定理解任意三角形的方法,体会正、余弦定理在平面几何计算与推理中的作用.2.过程与方法能过图形的观察、识别、分析、归纳来正确选择正、余弦定理.3.情感、态度与价值观通过本节课的探究,培养学生勇于探索、创新的学习习惯.●重点难点重点:利用正、余弦定理解决三角形中的几何计算.难点:将几何计算转化为解三角形问题.(教师用书独具)●教学建议通过例题的活动探究,要让学生结合图形理解题意,学会分析问题状态,确定合适的求解顺序,明确所用的定理.其次,在教学中还要让学生分析讨论,明确正、余弦定理各自实用的范围.●教学流程创设问题情境,提出问题⇒通过引导学生回答所提问题理解三角形中的几何计算——长度、角度、面积等⇒通过例1及变式训练,使学生掌握与长度或角度有关的问题的计算⇒通过例2及变式训练,使学生掌握有关面积问题的处理⇒通过例3及变式训练,使学生进一步掌握正、余弦定理的综合应用⇒归纳整理,进行课堂小结,整体认识所学知识⇒完成当堂双基达标,巩固所学知识,并进行反馈、矫正(对应学生用书第38页)课标解读1.掌握正、余弦定理解任意三角形的方法(重点).2.提高分析问题解决问题的能力(难点).三角形中的几何计算【问题导思】图2-2-1如图2-2-1,2011年8月,利比亚战争期间,北约为了准确分析战场形势,由位于相距32a的英法两军事基地C和D,测得卡扎菲的两支精锐部队分别位于A、B两处,且∠ADB=∠BDC=30°,∠DCA=60°,∠ACB=45°.试问你能根据实例中测量的数据计算卡扎菲这支精锐部队的距离吗?【提示】在△BCD中用正弦定理求出BC,在△ABC中用余弦定理求AB的长.(对应学生用书第38页)与长度或角度有关的问题图2-2-2(2013·中山高二检测)在△ABC 中,已知B =30°,D 是BC 边上的一点,AD =10,AC =14,DC =6,(1)求∠ADC 的大小; (2)求AB 的长.【思路探究】 (1)在△ACD 中已知了AD 、AC 、DC ,可根据余弦定理求∠AD C. (2)在△ABD 中,可用正弦定理求A B.【自主解答】 (1)在△ADC 中,AD =10,AC =14,DC =6,由余弦定理得cos ∠ADC =AD 2+DC 2-AC 22AD ·DC =100+36-1962×10×6=-12,∴∠ADC =120°.(2)由(1)知∠ADB =60°,在△ABD 中,AD =10,B =30°,∠ADB =60°, 由正弦定理得AB sin ∠ADB =ADsin B,∴AB =AD sin ∠ADB sin B =10sin 60°sin 30°=10×3212=10 3.1.正弦、余弦定理是解三角形常用的两个重要定理,在使用时要根据题设条件,恰当选择定理,使求解更方便、简捷.2.解决此类问题要处理好两个方面:(1)找出已知某边长的三角形,从中筛选出可解三角形;(2)找要求线段所在的三角形,确定所需条件.图2-2-3如图2-2-3所示,在△ABC 中,AB =AC =2,BC =23,点D 在BC 边上,∠ADC =45°,则AD 的长度等于________.【解析】 在△ABC 中,由余弦定理,有cos C =AC 2+BC 2-AB 22AC ·BC=(23)22×2×23=32, 则C =30°.在△ACD 中,由正弦定理,有ADsin C=ACsin ∠ADC,∴AD =AC ·sin30°sin 45°=2×1222=2,即AD 的长度等于 2. 【答案】 2有关面积问题图2-2-4如图2-2-4所示,在△ABC 中,BC =5,AC =4,cos ∠CAD =3132且AD =BD ,求△ABC的面积.【思路探究】 先由余弦定理建立方程求CD 的长,再在△ACD 中由正弦定理求sin C ,进而可求△ABC 的面积.【自主解答】 设CD =x ,则AD =BD =5-x . 在△CAD 中,由余弦定理可知 cos ∠CAD =(5-x )2+42-x 22×4×(5-x )=3132,解得x =1.在△CAD 中,由正弦定理可知ADsin C=CDsin ∠CAD,∴sin C =AD CD·1-cos 2∠CAD =41-(3132)2=387.∴S △ABC =12AC ·BC ·sin C=12×4×5×387=1547. 即△ABC 的面积为1547.1.本题求三角形面积容易考虑用12×底×高,但高不易求得,应灵活应用三角形面积公式.2.涉及三角形面积问题通常选用S =12ab sin C =12bc sin A =12ac sin B ,这个公式中含有正弦值,可以和正弦定理建立关系,又由正弦值还可求出余弦值,这就可以与余弦定理建立关系,另外面积公式中有两边的乘积,在余弦定理中也有,所以面积公式、正弦定理和余弦定理之间可以相互变换,关键是根据题中的条件选择正确的变换方向.图2-2-5如图2-2-5所示,△ABC 中,D 在边BC 上,且BD =2,DC =1,B =60°,∠ADC =150°,求AC 的长及△ABC 的面积.【解】 在△ABC 中,∠BAD =150°-60°=90°, ∴AD =BD sin 60°=2×32=3, 在△ACD 中,AC 2=AD 2+DC 2-2AD ·DC cos ∠ADC =(3)2+12-2×3×1×cos 150°=7,∴AC =7.又∵AB =BD cos 60°=1,∴S △ABC =12AB ·BC sin B =12×1×3×32=34 3.正、余弦定理的综合应用。
【课堂新坐标】(教师用书)高中数学 2.1.3 超几何分布课后知能检测 新人教B版选修2-3
【课堂新坐标】(教师用书)2013-2014学年高中数学 2.1.3 超几何分布课后知能检测 新人教B 版选修2-3一、选择题1.某校从学生会中的10名女生干部与5名男生干部中随机选取6名学生干部组成“文明校园督察队”,则组成4女2男的“文明校园督察队”的概率为( )A.C 615A 615 B.C 310C 35C 615 C.C 410C 25C 615 D.C 410A 25A 615【解析】 组成4女2男的“文明校园督察队”的概率为C 410C 25C 615.【答案】 C2.一个盒子里装有相同大小的黑球10个,红球12个,白球4个,从中任取两个,其中白球的个数记为X ,则下列概率中等于C 122C 14+C 222C 226的是( ) A .P (0<X ≤2) B.P (X ≤1) C .P (X =2) D .P (X =1)【解析】 由已知得X 的可能取值为0,1,2. P (X =0)=C 222C 226,P (X =1)=C 122·C 14C 226,P (X =2)=C 24C 226.∴P (X ≤1)=P (X =0)+P (X =1)=C 122·C 14+C 222C 226. 【答案】 B3.某10人组成兴趣小组,其中有5名团员,从这10人中任选4人参加某种活动,用X 表示4人中的团员人数,则p (X =3)=( )A.421 B.921 C.621 D.521【解析】 P (X =3)=C 35C 15C 410=521.【答案】 D4.设袋中有80个球,其中40个红球,40个黑球,这些球除颜色外完全相同,从中任取两球,则所取的两球同色的概率为( )A.3979 B.180 C.12 D.4181【解析】 由题意知所求概率为P =C 240+C 240C 280=3979.【答案】 A5.盒中有10只螺丝钉,其中有3只是坏的,现从盒中随机地抽取4个,那么310等于( )A .恰有1只是坏的的概率B .恰有2只是好的的概率C .4只全是好的的概率D .至多有2只是坏的的概率【解析】 恰好2只是好的概率为P =C 23C 27C 410=310.【答案】 B 二、填空题6.从3台甲型彩电和2台乙型彩电中任取2台,若设X 表示所取的2台彩电中甲型彩电的台数,则P (X =1)=________.【解析】 X =1表示的结果是抽取的2台彩电有甲型和乙型彩电各一台,故所求概率P (X =1)=C 13C 12C 25=35.【答案】 357.某导游团由外语导游10人,其中6人会说日语,现要选出4人去完成一项任务,求有2人会说日语的概率为________.【解析】 有两人会说日语的概率为C 26C 24C 10=37.【答案】 378.一批产品共50件,其中5件次品,其余均为合格品,从这批产品中任意抽取2件,其中出现次品的概率为________.【解析】 设抽取的2件产品中次品的件数为X ,则P (X =k )=C k 5C 2-k45C 250(k =0,1,2).∴P (X >0)=P (X =1)+P (X =2)=C 15C 145C 250+C 25C 250=47245.【答案】47245三、解答题9.在一次英语口语考试中,有备选的10道试题,已知某考生能答对其中的8道试题,规定每次考试都从备选题中任选3道题进行测试,至少答对2道题才算合格,求该考生答对试题数X 的分布列,并求该考生合格的概率.【解】 X 可以取1,2,3.P (X =1)可以取C 18·C 22C 10=115;P (X =2)=C 28·C 12C 310=715;P (X =3)=C 38·C 02C 310=715.所以X 的分布列为:该考生合格的概率为P (X =3)=715+715=1415.10.某研究机构准备举行一次数学新课程研讨会,共邀请50名一线教师参加,使用不同版本教材的教师人数如下表所示:(1)从这(2)若随机选出2名使用人教版的教师发言,设使用人教A 版的教师人数为X ,求随机变量X 的分布列.【解】 从50名教师中随机选出2名的方法数为C 250=1 225. 选出2人使用版本相同的方法数为 C 220+C 215+C 25+C 210=350.故2人使用版本相同的概率为:P =3501 225=27.(2)∵P (X =0)=C 215C 235=317,P (X =1)=C 120C 115C 235=60119,P (X =2)=C 220C 235=38119.∴X 的分布列为11.交5元钱,可以参加一次摸奖,袋中有同样大小的球10个,其中8个标有1元钱,2个标有5元钱,摸奖者只能从中任取2个球,他所得奖励是所抽取2个球的钱数之和,求抽奖人所得钱数的分布列.【解】 设随机变量X 表示抽奖人所得的钱数,则X 的取值为2、6、10. P (X =2)=C 28C 02C 210=2845,P (X =6)=C 18C 12C 210=1645,P (X =10)=C 22C 08C 210=145.故X 的分布列为。
【课堂新坐标】(教师用书)20132014学年高中数学模块学习评价新人教a版选修22
模块学习评价(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2013·课标全国卷Ⅰ)若复数z 满足(3-4i)z =|4+3i|,则z 的虚部为( ) A .-4 B .-45C .4D.45【解析】 ∵(3-4i)z =|4+3i|,∴z =|4+3i|3-4i =42+323-4i =+25=35+45i ,∴z 的虚部为45.【答案】 D2.一物体的运动方程是s =3+2t, 则在[2,2.1]这段时间内的平均速度为( )A .0.41B .2C .0.3D .0.2 【解析】Δs Δt =3+2×2.1-3-2×22.1-2=0.20.1=2. 【答案】 B3.曲线y =e x 在点(2,e 2)处的切线与坐标轴所围成的三角形的面积为( ) A.94e 2B .2e 2C .e 2D.e 22【解析】 ∵f ′(x )=e x,∴曲线在点(2,e 2)处的切线的斜率为k =f ′(2)=e 2,切线方程为y -e 2=e 2(x -2),即e 2x -y -e 2=0,切线与x 轴和y 轴的交点坐标分别为A (1,0),B (0,-e 2),则切线与坐标轴围成的△OAB 的面积为12×1×e 2=e22.【答案】 D4.若复数z 满足3-3i =z (-23i),则复数z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限【解析】 z =3-3i -23i =3i +323=12+32i ,其对应点在第一象限.【答案】 A5.(2013·浙江高考)已知函数y =f (x )的图象是下列四个图象之一,且其导函数y =f ′(x )的图象如图1所示,则该函数的图象是( )图1【解析】 从导函数的图象可以看出,导函数值先增大后减小,x =0时最大,所以函数f (x )的图象的变化率也先增大后减小,在x =0时变化率最大.A 项,在x =0时变化率最小,故错误;C 项,变化率是越来越大的,故错误;D 项,变化率是越来越小的,故错误.B 项正确.【答案】 B6.函数f (x )=ax 3-x 在R 上为减函数,则( ) A .a ≤0 B .a <1 C .a <2D .a ≤13【解析】 由题意可知f ′(x )=3ax 2-1≤0在R 上恒成立,则a ≤0. 【答案】 A7.⎠⎛0π|cos x |d x 等于( )A .-2B .0C .2D .1【解析】 ∵|cos x |=⎩⎪⎨⎪⎧cos x ,0≤x ≤π2,-cos x ,π2≤x ≤π,=sin x ⎪⎪⎪⎪π2+(-sin x )⎪⎪⎪⎪ππ2=1+1=2. 【答案】 C8.(2013·宁波高二检测)函数y =ln x (x >0)的图象与直线y =12x +a 相切,则a 等于( )A .ln 2-1B .ln 2+1C .ln 2D .2ln 2【解析】 因为函数y =ln x 的导数y ′=1x ,又函数y =ln x (x >0)的图象与直线y =12x +a 相切,所以1x =12,即x =2,所以切点P (2,ln 2),所以ln 2=1+a ,即a =ln 2-1.【答案】 A9.函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且(x -1)f ′(x )>0,a =f (0),b =f (12),c =f (3),则a ,b ,c 的大小关系是( )A .a >b >cB .c >a >bC .b >a >cD .c >b >a【解析】 因为(x -1)f ′(x )>0,所以当x >1,f ′(x )>0,即函数y =f (x )在(1,+∞)上是增函数,又f (x )=f (2-x ),所以a =f (0)=f (2),b =f (12)=f (32),所以c >a >b .【答案】 B10.在数学归纳法的递推性证明中,由假设n =k 时成立推导n =k +1时成立时,f (n )=1+12+13+…+12n -1增加的项数是( )A .1B .2k+1 C .2k-1D .2k【解析】 ∵f (k )=1+12+13+……+12k -1,又f (k +1)=1+12+13+…+12k -1+12k +12k +1+…+12k +1-1.从f (k )到f (k +1)是增加了(2k +1-1)-2k +1=2k项.【答案】 D11.设△ABC 的三边长分别为a ,b ,c ,△ABC 的面积为S ,内切圆半径为r ,则r =2Sa +b +c,类比这个结论可知:四面体S -ABC 的四个面的面积分别为S 1,S 2,S 3,S 4,内切球半径为R ,四面体S -ABC 的体积为V ,则R =( )A.VS 1+S 2+S 3+S 4B.2VS 1+S 2+S 3+S 4C.3V S 1+S 2+S 3+S 4 D.4VS 1+S 2+S 3+S 4【解析】 四面体中以内切球的球心为顶点,四面体的各个面为底面,可把四面体分割成四个高均为R 的三棱锥,从而有13S 1R +13S 2R +13S 3R +13S 4R =V .即(S 1+S 2+S 3+S 4)R =3V .∴R =3VS 1+S 2+S 3+S 4.【答案】 C12.(2013·辽宁高考)设函数f (x )满足x 2f ′(x )+2xf (x )=e x x ,f (2)=e28,则x >0时,f (x )( )A .有极大值,无极小值B .有极小值,无极大值C .既有极大值又有极小值D .既无极大值也无极小值【解析】 由题意知f ′(x )=e xx3-2fx x=e x -2x 2f xx3.令g (x )=e x -2x 2f (x ),则g ′(x )=e x-2x 2f ′(x )-4xf (x )=e x-2(x 2f ′(x )+2xf (x ))=e x-2e xx=e x ⎝ ⎛⎭⎪⎫1-2x .由g ′(x )=0得x =2,当x =2时,g (x )min =e 2-2×22×e 28=0,即g (x )≥0,则当x >0时,f ′(x )=g xx 3≥0,故f (x )在(0,+∞)上单调递增,既无极大值也无极小值.【答案】 D二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.(2013·西安高二检测)观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第五个等式为________.【解析】 第i 个等式左边为1到i +1的立方和,右边为1+2+3+…+(i +1)的平方,所以第五个等式为13+23+33+43+53+63=212.【答案】 13+23+33+43+53+63=21214.(2013·江苏高考)设z =(2-i)2(i 为虚数单位),则复数z 的模为________.【解析】 z =(2-i)2=3-4i ,所以|z |=|3-4i|=32+-2=5.【答案】 515.如果复数1,a +i,3+a 2i (a ∈R )成等比数列,那么a 的值为________. 【解析】 由题意知,(a +i )2=1×(3+a 2i),即a 2-1+2a i =3+a 2i ,∴⎩⎪⎨⎪⎧a 2-1=3,2a =a 2,解得a =2.【答案】 216.(2013·佛山高二检测)若曲线f (x )=ax 2+ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________.【解析】 f ′(x )=2ax +1x,∵f (x )存在垂直于y 轴的切线.∴f ′(x )=0有解,即2ax +1x=0有解,∴a =-12x 2,∴a ∈(-∞,0)【答案】 (-∞,0)三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)已知复数z 满足:|z |=1+3i -z ,求+2+22z的值.【解】 设z =a +b i(a ,b ∈R ),而|z |=1+3i -z , 即a 2+b 2-1-3i +a +b i =0,则⎩⎨⎧a 2+b 2+a -1=0,b -3=0,解得⎩⎪⎨⎪⎧a =-4,b =3,z =-4+3i ,+2+22z=-7+-4+=24+7i4-3i=3+4i. 18.(本小题满分12分)已知数列8·112·32,8·232·52,…,8·nn -2n +2,…,S n 为该数列的前n 项和,计算得S 1=89,S 2=2425,S 3=4849,S 4=8081.观察上述结果,推测出S n (n ∈N *),并用数学归纳法加以证明. 【解】 推测S n =n +2-1n +2(n ∈N *).用数学归纳法证明如下: (1)当n =1时,S 1=+2-1+=89,等式成立;(2)假设当n =k 时等式成立, 即S k =k +2-1k +2,那么当n =k +1时,S k +1=S k +k +k +2k +2=k +2-1k +2+k +k +2k +2=k +2-k +2+k +k +k +=2k +2k +2-k +2+k +k +2k +2=k +2k +2-k +2k +2k +2=k +2-1k +2=k ++1]2-1k ++1]2.也就是说,当n =k +1时,等式成立.根据(1)和(2),可知对一切n ∈N *,等式均成立.19.(本小题满分12分)函数f (x )=4x 3+ax 2+bx +5在(-∞,-1)和(32,+∞)单调递增,在(-1,32)单调递减.(1)求函数的解析式;(2)求f (x )在[-1,2]上的最大值和最小值.【解】 (1)∵f ′(x )=12x 2+2ax +b ,且由题意可知 -1,32是f ′(x )=0的两个实根,∴⎩⎪⎨⎪⎧-1+32=-2a 12,-32=b12.解得a =-3,b =-18, ∴f (x )=4x 3-3x 2-18x +5.(2)由(1)得f ′(x )=6(2x -3)(x +1),当x ∈[32,2]时,f ′(x )>0,函数f (x )单调递增,当x ∈[-1,32]时,f ′(x )<0,函数f (x )单调递减,又f (-1)=16,f (32)=-614,f (2)=-11.故f (x )max =16,f (x )min =-614. 20.(本小题满分12分)(1)在△ABC 中,AB ⊥AC ,AD ⊥BC 于D ,求证:1AD2=1AB2+1AC 2.(2)在四面体A -BCD 中,类比上述结论,你能得到怎样的猜想,并说明理由.【解】 (1)如图所示,由射影定理AD 2=BD ·DC ,AB 2=BD ·BC , AC 2=BC ·DC ,∴1AD2=1BD ·DC=BC 2BD ·BC ·DC ·BC =BC 2AB 2·AC 2, 又BC 2=AB 2+AC 2,∴1AD =AB 2+AC 2AB ·AC =1AB +1AC . ∴1AD2=1AB2+1AC 2.(2)猜想:类比AB ⊥AC ,AD ⊥BC 猜想在四面体A -BCD 中,AB 、AC 、AD 两两垂直,AE ⊥平面BCD .则1AE2=1AB2+1AC2+1AD 2.如图,连接BE 并延长交CD 于F ,连接AF . ∵AB ⊥AC ,AB ⊥AD ,AC ∩AD =A , ∴AB ⊥平面ACD . 而AF ⊂平面ACD , ∴AB ⊥AF .在Rt △ABF 中,AE ⊥BF , ∴1AE=1AB +1AF .易知在Rt △ACD 中,AF ⊥CD , ∴1AF2=1AC 2+1AD 2, ∴1AE2=1AB2+1AC2+1AD 2,故猜想正确.21.(本小题满分12分)(2013·南京高二检测)设f (x )=x 3+ax 2+bx +1的导数f ′(x )满足f ′(1)=2a ,f ′(2)=-b ,其中常数a ,b ∈R .(1)求曲线y =f (x )在点(1,f (1))处的切线方程; (2)设g (x )=f ′(x )e -x,求函数g (x )的极值.【解】 (1)因为f (x )=x 3+ax 2+bx +1,故f ′(x )=3x 2+2ax +b . 令x =1,得f ′(1)=3+2a +b ,由已知f ′(1)=2a , 因此3+2a +b =2a ,解得b =-3.又令x =2,得f ′(2)=12+4a +b ,由已知f ′(2)=-b , 因此12+4a +b =-b ,解得a =-32.因此f (x )=x 3-32x 2-3x +1,从而f (1)=-52.又因为f ′(1)=2×(-32)=-3,故曲线y =f (x )在点(1,f (1))处的切线方程为y -(-52)=-3(x -1),即6x +2y -1=0. (2)由(1)知g (x )=(3x 2-3x -3)e -x, 从而有g ′(x )=(-3x 2+9x )e -x.令g ′(x )=0,得-3x 2+9x =0,解得x 1=0,x 2=3.当x ∈(-∞,0)时,g ′(x )<0,故g (x )在(-∞,0)上为减函数;当x ∈(0,3)时,g ′(x )>0,故g (x )在(0,3)上为增函数; 当x ∈(3,+∞)时,g ′(x )<0,故g (x )在(3,+∞)上为减函数.从而函数g (x )在x 1=0处取得极小值g (0)=-3,在x 2=3处取得极大值g (3)=15e -3. 22.(本小题满分12分)(2013·北京高考)已知函数f (x )=x 2+x sin x +cos x . (1)若曲线y =f (x )在点(a ,f (a ))处与直线y =b 相切,求a 与b 的值; (2)若曲线y =f (x )与直线y =b 有两个不同交点,求b 的取值范围. 【解】 由f (x )=x 2+x sin x +cos x ,得f ′(x )=x (2+cos x ).(1)因为曲线y =f (x )在点(a ,f (a ))处与直线y =b 相切,所以f ′(a )=a (2+cos a )=0,b=f(a).解得a=0,b=f(0)=1.(2)令f′(x)=0,得x=0.f(x)与f′(x)的变化情况如下:所以函数f(x f(0)=1是f(x)的最小值.当b≤1时,曲线y=f(x)与直线y=b最多只有一个交点;当b>1时,f(-2b)=f(2b)≥4b2-2b-1>4b-2b-1>b,f(0)=1<b,所以存在x1∈(-2b,0),x2∈(0,2b),使得f(x1)=f(x2)=b.由于函数f(x)在区间(-∞,0)和(0,+∞)上均单调,所以当b>1时曲线y=f(x)与直线y=b有且仅有两个不同交点.综上可知,如果曲线y=f(x)与直线y=b有两个不同交点,那么b的取值范围是(1,+∞).。
【课堂新坐标】(教师用书)高中数学 1.1 归纳推理课后知能检测 北师大版选修2-2
【课堂新坐标】(教师用书)2013-2014学年高中数学 1.1 归纳推理课后知能检测 北师大版选修2-2一、选择题1.已知数列23,1,112,214,338,…,猜想该数列的第6项为( )A .4516B .4316C .5316D .5116【解析】 将各项均写成假分数的形式为23,11,32,94,278,…,即3-12-1,3020,3121,3222,3323,…,故猜想第6项为3424=8116=5116.【答案】 D2.观察下列各式:72=49,73=343,74=2 401,…,则72 011的末两位数字为( )A .01B .43C .07D .49【解析】 ∵75=16 807,76=117 649,由运算规律知末两位数字以4为周期重复出现,故72 011=74×502+3,故其末两位数字为43.【答案】 B3.(2013·厦门高二检测)观察下列等式:13+23=(1+2)2, 13+23+33=(1+2+3)2,13+23+33+43=(1+2+3+4)2,…, 根据上述规律第n 个等式为( ) A .13+23+33+…+n 3=(1+2+3+…+n )2B .13+23+…+n 3=[1+2+3+…+(n +1)]2C .13+23+33+…+(n +1)3=(1+2+3+…+n )2D .13+23+33+…+(n +1)3=[1+2+3+…+(n +1)]2【解析】 将各等式中的变化规律同n 对应起来可知选D. 【答案】 D4.有两种花色的正六边形地面砖,按下图的规律,拼成若干个图案,则第六个图案中有菱形纹的正六边形的个数是( )图1-1-6A .26B .31C .32D .36【解析】 设第n 个图案有a n 个菱形花纹的正六边形,则a 1=6×1-0,a 2=6×2-1,a 3=6×3-2,故猜想a 6=6×6-5=31.【答案】 B5.把正偶数列{2n }的各项从小到大依次排成如下的三角形状数表,记M (r ,t )表示该表中第r 行的第t 个数,则表中的数2 014对应于( )2 4 6 8 10 12 14 16 18 20……A .M (45,14)B .M (45,27)C .M (46,14)D .M (46,27)【解析】 由题意2 014是数列{2n }中的第1 007项,而数阵中的前r 行共有1+2+3+…+r =r r +2,令r r +2≤1 007知r 最大值为44.当r =44时,前44行共有990项,故2 014位于第45行,第1 007-990=27个数,即M (45,27).【答案】 B 二、填空题6.如图1-1-7所示,由若干个点组成形如三角形的图形,每条边(包括两个端点)有n (n >1,n ∈N +)个点,每个图形总的点数记为a n ,则a 6=______________,a n =______________.图1-1-7【解析】 依据图形特点可知当n =6时,三角形各边上各有6个点,因此a 6=3×6-3=15.由n =2,3,4,5,6时各图形的特点归纳得a n =3n -3(n ≥2,n ∈N +). 【答案】 15 3n -3(n ≥2,n ∈N +)7.设n 为正整数,f (n )=1+12+13+…+1n ,计算得f (2)=32,f (4)>2,f (8)>52,f (16)>3,观察上述结果,可推测一般的结论为________.【解析】 由题意f (21)=32,f (22)>42,f (23)>52,f (24)>62,故一般的结论为f (2n)≥n +22.【答案】 f (2n)≥n +228.(2013·深圳高二检测)设函数f (x )=xx +2(x >0),观察:f 1(x )=f (x )=xx +2,f 2(x )=f (f 1(x ))=x3x +4, f 3(x )=f (f 2(x ))=x7x +8, f 4(x )=f (f 3(x ))=x15x +16,……根据以上事实,由归纳推理可得:当n ∈N *且n ≥2时,f n (x )=f (f n -1(x ))=________.【解析】 依题意,先求函数结果的分母中x 项系数所组成数列的通项公式,由1,3,7,15,…,可推知该数列的通项公式为a n =2n-1.又函数结果的分母中常数项依次为2,4,8,16,…,故其通项公式为b n =2n.所以当n ≥2时,f n (x )=f (f n -1(x ))=xn-1x +2n.【答案】 xn-x +2n三、解答题9.在△ABC 中,不等式1A +1B +1C ≥9π成立,在四边形ABCD 中,不等式1A +1B +1C +1D ≥162π成立,在五边形ABCDE 中,不等式1A +1B +1C +1D +1E ≥253π成立,猜想在n 边形A 1A 2…A n 中,其不等式为什么?【解】 不等式左边项数分别为3,4,5时,不等式右边的数依次为9π,162π,253π,其分子依次为32,42,52,分母依次为(3-2)π,(4-2)π,(5-2)π,故当不等式左边项数为n个时,归纳猜想右边应为n 2n -π(n ≥3,n ∈N *),故所求为1A 1+1A 2+…+1A n≥n 2n -π(n ≥3,n ∈N *).10.已知:sin 230°+sin 290°+sin 2150°=32,sin 25°+sin 265°+sin 2125°=32.观察上述两等式的规律,请你写出一般性的命题,并证明之.【解】 一般性的命题为sin 2θ+sin 2(60°+θ)+sin 2(120°+θ)=32.证明如下:sin 2θ+sin 2(60°+θ)+sin 2(120°+θ)=1-cos 2θ2+1-+2θ2+1-+2θ2=32-12[cos 2θ+cos(120°+2θ)+cos(240°+2θ)] =32-12[2cos 60°cos(60°+2θ)+cos(180°+60°+2θ)] =32-12[cos(60°+2θ)-cos(60°+2θ)] =32. 11.设{a n }是集合{2t+2s|0≤s <t ,且s ,t ∈Z}中所有的数从小到大排列成的数列,即a 1=3,a 2=5,a 3=6,a 4=9,a 5=10,a 6=12,……将数列{a n }各项按照上小下大,左小右大的原则写成如右的三角形数表:3 5 6 9 10 12 … … … … … … … … …(1)写出这个三角形数表的第四行、第五行; (2)求a 100.【解】 (1)由题意,a 1,对应的有序数对(s ,t )为(0,1).a 2,a 3对应的有序数对(s ,t )分别为(0,2),(1,2);a 4,a 5,a 6对应的有序数对(s ,t )分别为(0,3),(1,3),(2,3),故可归纳出第四行各项对应的有序数对依次为 (0,4),(1,4),(2,4),(3,4). 故第四行为17,18,20,24.第五行各项对应的有序数对(s ,t )依次为(0,5),(1,5),(2,5),(3,5),(4,5) 故第五行为33,34,36,40,48.(2)将三角形数表中各项对应的有序数对列成下面的数表.(0,1) (0,2) (1,2) (0,3) (1,3) (2,3) (0,4) (1,4) (2,4) (3,4) (0,5) (1,5) (2,5) (3,5) (4,5)可以归纳出行数与t 相等,且各行中的项数与t 相等, 故前t 行共有t t +2项,令t t +2≤100,得t ≤13, 当t =13时,t t +2=91.故a 100位于第14行中第9个数. 故a 100对应的有序数对(s ,t )为(8,14). 所以a 100=28+214.。
【课堂新坐标】(教师用书)2013-2014学年高中数学 2.2.1 综合法与分析法课后知能检测 新人教B版选修2-2
【课堂新坐标】(教师用书)2013-2014学年高中数学 2.2.1 综合法与分析法课后知能检测 新人教B 版选修2-2一、选择题1.命题“对于任意角θ,cos 4θ-sin 4θ=cos 2θ”的证明:“cos 4θ-sin 4θ=(cos 2θ-sin 2θ)(cos 2θ+sin 2θ)=cos 2θ-sin 2θ=cos 2θ”,其过程应用了( )A .分析法B .综合法C .综合法、分析法综合使用D .间接证法【解析】 结合分析法及综合法的定义可知B 正确. 【答案】 B2.(2013·台州高二检测)设a ,b ∈R ,且a ≠b ,a +b =2,则必有( ) A .1≤ab ≤a 2+b 22B.a 2+b 22<ab <1C .ab <a 2+b 22<1D .ab <1<a 2+b22【解析】 ∵a +b =2且a ≠b ,∴ab <(a +b2)2=1,a 2+b 22>(a +b2)2=1.∴a 2+b 22>1>ab ,故选D.【答案】 D3.若P =a +a +7,Q =a +3+a +4(a ≥0),则P 、Q 的大小关系是( ) A .P >Q B .P =QC .P <QD .由a 的取值确定【解析】 欲比较P ,Q ,只需比较P 2=2a +7+2a 2+7a 与Q 2=2a +7+2a 2+7a +12, 只需比较a 2+7a 与a 2+7a +12,显然前者小. 【答案】 C4.设甲:函数f (x )=|x 2+mx +n |有四个单调区间,乙:函数g (x )=lg(x 2+mx +n )的值域为R ,那么甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .以上均不对【解析】 对甲,要使f (x )=|x 2+mx +n |有四个单调区间,只需要Δ=m 2-4n >0即可;对乙,要使g (x )=lg(x 2+mx +n )的值域为R ,只需要u =x 2+mx +n 的值域包含区间(0,+∞),只需要Δ=m 2-4n ≥0,∴甲是乙的充分不必要条件.【答案】 A5.(2013·黄冈高二检测)下列不等式不成立的是( ) A .a 2+b 2+c 2≥ab +bc +ca B.a +b >a +b (a >0,b >0) C.a -a -1<a -2-a -3(a ≥3) D.2+10>2 6【解析】 对A ,∵a 2+b 2≥2ab ,b 2+c 2≥2bc ,a 2+c 2≥2ac ,∴a 2+b 2+c 2≥ab +bc +ca ;对B ,∵(a +b )2=a +b +2ab ,(a +b )2=a +b ,∴a +b >a +b ;对C ,要证a -a -1<a -2-a -3(a ≥3)成立,只需证明a +a -3<a -2+a -1,两边平方得2a -3+2a a -3<2a -3+2a -2a -1,即aa -3<a -2a -1,两边平方得a 2-3a <a 2-3a +2,即0<2.因为0<2显然成立,所以原不等式成立; 对于D ,(2+10)2-(26)2=12+45-24=4(5-3)<0, ∴2+10<26,故D 错误. 【答案】 D 二、填空题6.若lg x +lg y =2lg(x -2y ),则log2xy=________. 【解析】 由条件知lg xy =lg(x -2y )2, ∴xy =(x -2y )2,即x 2-5xy +4y 2=0,即(x y)2-5x y +4=0,∴x y =4或x y =1,又x >2y ,故x y=4. ∴log2xy=log 24=4. 【答案】 47.已知a ,b 是不相等的正数,x =a +b2,y =a +b ,则x ,y 的大小关系是________.【解析】 x 2-y 2=a +b +2ab2-(a +b )=2ab -a -b 2=-a -b22≤0,∴x 2≤y 2.∵a ,b 是不相等的正数,∴x >0,y >0,x ≠y ,∴x 2<y 2即x <y . 【答案】 x <y8.已知数列{a n }的前n 项和为S n ,f (x )=2x -1x +1,a n =log 2f n +1f n ,则S 2 011=________.【解析】 a n =log 2f n +1f n=log 2f (n +1)-log 2f (n ),∴S 2 011=a 1+a 2+a 3+…+a 2 011=[log 2f (2)-log 2f (1)]+[log 2f (3)-log 2f (2)]+[log 2f (4)-log 2f (3)]+…+[log 2f (2 012)-log 2f (2 011)]=log 2f (2 012)-log 2f (1)=log 24 024-12 012+1-log 22-11+1=log 21 341671+1.【答案】 log 21 341671+1三、解答题9.(2013·东城高二检测)用分析法证明:若a >0,则a 2+1a 2-2≥a +1a-2.【证明】 要证 a 2+1a 2-2≥a +1a-2.只需证a 2+1a 2+2≥a +1a+ 2.∵a >0,∴两边均大于零, 因此只需证(a 2+1a 2+2)2≥(a +1a+2)2,只需证a 2+1a2+4+4a 2+1a 2≥a 2+1a2+4+22(a +1a),只需证a 2+1a 2≥22(a +1a),只需证a 2+1a 2≥12(a 2+1a 2+2),即证a 2+1a2≥2,它显然成立,∴原不等式成立.10.(2013·武汉高二检测)(1)求证:a 2+b 2+3≥ab +3(a +b ). (2)已知a ,b ,c 均为正实数,且a +b +c =1. 求证:(1a -1)(1b -1)(1c-1)≥8.【证明】 (1)∵a 2+b 2≥2ab ,a 2+3≥23a ,b 2+3≥23b ,将此三式相加得2(a 2+b 2+3) ≥2ab +23a +23b , ∴a 2+b 2+3≥ab +3(a +b ).(2)∵a ,b ,c 均为正实数,且a +b +c =1, ∴(1a -1)(1b -1)(1c-1)=a +b +c -a a ·a +b +c -b b ·a +b +c -cc=b +c ·a +c ·a +b ≥2bc ·2ac ·2ab=8. 故(1a-1)(1b-1)(1c-1)≥8.11.(1)设x ≥1,y ≥1,证明x +y +1xy ≤1x +1y+xy ;(2)设1<a ≤b ≤c ,证明log a b +log b c +log c a ≤log b a +log c b +log a c .【证明】 (1)由于x ≥1,y ≥1,所以x +y +1xy ≤1x +1y+xy ⇔xy (x +y )+1≤y +x +(xy )2.将上式中的右式减左式,得 [y +x +(xy )2]-[xy (x +y )+1] =[(xy )2-1]-[xy (x +y )-(x +y )] =(xy +1)(xy -1)-(x +y )(xy -1) =(xy -1)(xy -x -y +1) =(xy -1)(x -1)(y -1).由于x ≥1,y ≥1,所以(xy -1)(x -1)(y -1)≥0,从而所要证明的不等式成立. (2)设log a b =x ,log b c =y ,由对数的换底公式得log c a =1xy ,log b a =1x ,log c b =1y,log a c=xy .于是,所要证明的不等式即为x +y +1xy ≤1x +1y+xy .又由于1<a ≤b ≤c ,所以x =log a b ≥1,y =log b c ≥1. 故由(1)知所要证明的不等式成立.。
【课堂新坐标】(教师用书)2013-2014学年高中数学第2章数列章末归纳提升苏教版必修5
【课堂新坐标】(教师用书)2013-2014学年高中数学 第2章 数列章末归纳提升 苏教版必修5数列一般数列分类有穷数列无穷数列数列与函数的关系表示方法列表法图象法解析法通项公式在实际中的应用特殊数列等差数列等比数列通项公式应用定义前n 项和公式性质质起着重要的作用.围绕数列的通项公式,不仅可以判断数列的类型,研究数列的项的变化规律与趋势,而且还便于研究数列的前n 项和,因此求数列的通项公式往往是解决数列问题的突破口.在解题时,根据题目所给条件的不同,可以采用不同的方法求数列的通项公式,常见方法有观察法、累加法、累乘法、前n 项和法、构造法等.已知数列{a n }分别满足以下条件,求通项公式a n .(1)a 1=1,a n +1-a n =n (n ∈N *); (2)数列{a n }的前n 项和为S n =32a n -3.【思路点拨】 (1)已知a 1且a n +1-a n =f (n ),故用累加法;(2)条件是关于a n ,S n 的关系式,利用n ≥2时,a n =S n -S n -1消去S n 转化为a n 与a n -1的关系.【规范解答】 (1)∵a n +1-a n =n , ∴a 2-a 1=1,a 3-a 2=2, a 4-a 3=3,……a n -a n -1=n -1.将以上各式叠加,得a n -a 1=1+2+…+(n -1)=n n -2.∴a n =a 1+n n -2=1+n n -2=n 2-n +22(2)∵S n =32a n -3,∴n ≥2时,a n =S n -S n -1=32a n -32a n -1.∴a na n -1=3(n ≥2). 而当n =1时,有a 1=32a 1-3,∴a 1=6,∴{a n }是以6为首项,3为公比的等比数列, ∴a n =6×3n -1=2×3n.分别求满足下列条件的数列{a n }的通项公式: (1)a 1=1,a n +1a n =n +2n; (2)a 1=1,a n +1=23a n +1.【解】 (1)∵a n +1a n =n +2n, ∴n ≥2时,a 2a 1×a 3a 2×a 4a 3×…×a n a n -1=31×42×53×64×75×…×n n -2×n +1n -1=n n +2,即a n a 1=n n +2.又∵a 1=1,∴a n =n n +2.而a 1=1也适合上式,∴{a n }的通项公式a n =12n (n +1).(2)令a n +1-p =23(a n -p )(p 为常数),即a n +1=23a n +13p ,又a n +1=23a n +1,∴p3=1,p =3, ∴a n +1-3=23(a n -3).故数列{a n -3}是首项为-2,公比为23的等比数列.∴a n -3=-2×(23)n -1,∴a n =3-2×(23)n -1.和,特殊数列就是指等差或等比数列,非等差或非等比数列称为一般数列.对于特殊数列的求和,要恰当的选择、准确的应用求和公式,采用公式法直接求和;对于一般的数列求和,可采用分组化归法、并项转化法、倒序相加法、错位相减法、裂项相消法、分段求和法等.已知数列{a n }是各项为正数的等比数列,且a 1+a 2=2(1a 1+1a 2),a 3+a 4+a 5=64(1a 3+1a 4+1a 5).(1)求{a n }的通项公式;(2)设b n =(a n +1a n)2,求数列{b n }的前n 项和T n .【思路点拨】 (1)由已知条件列方程组求a 1,q ; (2)求出b n 表达式后,用分组化归法求T n . 【规范解答】 (1)设{a n }公比为q ,则a n =a 1q n -1.由已知有⎩⎪⎨⎪⎧a 1+a 1q =1a 1+1a 1q,a 1q 2+a 1q 3+a 1q 4=1a 1q 2+1a 1q 3+1a 1q 4化简,得⎩⎪⎨⎪⎧a 21q =2,a 21q 6=64.又a 1>0,所以⎩⎪⎨⎪⎧a 1=1,q =2.所以a n =2n -1.(2)由(1)知b n =(a n +1a n )2=a 2n +1a 2n +2=4n -1+14n -1+2.因此T n =(1+4+…+4n -1)+(1+14+…+14n -1)+2n =4n-14-1+1-14n 1-14+2n =13(4n -41-n )+2n +1.数列{a n }中,a 1=8,a 4=2,且满足a n +2-2a n +1+a n =0. (1)求数列的通项公式a n 及前n 项和S n . (2)设T n =|a 1|+|a 2|+…+|a n |,求T n . 【解】 (1)∵a n +2-2a n +1+a n =0, ∴a n +2-a n +1=a n +1-a n ,∴{a n }是以a 1为首项的等差数列. 设a n =a 1+(n -1)d ,则a 4=a 1+3d ,∴d =2-83=-2,∴a n =8+(-2)(n -1)=10-2n .∴S n =n a 1+a n2=9n -n 2.(2)∵a n =10-2n ,令a n =0,得n =5. ∵当n >5时,a n <0; 当n =5时,a n =0; 当n <5时,a n >0.∴当n >5时,T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 5-(a 6+a 7+…+a n )=S 5-(S n-S 5)=2S 5-S n =2×(9×5-52)-(9n -n 2)=n 2-9n +40;当n ≤5时,T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =S n .∴T n =⎩⎪⎨⎪⎧9n -n 2,n ,n 2-9n +40,n >数列问题,既有利于理解和掌握数列的基本概念和性质,又有利于解决问题.已知数列{a n }的首项a 1=35,a n +1=3a n2a n +1,n =1,2,…,(1)求{a n }的通项公式;(2)证明:对任意的x >0,a n ≥11+x -1+x2(23n -x ),n =1,2,…; (3)证明:a 1+a 2+…+a n >n 2n +1.【思路点拨】 (1)由已知a n +1与a n 的关系构造等比数列,求出通项公式. (2)利用(1)的结论,把a n 代入要证不等式右端利用配方法证明;(3)利用(2)的结论,代入构造等比数列求和.【规范解答】 (1)∵a n +1=3a n 2a n +1,∴1a n +1=23+13a n ,∴1a n +1-1=13(1a n -1).又1a 1-1=23,∴(1a n -1)是以23为首项,13为公比的等比数列. ∴1a n -1=23·13n -1=23n ,∴a n =3n3n +2. (2)证明:由(1)知a n =3n3n +2>0,11+x -1+x 2(23n -x ) =11+x -1+x 2(23n +1-1-x ) =11+x-1+x 2[1a n-(1+x )]=-1a n·1+x2+21+x=-1a n (11+x -a n )2+a n ≤a n ,n =1,2,….∴原不等式成立.(3)证明:由(2)知,对任意的x >0,有a 1+a 2+…+a n ≥11+x -1+x2(23-x )+11+x -1+x2(232-x )+…+11+x-1+x 2(23n -x ) =n1+x-1+x2(23+232+…+23n -nx ). 取x =1n (23+232+…+23n )=23-13nn-13=1n (1-13n ),则a 1+a 2+…+a n ≥n1+1n-13n=n 2n +1-13n>n 2n +1.∴原不等式成立.等差数列{a n }的首项a 1>0,前n 项和为S n ,若S l =S k (l ≠k ),则n 为何值时S n 最大?【解】 依题意,设f (n )=S n =na 1+n n -2d ,∴f (n )=12dn 2+(a 1-d2)n ,此函数是以n 为自变量的二次函数. ∵a 1>0,S l =S k (l ≠k ),∴d <0, 故此二次函数的图象开口向下. ∵f (l )=f (k ), ∴当x =l +k2时,f (x )最大,但f (n )中,n ∈N *, ∴当l +k 为偶数时,n =l +k2时,S n 最大; 当l +k 为奇数时,n =l +k ±12时,S n 最大.准确地表示,需根据不同情况分别说明.本章中,当数列所给的对象不宜进行统一研究或推理时,需通过分类讨论来解决.如运用等比数列求和公式时,需对q 分q =1和q ≠1且q ≠0两种情况进行讨论.已知{a n }是公比为q 的等比数列,且a 1、a 3、a 2成等差数列.(1)求q 的值;(2)设{b n }是以2为首项,q 为公差的等差数列,其前n 项和为S n ,当n ≥2时,比较S n与b n 的大小,并说明理由.【思路点拨】 (1)利用等差、等比数列的有关性质求q ; (2)作差比较,判断差的正、负、零情况.【规范解答】 (1)依题意,得2a 3=a 1+a 2,即2a 1q 2=a 1+a 1q . ∵a 1≠0,∴2q 2-q -1=0,∴q =1或q =-12.(2)若q =1,则S n =2n +n n -2=n 2+3n2,b n =n +1, 当n ≥2时,S n -b n =S n -1=n -n +2,故当n ≥2时,S n >b n ;若q =-12,则S n =-n 2+9n 4,b n =-12n +52,当n ≥2时,S n -b n =S n -1=-n -n -4,∴当2≤n ≤9时,S n >b n ,当n =10时,S n =b n , 当n ≥11时,S n <b n .求数列1,-22,32,-42,…,(-1)n -1n 2,…的前n 项和.【解】 ①当n 为偶数时,S n =(1-22)+(32-42)+…+[(n -1)2-n 2]=(1-2)(1+2)+(3-4)(3+4)+…+[(n -1)-n ]·[(n -1)+n ] =-[1+2+3+4+…+(n -1)+n ]=-n n +2.②当n 为奇数时,则n -1为偶数, ∴S n =S n -1+n 2=-n -n2+n 2=n n +2.综上可知S n=⎩⎪⎨⎪⎧-n n +12n 为偶数,n n +2n 为奇数。
【课堂新坐标】(教师用书)2013-2014学年高中数学2.2.3独立重复试验与二项分布课后知能检测新人教a版选修2
【课堂新坐标】(教师用书)2013-2014学年高中数学 2.2.3 独立重复试验与二项分布课后知能检测 新人教A 版选修2-3一、选择题1.某学生通过英语听力测试的概率为13,他连续测试3次,那么其中恰有1次获得通过的概率是( )A.49 B.29 C.427D.227【解析】 记“恰有1次获得通过”为事件A , 则P (A )=C 13(13)·(1-13)2=49.【答案】 A2.将一枚硬币连掷5次,如果出现k 次正面的概率等于出现k +1次正面的概率,那么k 的值为( )A .0B .1C .2D .3【解析】 C k 5(12)k ·(12)5-k =C k +15(12)k +1·(12)5-k -1,即C k 5=C k +15,k +(k +1)=5,k =2.【答案】 C3.设随机变量ξ服从二项分布ξ~B (6,12),则P (ξ≤3)等于( )A.1132B.732C.2132D.764【解析】 P (ξ≤3)=P (ξ=0)+P (ξ=1)+P (ξ=2)+P (ξ=3)=C 06×(12)6+C 16·(12)6+C 26·(12)6+C 36·(12)6=2132.【答案】 C4.(2013·天水高二检测)一射手对同一目标独立地射击四次,已知至少命中一次的概率为8081,则此射手每次射击命中的概率为( )A.13B.23C.14D.25【解析】 设此射手射击四次命中次数为ξ, ∴ξ~B (4,p ),依题意可知,P (ξ≥1)=8081,∴1-P (ξ=0)=1-C 04(1-p )4=8081,∴(1-p )4=181,p =23.【答案】 B5.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上、向右移动的概率都是12,质点P 移动五次后位于点(2,3)的概率是( )A .(12)5B .C 25×(12)5C .C 35×(12)3D .C 25×C 35×(12)5【解析】 如图,由题可知,质点P 必须向右移动2次,向上移动3次才能位于点(2,3),问题相当于5次独立重复试验向右恰好发生2次的概率.所以概率为P =C 25×(12)2×(12)3=C 25(12)5.故选B. 二、填空题6.某处有水龙头5个,调查表明每个水龙头被打开的可能性是110,随机变量X 表示同时被打开的水龙头的个数,则P (X =3)=________.【解析】 P (X =3)=C 35×(110)3(1-110)2=92104.【答案】 921047.(2013·广州高二检测)设随机变量ξ~B (2,p ),η~B (4,p ),若P (ξ≥1)=59,则P (η≥1)=________.【解析】 P (ξ≥1)=1-P (ξ=0)=1-(1-p )2=59.即(1-p )2=49,解得p =13,故P (η≥1)=1-P (η=0)=1-(1-p )4=1-(23)4=6581.【答案】65818.某射手射击1次,击中目标的概率为0.9,他连续射击4次,且各次射击是否击中目标相互之间没有影响,有下列结论:①他第三次击中目标的概率为0.9;②他恰好击中目标3次的概率为0.93×0.1;③他至少击中目标1次的概率为1-0.14.其中正确结论的序号为________.(写出所有正确结论的序号)【解析】 在n 次试验中,事件每次发生的概率都相等,故①正确;②中恰好击中3次需要看哪3次击中,所以不正确;利用对立事件,③正确.【答案】 ①③ 三、解答题9.在每道单项选择题给出的4个备选答案中,只有一个是正确的.若对4道选择题中的每一道都任意选定一个答案,求这4道题中:(1)恰有两道题答对的概率; (2)至少答对一道题的概率.【解】 视“选择每道题的答案”为一次试验,则这是4次独立重复的试验,且每次试验中“选择正确”这一事件发生的概率为14.由独立重复试验的概率计算公式得, (1)恰有两道题答对的概率为P 4(2)=C 24(14)2(34)2=27128. (2)法一:至少有一道题答对的概率为1-P 4(0)=1-C 04(14)0(34)4=1-81256=175256.法二:至少有一道题答对的概率为C 14(14)(34)3+C 24(14)2(34)2+C 34(14)3(34)+C 44(14)4(34)0=108256+54256+12256+1256=175256. 10.如果袋中有6个红球,4个白球,从中任取1球,记住颜色后放回,连续抽取4次,设X 为取得红球的次数.求X 的概率分布列.【解】 采用有放回的取球,每次取得红球的概率都相等,均为35,取得红球次数X 可能取的值为0,1,2,3,4.由以上分析,知随机变量X 服从二项分布,P (X =k )=C k 4(35)k ·(1-35)4-k(k =0,1,2,3,4). 随机变量X 的分布列为比赛随即结束.除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率都是23,假设各局比赛结果相互独立.(1)分别求甲队以3∶0,3∶1,3∶2胜利的概率.(2)若比赛结果为3∶0或3∶1,则胜利方得3分,对方得0分;若比赛结果为3∶2,则胜利方得2分,对方得1分.求乙队得分X 的分布列.【解】 (1)记“甲队以3∶0胜利”为事件A 1,“甲队以3∶1胜利”为事件A 2,“甲队以3∶2胜利”为事件A 3,由题意,各局比赛结果相互独立,故P (A 1)=⎝ ⎛⎭⎪⎫233=827,P (A 2)=C 23⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫1-23×23=827, P (A 3)=C 24⎝ ⎛⎭⎪⎫232⎝⎛⎭⎪⎫1-232×12=427. 所以甲队以3∶0胜利,以3∶1胜利的概率都为827,以3∶2胜利的概率为427.(2)设“乙队以3∶2胜利”为事件A 4, 由题意,各局比赛结果相互独立, 所以P (A 4)=C 24⎝ ⎛⎭⎪⎫1-232⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫1-12=427.由题意,随机变量X 的所有可能的取值为0,1,2,3, 根据事件的互斥性得P (X =0)=P (A 1+A 2)=P (A 1)+P (A 2)=1627.又P(X=1)=P(A3)=4 27,P(X=2)=P(A4)=427,P(X=3)=1-P(X=0)-P(X=1)-P(X=2)=327,故X的分布列为。
【课堂新坐标】(教师用书)2013-2014学年高中数学 2.2 综合法与分析法课后知能检测 新人教A版选修4-5
【课堂新坐标】(教师用书)2013-2014学年高中数学 2.2 综合法与分析法课后知能检测 新人教A 版选修4-5一、选择题1.若a 、b 、c ∈R ,a >b ,则下列不等式成立的是( )A.1a <1b B .a 2>b 2C.a c 2+1>bc 2+1 D .a |c |>b |c |【解析】 ∵a >b ,c 2+1>0,∴a c 2+1>bc 2+1,故选C.【答案】 C2.设13<(13)b <(13)a <1,则( )A .a a <a b <b aB .a a <b a <a bC .a b <a a <b aD .a b <b a <a a【解析】 ∵13<(13)b <(13)a <1,∴0<a <b <1,∴a aa b =a a -b >1,∴a b <a a,a ab =(a b )a ,∵0<a b <1,a >0,∴(a b )a <1,∴a a <b a ,∴a b <a a <b a.故选C.【答案】 C3.(2013·三门峡模拟)已知条件p :ab >0,q :b a +a b ≥2,则p 与q 的关系是() A .p 是q 的充分而不必要条件B .p 是q 的必要而不充分条件C .p 是q 的充要条件D .以上答案都不对【解析】 当ab >0时,b a >0,a b >0,∴b a +a b ≥2 ba ·ab =2. 当b a +ab ≥2时,∴a 2+b 2-2ab ab ≥0, a -b2ab ≥0,(a -b )2≥0,∴ab >0,综上ab >0是b a +ab ≥2的充要条件.【答案】 C4.已知a 、b 、c 为三角形的三边且S =a 2+b 2+c 2,P =ab +bc +ca ,则() A .S ≥2P B .P <S <2PC .S >PD .P ≤S <2P【解析】 ∵a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca ,∴a 2+b 2+c 2≥ab +bc +ca ,即S ≥P .又三角形中|a -b |<c ,∴a 2+b 2-2ab <c 2,同理c 2+b 2-2bc <a 2,a 2+c 2-2ac <b 2,∴a 2+b 2+c 2<2(ab +bc +ca ),即S <2P .故选D.【答案】 D二、填空题5.有以下四个不等式:①(x +1)(x +3)>(x +2)2;②ab -b 2<a 2;③1|a |+1>0;④a 2+b 2≥2|ab |.其中恒成立的为________(写出序号即可).【解析】 对于①,x 2+4x +3>x 2+4x +4,3>4不成立;对于②,当a =b =0时, 0<0不成立,③④显然成立.【答案】 ③④6.已知a >0,b >0且a +b =1,则1a +1b +1ab 与8的大小关系是________.【解析】 ∵a >0,b >0且a +b =1,∴1a +1b +1ab =a +b +1ab =2ab ≥2a +b 2 2=8.当且仅当a =b =12时等号成立.【答案】 1a +1b +1ab ≥8三、解答题7.设a >0,b >0,c >0.证明:(1)1a +1b ≥4a +b ;(2)12a +12b +12c ≥1b +c +1c +a +1a +b .【证明】 (1)∵a >0,b >0,∴(a +b )(1a +1b ) ≥2ab ·21ab =4. ∴1a +1b ≥4a +b .(2)由(1)知1a +1b ≥4a +b . 同时,1b +1c ≥4b +c ,1c +1a ≥4c +a ,三式相加得: 2(1a +1b +1c )≥4b +c +4c +a +4a +b ,∴12a +12b +12c ≥1b +c +1c +a +1a +b .8.已知a ≥1,求证:a +1-a <a -a -1.【证明】 要证原不等式成立,只要证明a +1+a -1<2a .因为a ≥1,a +1+a -1>0,2a >0,所以只要证明2a +2a 2-1<4a , 即证 a 2-1<a .所以只要证明a 2-1<a 2,即证-1<0即可.而-1<0显然成立, 所以a +1-a <a -a -1.9.如果a >b ,ab =1,求证:a 2+b 2≥22(a -b ),并指明何时取“=”号.【证明】 因为a >b ,所以a -b >0,又ab =1, 所以a 2+b 2a -b =a 2+b 2-2ab +2ab a -b = a -b 2+2a -b=(a -b )+2a -b ≥2 a -b ·2a -b=2 2. 即a 2+b 2a -b≥22, 故a 2+b 2≥22(a -b ).当且仅当a -b =2a -b , ab =1,即a =6+22,b =6-22或a =-6+22,b =-6-22时取“=”号.教师备选10.若不等式1a -b +1b -c +λc -a>0在条件a >b >c 时恒成立,求实数λ的取值范围. 【解】 不等式可化为1a -b +1b -c >λa -c . ∵a >b >c .∴a -b >0,b -c >0,a -c >0,∴λ<a -c a -b +a -c b -c 恒成立. ∵a -c a -b +a -c b -c = a -b + b -c a -b + a -b + b -c b -c =2+b -c a -b +a -b b -c ≥2+2=4. ∴λ<4.故实数λ的取值范围是(-∞,4).。
【课堂新坐标】(教师用书)2013-2014学年高中数学2.2.1条件概率课后知能检测新人教a版选修2-3
【课堂新坐标】(教师用书)2013-2014学年高中数学 2.2.1 条件概率课后知能检测 新人教A 版选修2-3一、选择题1.已知P (B |A )=13,P (A )=25,则P (AB )等于( ) A.56B.910C.215D.115【解析】 由P (B |A )=P AB P A 得P (AB )=P (B |A )·P (A )=13×25=215. 【答案】 C 2.下列说法正确的是( )A .P (B |A )<P (AB )B .P (B |A )=P B P A 是可能的C .0<P (B |A )<1D .P (A |A )=0【解析】 由条件概率公式P (B |A )=P AB P A及0<P (A )≤1知P (B |A )≥P (AB ),故A 选项错误;当事件A 包含事件B 时,有P (AB )=P (B ),此时P (B |A )=P B P A ,故B 选项正确,由于0≤P (B |A )≤1,P (A |A )=1,故C ,D 选项错误.故选B.【答案】 B3.将三颗骰子各掷一次,记事件A 表示“三个点数都不相同”,事件B 表示“至少出现一个3点”,则概率P (A |B )等于( )A.91216 B.518 C.6091 D.12【解析】 事件B 发生的基本事件个数是n (B )=6×6×6-5×5×5=91,事件A ,B 同时发生的基本事件个数为n (AB )=3×5×4=60.∴P (A |B )=n AB n B =6091. 【答案】 C4.盒中装有10只乒乓球,其中6只新球,4只旧球,不放回地依次取出2个球使用,在第一次摸出新球的条件下,第二次也取到新球的概率为( )A.35B.110C.59D.25【解析】 把问题看成用10个不同的球排前两位,第一次为新球的基本事件数为6×9=54,两次均为新球的基本事件数为A 26=30,所以在第一次摸到新球条件下,第二次也摸到新球的概率为3054=59. 【答案】 C5.(2013·泰安高二检测)一个家庭有两个小孩,假设生男生女是等可能的,已知这个家庭有一个是女孩的条件下,这时另一个也是女孩的概率是( )A.14B.23C.12D.13 【解析】 一个家庭中有两个小孩只有4种可能:(男,男),(男,女),(女,男),(女,女).记事件A 为“其中一个是女孩”,事件B 为“另一个是女孩”,则A ={(男,女),(女,男),(女,女)},B ={(男,女),(女,男),(女,女)},AB ={(女,女)}.于是可知P (A )=34,P (AB )=14.问题是求在事件A 发生的情况下,事件B 发生的概率,即求P (B |A ),由条件概率公式,得P (B |A )=1434=13. 【答案】 D二、填空题6.设A ,B 为两个事件,若事件A 和B 同时发生的概率为310,在事件A 发生的条件下,事件B 发生的概率为12,则事件A 发生的概率为________. 【解析】 ∵P (AB )=310,P (B |A )=12,∴P (B |A )=P AB P A. ∴P (A )=35. 【答案】 357.(2012·泰州高二检测)有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为________.【解析】 设“种子发芽”为事件A ,“种子成长为幼苗”为事件AB (发芽,又成活为幼苗),出芽后的幼苗成活率为:P (B |A )=0.8,P (A )=0.9.根据条件概率公式P (AB )=P (B |A )·P (A )=0.8×0.9=0.72,即这粒种子能成长为幼苗的概率为0.72.【答案】 0.728.从编号为1,2,……10的10个大小相同的球中任取4个,已知选出4号球的条件下,选出球的最大号码为6的概率为________.【解析】 令事件A ={选出的4个球中含4号球},B ={选出的4个球中最大号码为6}.依题意知n (A )=C 39=84,n (AB )=C 24=6,∴P (B |A )=n AB n A =684=114. 【答案】 114三、解答题9.(2013·广州高二检测)甲、乙两个袋子中,各放有大小、形状和个数相同的小球若干.每个袋子中标号为0的小球为1个,标号为1的2个,标号为2的n 个.从一个袋子中任取两个球,取到的标号都是2的概率是110. (1)求n 的值;(2)从甲袋中任取两个球,已知其中一个的标号是1的条件下,求另一个标号也是1的概率.【解】 (1)由题意得:C 2n C 2n +3=n n -n +n +=110,解得n =2. (2)记“其中一个标号是1”为事件A ,“另一个标号是1”为事件B ,所以P (B |A )=n AB n A =C 22C 25-C 13=17. 10.任意向x 轴上(0,1)这一区间内掷一个点,问:(1)该点落在区间(0,13)内的概率是多少? (2)在(1)的条件下,求该点落在(15,1)内的概率. 【解】 由题意知,任意向(0,1)这一区间内掷一点,该点落在(0,1)内哪个位置是等可能的,令A ={x |0<x <13},由几何概率的计算公式可知 (1)P (A )=131=13. (2)令B ={x |15<x <1},则AB ={15<x <13},P (AB )=13-151=215. 故在A 的条件下B 发生的概率为P (B |A )=P AB P A =21513=25. 11.某人忘记了电话号码的最后一个数字,因而他随意拨号,假设拨过的号码不再重复,试求:(1)不超过3次拨号就接通电话的概率;(2)如果他记得号码的最后一位是奇数,拨号不超过3次就接通电话的概率.【解】 设第i 次接通电话为事件A i (i =1,2,3),则A =A 1∪(A 1A 2)∪(A 1 A 2A 3)表示不超过3次就接通电话.(1)因为事件A 1与事件A 1A 2,A 1 A 2A 3彼此互斥,所以P (A )=110+910×19+910×89×18=310. (2)用B 表示最后一位按奇数的事件,则P (A |B )=P (A 1|B )+P (A 1A 2|B )+P (A 1 A 2A 3|B )=15+4×15×4+4×3×15×4×3=35.。
【课堂新坐标】(教师用书)2013-2014学年高中数学第二章概率综合检测新人教b版选修2-3
【课堂新坐标】(教师用书)2013-2014学年高中数学 第二章 概率综合检测 新人教B 版选修2-3(时间:90分钟,满分:120分)一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.甲击中目标的概率是12,如果击中赢10分,否则输11分,用X 表示他的得分,计算X 的均值为( )A .0.5分B .-0.5分C .1分D .5分【解析】 E (X )=10×12+(-11)×12=-12.【答案】 B2.一枚硬币连续掷3次,至少有一次出现正面的概率是( ) A.38 B.12 C.58 D.78【解析】 P (至少有一次出现正面)=1-P (三次均为反面)=1-(12)3=78.【答案】 D3.已知离散型随机变量X 的分布列如下:则其数学期望E (X )等于( A .1 B .0.6 C .2+3m D .2.4【解析】 由分布列的性质得m =1-0.5-0.2=0.3,所以E (X )=1×0.5+3×0.3+5×0.2=2.4.【答案】 D4.已知随机变量X ~B (6,12),则D (2X +1)等于( )A .6B .4C .3D .9【解析】 D (2X +1)=D (X )×22=4D (X ),D (X )=6×12×(1-12)=32,∴D (2X +1)=4×32=6.【答案】 A5.(2013·石家庄高二检测)某人忘记了一个电话号码的最后一个数字,只好任意去试拨,他第一次失败,第二次成功的概率是( )A.110 B.210 C.810 D.910【解析】 电话号码的最后一个数可能是0,1,2,3,4,5,6,7,8,9中的一个数,所以他第一次失败,第二次成功的概率为910×19=110.【答案】 A6.将两枚质地均匀的骰子各掷一次,设事件A ={两个点数互不相同},B ={出现一个5点},则P (B |A )=( )A.13B.518C.16D.14【解析】 出现点数互不相同的共有6×5=30种, 出现一个5点共有5×2=10种, ∴P (B |A )=n AB n A =13.【答案】 A7.(2013·宜昌高二检测)设随机变量X ~N (μ,σ2),且P (X ≤c )=P (X >c ),则c =( ) A .σ2B .σC .μD .-μ【解析】 在N (μ,σ2)中,图象关于直线X =μ对称, ∴P (X ≤μ)=P (X >μ)=12,∴c =μ.【答案】 C8.正态分布密度函数为f (x )=122πe -x -28,x ∈R ,则其标准差为( )A .1B .2C .4D .8 【解析】 根据f (x )=1σ2πe -x -μ22σ2,对比f (x )=122πe -x -28知σ=2.【答案】 B9.从甲袋中摸出一个红球的概率是13,从乙袋中摸出一个红球的概率是12,从两袋中各摸出1个球,则至少有一个红球的概率为( )A.13B.23C.14D.12【解析】 设至少有一个红球的概率为P ,则P =1-⎝ ⎛⎭⎪⎫1-13⎝ ⎛⎭⎪⎫1-12=23.【答案】 B10.节日期间,某种鲜花进货价是每束2.5元,销售价每束5元;节日卖不出去的鲜花以每束1.6元价格处理.根据前五年销售情况预测,节日期间这种鲜花的需求量X 服从如表所示的分布列:若进这种鲜花500A .706元 B .690元 C .754元 D .720元【解析】 ∵E (X )=200×0.2+300×0.35+400×0.3+500×0.15=340,∴利润的均值为340×(5-2.5)-(500-340)×(2.5-1.6)=706(元).【答案】 A二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 11.袋中有4只红球3只黑球,从袋中任取4只球,取到1只红球得1分,取到1只黑球得3分,设得分为随机变量X ,则P (X ≤6)=________.【解析】 P (X ≤6)=P (X =4)+P (X =6)=C 44+C 34C 13C 47=1335. 【答案】133512.(2013·宿州高二检测)某人参加驾照考试,共考6个科目,假设他通过各科考试的事件是相互独立的,并且概率都是p .若此人未能通过的科目数X 的均值是2,则p =________.【解析】 因为通过各科考试的概率为p ,所以不能通过考试的概率为1-p ,易知X ~B (6,1-p ),所以E (X )=6(1-p )=2,解得p =23.【答案】 2313.(2013·郑州高二检测)A 、B 、C 相互独立,如果P (AB )=16,P (B C )=18,P (AB C )=18,则P (A B )=________. 【解析】 设P (A )=a ,P (B )=b ,P (C )=c ,∴⎩⎪⎨⎪⎧ ab =16,-b c =18,ab -c =18,解得⎩⎪⎨⎪⎧a =13,b =12,c =14.∴P (A B )=(1-13)×12=13.【答案】 1314.(2013·福州高二检测)一袋中有大小相同的4个红球和2个白球,给出下列结论: ①从中任取3球,恰有一个白球的概率是35;②从中有放回的取球6次,每次任取一球,则取到红球次数的方差为43;③现从中不放回的取球2次,每次任取1球,则在第一次取到红球后,第二次再次取到红球的概率为25;④从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为2627.其中所有正确结论的序号是________.【解析】 ①恰有一个白球的概率P =C 12C 24C 36=35,故①正确;②每次任取一球,取到红球次数X ~B (6,23),其方差为6×23×(1-23)=43,故②正确;③设A ={第一次取到红球},B ={第二次取到红球}. 则P (A )=23,P (AB )=4×36×5=25,∴P (B |A )=P AB P A =35,故③错;④每次取到红球的概率P =23,所以至少有一次取到红球的概率为1-(1-23)3=2627,故④正确. 【答案】 ①②④三、解答题(本大题共4小题,共50分.解答应写出文字说明,证明过程或演算步骤) 15.(本小题满分12分)(2013·课标全国卷Ⅰ)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n .如果n =3,再从这批产品中任取4件检验,若都为优质品,则这批产品通过检验;如果n =4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为12,且各件产品是否为优质品相互独立.(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X (单元:元),求X 的分布列及数学期望.【解】 (1)设第一次取出的4件产品中恰有3件优质品为事件A 1,第一次取出的4件产品全是优质品为事件A 2,第二次取出的4件产品都是优质品为事件B 1,第二次取出的1件产品是优质品为事件B 2,这批产品通过检验为事件A ,依题意有A =(A 1B 1)∪(A 2B 2),且A 1B 1与A 2B 2互斥,所以P (A )=P (A 1B 1)+P (A 2B 2)=P (A 1)P (B 1|A 1)+P (A 2)P (B 2|A 2)=416×116+116×12=364. (2)X 可能的取值为400,500,800,并且P (X =400)=1-416-116=1116,P (X =500)=116,P (X =800)=14,所以以X 的分布列为EX =400×1116+500×116+800×4=506.25.16.(本小题满分12分)设甲、乙两家灯泡厂生产的灯泡寿命X (单位:小时)和Y 的分布列分别为:【解】 由期望的定义,得E (X )=900×0.1+1 000×0.8+1 100×0.1=1 000, E (Y )=950×0.3+1 000×0.4+1 050×0.3=1 000.两家灯泡厂生产的灯泡寿命的期望值相等,需进一步考查哪家工厂灯泡的质量比较稳定,即比较其方差.由方差的定义,得D (X )=(900-1 000)2×0.1+(1 000-1 000)2×0.8+(1 100-1 000)2×0.1=2 000, D (Y )=(950-1 000)2×0.3+(1 000-1 000)2×0.4+(1 050-1 000)2×0.3=1 500.∵D (X )>D (Y ),∴乙厂生产的灯泡质量比甲厂稳定, 即乙厂生产的灯泡质量较好.17.(本小题满分12分)(2013·珠江高二检测)为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物.某人一次种植了n 株沙柳,各株沙柳成活与否是相互独立的,成活率为p ,设X 为成活沙柳的株数,数学期望E (X )=3,标准差DX 为62. (1)求n ,p 的值并写出X 的分布列;(2)若有3株或3株以上的沙柳未成活,则需补种,求需要补种沙柳的概率. 【解】 因为X ~B (n ,p ),由E (X )=np =3,D (X )=np (1-p )=32,得1-p =12,从而n=6,p =12.X 的分布列为(2)则P (A )=P (X ≤3),得P (A )=1+6+15+2064=2132(或P (A )=1-P (X >3)=1-15+6+164=2132.图118.(本小题满分14分)(2013·四川高考)某算法的程序框图如图所示,其中输入的变量x 在1,2,3,…,24这24个整数中等可能随机产生.(1)分别求出按程序框图正确编程运行时输出y 的值为i 的概率P i (i =1,2,3);(2)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n 次后,统计记录了输出y 的值为i (i =1,2,3)的频数.以下是甲、乙所作频数统计表的部分数据.甲的频数统计表(部分)乙的频数统计表(部分)1,2,3)的频率(用分数表示),并判断两位同学中哪一位所编程序符合算法要求的可能性较大;(3)将按程序框图正确编写的程序运行3次,求输出y 的值为2的次数ξ的分布列及数学期望.【解】 (1)变量x 是在1,2,3,…,24这24个整数中随机产生的一个数,共有24种可能.当x 从1,3,5,7,9,11,13,15,17,19,21,23这12个数中产生时,输出y 的值为1,故P 1=12; 当x 从2,4,8,10,14,16,20,22这8个数中产生时,输出y 的值为2,故P 2=13;当x 从6,12,18,24这4个数中产生时,输出y 的值为3,故P 3=16.所以输出y 的值为1的概率为12,输出y 的值为2的概率为13,输出y 的值为3的概率为16. (2)当n =2 100时,甲、乙所编程序各自输出y 的值为i (i =1,2,3)的频率如下:(3)随机变量ξ可能的取值为0,1,2,3.P (ξ=0)=C 03×⎝ ⎛⎭⎪⎫130×⎝ ⎛⎭⎪⎫233=827, P (ξ=1)=C 13×⎝ ⎛⎭⎪⎫131×⎝ ⎛⎭⎪⎫232=49, P (ξ=2)=C 23×⎝ ⎛⎭⎪⎫132×⎝ ⎛⎭⎪⎫231=29, P (ξ=3)=C 33×⎝ ⎛⎭⎪⎫133×⎝ ⎛⎭⎪⎫230=127. 故ξ的分布列为所以E ξ=0×827+1×9+2×9+3×27=1.即ξ的数学期望为1.。
【课堂新坐标】(教师用书)2013-2014学年高中数学1.5.3定积分的概念课后知能检测新人教a版选修2-2
【课堂新坐标】(教师用书)2013-2014学年高中数学 1.5.3 定积分的概念课后知能检测 新人教A 版选修2-2一、选择题1.下列结论中成立的个数是( ) ①⎠⎛01x 3d x =i 3n 3·1n ;②⎠⎛01x 3d x =lim n →∞i -3n 3·1n ;③⎠⎛01x 3d x =limn →∞i 3n 3·1n .A .0B .1C .2D .3【解析】 由定积分的定义知,②、③成立,故选C. 【答案】 C2.若f (x )是[-a ,a ]上的连续偶函数,则f (x )d x =( )A. f (x )d x B .0 C .2f (x )d xD.⎠⎛0af (x )d x【解析】 偶函数的图象关于y 轴对称, 故f (x )d x =⎠⎛0af (x )d x ,【答案】 C3.设f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,2x,x <0,则f (x )d x 的值是( )【解析】 被积函数f (x )是分段函数,故将积分区间[-1,1]分为两个区间,[-1,0]和[0,1],由定积分的性质知选D.【答案】 D4.下列值等于1的是( ) A.⎠⎛01x d xB.⎠⎛01(x +1)d xC.⎠⎛011d xD.⎠⎛0112d x 【解析】 根据定积分的几何意义可求得:⎠⎛01x d x =12×1×1=12,⎠⎛01(x +1)d x =12×(1+2)×1=32,⎠⎛011d x =1×1=1,⎠⎛0112d x =1×12=12,故选C. 【答案】 C5.已知和式S =1p+2p+3p+…+npnp +1(p >0),当n 趋向于∞时,S 无限趋向于一个常数A ,则A 可用定积分表示为( )A.⎠⎛011xd xB.⎠⎛01x pd xC.⎠⎛01(1x)pd xD.⎠⎛01(x n)pd x【解析】 S =1n [(1n )p +(2n )p +(3n )p +…+(nn )p]= (i n )p·1n ,∴limn →∞(i n )p ·1n =⎠⎛01x pd x .【答案】 B 二、填空题6.已知⎠⎛01x 2d x =13,⎠⎛12x 2d x =73,则⎠⎛02(x 2+1)d x =________.【解析】 由定积分的几何意义知,⎠⎛021d x =2×1=2,由定积分的性质知⎠⎛02x 2d x =⎠⎛01x 2d x +⎠⎛12x 2d x =13+73=83.∴⎠⎛02(x 2+1)d x =⎠⎛02x 2d x +⎠⎛021d x =83+2=143.【答案】1437.曲线y =x 2与直线x =0,x =1,y =1所围成的图形的面积可用定积分表示为________.【解析】 如图所示,阴影部分的面积可表示为⎠⎛011d x -⎠⎛01x 2d x =⎠⎛01(1-x 2)d x . 【答案】 ⎠⎛01(1-x 2)d x8.(2013·天津高二检测)曲线y =1x与直线y =x ,x =2所围成的图形面积用定积分可表示为________.【解析】 如图所示,阴影部分的面积可表示为⎠⎛12x d x -⎠⎛121xd x =⎠⎛12(x -1x)d x .【答案】 ⎠⎛12(x -1x)d x三、解答题9.用定积分表示下列阴影部分的面积(不要求计算):(1) (2) (3)10.已知⎠⎛0e x d x =e 22,⎠⎛0e x 3d x =e 44.求下列定积分.(1)⎠⎛0e (2x +x 3)d x ;(2)⎠⎛0e (2x 3-x +1)d x .【解】 (1)⎠⎛0e (2x +x 3)d x =2⎠⎛0e x d x +⎠⎛0e x 3d x =e 2+e44.(2)⎠⎛0e (2x 3-x +1)d x =2⎠⎛0e x 3d x -⎠⎛0e x d x +⎠⎛0e 1d x=e 42-e22+e. 11.已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ∈[-2,,2x ,[2,π,cos x ,[π,2π],求f (x )在区间[-2,2π]上的积分.【解】 由定积分的几何意义知x 3d x =0,⎠⎛2π2x d x =π+π-2=π2-4,∫2ππcos x d x =0. 由定积分的性质得⎠⎛-22πf (x )d x =x 3d x +⎠⎛2π2x d x +⎠⎛π2πcos x d x =π2-4.。
【课堂新坐标】(教师用书)2013-2014学年高中数学 2.4.1-2 空间直角坐标系 空间两点的
【课堂新坐标】(教师用书)2013-2014学年高中数学 -2 空间直角坐标系 空间两点的距离公式课后知能检测 新人教B 版必修2一、选择题1.点P (2,3,4)到x 轴的距离是( ) A.13B .2 5 C .5 D.29【解析】 如图所示,B ′点坐标为(2,3,4),则其到x 轴距离为AB ′=AB 2+BB ′2=32+45=5. 【答案】 C 2.图2-4-4如图2-4-4所示,在正方体ABCD -A ′B ′C ′D ′中,棱长为1,BP =13BD ′,则P 点坐标为( )A .(13,13,13)B .(23,23,23)C .(13,23,13)D .(23,23,13)【解析】 连接BD ′,点P 在坐标平面xDy 上的射影在BD 上, ∵BP =13BD ′,所以P x =P y =23,P z =13,∴P (23,23,13).【答案】 D3.已知A (1-t,1-t ,t ),B (2,t ,t ),则|AB |的最小值为( ) A.55B.555 C.355 D.115【解析】 |AB |=1-t -22+1-t -t2+t -t2=5t 2-2t +2= 5t -152+95≥ 95=355. 【答案】 C4.在长方体ABCD -A 1B 1C 1D 1中,若D (0,0,0)、A (4,0,0)、B (4,2,0)、A 1(4,0,3),则对角线AC 1的长为( )A .9 B.29 C .5 D .2 6【解析】 画出长方体的图形,可以求出C 1(0,2,3), ∴|AC 1|=29,故选B. 【答案】 B5.在空间直角坐标系中,一定点P 到三个坐标轴的距离都是1,则该点到原点的距离是( )A.62B. 3 C.32D.63【解析】 设P (x ,y ,z ),由题意可知⎩⎪⎨⎪⎧x 2+y 2=1y 2+z 2=1x 2+z 2=1,∴x 2+y 2+z 2=32.∴x 2+y 2+z 2=62. 【答案】 A 二、填空题6.点(1,2,3)关于原点的对称点是________.【答案】 (-1,-2,-3)7.(2013·某某高一检测)点P (1,2,-1)在xOz 平面内的射影为B (x ,y ,z ),则x +y +z =________.【解析】 点P (1,2,-1)在xOz 平面内的射影为B (1,0,-1), ∴x =1,y =0,z =-1,∴x +y +z =1+0-1=0. 【答案】 08.已知A (-3,1,1),B (-2,2,3),在z 轴上有点P 到A ,B 两点的距离相等,则点P 的坐标是________.【解析】 设P (0,0,z ),则有 32+12+1-z2=22+22+3-z2,∴z =32.【答案】 (0,0,32)三、解答题9.已知点A (-4,-1,-9),B (-10,1,-6),C (-2,-4,-3),判断△ABC 的形状.【解】 |AB |=-4+102+-1-12+-9+62=49,|BC |=-10+22+1+42+-6+32=98,|AC |=-4+22+-1+42+-9+32=49.因为|AB |=|AC |,且|AB |2+|AC |2=|BC |2, 所以△ABC 为等腰直角三角形.10.已知点A (x,5-x,2x -1),B (1,x +2,2-x ),求|AB |取最小值时A ,B 两点的坐标,并求此时|AB |.【解】 由空间两点间的距离公式得|AB |=1-x2+[x +2-5-x ]2+[2-x -2x -1]2=14x 2-32x +19=14x -872+57当x =87时,|AB |有最小值57=357, 此时A (87,277,97),B (1,227,67).图2-4-511.如图2-4-5所示,直三棱柱ABC-A1B1C1中,|C1C|=|CB|=|CA|=2,AC⊥CB,D,E分别是棱AB,B1C1的中点,F是AC的中点,求DE,EF的长度.【解】以点C为坐标原点,CA、CB、CC1所在直线为x轴、y轴、z轴,建立如图所示的空间直角坐标系.∵|C1C|=|CB|=|CA|=2,∴C(0,0,0),A(2,0,0),B(0,2,0),C1(0,0,2),B1(0,2,2),由中点坐标公式可得,D(1,1,0),E(0,1,2),F(1,0,0),∴|DE|=1-02+1-12+0-22=5,|EF|=0-12+1-02+2-02= 6.。
【课堂新坐标】(教师用书)2013-2014学年高中数学 2.2(1+2)直线与平面平行的判定 平面
【课堂新坐标】(教师用书)2013-2014学年高中数学 2.2(1+2)直线与平面平行的判定平面与平面平行的判定课时训练新人教版必修2一、选择题1.下列图形中能正确表示语句“平面α∩β=l,a⊂α,b⊂β,a∥β”的是( )【解析】A中不能正确表达b⊂β;B中不能正确表达a∥β;C中也不能正确表达a ∥β.D正确.【答案】 D2.(2013·某某高一检测)在正方体ABCD—A1B1C1D1中,M是棱CD上的动点,则直线MC1与平面AA1B1B的位置关系是( )A.相交B.平行C.异面 D.相交或平行【解析】如图,MC1⊂平面DD1C1C,而平面AA1B1B∥平面DD1C1C,故MC1∥平面AA1B1B.【答案】 B3.直线l∥平面α,直线m∥平面α,若l∩m=P,且l与m确定的平面为β,则α与β的位置关系是( )A.相交 B.平行C.重合 D.不能确定【解析】∵l∥α,m∥α,l∩m=P,又l⊂β,m⊂β,∴α∥β.【答案】 B4.(2013·威海高一检测)平面α与β平行的条件可能是( )A.α内有无穷多条直线与β平行B.直线a∥α,a∥βC.直线a⊂α,直线b⊂β,且a∥β,b∥αD.α内的任何直线都与β平行【解析】如图①,α内可有无数条直线与β平行,但α与β相交.如图②,a∥α,a∥β,但α与β相交.如图③,a⊂α,b⊂β,a∥β,b∥α,但α与β相交.故选D.【答案】 D5.平面α内有不共线的三点到平面β的距离相等且不为零,则α与β的位置关系为( )A.平行 B.相交C.平行或相交 D.可能重合【解析】若三点分布于平面β的同侧,则α与β平行,若三点分布于平面β的两侧,则α与β相交.【答案】 C二、填空题图2-2-86.如图2-2-8,长方体ABCD-A1B1C1D1中,与BC平行的平面是________;与BC1平行的平面是________;与平面A1C1和平面A1B都平行的棱是________.【解析】观察图形,根据判定定理可知,与BC平行的平面是平面A1C1与平面AD1;与BC1平行的平面是平面AD1;由于平面A1C1与平面A1B的交线是A1B1,所以与其都平行的棱是DC.【答案】平面A1C1与平面AD1平面AD1DC7.(2013·某某高一检测)设m,n是平面α外的两条直线,给出下列三个论断:①m∥n;②m∥α;③n∥α,以其中两个为条件,余下的一个为结论,写出你认为正确的一个________.【解析】若m∥n,m∥α,则n∥α.同样,若m∥n,n∥α,则m∥α.【答案】①②⇒③(或①③⇒②)图2-2-98.(思维拓展题)如图2-2-9,在正四棱柱ABCD-A1B1C1D1中,E,F,G,H分别是棱C1C,C1D1,D1D,DC的中点,点M在四边形EFGH及其内部运动,则M只需满足条件________时,就有MN∥平面B1BDD1,其中N是BC的中点.(填上一个正确的条件即可,不必考虑全部可能的情况)【解析】∵H、N分别是CD和CB的中点,连接HN,BD,易知BD∥HN.又BD⊂平面B1BDD1,HN⊄平面B1BDD1,故HN∥平面B1BDD1,故不妨取M点与H点重合便符合题意.【答案】M与H重合(答案不唯一,又如M∈FH)三、解答题图2-2-109.如图2-2-10,在四棱锥P-ABCD中,ABCD是平行四边形,M,N分别是AB,PC的中点.求证:MN ∥平面PAD .【证明】 法一 如图,取PD 中点E ,连接NE ,AE ,N 为PC 中点,E 为PD 中点, ∴NE ∥CD 且NE =12CD .又∵AM ∥CD ,AM =12CD ,∴AM ∥NE 且AM =NE , 即四边形AENM 为平行四边形, ∴MN ∥AE .又∵MN ⊄平面PAD ,AE ⊂平面PAD , ∴MN ∥平面PAD .法二 如图,取CD 的中点E ,连接NE ,ME .∵M ,N 分别是AB ,PC 的中点, ∴NE ∥PD ,ME ∥AD .可证明NE ∥平面PAD ,ME ∥平面PAD . 又NE ∩ME =E , ∴平面MNE ∥平面PAD .又MN ⊂平面MNE ,∴MN ∥平面PAD .10.如图2-2-11所示,在三棱柱ABC -A 1B 1C 1中,点D ,E 分别是BC 与B 1C 1的中点.求证:平面A 1EB ∥平面ADC 1.图2-2-11【证明】由棱柱性质知,B1C1∥BC,B1C1=BC,又D,E分别为BC,B1C1的中点,所以C1E∥DB,C1E=DB,则四边形C1DBE为平行四边形,因此EB∥C1D,又C1D⊂平面ADC1,EB⊄平面ADC1,所以EB∥平面ADC1.连接DE,同理,EB1∥BD,EB1=BD,所以四边形EDBB1为平行四边形,则ED∥B1B,ED=B1B.因为B1B∥A1A,B1B=A1A,所以ED∥A1A,ED=A1A,则四边形EDAA1为平行四边形,所以A1E∥AD,又A1E⊄平面ADC1,AD⊂平面ADC1,所以A1E∥平面ADC1.由A1E∥平面ADC1,EB∥平面ADC1,A1E⊂平面A1EB,EB⊂平面A1EB,且A1E∩EB=E,所以平面A1EB∥平面ADC1.11.(探究创新题)如图2-2-12所示,在底面是菱形的四棱锥P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=2a,点E在PD上,且PE∶ED=2∶1,在棱PC上是否存在一点F,使BF∥平面AEC?证明你的结论.图2-2-12【解】 当点F 是棱PC 的中点时,BF ∥平面AEC .证明:取PE 的中点M ,连接FM ,则FM ∥CE . ∵FM ⊄平面AEC ,CE ⊂平面AEC ,∴FM ∥平面AEC ,由EM =12PE =ED ,得E 是MD 的中点.连接BM ,BD ,设BD ∩AC =O ,则O 是BD 的中点,所以BM ∥OE . ∵BM ⊄平面AEC ,OE ⊂平面AEC , ∴BM ∥平面AEC .∵FM ∩BM =M ,∴平面BFM ∥平面AEC . 又BF ⊂平面BFM ,∴BF ∥平面AEC .。
【课堂新坐标】(教师用书)2013-2014学年高中数学 2.2.2 用样本的数字特征估计总体的数字
【课堂新坐标】(教师用书)2013-2014学年高中数学用样本的数字特征估计总体的数字特征新人教B版必修3一、选择题1.10名工人某天生产同一零件,生产的件数分别是15,17,14,10,15,17,17,16,14,12.设平均数为a,中位数为b,众数为c,则有( )A.a<b<c B.a>b>cC.a<c<b D.c>a>b【解析】众数c=17,中位数b=15,平均数a=110×(10+12+14×2+15×2+16+17×3)=14.7,所以a<b<c.【答案】 A2.甲、乙、丙、丁四人参加某运动会的射击项目选拨赛,四人的平均成绩和标准差见表:甲乙丙丁平均数x8.58.88.88标准差s 3.5 3.5 2.18.7A.甲B.乙C.丙D.丁【解析】乙、丙两人平均成绩相同也较高,但丙的标准差小,说明丙的成绩稳定,所以选丙.【答案】 C3.样本101,98,102,100,99的标准差为( )A.2B.0C.1 D.2【解析】样本平均数x=100,方差s2=2,∴标准差s= 2.【答案】 A4.如图2-2-16,样本A和B分别取自两个不同的总体,它们的样本平均数分别为x-A和x -B ,样本标准差分别为s A 和s B ,则( )图2-2-16A.x -A >x -B ,s A >s BB.x -A <x -B ,s A >s B C.x -A >x -B ,s A <s B D.x -A <x -B ,s A <s B【解析】 由所给的图知样本A 分布在(2.5,10)之间,且波动大;而样本B 分布在(10,15)之间,且波动小,故x -A <x -B ,s A >s B ,应选B.【答案】 B5.(2013·潍坊高一检测)某班有48名学生,在一次考试中统计出平均分为70分,方差为75,后来发现有2名同学的分数登错了,甲实得80分,却记了50分,乙得70分却记了100分,更正后平均分和方差分别是( )A .70,75B .70,50C .75,1.04D .65,2.35【解析】 因甲少记了30分,乙多记了30分,故平均分不变,设更正后的方差为s 2,则由题意可得:s 2=148[(x 1-70)2+(x 2-70)2+…+(80-70)2+(70-70)2+…+(x 48-70)2],而更正前有:75=148[(x 1-70)2+(x 2-70)2+…+(50-70)2+(100-70)2+…+(x 48-70)2],化简整理得s 2=50. 【答案】 B 二、填空题6.某高校有甲、乙两个数学建模兴趣班.其中甲班有40人,乙班有50人.现分析两个班的一次考试成绩,算得甲班的平均成绩是90分,乙班的平均成绩是81分,则该校数学建模兴趣班的平均成绩是________分.【解析】 由题意:该校数学建模兴趣班的平均成绩40×90+50×8190=85分.【答案】 857.(2013·某某高考)某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4.则:(1)平均命中环数为________; (2)命中环数的标准差为________.【解析】 (1)x =7+8+7+9+5+4+9+10+7+410=7.(2)s 2=110[(7-7)2+(8-7)2+(7-7)2+(9-7)2+(5-7)2+(4-7)2+(9-7)2+(10-7)2+(7-7)2+(4-7)2]=4,∴s =2.【答案】 (1)7 (2)28.一组数据中的每一个数据都减去80,得一组新数据,若求得新数据的平均数是1.2,方差是4.4,则原来数据的平均数和方差分别是________、________.【解析】 设原数据的平均数为A ,方差为B ,则将原数据都减去80,得一组新数据的平均数为A -80,方差为B ,则:A -80=1.2,∴A =81.2,B =4.4.【答案】 81.2 4.4 三、解答题9.某公司销售部有销售人员15人,为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:(1)(2)假设销售部负责人把每位销售人员的月销售定额定为320件,你认为是否合理,为什么?如不合理,请你制定一个较合理的销售定额.【解】 (1)平均数x -=115×(1 800×1+510×1+250×3+210×5+150×3+120×2)=320(件),中位数为210件,众数为210件.(2)不合理.因为15人中就有13人的销售额达不到320件,也就是说320虽是这一组数据的平均数,但它却不能反映销售人员的一般水平.销售额定为210件要合理些,这是由于210既是中位数又是众数,是绝大部分人都能达到的销售额.10.对甲、乙两人的学习成绩进行抽样分析,各抽5门功课,得到的数据如下: 甲:60,80,70,90,70 乙:80,60,70,80,75问:甲、乙两人谁的平均成绩好?谁的各门功课发展较平衡. 【解】 平均数:x 甲=15×(60+80+70+90+70)=74,x 乙=15×(80+60+70+80+75)=73,方差:s 2甲=15×[(-14)2+62+(-4)2+162+(-4)2]=104,s 2乙=15×(72+(-13)2+(-3)2+72+22)=56.由于x 甲>x 乙,s 2甲>s 2乙,所以甲的平均成绩较好,乙的各门功课发展较平衡. 11.某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分:方案1 所有评委所给分的平均数.方案2 在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余给分的平均数.方案3 所有评委所给分的中位数. 方案4 所有评委所给分的众数.为了探究上述方案的合理性,先对某个同学的演讲成绩进行了统计实验.下面是这个同学的得分统计图(如图2-2-17所示).图2-2-17(1)分别按上述4个方案计算这个同学演讲的最后得分;(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分.【解】 (1)方案1最后得分:110(3.2+7.0+7.8+3×8+3×8.4+9.8)=7.7;方案2最后得分:18(7.0+7.8+3×8+3×8.4)=8;方案3最后得分:8; 方案4最后得分:8或8.4.(2)因为方案1中的平均数受极端数值的影响,不能反映这组数据的“平均水平”,所以方案1不适合作为最后得分的方案.因为方案4中的众数有两个,众数失去了实际意义,所以方案4不适合作为最后得分的方案.。
【课堂新坐标】(教师用书)2013-2014学年高中数学2.2.1直接证明课后知能检测苏教版选修2-2
【课堂新坐标】(教师用书)2013-2014学年高中数学 2.2.1 直接证明课后知能检测苏教版选修2-2一、填空题1.命题“函数f(x)=x-xln x在区间(0,1)上是增函数”的证明过程“对函数f(x)=x-xln x求导得f′(x)=-ln x,当x∈(0,1)时,f′(x)=-ln x>0,故函数f(x)在区间(0,1)上是增函数”应用了________的证明方法.【答案】综合法2.欲证2-3<6-7成立,只需证①(2-3)2<(6-7)2;②(2-6)2<(3-7)2;③(2+7)2<(3+6)2;④(2-3-6)2<(-7)2.则正确的序号是________.【解析】“2-3<6-7”⇔“2+7<3+6”且2+7>0,3+6>0,故只需证(2+7)2<(3+6)2.【答案】③3.已知α,β为实数,给出下列三个论断:①αβ>0;②|α+β|>5;③|α|>22,|β|>22,以其中的两个论断为条件,另一个论断为结论,写出你认为正确的命题是________.【解析】由①αβ>0知α,β同号,∴由③知|α|+|β|=|α+β|>42>5.【答案】①③⇒②图2-2-24.如图2-2-2,在直四棱柱A1B1C1D1—ABCD中,当底面四边形ABCD满足条件________时,有A1C⊥B1D1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形).【解析】只要使BD⊥平面AA1C1C即可.【答案】 ABCD 为正方形(ABCD 为菱形或AC⊥BD 等)5.已知a ,b 是不相等的正数,x =a +b2,y =a +b ,则x ,y 的大小关系是x________y.【解析】 要比较x ,y 的大小.∵x>0,y >0,只需比较x 2,y 2的大小,即a +b +2ab 2与a +b 的大小. ∵a ,b 为不相等的正数,∴2ab <a +b. ∴a +b +2ab 2<a +b , 则x 2<y 2.∴x <y.【答案】 <6.已知x >0,y >0,且x 3+y 4=1,则xy 的最大值为________. 【解析】 ∵1=x 3+y 4≥2xy 12= xy 3. ∴xy ≤3,当且仅当x =32,y =2时等号成立. 【答案】 37.已知f(x)=a (2x +1)-22x +1是奇函数,那么实数a 的值等于________. 【解析】 法一 函数的定义域为R ,函数为奇函数,当x =0时f(0)=0,即2a -22=0. ∴a =1.法二 由奇函数的定义f(-x)=-f(x)恒成立.即a (2-x +1)-22-x +1=-a (2x +1)-22x +1, 即a (1+2x )-21+x 2x +1=-a (2x +1)-22x +1恒成立. 即2a +a·2x +1=2x +1+2,∴a =1. 【答案】 1 8.已知△ABC 的两顶点A 、B 是双曲线x 29-y 216=1的左右两个焦点,顶点C 在双曲线的右支上,则sin C sin A -sin B=________. 【解析】 ∵A、B 是双曲线x 29-y 216=1的左右两个焦点,C 在双曲线的右支上, ∴|AB|=29+16=10,|CA|-|CB|=6,由正弦定理,得sin C sin A -sin B =|AB||BC|-|AC|=-53. 【答案】 -53二、解答题 9.已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,若a ,b ,c 成等差数列,且2cos 2B -8cos B +5=0,求证:△ABC 为正三角形.【证明】 ∵2cos 2B -8cos B +5=0,∴4cos 2B -8cos B +3=0,∴cos B =12或cos B =32(舍去),∴B =60°.∵a ,b ,c 等差,∴2b =a +c ,∴cos B =a 2+c 2-b 22ac =a 2+c 2-(a +c 2)22ac =12,∴a =c.又∵B=60°,∴△ABC 为正三角形.10.已知a >0,1b -1a >1,求证:1+a >11-b .【证明】 由1b -1a >1,及a >0知b >0.要证明1+a >11-b , 只需证明1+a ·1-b >1,即证1+a -b -ab >1,只要证明a -b >ab ,即证a -b ab >1,也就是1b -1a >1, ∵1b -1a >1成立(已知),故原不等式1+a >11-b 成立.图2-2-311.如图2-2-3所示,在四棱锥P—ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC =60°,PA=AB=BC,E是PC的中点.(1)证明:CD⊥AE;(2)证明:PD⊥平面ABE.【证明】(1)在四棱锥P—ABCD中,因为PA⊥底面ABCD,CD⊂平面ABCD,故PA⊥CD.∵AC⊥CD,PA∩AC=A,∴CD⊥平面PAC.又AE⊂平面PAC.所以CD⊥AE.(2)由PA=AB=BC,∠ABC=60°,可得AC=PA,∵E是PC的中点,∴AE⊥PC.由(1)知,AE⊥CD,且PC∩CD=C,所以AE⊥平面PCD.而PD⊂平面PCD,∴AE⊥PD.∵PA⊥底面ABCD,∴PD在底面ABCD内的射影是AD,∵AB⊥AD,∴AB⊥PD,又∵AB∩AE=A,故PD⊥平面ABE.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【课堂新坐标】(教师用书)2013-2014学年高中数学 2.2 超几何分
布课后知能检测 苏教版选修2-3
一、填空题
1.下列随机事件中的随机变量X 服从超几何分布的是________. ①将一枚硬币连抛3次,正面向上的次数为X ;
②从7男3女的10名学生干部中选出5名优秀学生干部,女生的人数为X ; ③某射手的命中率为0.8,现对目标射击1次,记命中的次数为X ;
④盒中有4个白球和3个黑球,每次从中摸出1球且不放回,X 是首次摸出黑球时摸球的总次数.
【解析】 ①③均为重复试验,不符合超几体分布总体的分类要求;②④总体分为明确的两类,但④中的随机变量X 不是抽取样本中一类元素的个数.
【答案】 ②
2.在15个村庄中,有7个村庄交通不方便,若用随机变量X 表示任选10个村庄中交通不方便的村庄的个数,则X 服从超几何分布H (________,________,________________________________________________________________________).
【解析】 由题意,n =10,M =7,N =15,故X ~H (10,7,15) 【答案】 10 7 15
3.从装有3个红球、2个白球的袋中随机取出2个球,设其中有X 个红球,则随机变量X 的概率分布为________.
【解析】 P (X =0)=2C 25=10=0.1,
P (X =1)=C 1
3·C 1
2
C 25=0.6,
P (X =2)=C 23
C 25
=0.3.
【答案】 0.1 0.6 0.3
4.12人的兴趣小组中有5人是“三好学生”,现从中任选6人参加竞赛,若随机变量
X 表示参加竞赛的“三好学生”的人数,则P (X =________)=C 35C 3
7
C 612
.
【解析】 X ~H (6,5,12), ∴X =3. 【答案】 3
5.从20名男同学、10名女同学中任选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的概率为________.
【解析】 P =C 1
20C 2
10+C 2
20C 1
10C 3
30=20
29. 【答案】
2029
6.一盒中有a 个白球和2个黑球,从中任取3个球,则其中至少含有一个黑球的概率为0.9,那么a 的值为______________________________________.
【解析】 设X 为任取3球中黑球的个数, 则P (X ≥1)=1-P (X =0)=1-C 3
a
C 3a +2=0.9,
3a 2
-11a +6=0. ∴a =2
3或a =3.
又∵a ∈Z,∴a =3. 【答案】 3
7.在30瓶饮料中,有3瓶已过了保质期.从这30瓶饮料中任取2瓶,则至少取到1瓶已过了保质期饮料的概率为________.(结果用最简分数表示)
【解析】 从这30瓶饮料中任取2瓶,设至少取到1瓶已过了保质期饮料为事件A ,则P (A )=C 1
27C 1
3C 230+C 2
3C 230=28
145
.
【答案】
28145
8.某电视台在一次对收看新闻节目观众的抽样调查中,随机抽取了45名电视观众,其中20至40岁的有18人,大于40岁的有27人.用分层抽样方法在收看新闻节目的观众中随机抽取5名,在这5名观众中再任取2名,则恰有1名观众的年龄为20至40岁的概率为__________________________.
【解析】 由于是分层抽样,所以5名观众中,年龄为20至40岁的有18
45×5=2人.设
随机变量X 表示20至40岁的人数,则X 服从超几何分布H (2,2,5),故P (X =1)=C 12C 1
3C 25=3
5
.
【答案】 3
5
二、解答题
9.某食品厂生产的40件产品中,重量超过505克的产品有12件,现从这40件产品中任取2件.
(1)设Y 为重量超过505克的产品数量,求Y 的概率分布; (2)求至多含有一件重量超过505克的产品的概率. 【解】 (1)由题意Y 的可能取值为0,1,2. P (Y =0)=C 2
28C 240=63
130,
P (Y =1)=C 1
28C 112C 240=28
65,
P (Y =2)=C 212C 240=11
130.
∴Y 的概率分布为:
(2)由(1)P =P (Y =0)+P (Y =1)=
63130+2865=119130
. 10.有5支不同标价的圆珠笔,分别标有10元、20元、30元、40元、50元,从中任取3支,若以ξ表示取到的圆珠笔中的最高标价,试求ξ的概率分布.
【解】 ξ的可能取值为30,40,50.P (ξ=30)=1C 35=110,P (ξ=40)=C 2
3C 35=3
10,P (ξ
=50)=C 2
4C 35=3
5
,故ξ的概率分布如下表所示:
11.2人,会跳舞的有5人,现从中选2人,设X 为选出的人中既会唱歌又会跳舞的人数,且P (X >0)=7
10
.
(1)求文娱队的人数;
(2)写出X 的概率分布.
【解】 (1)设既会唱歌又会跳舞的有x 人,则文娱队中共有(7-x )人,那么只会一项的人数是(7-2x )人.
因为P (X >0)=1-P (X =0)=710,所以P (X =0)=310,即C 2
7-2x C 27-x =3
10,所以
(7-2x )(6-2x )(7-x )(6-x )=3
10
.所以x =2.故文娱队共有5人.
(2)P (X =1)=C 1
2·C 1
3C 25=35,P (X =2)=C 2
2C 24=110.
故X 的概率分布为:。