东华中学、河南名校2017届高三阶段性联考(二)(理数)
2017届高三八校二次联考理科数学试题及参考答案
鄂南高中 华师一附中 黄冈中学 黄石二中 荆州中学 孝感高中 襄阳四中 襄阳五中2017届高三第二次联考数学试题(理科)命题学校:孝感高中 命题人:姚继元 王国涛 审题人:雷建华 张同裕本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数(1)(2)i i z i-++=-,则z 在复平面内对应的点在A.第一象限B.第二象限C.第三象限D.第四象限2.已知全集{1,2,3,4,5,6,7}U =,集合{2,4,5}A =,{1,3,5,7}B =,则()U C A B =∩ A .{7} B .{3,5} C .{1,3,6,7} D .{1,3,7}3.下列选项中说法正确的是A .命题“q p ∨为真”是命题“q p ∧为真” 的必要条件.B .若向量,a b 满足0a b ⋅>,则a 与b 的夹角为锐角.C .若22bm am ≤,则b a ≤.D .“0,0200≤-∈∃x x R x ”的否定是“0,2≥-∈∀x x R x ”.4.若等差数列{}n a 的公差为2,且5a 是2a 与6a 的等比中项,则该数列的前n 项和n S 取最小值时,n 的值等于A. 7B. 6C.5D.45.过双曲线2221(0)4x y b b -=>的左焦点的直线交双曲线的左支于A ,B 两点,且||6AB =,这样的直线可以作2条,则b 的取值范围是A .(0,2]B .(0,2)C .6]D .(66.已知若1e ,2e 是夹角为90的两个单位向量,则213e e a -=,212e e b +=的夹角为A .120 B .60 C .45 D .307.()20cos a x dx π=-⎰,则912ax ax ⎛⎫+ ⎪⎝⎭展开式中,3x 项的系数为 A .212- B .638- C .638 D .63168.右图是求样本x 1,x 2,…,x 10平均数x 的程序框图,图中空白框中应填入的内容为A.S =S +n xB.S =S +nx n C.S =S + n D.S =S +10nx 9.设F 为抛物线24x y =的焦点,,,A B C 为该抛物线上三点,若0FA FB FC ++=,则FA FB FC ++的值为A .3B .6C .9D .1210.函数()y f x =的定义域是R ,若对于任意的正数a ,函数()()()g x f x a f x =+-都是其定义域上的减函数,则函数()y f x =的图象可能是11.公元前3世纪,古希腊欧几里得在《几何原本》里提出:“球的体积(V )与它的直径(d )的立方成正比”,此即3V kd =。
2017年全国统一高考新课标版Ⅱ卷全国2卷理科数学试卷及参考答案与解析
2017年全国统一高考新课标版Ⅱ卷全国2卷理科数学试卷及参考答案与解析一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)=( )A.1+2iB.1-2iC.2+iD.2-i2.(5分)设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=( )A.{1,-3}B.{1,0}C.{1,3}D.{1,5}3.(5分)在明朝程大位《算法统宗》中有这样的一首歌谣:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”这首古诗描述的这个宝塔(古称浮屠),本题说它一共有7层,每层悬挂的红灯数是上一层的2倍,共有381盏灯,问塔顶有几盏灯?你算出的结果是( )A.6B.5C.4D.34.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A.90πB.63πC.42πD.36π5.(5分)设x,y满足约束条件,则z=2x+y的最小值是( )A.-15B.-9C.1D.96.(5分)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A.12种B.18种C.24种D.36种7.(5分)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( )A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩8.(5分)执行如图的程序框图,如果输入的a=-1,则输出的S=( )A.2B.3C.4D.59.(5分)若双曲线C:-=1(a>0,b>0)的一条渐近线被圆(x-2)2+y2=4所截得的弦长为2,则C的离心率为( )A.2B.C.D.10.(5分)已知直三棱柱ABC-A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为( )A. B. C. D.11.(5分)若x=-2是函数f(x)=(x2+ax-1)e x-1的极值点,则f(x)的极小值为( )A.-1B.-2e-3C.5e-3D.112.(5分)已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则•(+)的最小值是( )A.-2B.-C.-D.-1二、填空题:本题共4小题,每小题5分,共20分。
东华中学、河南名校2017届高三阶段性联考(四)(文数)
东华中学、河南名校2017届高三阶段性联考(四)数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 考生作答时,将答案答在答题卡上(答题注意事项见答题卡),在本试题上答题无效,考试结束后,将本试题和答题卡一并交回.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求. 1.已知复数4723iz i-=+,则在复平面内,复数z 所对应的点位于 A. 第一象限 B. 第二象限 C.第三象限 D.第四象限2.已知集合{}{|42830,|A x x x B x y =-+≤==,则A B =A. 1,12⎡⎤⎢⎥⎣⎦B. 1,12⎛⎤ ⎥⎝⎦C. 31,2⎡⎫⎪⎢⎣⎭D.31,2⎡⎤⎢⎥⎣⎦3.我国古代名著《九章算术》中中有这样一段话: “今有金锤,长五尺,斩本一尺,重四斤.斩末一尺,重二斤.”意思是:“有一根金锤,共5尺长,头部的1尺重4斤;尾部的1尺重2斤;且从头部到尾部,每一尺的重量构成一个等差数列.”则下列说法错误..的是A.该金锤中间一尺重3斤B.中间三尺的重量和是头尾两尺重量和的3倍C.该金锤的总重量为15斤D.该金锤相邻两尺的重量之差的绝对值为0.5斤4.已知正六边形ABCDEF 内接于圆O ,连接,AD BE ,现在往圆O 内投掷2000粒小米,0.55π==)A. 275B. 300C. 550D. 6005.如图,网格纸上小正方形的边长为1,粗实线画出的是 某几何体的三视图,则该几何体的体积为 A. 916π+ B. 918π+ C. 1228π+ D. 1818π+6.若圆Ω过点()()0,10,5-,且被直线0x y -=截得的弦长为Ω的方程为A. ()2229x y +-=或()()224225x y ++-= B. ()2229x y +-=或()()221210x y -+-=C. ()()224225x y ++-=或()()224217x y ++-= D. ()()224225x y ++-=或()()224116x y -++=7.运行如图所示的程序框图,则输出的m 的值为A. 134B. -19C. 132D. 21 8.已知函数()()2sin 0,2f x x πωϕωϕπ⎛⎫=+><< ⎪⎝⎭的图 象如图所示,其中点315,0,,044A B ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,为了得到 函数()2sin 3g x x πω⎛⎫=-⎪⎝⎭的图象,则应当把函数 ()y f x =的图象A. 向左平移134π个单位 B.向右平移134π个单位 C.向左平移1312π个单位 D. 向右平移1312π个单位9.已知0x R ∃∈,使020041xae x x -->成立,则实数a 的取值范围A. RB. ()32,e -+∞ C. 6,e ⎛⎫+∞ ⎪⎝⎭D. ()1,+∞10.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为()()12,0,,0F c F c -,直线l 过不同的两点()2,0,,22a b ab b a a ⎛⎫+- ⎪⎝⎭,,则双曲线的离心率为A.43 B. 2 C. D.211.如图,长方体1111ABCD A BC D -中,18,4,DC CC CB AM MB +===,点N 是平面1111A B C D 上的点,且满足1C N =1111ABCD A BC D -的体积最大时,线段MN 的最小值是A. B. 8 C. D.12.已知函数()21,22,2416x mx f x mx x x -⎧⎛⎫<⎪ ⎪⎪⎝⎭=⎨⎪≥⎪+⎩,当2≥m 时,对任意的[)12,x ∈+∞,总存在()2,2x ∈-∞使得()()12f x f x =,则实数m 的取值范围是A. [)2,4B. []2,4C. [)3,4D.[]3,4第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.已知实数,x y 满足30644x y x y x y -≥⎧⎪+≤⎨⎪-≤⎩,则2z x y =-的最小值为 .14.规定:投掷飞镖3次为一轮,若3次中至少两次投中8环以上为优秀.现采用随机模拟试验的方法估计某选手的投掷飞镖的情况:先由计算机根据该选手以往的投掷情况产生随机数0或1,用0表示该次投掷未在8环以上,用1表示该次投掷在8环以上;再以每三个随机数为一组,代表一轮的结果,经随机模拟试验产生了如下20组随机数: 101 111 011 101 010 100 100 011 111 110 000 011 010 001 111 011 100 000 101 101 据此估计,该选手投掷1轮,可以拿到优秀的概率为 . 15.如图,在ABC ∆中,3,5,60,,AB AC BAC D E ==∠= 分别,AB AC 是的中点,连接,CD BE 交于点F ,连接AF ,取CF 的中点G ,连接BG ,则AF BG ⋅=.16.已知数列{}n na 的前n 项和为n S ,且2n n a =,则使得1500n n S na +-+<的最小正整数n 的值为 .三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程. 17.(本题满分12分)已知四边形MNPQ如图所示,其中2,MN NP PQ MQ ==== (1cos M P -的值;(2)记MNQ ∆与NPQ ∆的面积分别是1S 与2S ,求2212S S +与的最大值.如图1,在ABC ∆中,MA 是BC 边上的高,.4,3==AC MA 如图( 2),将MBC ∆沿MA 进行翻折,使得︒=∠90BAC ,再过点B 作//BD AC ,连接,,AD CD MD ,且.30,32︒=∠=CAD AD(1)求证:CD ⊥平面MAD ; (2)求点A 到平面MCD 的距离.19.(本题满分12分)2016年天猫双十一活动结束后,某地区研究人员为了研究该地区在双十一活动中消费超过3000元的人群的年龄状况,随机在当地消费超过3000元的群众张抽取了500人作调查,所得概率分布直方图如图所示:记年龄在[)[)[]55,65,65,75,75,85对应的小矩形的面积分别是123,,S S S ,且12324S S S =-.(1)以频率估计概率,若该地区双十一消费超过3000元的有30000人,试估计该地区在双十一活动中消费超过3000元且年龄在[)45,65的人数;(2)计算在双十一活动中消费超过3000元的消费者的平均年龄;(3)若按照分层抽样,从年龄在[)[)15,25,65,75的人群中共抽取7人,再从这7人中随机抽取2人作深入调查,求至少有1人的年龄在[)15,25内的概率.20.(本题满分12分)已知椭圆()2222:10x y C a b a b +=>>过点()1,,13⎛- ⎝⎭,过点()1,0-且斜率为k 的直线l 与椭圆C 交于,A B 两点.(1)求椭圆C 的方程;(2)若x 轴上存在一点M ,使得2531MA MB t k ⋅+=+ ,其中t 是与k 无关的常数,求点M 的坐标和t 的值.已知函数()ln .f x x x =(1)求()f x 在()0,+∞上的极值;(2)当121,,1x x e ⎛⎫∈ ⎪⎝⎭且121x x <-时,求证:()1212ln ln 4ln x x x x +<+.请考生在第22、23两题中任选一题作答,如果两题都做,则按照所做的第一题给分;作答时,请用2B 铅笔将答题卡上相应的题号涂黑。
河南省天一大联考(全国卷)2017届高三高中毕业班阶段性测试(二)数学(理)试题
第 钎卷
填 空 题 本 大 题 共 4 小 题 每 小题 5 分 丄 A -- y ( 13 ) 已 巩叫 W 2 ) 直线 l
E
1r .. . . ·
1
·
0
x
+
y s in
a
+
B
=
0
相 互 垂 直 财 傆的 值
为
荫
F
( 14 ) 已 知 抛 物 线
C y
2
=
4 •B
的焦 点 为 F 点
,
M
在抛 物线
( n ) 若 直线
y
-
k (x
·
3
值范 围 k ) 与 函数八 X ) 的 图象 的 交 点个 数 为 5 求 实数 的取
5 , 1 1 •z上 的图象
பைடு நூலகம்
+y
1
j
;
l l l i Ë a * i · · Ui
( 2 1 ) ( 本 小 题 满分
12
分)
在 平 面 直角 坐标 系 x o y 中 椭 圆 n
绝密
女
启用前
试 卷 类 型 全 国卷
天
2 0 16 2 0 17
大联考
.
学 年 高 中 毕 业 班阶 段 性 测 试 ( 兰 )
数学 (理 科 )
卷 ( 非 选 择题 ) 两 部分 考 生 作答 时 将答 案答 在 答 题 卡 上 ( 答 题 注 意 事项 见 答 题 卡 ) 在 本 试 题 卷 上 答 题 无 效 考 试 结束 后 将本 试 题 卷 和 答 题 卡 并交 回
O, 且
x
x
-
.
w
y
河南省郑州市2017届高考数学二模试卷(理科)含答案解析
2017年河南省郑州市、平顶山市、濮阳市高考数学二模试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知复数f(n)=i n(n∈N*),则集合{z|z=f(n)}中元素的个数是()A.4 B.3 C.2 D.无数2.设x=30.5,y=log32,z=cos2,则()A.z<y<x B.z<x<y C.y<z<x D.x<z<y3.要计算1+++…+的结果,如图程序框图中的判断框内可以填()A.n<2017 B.n≤2017 C.n>2017 D.n≥20174.某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为()A.B.C.D.5.下列命题是真命题的是()A.∀φ∈R,函数f(x)=sin(2x+φ)都不是偶函数B.∃α,β∈R,使cos(α+β)=cosα+cosβC.向量=(2,1),=(﹣1,0),则在方向上的投影为2D.“|x|≤1”是“x≤1”的既不充分又不必要条件6.在区间[1,e]上任取实数a,在区间[0,2]上任取实数b,使函数f(x)=ax2+x+b 有两个相异零点的概率是()A. B. C. D.7.已知数列{a n}满足a n+1=a n﹣a n﹣1(n≥2),a1=m,a2=n,S n为数列{a n}的前n项和,则S2017的值为()A.2017n﹣m B.n﹣2017m C.m D.n8.已知实数x,y满足,则z=2|x﹣2|+|y|的最小值是()A.6 B.5 C.4 D.39.已知空间四边形ABCD,满足||=3,||=7,||=11,||=9,则•的值()A.﹣1 B.0 C.D.10.将数字“124467”重新排列后得到不同的偶数个数为()A.72 B.120 C.192 D.24011.已知P为双曲线﹣x2=1上任一点,过P点向双曲线的两条渐近线分别作垂线,垂足分别为A,B,则|PA|•|PB|的值为()A.4 B.5C.D.与点P的位置有关12.已知函数f(x)=,如果当x>0时,若函数f(x)的图象恒在直线y=kx的下方,则k的取值范围是()A.[,]B.[,+∞)C.[,+∞)D.[﹣,]二、填空题(本大题共4小题,每小题5分,共20分)13.正方体的8个顶点中,有4个恰是正四面体的顶点,则正方体与正四面体的表面积之比为.14.已知幂函数y=x a的图象过点(3,9),则的展开式中x的系数为.15.过点P(﹣1,0)作直线与抛物线y2=8x相交于A,B两点,且2|PA|=|AB|,则点B到该抛物线焦点的距离为.16.等腰△ABC中,AB=AC,BD为AC边上的中线,且BD=3,则△ABC的面积最大值为.三、解答题(本大题共5小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(12分)已知数列{a n}前n项和为S n,a1=﹣2,且满足S n=a n+n+1(n∈+1N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=log3(﹣a n+1),求数列{}前n项和为T n,求证T n<.18.(12分)如图,三棱柱ABC﹣A1B1C1中,各棱长均相等,D,E,F分别为棱AB,BC,A1C1的中点.(Ⅰ)证明EF∥平面A1CD;(Ⅱ)若三棱柱ABC﹣A1B1C1为直棱柱,求直线BC与平面A1CD所成角的正弦值.19.(12分)某食品公司研发生产一种新的零售食品,从产品中抽取100件作为样本,测量这些产品的一项质量指标值,由测量结果得到如图频率分布直方图.(Ⅰ)求直方图中a的值;(Ⅱ)由频率分布直方图可以认为,这种产品的质量指标值Z服从正态分布N (200,12.22),试计算数据落在(187.8,212.2)上的频率;参考数据若Z~N(μ,δ2),则P(μ﹣δ<Z<μ+δ)=0.6826,P(μ﹣2δ<Z<μ+2δ)=0.9544.(Ⅲ)设生产成本为y,质量指标为x,生产成本与质量指标之间满足函数关系y=,假设同组中的每个数据用该组区间的右端点值代替,试计算生产该食品的平均成本.20.(12分)已知椭圆x2+2y2=m(m>0),以椭圆内一点M(2,1)为中点作弦AB,设线段AB的中垂线与椭圆相交于C,D两点.(Ⅰ)求椭圆的离心率;(Ⅱ)试判断是否存在这样的m,使得A,B,C,D在同一个圆上,并说明理由.21.(12分)已知函数f(x)=xlnx﹣x,g(x)=x2﹣ax(a∈R).(Ⅰ)若f(x)和g(x)在(0,+∞)有相同的单调区间,求a的取值范围;(Ⅱ)令h(x)=f(x)﹣g(x)﹣ax(a∈R),若h(x)在定义域内有两个不同的极值点.(i)求a的取值范围;(ii)设两个极值点分别为x1,x2,证明:x1•x2>e2.四、请考生在第22、23二题中任选一题作答,如果多做,则按所做的第一题记分,作答时,用2B铅笔在答题卡上把所选题目对应的题号涂黑.选修4-4:坐标系与参数方程22.(10分)已知直线l的极坐标方程是ρsin(θ﹣)=0,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,曲线C的参数方程是(α为参数).(Ⅰ)求直线l被曲线C截得的弦长;(Ⅱ)从极点作曲线C的弦,求各弦中点轨迹的极坐标方程.选修4-5:不等式选讲23.已知函数f(x)=|2x+1|,g(x)=|x|+a(Ⅰ)当a=0时,解不等式f(x)≥g(x);(Ⅱ)若存在x∈R,使得f(x)≤g(x)成立,求实数a的取值范围.2017年河南省郑州市、平顶山市、濮阳市高考数学二模试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知复数f(n)=i n(n∈N*),则集合{z|z=f(n)}中元素的个数是()A.4 B.3 C.2 D.无数【考点】虚数单位i及其性质;集合中元素个数的最值.【分析】直接利用复数的幂运算,化简求解即可.【解答】解:复数f(n)=i n(n∈N*),可得f(n)=,k∈Z.集合{z|z=f(n)}中元素的个数是4个.故选:A.【点评】本题考查复数单位的幂运算,基本知识的考查.2.设x=30.5,y=log32,z=cos2,则()A.z<y<x B.z<x<y C.y<z<x D.x<z<y【考点】对数值大小的比较.【分析】利用指数函数、对数函数、三角函数的性质求解.【解答】解:∵x=30.5=>1,0=log31<y=log32<log33=1,z=cos2<0,∴z<y<x.故选:A.【点评】本题考查三个数的大小的比较,是基础题,解题时要注意指数函数、对数函数、三角函数的性质的合理运用.3.要计算1+++…+的结果,如图程序框图中的判断框内可以填()A.n<2017 B.n≤2017 C.n>2017 D.n≥2017【考点】程序框图.【分析】通过观察程序框图,分析为填判断框内判断条件,n的值在执行运算之后还需加1,故判断框内数字应减1,按照题意填入判断框即可.【解答】解:通过分析,本程序框图为“当型“循环结构,判断框内为满足循环的条件,第1次循环,S=1,n=1+1=2,第2次循环,S=1+,n=2+1=3,…当n=2018时,由题意,此时,应该不满足条件,退出循环,输出S的值.所以,判断框内的条件应为:n≤2017.故选:B.【点评】本题考查程序框图,通过对程序框图的分析对判断框进行判断,属于基础题.4.某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为()A.B.C.D.【考点】由三视图求面积、体积.【分析】根据三视图判断几何体是圆锥的一部分,再根据俯视图与左视图的数据可求得底面扇形的圆心角为120°,又由侧视图知几何体的高为4,底面圆的半径为2,把数据代入圆锥的体积公式计算.【解答】解:由三视图知几何体是圆锥的一部分,由俯视图与左视图可得:底面扇形的圆心角为120°,又由侧视图知几何体的高为4,底面圆的半径为2,∴几何体的体积V=××π×22×4=.故选:D.【点评】本题考查了由三视图求几何体的体积,解答的关键是判断几何体的形状及三视图的数据所对应的几何量.5.下列命题是真命题的是()A.∀φ∈R,函数f(x)=sin(2x+φ)都不是偶函数B.∃α,β∈R,使cos(α+β)=cosα+cosβC.向量=(2,1),=(﹣1,0),则在方向上的投影为2D.“|x|≤1”是“x≤1”的既不充分又不必要条件【考点】命题的真假判断与应用.【分析】举出反例φ=,可判断A;举出正例α=,β=﹣,可判断B;求出向量的投影,可判断C;根据充要条件的定义,可判断D.【解答】解:当φ=时,函数f(x)=sin(2x+φ)=cos2x是偶函数,故A为假命题;∃α=,β=﹣∈R,使cos(α+β)=cosα+cosβ=1,故B为真命题;向量=(2,1),=(﹣1,0),则在方向上的投影为﹣2,故C为假命题;“|x|≤1”⇔“﹣1≤x≤1”是“x≤1”的充分不必要条件,故D为假命题,故选:B【点评】本题以命题的真假判断与应用为载体,考查奇数的奇偶性,特称命题,向量的投影,充要条件等知识点,难度中档.6.在区间[1,e]上任取实数a,在区间[0,2]上任取实数b,使函数f(x)=ax2+x+b 有两个相异零点的概率是()A. B. C. D.【考点】几何概型.【分析】设所求的事件为A,由方程ax2+x+b=0有两个相异根,即△=1﹣ab>0求出ab范围,判断出是一个几何概型后,在坐标系中画出所有的实验结果和事件A构成的区域,再用定积分求出事件A构成的区域的面积,代入几何概型的概率公式求解.【解答】解:设事件A={使函数f(x)=ax2+x+b有两个相异零点},方程ax2+x+b=0有两个相异根,即△=1﹣ab>0,解得ab<1,∵在[1,e]上任取实数a,在[0,2]上任取实数b,∴这是一个几何概型,所有的实验结果Ω={(a,b)|1≤a≤e且0≤b≤2},面积为2(e﹣1);事件A={(a,b)|ab<1,1≤a≤e且0≤b≤2},面积S==1,∴事件A的概率P(A)=.故选A.【点评】本题考查了几何概型下事件的概率的求法,用一元二次方程根的个数求出ab的范围,用定积分求不规则图形的面积,考查了学生综合运用知识的能力.7.已知数列{a n}满足a n+1=a n﹣a n﹣1(n≥2),a1=m,a2=n,S n为数列{a n}的前n项和,则S2017的值为()A.2017n﹣m B.n﹣2017m C.m D.n 【考点】数列递推式.【分析】a n+1=a n﹣a n﹣1(n≥2),a1=m,a2=n,可得a n+6=a n.即可得出.【解答】解:∵a n+1=a n﹣a n﹣1(n≥2),a1=m,a2=n,∴a3=n﹣m,a4=﹣m,a5=﹣n,a6=m﹣n,a7=m,a8=n,…,∴a n+6=a n.则S2017=S336×6+1=336×(a1+a2+…+a6)+a1=336×0+m=m,故选:C.【点评】本题考查了数列递推关系、数列的周期性,考查了推理能力与计算能力,属于中档题.8.已知实数x,y满足,则z=2|x﹣2|+|y|的最小值是()A.6 B.5 C.4 D.3【考点】简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得A(2,4),z=2|x﹣2|+|y|=﹣2x+y+4,化为y=2x+z﹣4.由图可知,当直线y=2x+z﹣4过A时,直线在y轴上的截距最小,z有最大值为4.故选:C.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.9.已知空间四边形ABCD,满足||=3,||=7,||=11,||=9,则•的值()A.﹣1 B.0 C.D.【考点】平面向量数量积的运算.【分析】可画出图形,代入=,同样方法,代入,,进一步化简即可求出的值.【解答】解:如图,========0.故选B.【点评】考查向量加法和减法的几何意义,向量的数量积的运算.10.将数字“124467”重新排列后得到不同的偶数个数为()A.72 B.120 C.192 D.240【考点】排列、组合的实际应用.【分析】由题意,末尾是2或6,不同的偶数个数为=120;末尾是4,不同的偶数个数为=120,即可得出结论.【解答】解:由题意,末尾是2或6,不同的偶数个数为=120;末尾是4,不同的偶数个数为=120,故共有120+120=240个,故选D.【点评】本题考查排列、组合知识的运用,考查学生的计算能力,属于中档题.11.已知P为双曲线﹣x2=1上任一点,过P点向双曲线的两条渐近线分别作垂线,垂足分别为A,B,则|PA|•|PB|的值为()A.4 B.5C.D.与点P的位置有关【考点】双曲线的简单性质.【分析】设P(m,n),则﹣n2=1,即m2﹣4n2=4,求出渐近线方程,求得交点A,B,再求向量PA,PB的坐标,由向量的模,计算即可得到.【解答】解:设P(m,n),则﹣m2=1,即n2﹣4m2=4,由双曲线﹣x2=1的渐近线方程为y=±2x,则由,解得交点A(,);由,解得交点B(,).=(,),=(,),则有|PA|•|PB|===.故选:C.【点评】本题考查双曲线的方程和性质,考查渐近线方程的运用,考查联立方程组求交点的方法,考查向量的模求法,考查运算能力,属于中档题.12.已知函数f(x)=,如果当x>0时,若函数f(x)的图象恒在直线y=kx的下方,则k的取值范围是()A.[,]B.[,+∞)C.[,+∞)D.[﹣,]【考点】利用导数研究曲线上某点切线方程.【分析】由于f(x)的图象和y=kx的图象都过原点,当直线y=kx为y=f(x)的切线时,切点为(0,0),求出f(x)的导数,可得切线的斜率,即可得到切线的方程,结合图象,可得k的范围.【解答】解:函数f(x)的图象恒在直线y=kx的下方,由于f(x)的图象和y=kx的图象都过原点,当直线y=kx为y=f(x)的切线时,切点为(0,0),由f(x)的导数f′(x)==,可得切线的斜率为=,可得切线的方程为y=x,结合图象,可得k≥.故选:B.【点评】本题考查导数的运用:求切线的方程,正确求导和确定原点为切点,结合图象是解题的关键,考查运算能力,属于中档题.二、填空题(本大题共4小题,每小题5分,共20分)13.正方体的8个顶点中,有4个恰是正四面体的顶点,则正方体与正四面体的表面积之比为:1.【考点】棱柱、棱锥、棱台的侧面积和表面积.【分析】作图分析.【解答】解:如图:设正方体的棱长为a,则正方体的表面积为S=6a2;正四面体的边长为则其表面积为4•sin60°=2a2;则面积比为6a2:2a2=:1.故答案为::1.【点评】考查了学生的空间想象力.14.已知幂函数y=x a的图象过点(3,9),则的展开式中x的系数为112.【考点】二项式系数的性质;幂函数的概念、解析式、定义域、值域.【分析】直接利用幂函数求出a的值,然后求出二项式展开式中所求项的系数.【解答】解:幂函数y=x a的图象过点(3,9),∴3a=9,∴a=2,=(﹣1)r C8r28﹣r x,∴=(﹣)8的通项为T r+1令r﹣8=1,解得r=6,展开式中x的系数为(﹣1)6C8628﹣6=112,故答案为:112.【点评】本题考查二项式定理的应用,幂函数的应用,考查计算能力.15.过点P(﹣1,0)作直线与抛物线y2=8x相交于A,B两点,且2|PA|=|AB|,则点B到该抛物线焦点的距离为5.【考点】直线与抛物线的位置关系.【分析】利用过P(﹣1,0)作直线与抛物线y2=8x相交于A,B两点,且2|PA|=|AB|,求出B的横坐标,即可求出点B到抛物线的焦点的距离.【解答】解:设A(x1,y1),B(x2,y2),设A,B在直线x=﹣1的射影分别为D,E.∵2|PA|=|AB|,∴3(x1+1)=x2+1即3x1+2=x2,3y1=y2,∵A.B两点在抛物线y2=8x上∴3=,解得x1=,x2=3,∴点B到抛物线的焦点的距离为BF=3+2=5.故答案为5【点评】本题考查抛物线的定义,考查学生的计算能力,解题的关键是利用抛物线的定义确定B的横坐标.16.等腰△ABC中,AB=AC,BD为AC边上的中线,且BD=3,则△ABC的面积最大值为6.【考点】正弦定理.【分析】设AB=AC=2x,三角形的顶角θ,则由余弦定理求得cosθ的表达式,进而根据同角三角函数基本关系求得sinθ,最后根据三角形面积公式表示出三角形面积的表达式,根据一元二次函数的性质求得面积的最大值.【解答】解:设AB=AC=2x,AD=x.设三角形的顶角θ,则由余弦定理得cosθ==,∴sinθ====,∴根据公式三角形面积S=absinθ=×2x•2x•=,∴当x2=5时,三角形面积有最大值6.故答案为:6.【点评】本题主要考查函数最值的应用,根据条件设出变量,根据三角形的面积公式以及三角函数的关系是解决本题的关键,利用二次函数的性质即可求出函数的最值,考查学生的运算能力.运算量较大.三、解答题(本大题共5小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(12分)(2017•濮阳二模)已知数列{a n}前n项和为S n,a1=﹣2,且满足S n=a n+n+1(n∈N*).+1(Ⅰ)求数列{a n }的通项公式;(Ⅱ)若b n =log 3(﹣a n +1),求数列{}前n 项和为T n ,求证T n <.【考点】数列的求和;数列递推式.【分析】(I )S n =a n +1+n +1(n ∈N *).n ≥2时,a n =S n ﹣S n ﹣1=a n +1+n +1﹣,化为:a n +1=3a n ﹣2,可得:a n +1﹣1=3(a n ﹣1),利用等比数列的通项公式即可得出.(II )b n =log 3(﹣a n +1)=n ,可得=.再利用“裂项求和”方法与数列的单调性即可证明.【解答】(I )解:∵S n =a n +1+n +1(n ∈N *).∴n=1时,﹣2=a 2+2,解得a 2=﹣8.n ≥2时,a n =S n ﹣S n ﹣1=a n +1+n +1﹣, 化为:a n +1=3a n ﹣2,可得:a n +1﹣1=3(a n ﹣1), n=1时,a 2﹣1=3(a 1﹣1)=﹣9,∴数列{a n ﹣1}是等比数列,首项为﹣3,公比为3. ∴a n ﹣1=﹣3n ,即a n =1﹣3n . (II )证明:b n =log 3(﹣a n +1)=n ,∴=.∴数列{}前n项和为T n =++…++=<.∴T n <.【点评】本题考查了“裂项求和”方法、等比数列的通项公式、数列递推关系、数列的单调性,考查了推理能力与计算能力,属于中档题.18.(12分)(2017•濮阳二模)如图,三棱柱ABC ﹣A 1B 1C 1中,各棱长均相等,D,E,F分别为棱AB,BC,A1C1的中点.(Ⅰ)证明EF∥平面A1CD;(Ⅱ)若三棱柱ABC﹣A1B1C1为直棱柱,求直线BC与平面A1CD所成角的正弦值.【考点】直线与平面所成的角;直线与平面平行的判定.【分析】(I)连接DE,通过证明四边形A1DEF是平行四边形得出EF∥A1D,从而EF∥平面A1CD;(II)过B作BM⊥A1D交延长线于M,连接CM,则可证BM⊥平面A1CD,即∠BCM为所求线面角,设三棱柱棱长为1,利用三角形相似求出BM即可得出sin∠BCM=.【解答】证明:(I)连接DE,∵D,E分别是AB,BC的中点,∴DE AC,∵F是A1C1的中点,∴A1F=A1C1,又AC A1C1,∴A1F DE,∴四边形A1DEF是平行四边形,∴EF∥A1D,又EF⊄平面A1CD,A1D⊂平面A1CD,∴EF∥平面A1CD.(II)过B作BM⊥A1D交延长线于M,连接CM,∵ABC是等边三角形,∴CD⊥AB,又A1A⊥平面ABC,CD⊂平面ABC,∴A1A⊥CD,∴CD⊥平面ABCD,又BM⊂平面ABCD,∴CD⊥BM,又CD⊂平面A1CD,A1D⊂平面A1CD,CD∩A1D=D,∴BM⊥平面A1CD,∴∠BCM为直线BC与平面A1CD所成的角,设直三棱柱棱长为1,则BM=,∴sin∠BCM==.【点评】本题考查了线面平行的判定,线面角的计算,属于中档题.19.(12分)(2017•濮阳二模)某食品公司研发生产一种新的零售食品,从产品中抽取100件作为样本,测量这些产品的一项质量指标值,由测量结果得到如图频率分布直方图.(Ⅰ)求直方图中a的值;(Ⅱ)由频率分布直方图可以认为,这种产品的质量指标值Z服从正态分布N (200,12.22),试计算数据落在(187.8,212.2)上的频率;参考数据若Z~N(μ,δ2),则P(μ﹣δ<Z<μ+δ)=0.6826,P(μ﹣2δ<Z<μ+2δ)=0.9544.(Ⅲ)设生产成本为y,质量指标为x,生产成本与质量指标之间满足函数关系y=,假设同组中的每个数据用该组区间的右端点值代替,试计算生产该食品的平均成本.【考点】正态分布曲线的特点及曲线所表示的意义.【分析】(Ⅰ)根据频率分布直方图即可求出a的值,(Ⅱ)根据正态分布的定义即可求出答案,(Ⅲ)根据分段函数的关系式代值计算即可.【解答】解:(Ⅰ)a=0.1﹣(0.002+0.009+0.022+0.024+0.008+0.002)=0.033,(Ⅱ)S2=(﹣30)2×0.02+(﹣20)2×0.09+(﹣10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.08=150所以为质量指标值Z服从正态分布N(200,150),所以P(187.8<Z<212.2)=P(200﹣12.2<Z<200+12.2)=0.6826,故p(187.8,212.2)上的频率为0.6826;(Ⅲ)设生产成本为y,质量指标为x,生产成本与质量指标之间满足函数关系y=,则y=0.4(175+185+195+205)+0.8×215﹣80+0.8×225﹣80﹣0.8×235﹣80=604【点评】本题考查了频率分布直方图和正态分布以及分段函数的问题,属于基础题.20.(12分)(2017•濮阳二模)已知椭圆x2+2y2=m(m>0),以椭圆内一点M(2,1)为中点作弦AB,设线段AB的中垂线与椭圆相交于C,D两点.(Ⅰ)求椭圆的离心率;(Ⅱ)试判断是否存在这样的m,使得A,B,C,D在同一个圆上,并说明理由.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【分析】(Ⅰ)由题意,a=,b=,c=,即可求椭圆的离心率;(Ⅱ)CD的中点为M,证明|MA|2=|MB|2=d2+=,即可得出结论.【解答】解:(Ⅰ)由题意,a=,b=,c=,∴=;(Ⅱ)设A(x1,y1),B(x2,y2),代入作差,整理可得(x1﹣x2)(x1+x2)+2(y1+y2)(y1﹣y2)=0.依题意,M(2,1)是AB的中点,∴x1+x2=4,y1+y2=2,从而k AB=﹣1.直线AB的方程为y﹣1=﹣(x﹣2),即x+y﹣3=0.与椭圆方程联立,可得3x2﹣12x+18﹣m=0,∴|AB|=•|x1﹣x2|=.①∵CD垂直平分AB∴直线CD的方程为y﹣1=x﹣2,即x﹣y﹣1=0代入椭圆方程,整理得3x2﹣4x+2﹣m=0.又设C(x3,y3),D(x4,y4),CD的中点为M(x0,y0),则x3,x4是方程③的两根,∴x3+x4=,∴M(,﹣)于是由弦长公式可得|CD|=•|x3﹣x4|=.②点M到直线AB的距离为d==.③于是,由①②③式及勾股定理可得|MA|2=|MB|2=d2+=,此时|AB|<|CD|故A、B、C、D四点均在以M为圆心,||为半径的圆上.【点评】本题综合考查直线和椭圆的位置关系,难度较大,解题时要仔细审题,注意公式的灵活运用.21.(12分)(2017•濮阳二模)已知函数f(x)=xlnx﹣x,g(x)=x2﹣ax(a ∈R).(Ⅰ)若f(x)和g(x)在(0,+∞)有相同的单调区间,求a的取值范围;(Ⅱ)令h(x)=f(x)﹣g(x)﹣ax(a∈R),若h(x)在定义域内有两个不同的极值点.(i)求a的取值范围;(ii)设两个极值点分别为x1,x2,证明:x1•x2>e2.【考点】利用导数研究函数的单调性;导数在最大值、最小值问题中的应用.【分析】(Ⅰ)求导,求得f(x)的单调区间,由二次函数的性质即可求得a 的取值范围;(Ⅱ)(i)求导h′(x)=lnx﹣ax,由方程lnx﹣ax=0在(0,+∞)有两个不同根,方法一:根据函数图象直线y=ax与y=lnx有两个交点,求得y=lnx的切点,即可求得a的取值范围;方法二:构造函数g(x)=lnx﹣ax,求导,根据函数的单调性,即可求得a的取值范围;(ii)由题意可知:x1,x2,分别是方程lnx﹣ax=0的两个根,则只需证明lnt>,t>1,构造辅助函数,根据函数的单调性,求得g(t)>g(1)=0,即可证明lnt>,成立,则x1•x2>e2.【解答】解:(Ⅰ)f(x)=xlnx﹣x,x>0,求导f′(x)=lnx,令f′(x)=0,解得:x=1,则当f′(x)>0,解得:x>1,当f′(x)<0时,解得:0<x<1,∴f(x)单调递增区间为(1,+∞),单调递减区间为(0,1),由g(x)=x2﹣ax(a∈R)在(1,+∞)单调递增,在(0,1)单调递减,则g(x)开口向上,对称轴x=1,则a>0,∴a的取值范围(0,+∞);(Ⅱ)(ⅰ)依题意,函数h(x)=f(x)﹣g(x)﹣ax=xlnx﹣x﹣x2的定义域为(0,+∞),求导h′(x)=lnx﹣ax,则方程h′(x)=0在(0,+∞)有两个不同根,即方程lnx﹣ax=0在(0,+∞)有两个不同根.(解法一)转化为,函数y=lnx与函数y=ax的图象在(0,+∞)上有两个不同交点,如图.可见,若令过原点且切于函数y=lnx图象的直线斜率为k,只须0<a<k.…6分令切点A(x0,lnx0),则k=y′=,又k=,=,解得,x0=1,于是k=,∴0<a<;…8分解法二:令g(x)=lnx﹣ax,从而转化为函数g(x)有两个不同零点,求导g′(x)=﹣ax=(x>0)若a≤0,可见g′(x)在(0,+∞)上恒成立,g(x)在(0,+∞)单调增,此时g(x)不可能有两个不同零点.…5分若a>0,在0<x<时,g′(x)>0,在x>时,g′(x)<0,∴g(x)在(0,)上单调增,在(,+∞)上单调减,()=ln﹣1,…6分从而g(x)的极大值,g(x)极大值=g又在x→0时,g(x)→﹣∞,在x→+∞时,g(x)→﹣∞,于是只须:g(x)极大值>0,即ln﹣1>0,∴0<a<,…7分综上所述,0<a<;…8分(ⅱ)证明:由(i)可知x1,x2,分别是方程lnx﹣ax=0的两个根,即lnx1=ax1,lnx2=ax2,不妨设x1>x2,作差得,ln=a(x1﹣x2),即a=,原不等式x1•x2>e2等价于lnx1+lnx2>2,则a(x1+x2)>2,ln>,令=t,则t>1,ln>,则lnt>,…10分设g(t)=lnt﹣,t>1,g′(t)=>0,∴函数g(t)在(0,+∞)上单调递增,∴g(t)>g(1)=0,即不等式lnt>,成立,故所证不等式x1•x2>e2成立.【点评】本题考查导数的综合应用,考查导数与函数单调性的关系,利用导数求函数的最值,考查转化思想,分析法证明不等式成立,属于中档题.四、请考生在第22、23二题中任选一题作答,如果多做,则按所做的第一题记分,作答时,用2B铅笔在答题卡上把所选题目对应的题号涂黑.选修4-4:坐标系与参数方程22.(10分)(2017•濮阳二模)已知直线l的极坐标方程是ρsin(θ﹣)=0,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,曲线C的参数方程是(α为参数).(Ⅰ)求直线l被曲线C截得的弦长;(Ⅱ)从极点作曲线C的弦,求各弦中点轨迹的极坐标方程.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(I)直线l的极坐标方程是ρsin(θ﹣)=0,展开可得:=0,化为直角坐标方程.曲线C的参数方程是(α为参数),利用平方关系消去参数α可得普通方程,求出圆心C到直线l的距离d,可得直线l被曲线C截得的弦长=2.(II)设Q圆C上的任意一点,P(x,y)为线段OQ的中点,则Q(2x,2y),代入圆C的方程可得各弦中点轨迹的直角坐标方程,再化为极坐标方程即可.【解答】解:(I)直线l的极坐标方程是ρsin(θ﹣)=0,展开可得:=0,化为:y﹣x=0.曲线C的参数方程是(α为参数),消去参数α可得:x2+(y﹣2)2=4,圆心C(0,2),半径r=2.∴圆心C到直线l的距离d==1,∴直线l被曲线C截得的弦长=2=2=2.(II)设Q圆C上的任意一点,P(x,y)为线段OQ的中点,则Q(2x,2y),代入圆C的方程可得:(2x)2+(2y﹣2)2=4,化为:x2+y2﹣2y﹣3=0,可得ρ2﹣2ρcosθ﹣3=0,即为各弦中点轨迹的极坐标方程.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、直线与圆相交弦长问题、点到直线的距离公式、弦长公式、中点坐标公式,考查了推理能力与计算能力,属于中档题.选修4-5:不等式选讲23.(2017•濮阳二模)已知函数f(x)=|2x+1|,g(x)=|x|+a(Ⅰ)当a=0时,解不等式f(x)≥g(x);(Ⅱ)若存在x∈R,使得f(x)≤g(x)成立,求实数a的取值范围.【考点】绝对值不等式的解法;带绝对值的函数.【分析】(Ⅰ)当a=0时,由不等式可得|2x+1|≥|x|,两边平方整理得3x2+4x+1≥0,解此一元二次不等式求得原不等式的解集.(Ⅱ)由f(x)≤g(x)得a≥|2x+1|﹣|x|,令h(x)=|2x+1|﹣|x|,则h(x)=,求得h(x)的最小值,即可得到从而所求实数a的范围.【解答】解:(Ⅰ)当a=0时,由f(x)≥g(x)得|2x+1|≥|x|,两边平方整理得3x2+4x+1≥0,解得x≤﹣1 或x≥﹣,∴原不等式的解集为(﹣∞,﹣1]∪[﹣,+∞).(Ⅱ)由f(x)≤g(x)得a≥|2x+1|﹣|x|,令h(x)=|2x+1|﹣|x|,即h(x)=,故h(x)min=h(﹣)=﹣,故可得到所求实数a的范围为[﹣,+∞).【点评】本题主要考查带有绝对值的函数,绝对值不等式的解法,求函数的最值,属于中档题.。
2017届高三第二次教学质量检测数学理试题(12页有答案)
-1012}012}01}-101}-1012} 23B.5A.4C.D.3[+高三年级第二次教学质量检测试题理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题共60分)一.选择题:本大题共12个小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={-2,,,,,B={x|-2<x≤2},则A B=A.{-1,,,B.{-1,,C.{-2,,,D.{-2,,,,2.复数2-i1+i对应的点在A.第一象限B.第二象限C.第三象限D.第四象限3.已知向量a=(2,-1),b=(3,x),若a⋅b=3,则x=A.3B.4C.5D.64.已知双曲线x2y2-a b23=1的一条渐近线方程为y=x,则此双曲线的离心率为457445.已知条件p:x-4≤6;条件q:x≤1+m,若p是q的充分不必要条件,则m的取值范围是A.(-∞,-1]B.(-∞,9]C.1,9]D.[9,∞)6.运行如图所示的程序框图,输出的结果S=A.14B.30C.62D.1268.已知α,β是两个不同的平面,l,m,n是不同的直线,下列命题不正确的是A.πA.332D.27.(x-1)n的展开式中只有第5项的二项式系数最大,则展开式中含x2项的系数是xA.56B.35C.-56D.-35...A.若l⊥m,l⊥n,m⊂α,n⊂α,则l⊥αB.若l//m,l⊂/α,m⊂α,则l//αC.若α⊥β,αβ=l,m⊂α,m⊥l,则m⊥βD.若α⊥β,m⊥α,n⊥β,,则m⊥n9.已知f(x)=sin x+3cos x(x∈R),函数y=f(x+ϕ)的图象关于直线x=0对称,则ϕ的值可以是πππB.C.D.263410.男女生共8人,从中任选3人,出现2个男生,1个女生的概率为1528,则其中女生人数是A.2人B.3人C.2人或3人D.4人11.已知抛物线y2=4x,过焦点F作直线与抛物线交于点A,B(点A在x轴下方),点A与1点A关于x轴对称,若直线AB斜率为1,则直线A B的斜率为12B.3C.12.下列结论中,正确的有①不存在实数k,使得方程x ln x-1x2+k=0有两个不等实根;2②已知△ABC中,a,b,c分别为角A,B,C的对边,且a2+b2=2c2,则角C的最大值为π6;③函数y=ln与y=ln tan x2是同一函数;④在椭圆x2y2+a2b2=1(a>b>0),左右顶点分别为A,B,若P为椭圆上任意一点(不同于A,B),则直线PA与直线PB斜率之积为定值.A.①④B.①③C.①②D.②④13.已知等比数列{a}的前n项和为S,且a+a=5n2414.已知实数x、y满足约束条件⎨y≥2,则z=2x+4y的最大值为______.⎪x+y≤6②若a∈(0,1),则a<a1+11-x是奇函数(第Ⅱ卷(非选择题共90分)本卷包括必考题和选考题两部分.第13题~21题为必考题,每个试题考生都必须做答.第22题、第23题为选考题,考生根据要求做答.二.填空题:本大题共4小题;每小题5分,共20分.5,a+a=,则S=__________.n13246⎧x≥2⎪⎩15.一个几何体的三视图如图所示,则这个几何体的外接球的半径为__________.16.下列命题正确是.(写出所有正确命题的序号)①若奇函数f(x)的周期为4,则函数f(x)的图象关于(2,0)对称;③函数f(x)=ln;三.解答题:本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分12分)在△ABC中,角A、B、C的对边分别为a,b,c,且a=3,b=4,B=A+高三理科数学试题和答案第3页共6页π2., 20 40 60 80 ,(1)求 cos B 的值;(2)求 sin 2 A + sin C 的值.18.(本小题满分 12 分)如图,三棱柱 ABC - A B C 中,侧棱 AA ⊥ 平面 ABC , ∆ABC 为等腰直角三角形,1 1 1 1∠BAC = 90 ,且 AA = AB , E , F 分别是 C C , BC 的中点.1 1(1)求证:平面 AB F ⊥ 平面 AEF ;1(2)求二面角 B - AE - F 的余弦值.119.(本小题满分 12 分)某市随机抽取部分企业调查年上缴税收情况(单位:万元),将所得数据绘制成频率分布直方图(如图),年上缴税收范围是[0 100],样本数据分组为第一组[0, ),第二组[20, ),第 三组 [40, ),第四组 [60, ),第五组 [80 100].(1)求直方图中 x 的值;(2)如果年上缴税收不少于 60 万元的企业可申请政策优惠,若共抽取企业 1200 家,试估计有多少企业可以申请政策优惠;(3)从所抽取的企业中任选 4 家,这 4 家企业年上缴税收少于 20 万元的家数记为 X ,求 X 的分布列和数学期望.(以直方图中的频率作为概率)= 1(a > b > 0) 经过点 P (2, 2) ,离心率 e = ,直线 l 的方程为 220.(本小题满分 12 分)已知椭圆 C : x 2 y 2+ a 2 b 22 2x = 4 .(1)求椭圆 C 的方程;(2)经过椭圆右焦点 F 的任一直线(不经过点 P )与椭圆交于两点 A , B ,设直线 AB 与l 相交于点 M ,记 P A , PB , PM 的斜率分别为 k , k , k ,问:是否存在常数 λ ,使得1 2 3k + k = λ k ?若存在,求出 λ 的值,若不存在,说明理由.12321.(本小题满分 12 分)已知函数 f ( x ) = ax + ln x ,其中 a 为常数,设 e 为自然对数的底数.(1)当 a = -1 时,求 f ( x ) 的最大值;(2)若 f ( x ) 在区间 (0, e ] 上的最大值为 -3 ,求 a 的值;(3)设 g ( x ) = xf ( x ), 若 a > 0, 对于任意的两个正实数 x , x ( x ≠ x ) ,1 2 1 2证明: 2 g ( x 1 + x 2) < g ( x ) + g ( x ) .1 2请考生在第 22、23 二题中任选一题做答,如果多做,则按所做的第一题记分.做答时,用⎪⎪ 5⎩17.解:(1)∵ B = A + , ∴ A = B -, ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 1 分 ==2B 铅笔在答题卡上把所选题目对应的题号涂黑.22.(本小题满分 10 分)选修 4-4:坐标系与参数方程⎧3 x =- t + 2 在直角坐标系 xOy 中,直线 l 的参数方程为 ⎨ ( t 为参数),以原点 O 为极点, x⎪ y = 4 t ⎪5轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为 ρ = a sin θ .(1)若 a = 2 ,求圆 C 的直角坐标方程与直线 l 的普通方程;(2)设直线 l 截圆 C 的弦长等于圆 C 的半径长的 3 倍,求 a 的值.23.(本小题满分 10 分)选修 4-5:不等式选讲已知函数 f ( x ) = 2x -1 + 2x + 5 ,且 f ( x ) ≥ m 恒成立.(1)求 m 的取值范围;(2)当 m 取最大值时,解关于 x 的不等式: x - 3 - 2x ≤ 2m - 8 .高三第二次质量检测理科数学答案一.ADABD CCABC CA二.13.631614.20 15. 61 16.①③ππ2 23 4 又 a = 3, b = 4 ,所以由正弦定理得 ,sin Asin B34所以, ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅3 分- cos B sin B所以 -3sin B = 4cos B ,两边平方得 9sin 2 B = 16cos 2 B ,3又 sin 2 B + cos 2 B = 1 ,所以 cos B = ± , ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 5 分5π 3而 B > ,所以 cos B = - . ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 6 分2 53 4(2)∵ cos B = - ,∴ sin B = , ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 7 分5 5∴面 ABC ⊥ 面 BB C C..........2 分+ = 则 F (0,0,0) , A ( 22 2 2 2 2 1 ∵ B = A +π2,∴ 2 A = 2 B - π ,∴ sin 2 A = sin(2 B - π ) = - sin 2 B ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 8 分4 3 24= -2sin B cos B = -2 ⨯ ⨯ (- ) = ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 10 分5 5 25又 A + B + C = π ,∴ C = 3π 2- 2 B ,7 24 7 31∴ sin C = - cos 2 B = 1 - cos 2 B = .∴ sin 2 A + sin C = . (12)25 25 25 25分18.解答: (1)证明:∵ F 是等腰直角三角形 ∆ABC 斜边 BC 的中点,∴ AF ⊥ BC .又∵侧棱 AA ⊥ 平面ABC ,11 1∴ AF ⊥ 面 BB 1C 1C , AF ⊥ B 1F .…3 分设 AB = AA = 1 ,则1,EF= , .∴ B F 2 + EF 2 = B E 2 ,∴ B F ⊥ EF ........... 4 分1 11又 AF ⋂ EF = F ,∴ B F ⊥平面 AEF .…1而 B F ⊂ 面 AB F ,故:平面 AB F ⊥ 平面 AEF . ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅5 分1 11(2)解:以 F 为坐标原点, FA , FB 分别为 x , y 轴建立空间直角坐标系如图,设 AB = AA = 1 ,12 2 1,0,0) , B (0, - ,1) , E (0, - , ) ,12 2 1 2 2AE = (- , - , ) , AB = (- , ,1) .… ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 6 分2 2 2 2 2由(1)知, B F ⊥平面 AEF ,取平面 AEF 的法向量:12m = FB = (0, ,1) . ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 7 分14 4 256 4 4 4 644 4 64 4 4 64设平面 B AE 的法向量为 n = ( x , y , z ) ,1由取 x = 3 ,得 n = (3, -1,2 2) (10),分设二面角 B - AE - F 的大小为θ ,1则 cos θ=|cos <>|=| |= .由图可知θ 为锐角,∴所求二面角 B - AE - F 的余弦值为.… ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 12 分119.解答: 解:(I )由直方图可得: 20 ⨯ (x + 0.025 + 0.0065 + 0.003 ⨯ 2) = 1解得 x = 0.0125 .⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 2 分(II )企业缴税收不少于 60 万元的频率 = 0.003 ⨯ 2 ⨯ 20 = 0.12 , ∴1200 ⨯ 0.12 = 144 .∴1200 个企业中有144 个企业可以申请政策优惠.⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 4 分(III ) X 的可能取值为 0,1,2,3,4 .由(I )可得:某个企业缴税少于 20 万元的概率 = 0.0125 ⨯ 20 = 0.25 =分1 3 81 1 3 27P ( X = 0) = C 0 ( )0 ( )4 = P ( X = 1) = C 1 ( )1 ( )3 = 41 3 27 1 3 3P ( X = 2) = C 2 ( )2 ( )2 = P ( X = 3) = C 3 ( )3 ( )1 =4 4 14 (5)X0 1 2 3 44 4 256∴ E ( X ) = 0 ⨯ 81+ = 1 ① 又e = , 所以 = = 4, a = 8,b 1 + 2k 2 1 + 2k 2, x x = x - 2 x - 22, k = k = 2k - 2 4 - 2 2P8125627 64 27 64 3 64 1 2561 3 1P ( X = 4) = C 4 ( )4 ( )0 =4...................................... 10 分............. 11 分27 27 3 1+ 1⨯ + 2 ⨯ + 3 ⨯ + 4 ⨯= 1. ....12 分25664 64 64 25620.解:(1)由点 P (2, 2) 在椭圆上得, 4 2 2 c 2 a 2 b 2 2 a 2②由 ①②得 c 2 2 2 = 4 ,故椭圆 C 的方程为 x 2 y 2+ = 1 ……………………..4 分 8 4(2)假设存在常数 λ ,使得 k + k = λ k .1 23由题意可设 AB 的斜率为k , 则直线AB 的方程为 y = k ( x - 2) ③代入椭圆方程x 2 y 2+ = 1 并整理得 (1+ 2k 2 ) x 2 - 8k 2 x + 8k 2 - 8 = 0 8 48k 2 8k 2 - 8设 A ( x , y ), B ( x , y ) ,则有 x + x = ④ ……………6 分 1 1 2 2 1 2 1 2在方程③中,令 x = 4 得, M (4,2 k ) ,从而 k = y 1 - 2 y 2 - 21 2 1,3 2= k - .又因为 A 、F 、B 共线,则有 k = k AF = k BF ,即有y当 a = -1 时, f ( x ) = - x + ln x , f ' ( x ) = -1 + 1①若 a ≥ - ,则 f ' ( x ) ≥ 0 ,从而 f ( x ) 在 (0, e ] 上是增函数,y1=2= k ……………8 分x - 2x - 21 2所以 k + k = 1 2 y - 2 y - 2 1 + 2 x - 2 x - 21 2= y y 1 11 +2 - 2( + )x - 2 x - 2 x - 2 x - 2 1 2 1 2= 2k - 2x 1 + x 2 - 4x x - 2( x + x ) + 41 212⑤ ……………10 分将④代入⑤得 k + k = 2k - 2 1 2 8k 2- 41 + 2k2 8k 2 - 8 8k 2- 2 + 41 + 2k2 1 + 2k 2= 2k - 2 ,又 k = k - 32 2 ,所以 k + k = 2k 1 2 3 . 故存在常数 λ = 2 符合题意…………12 分21.【解答】解:(1)易知 f ( x ) 定义域为 (0, +∞) ,1 - x= ,x x令 f ' ( x ) = 0 ,得 x = 1 .当 0 < x < 1 时, f ' ( x ) > 0 ;当 x > 1 时, f ' ( x ) < 0 . (2)分∴ f ( x ) 在 (0,1) 上是增函数,在 (1,+∞) 上是减函数.f ( x )max= f (1) = -1.∴函数 f ( x ) 在 (0, +∞) 上的最大值为 -1 . ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 4 分(2)∵ f '( x ) = a + 1 1 1, x ∈ (0, e ], ∈ [ , +∞) .x x e1e∴ f ( x )max= f (e ) = ae + 1 ≥ 0 ,不合题意. ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 5 分11② 若 a < - ,则由 f ' ( x ) > 0 ⇒ a +ex> 0 ,即 0 < x < -1a11由 f ' ( x ) < 0 ⇒ a +< 0 ,即 - < x ≤ e . ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 6 分xa从而 f ( x ) 在 (0, - ) 上增函数,在 (- (3)法一:即证 2a ( x + x 2) + 2( 12 )ln( 222 2 x 2 x21 1a a, e ) 为减函数∴ f ( x ) max 1 1 = f (- ) = -1 + ln(- ) a a1 1令 -1 + ln(- ) = -3 ,则 ln(- ) = -2a a∴- 11= e -2 -e 2 < -a ,即 a = -e 2.∵ e ,∴ a = -e 2 为所求 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 8 分1 1 x + x x + x2 2 22 ) ≤ ax 2 + ax 2 + x ln x + x ln x 1 2 1 1 222a ( x + x ( x + x )21 2 )2 - ax 2 - ax 2 = a ⋅[ 1 21 2- x 2 - x 2 ]1 2( x - x )2= -a 1 2 2< 0 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 9 分另一方面,不妨设 x < x ,构造函数1 2k ( x ) = ( x + x )ln(1x + x12) - x ln x - x ln x ( x > x )1 1 1x + xx + x则 k ( x ) = 0 ,而 k ' ( x ) = ln 1 - ln x = ln 1 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 10 分1x + x由 0 < x < x 易知 0 < 11< 1 , 即 k ' ( x ) < 0 , k ( x ) 在 ( x , +∞) 上为单调递减且连续, 1x + x故 k ( x ) < 0 ,即 ( x + x )ln( 11) < x ln x + x ln x 1 1相加即得证⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 12 分1法二: g ' ( x ) = 2ax + 1 + ln x , g '' ( x ) = 2a + > 0.........9 分x故 g ' ( x ) 为增函数,不妨令 x > x 21令 h ( x ) = g ( x ) + g ( x ) - 2 g (1x + x12)( x > x )1h ' ( x ) = g '(x ) - g ' (x + x12) ......... 10 分易知 x > x + x x + x1 , 故h ' ( x ) = g '(x ) - g ' ( 12 2) > 0 (11)分而 h ( x ) = 0 , 知 x > x 时, h ( x ) > 0112(2)圆 C : x 2 + y - a ⎫2∴圆心 C 到直线的距离 d = 2- 8 得 a = 32 或 a = 32 ⎪ -4 x - 4, x < - 523.解 (1) f (x) = ⎨6, - 5⎩ 4 x + 4, x > 22 ≤ x ≤ ⎩3 - x - 2 x ≤4 ⎧ 3 ≤ x < 3 .所以,原不等式的解集为 ⎨⎧x x ≥ - ⎬ .故 h ( x ) > 0 , 即 2 g ( x 1 + x 2) < g ( x ) + g ( x )21 2 (12)分22.解 (1) a = 2 时,圆 C 的直角坐标方程为 x 2 + (y -1)2 = 1 ;直线 l 的普通方程为 4 x + 3 y - 8 = 0 . ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 4 分⎛⎪ = ⎝ 2 ⎭a 2 4 ,直线 l : 4 x + 3 y - 8 = 0 ,∵直线 l 截圆 C 的弦长等于圆 C 的半径长的 3 倍,3a1 a5 = 2 ⨯ 2 ,11 .⎧2 ⎪1 ⎪2 ≤ x ≤ 2 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 2 分⎪1 ⎪ ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 7 分⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 10 分当 - 5 12 时,函数有最小值 6 ,所以 m ≤ 6 . ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 5 分另解:∵ 2x -1 + 2x + 5 ≥ (2x -1) - (2x + 5) = -6 = 6 .∴ m ≤ 6 .(2)当 m 取最大值 6 时,原不等式等价于 x - 3 - 2x ≤ 4 ,⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 6 分等价于 ⎨ x ≥ 3 ⎩ x - 3 - 2x ≤ 4 ⎧ x < 3 ,或 ⎨,⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 8 分可得 x ≥ 3 或 - 11 ⎫ ⎩ 3 ⎭⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 10 分。
2017年3月2017届高三第二次全国大联考(新课标Ⅲ卷)理数卷(正式考试版)
理科数学试题 第1页(共6页) 理科数学试题 第2页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________2017年第二次全国大联考【新课标III 卷】理科数学(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知集合2{|20}A x x x =∈--<R ,{|21,}B x x t t A =∈=+∈Z ,则AB =( )A .{1,0,1}-B .{1,0}-C .{0,1}D .{0}2.若复数z 满足()()(3i)12i 2i z -=++,则在复平面内复数z 对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.已知向量,a b 满足()1,2=--b ,()4,7-=a b ,则()()2+⋅-=a b a b ( )A .11B .11-C .3-D .74.过抛物线24y x =的焦点F 作与对称轴垂直的直线交抛物线24y x =于,A B 两点,则以AB 为直径的圆的标准方程为( ) A .()2214x y ++=B .()2214x y -+=C .()2214x y ++=D .()2214x y +-=5.如图是一个正三棱柱挖去一个圆柱得到的一个几何体的三视图,则该几何体的体积与挖去的圆柱的体积比为( )A 331- B 3313- C 33D 331 6.已知点D 为ABC △外一点,222BC AB AD CD ===,120ADC ∠=︒,则B =( )A .30︒B .45︒C .60︒D .90︒7.执行如图所示的程序框图,若输出的S 的值为2,则判断框中填入的条件可以是( )A .98?n <B .99?n <C .100?n <D .100?n ≤8.如图,正方形的边长为8,大圆半径为3,两个小圆的直径均为1,现向正方形内随机掷一飞镖,则飞镖落在黑色区域内的概率为( )开始否0,1S n == ()lg 1lg S S n n=++- 1n n =+是输出S结束理科数学试题 第3页(共6页) 理科数学试题 第4页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封………………○………………外………………○………………装………………○………………订………………○………………线………………○………………A .19π256B .17π256C .9π128D .9π649.已知函数()()sin f x x ωϕ=+(0,||2A ϕπ><)的图象如图所示,则tan ϕ=( )A .33B .1C 3D .33-10.在底面为正方形的四棱锥P ABCD -中,PA ⊥平面ABCD ,2PA AB ==,则该四棱锥的内切球的表面积为( ) A .8(32)-π B .6(322)-π C .4(32)-πD .2(32)-π11.已知,A F 分别为双曲线22221(0,0)x y a b a b-=>>的右顶点和右焦点,线段OF 的垂直平分线与双曲线在第一象限的交点为P ,过F 作与x 轴垂直的直线与双曲线在第一象限交于Q ,若PAF △的面积与QOA △的面积相等,则双曲线的离心率为( )A 334-B 334+C 331-D 331+12.已知函数2()9f x x =--()(3)4g x k x =-+的图象上存在两对关于x 轴对称的点,则实数k的取值范围是( )A .5[ln 2,2]4+B .5[2ln 2,ln 2]4-+C .5[ln 2,2ln 2]4+-D .72(,243第II 卷本试卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第23题为选考题,考生根据要求作答.二、填空题(本大题共4小题,每小题5分,共20分)13.(n b ax x-(0ab ≠,且,a b 为常数)的展开式中,x 的系数为3210a b ,则n =___________.14.若函数3e 2()e 1x xt t f x x --=+-是奇函数,则常数t 等于___________. 15.不等式组10,10,x y x y y m+-≥⎧⎪--≤⎨⎪≤⎩(1)m >所表示的平面区域的面积为S ,则不等式31S a m +≥-恒成立时,实数a的取值范围是___________.16.已知a 为正整数,tan 1lg ,tan lg a a αβ=+=,且4αβπ=+,则当函数()sin 3f x a θθ= ()[0,]θ∈π取得最大值时,θ=___________.三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)已知数列{}n a 中,11a =,且()21122n n na n a n n +=+++,设nn a b n=. (Ⅰ)求证:数列{}n b 为等差数列,并求数列{}n a 的通项公式;(Ⅱ)若12(4)32(4)n nn b n a nc n +⎧≤⎪⎪+=⎨⎪>⎪⎩,求数列{}n c 的前n 项和n T .18.(本小题满分12分)人最宝贵的是生命,然而有时候最不善待生命的恰恰是人类自己,在交通运输业发展迅猛的今天,由于不懂得交通法规,以及人们的交通安全观念和自我保护意识还没有跟上时代的步伐,那些在交通复杂多变的地方而引发的交通事故也是接连不断.为了警示市民,某市对近三年内某多发事故路口在每天6:00~22:00时间段内发生的480次事故中随机抽取100次进行调研,数据按事发时间分成8组:[)[)[)[)6,8,8,10,,18,20,20,22(单位:小时),制成了如图所示的频率分布直方图.理科数学试题 第5页(共6页) 理科数学试题 第6页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________(Ⅰ)求图中m 的值,并根据频率分布直方图估计这480次交通事故发生在时间段[)6,8与[)18,20的次数;(Ⅱ)在抽出的100次交通事故中按时间段采用分层抽样的方法抽取10次进行个案分析,再从这10次交通事故中选取3次交通事故作重点专题研究.记这3次交通事故中发生时间在[)6,8与[)18,20的次数为X ,求X 的分布列及数学期望. 19.(本小题满分12分)如图,长方体1111ABCD A B C D -的底面是边长为3的正方形,且1tan 6DCD ∠=,113AA DD AB AE AG DF===.(Ⅰ)求证:平面EFG ∥平面1BD C ; (Ⅱ)求二面角1E BD D --的余弦值. 20.(本小题满分12分)已知椭圆E :221(04)4x y t t+=<<的左焦点为F ,设,M N 是椭圆E 的两个短轴端点,A 是椭圆E的长轴左端点.(Ⅰ)当1t =时,设点(,2)(0)P m m -≠,直线PN 交椭圆E 于Q ,且直线,MP MQ 的斜率分别为12,k k ,求12k k ⋅的值;(Ⅱ)当3t =时,若经过F 的直线l 与椭圆E 交于D C ,两点,O 为坐标原点,求OAD △与OAC △的面积之差的最大值. 21.(本小题满分12分)已知函数()2()1e ()x f x mx x m =--∈R .(Ⅰ)当12m ≤时,讨论函数()f x 的单调性; (Ⅱ)当()0,x ∈+∞,且10,4m ⎛⎤∈ ⎥⎝⎦时,求证:()()322210f x mx x m x '++--<.请考生在第22,23题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分. 22.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系中,已知曲线C 的参数方程为1212x a y a αα⎧=--⎪⎨=+-⎪⎩(α为参数,2a <).(Ⅰ)当2a =-时,若曲线C 上存在,A B 两点关于点(0,2)M 成中心对称,求直线AB 的参数方程; (Ⅱ)在以原点为极点,x 轴正半轴为极轴的极坐标系中,极坐标方程为sin()204ρθπ+=的直线l 与曲线C 相交于,C D 两点,若||4CD =,求实数a 的值. 23.(本小题满分10分)选修4-5:不等式选讲已知不等式|1|||x m x ++≥()m ∈R 对任意实数x ∈R 恒成立. (Ⅰ)求实数m 的最小值t ;(Ⅱ)若,,a b c ∈R +,且满足abc t =,求证:bc ac aba bcb ac c ab a b c≤.。
广雅、东华中学、河南名校2017届高三阶段性联考(一)(文综)
广雅、东华中学、河南名校2017届高三阶段性联考(一)文科综合本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,考生作答时,将答案答在答题卡上(答题注意事项见答题卡),在本试卷上答题无效,考试结束后,将本试题卷和答题卡一并交回。
第Ⅰ卷本卷共35个小题,每小题4分,共140分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
滴灌是现代农业灌溉最节水的灌溉技术之一,目前,滴灌技术在我国推广很难。
图1为我国西北地区某地滴灌技术应用示意图。
据此完成1-3题。
1.该地区采用滴灌技术的主要目的是()A.降低输水管道坡度B.营造田园景观C.提高水资源利用率D.减轻病虫害2.滴灌技术最适用的农作物是()A.葡萄B.玉米C.小麦D.高粱3.目前,影响我国西北地区滴灌技术推广的限制性社会经济因素是()A.水资源不足B.农业科技落后C.信息交流不便D.经济成本较高圣马太岛位于白令海中北部海域,面积为332平方千米,夏季岛上多雾,岛上覆盖着茂密的灌木丛和厚厚的地衣,几乎没有植食性动物。
二战期间,美国海岸警卫队在该岛建立了一个无线电导航站。
为保证驻岛人员基本的食品供应,1944年引进并放养29只驯鹿,以应付紧急状况时食物供应。
二战后,驻岛人员陆续撤离,20世纪80年代,该无线电导航站被彻底废弃。
图2示意圣马太岛的位置及六次该岛驯鹿数量变化统计情况。
据此完成4-6题。
4.20世纪80年代美国废弃圣马太岛无线电导航站的主要原因是()A.气候环境恶劣B.跨洋航班减少C.飞行成本增加D.导航技术进步5.甲地夏季的主要风向是()A.东南风B.西南风C.东北风D.西北风6.1963年以后,圣马太岛上驯鹿数量迅速减少的主要原因是()A.气候阴冷潮湿B.淡水资源不足C.人类过度捕杀D.生态过度超载大气中CO2浓度与森林植被活动息息相关,森林的碳代谢影响着林区CO2的时空变化,同时,林冠层(见图3)的CO2时空变化又影响着植物的光合生产力。
2017年3月2017届高三第二次全国大联考(新课标Ⅰ卷)理数卷(原卷版)
2017年第二次全国大联考【新课标Ⅰ卷】理科数学一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合 题目要求的).1.设集合(){}lg 23A x y x ==-,{}|2,0x B y y x ==≥,则()A B =R( )A. ()0,3B. 30,2⎡⎤⎢⎥⎣⎦C. 31,2⎡⎤⎢⎥⎣⎦D. 31,2⎛⎫ ⎪⎝⎭2. 已知a ∈R ,i 是虚数单位.若i 2i a -+与5i3i 2i--互为共轭复数,则a =( ) A .13B .13-C .3-D .33. 统计显示,目前我国中型规模以上工业企业的用能量占了全社会能源消耗的70%左右.其中,用能量占全社会用能量60%以上的企业是仅占全国企业15的高耗能企业.某厂进行节能降耗技术改造后,下面是该厂节能降耗技术改造后连续五年的生产利润:预测第7年该厂的生产利润约为( )千万元.(参考公式及数据:121()()()niii nii x x y y b x x ==--=-∑∑,a y bx =-.521()10ii x x =-=∑,51()() 2.2i i i x x y y =--=∑)A .1.88B .2.22C .1.56D .2.354. 将函数sin(2)(0)y x ϕϕ=+-π<<图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数()y f x =的图象,当4x π=时,函数()y f x =取得最小值,则函数3()4y f x π=-的一个单调递增区间是( ) A .(,)24ππ-- B .(0,)2π C .(,)2ππ D .3(,2)2ππ 5.如图所示,小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为( ) A .83B .4C .3D .1636. 已知定义在R 上的函数()f x ,若函数(2)y f x =+为偶函数,且()f x 对任意12,[2,)x x ∈+∞ (12x x ≠),都有2121()()0f x f x x x -<-,若()(31)f a f a ≤+,则实数a 的取值范围是 ( )A .13[,]24-B .[2,1]-- C.1(,]2-∞- D .3(,)4+∞ 7.在ABC △中,a ,b ,c 分别为内角A ,B ,C 的对边,且2222sin 3()ab C b c a =+-.若13a =3c =,则ABC △的面积为( )A .3B .33C .23.3328.已知约束条件30230x y x y x a +-≥⎧⎪-+≥⎨⎪≤⎩表示的可行域为D ,其中()π0sin cos d a x x x =-⎰,点(),x y D ∈,点(),m n D ∈.若3x y -与1n m+的最小值分别为,s t ,则( ) A .3s t += B .2s t += C. 0s t += D .2s t +=-9.若3()n x x展开式的各项系数的绝对值之和为1024,则展开式中x 项的系数为15a -.执行所给的程序框图,则输出的A 的值是( )A .12013 B .12017 C .12015 D .1201910. 如图,在三棱锥B ACD -中,3ABC ABD DBC ∠∠=∠=π=,3,2AB BC BD ===,则三棱锥B ACD -的外接球的表面积为( )是开始,1A a i ==结束A输出1i i =+21A A A =+1009?i ≤否A .192π B .19π C .756π D .7π11.已知双曲线的标准方程1322=-y x ,直线)0,0(:≠≠+=m k m kx y l 与双曲线交于不同的两点D C ,,若D C ,两点在以点)1,0(-A 为圆心的同一个圆上,则实数m 的取值范围是( ) A. 1{0}4m m -<< B. {4}m m > C. {04}m m << D. 1{04m m -<<,或4}m > 12.若方程(2)(1)2ln 0a x x ---=在1(0,)2上无解,则实数a 的最小值为( ) A .26ln 2-B .22ln 2-C .2ln 2-D .24ln 2-二、填空题(本大题共4小题,每小题5分,共20分)13. 设m ∈R ,向量(2,1)m =+a ,(1,2)m =-b ,且⊥a b ,则+a b = .14.在区间[0,]π上随机选取数x ,在区间[0,1]上随机选取数y ,则sin y x ≤的概率为 . 15. 已知抛物线22(0)y px p =>的焦点为F ,抛物线上一点P 的横坐标为2,||3PF =.过F 且倾斜角为30︒的直线交抛物线于,A B 两点,O 为坐标原点,则OAB △的面积为_____________. 16. 以下四个命题:①在某项测量中,测量结果X 服从正态分布()()24,0N σσ>,若X 在(0,8)内取值的概率为0.6,则X在(0,4)内取值的概率为0.4;②已知直线l :320x -+=与圆224x y +=交于A ,B 两点,则AB 在x 轴正方向上投影的绝对值为3;③设等比数列}{n a 的前n 项和为n S ,则“01>a ”是“23S S >”的充要条件; ④已知命题:,sin 1p x x ∀∈≤R ,则p ⌝为,sin 1x x ∀∈>R . 其中真命题的序号为 .三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分12分)数列}{n a 的前n 项和n S 满足12a a S n n -=,且134,1,a a a +成等差数列. (1)求数列}{n a 的通项公式;(2)设21222log log log n n b a a a =+++…,求使()8n n b nk -≥对任意n *∈N 恒成立的实数k 的取值范围. 18. (本小题满分12分)如图, AD BC ∥,CE BG ∥,BC ⊥平面CDE ,222BC CD CE AD BG =====,DE =(1)求证:AG ∥平面BDE ;(2)求平面BDE 和平面ADE 所成锐二面角的余弦值.51015GEDCBA19.(本小题满分12分)如果学生文化课成绩不好,可以去参加艺术考试,这对文化课成绩不好的学生,如果想考上大学或是好一点的重点大学,是很好的出路.某普通中学为了给学生创造升学机会,拟开设美术课,为了了解学生喜欢美术是否与性别有关,该学校对100名学生进行了问卷调查,得到如下列联表:(1)请将上述列联表补充完整,并判断能否在犯错误的概率不超过0.001的前提下认为喜欢美术与性别有关系?(2)针对问卷调查的100名学生,学校决定从喜欢美术的人中按分层抽样的方法随机抽取6人成立美术宣传组,并在这6人中任选2人作为宣传组的组长,设这两人中女生人数为X ,求X 的分布列和数学期望. 参考数据:参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.20.(本小题满分12分)已知椭圆C 的长半轴为a ,短半轴为b .椭圆E 的两个焦点分别为1(2,0)F -,2(2,0)F ,离心率为方程2360x -+=的一个根,且长半轴为'a ,短半轴为'b .若'a =,'b =.(1)求椭圆C 的方程;(2)若动直线l 交椭圆C 于不同的两点()()2211,,,y x N y x M ,设()()1122,,,OP bx ay OQ bx ay ==,O 为坐标原点.当以线段PQ 为直径的圆恰好过点O 时,求证:MON △的面积为定值,并求出该定值. 21. (本小题满分12分)设函数()ln .f x x = (1)令()()a F x f x x =+(03x <≤),若()F x 的图象上任意一点00(,)P x y 处切线的斜率k ≤21恒成立,求实数a 的取值范围;(2)当0a >时,设函数()()22(2)g x x x f x ax x =-+-,且函数()g x 有且仅有一个零点,若2e e x -<<,()g x m ≤,求m 的取值范围.请考生在第22,23题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分. 22.(本题满分10分)选修4-4:坐标系与参数方程已知极点与直角坐标系的原点重合,极轴与x 轴的正半轴重合,曲线C 的极坐标方程为221613sin ρθ=+.(1)求曲线C 的直角坐标方程; (2)已知直线l 的参数方程为112cos 1sin x t y t θθ=+⎧⎨=+⎩(t 为参数),直线l 交曲线C 于,A B 两点,若(2,1)M 恰好为线段AB 的三等分点,求直线l 的斜率. 23.(本题满分10分)选修4-5:不等式选讲 已知函数()|1|f x x =+.(1)若0x ∃∈R ,使不等式(2)(3)f x f x t ---≥成立,求满足条件的实数t 的取值集合T ;(2)若二次函数223y x x =++与函数2()(2)y m f x f x =---的图象恒有公共点,求实数m 的取值范围.。
东华中学、河南名校2017届高三阶段性联考(三)(生物)汇总
东华中学、河南名校2017届高三阶段性联考(三)生物本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.考生作答时,将答案答在答题卡上(答题注意事项见答题卡),在本试题卷上作答,答案无效.考试结束后,将本试题卷和答题卡一并收回.第Ⅰ卷一、选择题:本大题共25 小题,每小题2 分,共50 分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.G20峰会的菜单、节目单、邀请函都印制在杭州丝绸上,淋漓尽致地体现了杭州特色。
丝绸是一种人工饲养的家蚕丝织物。
下列关于家蚕活细胞中元素及化合物的叙述,正确的是A.化学元素含量的大小是O>C>N>HB.含量最多的化合物是蛋白质C.DNA和RNA都是遗传物质D.脂肪是良好的储存能量的物质2.下列有关核酸和蛋白质的叙述,正确的是A.有的蛋白质具有催化功能而核酸都不具有B. 核酸能指导生物体中蛋白质的生物合成C.细胞膜和细胞质中能转运氨基酸的物质都是蛋白质D.糖类、脂肪不足时,蛋白质和核酸也能氧化分解供能3.红心火龙果因其含有的独特成分,对人体有良好的保健功效。
下列有关火龙果内细胞器的叙述中,错误的是A.切开时到处都是红色的“血浆”,是因为其液泡中含有大量的红色色素B.远高于普通火龙果的“甜度”物质,是在叶绿体的内膜上合成的C.具有解毒作用的粘胶状植物性白蛋白,是在其核糖体中合成的D.丰富的膳食纤维主要来自细胞壁,高尔基体与该结构的形成有关4.某同学依据显微镜下观察到的部分细胞结构绘制了如图所示的模式图,下列相关分析正确的是A.该图像是在光学显微镜下观察到的动物细胞B.①②③④⑤⑥的膜结构均属于细胞的生物膜系统C.RNA聚合酶合成后进人⑥内,能体现核孔的选择透过性D.①②③在细胞分裂过程中都能进行复制5.如图为小肠上皮细胞从肠腔中吸收葡萄糖,然后由小肠上皮细胞进入组织液,再进入血液循环的部分示意图。
下列相关分析正确的是A.方式①和②都需要载体,但都不需要消耗能量B.小肠上皮细胞不吸收蔗糖的原因是肠腔中蔗糖的浓度太低C.若用药物抑制方式①中载体蛋白的活性,则血糖浓度会下降D.婴儿小肠上皮细胞吸收乳汁中抗体的过程与方式①相同6.有机供农药残留严重危客人类健康。
(完整版)2017年高考理科数学全国卷2试题及答案
2017年普通高等学校招生全国统一考试理科数学(Ⅱ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.31ii+=+( ) A .12i + B .12i - C .2i + D .2i -2.设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1A B =I ,则B =( )A .{}1,3-B .{}1,0C .{}1,3D .{}1,53.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏 4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( ) A .90π B .63π C .42π D .36π5.设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是( )A .15-B .9-C .1D .96.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种7.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( ) A .乙可以知道四人的成绩 B .丁可以知道四人的成绩 C .乙、丁可以知道对方的成绩 D .乙、丁可以知道自己的成绩 8.执行右面的程序框图,如果输入的1a =-,则输出的S =( ) A .2 B .3 C .4 D .59.若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为( )A .2B .3C .2D .23输出S K=K+1a =a S =S +a ∙K 是否输入a S =0,K =1结束K ≤6开始10.已知直三棱柱111C C AB -A B 中,C 120∠AB =o ,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为( ) A.2 B.5 C.5D.3 11.若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为( )A.1-B.32e --C.35e -D.112.已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+u u u r u u u r u u u r的最小值是( ) A.2- B.32-C. 43- D.1-二、填空题:本题共4小题,每小题5分,共20分。
河南省六市2017届高三第二次联考数学试题(理)含答案
2017年河南省六市高三第二次联考数学(理科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2230A x x x =--≤,(){}ln 2B x y x ==-,则A B = ( ) A.()1,3B.(]1,3C.[)1,2-D.()1,2-2.设复数()221iz i +=+(i 为虚数单位),则z 的虚部是( )A.1-B.1C.i -D.i3.函数2ln xy x=的图象大致为( )ABCD4.如图,G ,H ,M ,N 分别是正三棱柱的顶点或所在棱的中点,则表示GH ,MN 是异面直线的图形的序号为( )① ② ③ ④ A .①②B.③④C.①③D.②④5.已知圆()()222:10C x y r r -+=>.设条件p :03r <<,条件q :圆C 上至多有2个点到直线30x +=的距离为1,则p 是q 的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件6.若1a -=⎰,则61ax x π⎛⎫- ⎪⎝⎭的展开式中的常数项( )A.52B.52-C.20D.15-7.若不等式组20510080.x y x y x y -+≥⎧⎪-+≤⎨⎪+-≤⎩,所表示的平面区域存在点()00,x y ,使0020x ay ++≤成立,则实数a 的取值范围是( ) A.1a ≤-B.1a <-C.1a >D.1a ≥8.阅读算法框图,如果输出的函数值在区间[]1,8上,则输入的实数x 的取值范围是( )A.[)0,2B.[]2,7C.[]2,4D.[]0,79.某同学用“随机模拟方法”计算曲线ln y x =与直线x e =,0y =所围成的曲边三角形的面积时,用计算机分别产生了10个在区间[]1,e 上的均匀随机数i x 和10个区间[]0,1上的均匀随机数i y (*i N ∈,110i ≤≤),其数据如下表的前两行.由此可得这个曲边三角形面积的一个近似值是( ) A.()315e - B.()215e - C.()315e +D.()215e + 10.《九章算术》是我国古代数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列,问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为( )A.54钱 B.43钱 C.32钱D.53钱 11.已知函数()()sin f x x x x R =∈,先将()y f x =的图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),再将得到的图象上所有点向右平行移动θ(0θ>)个单位长度,得到的图象关于直线34x π=对称,则θ的最小值为( ) A.6π B.3π C.512πD.23π 12.已知双曲线()22122:10,0x y a b a b Γ-=>>的左、右焦点分别为1F 、2F ,椭圆222:186x y Γ+=的离心率为e ,直线MN 过2F 与双曲线交于M ,N 两点,若112cos cos F MN F F M ∠=∠,11F M e F N=,则双曲线1Γ的两条渐近线的倾斜角分别为( )A.30︒和150︒B.45︒和135︒C.60︒和120︒D.15︒和165︒第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.向量()1,1a =- ,()1,0b =,若()()2a b a b λ-⊥+ ,则λ= .14.已知{}n a 是首项为32的等比数列,n S 是其前n 项和,且636564S S =,则数列{}2log n a 的前10项和为 .15.如图,网格纸上小正方形的边长为1,粗实线与粗虚线画出的是某多面体的三视图,则该多面体外接球的表面积为 .16.若曲线()21:0C y ax a =>与曲线2:x C y e =存在公共切线,则a 的取值范围为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,且sin cos 0a B b A +=.(1)求角A 的大小;(2)若a =,2b =,求ABC △的面积.18.某学校高一年级学生某次身体素质体能测试的原始成绩采用百分制,已知这些学生的原始成绩均分布在[]50,100内,发布成绩使用等级制,各等级划分标准见下表,规定:A 、B 、C 三级为合格等级,D 为不合格等级.为了解该校高一年级学生身体素质情况,从中抽取了n 名学生的原始成绩作为样本进行统计,按照[)50,60,[)60,70,[)70,80,[)80,90,[)90,100的分组做出频率分布直方图如图甲所示,样本中分数在80分及以上的所有数据的茎叶图如图乙所示.(1)求n 和频率分布直方图中的x ,y 的值;(2)根据利用样本估计总体的思想,以事件发生的频率作为事件时间发生的概率,若在该校高一学生中任选3人,求至少有1人成绩是合格等级的概率;(3)在选取的样本中,从A 、C 两个等级的学生中随机抽取了3名学生进行调研,记ξ表示所抽取的3名学生中成绩为C 等级的人数,求随机变量ξ的分布列及数学期望. 19.如图,AB 是半圆O 的直径,C 是半圆O 上除A 、B 外的一个动点,DC 垂直于半圆O 所在的平面,DC EB ∥,DC EB =,4AB =,1tan 4EAB ∠=.(1)证明:平面ADE ⊥平面ACD ;(2)当三棱锥C ADE -体积最大时,求二面角D AE B --的余弦值.20.在平面直角坐标系xOy 中,椭圆()2222:10x y C a b a b+=>>的离心率为12,右焦点()1,0F .(1)求椭圆C 的方程;(2)点P 在椭圆C 上, 且在第一象限内,直线PQ 与圆222:O x y b +=相切于点M ,且OP OQ ⊥,求点Q 的纵坐标t 的值.21.已知函数()sin cos x f x e x x =-,()cos x g x x x =,(其中e 是自然对数的底数). (1)10,2x π⎡⎤∀∈⎢⎥⎣⎦,20,2x π⎡⎤∃∈⎢⎥⎣⎦使得不等式()()12f x g x m +≥成立,试求实数m 的取值范围.(2)若1x >-,求证:()()0f x g x ->.22.在极坐标系中,曲线C 的方程为22312sin ρθ=+,点4R π⎛⎫ ⎪⎝⎭. (1)以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,把曲线C 的极坐标方程化为直角坐标方程,R 点的极坐标化为直角坐标;(2)设P 为曲线C 上一动点,以PR 为对角线的矩形PQRS 的一边垂直于极轴,求矩形PQRS 周长的最小值,及此时P 点的直角坐标.23.设函数()f x x a =-,a R ∈.(1)当2a =时,解不等式()625f x x ≥--;(2)若关于x 的不等式()4f x ≤的解集为[]1,7-,且两正数s 和t 满足2s t a +=,求证:186s t+≥.2017年河南省六市高三第二次联考数学(理科)参考答案一、选择题1-5:CABDC 6-10:BADAB 11、12:AC二、填空题13.3 14.58 15.414π16.2,4e ⎡⎫+∞⎪⎢⎣⎭三、解答题17.解:(1)在ABC △中,由正弦定理得sin sin sin cos 0A B B A +=, 即()sin sin cos 0B A A +=,又角B 为三角形内角,sin 0B ≠,所以sin cos 0A A +=04A π⎛⎫+= ⎪⎝⎭,又因为()0,A π∈,所以34A π=. (2)在ABC △中,由余弦定理得:2222cos a b c bc A =+-⋅,则220442c c ⎛=+-⋅ ⎝⎭,即2160c +-=,解得c =-c =,又1sin 2S bc A =,所以1222S =⨯⨯=. 18.解:(1)由题意可知,样本容量6500.01210n ==⨯.20.0045010x ==⨯,10.040.10.120.560.01810y ----==.(2)样本中成绩是合格等级的人数为()10.15045-⨯=人,成绩是合格等级的频率为4595010=,故从该校学生中任选1人,成绩是合格等级的概率为910. 设从该校高一学生中任选3人,至少有1人成绩是合格等级的事件为A ,则()3999911101000P A ⎛⎫=--= ⎪⎝⎭.(3)样本中C 等级的学生人数为0.18509⨯=人,A 等级的学生人数为3人,故ξ的所有可能取值为0,1,2,3,()0P ξ==()3331210220C P C ξ===,()1293312271220C C P C ξ===,()219331210827222055C C P C ξ====,()393128421322055C P C ξ====,所以ξ的分布列为:12757219012322022055554E ξ=⨯+⨯+⨯+⨯=. 19.解:(1)因为AB 是直径,所以BC AC ⊥, 因为CD ⊥平面ABC ,所以CD BC ⊥, 因为CD AC C = ,所以BC ⊥平面ACD , 因为CD BE ∥,CD BE =, 所以四边形BCDE 是平行四边形, 所以BC DE ∥,所以DE ⊥平面ACD ,因为DE ⊂平面ADE ,所以平面ADE ⊥平面ACD . (2)因为DC ⊥平面ABC ,DC BE ∥, 所以BE ⊥平面ABC ,BE AB ⊥, 在Rt ABE △中,1tan 414EB AB EAB =⨯∠=⨯=, 由(1)知()2221111114332612123C ADE E ACDACD V V S DE AC CD DE AC BCAC BC AB --==⨯⨯=⨯⨯⨯⨯=⨯⨯≤⨯+=⨯=△,当且仅当AB BC ==.如图所示,建立空间直角坐标系,则()0,0,1D ,()0,E,()A ,()B .则()AB =- ,()0,0,1BE =,()DE = ,()1DA =- .设平面DAE 的一个法向量为()1111,,n x y z =,则1100n DE n DA ⎧⋅=⎪⎨⋅=⎪⎩,即11100z ⎧=⎪⎨-=⎪⎩, ∴10y =,取11x =,则(1n =,设平面ABE 的一个法向量为()2222,,n x y z =,则2200n BE n AB ⎧⋅=⎪⎨⋅=⎪⎩,即22200z =⎧⎪⎨-+=⎪⎩, ∴20z =,取21x =,则()21,1,0n =,∴121212cos ,n n n n n n ⋅<>===∴二面角D AE B --的余弦值为. 20.解:(1)121c a c ⎧=⎪⎨⎪=⎩,∴1c =,2a =,∴b =,∴椭圆方程为22143x y +=.(2)①当PM x ⊥轴时,P ⎭,)Q t ,由0OP OQ ⋅=,解得t =-②当PM 不垂直于x 轴时,设()00,P x y ,PQ 方程为()00y y k x x -=-,即000kx y kx y --+=,∵PQ 与圆O=∴()220033kx y k -=+,∴22220000233kx y k x y k =+--, 又00,t y kx Q t k -+⎛⎫⎪⎝⎭,所以由0OP OQ ⋅= ,得()00000x y kx t x ky -=+, ∴()()()()2222220000000222222222222000000033233x k x y kx x kx y t x k y kx y x k y k x y k x ky +--===+++++--+()()()220222220033123113334x k k x k x k +==⎛⎫+++---⎪⎝⎭∴t =±综上:t =±21.解:(1)因为不等式()()12f x g x m +≥等价于()()12f x m g x ≥-, 所以10,2x π⎡⎤∀∈⎢⎥⎣⎦,20,2x π⎡⎤∃∈⎢⎥⎣⎦使得不等式()()12f x g x m +≥成立,等价于()()()12min min f x m g x ≥-,即()()12min max f x m g x ≥-,当0,2x π⎡⎤∈⎢⎥⎣⎦时,()'sin cos sin 0x x f x e x e x x =++>,故在区间0,2π⎡⎤⎢⎥⎣⎦上单调递增,所以0x =时,()y f x =取得最小值1-.又()'cos sin x g x x x x =+,由于0cos 1x ≤≤,sin 0x x ≥x所以()'0g x <,故()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上单调递减,因此0x =时,()g x取得最大值.所以(1m -≥-,所以1m ≤.所以实数的取值范围为(,1-∞-.(2)当1x >-时,要证()()0f x g x ->,只要证()()f x g x >,只要证sin cos cos x x e x x x x ->,只要证(()sin 1cos x e x x x +>+,由于sin 0x >,10x +>,只要证1x e x >+. 下面证明1x >-时,不等式1x e x >+ 令()()11xe h x x x =>-+,则()()()()221'11x x x e x e xe h x x x +-==++, 当()1,0x ∈-时,()'0h x <,()h x 单调递减; 当()0,x ∈+∞时,()'0h x >,()h x 单调递增.所以当且仅当0x =时,()h x 取得极小值也就是最小值为1.令k ,其可看作点()sin ,cos A x x与点()B 连线的斜率,所以直线AB的方程为(y k x =,由于点A 在圆221x y +=,所以直线AB 与圆221x y +=相交或相切.当直线AB 与圆221x y +=相切且切点在第二象限时,直线AB 的斜率k 取得最大值为1. 故0x =时,()10k h =<=;0x ≠时,()1h x k >≥. 综上所述:时1x >-时,()()0f x g x ->成立. 22.解:(1)∵cos x ρθ=,sin y ρθ=,∴曲线C 的直角坐标方程为2213x y +=.点R 的直角坐标为()2,2R . (2)设),sin Pθθ,根据题意可得2PQ θ=,2sin QR θ=-,∴()42sin 60PQ QR θ+=-+︒, 当30θ=︒时,PQ QR +取最小值2, 所以矩形PQRS 周长的最小值为4. 此时点P 的直角坐标为31,22⎛⎫⎪⎝⎭.23.解:(1)不等式即2256x x -+-≥,∴①52256x x x x ⎧≥⎪⎨⎪-+-≥⎩或②5222526x x x ⎧≤<⎪⎨⎪-+-≥⎩或③22526x x x <⎧⎨-+-≥⎩, 由①,得133x ≥;由②得,x ϕ∈;由③,得13x ≤. 所以原不等式的解集为113,,33⎛⎤⎡⎫-∞+∞ ⎪⎥⎢⎝⎦⎣⎭(2)不等式()4f x ≤即44x a -≤-≤,∴44a x a -≤≤+,∴41a -=-且47a +=,∴3a =.∴()181181161210106333t s s t s t s t s t ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝。
河南东华中学2017届高三10月份阶段性联考(二)(化学)word版 含答案
东华中学、河南名校2017届高三阶段性联考(二)化学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.考生作答时,将答案答在答题卡上(答题注意事项见答题卡),在本试题卷上作答,答案无效.考试结束后,将本试题卷和答题卡一并交回.可能用到的相对原子质量:H l C 12 N 14 O 16 Na 23 S 32 C 135.5 Mn 55 Cu 64 Ba137第I卷选择题一、选择题:本大题共16小题,每小题3分,共48分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.2016年3月“新视野”号冥王星探测器探测结果公布:冥王星表面有甲烷冰、氮冰、一氧化碳冰、水冰。
下列说法不正确的是()A.CH4是含氢质量分数最高的有机物B.CH4、CO、H2O均属于共价化合物C.CO可用HCOOH制取,说明CO是酸性氧化物D.实验室可用排水法收集CH4、CO、N22.利用二氧化铈(CeO2)可实现人工光合作用的转化(如下图,0<δ<1),下列有关说法不正确的是()A.太阳能最终转变为化学能B.900℃时CeO2-2δ比CeO2稳定C.二氧化铈是反应的催化剂D.总反应的方程式可表示为CO2+H2O CO+H2+O23.三乙醇铝(AlC 6H 15O 3)是酯化反应及聚合反应的催化剂,遇水分解生成氢氧化铝,可由无水乙醇与铝汞合金反应制备,下列有关叙述或表示正确的是( ) A .乙醇的结构式为C 2H 6OB .中子数为14的铝原子可表示为l A 1413C .铝汞合金的熔点比金属铝的高D .Al(OH)3的电离方程式为H ++AlO 2-+H 2OAl(OH)3Al 3++3OH -4. 化学与生活密切相关,下列物质的化学性质与其实际应用相对应的是( )5.设N A 为阿伏伽德罗常数的值。
下列有关叙述不正确的是( )A .44g 乙醛与乙酸乙酯的混合物中含氧原子数为N AB .40g O H 182与40gD 2O 所含的中子数均为20N A C .62gNa 2O 与78gNa 2O 2所含的阴离子数均为N AD .1molFe 分别与足量的稀硫酸和稀硝酸反应转移电子数均为2N A6.利用下图装置可实现用空气直接高效氧化乙醇制取乙酸。
2017年5月2017届高三第三次全国大联考(新课标Ⅱ卷)理数卷(参考答案及评分标准)
2017年第三次全国大联考【新课标II 卷】理科数学·参考答案13.214.615.2或817.(本小题满分12分)【解析】(I )由于()*141n n a a n n +-=+∈N , 所以()()112n n nn n a a a a a ---=-+-+(32a a ⋯+-5分(Ⅱ)由22n a n n =-,()1112121n n n ⎛⎫-+ ⎪-+⎝⎭……8分.当n 为偶数时,121n ⎛++ -⎝当n 为奇数时,121n ⎛+- -⎝12212121n n n +-=-++……12分18.(本小题满分12分)【解析】(Ⅰ)记“抽取的两天中一天销售量大于40而另一天销售量小于40”为事件A ,则1162210C C 4()C 15P A ==.………………………………… 4分(Ⅱ)①设乙产品的日销售量为a ,则当38a =时,384152X =⨯=; 当39a =时,394156X =⨯=; 当40a =时,404160X =⨯=;当41a =时,40416166X =⨯+⨯=; 当42a =时,40426172X =⨯+⨯=;∴X 的所有可能取值为:152,156,160,166,172.……6分 ∴X 的分布列为∴21()1521561601661721621055510E X =⨯+⨯+⨯+⨯+⨯=.……… 9分 ②依题意,甲厂家的日平均销售量为:380.2390.4400.2410.1420.139.5⨯+⨯+⨯+⨯+⨯=,∴甲厂家的日平均返利额为:7039.52149+⨯=元, 由①得乙厂家的日平均返利额为162元(>149元),∴推荐该商场选择乙厂家长期销售.……………………………………… 12分 19.(本小题满分12分)【解析】 (I)连AC 交BD 于点E ,连.ME ABCD 四边形是矩形, ∴点E 是AC 的中点.又点M 是PC 的中点,,PA ME ∴∥又PA ⊄平面MBD ,EM ⊂平面MBD ,所以PA ∥平面MBD .……5分(II)取AD 的中点O ,则PO AD ⊥,又平面PAD ⊥底面ABCD ,平面PAD 底面ABCD AD =,故PO ⊥平面ABCD ,连接OC ,在Rt POC ∆中,OC ==RtODC ∆中,3DC ==,以O 为原点, ,,OA OE OP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则()1,0,0A ,()()()1,3,0,1,0,0,1,3,0B D C --,(P000(,,)F x y z ,则由13AF AP =得0001(1,,)(1,0,3)3x y z -=-,即23(,0,)33F ,设平面FBD 的法向量(,,)x y z m =,则0BD BF ⎧⋅=⎪⎨⋅=⎪⎩m m ,得230133033x y x y z --=⎧⎪⎨--+=⎪⎩,令3x =,2y =-, 则53z =-,故(3,2,53)--m =,……9分又133(,,)22DM =,设直线DM 与平面FBD 所成角为θ,则sin cos ,DM DM DMθ⋅=<>=⋅m m m 9286132222==⋅,故直线DM 与平面FBD 所成角的正弦值为9286286.……12分 学*科网 20.(本小题满分12分)【解析】(Ι)设11(,),A x y 22(,),B x y 00(,)P x y 则2211221x y a b +=,2222221x y a b +=,两式相减得:1212121222()()()()0x x x x y y y y a b -+-++=,又12121y y x x -=--, P 为AB 的中点,且OP 的斜率为13,所以0013y x =,即12121()3y y x x +=+,所以可以解得223a b =,……………………3分 即2223()a a c =-,即2232a c =,又因为2c =,所以26a =,所以椭圆C 的方程为22162x y +=.……5分 (Ⅱ)设直线l 的方程为(2)y k x =-,代入椭圆C 的方程22162x y +=,得 2222(31)121260k x k x k +-+-=,……6分 设33(,)D x y ,44(,)E x y ,则23421213k x x k+=+, 234212613k x x k-⋅=+,根据题意,假设轴上存在定点(,0)M t ,使得MD ME ⋅为定值,则有MD ME ⋅3344(,)(,)x t y x t y =-⋅-3434()()x t x t y y =-⋅-+23434()()(2)(2)x t x t k x x =-⋅-+-⋅-22223434(1)(2)()4k x x k t x x k t =+-++++2222222212612(1)(2)41313k k k k t k t k k -=+-+++++2222(31210)613t t k t k-++-=+,……8分 要使上式为定值,即与无关,则应22312103(6)t t t -+=-,即73t =,故当点M 的坐标为7(,0)3时,MD ME ⋅为定值.………………12分21.(本小题满分12分)【解析】(I )当2a =时,()()()()2ln ,ln 12,11,11f x x x x f x x x f f ''=-=+-=-=-,所以曲线()y f x =在点()()1,1f 处的切线方程为y x =-.………………3分(II )由已知得2()ln (1)2a g x x x x a x =-+-,则()ln g x x ax a '=-+,记()()ln h x g x x ax a '==-+,则(1)0h =,11()ax h x a x x -'=-=……………………5分①当0a ,()0,x ∈+∞时,()0h x '>,函数()g x '单调递增,所以当()0,1x ∈时,()0g'x <,当()1,x ∈+∞时,()0g x '>,所以()g x 在1x =处取得极小值,满足题意.……………………7分 ②当01a <<时,11a>,当1(0,)x a ∈时,()0h x '>,故函数()g x '单调递增,可得当()0,1x ∈时,()0g x '<,1(1,)x a∈时,()0g x '>,所以()g x 在1x =处取得极小值,满足题意.………………9分③当1a =时,当(0,1)x ∈时,()0h x '>, ()g x '在()0,1内单调递增;(1,)x ∈+∞时,()0h x '<,()g x '在 ()1,+∞内单调递减,所以当()0,x ∈+∞时,()0g x ', ()g x 单调递减,不合题意. ④当1a >时,即101a << ,当1,1x a ⎛⎫∈ ⎪⎝⎭时,()0h x '<,()g x '单调递减,()0g x '>,当()1,x ∈+∞时,()0h x '<,()g x '单调递减,()0g x '<,所以()g x 在1x =处取得极大值,不合题意.综上可知,实数a 的取值范围为1a <.…………………………12分请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.22.(本小题满分10分)选修4-4:坐标系与参数方程【解析】(Ⅰ)曲线C 的普通方程为22(1)(1)2x y ++-=,将cos x ρθ=, sin y ρθ=代入整理得2cos 2sin 0ρθθ+-=,即曲线C3分直线l 的方程为1(1)2y x =+,所以极坐标方程为cos 2sin 10ρθρθ-+=.……5分,故线段PQ 的长10分 23.(本小题满分10分)选修4-5:不等式选讲【解析】(I124x x -++≤. 当2x ≤-时,原不等式等价于214x --≤,即 当21x -<≤时,原不等式等价于34≤,即21x -<≤; 当1x >时,原不等式等价于214x +≤,即……5分 (II )由题意得()()f ax af x +111ax a x ax ax a=-+-=-+-(1)()ax ax a ≥---1a =-()f a =.……10分 学科#网。
东华中学、河南名校2018届高三阶段性联考(二)(理数)
东华中学、河南名校2018届高三阶段性联考(二)数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.考生作答时,将答案答在 答题卡上(答题注意事项见答题卡),在本试题卷上答题无效.考试结束后,将本试题卷和答题卡一并收回.第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量)R )(,6(),3,2(∈-=-=m m b a ,若b a ⊥,则m =A .4-B .4C .3-D .3 2.函数()ln 3f x x x =+-的零点位于区间A .()0,1B .()1,2C .()2,3D .()3,4 3.已知等比数列{}n a 的前n 项和为n S ,若5633,28a S S ==,则3a = A .19 B .13C .3D .9 4.将函数()()3sin 5f x x ϕ=+的图象向右平移4π个单位后关于y 轴对称,则ϕ的值可能为A .32π B .34π- C .54π D .4π- 5.已知0m n >>,则下列说法错误..的是 A .1122log log m n < B .11m nn m >++C >D .2211m nm n >++ 6.已知等差数列{}n a 的前n 项和为n S ,若6234,3S a a ==,则10a = A .3- B .3 C .-6 D .67.已知函数()f x ,若2,2a b <->,则“()()f a f b >”是“0a b +<”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8.已知函数()311,2021,01x x f x x x ⎧⎛⎫+-≤≤⎪ ⎪⎪⎝⎭=⎨⎪>⎪+⎩,若关于x 的方程()()20f x k x -+=有3个实数根,则实数k 的取值范围是 A .10,4⎛⎫ ⎪⎝⎭ B .10,3⎛⎫ ⎪⎝⎭ C .()0,1 D .10,2⎛⎫⎪⎝⎭9.已知⎪⎪⎭⎫⎝⎛⎥⎦⎤⎢⎣⎡∈-=ππαα2,2354sin ,若()sin 2cos αββ+=,则()tan αβ+= A .613 B .136 C .613- D .136- 10.已知实数,x y 满足1310x yx y +≥⎧⎪≤⎨⎪-≥⎩,若z mx y =+的最大值为10,则m =A .1B .2C .3D .411.已知数列{}n a 满足111,121n n n a a a a +=-=-++,其前n 项和为n S ,则下列说法正确的个数为①数列{}n a 为等差数列;②23n n a -=;③133.2n n S --=A .0B .1C .2D .312.已知(),0,m n ∈+∞,若2mm n=+,则当224222m n m n +--取得最小值时,m n +=A .2B .4C .6D .8第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分. 13.不等式22990x x -+>的解集为 . 14.已知实数()113,1,,84a b ⎛⎫∈-∈ ⎪⎝⎭,则a b 的取值范围为 . 15.若函数()21ln f x mx x x=--在()1,+∞上单调递增,则实数m 的取值范围为 .16.在ABC ∆中,角A,B,C 的对边分别为,,a b c ,若⎪⎭⎫⎝⎛+-=2sin )2(cos πB c a C b,且b =,记h 为AC 边上的高,则h 的取值范围为 .三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(本小题满分10分)已知数列{}n a 的首项为11a =,且()()121.n n a a n N *+=+∈ (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若122log 3n n a b ++⎛⎫=⎪⎝⎭,求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T .18.(本小题满分12分)在ABC ∆中,角A,B,C 的对边分别为,,a b c ,且a D =在线段AC 上,4DBC π∠=.(Ⅰ)若BCD ∆的面积为24,求CD 的长; (Ⅱ)若0,2C π⎛⎫∈ ⎪⎝⎭,且1tan 3c A ==,求CD 的长.19.(本小题满分12分)已知向量).,sin 2(),sin ,cos 2(2m x b x x a ==(Ⅰ)若4m =,求函数b a x f ⋅=)(的单调递减区间; (Ⅱ)若向量b a ,满足⎪⎭⎫⎝⎛∈⎪⎭⎫ ⎝⎛=-2,0,0,52πx b a ,求m 的值.20.(本小题满分12分)已知等比数列{}n a 的前n 项和312n n S -=,等差数列{}n b 的前5项和为30,,714.b =(Ⅰ)求数列{}{},n n a b 的通项公式; (Ⅱ)求数列{}n n a b ⋅的前n 项和n T .21.(本小题满分12分) 已知函数()21.2x f x e x =-(Ⅰ)讨论函数()f x 的单调性;(Ⅱ)已知点()1,0M ,曲线)(x f y =在点)11))((,(000≤≤-x x f x P 处的切线l 与直线1x =交于点N ,求MON ∆(O 为坐标原点)的面积最小时0x 的值,并求出面积的最小值.22.(本小题满分12分)已知函数()()1ln 1,1,1.f x x x m x e e ⎛⎫=-++∈++⎪⎝⎭(Ⅰ)若1m =,求曲线()y f x =在()()2,2f 处的切线方程; (Ⅱ)探究函数()()F x xf x =的极值点的情况,并说明理由.数学(理科)参考答案一、选择题1-5:ACBDD 6-10:ACDAB 11、12:BC二、填空题13.()3,3,2⎛⎫-∞+∞ ⎪⎝⎭U 14.()24,8- 15.2,27⎡⎫+∞⎪⎢⎣⎭ 16.30,2⎛⎤⎥⎝⎦三、解答题17.解:(Ⅰ)由()121n n a a +=+得()1222n n a a ++=+, 则数列{}2n a +是以3为首项,以2为公比的等比数列,可得1232n n a -+=⨯,从而1322n n a -=⨯-()*n ∈N .(Ⅱ)依题意,12+2log =3n n a b +⎛⎫=⎪⎝⎭2log 2nn =,故()1111n n b b n n +==+111n n -+, 故1111223n T =-+-+L 1111n n n n +-=++. 18.解:(Ⅰ)由1242BCD S BD BC ∆=⋅⋅=,解得12BD =.在BCD ∆中,222CD BC BD =+-2cos 45BC BD ⋅⋅︒,即22328CD BD BD =+-,CD =(Ⅱ)因为1tan 3A =,且()0,A π,可以求得sin A =cos A =依题意,sin sin a c A C =sin C =,解得sin C =. 因为0,2C π⎛⎫∈ ⎪⎝⎭,故cos 10C =sin sin 45BDC C π⎛⎫∠=+= ⎪⎝⎭. 在BCD ∆中,由正弦定理可得sin sin CD BCDBC BDC=∠∠,解得CD =19.解:(Ⅰ)依题意,x x x b a x f 2sin 4cos sin 4)(+=⋅=2sin 222cos 2x x =+-=224x π⎛⎫-+ ⎪⎝⎭,令()3222242k x k k πππππ+≤-≤+∈Z ,故()3722244k x k k ππππ+≤≤+∈Z , 故()3788k x k k ππππ+≤≤+∈Z , 即函数()f x 的单调递减区间为()37,88k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z .(写成37,88k k ππππ⎛⎫++ ⎪⎝⎭也正确)(Ⅱ)依题意,⎪⎭⎫⎝⎛=-0,52b a ,所以1cos sin 5x x -=,2sin m x =. 由1cos sin 5x x -=得()21cos sin 25x x -=,即112sin cos 25x x -=,从而242sin cos 25x x =.所以()249cos sin 12sin cos 25x x x x +=+=.因为0,2x π⎛⎫∈ ⎪⎝⎭,所以7cos sin 5x x +=. 所以()()cos sin cos sin 3sin 25x x x x x +--==,从而29sin 25m x ==. 20.解:(Ⅰ)当1n =时,1113112a S -===; 当2n ≥时,1n n n a S S -=-=()11313132n n n -----=.综上所述,()1*3n n a n -=∈N . 设数列{}n b 的公差为d ,故11614,51030,b d b d +=⎧⎨+=⎩解得12b =,2d =,故()*2n b n n =∈N .(Ⅱ)依题意,123n n n a b n -=⋅,∴012234363n T =⨯+⨯+⨯+12323)22(--⋅+⋅-+n n n n ,① ∴1233234363n T =⨯+⨯+⨯+n n n n 323)22(1⋅+⋅-+- ,②①—②得,()123132232323n T -=+⨯+⨯+⨯+13)21(3231)31(232321-⋅-=⋅---=⋅-⋅+-n n n nn n n n ,∴11322n n T n ⎛⎫=-⋅+ ⎪⎝⎭. 21.解:(Ⅰ)依题意,()e x f x x '=-.令()e x m x x =-,故()e 1x m x '=-,令()0m x '=,解得0x =, 故()m x 在(),0-∞上单调递减,在()0,+∞上单调递增,故()()min 01m x m ==⎡⎤⎣⎦,故e 0xx ->,即()0f x '>,故函数()f x 在R 上单调递增.(Ⅱ)依题意,切线l 的斜率为()000e xf x x '=-,由此得切线l 的方程为()()0020001e e 2xx y x x x x ⎛⎫--=-- ⎪⎝⎭,令1x =,得()()0020001e e 12xx y x x x =-+--()00012e 2x x x ⎛⎫=-- ⎪⎝⎭, 所以12MON S OM y ∆=⋅=()000112e 22x x x ⎛⎫--= ⎪⎝⎭000111e 22x x x ⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭,[]01,1x ∈-.设()111e 22x g x x x ⎛⎫⎛⎫=-- ⎪⎪⎝⎭⎝⎭,[]1,1x ∈-. 则()1111e 1e 2222x x g x x x ⎛⎫⎛⎫⎛⎫'=--+-- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭()()11e 12x x =---, 令()0g x '=,得0x =或1x =.()g x ,()g x '的变化情况如下表:所以()g x 在()1,0-上单调递减,在()0,1上单调递增,所以()()min 01g x g ==,即00x =时,MON ∆的面积有最小值1. 22.解:(Ⅰ)依题意()111f x x '=+-,故()22f '=, 因为()23f =,故所求切线方程为()322y x -=-,即210x y --=. (Ⅱ)()()()2ln 1F x xf x x x x mx ==-++,()()ln 121xF x x x m x '=-+++-, 记()()g x F x m '=-,则()()211211g x x x '=-+=--()23221x x x ⎛⎫⋅- ⎪⎝⎭-,()302g x x '=⇒=. 当131,e 2x ⎛⎫∈+ ⎪⎝⎭时,()0g x '<,当3,e 12x ⎛⎫∈+ ⎪⎝⎭时,()0g x '>,所以当32x =时,()g x 取得极小值6ln 2-, 又121e 2e eg ⎛⎫+=++ ⎪⎝⎭,()1e 12e 4e g +=++,()()0F x g x m '=⇔=-.(i )当6ln 2m -≤-,即ln 26m ≥-时,()0F x '≥恒成立,函数()F x 在区间11,e 1e ⎛⎫++ ⎪⎝⎭上无极值点; (ii )当26ln 2e 2em -<-<++,即2e 2l n 26em ---<<-时,()0F x '=有两不同解,函数()F x 在11,e 1e ⎛⎫++ ⎪⎝⎭上有两个极值点; (iii )当21e 22e 4e e m ++≤-<++,即122e 4e 2e em ---<≤---时,()0F x '=有一解,函数()F x 在区间11,e 1e ⎛⎫++ ⎪⎝⎭上有一个极值点; (iv )当12e 4e m -≥++,即12e 4em ≤---时,()0F x '≤,函数()F x 在区间11,e 1e ⎛⎫++ ⎪⎝⎭上无极值点.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
东华中学、河南名校2017届高三阶段性联考(二)数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.考生作答时,将答案答在 答题卡上(答题注意事项见答题卡),在本试题卷上作答,答案无效.考试结束后,将本试题卷和答题卡一并收回.第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|A x y =,{}2,1,1,2B =--,则A B = ( )A .()1,2B .{}12,C .{}12--,D .[1,)+∞2.在等比数列{}n a 中,若45627a a a =,则19a a =( ) A .3B .6C .9D .273.已知命题p :0x R ∃∈,200460x x ++<,则p ⌝为( ) A .0x R ∃∈,200460x x ++> B .x R ∀∈,200460x x ++≥ C .0x R ∃∈,200460x x ++≥D .x R ∀∈,200460x x ++>4.设函数3log ,09,()(4),9,x x f x f x x <≤⎧=⎨->⎩则1(13)2()3f f +的值为( )A .0B .1C .2-D .25.已知向量b a ,的夹角为23π,且)4,3(-=a ,2=b ,则=+b a 2( )A .B .C .2D .846.函数13()||f x x x =-的图象大致是( )7.将函数()sin()f x x ωϕ=+(0ω>,22ππϕ-<<)图象上所有点的横坐标缩短为原来的一半,纵坐标不变,再向右平移6π个单位长度得到函数sin y x =的图象,则ω,ϕ的值分别为( ) A .23π,B .2,6π C .1,26π- D .12,6π 8.曲线cos 16y ax x =+在2x π=处的切线与直线1y x =+平行,则实数a 的值为( )A .2πB .2π C .2π-D .2π-9.过双曲线22221(0,0)x y a b a b-=>>的右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点,与双曲线的渐进线交于C ,D 两点,若3||||5AB CD ≥,则双曲线离心率的取值范围为( ) A .5[,)4+∞B .5[,)3+∞C .5(1,]4D .5(1,]310.设函数[]2(2),(1,),()1||,1,1,f x x f x x x -∈+∞⎧⎪=⎨-∈-⎪⎩若关于x 的方程()log (1)0a f x x -+=(0a >且1a ≠)在区间[]0,5内恰有5个不同的根,则实数a 的取值范围是( )A .(B .)+∞C .D .)+∞11.对于正整数k ,记()g k 表示k 的最大奇数因数,例如(1)1g =,(2)1g =,(10)5g =.设(1)(2)(3)(2)nn S g g g g =++++….给出下列四个结论:①(3)(4)10g g +=;②*m N ∀∈,都有(2)()g m g m =;③12330S S S ++=;④114n n n S S ---=,2n ≥,*n N ∈.则其中所有正确结论的序号为( )A .②④B .③④C .②③④D .①②③12.等腰直角△AOB 内接于抛物线22(0)y px p =>,O 为抛物线的顶点,OA OB ⊥,△AOB 的面积是16,抛物线的焦点为F ,若M 是抛物线上的动点,则||||OM MF 的最大值为( )A .3B .3C .3D .3第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知1sin cos 2θθ+=,则sin(2)πθ-= . 14.过点C (3,4)作圆225x y +=的两条切线,切点分别为A ,B ,则点C 到直线AB 的距离为 .15.已知数列{}n a 是公差不为0的等差数列,11a +,21a +,41a +称等比数列,且2312a a +=-,则n a = .16.在△ABC 中,若3sin 2sin C B =,点E ,F 分别是AC ,AB 的中点,则BECF的取值范围为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分10分)已知函数2()2cos f x x x m =--. (Ⅰ)求函数()f x 的最小正周期与单调递增区间;(Ⅱ)若53,244x ππ⎡⎤∈⎢⎥⎣⎦时,函数()f x 的最大值为0,求实数m 的值.18. (本小题满分12分)已知圆22(1)25x y -+=,直线50ax y -+=与圆相交于不同的两点A ,B . (Ⅰ)求实数a 的取值范围;(Ⅱ)若弦AB 的垂直平分线l 过点(2,4)P -,求实数a 的值.19.已知等差数列{}n a 满足12231()()()2(1)n n a a a a a a n n +++++++=+…(*n N ∈). (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列12n n a -⎧⎫⎨⎬⎩⎭的前n 项和n S .20. (本小题满分12分)已知函数2()log ()(1)f x g x k x =+-.(Ⅰ)若2(log )1g x x =+,且()f x 为偶函数,求实数k 的值;(Ⅱ)当1k =,2()(1)g x ax a x a =+++时,若函数()f x 的值域为R ,求实数a 的取值范围.21. (本小题满分12分)已知椭圆C 的中心在坐标原点,焦点在x 轴上,离心率12e =,且椭圆C 经过点(2,3)P ,过椭圆C 的左焦点1F 且不与坐标轴垂直的直线交椭圆C 于A ,B 两点. (Ⅰ)求椭圆C 的方程;(Ⅱ)设线段AB 的垂直平分线与x 轴交于点G ,求△1PFG 的面积S 的取值范围.22. (本小题满分12分) 已知函数()ln f x b x =.(Ⅰ)当1b =时,求函数2()()G x x x f x =--在区间1,2e ⎡⎤⎢⎥⎣⎦上的最大值与最小值; (Ⅱ)若在[]1,e 上存在0x ,使得0001()bx f x x +-<-成立,求b 的取值范围.数学(理科)参考答案二、填空题 13.34-14.4 15.21n -- 16.17(,)48三、解答题 17.解:(Ⅰ)2()2cos 2f x x x m =--1cos 2222xx m +=--1sin(2)62x m π=---,(Ⅱ)因为53,244x ππ⎡⎤∈⎢⎥⎣⎦,所以42,643x πππ⎡⎤-∈⎢⎥⎣⎦,则当262x ππ-=,3x π=时,函数取得最大值0,即1102m --=,解得12m =.18.解:(Ⅰ)把直线50ax y -+=代入圆的方程, 消去y 整理,得22(1)2(51)10a x a x ++-+=, 由于直线50ax y -+=交圆于A ,B 两点, 故224(51)4(1)0a a ∆=--+>,即21250a a ->,解得512a >或0a <, 所以实数a 的取值范围是5(,0)(,)12-∞+∞ .(Ⅱ)由于直线l 为弦AB 的垂直平分线,且直线AB 斜率为a ,则直线l 的斜率为1a-, 直线l 的方程为1(2)4y x a=-++,即240x ay a ++-=w ,由于l 垂直平分弦AB ,故圆心(1,0)M 必在l 上, 所以10240a ++-=,解得34a =, 由于35(,)412∈+∞,所以34a =符合题意. 19.解:(Ⅰ)设等差数列{}n a 的公差为d ,由已知得1212234,()()12,a a a a a a +=⎧⎨+++=⎩即12234,8,a a a a +=⎧⎨+=⎩所以1111()4,()(2)8,a a d a d a d ++=⎧⎨+++=⎩解得11,2,a d =⎧⎨=⎩所以21n a n =-.(Ⅱ)由(1)得112122n n n a n ---=, 所以122235232112222n n n n n S ----=+++++…,①3252321223222n n n n n S ----=+++++…,②②-①得22122221222222n n n n S ---=+++++-111112123222612212n n n n n -----+=+⨯-=-- .20.解:(Ⅰ)令2log t x =,则2tx =,代入2(log )1g x x =+,得()21tg t =+, ∴2()log (21)(1)x f x k x =++-. ∵函数()f x 是偶函数,∴()()f x f x -=, ∴22log (21)(1)log (21)(1)x x k x k x -++-=+--,即221log 2(1)21x xk x -+=--+,2log 22(1)x k x =--, ∴2(1)x k x =--对一切x R ∈恒成立,∴2(1)1k -=-,即12k =. (2)设当1k =时,22()log (1)f x k ax a x a ⎡⎤=+++⎣⎦,当0a ≠时,要使函数()f x 的值域为R ,则0,0,a >⎧⎨∆≥⎩即220,(1)40,a a a >⎧⎨+-≥⎩解得01a <≤. 综上所述a 的取值范围为[]0,1.21.解:(Ⅰ)设椭圆C 的方程为22221x y a b+=(0a b >>),则221,2491,c a c a b⎧=⎪⎪⎪=⎨⎪⎪+=⎪⎩解得2216,12,a b ⎧=⎪⎨=⎪⎩故椭圆C 的方程为2211612x y +=. (2)设直线AB 的方程为(2)y k x =+(0k ≠). 由22(2),34480y k x x y =+⎧⎨+-=⎩消去y 并整理得2222(34)1616(3)0k x k x k +++-=. 易知0∆>,设11(,)A x y ,22(,)B x y ,则2122164+3k x x k -+=,2122164843k x x k -=+, 设00(,)M x y 是AB 的中点,则2020028,436(2).43k x k k y k x k ⎧-=⎪⎪+⎨⎪=+=⎪+⎩线段AB 的垂直平分线MG 的方程为001()y y x x k-=--,令0y =,得220022286243434c k k x x ky k k k-=+=+=-+++.因为0k ≠,所以102c x -<<,因为1113|||||2|22PF C P G S S FG y x ∆==⋅=+,1(,0)2Gx ∈-, 所以S 的取值范围是9(,3)4.22.解:(Ⅰ)当1b =时,2()()G x x x f x =--2ln (0)x x x x =-->,(21)(1)'()x x G x x+-=,令'()0G x =,得1x =,当x 变化时,()G x ,'()G x 的变化情况如下表:因为1()ln ln 212424G =--=-+<,(1)0G =, 2()1(1)11G e e e e e =--=-->,所以2()()G x x x f x =--在区间1,2e ⎡⎤⎢⎥⎣⎦上的最大值与最小值分别为:2max ()()1G x G e e e ==--,min ()(1)0G x G ==.(2)设1()ln bh x x b x x+=-+. 若在[]1,e 上存在0x ,使得0001()b x f x x +-<-,即0001ln 0bx b x x +-+<成立, 则只需要函数1()ln bh x x b x x+=-+在[]1,e 上的最小值小于零. 又2221(1)'()1b b x bx b h x x x x +--+=--=[]2(1)(1)x x b x+-+=, 令'()0h x =,得1x =-(舍去)或1x b =+.①当1b e +≥,即1b e ≥-时,()h x 在[]1,e 上单调递减,故()h x 在[]1,e 上的最小值为()h e ,由1()0b h e e b e +=+-<,可得211e b e +>-. 因为2111e e e +>--,所以211e b e +>-. ②当11b +≤,即0b ≤时,()h x 在[]1,e 上单调递增, 故()h x 在[]1,e 上的最小值为(1)h ,由(1)110h b =++<, 可得2b <-(满足0b ≤).③当11b e <+<,即01b e <<-时,()h x 在(1,1)b +上单调递减,在(1,)b e +上单调递增,故()h x 在[]1,e 上的最小值为(1)2ln(1)h b b b b +=+-+. 因为0ln(1)1b <+<,所以0ln(1)b b b <+<,所以2ln(1)2b b b +-+>,即(1)2h b +>,不满足题意,舍去.综上可得2b <-或211e b e +>-,所以实数b 的取值范围为21(,2)(,)1e e +-∞-+∞- .。