内蒙古乌海市2021届新高考数学仿真第四次备考试题含解析
内蒙古乌海市2021届新高考数学模拟试题(3)含解析
内蒙古乌海市2021届新高考数学模拟试题(3)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设等差数列{}n a 的前n 项和为n S ,若23S =,410S =,则6S =( )A .21B .22C .11D .12 【答案】A【解析】【分析】由题意知24264,,S S S S S --成等差数列,结合等差中项,列出方程,即可求出6S 的值.【详解】解:由{}n a 为等差数列,可知24264,,S S S S S --也成等差数列,所以()422642S S S S S -=+- ,即()62103310S ⨯-=+-,解得621S =.故选:A.【点睛】本题考查了等差数列的性质,考查了等差中项.对于等差数列,一般用首项和公差将已知量表示出来,继而求出首项和公差.但是这种基本量法计算量相对比较大,如果能结合等差数列性质,可使得计算量大大减少.2.若2m >2n >1,则( )A .11m n >B .πm ﹣n >1C .ln (m ﹣n )>0D .1122log m log n > 【答案】B【解析】【分析】 根据指数函数的单调性,结合特殊值进行辨析.【详解】若2m >2n >1=20,∴m >n >0,∴πm ﹣n >π0=1,故B 正确;而当m 12=,n 14=时,检验可得,A 、C 、D 都不正确, 故选:B .【点睛】此题考查根据指数幂的大小关系判断参数的大小,根据参数的大小判定指数幂或对数的大小关系,需要熟练掌握指数函数和对数函数的性质,结合特值法得出选项.3.函数1()ln 1f x x x =--的图象大致是( ) A . B .C .D .【答案】B【解析】【分析】根据函数表达式,把分母设为新函数,首先计算函数定义域,然后求导,根据导函数的正负判断函数单调性,对应函数图像得到答案. 【详解】设()ln 1g x x x =--,(1)0g =,则1()ln 1f x x x =--的定义域为(0,1)(1,)x ∈+∞U .1()1g x x '=-,当(1,)x ∈+∞,()0g x '>,()g x 单增,当(0,1)x ∈,()0g x '<,()g x 单减,则()(1)0g x g ≥=.则()f x 在(0,1)x ∈上单增,(1,)x ∈+∞上单减,()0f x >.选B.【点睛】本题考查了函数图像的判断,用到了换元的思想,简化了运算,同学们还可以用特殊值法等方法进行判断.4.过双曲线()2222:10,0x y C a b a b-=>>左焦点F 的直线l 交C 的左支于,A B 两点,直线AO (O 是坐标原点)交C 的右支于点D ,若DF AB ⊥,且BF DF =,则C 的离心率是( ) A 5 B .2 C 5D 10【答案】D【解析】【分析】如图,设双曲线的右焦点为2F ,连接2DF 并延长交右支于C ,连接FC ,设2DF x =,利用双曲线的几何性质可以得到2DF x a =+,4FC x a =+,结合Rt FDC ∆、2Rt FDF ∆可求离心率.【详解】如图,设双曲线的右焦点为2F ,连接FC ,连接2DF 并延长交右支于C .因为2,==FO OF AO OD ,故四边形2FAF D 为平行四边形,故2FD DF ⊥.又双曲线为中心对称图形,故2F C BF =.设2DF x =,则2DF x a =+,故22F C x a =+,故4FC x a =+.因为FDC ∆为直角三角形,故()()()2224222x a x a x a +=+++,解得x a =.在2Rt FDF ∆中,有22249c a a =+,所以5102c e a ===. 故选:D.【点睛】本题考查双曲线离心率,注意利用双曲线的对称性(中心对称、轴对称)以及双曲线的定义来构造关于,,a b c 的方程,本题属于难题.5.造纸术、印刷术、指南针、火药被称为中国古代四大发明,此说法最早由英国汉学家艾约瑟提出并为后来许多中国的历史学家所继承,普遍认为这四种发明对中国古代的政治,经济,文化的发展产生了巨大的推动作用.某小学三年级共有学生500名,随机抽查100名学生并提问中国古代四大发明,能说出两种发明的有45人,能说出3种及其以上发明的有32人,据此估计该校三级的500名学生中,对四大发明只能说出一种或一种也说不出的有( )A .69人B .84人C .108人D .115人【答案】D【解析】【分析】先求得100名学生中,只能说出一种或一种也说不出的人数,由此利用比例,求得500名学生中对四大发明只能说出一种或一种也说不出的人数.【详解】在这100名学生中,只能说出一种或一种也说不出的有100453223--=人,设对四大发明只能说出一种或一种也说不出的有x 人,则10050023x =,解得115x =人. 故选:D【点睛】本小题主要考查利用样本估计总体,属于基础题.6.P 是正四面体ABCD 的面ABC 内一动点,E 为棱AD 中点,记DP 与平面BCE 成角为定值θ,若点P 的轨迹为一段抛物线,则tan θ=( ) A .2B .2C .2D .22 【答案】B【解析】【分析】设正四面体的棱长为2,建立空间直角坐标系,求出各点的坐标,求出面BCE 的法向量,设P 的坐标,求出向量DP u u u r ,求出线面所成角的正弦值,再由角θ的范围0,2π⎡⎤⎢⎥⎣⎦,结合θ为定值,得出sin θ为定值,且P 的轨迹为一段抛物线,所以求出坐标的关系,进而求出正切值.【详解】由题意设四面体ABCD 的棱长为2,设O 为BC 的中点,以O 为坐标原点,以OA 为x 轴,以OB 为y 轴,过O 垂直于面ABC 的直线为z 轴,建立如图所示的空间直角坐标系O xyz -,则可得1OB OC ==,3232OA ==OA 的三等分点G 、F 如图, 则1333OG OA ==,2333AG OF OA ===,2263DG AD AG =-=,1623EF DG ==,所以()0,1,0B 、()0,1,0C -、)A、33D ⎛ ⎝⎭、,0,33E ⎛⎫ ⎪ ⎪⎝⎭, 由题意设(),,0P x y,,DP x y ⎛= ⎝⎭u u u r ,QV ABD 和ACD V 都是等边三角形,E 为AD 的中点,BE AD ∴⊥,CE AD ⊥,BE CE E =Q I ,AD ∴⊥平面BCE,AD ⎛∴= ⎝⎭u u u r 为平面BCE 的一个法向量,因为DP 与平面BCE 所成角为定值θ,则0,2π⎡⎤θ∈⎢⎥⎣⎦,由题意可得sin cos ,AD DP AD DP AD DP θ⋅=<>==⋅u u u r u u u r u u u r u u u r u u u r u u u r=== 因为P 的轨迹为一段抛物线且tan θ为定值,则sinθ也为定值,22339x x ==,可得23y =,此时sin θ=,则cos θ=,sin tan cos 2θθθ==. 故选:B.【点睛】考查线面所成的角的求法,及正切值为定值时的情况,属于中等题.7.已知集合{}0,1,2,3A =,{|22}B x x =-≤≤,则A B I 等于( )A .{}012,, B .{2,1,0,1,2}-- C .{}2,1,0,1,2,3-- D .{}12, 【答案】A【解析】【分析】 进行交集的运算即可.【详解】{0A =Q ,1,2,3},{|22}B x x =-剟,{0A B ∴=I ,1,2}.故选:A .【点睛】本题主要考查了列举法、描述法的定义,考查了交集的定义及运算,考查了计算能力,属于基础题. 8.从集合{}3,2,1,1,2,3,4---中随机选取一个数记为m ,从集合{}2,1,2,3,4--中随机选取一个数记为n ,则在方程221x y m n +=表示双曲线的条件下,方程221x y m n+=表示焦点在y 轴上的双曲线的概率为( )A .917B .817C .1735D .935【答案】A【解析】【分析】设事件A 为“方程221x y m n +=表示双曲线”,事件B 为“方程221x y m n+=表示焦点在y 轴上的双曲线”,分别计算出(),()P A P AB ,再利用公式()(/)()P AB P B A P A =计算即可. 【详解】 设事件A 为“方程221x y m n +=表示双曲线”,事件B 为“方程221x y m n+=表示焦点在y 轴上 的双曲线”,由题意,334217()7535P A ⨯+⨯==⨯,339()7535P AB ⨯==⨯,则所求的概率为 ()9(/)()17P AB P B A P A ==. 故选:A.【点睛】 本题考查利用定义计算条件概率的问题,涉及到双曲线的定义,是一道容易题.9.已知平面α,β,直线l 满足l α⊂,则“l β⊥”是“αβ⊥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .即不充分也不必要条件【答案】A【解析】【分析】 α,β是相交平面,直线l ⊂平面α,则“l β⊥” ⇒ “αβ⊥”,反之αβ⊥,直线l 满足l α⊂,则l β⊥或l //β或l ⊂平面β,即可判断出结论.【详解】解:已知直线l ⊂平面α,则“l β⊥” ⇒ “αβ⊥”,反之αβ⊥,直线l 满足l α⊂,则l β⊥或l //β或l ⊂平面β,∴ “l β⊥”是“αβ⊥”的充分不必要条件.故选:A.【点睛】本题考查了线面和面面垂直的判定与性质定理、简易逻辑的判定方法,考查了推理能力与计算能力. 10.已知正方体1111ABCD A B C D -的棱长为1,平面α与此正方体相交.对于实数()03d d <<,如果正方体1111ABCD A B C D -的八个顶点中恰好有m 个点到平面α的距离等于d ,那么下列结论中,一定正确的是A .6m ≠B .5m ≠C .4m ≠D .3m ≠ 【答案】B【解析】【分析】此题画出正方体模型即可快速判断m 的取值.【详解】如图(1)恰好有3个点到平面α的距离为d ;如图(2)恰好有4个点到平面α的距离为d ;如图(3)恰好有6个点到平面α的距离为d .所以本题答案为B.【点睛】本题以空间几何体为载体考查点,面的位置关系,考查空间想象能力,考查了学生灵活应用知识分析解决问题的能力和知识方法的迁移能力,属于难题.112,体积为23,AB 、CD 是底面圆O 的两条互相垂直的直径,E 是母线PB 的中点,已知过CD 与E 的平面与圆锥侧面的交线是以E 为顶点的抛物线的一部分,则该抛物线的焦点到圆锥顶点P 的距离等于( )A .12B .1C .10D .5 【答案】D【解析】【分析】建立平面直角坐标系,求得抛物线的轨迹方程,解直角三角形求得抛物线的焦点到圆锥顶点P 的距离.【详解】将抛物线放入坐标系,如图所示,∵2PO =,1OE =,2OC OD ==∴(2C -,设抛物线22y px =,代入C 点, 可得22y x =- ∴焦点为1,02⎛⎫- ⎪⎝⎭, 即焦点为OE 中点,设焦点为F ,12EF =,1PE =,∴52PF =. 故选:D【点睛】本小题考查圆锥曲线的概念,抛物线的性质,两点间的距离等基础知识;考查运算求解能力,空间想象能力,推理论证能力,应用意识.12.定义在R 上的函数()f x 满足(4)1f =,()f x '为()f x 的导函数,已知()y f x '=的图象如图所示,若两个正数,a b 满足(2)1f a b +<,11b a ++则的取值范围是( )A .(11,53)B .1(,)(5,)3-∞⋃+∞C .(1,53)D .(,3)-∞【答案】C【解析】【分析】 先从函数单调性判断2a b +的取值范围,再通过题中所给的,a b 是正数这一条件和常用不等式方法来确定11b a ++的取值范围. 【详解】由()y f x '=的图象知函数()f x 在区间()0,∞+单调递增,而20a b +>,故由()(2)14f a b f +<=可知24a b +<.故1421725111b a a a a +-+<=-+<+++, 又有11712133322b b b b a ++>=-+>+--,综上得11b a ++的取值范围是(1,53). 故选:C【点睛】本题考查了函数单调性和不等式的基础知识,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。
内蒙古2021届高三数学第四次调研考试试题 理
2021届高三数学第四次调研考试试题 理(时间:120分钟 分数:150分)一.选择题(每小题5分,共60分)1.已知集合{}N n n n x x A ∈+==),1(|,{}020|2≤-=x x x B ,则=B AA .{0,1,6,12,20}B .{0,2,6,12,20}C .{2,6,12,20}D .{6,12}2.复数z 满足i i z 43)1(+=-,则z =i A 2721.+-i B 2721.+ i C 2525.- i D 2525.+ 3.在4)2)(1(+-x i 的展开式中,含3x 项的系数为A .16 B.-16 C .8 D .-84.已知2,1==b a ,且)()25(b a b a -⊥+,则a 与b 的夹角为30.A 60.B 120.C 150.D5.在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等和亮度满足2112lg 25E E m m =-,其中星等为k m 的星的亮度为)2,1(=k E k .已知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为1.1010.A 1.10.B 1.10lg .C 1.1010.-D6.已知等差数列{}n a 的前n 项和为n S ,且33,41182==+S a a ,则=2020aA .2021B .2021C .2021D .20217.若四面体ABCD 的三组对棱分别相等,即AB =CD ,AC =BD ,AD =BC ,给出下列结论: ①四面体ABCD 每组对棱相互垂直; ②四面体ABCD 每个面的面积相等;③从四面体ABCD 每个顶点出发的三条棱两两夹角之和大于90°而小于180°; ④连接四面体ABCD 每组对棱中点的线段相互垂直平分;⑤从四面体ABCD 每个顶点出发的三条棱的长可作为一个三角形的三边长. 其中正确结论的序号是A .②④⑤B .①②④⑤C .①③④D .②③④⑤8.已知奇函数),0,0)(cos()(πϕωϕω<<>+=x x f 且)21()23(--=-x f x f ,当ω取最小值时,在下列区间内,)(x f 单调递减的是15.[,]36A - 31.[,]23B - C. 5[,]36ππ D. [0,]3π9.已知点P 是抛物线y x 22=上的一点,在点P 处的切线恰好过点)21,0(-,则点P 到抛物线焦点的距离为21.A 1.B 23.C 2.D 10.如图,在三棱锥D -ABC 中,CD ⊥底面ABC ,△ABC 为正三角形,若AE ∥CD ,AB =CD =AE =2,则三棱锥D -AB C 与三棱锥E -ABC 的公共部分构成的几何体的外接球的体积为A .1639π B .32327π C .203π D .2327π 11.设双曲线)0,0(12222>>=-b a by a x 的左右焦点分别为21,F F ,过点1F 的直线分别交双曲线的左、右支于点M,N ,若以MN 为直径的圆过点2F ,且22NF MF =,则双曲线的离心率为6.A 5B 3.C 2.D12.已知函数)(x f 是定义在[100,100]-的偶函数,且)2()2(-=+x f x f .当[]2,0∈x 时,x e x x f )2()(-=,若方程[]01)()(2=+-x mf x f 有300个不同的实数根,则实数m 的取值范围为)25,1.(---e e A 15.[,]2B e e ---()2,.-∞-C D .1(,2)e e ---二.填空题(每小题5分,共20分):13.高一新生健康检查的统计结果:体重超重者占40%,血压异常者占15%,两者都有的占8%,今任选一人进行健康检查,已知此人超重,他血压异常的概率为__________. 14若31)6cos(=-x π,则=-)32sin(πx ______________. 15.已知函数()x x x x e e f x e e ---=+,若正实数a ,b 满足0)1()4(=-+b f a f ,则abba 24+的最小值为___________.16.已知数列{}n a 的首项1a m =,其前n 项和为n S ,且满足2132n n S S n n ++=+,若对n N +∀∈, 1n n a a +<恒成立,则m 的取值范围是__________.三.解答题(共70分):17.(12分)在ABC ∆中,,31cos ,2==B AB 点D 在线段BC 上. (1)若π43=∠ADC ,求AD 的长; (2)若BD =2DC ,234=∆ADC S ,求CADBAD∠∠sin sin 的值.18.(12分)随着通识教育理念的推广及高校课程改革的深入,选修课越来越受到人们的重视.国内一些知名院校在公共选修课的设置方面做了许多有益的探索,并且取得了一定的成果.因为选修课的课程建设处于探索阶段,选修课的教学、管理还存在很多的问题,所以需要在通识教育的基础上制定科学的、可行的解决方案,为学校选修课程的改革与创新、课程设置、考试考核、人才培养提供参考.某高校采用分层抽样法抽取了数学专业的50名参加选修课与不参加选修课的学生的成绩,统计数据如下表:成绩优秀 成绩不够优秀总计 参加选修课 16 9 25 不参加选修课8 17 25 总计242650(1)试运用独立性检验的思想方法分析:你能否有99%的把握认为“学生的成绩优秀与是否参加选修课有关”,并说明理由;(2)如果从数学专业随机抽取5名学生,求抽到参加选修课的学生人数ξ的分布列和数学期望(将频率当做概率计算).参考公式:.c b ,))()()(()(22d a n d b c a d c b a bc ad n K ++==++++-=其中 临界值表:)(02k K P ≥0.15 0.10 0.05 0.025 0.010 0.005 0.001 0k2.0722.7063.8415.0246.6357.87910.82819.(12分)如图,D 是AC 的中点,四边形BDEF 是菱形, 平面BDEF ⊥平面ABC ,∠FBD =60°,AB ⊥BC ,AB =BC =2. (1)若点M 是线段BF 的中点,证明:BF ⊥平面AMC ; (2)求平面AEF 与平面BCF 所成的锐二面角的余弦值.20.(12分)已知1m >,直线l :202m x my --=,椭圆C :2221,x y m+=12F F 、分别为椭圆C 的左、右焦点. (1)当直线l 过右焦点2F 时,求直线l 的方程;(2)设直线l 与椭圆C 交于A B ,两点,12AF F ∆,12BF F ∆的重心分别为G H ,.若原点O 在以线段GH 为直径的圆内,求实数m 的取值范围.21.(12分)已知函数()()()()2ln ln 1.f x ax xx x a R =--+∈(1)若2ln ax x >,求证:()2ln 1f x ax x ≥-+;(2)若()()2000000,,1ln ln x f x x x x ∃∈+∞=+-,求a 的最大值; (3)求证:当12x <<时,()()2f x ax ax >-.选考题:共10分。
2021届高三新高考模拟数学试题(解析版)
2021届高三新高考模拟英语试题第一部分阅读(共两节, 满分50分)第一节(共15小题;每小题2. 5分, 满分37. 5分)阅读下列短文, 从每题所给的A、B、C、D四个选项中选出最佳选项。
ABest Cookbooks for KidsBest Overall: Cooking Class: 57 Fun Recipes Kids Will Love to Make (and Eat!)◎Buy on Amazon◎Buy on WalmartWith the help of this best-selling cookbook, your kids will become masters in the kitchen! Cooking Class: 57 Fun Recipes Kids Will Love to Make (and Eat ! )is ideal for children aged 6 to 12, as it includes detailed explanations of basic cooking techniques, plus more than 50 kid-friendly recipes. This award-winning cookbook is a comprehensive guide for cooking novices, explaining skills and recipes in kid-friendly language.Best for Basic Learner: Better Homes and Gardens New Junior Cookbook◎Buy on Amazon◎Buy on WalmartIf you want to teach your kids cooking terms, tools and techniques, you need the Better Homes and Gardens New Junior Cookbook.This 128-page cookbook has more than 65 kid-friendlyrecipes, and it’s perfect for introducing kids aged 5 to 12 to the wonderful world of cooking. It includes a detailed section on cooking terms, kitchen safety, tools (including pictures), and healthy cooking. It also addresses how to measure ingredients and how to read recipes.Best Classic: Betty Crocker’s Cookbook for Boys and Girls◎Buy on Amazon◎Buy on Target◎Buy on WalmartThe first edition of this classic kids’ cookbook was published more than 60 years ago, and the Betty Crocker’s Cookbook for Boys and Girls is still a favorite for kids and adults alike. The recipes are ideal for children aged 8 to 12. This cookbook is an authentic reproduction of the original 1957 edition, which many baby boomers learned from themselves! Many older buyers write that they had the same cookbook growing up and love sharing the classic recipes with the next generation.Best Vegetarian: The Help Yourself Cookbook for Kids◎Buy on Amazon◎Buy on WalmartThis vegan cookbook is best for children aged 6 to 12, and its aim is to teach kids about healthy eating by involving them in the cooking process. The book features 60 plant-based recipes for you to make with your family, including meals, snacks, drinks and desserts.1. Which cookbook can be purchased on Target?A. Cooking Class: 57 Fun Recipes Kids Will Love to Make (and Eat!).B. Better Homes and Gardens New Junior Cookbook.C. Betty Crocker’s Cookbook for Boys and Girls.D. The Help Yourself Cookbook for Kids.2. What can we know about Better Homes and Gardens New Junior Cookbook?A. It is an award-winning cookbook.B. It teaches the kids about kitchen safety.C. It includes 60 plant-based recipes.D. It was published more than 60 years ago.3. What is the similarity between Cooking Class: 57 Fun Recipes Kids Will Love to Make (and Eat!) and The Help Yourself Cookbook for Kids?A. They are both designed for kids aged 6-12.B. They have recipes based on plants.C. They have recipes for whatever you want.D. They explain how to measure ingredients.『语篇解读』本文主要介绍了四本适合孩子们的食谱。
内蒙古乌海市2021届新高考数学模拟试题含解析
内蒙古乌海市2021届新高考数学模拟试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数log ()a y x c =+(a ,c 是常数,其中0a >且1a ≠)的大致图象如图所示,下列关于a ,c 的表述正确的是( )A .1a >,1c >B .1a >,01c <<C .01a <<,1c >D .01a <<,01c <<【答案】D 【解析】 【分析】根据指数函数的图象和特征以及图象的平移可得正确的选项. 【详解】从题设中提供的图像可以看出()01,log 0,log 10a a a c c <<>+>, 故得01,01c a <<<<, 故选:D . 【点睛】本题考查图象的平移以及指数函数的图象和特征,本题属于基础题. 2.已知变量的几组取值如下表:x1 2 3 4 y2.4 4.3 5.37若y 与x 线性相关,且ˆ0.8yx a =+,则实数a =( ) A .74B .114C .94D .134【答案】B 【解析】 【分析】求出,x y ,把坐标(,)x y 代入方程可求得a . 【详解】 据题意,得()()151191234, 2.4 4.3 5.374244x y =+++==+++=,所以1950.842a =⨯+,所以114a =. 故选:B . 【点睛】本题考查线性回归直线方程,由性质线性回归直线一定过中心点(,)x y 可计算参数值.3. “哥德巴赫猜想”是近代三大数学难题之一,其内容是:一个大于2的偶数都可以写成两个质数(素数)之和,也就是我们所谓的“1+1”问题.它是1742年由数学家哥德巴赫提出的,我国数学家潘承洞、王元、陈景润等在哥德巴赫猜想的证明中做出相当好的成绩.若将6拆成两个正整数的和,则拆成的和式中,加数全部为质数的概率为( ) A .15B .13C .35D .23【答案】A 【解析】 【分析】列出所有可以表示成和为6的正整数式子,找到加数全部为质数的只有336+=,利用古典概型求解即可. 【详解】6拆成两个正整数的和含有的基本事件有:(1,5),(2,4),(3,3), (4,2),(5,1), 而加数全为质数的有(3,3), 根据古典概型知,所求概率为15P =. 故选:A. 【点睛】本题主要考查了古典概型,基本事件,属于容易题.4.如图所示,网络纸上小正方形的边长为1,粗线画出的是某四棱锥的三视图,则该几何体的体积为( )A .2B .83C .6D .8【答案】A【解析】 【分析】先由三视图确定该四棱锥的底面形状,以及四棱锥的高,再由体积公式即可求出结果. 【详解】由三视图可知,该四棱锥为斜着放置的四棱锥,四棱锥的底面为直角梯形,上底为1,下底为2,高为2,四棱锥的高为2, 所以该四棱锥的体积为()11V 1222232=⨯⨯+⨯⨯=. 故选A 【点睛】本题主要考查几何的三视图,由几何体的三视图先还原几何体,再由体积公式即可求解,属于常考题型. 5.已知复数41iz i=+,则z 对应的点在复平面内位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】A 【解析】 【分析】利用复数除法运算化简z ,由此求得z 对应点所在象限. 【详解】依题意()()()()41212211i i z i i i i i -==-=++-,对应点为()2,2,在第一象限. 故选A. 【点睛】本小题主要考查复数除法运算,考查复数对应点的坐标所在象限,属于基础题.6.设集合{}12M x x =<≤,{}N x x a =<,若M N M ⋂=,则a 的取值范围是( ) A .(),1-∞ B .(],1-∞C .()2,+∞D .[)2,+∞【答案】C 【解析】 【分析】由M N M ⋂=得出M N ⊆,利用集合的包含关系可得出实数a 的取值范围. 【详解】{}12M x x =<≤Q ,{}N x x a =<且M N M ⋂=,M N ∴⊆,2a ∴>.因此,实数a的取值范围是()2,+∞.故选:C.【点睛】本题考查利用集合的包含关系求参数,考查计算能力,属于基础题.7.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为A.甲、乙、丙B.乙、甲、丙C.丙、乙、甲D.甲、丙、乙【答案】A【解析】【分析】利用逐一验证的方法进行求解.【详解】若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A.【点睛】本题将数学知识与时政结合,主要考查推理判断能力.题目有一定难度,注重了基础知识、逻辑推理能力的考查.8.已知某几何体的三视图如图所示,则该几何体的体积是()A.643B.64 C.323D.32【答案】A 【解析】根据三视图,还原空间几何体,即可得该几何体的体积. 【详解】由该几何体的三视图,还原空间几何体如下图所示:可知该几何体是底面在左侧的四棱锥,其底面是边长为4的正方形,高为4, 故()16444433V =⨯⨯⨯=. 故选:A 【点睛】本题考查了三视图的简单应用,由三视图还原空间几何体,棱锥体积的求法,属于基础题.9.在一个数列中,如果*n N ∀∈,都有12n n n a a a k ++=(k 为常数),那么这个数列叫做等积数列,k 叫做这个数列的公积.已知数列{}n a 是等积数列,且11a =,22a =,公积为8,则122020a a a ++⋅⋅⋅+=( )A .4711B .4712C .4713D .4715【答案】B 【解析】 【分析】计算出3a 的值,推导出()3n n a a n N *+=∈,再由202036731=⨯+,结合数列的周期性可求得数列{}na 的前2020项和. 【详解】由题意可知128n n n a a a ++=,则对任意的n *∈N ,0n a ≠,则1238a a a =,31284a a a ∴==, 由128n n n a a a ++=,得1238n n n a a a +++=,12123n n n n n n a a a a a a +++++∴=,3n n a a +∴=,202036731=⨯+Q ,因此,()1220201231673673714712a a a a a a a ++⋅⋅⋅+=+++=⨯+=.故选:B. 【点睛】本题考查数列求和,考查了数列的新定义,推导出数列的周期性是解答的关键,考查推理能力与计算能力,10.已知(1,3),(2,2),(,1)a b c n ===-r r r ,若()a c b -⊥r r r,则n 等于( )A .3B .4C .5D .6【答案】C 【解析】 【分析】先求出(1,4)a c n -=-r r ,再由()a c b -⊥r r r,利用向量数量积等于0,从而求得n .【详解】由题可知(1,4)a c n -=-r r,因为()a c b -⊥r r r,所以有()12240n -⨯+⨯=,得5n =,故选:C. 【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量的减法坐标运算公式,向量垂直的坐标表示,属于基础题目.11.已知复数z 满足(12)43i z i +=+,则z 的共轭复数是( ) A .2i - B .2i +C .12i +D .12i -【答案】B 【解析】 【分析】根据复数的除法运算法则和共轭复数的定义直接求解即可. 【详解】由()1243i z i +=+,得43i2i 12iz +==-+,所以2z i =+. 故选:B 【点睛】本题考查了复数的除法的运算法则,考查了复数的共轭复数的定义,属于基础题.12.在ABC V 中,AD 为BC 边上的中线,E 为AD 的中点,且||1,||2AB AC ==u u u r u u u r,120BAC ∠=︒,则||EB =u u u r( )A .4B .C .2D .4【答案】A【分析】根据向量的线性运算可得3144EB AB AC =-u u u r u u u r u u u r ,利用22||B EB E =u u r u u u r u 及||1,||2AB AC ==u u u r u u u r ,120BAC ∠=︒计算即可. 【详解】因为11131()22244EB EA AB AD AB AB AC AB AB AC =+=-+=-⨯++=-u u u r u u u r u u u r u u u r u u u r u u ur u u u r u u u r u u u r u u u r ,所以22229311216441||6EB AB AB B AC AC E =-⨯=⨯⋅+u u u r u u u r u u ur u u u r u u r u u u r u 229311112()2168216=⨯-⨯⨯⨯-+⨯ 1916=,所以||4EB =u u u r ,故选:A 【点睛】本题主要考查了向量的线性运算,向量数量积的运算,向量数量积的性质,属于中档题. 二、填空题:本题共4小题,每小题5分,共20分。
内蒙古乌海市2021届新第四次高考模拟考试数学试卷含解析
内蒙古乌海市2021届新第四次高考模拟考试数学试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.数列{a n }是等差数列,a 1=1,公差d ∈[1,2],且a 4+λa 10+a 16=15,则实数λ的最大值为( ) A .72B .5319C .2319-D .12-【答案】D 【解析】 【分析】利用等差数列通项公式推导出λ131819dd-=+,由d ∈[1,2],能求出实数λ取最大值.【详解】∵数列{a n }是等差数列,a 1=1,公差d ∈[1,2],且a 4+λa 10+a 16=15, ∴1+3d+λ(1+9d )+1+15d =15,解得λ1318d19d-=+,∵d ∈[1,2],λ1318d 19d -==-+21519d++是减函数,∴d =1时,实数λ取最大值为λ13181192-==-+. 故选D . 【点睛】本题考查实数值的最大值的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题. 2.函数()[]()cos 2,2f x x x ππ=∈-的图象与函数()sin g x x =的图象的交点横坐标的和为( ) A .53πB .2πC .76π D .π【答案】B 【解析】 【分析】根据两个函数相等,求出所有交点的横坐标,然后求和即可. 【详解】令sin cos2x x =,有2sin 12sin x x =-,所以sin 1x =-或1sin 2x =.又[],2x ππ∈-,所以2x π=-或32x π=或6x π=或56x π=,所以函数()[]()cos 2,2f x x x ππ=∈-的图象与函数()sin g x x =的图象交点的横坐标的和3522266s πππππ=-+++=,故选B. 【点睛】本题主要考查三角函数的图象及给值求角,侧重考查数学建模和数学运算的核心素养. 3.己知全集为实数集R ,集合A={x|x 2 +2x-8>0},B={x|log 2x<1},则()R A B ⋂ð等于( )A .[-4,2]B .[-4,2)C .(-4,2)D .(0,2)【答案】D 【解析】 【分析】求解一元二次不等式化简A ,求解对数不等式化简B ,然后利用补集与交集的运算得答案. 【详解】解:由x 2 +2x-8>0,得x <-4或x >2, ∴A={x|x 2 +2x-8>0}={x| x <-4或x >2}, 由log 2x<1,x >0,得0<x <2, ∴B={x|log 2x<1}={ x |0<x <2}, 则{}|42R A x x =-≤≤ð, ∴()()0,2R A B =I ð. 故选:D. 【点睛】本题考查了交、并、补集的混合运算,考查了对数不等式,二次不等式的求法,是基础题. 4.已知在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若函数()3222111()324f x x bx a c ac x =+++-存在极值,则角B 的取值范围是( ) A .0,3π⎛⎫⎪⎝⎭B .,63ππ⎛⎫⎪⎝⎭ C .,3π⎛⎫π⎪⎝⎭D .,6π⎛⎫π⎪⎝⎭【答案】C 【解析】 【分析】求出导函数()f x ',由()0f x '=有不等的两实根,即>0∆可得不等关系,然后由余弦定理可及余弦函数性质可得结论. 【详解】()3222111()324f x x bx a c ac x =+++-Q ,()2221()4f x x bx a c ac '∴=+++-.若()f x 存在极值,则()2221404b ac ac -⨯⨯+->,222a c b ac ∴+-<又2221cos ,cos 22a cb B B ac +-=∴<.又()0,,3B B π∈π∴<<πQ .故选:C .【点睛】本题考查导数与极值,考查余弦定理.掌握极值存在的条件是解题关键.5.学业水平测试成绩按照考生原始成绩从高到低分为A 、B 、C 、D 、E 五个等级.某班共有36名学生且全部选考物理、化学两科,这两科的学业水平测试成绩如图所示.该班学生中,这两科等级均为A 的学生有5人,这两科中仅有一科等级为A 的学生,其另外一科等级为B ,则该班( )A .物理化学等级都是B 的学生至多有12人 B .物理化学等级都是B 的学生至少有5人C .这两科只有一科等级为B 且最高等级为B 的学生至多有18人D .这两科只有一科等级为B 且最高等级为B 的学生至少有1人 【答案】D 【解析】 【分析】根据题意分别计算出物理等级为A ,化学等级为B 的学生人数以及物理等级为B ,化学等级为A 的学生人数,结合表格中的数据进行分析,可得出合适的选项. 【详解】根据题意可知,36名学生减去5名全A 和一科为A 另一科为B 的学生105858-+-=人(其中物理A 化学B 的有5人,物理B 化学A 的有3人), 表格变为: ABC D E物理 10550--= 16313-= 91化学8530--=19514-=72对于A 选项,物理化学等级都是B 的学生至多有13人,A 选项错误;对于B 选项,当物理C 和D ,化学都是B 时,或化学C 和D ,物理都是B 时,物理、化学都是B 的人数最少,至少为13724--=(人),B 选项错误;对于C 选项,在表格中,除去物理化学都是B 的学生,剩下的都是一科为B 且最高等级为B 的学生,因为都是B 的学生最少4人,所以一科为B 且最高等级为B 的学生最多为1391419++-=(人), C 选项错误;对于D 选项,物理化学都是B 的最多13人,所以两科只有一科等级为B 且最高等级为B 的学生最少14131-=(人),D 选项正确. 故选:D. 【点睛】本题考查合情推理,考查推理能力,属于中等题. 6.已知复数31iz i-=-,则z 的虚部为( ) A .i - B .iC .1-D .1【答案】C 【解析】 【分析】 先将31iz i-=-,化简转化为2z i =+,再得到2z i =-下结论. 【详解】已知复数()()()()3132111i i i z i i i i -+-===+--+, 所以2z i =-, 所以z 的虚部为-1. 故选:C 【点睛】本题主要考查复数的概念及运算,还考查了运算求解的能力,属于基础题.7.已知AM BN ,分别为圆()221:11O x y ++=与()222:24O x y -+=的直径,则AB MN ⋅u u u r u u u u r的取值范围为( ) A .[]0,8 B .[]0,9 C .[]1,8 D .[]1,9【答案】A 【解析】 【分析】由题先画出基本图形,结合向量加法和点乘运算化简可得()()212121212129AB MN O O AO O B O O AO O B AO O B -⎡⎤⋅=++⎡⎤⋅=⎣⎦-⎣⎦++u u u r u u u u r u u u u u r u u u u r u u u u r u u u u u u u u u r u u u u r u v u u u r u u u v u ,结合12AO O B +u u u u v u u u u v的范围即可求解【详解】 如图,()()()()1122112212121212AB MN AO O O O B MO O O O N O O AO O B O O AO O B ⎡⎤⎡⎤⋅⎣⎦⎣⎦⋅=++⋅++=++-+u u u r u u u u r u u u u r u u u u u r u u u u r u u u u r u u u u u r u u u u r u u u u u r u u u u r u u u u r u u u u u r u u u u r u u u u r2221212129O O AO O B AO O B =-+=-+u u u u u v u u u u v u u u u v u u u u v u u u u v 其中[][]1221,211,3AO O B +∈-+=u u u u v u u u u v ,所以[]2293,910,8AB MN ⋅∈-⎡⎤⎣-=⎦u u u r u u u u r .故选:A 【点睛】本题考查向量的线性运算在几何中的应用,数形结合思想,属于中档题8.总体由编号01,,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为 7816 6572 0802 6314 0702 4369 9728 0198 3204 92344935 820036234869 69387481A .08B .07C .02D .01【答案】D 【解析】从第一行的第5列和第6列起由左向右读数划去大于20的数分别为:08,02,14,07,01,所以第5个个体是01,选D.考点:此题主要考查抽样方法的概念、抽样方法中随机数表法,考查学习能力和运用能力.9.已知向量(1,2),(3,1)a b =-=-r r,则( )A .a r∥b rB .a r⊥b rC .a r∥(a b -rr)D .a r⊥( a b -rr)【答案】D 【解析】 【分析】由题意利用两个向量坐标形式的运算法则,两个向量平行、垂直的性质,得出结论. 【详解】∵向量a =r(1,﹣2),b =r(3,﹣1),∴a r和b r的坐标对应不成比例,故a r、b r不平行,故排除A ; 显然,a r •b =r3+2≠0,故a r、b r不垂直,故排除B ;∴a b -=r r (﹣2,﹣1),显然,a r 和a b -r r 的坐标对应不成比例,故a r 和a b -r r 不平行,故排除C ;∴a r•(a b -rr)=﹣2+2=0,故 a r⊥(a b -rr),故D 正确, 故选:D. 【点睛】本题主要考查两个向量坐标形式的运算,两个向量平行、垂直的性质,属于基础题.10.国务院发布《关于进一步调整优化结构、提高教育经费使用效益的意见》中提出,要优先落实教育投入.某研究机构统计了2010年至2018年国家财政性教育经费投入情况及其在GDP 中的占比数据,并将其绘制成下表,由下表可知下列叙述错误的是( )A .随着文化教育重视程度的不断提高,国在财政性教育经费的支出持续增长B .2012年以来,国家财政性教育经费的支出占GDP 比例持续7年保持在4%以上C .从2010年至2018年,中国GDP 的总值最少增加60万亿D .从2010年到2018年,国家财政性教育经费的支出增长最多的年份是2012年 【答案】C 【解析】 【分析】观察图表,判断四个选项是否正确. 【详解】由表易知A 、B 、D 项均正确,2010年中国GDP 为1.4670413.55%≈万亿元,2018年中国GDP 为3.6990904.11%=万亿元,则从2010年至2018年,中国GDP 的总值大约增加49万亿,故C 项错误.【点睛】本题考查统计图表,正确认识图表是解题基础. 11. “1sin 2x =”是“2()6x k k Z ππ=+∈”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】1sin 2x =⇔2()6x k k Z ππ=+∈或52()6x k k Z ππ=+∈,从而明确充分性与必要性. 【详解】 ,由1sin 2x =可得:2()6x k k Z ππ=+∈或52()6x k k Z ππ=+∈, 即2()6x k k Z ππ=+∈能推出1sin 2x =,但1sin 2x =推不出2()6x k k Z ππ=+∈∴“1sin 2x =”是“2()6x k k Z ππ=+∈”的必要不充分条件故选B 【点睛】本题考查充分性与必要性,简单三角方程的解法,属于基础题.12.设抛物线24y x =上一点P 到y 轴的距离为1d ,到直线:34120l x y ++=的距离为2d ,则12d d +的最小值为( ) A .2 B .153C .163D .3【答案】A 【解析】 【分析】 【详解】分析:题设的直线与抛物线是相离的,12d d +可以化成1211d d ++-,其中11d +是点P 到准线的距离,也就是P 到焦点的距离,这样我们从几何意义得到121d d ++的最小值,从而得到12d d +的最小值.详解:由2434120y xx y ⎧=⎨++=⎩①得到2316480y y ++=,25612480∆=-⨯<,故①无解, 所以直线34120x y ++=与抛物线是相离的.由121211d d d d +=++-,而11d +为P 到准线1x =-的距离,故11d +为P 到焦点()1,0F 的距离, 从而121d d ++的最小值为F 到直线34120x y ++=3=,故12d d +的最小值为2,故选A.点睛:抛物线中与线段的长度相关的最值问题,可利用抛物线的几何性质把动线段的长度转化为到准线或焦点的距离来求解.二、填空题:本题共4小题,每小题5分,共20分。
内蒙古乌海市2021届新高考数学第四次调研试卷含解析
内蒙古乌海市2021届新高考数学第四次调研试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知复数z =(1+2i )(1+ai )(a ∈R ),若z ∈R ,则实数a =( ) A .12B .12-C .2D .﹣2【答案】D 【解析】 【分析】化简z =(1+2i )(1+ai )=()()122a a i -++,再根据z ∈R 求解. 【详解】因为z =(1+2i )(1+ai )=()()122a a i -++, 又因为z ∈R , 所以20a +=, 解得a =-2. 故选:D 【点睛】本题主要考查复数的运算及概念,还考查了运算求解的能力,属于基础题.2.已知双曲线C :2214x y -=,1F ,2F 为其左、右焦点,直线l 过右焦点2F ,与双曲线C 的右支交于A ,B 两点,且点A 在x 轴上方,若223AF BF =,则直线l 的斜率为( )A .1B .2-C .1-D .2【答案】D 【解析】 【分析】由|AF 2|=3|BF 2|,可得223AF F B u u u u v u u u u v=.设直线l 的方程x =m >0,设()11,A x y ,()22,B x y ,即y 1=﹣3y 2①,联立直线l 与曲线C,得y 1+y 2=y 1y 2=214m -③,求出m 的值即可求出直线的斜率. 【详解】双曲线C :2214x y -=,F 1,F 2为左、右焦点,则F 20),设直线l 的方程x =,m >0,∵双曲线的渐近线方程为x =±2y ,∴m≠±2,设A (x 1,y 1),B (x 2,y 2),且y 1>0,由|AF 2|=3|BF 2|,∴223AF F B u u u u v u u u u v=,∴y 1=﹣3y 2①由22{440x my x y =--=,得()22410m y -++=∴△=()2﹣4(m 2﹣4)>0,即m 2+4>0恒成立,∴y 1+y 2=24m --②,y 1y 2=214m -③,联立①②得22204y m -=->-,联立①③得2221304y m -=<-,2y ∴=2221123y m =-即:22211234m m ⎛⎫= ⎪ ⎪--⎝⎭,0m >,解得:12m =,直线l 的斜率为2, 故选D . 【点睛】本题考查直线与双曲线的位置关系,考查韦达定理的运用,考查向量知识,属于中档题. 3.在复平面内,复数z=i 对应的点为Z ,将向量OZ uuu r绕原点O 按逆时针方向旋转6π,所得向量对应的复数是( )A .12-+ B .12i + C .12-D .12i 【答案】A 【解析】 【分析】由复数z 求得点Z 的坐标,得到向量OZ uuu r 的坐标,逆时针旋转6π,得到向量OB uuu r 的坐标,则对应的复数可求. 【详解】解:∵复数z=i (i 为虚数单位)在复平面中对应点Z (0,1),∴OZ uuu r =(0,1),将OZ uuu r 绕原点O 逆时针旋转6π得到OB uuu r ,设OB uuu r=(a ,b),0,0a b <>,则cos 62OZ OB b OZ OB π⋅===u u u r u u u r u u u r u u u r ,即2b =, 又221a b +=,解得:1,22a b =-=,∴12OB ⎛=- ⎝⎭u u u r ,对应复数为12-+. 故选:A. 【点睛】本题考查复数的代数表示法及其几何意义,是基础题.4.已知曲线24x y =,动点P 在直线3y =-上,过点P 作曲线的两条切线12,l l ,切点分别为,A B ,则直线AB 截圆22650x y y +-+=所得弦长为( ) AB .2C .4D.【答案】C 【解析】 【分析】设221212,,,,(,3)44x x A x B x P t ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,根据导数的几何意义,求出切线斜率,进而得到切线方程,将P 点坐标代入切线方程,抽象出直线AB 方程,且过定点为已知圆的圆心,即可求解. 【详解】圆22650x y y +-+=可化为22(3)4x y +-=.设221212,,,,(,3)44x x A x B x P t ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,则12,l l 的斜率分别为1212,22x xk k ==, 所以12,l l 的方程为()21111:24x x l y x x =-+,即112x y x y =-,()22222:24x x l y x x =-+,即222x y x y =-, 由于12,l l 都过点(,3)P t -,所以11223232x t y x t y ⎧-=-⎪⎪⎨⎪-=-⎪⎩,即()()1122,,,A x y B x y 都在直线32xt y -=-上,所以直线AB 的方程为32xt y -=-,恒过定点(0,3), 即直线AB 过圆心(0,3),则直线AB 截圆22650x y y +-+=所得弦长为4. 故选:C. 【点睛】本题考查直线与圆位置关系、直线与抛物线位置关系,抛物线两切点所在直线求解是解题的关键,属于中档题.5.等差数列{}n a 中,1510a a +=,47a =,则数列{}n a 前6项和6S 为()A .18B .24C .36D .72【答案】C 【解析】 【分析】由等差数列的性质可得35a =,根据等差数列的前n 项和公式163466622a a a aS ++=⨯=⨯可得结果. 【详解】∵等差数列{}n a 中,1510a a +=,∴3210a =,即35a =,∴163465766636222a a a a S +++=⨯=⨯=⨯=, 故选C. 【点睛】本题主要考查了等差数列的性质以及等差数列的前n 项和公式的应用,属于基础题.6.已知函数()()222ln 25f x a x ax =+++.设1a <-,若对任意不相等的正数1x ,2x ,恒有()()12128f x f x x x -≥-,则实数a 的取值范围是( )A .()3,1--B .()2,1--C .(],3-∞-D .(],2-∞-【答案】D 【解析】 【分析】求解()f x 的导函数,研究其单调性,对任意不相等的正数12,x x ,构造新函数,讨论其单调性即可求解. 【详解】()f x 的定义域为()0,∞+,()()2221224ax a a f x ax x x+++'=+=, 当1a <-时,()0f x '<,故()f x 在()0,∞+单调递减; 不妨设12x x <,而1a <-,知()f x 在()0,∞+单调递减, 从而对任意1x 、()20,x ∈+∞,恒有()()12128f x f x x x -≥-,即()()12128f x f x x x -≥-,()()()12218f x f x x x -≥-,()()112288f x x f x x ≥++,令()()8g x f x x =+,则()2248a g x ax x+'=++,原不等式等价于()g x 在()0,∞+单调递减,即1240a ax x+++≤, 从而()222214122121x x a x x ---≤=-++,因为()22212221x x --≥-+,所以实数a 的取值范围是(],2-∞- 故选:D. 【点睛】此题考查含参函数研究单调性问题,根据参数范围化简后构造新函数转换为含参恒成立问题,属于一般性题目.7.执行如图所示的程序框图,若输入2020m =,520n =,则输出的i =( )A .4B .5C .6D .7【答案】C【解析】 【分析】根据程序框图程序运算即可得. 【详解】 依程序运算可得:4602520460603460604046040,,,;,,,;,,,;r i m n r i m n r i m n ============205402006,,,;,r i m n r i ======,故选:C 【点睛】本题主要考查了程序框图的计算,解题的关键是理解程序框图运行的过程.8.等比数列{}n a 的各项均为正数,且384718a a a a +=,则3132310log log log a a a +++=L ( ) A .12 B .10 C .8D .32log 5+【答案】B 【解析】 【分析】由等比数列的性质求得110a a ,再由对数运算法则可得结论. 【详解】∵数列{}n a 是等比数列,∴3847110218a a a a a a +==,1109a a =,∴53132310312103110log log log log ()log ()a a a a a a a a +++==L L 35log 910==.故选:B. 【点睛】本题考查等比数列的性质,考查对数的运算法则,掌握等比数列的性质是解题关键. 9.已知α是第二象限的角,3tan()4πα+=-,则sin 2α=( ) A .1225B .1225-C .2425D .2425-【答案】D 【解析】 【分析】利用诱导公式和同角三角函数的基本关系求出2cos α,再利用二倍角的正弦公式代入求解即可. 【详解】因为3tan()4πα+=-, 由诱导公式可得,sin 3tan cos 4ααα==-, 即3sin cos 4αα=-, 因为22sin cos 1αα+=, 所以216cos 25α=, 由二倍角的正弦公式可得,23sin 22sin cos cos 2αααα==-,所以31624sin 222525α=-⨯=-. 故选:D 【点睛】本题考查诱导公式、同角三角函数的基本关系和二倍角的正弦公式;考查运算求解能力和知识的综合运用能力;属于中档题.10.刘徽(约公元225年-295年),魏晋期间伟大的数学家,中国古典数学理论的奠基人之一他在割圆术中提出的,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,这可视为中国古代极限观念的佳作,割圆术的核心思想是将一个圆的内接正n 边形等分成n 个等腰三角形(如图所示),当n 变得很大时,这n 个等腰三角形的面积之和近似等于圆的面积,运用割圆术的思想,得到sin 2o 的近似值为( )A .π90B .π180C .π270D .π360【答案】A 【解析】 【分析】设圆的半径为r ,每个等腰三角形的顶角为360n ︒,则每个等腰三角形的面积为21360sin 2r n︒,由割圆术可得圆的面积为221360sin 2r n r n π︒=⋅,整理可得3602sin n nπ︒=,当180n =时即可为所求. 【详解】由割圆术可知当n 变得很大时,这n 个等腰三角形的面积之和近似等于圆的面积,设圆的半径为r ,每个等腰三角形的顶角为360n︒, 所以每个等腰三角形的面积为21360sin 2r n ︒, 所以圆的面积为221360sin2r n r n π︒=⋅,即3602sin n n π︒=, 所以当180n =时,可得3602sin sin 218018090ππ︒=︒==, 故选:A 【点睛】本题考查三角形面积公式的应用,考查阅读分析能力. 11.下列图形中,不是三棱柱展开图的是( )A .B .C .D .【答案】C 【解析】 【分析】根据三棱柱的展开图的可能情况选出选项. 【详解】由图可知,ABD 选项可以围成三棱柱,C 选项不是三棱柱展开图. 故选:C 【点睛】本小题主要考查三棱柱展开图的判断,属于基础题.12.已知集合{}{}2|1,|31xA x xB x ==<…,则()R A B U ð=( ) A .{|0}x x < B .{|01}x x 剟 C .{|10}x x -<… D .{|1}x x -…【答案】D 【解析】 【分析】先求出集合A ,B ,再求集合B 的补集,然后求()R A B U ð 【详解】{|11},{|0}A x x B x x =-=<剟,所以 (){|1}R A B x x =-U …ð.故选:D 【点睛】此题考查的是集合的并集、补集运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。
内蒙古乌海市2021届新高考第四次适应性考试数学试题含解析
内蒙古乌海市2021届新高考第四次适应性考试数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知21,0(),0x x f x x x ⎧-≥=⎨-<⎩,则21log 3f f ⎡⎤⎛⎫= ⎪⎢⎥⎝⎭⎣⎦( )A .2B .23 C .23-D .3【答案】A 【解析】 【分析】利用分段函数的性质逐步求解即可得答案. 【详解】Q 21log 03<,∴22211(log )log log 3033f =-=>;∴221[(log )](log 3)3123f f f ==-=;故选:A . 【点睛】本题考查了函数值的求法,考查对数的运算和对数函数的性质,是基础题,解题时注意函数性质的合理应用.2.若复数z 满足()1i z i +=(i 是虚数单位),则z 的虚部为( ) A .12B .12-C .12i D .12i -【答案】A 【解析】 【分析】由()1i z i +=得1z ii=+,然后分子分母同时乘以分母的共轭复数可得复数z ,从而可得z 的虚部. 【详解】 因为(1)i z i +=,所以22(1)1111(1)(1)11221i i i i i i z i i i i i --+=====+++-+-, 所以复数z 的虚部为12. 故选A. 【点睛】本题考查了复数的除法运算和复数的概念,属于基础题.复数除法运算的方法是分子分母同时乘以分母的共轭复数,转化为乘法运算.3.若集合{}|sin 21A x x ==,,42k B y y k Z ππ⎧⎫==+∈⎨⎬⎩⎭,则( ) A .A B A ⋃= B .R R C B C A ⊆C .A B =∅ID .R R C A C B ⊆【答案】B 【解析】 【分析】根据正弦函数的性质可得集合A ,由集合性质表示形式即可求得A B ⊆,进而可知满足R R C B C A ⊆. 【详解】依题意,{}|sin 21|,4A x x x x k k Z ππ⎧⎫====+∈⎨⎬⎩⎭; 而|,42k B y y k Z ππ⎧⎫==+∈⎨⎬⎩⎭()212|,,4242n n x x n Z x n Z ππππ+⎧⎫==+∈=+∈⎨⎬⎩⎭或()21|,,442n x x n n Z x n Z ππππ+⎧⎫==+∈=+∈⎨⎬⎩⎭或,故A B ⊆, 则R R C B C A ⊆. 故选:B. 【点睛】本题考查了集合关系的判断与应用,集合的包含关系与补集关系的应用,属于中档题. 4.执行如图所示的程序框图,则输出的S =( )A .2B .3C .23D .12-【答案】B运行程序,依次进行循环,结合判断框,可得输出值. 【详解】起始阶段有1i =,3S =,第一次循环后11132S ==--,2i =, 第二次循环后121312S ==+,3i =, 第三次循环后13213S ==-,4i =,第四次循环后11132S ==--,5i =, 所有后面的循环具有周期性,周期为3,当2019i =时,再次循环输出的3S =,2020i =,此时20202019>,循环结束,输出3S =, 故选:B 【点睛】本题主要考查程序框图的相关知识,经过几次循环找出规律是关键,属于基础题型. 5. “tan 2θ=”是“4tan 23θ=-”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件【答案】A 【解析】 【分析】首先利用二倍角正切公式由4tan 23θ=-,求出tan θ,再根据充分条件、必要条件的定义判断即可; 【详解】解:∵22tan 4tan 21tan 3θθθ==--,∴可解得tan 2θ=或12-, ∴“tan 2θ=”是“4tan 23θ=-”的充分不必要条件.故选:A 【点睛】本题主要考查充分条件和必要条件的判断,二倍角正切公式的应用是解决本题的关键,属于基础题.6.已知(1,2)a =r ,(,3)b m m =+r ,(2,1)c m =--r ,若//a b r r ,则b c ⋅=r r( )A .7-B .3-C .3D .7【答案】B由平行求出参数m ,再由数量积的坐标运算计算. 【详解】由//a b r r,得2(3)0m m -+=,则3m =,(3,6)b =r ,(1,1)c =-r ,所以363b c ⋅=-=-r r.故选:B . 【点睛】本题考查向量平行的坐标表示,考查数量积的坐标运算,掌握向量数量积的坐标运算是解题关键.7.已知函数2()2f x x x =-,集合{|()0}A x f x =≤,{}|()0B x f x '=≤,则A B =I ( )A .[-1,0]B .[-1,2]C .[0,1]D .(,1][2,)-∞⋃+∞【答案】C 【解析】 【分析】分别求解不等式得到集合,A B ,再利用集合的交集定义求解即可. 【详解】2{|20}{|02}A x x x x x =-≤=≤≤,{|220}{|1}B x x x x =-=≤≤, ∴{|01}A B x x =I ≤≤. 故选C . 【点睛】本题主要考查了集合的基本运算,难度容易.8.已知函数()f x 是定义在R 上的偶函数,当0x ≥时,()e xf x x =+,则32(2)a f =-,2(log 9)b f =,c f =的大小关系为( )A .a b c >>B .a c b >>C .b a c >>D .b c a >>【答案】C 【解析】 【分析】根据函数的奇偶性得3322(2)(2)a f f =-=3222,log 9的大小,根据函数的单调性可得选项.【详解】依题意得3322(2)(2)a f f =-=,322223log 8log 9<==<=<Q,当0x ≥时,()e xf x x =+,因为1e >,所以x y e =在R 上单调递增,又y x =在R 上单调递增,所以()f x 在[0,)+∞上单调递增,322(log 9)(2)f f f ∴>>,即b a c >>,故选:C. 【点睛】本题考查函数的奇偶性的应用、幂、指、对的大小比较,以及根据函数的单调性比较大小,属于中档题.9.已知向量a r ,b r 满足|a r |=1,|b r |=2,且a r 与b r的夹角为120°,则3a b -r r =( )A BC .D 【答案】D 【解析】 【分析】先计算a b ⋅r r,然后将3a b -r r 进行平方,,可得结果.【详解】 由题意可得:1cos1201212a b a b ⎛⎫⋅==⨯⨯-=- ⎪⎝⎭o r r r r∴()222369163643a ba ab b -=-⋅+=++=r r r r r r∴则3a b -=r r故选:D. 【点睛】本题考查的是向量的数量积的运算和模的计算,属基础题。
内蒙古乌海市2021届新高考数学模拟试题(2)含解析
内蒙古乌海市2021届新高考数学模拟试题(2)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在三棱锥S ABC -中,4SB SA AB BC AC =====,26SC =,则三棱锥S ABC -外接球的表面积是( ) A .403πB .803πC .409πD .809π【答案】B 【解析】 【分析】取AB 的中点D ,连接SD 、CD ,推导出90SDC ∠=o ,设设球心为O ,ABC ∆和SAB ∆的中心分别为E 、F ,可得出OE ⊥平面ABC ,OF ⊥平面SAB ,利用勾股定理计算出球O 的半径,再利用球体的表面积公式可得出结果. 【详解】取AB 的中点D ,连接SD 、CD ,由SAB ∆和ABC ∆都是正三角形,得SD AB ⊥,CD AB ⊥,则3423SD CD ===,则(((222222336SD CD SC +=+==,由勾股定理的逆定理,得90SDC ∠=o .设球心为O ,ABC ∆和SAB ∆的中心分别为E 、F . 由球的性质可知:OE ⊥平面ABC ,OF ⊥平面SAB , 又312343OE DF OE OF =====,由勾股定理得2226OD OE DE =+=所以外接球半径为22222660233R OD BD ⎛⎫=+=+= ⎪ ⎪⎝⎭. 所以外接球的表面积为226080443S R πππ===⎝⎭.故选:B. 【点睛】本题考查三棱锥外接球表面积的计算,解题时要分析几何体的结构,找出球心的位置,并以此计算出球的半径长,考查推理能力与计算能力,属于中等题. 2.计算2543log sin cosππ⎛⎫⎪⎝⎭等于( ) A .32-B .32C .23-D .23【答案】A 【解析】 【分析】利用诱导公式、特殊角的三角函数值,结合对数运算,求得所求表达式的值. 【详解】原式2221log cos 2log cos log 232322πππ⎤⎤⎤⎛⎫⎛⎫=-==⎥⎥⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦3223log 22-==-. 故选:A 【点睛】本小题主要考查诱导公式,考查对数运算,属于基础题.3.在ABC V 中,角A 、B 、C 所对的边分别为a 、b 、c ,若cos cos 4c a B b A -=,则2222a bc-=( ) A .32B .12C .14D .18【答案】D 【解析】 【分析】利用余弦定理角化边整理可得结果. 【详解】由余弦定理得:222222224a cb bc a ca b ac bc +-+-⋅-⋅=,整理可得:2224c a b -=,222128a b c -∴=. 故选:D . 【点睛】本题考查余弦定理边角互化的应用,属于基础题.4.已知定义在R 上的奇函数()f x 满足()()11f x f x +=-,且当[]0,1x ∈时,()2xf x m =-,则()2019f =( )A .1B .-1C .2D .-2【答案】B 【解析】 【分析】根据f (x )是R 上的奇函数,并且f (x+1)=f (1-x ),便可推出f (x+4)=f (x ),即f (x )的周期为4,而由x ∈[0,1]时,f (x )=2x -m 及f (x )是奇函数,即可得出f (0)=1-m=0,从而求得m=1,这样便可得出f (2019)=f (-1)=-f (1)=-1. 【详解】∵()f x 是定义在R 上的奇函数,且()()11f x f x +=-; ∴(2)()()f x f x f x +=-=-; ∴(4)()f x f x +=; ∴()f x 的周期为4;∵[0,1]x ∈时,()2x f x m =-; ∴由奇函数性质可得(0)10f m =-=; ∴1m =;∴[0,1]x ∈时,()21x f x =-;∴(2019)(15054)(1)(1)1f f f f =-+⨯=-=-=-. 故选:B. 【点睛】本题考查利用函数的奇偶性和周期性求值,此类问题一般根据条件先推导出周期,利用函数的周期变换来求解,考查理解能力和计算能力,属于中等题.5.某几何体的三视图如图所示,则该几何体的最长棱的长为( )A .25B .4C .2D .22【答案】D 【解析】 【分析】先根据三视图还原几何体是一个四棱锥,根据三视图的数据,计算各棱的长度. 【详解】根据三视图可知,几何体是一个四棱锥,如图所示:由三视图知:2AD = ,3,2,CE SD ==所以2SC DC ==, 所以222222,22SA SDADSB SCBC=+==+=所以该几何体的最长棱的长为22 故选:D 【点睛】本题主要考查三视图的应用,还考查了空间想象和运算求解的能力,属于中档题.6.已知复数1z i =-,z 为z 的共轭复数,则1zz+=( ) A .32i+ B .12i+ C .132i- D .132i+ 【答案】C 【解析】 【分析】求出z ,直接由复数的代数形式的乘除运算化简复数. 【详解】121312z i iz i +--==+. 故选:C 【点睛】本题考查复数的代数形式的四则运算,共轭复数,属于基础题. 7.已知数列 {}n a 是公比为 q 的等比数列,且 1a , 3a , 2a 成等差数列,则公比 q 的值为( )A .12-B .2-C .1- 或12D .1 或 12-【答案】D 【解析】 【分析】由132a a a ,,成等差数列得3122a =a +a ,利用等比数列的通项公式展开即可得到公比q 的方程. 【详解】由题意3122a =a +a ,∴2a 1q 2=a 1q+a 1,∴2q 2=q+1,∴q=1或q=1-2故选:D . 【点睛】本题考查等差等比数列的综合,利用等差数列的性质建立方程求q 是解题的关键,对于等比数列的通项公式也要熟练.8.1777年,法国科学家蒲丰在宴请客人时,在地上铺了一张白纸,上面画着一条条等距离的平行线,而他给每个客人发许多等质量的,长度等于相邻两平行线距离的一半的针,让他们随意投放.事后,蒲丰对针落地的位置进行统计,发现共投针2212枚,与直线相交的有704枚.根据这次统计数据,若客人随意向这张白纸上投放一根这样的针,则针落地后与直线相交的概率约为( ) A .12πB .3πC .2πD .1π【答案】D 【解析】根据统计数据,求出频率,用以估计概率. 【详解】70412212π≈.故选:D.【点睛】本题以数学文化为背景,考查利用频率估计概率,属于基础题.9.一个由两个圆柱组合而成的密闭容器内装有部分液体,小圆柱底面半径为1r,大圆柱底面半径为2r,如图1放置容器时,液面以上空余部分的高为1h,如图2放置容器时,液面以上空余部分的高为2h,则12hh=()A.21rr B.212rr⎛⎫⎪⎝⎭C.321rr⎛⎫⎪⎝⎭D21rr【答案】B【解析】【分析】根据空余部分体积相等列出等式即可求解.【详解】在图1中,液面以上空余部分的体积为211r hπ;在图2中,液面以上空余部分的体积为222r hπ.因为221122r h r hππ=,所以21221h rh r⎛⎫= ⎪⎝⎭.故选:B【点睛】本题考查圆柱的体积,属于基础题.10.已知复数z满足i iz z⋅=+,则z在复平面上对应的点在( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【分析】设(,)z a bi a b R =+∈,由i i z z ⋅=+得:()(1)a bi i a b i +=++,由复数相等可得,a b 的值,进而求出z ,即可得解. 【详解】设(,)z a bi a b R =+∈,由i i z z ⋅=+得:()(1)a bi i a b i +=++,即(1)ai b a b i -=++,由复数相等可得:1b a a b -=⎧⎨=+⎩,解之得:1212a b ⎧=⎪⎪⎨⎪=-⎪⎩,则1122z i =-,所以1212z i =+,在复平面对应的点的坐标为11(,)22,在第一象限. 故选:A. 【点睛】本题考查共轭复数的求法,考查对复数相等的理解,考查复数在复平面对应的点,考查运算能力,属于常考题.11.已知点()2,0A 、()0,2B -.若点P在函数y =PAB △的面积为2的点P 的个数为( ) A .1 B .2C .3D .4【答案】C 【解析】 【分析】设出点P 的坐标,以AB 为底结合PAB △的面积计算出点P 到直线AB 的距离,利用点到直线的距离公式可得出关于a 的方程,求出方程的解,即可得出结论. 【详解】设点P的坐标为(a ,直线AB 的方程为122x y-=,即20x y --=, 设点P 到直线AB 的距离为d,则11222PAB S AB d d =⋅=⨯=V,解得d =另一方面,由点到直线的距离公式得d ==整理得0a =或40a =,0a ≥Q ,解得0a =或1a =或a =综上,满足条件的点P 共有三个. 故选:C.本题考查三角形面积的计算,涉及点到直线的距离公式的应用,考查运算求解能力,属于中等题. 12.山东烟台苹果因“果形端正、色泽艳丽、果肉甜脆、香气浓郁”享誉国内外.据统计,烟台苹果(把苹果近似看成球体)的直径(单位:mm )服从正态分布()280,5N ,则直径在(]75,90内的概率为( )附:若()2~,X N μσ,则()0.6826P X μσμσ-<+=„,()220.9544P X μσμσ-<+=„.A .0.6826B .0.8413C .0.8185D .0.9544【答案】C 【解析】 【分析】根据服从的正态分布可得80μ=,5σ=,将所求概率转化为()2P X μσμσ-<≤+,结合正态分布曲线的性质可求得结果. 【详解】由题意,80μ=,5σ=,则()75850.6826P X <=„,()70900.9544P X <=„, 所以()()185900.95440.68260.13592P X <=⨯-=„,()75900.68260.13590.8185P X <=+=„. 故果实直径在(]75,90内的概率为0.8185. 故选:C 【点睛】本题考查根据正态分布求解待定区间的概率问题,考查了正态曲线的对称性,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。
内蒙古呼伦贝尔市2021届新高考数学四月模拟试卷含解析
内蒙古呼伦贝尔市2021届新高考数学四月模拟试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.一个正四棱锥形骨架的底边边长为2,高为2,有一个球的表面与这个正四棱锥的每个边都相切,则该球的表面积为( ) A .43π B .4πC .42πD .3π【答案】B 【解析】 【分析】根据正四棱锥底边边长为2,高为2,得到底面的中心到各棱的距离都是1,从而底面的中心即为球心. 【详解】 如图所示:因为正四棱锥底边边长为22, 所以2,2OB SB == ,O 到SB 的距离为1SO OBd SB⨯==,同理O 到,,SC SD SA 的距离为1, 所以O 为球的球心, 所以球的半径为:1, 所以球的表面积为4π. 故选:B 【点睛】本题主要考查组合体的表面积,还考查了空间想象的能力,属于中档题. 2.集合{}2|30A x x x =-≤,(){}|lg 2B x y x ==-,则A B ⋂=( )A .{}|02x x ≤<B .{}|13x x ≤<C .{}|23x x <≤D .{}|02x x <≤【答案】A 【解析】 【分析】解一元二次不等式化简集合A ,再根据对数的真数大于零化简集合B ,求交集运算即可. 【详解】由230x x -≤可得03x ≤≤,所以{|03}A x x =≤≤,由20x ->可得2x <,所以{|2}B x x =<,所以{|02}A B x x ⋂=≤<,故选A .【点睛】本题主要考查了集合的交集运算,涉及一元二次不等式解法及对数的概念,属于中档题.3.已知△ABC 中,22BC BA BC =⋅=-u u u v u u u v u u u v ,.点P 为BC 边上的动点,则()PC PA PB PC ⋅++u u u v u u u v u u u v u u u v的最小值为( ) A .2 B .34-C .2-D .2512-【答案】D 【解析】 【分析】以BC 的中点为坐标原点,建立直角坐标系,可得()()1010B C -,,,,设()()0P a A x y ,,,,运用向量的坐标表示,求得点A 的轨迹,进而得到关于a 的二次函数,可得最小值. 【详解】以BC 的中点为坐标原点,建立如图的直角坐标系,可得()()1010B C -,,,,设()()0P a A x y ,,,, 由2BA BC ⋅=-u u u r u u u r,可得()()120222x y x +⋅=+=-,,,即20x y =-≠,, 则()()()101100PC PA PB PC a x a a a y ⋅++=-⋅---+-++u u u r u u u r u u u r u u u r,, ()()()()21312332a x a a a a a =--=---=--21253612a ⎛⎫=-- ⎪⎝⎭,当16a =时,()PC PA PB PC ⋅++u u u r u u u r u u u r u u u r 的最小值为2512-.故选D .【点睛】本题考查向量数量积的坐标表示,考查转化思想和二次函数的值域解法,考查运算能力,属于中档题. 4.已知等差数列{}n a 的公差为-2,前n 项和为n S ,若2a ,3a ,4a 为某三角形的三边长,且该三角形有一个内角为120︒,则n S 的最大值为( ) A .5 B .11 C .20 D .25【答案】D 【解析】 【分析】由公差d=-2可知数列单调递减,再由余弦定理结合通项可求得首项,即可求出前n 项和,从而得到最值. 【详解】等差数列{}n a 的公差为-2,可知数列单调递减,则2a ,3a ,4a 中2a 最大,4a 最小, 又2a ,3a ,4a 为三角形的三边长,且最大内角为120︒,由余弦定理得22223434a a a a a =++,设首项为1a ,即()()()()()222111112a 4a 6a 4a 60a -=-+-+--=得()()11490a a --=,所以14a =或19a =,又41a 60a ,=->即1a 6>,14a =舍去,19a =故,d=-2 前n 项和()()()219n 25252n n n S n -=+⨯-=--+.故n S 的最大值为525S =. 故选:D 【点睛】本题考查等差数列的通项公式和前n 项和公式的应用,考查求前n 项和的最值问题,同时还考查了余弦定理的应用.5.已知椭圆E :22221x y a b+=(0)a b >>的左、右焦点分别为1F ,2F ,过2F 的直线240x y +-=与y 轴交于点A ,线段2AF 与E 交于点B .若1||AB BF =,则E 的方程为( )A.2214036x y+=B.2212016x y+=C.221106x y+=D.2215xy+=【答案】D【解析】【分析】由题可得()()20,42,0,A F,所以2c=,又1||AB BF=,所以122225a BF BF AF=+==,得5a=,故可得椭圆的方程.【详解】由题可得()()20,42,0,A F,所以2c=,又1||AB BF=,所以122225a BF BF AF=+==,得5a=,1b∴=,所以椭圆的方程为2215xy+=.故选:D【点睛】本题主要考查了椭圆的定义,椭圆标准方程的求解.6.执行如图所示的程序框图,如果输入2[2]t e∈-,,则输出S属于()A.[32]-,B.[42]-,C.[0]2,D.2[3]e-,【答案】B【解析】【分析】由题意,框图的作用是求分段函数[]222321ln1t t tS tt t e⎧+-∈-⎪=⎨⎡⎤∈⎪⎣⎦⎩,,(),,的值域,求解即得解.【详解】由题意可知,框图的作用是求分段函数[]222321ln 1t t t S t t t e ⎧+-∈-⎪=⎨⎡⎤∈⎪⎣⎦⎩,,(),,的值域, 当[2,1),[4,0)t S ∈-∈-; 当2[1,],[0,2]t e S ∈∈综上:[]42S ∈-,. 故选:B 【点睛】本题考查了条件分支的程序框图,考查了学生逻辑推理,分类讨论,数学运算的能力,属于基础题. 7.小明有3本作业本,小波有4本作业本,将这7本作业本混放在-起,小明从中任取两本.则他取到的均是自己的作业本的概率为( ) A .17B .27C .13D .1835【答案】A 【解析】 【分析】 利用An P n=计算即可,其中A n 表示事件A 所包含的基本事件个数,n 为基本事件总数. 【详解】从7本作业本中任取两本共有27C 种不同的结果,其中,小明取到的均是自己的作业本有23C 种不同结果,由古典概型的概率计算公式,小明取到的均是自己的作业本的概率为232717C C =.故选:A. 【点睛】本题考查古典概型的概率计算问题,考查学生的基本运算能力,是一道基础题. 8.集合{|20}N A x x B =-≤=,,则A B =I ( ) A .{}1 B .{}1,2C .{}0,1D .{}0,1,2【答案】D 【解析】 【分析】利用交集的定义直接计算即可. 【详解】{}|2A x x =≤,故{}0,1,2A B =I ,故选:D. 【点睛】本题考查集合的交运算,注意常见集合的符号表示,本题属于基础题.9.数学中的数形结合,也可以组成世间万物的绚丽画面.一些优美的曲线是数学形象美、对称美、和谐美的结合产物,曲线22322():16C x y x y =+恰好是四叶玫瑰线.给出下列结论:①曲线C 经过5个整点(即横、纵坐标均为整数的点);②曲线C 上任意一点到坐标原点O 的距离都不超过2;③曲线C 围成区域的面积大于4π;④方程()223221)60(x y x y xy +=<表示的曲线C 在第二象限和第四象限其中正确结论的序号是( ) A .①③ B .②④ C .①②③ D .②③④【答案】B 【解析】 【分析】利用基本不等式得224x y +≤,可判断②;224x y +=和()3222216x y x y +=联立解得222x y ==可判断①③;由图可判断④. 【详解】()2223222216162x y xyx y ⎛⎫++=≤ ⎪⎝⎭,解得224x y +≤(当且仅当222x y ==时取等号),则②正确;将224x y +=和()3222216x yx y +=联立,解得222x y ==,即圆224x y +=与曲线C 相切于点2,2,(2,2-,(2,2-,2,2-,则①和③都错误;由0xy <,得④正确. 故选:B. 【点睛】本题考查曲线与方程的应用,根据方程,判断曲线的性质及结论,考查学生逻辑推理能力,是一道有一定难度的题.10.已知,,,m n l αβαβαβ⊥⊂⊂=I ,则“m ⊥n”是“m ⊥l”的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】构造长方体ABCD ﹣A 1B 1C 1D 1,令平面α为面ADD 1A 1,底面ABCD 为β,然后再在这两个面中根据题意恰当的选取直线为m ,n 即可进行判断. 【详解】如图,取长方体ABCD ﹣A 1B 1C 1D 1,令平面α为面ADD 1A 1,底面ABCD 为β,直线AD =直线l 。
内蒙古乌海市2021届新高考第四次模拟数学试题含解析
内蒙古乌海市2021届新高考第四次模拟数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若()*3n x n N x x ⎛+∈ ⎪⎝⎭的展开式中含有常数项,且n 的最小值为a ,则22aaa x dx --=⎰( ) A .36π B .812πC .252πD .25π【答案】C 【解析】()*3x nn N x x+∈展开式的通项为()52133,0,1,,rn r n rrn r r r n n T C x C x r n x x ---+=== ⎪⎝⎭L ,因为展开式中含有常数项,所以502n r -=,即25r n =为整数,故n 的最小值为1. 所以5222252552a aa x dx x dx π--⎰-=⎰-=.故选C 点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第1r +项,再由特定项的特点求出r 值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第1r +项,由特定项得出r 值,最后求出其参数.2.已知集合A={x|y=lg (4﹣x 2)},B={y|y=3x ,x >0}时,A∩B=( ) A .{x|x >﹣2} B .{x|1<x <2} C .{x|1≤x≤2} D .∅ 【答案】B【解析】试题分析:由集合A 中的函数,得到,解得:,∴集合,由集合B 中的函数,得到,∴集合,则,故选B .考点:交集及其运算.3.已知双曲线C 的两条渐近线的夹角为60°,则双曲线C 的方程不可能为( )A .221155x y -=B .221515x y -=C .221312y x -=D .221217y x -=【答案】C 【解析】 【分析】判断出已知条件中双曲线C 的渐近线方程,求得四个选项中双曲线的渐近线方程,由此确定选项. 【详解】两条渐近线的夹角转化为双曲渐近线与x 轴的夹角时要分为两种情况.依题意,双曲渐近线与x 轴的夹角为30°或60°,双曲线C 的渐近线方程为y x =或y =.A 选项渐近线为y x =,B 选项渐近线为y =,C 选项渐近线为12y x =±,D 选项渐近线为y =.所以双曲线C 的方程不可能为221312y x -=.故选:C 【点睛】本小题主要考查双曲线的渐近线方程,属于基础题.4.已知直线1:240l ax y ++=,2:(1)20l x a y +-+=,则“1a =-”是“12l l P ”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C 【解析】 【分析】先得出两直线平行的充要条件,根据小范围可推导出大范围,可得到答案. 【详解】直线1:240l ax y ++=,()2:120l x a y +-+=,12l l P 的充要条件是()1221a a a a -=⇒==-或,当a=2时,化简后发现两直线是重合的,故舍去,最终a=-1.因此得到“1a =-”是“12l l P ”的充分必要条件. 故答案为C. 【点睛】判断充要条件的方法是:①若p ⇒q 为真命题且q ⇒p 为假命题,则命题p 是命题q 的充分不必要条件;②若p ⇒q 为假命题且q ⇒p 为真命题,则命题p 是命题q 的必要不充分条件;③若p ⇒q 为真命题且q ⇒p 为真命题,则命题p 是命题q 的充要条件;④若p ⇒q 为假命题且q ⇒p 为假命题,则命题p 是命题q 的即不充分也不必要条件.⑤判断命题p 与命题q 所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p 与命题q 的关系.5.已知命题:p 若1a <,则21a <,则下列说法正确的是( ) A .命题p 是真命题 B .命题p 的逆命题是真命题C .命题p 的否命题是“若1a <,则21a ≥”D .命题p 的逆否命题是“若21a ≥,则1a <” 【答案】B 【解析】 【分析】解不等式,可判断A 选项的正误;写出原命题的逆命题并判断其真假,可判断B 选项的正误;利用原命题与否命题、逆否命题的关系可判断C 、D 选项的正误.综合可得出结论. 【详解】解不等式21a <,解得11a -<<,则命题p 为假命题,A 选项错误; 命题p 的逆命题是“若21a <,则1a <”,该命题为真命题,B 选项正确; 命题p 的否命题是“若1a ≥,则21a ≥”,C 选项错误; 命题p 的逆否命题是“若21a ≥,则1a ≥”,D 选项错误. 故选:B . 【点睛】本题考查四种命题的关系,考查推理能力,属于基础题.6.定义在R 上的奇函数()f x 满足()()330f x f x --+-=,若()11f =,()22f =-,则()()()()1232020f f f f ++++=L ( )A .1-B .0C .1D .2【答案】C 【解析】 【分析】首先判断出()f x 是周期为6的周期函数,由此求得所求表达式的值. 【详解】由已知()f x 为奇函数,得()()f x f x -=-, 而()()330f x f x --+-=, 所以()()33f x f x -=+, 所以()()6f x f x =+,即()f x 的周期为6.由于()11f =,()22f =-,()00f =,所以()()()()33330f f f f =-=-⇒=,()()()4222f f f =-=-=, ()()()5111f f f =-=-=-, ()()600f f ==.所以()()()()()()1234560f f f f f f +++++=, 又202063364=⨯+,所以()()()()1232020f f f f ++++=L ()()()()12341f f f f +++=. 故选:C 【点睛】本小题主要考查函数的奇偶性和周期性,属于基础题.7.过抛物线C 的焦点且与C 的对称轴垂直的直线l 与C 交于A ,B 两点,||4AB =,P 为C 的准线上的一点,则ABP ∆的面积为( ) A .1 B .2 C .4 D .8【答案】C 【解析】 【分析】设抛物线的解析式22(0)y px p =>,得焦点为,02p F ⎛⎫⎪⎝⎭,对称轴为x 轴,准线为2p x =-,这样可设A点坐标为,22p ⎛⎫⎪⎝⎭,代入抛物线方程可求得p ,而P 到直线AB 的距离为p ,从而可求得三角形面积. 【详解】设抛物线的解析式22(0)y px p =>, 则焦点为,02p F ⎛⎫⎪⎝⎭,对称轴为x 轴,准线为2p x =-,∵ 直线l 经过抛物线的焦点,A ,B 是l 与C 的交点, 又AB x ⊥轴,∴可设A 点坐标为,22p ⎛⎫⎪⎝⎭, 代入22y px =,解得2p =,又∵点P 在准线上,设过点P 的AB 的垂线与AB 交于点D ,||222p pDP p =+-==,∴11||||24422ABP S DP AB ∆=⋅=⨯⨯=. 故应选C. 【点睛】本题考查抛物线的性质,解题时只要设出抛物线的标准方程,就能得出A 点坐标,从而求得参数p 的值.本题难度一般.8.已知(,)a bi a b R +∈是11ii +-的共轭复数,则a b +=( ) A .1- B .12- C .12D .1【答案】A 【解析】 【分析】先利用复数的除法运算法则求出11ii+-的值,再利用共轭复数的定义求出a+bi ,从而确定a ,b 的值,求出a+b . 【详解】()()21(1)21112i i ii i i ++===-+-i , ∴a+bi =﹣i , ∴a =0,b =﹣1, ∴a+b =﹣1, 故选:A . 【点睛】本题主要考查了复数代数形式的乘除运算,考查了共轭复数的概念,是基础题.9.已知双曲线2222:1(0,0)x y C a b a b-=>>的焦距为2c ,过左焦点1F 作斜率为1的直线交双曲线C 的右支于点P ,若线段1PF 的中点在圆222:O x y c +=上,则该双曲线的离心率为( )A B . C 1 D .1【答案】C 【解析】 【分析】设线段1PF 的中点为A ,判断出A 点的位置,结合双曲线的定义,求得双曲线的离心率. 【详解】设线段1PF 的中点为A ,由于直线1F P 的斜率是1,而圆222:O x y c +=,所以()0,A c .由于O 是线段12F F的中点,所以222PF OA c ==,而1122222PF AF c c ==⨯=,根据双曲线的定义可知122PF PF a -=,即2222c c a -=,即21222c a==+-.故选:C【点睛】本小题主要考查双曲线的定义和离心率的求法,考查直线和圆的位置关系,考查数形结合的数学思想方法,属于中档题.10.若不等式210x ax ++≥对于一切10,2x ⎛⎤∈ ⎥⎝⎦恒成立,则a 的最小值是 ( )A .0B .2-C .52-D .3-【答案】C 【解析】 【分析】 【详解】试题分析:将参数a 与变量x 分离,将不等式恒成立问题转化为求函数最值问题,即可得到结论. 解:不等式x 2+ax+1≥0对一切x ∈(0,12]成立,等价于a≥-x-1x 对于一切10,2x ⎛⎤∈ ⎥⎝⎦成立, ∵y=-x-1x 在区间10,2⎛⎤⎥⎝⎦上是增函数 ∴115222x x--≤--=-∴a≥-52∴a 的最小值为-52故答案为C . 考点:不等式的应用点评:本题综合考查了不等式的应用、不等式的解法等基础知识,考查运算求解能力,考查化归与转化思想,属于中档题11.某歌手大赛进行电视直播,比赛现场有6名特约嘉宾给每位参赛选手评分,场内外的观众可以通过网络平台给每位参赛选手评分.某选手参加比赛后,现场嘉宾的评分情况如下表,场内外共有数万名观众参与了评分,组织方将观众评分按照[)70,80,[)80,90,[]90,100分组,绘成频率分布直方图如下: 嘉宾 A BC D EF评分969596 89 9798嘉宾评分的平均数为1x ,场内外的观众评分的平均数为2x ,所有嘉宾与场内外的观众评分的平均数为x ,则下列选项正确的是( ) A .122x x x +=B .122x x x +>C .122x x x +<D .12122x x x x x +>>>【答案】C 【解析】 【分析】计算出1x 、2x ,进而可得出结论. 【详解】由表格中的数据可知,196959689979895.176x +++++=≈,由频率分布直方图可知,2750.2850.3950.588x =⨯+⨯+⨯=,则12x x >,由于场外有数万名观众,所以,12212x x x x x +<<<. 故选:B. 【点睛】本题考查平均数的大小比较,涉及平均数公式以及频率分布直方图中平均数的计算,考查计算能力,属于基础题.12.若P 是q ⌝的充分不必要条件,则⌝p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 【答案】B 【解析】 【分析】 【详解】试题分析:通过逆否命题的同真同假,结合充要条件的判断方法判定即可.由p 是q ⌝的充分不必要条件知“若p 则q ⌝”为真,“若q ⌝则p”为假,根据互为逆否命题的等价性知,“若q 则p ⌝”为真,“若p ⌝则q”为假,故选B . 考点:逻辑命题二、填空题:本题共4小题,每小题5分,共20分。
内蒙古乌海市2021届新高考数学考前模拟卷(3)含解析
内蒙古乌海市2021届新高考数学考前模拟卷(3)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知0a b >>,则下列不等式正确的是( )A b a <B b a >C .abe b e a -<- D .abe b e a ->-【答案】D 【解析】 【分析】利用特殊值代入法,作差法,排除不符合条件的选项,得到符合条件的选项. 【详解】已知0a b >>,赋值法讨论0a b >>的情况:(1)当1a b >≥时,令2a =,1b =b a <,a b e b e a ->-,排除B 、C 选项;(2)当01b a <<≤时,令12a =,13b =b a >,排除A 选项.故选:D. 【点睛】比较大小通常采用作差法,本题主要考查不等式与不等关系,不等式的基本性质,利用特殊值代入法,排除不符合条件的选项,得到符合条件的选项,是一种简单有效的方法,属于中等题.2.抛物线24y x =的焦点为F ,点(,)P x y 为该抛物线上的动点,若点(1,0)A -,则PFPA的最小值为( )A .12B .2C .2D .3【答案】B 【解析】 【分析】通过抛物线的定义,转化PF PN =,要使||||PF PA 有最小值,只需APN ∠最大即可,作出切线方程即可求出比值的最小值. 【详解】解:由题意可知,抛物线24y x =的准线方程为1x =-,(1,0)A -,过P 作PN 垂直直线1x =-于N ,由抛物线的定义可知PF PN =,连结PA ,当PA 是抛物线的切线时,||||PF PA 有最小值,则APN ∠最大,即PAF ∠最大,就是直线PA 的斜率最大, 设在PA 的方程为:(1)y k x =+,所以2(1)4y k x y x =+⎧⎨=⎩, 解得:2222(24)0kx k x k -++=,所以224()2440k k ∆=--=,解得1k =±, 所以45NPA ∠=︒,||2cos ||2PF NPA PA =∠=. 故选:B .【点睛】本题考查抛物线的基本性质,直线与抛物线的位置关系,转化思想的应用,属于基础题.3.在ABC V 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且cos sin a B b A c +=.若2a =,ABC V 的面积为21),则b c +=( ) A .5 B .2C .4D .16【答案】C 【解析】 【分析】根据正弦定理边化角以及三角函数公式可得4A π=,再根据面积公式可求得6(22)bc =,再代入余弦定理求解即可. 【详解】ABC V 中,cos sin a B b A c +=,由正弦定理得sin cos sin sin sin A B B A C +=,又sin sin()sin cos cos sin C A B A B A B =+=+,∴sin sin cos sin B A A B =,又sin 0B ≠,∴sin A cos A =,∴tan 1A =,又(0,)A π∈,∴4A π=.∵12sin 3(21)24ABC S bc A bc ===-V , ∴bc =6(22)-,∵2a =,∴由余弦定理可得22()22cos a b c bc bc A =+--, ∴2()4(22)b c bc +=++4(22)6(22)16=++⨯-=,可得4b c +=.故选:C 【点睛】本题主要考查了解三角形中正余弦定理与面积公式的运用,属于中档题. 4.某程序框图如图所示,若输出的120S =,则判断框内为( )A .7?k >B .6?k >C .5?k >D .4?k >【答案】C 【解析】程序在运行过程中各变量值变化如下表: K S 是否继续循环 循环前11故退出循环的条件应为k>5? 本题选择C 选项.点睛:使用循环结构寻数时,要明确数字的结构特征,决定循环的终止条件与数的结构特征的关系及循环次数.尤其是统计数时,注意要统计的数的出现次数与循环次数的区别. 5.221a b +=是sin cos 1a b θθ+≤恒成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】 【分析】 【详解】设cos {sin cos sin cos cos sin sin(+)1sin a a b b αθθθαθαθαα=⇒+=+=≤= 成立;反之,0a b ==满足 sin cos 1a b θθ+≤,但221a b +≠,故选A.6.若复数21z m mi =-+(m R ∈)在复平面内的对应点在直线y x =-上,则z 等于( ) A .1+i B .1i -C .1133i --D .1133i -+【答案】C 【解析】 【分析】由题意得210m m -+=,可求得13m =,再根据共轭复数的定义可得选项.【详解】由题意得210m m -+=,解得13m =,所以1133z i =-+,所以1133z i =--,故选:C. 【点睛】本题考查复数的几何表示和共轭复数的定义,属于基础题. 7.设P ={y |y =-x 2+1,x ∈R},Q ={y |y =2x ,x ∈R},则 A .P ⊆Q B .Q ⊆P C .R C P ⊆Q D .Q ⊆R C P【答案】C 【解析】 【分析】 【详解】解:因为P ={y|y=-x 2+1,x ∈R}={y|y ≤1},Q ={y| y=2x ,x ∈R }={y|y>0},因此选C8.已知双曲线()2222:10,0x y C a b a b -=>>的左、右焦点分别为1F 、2F ,抛物线()220y px p =>与双曲线C 有相同的焦点.设P 为抛物线与双曲线C 的一个交点,且125cos 7PF F ∠=,则双曲线C 的离心率为( ) A .2或3 B .2或3C .2或3D .2或3【答案】D 【解析】 【分析】设1PF m =,2PF n =,根据125cos 7PF F ∠=和抛物线性质得出257PF m =,再根据双曲线性质得出7m a =,5n a =,最后根据余弦定理列方程得出a 、c 间的关系,从而可得出离心率.【详解】过P 分别向x 轴和抛物线的准线作垂线,垂足分别为M 、N ,不妨设1PF m =,2PF n =,则121125cos 7mMF PN PF PF PF F ===∠=, P Q 为双曲线上的点,则122PF PF a -=,即527mm a -=,得7m a =,5n a ∴=,又122F F c =,在12PF F ∆中,由余弦定理可得2225494257272a c a a c+-=⨯⨯,整理得22560c ac a -+=,即2560e e -+=,1e >Q ,解得2e =或3e =. 故选:D. 【点睛】本题考查了双曲线离心率的求解,涉及双曲线和抛物线的简单性质,考查运算求解能力,属于中档题. 9.已知正方体1111ABCD A B C D -的棱长为1,平面α与此正方体相交.对于实数()03d d <<,如果正方体1111ABCD A B C D -的八个顶点中恰好有m 个点到平面α的距离等于d ,那么下列结论中,一定正确的是 A .6m ≠ B .5m ≠ C .4m ≠ D .3m ≠【答案】B 【解析】 【分析】此题画出正方体模型即可快速判断m 的取值. 【详解】如图(1)恰好有3个点到平面α的距离为d ;如图(2)恰好有4个点到平面α的距离为d ;如图(3)恰好有6个点到平面α的距离为d . 所以本题答案为B.【点睛】本题以空间几何体为载体考查点,面的位置关系,考查空间想象能力,考查了学生灵活应用知识分析解决问题的能力和知识方法的迁移能力,属于难题.10.如图,已知直线:l ()()10y k x k =+>与抛物线2:4C y x =相交于A ,B 两点,且A 、B 两点在抛物线准线上的投影分别是M ,N ,若2AM BN =,则k 的值是( )A .13B .23C .223D .22【答案】C 【解析】 【分析】直线()()10y k x k =+>恒过定点()10P -,,由此推导出12OB AF =,由此能求出点B 的坐标,从而能求出k 的值. 【详解】设抛物线2:4C y x =的准线为:1l x =-,直线()()10y k x k =+>恒过定点()10P -,, 如图过A 、B 分别作AM l ⊥于M ,BN l ⊥于N , 由2AM BN =,则2FA FB =, 点B 为AP 的中点、连接OB ,则12OB AF =, ∴OB BF =,点B 的横坐标为12, ∴点B 的坐标为1,22B ⎛⎫ ⎪⎝⎭,把1,22B ⎛⎫ ⎪⎝⎭代入直线()()10y k x k =+>, 解得223k =, 故选:C .【点睛】本题考查直线与圆锥曲线中参数的求法,考查抛物线的性质,是中档题,解题时要注意等价转化思想的合理运用,属于中档题.11.执行程序框图,则输出的数值为( )A .12B .29C .70D .169【答案】C 【解析】 【分析】由题知:该程序框图是利用循环结构计算并输出变量b 的值,计算程序框图的运行结果即可得到答案. 【详解】0a =,1b =,1n =,022b =+=,5n <,满足条件,2012a -==,2n =,145b =+=,5n <,满足条件, 5122a -==,3n =,21012b =+=,5n <,满足条件,12252a -==,4n =,52429b =+=,5n <,满足条件,295122a -==,5n =,125870b =+=,5n =,不满足条件,输出70b =. 故选:C 【点睛】本题主要考查程序框图中的循环结构,属于简单题.12.已知A ,B ,C ,D 是球O 的球面上四个不同的点,若2AB AC DB DC BC =====,且平面DBC ⊥平面ABC ,则球O 的表面积为( )A .203πB .152πC .6πD .5π【答案】A 【解析】 【分析】由题意画出图形,求出多面体外接球的半径,代入表面积公式得答案.【详解】 如图,取BC 中点G ,连接AG ,DG ,则AG BC ⊥,DG BC ⊥,分别取ABC V 与DBC V 的外心E ,F ,分别过E ,F 作平面ABC 与平面DBC 的垂线,相交于O , 则O 为四面体A BCD -的球心,由AB AC DB DC BC 2=====,得正方形OEGF 的边长为33,则6OG 3=, ∴四面体A BCD -的外接球的半径222265R OG BG ()133=+=+= ∴球O 的表面积为2520π4π33⨯=. 故选A . 【点睛】本题考查多面体外接球表面积的求法,考查空间想象能力与思维能力,是中档题. 二、填空题:本题共4小题,每小题5分,共20分。
内蒙古乌兰察布市2021届新第四次高考模拟考试数学试卷含解析
内蒙古乌兰察布市2021届新第四次高考模拟考试数学试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知抛物线22(0)y px p =>上一点(5,)t 到焦点的距离为6,P Q 、分别为抛物线与圆22(6)1x y -+=上的动点,则PQ 的最小值为( )A1B.25- C.D.1 【答案】D【解析】【分析】利用抛物线的定义,求得p 的值,由利用两点间距离公式求得PM ,根据二次函数的性质,求得min PM ,由PQ 取得最小值为min 1PM-,求得结果. 【详解】由抛物线2:2(0)C y px p =>焦点在x 轴上,准线方程2p x =-, 则点(5,)t 到焦点的距离为562p d =+=,则2p =, 所以抛物线方程:24y x =, 设(,)P x y ,圆22:(6)1M x y -+=,圆心为(6,1),半径为1,则PM ===,当4x =时,PQ11=,故选D.【点睛】该题考查的是有关距离的最小值问题,涉及到的知识点有抛物线的定义,点到圆上的点的距离的最小值为其到圆心的距离减半径,二次函数的最小值,属于中档题目.2.已知数列1a ,21a a ,32a a ,…,1n n a a -是首项为8,公比为12得等比数列,则3a 等于( ) A .64B .32C .2D .4【答案】A【解析】【分析】根据题意依次计算得到答案.【详解】根据题意知:18a=,214aa=,故232a=,322aa=,364a=.故选:A.【点睛】本题考查了数列值的计算,意在考查学生的计算能力.3.在菱形ABCD中,4AC=,2BD=,E,F分别为AB,BC的中点,则DE DF⋅=u u u r u u u r()A.134-B.54C.5 D.154【答案】B【解析】【分析】据题意以菱形对角线交点O为坐标原点建立平面直角坐标系,用坐标表示出,DE DFu u u r u u u r,再根据坐标形式下向量的数量积运算计算出结果.【详解】设AC与BD交于点O,以O为原点,BDu u u r的方向为x轴,CAu u u r的方向为y轴,建立直角坐标系,则1,12E⎛⎫-⎪⎝⎭,1,12F⎛⎫--⎪⎝⎭,(1,0)D,3,12DE⎛⎫=-⎪⎝⎭u u u r,3,12DF⎛⎫=--⎪⎝⎭u u u r,所以95144DE DF⋅=-=u u u r u u u r.故选:B.【点睛】本题考查建立平面直角坐标系解决向量的数量积问题,难度一般.长方形、正方形、菱形中的向量数量积问题,如果直接计算较麻烦可考虑用建系的方法求解.4.已知i 是虚数单位,则复数24(1)i =-( ) A .2iB .2i -C .2D .2- 【答案】A【解析】【分析】 根据复数的基本运算求解即可.【详解】224422(1)2i i i i i ===---. 故选:A【点睛】本题主要考查了复数的基本运算,属于基础题.5.三棱锥S ABC -中,侧棱SA ⊥底面ABC ,5AB =,8BC =,60B ∠=︒,SA =,则该三棱锥的外接球的表面积为( )A .643πB .2563πC .4363π D【答案】B【解析】由题,侧棱SA ⊥底面ABC ,5AB =,8BC =,60B ∠=︒,则根据余弦定理可得7BC == ,ABC V的外接圆圆心2sin 2BC r r B === 三棱锥的外接球的球心到面ABC的距离12d SA == 则外接球的半径R == ,则该三棱锥的外接球的表面积为225643S R ππ== 点睛:本题考查的知识点是球内接多面体,熟练掌握球的半径R 公式是解答的关键.6.已知函数21,0()2ln(1),0x x x f x x x ⎧-+<⎪=⎨⎪+≥⎩,若函数()()g x f x kx =-有三个零点,则实数k 的取值范围是( )A .112⎡⎤⎢⎥⎣⎦, B .112⎛⎫ ⎪⎝⎭, C .(0,1) D .12⎛⎫+∞ ⎪⎝⎭, 【答案】B【解析】【分析】根据所给函数解析式,画出函数图像.结合图像,分段讨论函数的零点情况:易知0x =为()()g x f x kx =-的一个零点;对于当0x <时,由代入解析式解方程可求得零点,结合0x <即可求得k 的范围;对于当0x >时,结合导函数,结合导数的几何意义即可判断k 的范围.综合后可得k 的范围.【详解】根据题意,画出函数图像如下图所示:函数()()g x f x kx =-的零点,即()f x kx =.由图像可知,(0)0f =,所以0x =是0()f x kx -=的一个零点,当0x <时,21()2f x x x =-+,若0()f x kx -=, 则2102x x kx -+-=,即12x k =-,所以102k -<,解得12k <; 当0x >时,()ln(1)f x x =+, 则1()1f x x '=+,且()10,11x ∈+ 若0()f x kx -=在0x >时有一个零点,则()0,1k ∈, 综上可得1,12k ⎛⎫∈⎪⎝⎭, 故选:B.【点睛】本题考查了函数图像的画法,函数零点定义及应用,根据零点个数求参数的取值范围,导数的几何意义应用,属于中档题.7.当输入的实数[]230x ∈,时,执行如图所示的程序框图,则输出的x 不小于103的概率是( )A .914B .514C .37D .928【答案】A【解析】【分析】根据循环结构的运行,直至不满足条件退出循环体,求出x 的范围,利用几何概型概率公式,即可求出结论.【详解】程序框图共运行3次,输出的x 的范围是[]23247,, 所以输出的x 不小于103的概率为24710314492472322414-==-. 故选:A.【点睛】本题考查循环结构输出结果、几何概型的概率,模拟程序运行是解题的关键,属于基础题.8.设i 为数单位,z 为z 的共轭复数,若13z i=+,则z z ⋅=( ) A .110 B .110i C .1100 D .1100i 【答案】A【解析】【分析】由复数的除法求出z ,然后计算z z ⋅.【详解】13313(3)(3)1010i z i i i i -===-++-, ∴223131311()()()()10101010101010z z i i ⋅=-+=+=. 故选:A.【点睛】 本题考查复数的乘除法运算,考查共轭复数的概念,掌握复数的运算法则是解题关键.9.若双曲线22214x y a -= )A .B .C .6D .8【答案】A【解析】【分析】依题意可得24b =,再根据离心率求出2a ,即可求出c ,从而得解;【详解】解:∵双曲线22214x y a -=所以22413e a=+=,∴22a =,∴c =故选:A【点睛】本题考查双曲线的简单几何性质,属于基础题.10.设1tan 2α=,4cos()((0,))5πββπ+=-∈,则tan 2()αβ-的值为( ) A .724-B .524-C .524D .724【答案】D【解析】【分析】 利用倍角公式求得tan2α的值,利用诱导公式求得cos β的值,利用同角三角函数关系式求得sin β的值,进而求得tan β的值,最后利用正切差角公式求得结果.【详解】1tan 2α=,22tan 4tan21tan 3ααα==-, ()4cos cos 5πββ+=-=-,()(0,βπ∈, 4cos 5β∴=,3sin 5β=,3tan 4β=, ()43tan2tan 734tan 2431tan2tan 24134αβαβαβ---===++⨯, 故选:D.【点睛】该题考查的是有关三角函数求值问题,涉及到的知识点有诱导公式,正切倍角公式,同角三角函数关系式,正切差角公式,属于基础题目.11.在复平面内,31i i +-复数(i 为虚数单位)的共轭复数对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【解析】【分析】将复数化简得=12z i +,12z i =-,即可得到对应的点为()1,2-,即可得出结果.【详解】 3(3)(1)12121(1)(1)i i i z i z i i i i +++===+⇒=---+,对应的点位于第四象限. 故选:D .【点睛】本题考查复数的四则运算,考查共轭复数和复数与平面内点的对应,难度容易.12.已知双曲线2222:1x y a bΓ-=(0,0)a b >>的一条渐近线为l ,圆22:()4C x c y -+=与l 相切于点A ,若12AF F ∆的面积为Γ的离心率为( )A .2B.3 C .73 D【答案】D【解析】【分析】由圆22:()4C x c y -+=与l 相切可知,圆心(,0)C c 到l 的距离为2,即2b =.又1222AF F AOF S S ab ∆===V a 的值,利用离心率公式,求出e.【详解】由题意得2b =,12AF F S ab ∆==a ∴=3e ∴==. 故选:D.【点睛】本题考查了双曲线的几何性质,直线与圆相切的性质,离心率的求法,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。
内蒙古乌海市2021届新高考数学四月模拟试卷含解析
内蒙古乌海市2021届新高考数学四月模拟试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在ABC ∆中,内角A 的平分线交BC 边于点D ,4AB =,8AC =,2BD =,则ABD ∆的面积是( )A .B .C .3D .【答案】B 【解析】 【分析】利用正弦定理求出CD ,可得出BC ,然后利用余弦定理求出cos B ,进而求出sin B ,然后利用三角形的面积公式可计算出ABD ∆的面积. 【详解】AD Q 为BAC ∠的角平分线,则BAD CAD ∠=∠.ADB ADC π∠+∠=Q ,则ADC ADB π∠=-∠,()sin sin sin ADC ADB ADB π∴∠=-∠=∠,在ABD ∆中,由正弦定理得sin sin AB BDADB BAD =∠∠,即42sin sin ADB BAD =∠∠,①在ACD ∆中,由正弦定理得sin sin AC CD ADC ADC =∠∠,即8sin sin CDADC CAD=∠∠,②①÷②得212CD =,解得4CD =,6BC BD CD ∴=+=,由余弦定理得2221cos 24AB BC AC B AB BC +-==-⋅,sin B ∴==因此,ABD ∆的面积为1sin 2ABD S AB BD B ∆=⋅=故选:B. 【点睛】本题考查三角形面积的计算,涉及正弦定理和余弦定理以及三角形面积公式的应用,考查计算能力,属于中等题.2.设集合A ={y|y =2x ﹣1,x ∈R},B ={x|﹣2≤x≤3,x ∈Z},则A∩B =( ) A .(﹣1,3] B .[﹣1,3]C .{0,1,2,3}D .{﹣1,0,1,2,3}【答案】C 【解析】 【分析】先求集合A ,再用列举法表示出集合B ,再根据交集的定义求解即可. 【详解】解:∵集合A ={y|y =2x ﹣1,x ∈R}={y|y >﹣1},B ={x|﹣2≤x≤3,x ∈Z}={﹣2,﹣1,0,1,2,3}, ∴A∩B ={0,1,2,3}, 故选:C . 【点睛】本题主要考查集合的交集运算,属于基础题.3.()252(2)x x -+的展开式中含4x 的项的系数为( ) A .20- B .60 C .70 D .80【答案】B 【解析】 【分析】展开式中含4x 的项是由5(2)x +的展开式中含4x 和2x 的项分别与前面的常数项2-和2x 项相乘得到,由二项式的通项,可得解 【详解】由题意,展开式中含4x 的项是由5(2)x +的展开式中含4x 和2x 的项分别与前面的常数项2-和2x 项相乘得到,所以()252(2)x x -+的展开式中含4x 的项的系数为1335522260C C -⨯+⨯=.故选:B 【点睛】本题考查了二项式系数的求解,考查了学生综合分析,数学运算的能力,属于基础题. 4.在复平面内,复数(2)i i +对应的点的坐标为( ) A .(1,2) B .(2,1)C .(1,2)-D .(2,1)-【答案】C 【解析】 【分析】利用复数的运算法则、几何意义即可得出. 【详解】解:复数i (2+i )=2i ﹣1对应的点的坐标为(﹣1,2), 故选:C 【点睛】本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.5.已知函数()()sin f x A x =+ωϕ(其中0A >,0>ω,0ϕπ<<)的图象关于点5,012M π⎛⎫⎪⎝⎭成中心对称,且与点M 相邻的一个最低点为2,33N π⎛⎫- ⎪⎝⎭,则对于下列判断: ①直线2x π=是函数()f x 图象的一条对称轴;②点,012π⎛⎫-⎪⎝⎭是函数()f x 的一个对称中心; ③函数1y =与()351212y f x x ππ⎛⎫=-≤≤ ⎪⎝⎭的图象的所有交点的横坐标之和为7π.其中正确的判断是( ) A .①② B .①③C .②③D .①②③【答案】C 【解析】分析:根据最低点,判断A=3,根据对称中心与最低点的横坐标求得周期T ,再代入最低点可求得解析式为()3sin 26f x x π⎛⎫=+⎪⎝⎭,依次判断各选项的正确与否. 详解:因为5,012M π⎛⎫ ⎪⎝⎭为对称中心,且最低点为2,33N π⎛⎫- ⎪⎝⎭, 所以A=3,且254312T πππ⎛⎫=⨯-=⎪⎝⎭由222T ππωπ=== 所以()()3sin 2f x x ϕ=+,将2,33N π⎛⎫-⎪⎝⎭带入得 6π=ϕ ,所以()3sin 26f x x π⎛⎫=+ ⎪⎝⎭由此可得①错误,②正确,③当351212x ππ-≤≤时,0266x ππ≤+≤,所以与1y = 有6个交点,设各个交点坐标依次为123456,,,,,x x x x x x ,则1234567x x x x x x π+++++=,所以③正确 所以选C点睛:本题考查了根据条件求三角函数的解析式,通过求得的解析式进一步研究函数的性质,属于中档题.6.已知数列11n a ⎧⎫-⎨⎬⎩⎭是公比为13的等比数列,且10a >,若数列{}n a 是递增数列,则1a 的取值范围为( ) A .(1,2) B .(0,3) C .(0,2) D .(0,1)【答案】D 【解析】 【分析】先根据已知条件求解出{}n a 的通项公式,然后根据{}n a 的单调性以及10a >得到1a 满足的不等关系,由此求解出1a 的取值范围. 【详解】由已知得11111113n n a a -⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,则11111113n n a a -=⎛⎫⎛⎫-+ ⎪⎪⎝⎭⎝⎭.因为10a >,数列{}n a 是单调递增数列,所以10n n a a +>>,则111111111111133n n a a ->⎛⎫⎛⎫⎛⎫⎛⎫-+-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 化简得111110113a a ⎛⎫<-<- ⎪⎝⎭,所以101a <<. 故选:D. 【点睛】本题考查数列通项公式求解以及根据数列单调性求解参数范围,难度一般.已知数列单调性,可根据1,n n a a +之间的大小关系分析问题.7.在直角坐标平面上,点(),P x y 的坐标满足方程2220x x y -+=,点(),Q a b 的坐标满足方程2268240a b a b ++-+=则y bx a--的取值范围是( ) A .[]22-,B.⎣⎦C .13,3⎡⎤--⎢⎥⎣⎦ D.⎣⎦【答案】B 【解析】 【分析】由点(),P x y 的坐标满足方程2220x x y -+=,可得P 在圆()2211x y -+=上,由(),Q a b 坐标满足方程2268240a b a b ++-+=,可得Q 在圆()()22341x y ++-=上,则PQ y bk x a-=-求出两圆内公切线的斜率,利用数形结合可得结果. 【详解】Q 点(),P x y 的坐标满足方程2220x x y -+=,P ∴在圆()2211x y -+=上,(),Q a b Q 在坐标满足方程2268240a b a b ++-+=,Q ∴在圆()()22341x y ++-=上,则PQ y bk x a-=-作出两圆的图象如图, 设两圆内公切线为AB 与CD , 由图可知AB PQ CD k k k ≤≤, 设两圆内公切线方程为y kx m =+,则2211343411k mkk m k m k m k ⎧+=⎪+⎪⇒+=-+-⎨-+-⎪=⎪+⎩, Q 圆心在内公切线两侧,()34k m k m ∴+=--+-,可得2m k =+,2222111k m k kk++==++,化为23830k k ++=,47k -±=即4747AB CD k k ---+==, 474733PQ y b k x a ---+∴≤=≤-,y bx a --的取值范围4433⎡---⎢⎣⎦,故选B. 【点睛】本题主要考查直线的斜率、直线与圆的位置关系以及数形结合思想的应用,属于综合题. 数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,尤其在解决选择题、填空题时发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是运用这种方法的关键是正确作出曲线图象,充分利用数形结合的思想方法能够使问题化难为简,并迎刃而解. 8.若i 为虚数单位,则复数22sin cos 33z i ππ=-+的共轭复数z 在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】B 【解析】 【分析】由共轭复数的定义得到z ,通过三角函数值的正负,以及复数的几何意义即得解 【详解】 由题意得22sincos 33z i ππ=--,因为2sin03π-=<,21cos 032π-=>, 所以z 在复平面内对应的点位于第二象限. 故选:B 【点睛】本题考查了共轭复数的概念及复数的几何意义,考查了学生概念理解,数形结合,数学运算的能力,属于基础题.9.已知α、,22ππβ⎛⎫∈- ⎪⎝⎭,αβ≠,则下列是等式sin sin 2αβαβ-=-成立的必要不充分条件的是( ) A .sin sin αβ> B .sin sin αβ< C .cos cos αβ> D .cos cos αβ<【答案】D 【解析】 【分析】构造函数()sin h x x x =-,()sin 2f x x x =-,利用导数分析出这两个函数在区间,22ππ⎛⎫- ⎪⎝⎭上均为减函数,由sin sin 2αβαβ-=-得出sin sin 2ααββ-=-,分0α=、02πα-<<、02πα<<三种情况讨论,利用放缩法结合函数()y h x =的单调性推导出02παβ-<<<或02πβα<<<,再利用余弦函数的单调性可得出结论. 【详解】构造函数()sin h x x x =-,()sin 2f x x x =-, 则()cos 10h x x '=-<,()cos 20f x x '=-<,所以,函数()y f x =、()y h x =在区间,22ππ⎛⎫- ⎪⎝⎭上均为减函数,当02x π-<<时,则()()00h x h >=,()()00f x f >=;当02x π<<时,()0h x <,()0f x <.由sin sin 2αβαβ-=-得sin sin 2ααββ-=-. ①若0α=,则sin 20ββ-=,即()00f ββ=⇒=,不合乎题意;②若02πα-<<,则02πβ-<<,则()()sin sin 2sin h h αααβββββ=-=->-=,此时,02παβ-<<<,由于函数cos y x =在区间,02π⎛⎫- ⎪⎝⎭上单调递增,函数sin y x =在区间,02π⎛⎫- ⎪⎝⎭上单调递增,则sin sin αβ<,cos cos αβ<;③若02πα<<,则02πβ<<,则()()sin sin 2sin h h αααβββββ=-=-<-=,此时02πβα<<<,由于函数cos y x =在区间0,2π⎛⎫⎪⎝⎭上单调递减,函数sin y x =在区间0,2π⎛⎫⎪⎝⎭上单调递增,则sin sin αβ>,cos cos αβ<.综上所述,cos cos αβ<. 故选:D. 【点睛】本题考查函数单调性的应用,构造新函数是解本题的关键,解题时要注意对α的取值范围进行分类讨论,考查推理能力,属于中等题.10.已知集合2{|1}A x x =<,2{|log 1}B x x =<,则 A .{|02}A B x x ⋂=<< B .{|2}A B x x ⋂=< C .{|2}A B x x ⋃=<D .{|12}A B x x =-<<U【解析】 【分析】 【详解】因为2{|1}{|11}A x x x x =<=-<<,2{|log 1}{|02}B x x x x =<=<<,所以{|01}A B x x =<<I ,{|12}A B x x =-<<U ,故选D .11.如果0b a <<,那么下列不等式成立的是( ) A .22log log b a < B .1122b a⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭C .33b a >D .2ab b <【答案】D 【解析】 【分析】利用函数的单调性、不等式的基本性质即可得出. 【详解】∵0b a <<,∴22log log b a >,1122b a⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,33b a <,2ab b <. 故选:D. 【点睛】本小题主要考查利用函数的单调性比较大小,考查不等式的性质,属于基础题.12.已知半径为2的球内有一个内接圆柱,若圆柱的高为2,则球的体积与圆柱的体积的比为( ) A .43B .916C .34D .169【答案】D 【解析】 【分析】分别求出球和圆柱的体积,然后可得比值. 【详解】设圆柱的底面圆半径为r,则r,所以圆柱的体积2126V =π⋅⨯=π.又球的体积32432233V =π⨯=π,所以球的体积与圆柱的体积的比213216369V V ππ==,故选D.本题主要考查几何体的体积求解,侧重考查数学运算的核心素养. 二、填空题:本题共4小题,每小题5分,共20分。
内蒙古乌海市2021届新高考数学第四次押题试卷含解析
内蒙古乌海市2021届新高考数学第四次押题试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.()()52122x x --的展开式中8x的项的系数为( )A .120B .80C .60D .40【答案】A 【解析】 【分析】化简得到()()()()555212222222xx xx x =⋅-----,再利用二项式定理展开得到答案.【详解】()()()()555212222222x x x x x =⋅-----展开式中8x 的项为()()232332552C 22C 221208x xx x---=⨯.故选:A 【点睛】本题考查了二项式定理,意在考查学生的计算能力. 2.如图,ABC ∆内接于圆O ,AB 是圆O 的直径,,//,,,DC BE DC BE DC CB DC CA =⊥⊥22AB EB ==,则三棱锥E ABC -体积的最大值为( )A .14B .13C .12D .23【答案】B 【解析】 【分析】根据已知证明BE ⊥平面ABC ,只要设AC x =,则)2402BC x x =-<<,从而可得体积()222114466E ABC V x x x x -=-=- 【详解】因为,//DC BE DC BE =,所以四边形DCBE 为平行四边形.又因为,,,DC CB DC CA CB CA C CB ⊥⊥⋂=⊂平面ABC ,CA ⊂平面ABC ,所以DC ⊥平面ABC ,所以BE ⊥平面ABC .在直角三角形ABE 中,22AB EB ==,设AC x =,则)02BC x =<<,所以1122ABC S AC BC x ∆=⋅=以16E ABCV x -==又因为()22222442x x x x ⎛⎫+--≤ ⎪⎝⎭,当且仅当()22222442x x x x ⎛⎫+--≤ ⎪⎝⎭,即x 时等号成立,所以()max 13E ABC V -=. 故选:B . 【点睛】本题考查求棱锥体积的最大值.解题方法是:首先证明线面垂直同,得棱锥的高,然后设出底面三角形一边长为x ,用建立体积V 与边长x 的函数关系,由基本不等式得最值,或由函数的性质得最值. 3.已知复数31iz i-=-,则z 的虚部为( ) A .i - B .iC .1-D .1【答案】C 【解析】 【分析】 先将31iz i-=-,化简转化为2z i =+,再得到2z i =-下结论. 【详解】 已知复数()()()()3132111i i i z i i i i -+-===+--+, 所以2z i =-, 所以z 的虚部为-1. 故选:C 【点睛】本题主要考查复数的概念及运算,还考查了运算求解的能力,属于基础题. 4.已知等差数列{}n a 的前n 项和为n S ,37a =,39S =,则10a =( ) A .25 B .32C .35D .40【答案】C【解析】 【分析】设出等差数列{}n a 的首项和公差,即可根据题意列出两个方程,求出通项公式,从而求得10a . 【详解】设等差数列{}n a 的首项为1a ,公差为d ,则313127339a a d S a d =+=⎧⎨=+=⎩,解得11,4a d =-=,∴45n a n =-,即有10410535a =⨯-=. 故选:C . 【点睛】本题主要考查等差数列的通项公式的求法和应用,涉及等差数列的前n 项和公式的应用,属于容易题. 5.某程序框图如图所示,若输出的120S =,则判断框内为( )A .7?k >B .6?k >C .5?k >D .4?k >【答案】C 【解析】程序在运行过程中各变量值变化如下表:故退出循环的条件应为k>5? 本题选择C 选项.点睛:使用循环结构寻数时,要明确数字的结构特征,决定循环的终止条件与数的结构特征的关系及循环次数.尤其是统计数时,注意要统计的数的出现次数与循环次数的区别.6.已知圆锥的高为3,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积与圆锥的体积的比值为( ) A .53B .329C .43D .259【答案】B 【解析】 【分析】计算求半径为2R =,再计算球体积和圆锥体积,计算得到答案. 【详解】如图所示:设球半径为R ,则()223R R =-+,解得2R =.故求体积为:3143233V R ππ==,圆锥的体积:21333V π=⨯=,故12329V V =. 故选:B .【点睛】本题考查了圆锥,球体积,圆锥的外接球问题,意在考查学生的计算能力和空间想象能力.7.设O 为坐标原点,P 是以F 为焦点的抛物线()220y px p =>上任意一点,M 是线段PF 上的点,且2PM MF =,则直线OM 的斜率的最大值为( )A .33B .23C .22D .1【答案】C 【解析】试题分析:设200,)2y P y p (,由题意(,0)2p F ,显然00y <时不符合题意,故00y >,则 2001112()(,)3333633y y p OM OF FM OF FP OF OP OF OP OF p =+=+=+-=+=+u u u u r u u u r u u u u r u u u r u u u r u u u r u u u r u u u r u u ur u u u r ,可得:2000223222263OM y k y p y p p y p ==≤=++,当且仅当22002,2y p y ==时取等号,故选C . 考点:1.抛物线的简单几何性质;2.均值不等式.【方法点晴】本题主要考查的是向量在解析几何中的应用及抛物线标准方程方程,均值不等式的灵活运用,属于中档题.解题时一定要注意分析条件,根据条件2PM MF =,利用向量的运算可知200(,)633y y p M p +,写出直线的斜率,注意均值不等式的使用,特别是要分析等号是否成立,否则易出问题.8.下列函数中,既是偶函数又在区间()0,+?上单调递增的是( )A .y x =B .()sin f xx x = C .()2f x x x =+ D .1y x =+【答案】C 【解析】 【分析】结合基本初等函数的奇偶性及单调性,结合各选项进行判断即可. 【详解】 A :y x =为非奇非偶函数,不符合题意;B :()sin f x x x =在()0,∞+上不单调,不符合题意;C :2y xx =+为偶函数,且在()0,∞+上单调递增,符合题意;D :1y x =+为非奇非偶函数,不符合题意. 故选:C. 【点睛】本小题主要考查函数的单调性和奇偶性,属于基础题.9.若x 、y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则32z x y =+的最大值为( )A .5B .9C .6D .12【答案】C 【解析】 【分析】作出不等式组所表示的可行域,平移直线32z x y =+,找出直线在y 轴上的截距最大时对应的最优解,代入目标函数计算即可. 【详解】作出满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩的可行域如图阴影部分(包括边界)所示.由32z x y =+,得322z y x =-+,平移直线322z y x =-+,当直线322zy x =-+经过点()2,0时,该直线在y 轴上的截距最大,此时z 取最大值, 即max 32206z =⨯+⨯=. 故选:C. 【点睛】本题考查简单的线性规划问题,考查线性目标函数的最值,一般利用平移直线的方法找到最优解,考查数形结合思想的应用,属于基础题.10.某几何体的三视图如右图所示,则该几何体的外接球表面积为( )A .12πB .16πC .24πD .48π【答案】A 【解析】 【分析】由三视图知:几何体为三棱锥,且三棱锥的一条侧棱垂直于底面,结合直观图判断外接球球心的位置,求出半径,代入求得表面积公式计算. 【详解】由三视图知:几何体为三棱锥,且三棱锥的一条侧棱垂直于底面,高为2, 底面为等腰直角三角形,斜边长为22,如图:ABC ∆∴的外接圆的圆心为斜边AC 的中点D ,OD AC ⊥,且OD ⊂平面SAC ,2SA AC ==Q ,SC ∴的中点O 为外接球的球心,∴半径R =∴外接球表面积4312S ππ=⨯=.故选:A 【点睛】本题考查了由三视图求几何体的外接球的表面积,根据三视图判断几何体的结构特征,利用几何体的结构特征与数据求得外接球的半径是解答本题的关键.11.已知平面向量a b r r ,满足21a b a r r r =,=,与b r 的夹角为2 3π,且)2(()a b a b λ⊥r r r r +-,则实数λ的值为( ) A .7- B .3-C .2D .3【答案】D 【解析】 【分析】由已知可得()()20a b a b λ+-=⋅r r r r,结合向量数量积的运算律,建立λ方程,求解即可.【详解】依题意得22113a b cos π⋅=⨯⨯=-r r 由()()20a b a b λ+-=⋅r r r r ,得()222210a b a b λλ-+-⋅=r r r r即390λ-+=,解得3λ=. 故选:D . 【点睛】本题考查向量的数量积运算,向量垂直的应用,考查计算求解能力,属于基础题. 12.设等差数列{}n a 的前n 项和为n S ,且80S =,33a =-,则9S =( ) A .9 B .12C .15-D .18-【答案】A 【解析】 【分析】由80S =,33a =-可得1,a d 以及9a ,而989S S a =+,代入即可得到答案. 【详解】设公差为d ,则1123,8780,2a d a d +=-⎧⎪⎨⨯+=⎪⎩解得17,2,a d =-⎧⎨=⎩ 9189a a d =+=,所以9899S S a =+=.故选:A.【点睛】本题考查等差数列基本量的计算,考查学生运算求解能力,是一道基础题. 二、填空题:本题共4小题,每小题5分,共20分。
内蒙古乌海市2021届新高考第四次大联考数学试卷含解析
内蒙古乌海市2021届新高考第四次大联考数学试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.过双曲线22221x y a b-= (0,0)a b >>的左焦点F 作直线交双曲线的两天渐近线于A ,B 两点,若B 为线段FA 的中点,且OB FA ⊥(O 为坐标原点),则双曲线的离心率为( )AB C .2 D 【答案】C【解析】 由题意可得双曲线的渐近线的方程为b y x a =±. ∵B 为线段FA 的中点,OB FA ⊥∴OA OF c ==,则AOF ∆为等腰三角形.∴BOF BOA ∠=∠由双曲线的的渐近线的性质可得BOF xOA ∠=∠∴60BOF BOA xOA ∠=∠=∠=︒∴tan 60b a=︒=223b a =.∴双曲线的离心率为22c a e aa a==== 故选C. 点睛:本题考查了椭圆和双曲线的定义和性质,考查了离心率的求解,同时涉及到椭圆的定义和双曲线的定义及三角形的三边的关系应用,对于求解曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,a c ,代入公式c e a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程(不等式),解方程(不等式),即可得e (e 的取值范围).2.在等差数列{}n a 中,若244,8a a ==,则7a =( )A .8B .12C .14D .10【答案】C【解析】【分析】将2a ,4a 分别用1a 和d 的形式表示,然后求解出1a 和d 的值即可表示7a .【详解】设等差数列{}n a 的首项为1a ,公差为d ,则由24a =,48a =,得114,38,a d a d +=⎧⎨+=⎩解得12a =,2d =, 所以71614a a d =+=.故选C .【点睛】本题考查等差数列的基本量的求解,难度较易.已知等差数列的任意两项的值,可通过构建1a 和d 的方程组求通项公式.3.函数()22x f x a x=--的一个零点在区间()1,2内,则实数a 的取值范围是( ) A .()1,3B .()1,2C .()0,3D .()0,2 【答案】C【解析】【分析】显然函数()22x f x a x=--在区间()1,2内连续,由()f x 的一个零点在区间()1,2内,则()()120f f <,即可求解.【详解】由题,显然函数()22x f x a x=--在区间()1,2内连续,因为()f x 的一个零点在区间()1,2内,所以()()120f f <,即()()22410a a ----<,解得0<<3a ,故选:C【点睛】本题考查零点存在性定理的应用,属于基础题.4.给出50个数 1,2,4,7,11,L ,其规律是:第1个数是1,第2个数比第1个数大 1,第3个数比第2个数大2,第4个数比第3个数大3,以此类推,要计算这50个数的和.现已给出了该问题算法的程序框图如图,请在图中判断框中的①处和执行框中的②处填上合适的语句,使之能完成该题算法功能( )A .i 50≤;p p i =+B .i 50<;p p i =+C .i 50≤;p p 1=+D .i 50<;p p 1=+【答案】A【解析】【分析】 要计算这50个数的和,这就需要循环50次,这样可以确定判断语句①,根据累加最的变化规律可以确定语句②.【详解】因为计算这50个数的和,循环变量i 的初值为1,所以步长应该为1,故判断语句①应为1i i =+,第1个数是1,第2个数比第1个数大 1,第3个数比第2个数大2,第4个数比第3个数大3,这样可以确定语句②为p p i =+,故本题选A.【点睛】本题考查了补充循环结构,正确读懂题意是解本题的关键.5.已知随机变量X 服从正态分布()4,9N ,且()()2P X P X a ≤=≥,则a =( )A .3B .5C .6D .7【答案】C【解析】【分析】根据在关于4X =对称的区间上概率相等的性质求解.【详解】 4μ=Q ,3σ=,(2)(42)(42)(6)()P X P X P X P X P X a ∴≤=≤-=≥+=≥=≥,6a ∴=.故选:C .【点睛】本题考查正态分布的应用.掌握正态曲线的性质是解题基础.随机变量X 服从正态分布()2,N μσ,则()()P X m P X m μμ≤-=≥+.6.如图,正方形网格纸中的实线图形是一个多面体的三视图,则该多面体各表面所在平面互相垂直的有( )A.2对B.3对C.4对D.5对【答案】C【解析】【分析】画出该几何体的直观图P ABCD-,易证平面PAD⊥平面ABCD,平面PCD⊥平面PAD,平面PAB⊥平面PAD,平面PAB⊥平面PCD,从而可选出答案.【详解】该几何体是一个四棱锥,直观图如下图所示,易知平面PAD⊥平面ABCD,作PO⊥AD于O,则有PO⊥平面ABCD,PO⊥CD,又AD⊥CD,所以,CD⊥平面PAD,所以平面PCD⊥平面PAD,同理可证:平面PAB⊥平面PAD,由三视图可知:PO=AO=OD,所以,AP⊥PD,又AP⊥CD,所以,AP⊥平面PCD,所以,平面PAB⊥平面PCD,所以该多面体各表面所在平面互相垂直的有4对.【点睛】本题考查了空间几何体的三视图,考查了四棱锥的结构特征,考查了面面垂直的证明,属于中档题.7.已知函数31,0()(),0x xf xg x x⎧+>=⎨<⎩是奇函数,则((1))g f-的值为()A.-10 B.-9 C.-7 D.1【答案】B【解析】【分析】根据分段函数表达式,先求得()1f -的值,然后结合()f x 的奇偶性,求得((1))g f -的值.【详解】因为函数3,0()(),0x x x f x g x x ⎧+≥=⎨<⎩是奇函数,所以(1)(1)2f f -=-=-,((1))(2)(2)(2)10g f g f f -=-=-=-=-.故选:B【点睛】本题主要考查分段函数的解析式、分段函数求函数值,考查数形结合思想.意在考查学生的运算能力,分析问题、解决问题的能力.8.已知双曲线()2222:10,0x y C a b a b-=>>的左,右焦点分别为12,F F ,O 为坐标原点,P 为双曲线在第一象限上的点,直线PO ,2PF 分别交双曲线C 的左,右支于另一点12,,3M N PF PF =若,且260MF N ∠=o ,则双曲线的离心率为( )A B .3 C .2 D 【答案】D【解析】【分析】本道题结合双曲线的性质以及余弦定理,建立关于a 与c 的等式,计算离心率,即可.【详解】结合题意,绘图,结合双曲线性质可以得到PO=MO ,而12F O F O =,结合四边形对角线平分,可得四边形12PF MF 为平行四边形,结合0260MF N ∠=,故01260F MF ∠=对三角形12F MF 运用余弦定理,得到,222121212122cos F M F M F F MF MF F MF +-=⋅⋅⋅∠ 而结合213PF PF =,可得12,3MF a MF a ==,122F F c =,代入上式子中,得到 2222943a a c a +-=,结合离心率满足c e a =,即可得出72c e a ==,故选D . 【点睛】本道题考查了余弦定理以及双曲线的性质,难度偏难.9.1x <是12x x+<-的( )条件 A .充分不必要B .必要不充分C .充要D .既不充分也不必要 【答案】B【解析】【分析】利用充分条件、必要条件与集合包含关系之间的等价关系,即可得出。
内蒙古2021届高三数学下学期第四次模拟考试试题 理(含解析)
内蒙古北方重工业集团有限公司第三中学2021届高三数学下学期第四次模拟考试试题 理(含解析)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项填涂在答题卡上.) 1.若集合{}{11,|A x N x B x y =∈-≤==,则A B 的真子集的个数为( )A. 3B. 4C. 7D. 8【答案】A 【解析】 【分析】 先求出AB 的交集,再依据求真子集个数公式求出,也可列举求出.【详解】{}{}11=0,1,2A x N x =∈-≤,{[]|=1,1B x y ==-,{}0,1A B =,所以A B 的真子集的个数为2213-=,故选A .【点睛】有限集合{}12,,n a a a 的子集个数为2n 个,真子集个数为21n -.2.若复数21iz =+,其中i 为虚数单位,则下列结论正确的是( ) A. z 的虚部为﹣i B. |z |=2C. z 表示的点在第四象限D. z 的共轭复数为﹣1﹣i【答案】C 【解析】 【分析】把已知等式变形,再由复数代数形式的乘除运算化简,然后逐一核对四个选项得答案. 【详解】∵()()()2121111i z i i i i -===-++-, ∴z 的虚部为1-;|z |=z 表示的点的坐标为()1,1-,在第四象限;z 的共轭复数为1i +.故选:C.【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念与复数模的求法,考查复数的代数表示法及其几何意义,是基础题.3.为了得到函数sin 23y x π⎛⎫=- ⎪⎝⎭的图像,可以将函数cos 2y x =的图像( ) A. 向左平移512π个单位 B. 向右平移512π个单位 C. 向右平移6π个单位 D. 向左平移6π个单位 【答案】B 【解析】 因为sin26y x π⎛⎫=- ⎪⎝⎭,且cos2y x ==sin 22x π⎛⎫+⎪⎝⎭=sin 24x π⎛⎫+⎪⎝⎭, 所以由φ4x π++=6x π-,知5φ6412πππ=--=-,即只需将cos2y x =的图像向右平移512π个单位,故选B 4.已知(),0,0xlgx x f x a b x ->⎧=⎨+⎩且()03f =,()14f -=,则()()3f f -=( ) A. ﹣1 B. lg3-C. 0D. 1【答案】A 【解析】 【分析】根据题意,由函数的解析式可得01134a b b a b -⎧+=+=⎨+=⎩,可解得a 、b 的值,即可得()3f -的值,进而可计算得答案.【详解】解:根据题意,()1,0,0xgx x f x a b x ->⎧=⎨+⎩且()03f =,()14f -=, 则01134a b b a b -⎧+=+=⎨+=⎩,解可得122a b ⎧=⎪⎨⎪=⎩,则()3132102f -⎛⎫-=+= ⎪⎝⎭,则()()()310lg101ff f -==-=-.故选:A【点睛】本题考查了分段函数求函数值的问题,分段函数是一个函数,分段不分家,一般需要分情况讨论.5.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法,如图所示的程序框图,给出了利用秦九韶算法求某多项式值的一个实例,若输入x的值为2,则输出v的值为()A. 80B. 192C. 448D. 36【答案】B【解析】【分析】由题意,该框图利用秦九韶算法计算变量v的值,根据算法功能反复执行循环体计算即可. 【详解】初始:v=1, k=1;第一步:v=1×2+21=4,k=2;第二步:v=4×2+22=12,k=3;第三步:v=12×2+23=32,k=4;第四步:v=32×2+24=80,k=5;第五步:v=80×2+25=192,k=6;k ,故停止循环,输出v的值为192.因为此时5故选:B.【点睛】本题主要是考查了程序框图的循环结构,注意本题中的k与v值计算式子中的k值相差1,容易出错.同时本题考查了学生的逻辑推理能力以及计算能力,属于基础题.6.对于实数m ,“12m <<”是“方程2212x y m m -=--1表示椭圆”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】B 【解析】 【分析】根据椭圆的标准方程满足条件入手得出m 的取值范围,进而得出正确选项.【详解】由“方程2212x ym m -=--1表示椭圆“可得102012m m m m->⎧⎪-<⎨⎪-≠-⎩,解得12m <<且32m ≠, 所以“12m <<”是 “方程2212x y m m -=--1表示椭圆”的必要不充分条件.故选:B.【点睛】本题主要考查椭圆的标准方程及充分必要条件的判定.7.设圆222210x y x y +-++=关于直线1x y -=对称的圆为C ,则圆C 的圆面围绕直线y x =旋转一周所围成的几何体的体积为( )A. 4πB. 83πC.23π D.43π 【答案】D 【解析】 【分析】可求出直线恒过圆心,推知旋转体为球,求出球的半径,可求球的体积. 【详解】解:圆222210x y x y +-++=的标准方程为()()22111x y -++=,则圆心为()1,1-,半径为1, 设圆C 的圆心为(),a b ,则111221111a b b a +-⎧-=⎪⎪⎨+⎪⨯=-⎪-⎩解得00a b =⎧⎨=⎩,则圆C 为221x y +=,其关于y x =对称,圆C 的圆面围绕直线y x =旋转一周所围成的几何体为球,半径为1, 所以该球的体积为34433R ππ=. 故选:D.【点睛】本题考查旋转体的知识,直线与圆的位置关系,考查计算能力,空间想象能力. 8.已知函数()21cos 4f x x x =+,()f x '是函数()f x 的导函数,则()f x '的图象大致是( ) A. B.C. D.【答案】A 【解析】 【分析】首先求得导函数解析式,根据导函数的奇偶性可排除,B D ,再根据02f π⎛⎫'< ⎪⎝⎭,可排除C ,从而得到结果.【详解】由题意得:()1sin 2f x x x '=- ()()1sin 2f x x x f x ''-=-+=- ()f x ∴为奇函数,图象关于原点对称可排除,B D又当2x π=时,1024f ππ⎛⎫'=-<⎪⎝⎭,可排除C 本题正确选项:A【点睛】此题考查函数图象的识别,考查对函数基础知识的把握程度以及数形结合的思维能力,关键是能够利用奇偶性和特殊位置的符号来排除错误选项,属于中档题.9.一个几何体的三视图如图所示,若这个几何体的体积为205,则该几何体的外接球的表面积为( )A. 36πB. 64πC. 81πD. 100π【答案】C 【解析】 【分析】首先把三视图转换为几何体,进一步利用几何体的体积公式求出四棱锥体的外接球的半径,最后求出球的表面积.【详解】解:根据几何体的三视图可以得到该几何体为四棱锥体, 如图所示:该四棱锥的底面是长方形,长为6,宽为5, 四棱锥的高即为PD所以1563V h =⨯⨯⨯=解得h =设四棱锥的外接球的半径为r , 所以()(2222256r =++,解得92r =, 所以294812S ππ⎛⎫=⨯= ⎪⎝⎭球, 故选:C【点睛】本题考查了几何体的三视图问题,解题的关键是要能由三视图解析出原几何体,从而解决问题.10.已知,,A B P 为双曲线2214y x -=上不同三点,且满足2PA PB PO +=(O 为坐标原点),直线,PA PB 的斜率记为,m n ,则224nm +的最小值为( )A. 8B. 4C. 2D. 1【答案】B 【解析】由2PA PB PO += 有点O 为线段AB 的中点,设1122(,),(,)A x y P x y ,则11(,)B x y -- ,所以21212121y y y y m n x x x x -+==-+, ,故2221212122212121()()()()y y y y y y mn x x x x x x +--==+-- ,由于点A,B,P 在双曲线上,所以222212121,144y y x x -=-= ,代入上式中,有2221222141()4y y mn y y -==- ,所以2244n m mn +≥== ,故最小值为4.选B. 点睛:本题主要考查了双曲线的有关计算,涉及到的知识点有平面向量中线定理,直线斜率的计算公式,基本不等式等,属于中档题. 首先得出原点为线段AB 的中点,再求出直线PA,PB 斜率的表达式, 算出mn 为定值,再由基本不等式求出最小值.11.在ABC ∆中,543AB BC BC CA CA AB⋅⋅⋅==,则sin :sin :sin A B C =( )A. 9:7:8B. 3:C. 6:8:7D.【答案】B 【解析】 【分析】 设()0543AB BC BC CA CA ABt t ⋅⋅⋅===<,用数量积的定义求出各数量积,结合余弦定理,求出,,a b c (用t 表示),然后由正弦定理求得结论.【详解】设()0543AB BC BC CA CA ABt t ⋅⋅⋅===<, 所以5AB BC t ⋅=,4BC CA t ⋅=,3CA AB t ⋅=,即cos 5ac B t -=,cos 4ab C t -=,cos 3bc A t -=,所以22210c a b t +-=-,2228b a c t +-=-,2226c b a t +-=-,解得a =b =c =所以sin :sin :sin ::A B C a b c == 故选:B.【点睛】本题考查平面向量的数量积,考查余弦定理和正弦定理.解题关键是用余弦定理表示出各边长.12.设函数()2ln x e f x t x x x x ⎛⎫=-++ ⎪⎝⎭恰有两个极值点,则实数t 的取值范围是( ) A. 1,2⎛⎤-∞ ⎥⎝⎦B. 1,2⎛⎫+∞⎪⎝⎭C. 1,,233e e ⎛⎫⎛⎫+∞⎪ ⎪⎝⎭⎝⎭D. 1,,23e ⎛⎤⎛⎫-∞+∞ ⎪⎥⎝⎦⎝⎭【答案】C【解析】 【分析】()f x 恰有两个极值点,则0fx 恰有两个不同的解,求出f x 可确定1x =是它的一个解,另一个解由方程e 02x t x -=+确定,令()()e 02xg x x x =>+通过导数判断函数值域求出方程有一个不是1的解时t 应满足的条件. 【详解】由题意知函数()f x 的定义域为0,,()()221e 121x x f x t x xx -⎛⎫'=-+-⎪⎝⎭()()21e 2xx t x x ⎡⎤--+⎣⎦=()()2e 122x x x t x x ⎛⎫-+- ⎪+⎝⎭=. 因为()f x 恰有两个极值点,所以0fx恰有两个不同的解,显然1x =是它的一个解,另一个解由方程e 02xt x -=+确定,且这个解不等于1.令()()e 02xg x x x =>+,则()()()21e 02xx g x x +'=>+,所以函数()g x 在0,上单调递增,从而()()102g x g >=,且()13e g =.所以,当12t >且e 3t ≠时,()e 2ln x f x t x x x x ⎛⎫=-++ ⎪⎝⎭恰有两个极值点,即实数t 的取值范围是1,,233e e ⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭.故选:C【点睛】本题考查利用导数研究函数的单调性与极值,函数与方程的应用,属于中档题. 二、填空题,本题共4小题,每小题5分,共20分.13.已知()1,0a =,1b =,a 与b 的夹角为60︒,则3a b +=______. 【解析】 【分析】可以求出||1a =,进而求出12a b =,进行数量积的运算即可求出2|3|13a b +=,从而得出|3|a b +的值. 【详解】解:||1,||1a b ==,a 与b 的夹角为60︒,∴12a b =, ∴222|3|6913913a b a a b b +=++=++=, ∴|3|13a b +=.【点睛】本题主要考查向量数量积的定义的应用,考查坐标法求向量的模,属于基础题.14.若22cos a xdx ππ-=⎰,则二项式6⎛⎝的展开式中含2x 项的系数是_________. 【答案】192- 【解析】 【分析】根据定积分计算出a 的值,然后根据二项式展开式的通项公式,计算出含2x 项的系数. 【详解】()2222cos sin |sinsin 222a xdx x ππππππ--⎛⎫===--= ⎪⎝⎭⎰,所以二项式66=⎛⎛ ⎝⎝,其展开式的通项公式为()611632266212rrrr r r r C x x C x ----⎛⎫⎛⎫⋅⋅-=-⋅⋅⋅ ⎪ ⎪⎝⎭⎝⎭,令32r -=,则1r =,所以含2x 项的系数是()1611612192C --⋅⋅=-.故答案为:192-【点睛】本小题主要考查定积分的计算,考查二项式展开式中指定项系数的求法,属于基础题.15.已知某种高炮在它控制的区域内击中敌机的概率为0.2,要使敌机一旦进入这个区域后有0.9以上的概率被击中,需要至少布置___________门高炮?(用数字作答,已知lg 20.3010=,lg30.4771=)【答案】11 【解析】 【分析】设需要至少布置n 门高炮,则1(10.2)0.9n -->,由此能求出结果. 【详解】解:设需要至少布置n 门高炮,某种高炮在它控制的区域内击中敌机的概率为0.2, 要使敌机一旦进入这个区域后有0.9以上的概率被击中,1(10.2)0.9n ∴-->, 解得10.3n >,n N ∈,∴需要至少布置11门高炮.故答案为:11.【点睛】本题考查概率的求法,考查n 次独立重复试验中事件A 恰好发生k 次的概率计算公式等基础知识,考查运算求解能力,考查函数与方程思想,属于中档题. 16.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2b =,(()cos 24sin 1A B C ++=,点P 是ABC 的重心,且AP =,则a =___________.【答案】【解析】 【分析】根据三角恒等变换可得3A π=或23A π=,利用重心的性质、模的性质及数量积得运算,可建立关于c 的方程,求解后利用余弦定理求a 即可.【详解】(()cos 24sin 1A B C ++=,(212sin 4sin 1A A ∴-+=整理得(22sin 4sin 0A A -++=,解得sin 2A =或sin 2A =(舍去),0A π<<3A π∴=或23A π=. 又∵点P 是ABC 的重心,1,3AP AB AC →→→⎛⎫∴=+ ⎪⎝⎭22212||||cos 9AP AB AC AB AC A →→→⎛⎫∴=++⋅ ⎪⎝⎭||23AP b ==, 整理得24cos 240c c A +-=. 当3A π=时,22240c c +-=,得4c =,此时214162242a =+-⨯⨯⨯,解得a = 当23A π=时,22240c c --=,得6c =, 此时214362262a ⎛⎫=+-⨯⨯⨯- ⎪⎝⎭,解得a =故答案为:【点睛】本题主要考查了三角恒等变换,向量的数量积运算法则、性质,余弦定理,属于难题.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤,第17至21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. 17.如图,已知四棱锥P ABCD -底面ABCD 为正方形,PA ⊥平面ABCD ,E 、F 分别是BC ,PC 的中点,2,2AB AP ==,.(1)求证:BD ⊥平面PAC ; (2)求二面角E AF C --的大小.【答案】(1)见解析 (2)6π【解析】【详解】(1)PA ABCD PA BD ABCD AC BD BD PAC⊥⇒⊥⇒⊥⇒⊥平面正方形平面(2)以A 为原点,如图所示建立直角坐标系(0,0,0)(2,1,0)(1,1,1)(2,1,0)(1,1,1)A E F AE AF ==,,设平面FAE 法向量为(,,)n x y z =,则20{x y x y z +=++=(1,2,1)n =-,(2,2,0)BD =-,·3cos 22?6||?,66n BD n BDE AF C θππθ===∴=--即二面角的大小为18.甲、乙两家销售公司拟各招聘一名产品推销员,日工资方案如下:甲公司规定底薪80元,每销售一件产品提成1元;乙公司规定底薪120元,日销售量不超过45件没有提成,超过45件的部分每件提成8元.(I )请将两家公司各一名推销员的日工资y (单位:元)分别表示为日销售件数n 的函数关系式;(II )从两家公司各随机选取一名推销员,对他们过去100天的销售情况进行统计,得到如下条形图.若记甲公司该推销员的日工资为X ,乙公司该推销员的日工资为Y (单位:元),将该频率视为概率,请回答下面问题:某大学毕业生拟到两家公司中的一家应聘推销员工作,如果仅从日均收入的角度考虑,请你利用所学的统计学知识为他作出选择,并说明理由.【答案】(I)见解析; (Ⅱ)见解析. 【解析】分析:(I)依题意可得甲公司一名推销员的工资与销售件数的关系是一次函数的关系式,而乙公司是分段函数的关系式,由此解得;(Ⅱ)分别根据条形图求得甲、乙公司一名推销员的日工资的分布列,从而可分别求得数学期望,进而可得结论.详解:(I)由题意得,甲公司一名推销员的日工资y (单位:元) 与销售件数n 的关系式为:80,y n n N =+∈.乙公司一名推销员的日工资y (单位: 元) 与销售件数n 的关系式为:()()45,120,45,8240n n N y n n N n ≤∈⎧=⎨>∈-⎩(Ⅱ)记甲公司一名推销员的日工资为X (单位: 元),由条形图可得X 的分布列为X122 124 126 128 130 P0.20.40.20.10.1记乙公司一名推销员的日工资为Y (单位: 元),由条形图可得Y 的分布列为∴125,136EX EY ==∴仅从日均收入的角度考虑,我会选择去乙公司. 点睛:求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义; 第二步是“探求概率”,即利用排列组合,枚举法,概率公式,求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值 19.已知n S 为等差数列{}n a 的前n 项和,且25a =,511a =. (1)求数列{}n a 的通项公式n a 和前n 项和n S : (2)记n n n a b S n=-,求{}(1)nn b -的前n 项和n T . 【答案】(1)21n a n =+;22n S n n =+(2)(1)11nn T n -=-++【解析】 【分析】(1)设等差数列{}n a 的公差为d ,根据通项公式列方程解得13,2a d ==,可得通项公式和前n 项和的公式; (2)求出111n b n n =++后,利用相邻两项抵消可得结果. 【详解】(1)设等差数列{}n a 的公差为d , 由25511a a =⎧⎨=⎩,得115411a d a d +=⎧⎨+=⎩解得132a d =⎧⎨=⎩,所以21n a n =+.()12(24)222n n n a a n n S n n ++===+. (2)221(1)11(1)1n n n a n n n b S n n n n n n n +++====+-+++. 1111111(1)1(1)12233411n nn T n n n -⎛⎫⎛⎫⎛⎫⎛⎫∴=-+++-+++-+=-+⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎝⎭. 【点睛】本题考查了等差数列的通项公式基本量的运算,考查了等差数列的通项公式和求和公式,考查了数列的求和问题,属于中档题.20.已知椭圆Γ:22221(0)x y a b a b+=>>的左、右顶点分别为C 、D,且过点,P 是椭圆上异于C 、D 的任意一点,直线PC ,PD 的斜率之积为12-. (1)求椭圆Γ的方程;(2)O 为坐标原点,设直线CP 交定直线x = m 于点M ,当m 为何值时,OP OM ⋅为定值.【答案】(1)22142x y +=(2)2m =【解析】 【分析】(1)设(),P x y ,根据题意可求得2212b a =,再代入椭圆方程即可求解.(2)根据(1)中的结论, 设直线:(2)CM y k x =+,并联立与椭圆的方程,求得(,(2))+M m k m ,222244(,)1212k kP k k -++,再表达出OP OM ⋅,根据恒成立问题求得系数的关系即可.也可直接设00(,)P x y 表达出OP OM ⋅,利用00(,)P x y 满足椭圆的方程进行化简,同理可得m 的值.【详解】解:(1)椭圆Γ过点,∴22211a b +=,①又因为直线,PC PD 的斜率之积为12-,故2221122y y y x a x a x a ⋅=-⇒=-+--. 又222222222222221x y a y y b x a a b b x a a +=⇒⇒=--=--.即2212b a =,②联立①②得2,a b ==∴所求的椭圆方程为22142x y +=.(2)方法1:由(1)知,(2,0)为-C .由题意可设:(2)CM y k x =+, 令x=m ,得(,(2))+M m k m .又设11(,)P x y由22142(2)x y y k x ⎧+=⎪⎨⎪=+⎩整理得:2222(12)8840k x k x k +++-=. ∵21284212k x k --=+,∴2122412k x k -=+,1124(2)12k y k x k =+=+, 所以222244(,)1212k kP k k-++, ∴22222224(2)244282(2)12121212+-+⋅=⋅++⋅==++++mk k k m kOP OM m k m k k kk , 要使OP OM ⋅与k 无关,只需12m=,此时OP OM ⋅恒等于4.∴2m =方法2::设00(,)P x y ,则00:(2)2=++y CM y x x ,令x=m ,得00(2)(,)2++y m M m x , ∴20000000(2)(2)(,)(,)22++⋅=⋅=+++y m y m OP OM x y m mx x x由2200142x y +=有220000(2)(2)2(1)42+-=-=x x x y , 所以000(2)(2)(2)2422+--++⋅=+=m x m x m OP OM mx ,要使OP OM ⋅与0x 无关,只须12m=,此时4OP OM ⋅=.∴2m =【点睛】本题主要考查了根据椭圆中的定值问题求解基本量的方法,同时也考查了联立直线与椭圆方程,根据椭圆上的点满足椭圆的方程,求解定值的有关问题.属于难题. 21.已知函数()(0)xf x ae a =≠,21()2g x x =. (1)当2a =-时,求曲线()f x 与()g x 的公切线方程:(2)若()()y f x g x =-有两个极值点1x ,2x ,且213x x ≥,求实数a 的取值范围. 【答案】(1)22y x =--;(2)3] 【解析】 【分析】(1)利用求导,分别求出两条曲线的切线方程.由题知两条切线重合,则可列出方程组,解得两个切点的横坐标,从而求出切线方程;(2)求()()y f x g x =-的导函数,其零点即为极值点1x ,2x ,则1212x x x x a e e ==.根据213x x ≥,可设21(3)x kx k =≥,解得1ln 1k x k =-,由此构造函数ln ()(3)1xh x x x =≥-,利用导函数求出()h x 的值域ln 3(0,]2,也即是1x 的范围.由11x x a e =构造函数ln 3()((0,])2x x x x e ϕ=∈,求出其值域,也即是实数a 的取值范围.【详解】解:(1)2a =-时,()2xf x e =-,设曲线()f x 上的切点为11(,2)x x e -,则切线方程为11122()x xy e e x x +=--,设曲线()g x 上的切点为2221(,)2x x ,则切线方程为22221()2y x x x x -=- 由两条切线重合得112212212(1)2x x e x e x x ⎧-=⎪⎨-=-⎪⎩,则1202x x =⎧⎨=-⎩ , 所以,公切线方程为22y x =--; (2)21()()2xy f x g x ae x =-=-, x y ae x '=-,设其零点为1x ,2x ,1212x x ae x ae x -=-,1212x x x x a e e ∴==, 令21(3)x kx k =≥,可得1111x kx x kx e e =,则1ln 1k x k =- 令ln ()(3)1xh x x x =≥-,211ln ()(1)x x h x x --'=-, 又令1()1ln (3)t x x x x =--≥,21()0xt x x -'=<,则()t x 单调递减, 2()(3)ln 303t x t ≤=-<,()0h x '∴<,()h x 单调递减,ln 3()2h x ≤ ,易知()0h x >,1ln 3(0,]2x ∴∈ , 令()x x x e ϕ=,1()x xx eϕ-'=,则()x ϕ在(,1]-∞上递增,113]x x a e ∴=∈ 【点睛】本题考查了利用导数的几何意义求切线,利用导函数求函数的最值问题.其中多次构造函数,利用导函数分析单调性,进而求最值是较大的难点,本题难度较大.(选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.作答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑)22.在直角坐标系xOy 中,直线1C的参数方程为222x y ⎧=-⎪⎪⎨⎪=+⎪⎩(其中t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为=2sin ρθ.(1)写出直线1C 的极坐标方程;(2)设动直线:(0)l y kx k =>与1C ,2C 分别交于点M 、N ,求ONOM的最大值. 【答案】(1)sin()4πρθ+=2)2【解析】 【分析】(1)消去参数t 求1C 的直角坐标方程,再根据cos x ρθ=,sin y ρθ=代入方程化简即可. (2) 设直线l 的极坐标方程为=0<<)2πθαα(,再根据极坐标的几何意义求解即可.【详解】解:(1)直线1C 的直角坐标方程为20x y +-=, 将cos x ρθ=,sin y ρθ=代入方程得sin cos 2ρθρθ+=,即sin()4πρθ+=(2)设直线l 的极坐标方程为=0<<)2πθαα(,设12(,),(,)M N ραρα,则212sin sin()1=)242ON OM πααρπαρ+=-+, 由02πα<<,有32444πππα-<-<, 当sin(2)=14πα-时,ON OM的最大值为2.【点睛】本题主要考查了参数方程与直角坐标的互化以及直角坐标化极坐标的方法.同时也考查了极坐标的几何意义,属于中等题型.23.已知()|2||2|(0)f x x m x m m =--+>的最小值为52-. (Ⅰ)求m 的值;(Ⅱ)已知0a >,0b >,且22a b m +=,求证:331b a a b+≥.【答案】(Ⅰ)1m =;(Ⅱ)见解析 【解析】 【分析】(Ⅰ)去绝对值变成分段函数,根据分段函数的单调性可求出()f x 的最小值,与已知最小值相等列式可求出;(Ⅱ)利用分析法,结合基本不等式,即可证明.- 21 - 【详解】(Ⅰ)由题意,函数32()223,223,2x m x m m f x x m x m x m m x m x m x ⎧⎪-+≤-⎪⎪=--+=---<<⎨⎪⎪-≥⎪⎩, 可得()f x 在区间,2m ⎛⎤-∞ ⎥⎝⎦上单调递减,在区间,2m ⎡⎫+∞⎪⎢⎣⎭上单调递增, 所以函数()f x 的最小值为min 5()3222m m m f x f m ⎛⎫==-=-⎪⎝⎭, 又因为函数()f x 的最小值为52-,可得5522m -=-,解得1m =. (Ⅱ)由(Ⅰ)0a >,0b >,且221a b +=, 要证331b a a b+≥, 只要证44b a ab +≥,即证()222222a b a b ab +-≥,即证22210a b ab +-≤,即证(21)(1)0ab ab -+≤,即证21ab ≤,即证222ab a b ≤+,显然2212a b ab +≥=,当且仅当2a b ==时取等号. 所以331b a a b+≥. 【点睛】本题主要考查了含有绝对值函数的最值的求解,以及不等式的证明,其中解答中合理去掉绝对值号,转化为分段函数,以及合理利用分析法,结合基本不等式进行证明是解答的关键,着重考查了推理与运算能力.。
2021年高三数学下学期第四次模拟试卷 理(含解析)
2021年高三数学下学期第四次模拟试卷理(含解析)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若复数z满足z(2﹣i)=11+7i,则z=( )A.3+5i B.3﹣5i C.﹣3+5i D.﹣3﹣5i2.设变量x,y满足约束条件,则目标函数z=3x+y的最大值为( ) A.﹣1 B.3 C.11 D.123.阅读如图的程序框图,当程序运行后,输出S的值为( )A.57 B.119 C.120 D.2474.已知a,b为实数,则“|a|+|b|<1”是“且”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.设F1,F2分别为双曲线﹣=1(a>0,b>0)的左、右焦点,双曲线上存在一点P使得|PF1|+|PF2|=3b,|PF1|•|PF2|=ab,则该双曲线的离心率为( )A.B.C.D.36.设min{p,q}表示p,q中较小的一个,给出下列命题:①min{x2,x﹣1}=x﹣1;②设,则min;③设a,b∈N*,则min的最大值是1,其中所有正确命题的序号有( )A.①B.③C.①②D.①③7.如图,AD切圆O于D点,圆O的割线ABC过O点,BC交DE于F点,若BO=2,AD=2.则给出的下列结论中,错误的是( )A.AB=2 B.= C.∠E=30°D.△EBD∽△CDB8.已知x1、x2是函数f(x)=|lnx|﹣e﹣x的两个零点,则x1x2所在区间是( ) A.(0,)B.(,1)C.(1,2)D.(2,e)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卷上.9.某校有体育特长生25人,美术特长生35人,音乐特长生40人.用分层抽样的方法共抽取40人,则抽取音乐特长生的人数为__________.10.一个几何体的三视图如图所示(单位:cm),则该几何体的体积等于__________cm3.11.△ABC的内角A、B、C所对的边分别为a、b、c,且满足(a+b+c)(a﹣b+c)=4,若A、B、C成等差数列,则ac的值为__________.12.已知m=(sint+cost)dt,则的展开式的常数项为__________.13.在极坐标系中,已知圆ρ=2sinθ与直线4ρcosθ+3ρsinθ﹣a=0相切,则实数a的值是__________.14.已知点A(﹣1,0),B(0,1),点P是圆(x﹣a)2+y2=1上的动点,当数量积•取得最小值2时,点P的坐标为__________.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.已知函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ≤)的图象关于直线x=对称,且图象上相邻两个最高点的距离为π.(1)求ω和φ的值;(2)若f()=(<α<),求sinα的值.16.某商场根据市场调研,决定从3种服装商品、2种家电商品和4种日用商品中选出3种商品进行促销活动.(Ⅰ)求选出的3种商品中至少有一种日用商品的概率;(Ⅱ)被选中的促销商品在现价的基础上提高60元进行销售,同时提供3次抽奖的机会,第一次和第二次中奖均可获得奖金40元,第三次中奖可获得奖金30元,假设顾客每次抽奖时中奖与否是等可能的,顾客所得奖金总数为X元,求随机变量X的分布列和数学期望.17.如图,△BCD与△ECD都是边长为2的正三角形,平面ECD⊥平面BCD,AB⊥平面BCD,AB=2.(Ⅰ)求证:CD⊥平面ABE;(Ⅱ)求点A到平面EBC的距离;(Ⅲ)求平面ACE与平面BCD所成二面角的正弦值.18.数列{a n}的前n项和记为S n,a1=2,a n+1=S n+n.(Ⅰ)求{a n}的通项公式;(Ⅱ)正项等差数列{b n}的前n项和为T n,且T3=9,并满足a1+b1,a2+b2,a3+成等比数列.(ⅰ)求{b n}的通项公式;(ⅱ)试确定与的大小关系,并给出证明.19.已知点是离心率为的椭圆=1(a>b>0)上的一点,斜率为的直线BC交椭圆于B、C两点,且B、C与A点均不重合.(Ⅰ)求椭圆的方程;(Ⅱ)△ABC的面积是否存在着最大值?若存在,求出这个最大值;若不存在,请说明理由?(Ⅲ)求直线AB与直线AC斜率的比值.20.已知函数f(x)=﹣bx,g(x)=lnx﹣f(x).(Ⅰ)若f(2)=2,讨论函数g(x)的单调性;(Ⅱ)若f(x)是关于x的一次函数,且函数g(x)有两个不同的零点x1,x2,求实数b 的取值范围;(Ⅲ)在(Ⅱ)的条件下,求证:x1x2>e2.天津市和平区xx届高考数学四模试卷(理科)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z满足z(2﹣i)=11+7i,则z=( )A.3+5i B.3﹣5i C.﹣3+5i D.﹣3﹣5i考点:复数代数形式的乘除运算.专题:计算题.分析:由z(2﹣i)=11+7i,知z=,再利用复数的代数形式的乘除运算,能求出z.解答:解:∵z(2﹣i)=11+7i,∴z====3+5i.故选A.点评:本题考查复数的代数形式的乘除运算,是基础题.解题时要认真审题,仔细解答.2.设变量x,y满足约束条件,则目标函数z=3x+y的最大值为( ) A.﹣1 B.3 C.11 D.12考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用目标函数的几何意义,求最大值.解答:解:作出不等式组对应的平面区域如图:(阴影部分).由z=3x+y得y=﹣3x+z,平移直线y=﹣3x+z,由图象可知当直线y=﹣3x+z经过点A时,直线y=﹣3x+z的截距最大,此时z最大.由,解得,即A(3,2),代入目标函数z=3x+y得z=3×3+2=11.即目标函数z=3x+y的最大值为11.故选:C.点评:本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.3.阅读如图的程序框图,当程序运行后,输出S的值为( )A.57 B.119 C.120 D.247考点:程序框图.专题:图表型;算法和程序框图.分析:由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.解答:解:模拟执行程序框图,可得S=1,k=1k=2,S=4不满足条件k>5,k=3,S=11不满足条件k>5,k=4,S=26不满足条件k>5,k=5,S=57不满足条件k>5,k=6,S=120满足条件k>5,退出循环,输出S的值为120.故选:C.点评:本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.4.已知a,b为实数,则“|a|+|b|<1”是“且”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:计算题.分析:可以利用特殊值法令|a|=0.6,|b|=0.3,再考查了必要条件和充分条件进行判断;解答:解:∵是“且”,∴|a|+|b|<1,若“|a|+|b|<1”,令|a|=0.6,|b|=0.3,∴|a|+|b|=0.9<1,∴“|a|+|b|<1”是“且”的必要不充分条件,故选B.点评:此题主要考查绝对值的性质,考查了必要条件和充分条件的定义及其判断,是一道基础题.5.设F1,F2分别为双曲线﹣=1(a>0,b>0)的左、右焦点,双曲线上存在一点P使得|PF1|+|PF2|=3b,|PF1|•|PF2|=ab,则该双曲线的离心率为( )A.B.C.D.3考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:不妨设右支上P点的横坐标为x,由焦半径公式有|PF1|=ex+a,|PF2|=ex﹣a,结合条件可得a=b,从而c==b,即可求出双曲线的离心率.解答:解:不妨设右支上P点的横坐标为x由焦半径公式有|PF1|=ex+a,|PF2|=ex﹣a,∵|PF1|+|PF2|=3b,|PF1|•|PF2|=ab,∴2e x=3b,(ex)2﹣a2=ab∴b2﹣a2=ab,即9b2﹣4a2﹣9ab=0,∴(3b﹣4a)(3b+a)=0∴a=b,∴c==b,∴e==.故选:B.点评:本题主要考查了双曲线的简单性质,考查了双曲线的第二定义的灵活运用,属于中档题.6.设min{p,q}表示p,q中较小的一个,给出下列命题:①min{x2,x﹣1}=x﹣1;②设,则min;③设a,b∈N*,则min的最大值是1,其中所有正确命题的序号有( )A.①B.③C.①②D.①③考点:命题的真假判断与应用.专题:三角函数的图像与性质;简易逻辑.分析:①作差:x2﹣(x﹣1)=>0,即可得出min{x2,x﹣1},进而判断出正误;②由,可得sinθ∈(0,1],作差﹣=≤0,即可判断出正误;③设a,b∈N*,由=≤=≤1,a≥1,即可判断出正误.解答:解:①∵x2﹣(x﹣1)=>0,∴x2>x﹣1,∴min{x2,x﹣1}=x﹣1,正确;②∵,∴sinθ∈(0,1],∴﹣==≤0,则min=,因此不正确;③设a,b∈N*,∵=≤=≤1,a≥1.可得:min的最大值是1,正确.故选:D.点评:本题考查了新定义、“作差法”比较数的大小、基本不等式的性质、三角函数的单调性,考查了推理能力与计算能力,属于中档题.7.如图,AD切圆O于D点,圆O的割线ABC过O点,BC交DE于F点,若BO=2,AD=2.则给出的下列结论中,错误的是( )A.AB=2 B.= C.∠E=30°D.△EBD∽△CDB考点:与圆有关的比例线段.专题:计算题;推理和证明.分析:对四个选项分别进行判断,即可得出结论.解答:解:由切割线定理可得AD2=AB•AC,即12=AB•(AB+4),所以AB=2,故A正确;由相交弦定理可得BF•CF=DF•EF,故可得B正确;由△ABD∽△ADC,可得,因为BC=4,所以DC=23,所以∠C=30°,所以∠E=30°,故C正确;△EBD、△CDB中只有一对角相等,不可推出△EBD∽△CDB,故不正确.故选:D.点评:本题考查切割线定理、相交弦定理,考查学生分析解决问题的能力,属于中档题.8.已知x1、x2是函数f(x)=|lnx|﹣e﹣x的两个零点,则x1x2所在区间是( ) A.(0,)B.(,1)C.(1,2)D.(2,e)考点:函数的零点.专题:函数的性质及应用.分析:能够分析出f(x)的零点便是函数|lnx|和函数e﹣x交点的横坐标,从而可画出这两个函数图象,由图象可看出,这样即可得出﹣1<lnx1x2<0,根据对数函数的单调性即可求出.解答:解:令f(x)=0,∴|lnx|=e﹣x;∴函数f(x)的零点便是上面方程的解,即是函数|lnx|和函数e﹣x的交点,画出这两个函数图象如下:由图看出0<﹣lnx1<1,﹣1<lnx1<0,0<lnx2<1;∴﹣1<lnx1+lnx2<1;∴﹣1<lnx1x2<1;∴;由图还可看出,﹣lnx1>lnx2;∴lnx1x2<0,x1x2<1;∴x1x2的范围是().故选B.点评:考查函数零点的概念,函数零点和方程解的关系,方程f(x)=g(x)的解和函数f (x)与g(x)交点的关系,对数的运算,以及对数函数的单调性.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卷上.9.某校有体育特长生25人,美术特长生35人,音乐特长生40人.用分层抽样的方法共抽取40人,则抽取音乐特长生的人数为16.考点:分层抽样方法.专题:概率与统计.分析:根据分层抽样的定义建立比例关系即可得到结论.解答:解:∵体育特长生25人,美术特长生35人,音乐特长生40人.用分层抽样的方法共抽取40人,∴抽取音乐特长生的人数为=人,故答案为:16点评:本题主要考查分层抽样的应用,根据条件建立比例关系是解决本题的关键.比较基础.10.一个几何体的三视图如图所示(单位:cm),则该几何体的体积等于10cm3.考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:由已知中的三视图,可知该几何体是一个长方体,挖去一个三棱柱和一个三棱锥后所得的组合体,分别求出长方体,三棱柱和三棱锥的体积,相减可得答案.解答:解:由已知中的三视图,可知该几何体是一个长方体,挖去一个三棱柱和一个三棱锥后所得的组合体,长方体的体积为:3×2×2=12cm3,三棱柱的体积为:3×(×1×1)=cm3,三棱锥的体积为:×3×(×1×1)=cm3,故组合体的体积V=12﹣﹣=10cm3,故答案为:10.点评:本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.11.△ABC的内角A、B、C所对的边分别为a、b、c,且满足(a+b+c)(a﹣b+c)=4,若A、B、C成等差数列,则ac的值为.考点:余弦定理.专题:解三角形.分析:由三角形三个内角成等差数列,利用等差数列的性质求出B的度数,利用余弦定理表示出cosB,将B的度数代入整理得到关系式,已知等式变形后代入计算求出ac的值即可.解答:解:∵△ABC中,A、B、C成等差数列,且A+B+C=π,∴2B=A+C=π﹣B,即B=,∴由余弦定理得:cosB==,即a2+c2﹣b2=ac,∵(a+b+c)(a﹣b+c)=(a+c)2﹣b2=a2+c2﹣b2+2ac=4,∴ac+2ac=4,即ac=,故答案为:点评:此题考查了余弦定理,等差数列的性质,熟练掌握余弦定理是解本题的关键.12.已知m=(sint+cost)dt,则的展开式的常数项为﹣.考点:定积分;二项式定理的应用.专题:导数的概念及应用.分析:根据题意,由定积分公式可得m=2,由二项式定理可得其展开式的通项,令x的指数为0,可得r的值,将r的值代入通项,计算可得其展开式中常数项,即可得答案解答:解:m=(sint+cost)dt=(﹣cost+sint)|=﹣cosπ+sinπ﹣(﹣cos0+sin0)=1+1=2,则=(x﹣)6,其展开式的通项为T r+1=C6r x6﹣r•(﹣)r=C6r(﹣)r x6﹣2r,令6﹣2r=0,可得r=3,此时T4=C63(﹣)3=﹣,故答案为:﹣点评:本题考查二项式定理的运用,关键是由定积分公式求出a的值,属于中档题.13.在极坐标系中,已知圆ρ=2sinθ与直线4ρcosθ+3ρsinθ﹣a=0相切,则实数a的值是﹣2或8.考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:利用x=ρcosθ,y=ρsinθ把圆的极坐标方程和直线的极坐标方程化为直角坐标方程,再由圆心到直线的距离等于圆的半径列式求解.解答:解:由圆ρ=2sinθ,得ρ2=2ρsinθ,化为直角坐标方程为x2+(y﹣1)2=1,圆心C(0,1),半径r=1.由直线4ρcosθ+3ρsinθ﹣a=0,得4x+3y﹣a=0,∵直线与圆相切,∴,解得a=﹣2或8.故答案为:﹣2或8.点评:本题考查简单曲线的极坐标方程化直角坐标方程,训练了点到直线的距离公式的应用,是基础题.14.已知点A(﹣1,0),B(0,1),点P是圆(x﹣a)2+y2=1上的动点,当数量积•取得最小值2时,点P的坐标为+1.考点:平面向量数量积的运算.专题:平面向量及应用.分析:设点P(a+cosθ,sinθ),求得•=a+cosθ+1+sinθ=a+1+cos(θ+),再利用余弦函数的值域、•的最小值为2,求得a的值解答:解:设点P(a+cosθ,sinθ),则由点A(﹣1,0),B(0,1),可得=(1,1),=(a+cosθ+1,sinθ),∴•=a+cosθ+1+sinθ=a+1+cos(θ+),故当cos(θ+)=﹣1时,故数量积•的最小值为a+1﹣=2,∴a=1+;故答案为:.点评:本题主要考查两个向量的数量积公式,三角函数的恒等变换,余弦函数的值域,属于基础题三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.已知函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ≤)的图象关于直线x=对称,且图象上相邻两个最高点的距离为π.(1)求ω和φ的值;(2)若f()=(<α<),求sinα的值.考点:由y=Asin(ωx+φ)的部分图象确定其解析式;三角函数的化简求值.专题:三角函数的图像与性质.分析:(1)由题意可得函数f(x)的最小正周期为π 求得ω=2.再根据图象关于直线x=对称,结合﹣≤φ<可得φ 的值.(2)由条件求得sin(α﹣)=.再根据α﹣的范围求得cos(α﹣)的值,再根据cos(α+)=sinα=sin[(α﹣)+],利用两角和的正弦公式计算求得结果.解答:解:(1)由题意可得函数f(x)的最小正周期为π,∴=π,∴ω=2.再根据图象关于直线x=对称,可得2×+φ=kπ+,k∈z.结合﹣≤φ<,可得φ=﹣.(2)∵f()=(<α<),∴sin(α﹣)=,∴sin(α﹣)=.再根据 0<α﹣<,∴cos(α﹣)==,∴sinα=cos(α+)=sin[(α﹣)+]=sin(α﹣)cos+cos(α﹣)sin=×+×=.点评:本题主要考查由函数y=Asin(ωx+φ)的部分图象求函数的解析式,两角和差的三角公式的应用,属于中档题.16.某商场根据市场调研,决定从3种服装商品、2种家电商品和4种日用商品中选出3种商品进行促销活动.(Ⅰ)求选出的3种商品中至少有一种日用商品的概率;(Ⅱ)被选中的促销商品在现价的基础上提高60元进行销售,同时提供3次抽奖的机会,第一次和第二次中奖均可获得奖金40元,第三次中奖可获得奖金30元,假设顾客每次抽奖时中奖与否是等可能的,顾客所得奖金总数为X元,求随机变量X的分布列和数学期望.考点:离散型随机变量的期望与方差.专题:概率与统计.分析:(I)设选出的3种商品中至少有一种是日用商品为事件A,利用间接法能求出选出的3种商品中至少有一种是日用商品的概率.(Ⅱ)设顾客抽奖的中奖奖金总额为X,则X的可能取值为0,40,80,70,110分别求出P(X=0),P(X=30),P(X=40),P(X=80),P(X=70)P(X=110),由此能求出顾客中奖次数的数学期望EX.解答:解:(I)从3种服装商品、2种家电商品,4种日用商品中,选出3种商品,一共有种不同的选法,选出的3种商品中,没有日用商品的选法有种.所以选出的3种商品至少有一种日用商品的概率为P=1﹣.(Ⅱ)X可能取得值为0,30,40,70,80,110P(X=0)=P(X=30)=P(X=40)=P(X=70)=P(X=80)=P(X=110)=所以X的分布列为X 0 30 40 70 80 110P \frac{1}{8} \frac{1}{8} \frac{1}{4} \frac{1}{4} \frac{1}{8} \frac{1}{8}EX=点评:本题主要考查超几何分布的应用和随机变量的分布列期望,属中档题型,xx届高考常考题型.17.如图,△BCD与△ECD都是边长为2的正三角形,平面ECD⊥平面BCD,AB⊥平面BCD,AB=2.(Ⅰ)求证:CD⊥平面ABE;(Ⅱ)求点A到平面EBC的距离;(Ⅲ)求平面ACE与平面BCD所成二面角的正弦值.考点:用空间向量求平面间的夹角;直线与平面垂直的判定;点、线、面间的距离计算.专题:综合题;空间位置关系与距离;空间角.分析:(Ⅰ)证明A,B,F,E共面,CD⊥BF,AB⊥CD,即可证明:CD⊥平面ABE;(Ⅱ)可以利用等体积法,CF即为C点到平面ABE的距离,求出三角形ABE的面积可得结论;(Ⅲ)延长AE与BF延长线交于点O,连CO,则CO是平面ACE与面BCD的交线,F是BO的中点,作FG⊥CO,连接EG,则∠EGF为平面ACE与平面BCD所成二面角的平面角,即可得出结论.解答:(Ⅰ)证明:取CD的中点F,连接BF,EF,则EF⊥CD,∵平面ECD⊥平面BCD,平面ECD∩平面BCD=CD,∴EF⊥平面BCD,∵AB⊥平面BCD,∴EF∥AB,∴A,B,F,E共面,∵△BCD是正三角形,F是CD的中点,∴CD⊥BF,∵AB⊥平面BCD,∴AB⊥CD,∵AB∩BF=B,∴CD⊥平面ABF,即CD⊥平面ABE;(Ⅱ)解:由上知,CF即为C点到平面ABE的距离,△BEC中,BC=2,CE=2,BE=,S△BEC==设点A到平面EBC的距离为h,则由等体积可得,∴h=;(Ⅲ)解:延长AE与BF延长线交于点O,连CO,则CO是平面ACE与面BCD的交线,F是BO的中点,作FG⊥CO,连接EG,则∠EGF为平面ACE与平面BCD所成二面角的平面角在△EFG中,EF=,FG=1,ER=2∴平面BCD与平面ACE所成二面角为.点评:本题考查点A到平面BCE的距离的求法,证明CD⊥平面ACE,求平面BCD与平面ACE 所成二面角的大小,考查学生分析解决问题的能力,属于中档题.18.数列{a n}的前n项和记为S n,a1=2,a n+1=S n+n.(Ⅰ)求{a n}的通项公式;(Ⅱ)正项等差数列{b n}的前n项和为T n,且T3=9,并满足a1+b1,a2+b2,a3+成等比数列.(ⅰ)求{b n}的通项公式;(ⅱ)试确定与的大小关系,并给出证明.考点:数列的应用.专题:等差数列与等比数列.分析:(Ⅰ)利用a n+1=S n+n,得到a n+1﹣a n=S n﹣S n﹣1+1=a n+1,推出{a n+1}的数列特征,然后求解{a n}的通项公式..(Ⅱ)(ⅰ)利用数列的和,结合等差数列即可求出{b n}的通项公式b n=b1+(n﹣1)d=n+1.(ⅱ)通过数列的通项公式,利用放缩法以及列项求和,推出结果即.解答:(本题13分)(Ⅰ)解:由a n+1=S n+n,得a n=S n﹣1+(n﹣1)(n>1),…(1 分)两式相减,得a n+1﹣a n=S n﹣S n﹣1+1=a n+1,∴a n+1=2a n+1,即a n+1+1=2(a n+1)(n>1).…(2 分)∵a1=2,∴a2=S1+1=a1+1=3.…(3 分)∴(n>1).…(4 分)∴{a n}的通项公式为…(5 分)(Ⅱ)解:(ⅰ)∵{b n}为等差数列,且T3=9,设{b n}的公差为d,则b1=3﹣d,b3=3+d.∵a1=2,a2=3,a3=7,∴a1+b1=5﹣d,a2+b2=6,.…(7 分)∵a1+b1,a2+b2,成等比数列,∴(5﹣d)(17+d)=72.∴d=1或d=﹣13(不合题意,舍去).…(8 分)∴b n=b1+(n﹣1)d=n+1.…(9 分)(ⅱ)∵(k∈N*),∴…=.…点评:本题考查数列的综合应用,数列求和,放缩法的应用,考查分析问题解决问题的能力.19.已知点是离心率为的椭圆=1(a>b>0)上的一点,斜率为的直线BC交椭圆于B、C两点,且B、C与A点均不重合.(Ⅰ)求椭圆的方程;(Ⅱ)△ABC的面积是否存在着最大值?若存在,求出这个最大值;若不存在,请说明理由?(Ⅲ)求直线AB与直线AC斜率的比值.考点:直线与圆锥曲线的综合问题;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)利用离心率以及点的坐标满足椭圆方程,求解椭圆的几何量,即可得到椭圆的方程.(Ⅱ)设B(x1,y1),C(x2,y2),BC的方程为,与椭圆方程联立,利用韦达定理以及弦长公式,求出三角形的面积,利用基本不等式求解△ABC的面积的最大值.(Ⅲ)设直线AB与直线AC的斜率分别为k AB和k AC,求出斜率的比值,结合(Ⅱ)求解即可.解答:(本题14分)(Ⅰ)解:依题意,得…(2 分)解得…(3 分)∴椭圆的方程为.…(4 分)(Ⅱ)解:设B(x1,y1),C(x2,y2),BC的方程为,则有整理,得.…(5 分)由,由根与系数的关系,得:,.…(7 分),设d为点A到直线BC的距离,则.…(8 分)∴.∵≤,当且仅当m=±2时取等号,∴当m=±2时,△ABC的面积取得最大值.…(9 分)(Ⅲ)解:设直线AB与直线AC的斜率分别为k AB和k AC,则,,…故.∵,∴.∴.…由,,得,…∴.∴.…点评:本题考查直线与椭圆方程的综合应用,椭圆方程的求法,考查分析问题解决问题的能力,转化思想的应用.20.已知函数f(x)=﹣bx,g(x)=lnx﹣f(x).(Ⅰ)若f(2)=2,讨论函数g(x)的单调性;(Ⅱ)若f(x)是关于x的一次函数,且函数g(x)有两个不同的零点x1,x2,求实数b 的取值范围;(Ⅲ)在(Ⅱ)的条件下,求证:x1x2>e2.考点:利用导数研究函数的单调性;导数在最大值、最小值问题中的应用.专题:导数的综合应用.分析:(Ⅰ)先求出g(x)的导数,通过讨论a的范围,得到函数g(x)的单调性;(Ⅱ)由f(x)=﹣bx,得到g(x)的表达式,令g(x)=0,得,记,通过讨论h(x)的单调性,得到h(x)取得最小值,从而得到b的范围;(Ⅲ)要证,即证,设(t>1),,通过求导得到F(t)的单调性,从而得到F(t)>0,进而证出结论.解答:解:(Ⅰ)由f(2)=2,得a﹣b=1.则,其定义域为(0,+∞),,当a<0时,令g'(x)=0,解得,x2=1,①当a<﹣1时,则,函数g(x)在区间和(1,+∞)上单调递增,在区间上单调递减,②当a=﹣1时,≥0,函数g(x)在区间(0,+∞)上单调递增,③当﹣1<a<0时,则,函数g(x)在区间(0,1)和上单调递增,在区间上单调递减,④当a≥0时,g(x)在区间(0,1)上单调递增,在区间(1,+∞)上单调递减,(Ⅱ)∵f(x)是关于x的一次函数,∴g(x)=lnx+bx,其定义域为(0,+∞).由g(x)=0,得,记,则,∴在(0,e)上单调递减,在(e,+∞)上单调递增.∴当x=e时,取得最小值,由h(1)=0,得x∈(0,1)时,h(x)>0,而x∈(1,+∞)时,h(x)<0,如下图:∴实数b的取值范围是.(Ⅲ)由题意,得lnx1+bx1=0,lnx2+bx2=0,故lnx1x2+b(x1+x2)=0,.∴.不妨设x1<x2,要证,只需证,即证,设(t>1),,则,∴函数F(t)在(1,+∞)上单调递增,而F(1)=0.∴F(t)>0,即.∴.点评:本题考察了导数的应用,考察函数的单调性、函数的极值问题,考察分类讨论思想、换元思想,本题是一道难题.v34220 85AC 薬20740 5104 億i28054 6D96 涖39047 9887 颇L\MA 22080 5640 噀v22249 56E9 囩r。
内蒙古乌海市2024高三冲刺(高考数学)统编版(五四制)模拟(评估卷)完整试卷
内蒙古乌海市2024高三冲刺(高考数学)统编版(五四制)模拟(评估卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知,则下列结论中正确的是()A.B.C.D.第(2)题已知复数z满足,则()A.1B.C.D.第(3)题将一个正方体的5个面均涂上红色,第6个面涂上蓝色,然后将其分割成27个同样大小的小正方体,则从至少有一个面涂色的小正方体中任取一个,取到恰有2个面涂色且涂不同颜色的小正方体的概率为()A.B.C.D.第(4)题抛物线的准线方程是()A.B.C.D.第(5)题已知分别为的边上的中线,设,,则=()A.+B.+C.D.+第(6)题已知曲线在点处的切线与抛物线也相切,则实数的值为()A.0B.C.1D.0或1第(7)题已知函数,则下列结论错误的是()A.的定义域为B.的值域为C.D.的单调递增区间为第(8)题已知某校一次数学测验所有学生得分都在内,根据学生得分情况绘制的频率分布直方图如图所示,则图中a的值是().A.0.015B.0.020C.0.030D.0.040二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知集合,定义上两点,,且,则下列说法正确的是()A.若,,则B.当时,设C为上一点,在△ABC中,若,则C.当时,设C为上一点,则D.若,,设为上一点,其中,则满足的点P有125个第(2)题已知,分别是双曲线(,)的左、右焦点,双曲线左支上存在一点,使(为实半轴长)成立,则此双曲线的离心率的取值可能是()A.B.2C.D.5第(3)题正方体的棱长为1,为侧面上的点,为侧面上的点,则下列判断正确的是()A.若,则到直线的距离的最小值为B.若,则,且直线平面C.若,则与平面所成角正弦的最小值为D.若,,则,两点之间距离的最小值为三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知双曲线的左、右焦点分别为,,过的直线交双曲线C的左支于P,Q两点,若且的周长为,则双曲线C的离心率为___________.第(2)题如图是一个由正方体截得八面体的平面展开图,它由六个等腰直角三角形和两个正三角形构成,若正三角形的边长为,则这个八面体中有下列结论:①平面平面;②多面体是三棱柱;③直线与直线所成的角为;④棱所在直线与平面所成的角为.以上结论正确的是________.第(3)题若,则的最大值与最小值的和为___________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题一个不透明的袋子中装有大小、质地相同的40个小球,其中10个红球,10个黄球,20个绿球,依次随机抽取小球,每次只取1个小球,完成下列问题:(1)若取出的小球不再放回,①求最后取完的小球是黄球的概率;②求红球比其余两种颜色小球更早取完的概率;③设随机变量为最后一个红球被取出时所需的取球次数,求;(2)若取出的小球又放回袋中,直到取到红球就停止取球,且最多取次球,设随机变量为取球次数,证明:.第(2)题已知点M(2,1)在矩阵A=对应的变换作用下得到点N(5,6),求矩阵A的特征值.第(3)题在含有个元素的集合中,若这个元素的一个排列(,,…,)满足,则称这个排列为集合的一个错位排列(例如:对于集合,排列是的一个错位排列;排列不是的一个错位排列).记集合的所有错位排列的个数为.(1)直接写出,,,的值;(2)当时,试用,表示,并说明理由;(3)试用数学归纳法证明:为奇数.第(4)题已知数列的前项和为,若(),且的最大值为25.(1)求的值及通项公式;(2)求数列的前项和.第(5)题已知函数,(1)若,函数图象上所有点处的切线中,切线斜率的最小值为,求切线斜率取到最小值时的切线方程;(2)若有两个极值点,且所有极值的和不小于,求的取值范围;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
内蒙古乌海市2021届新高考数学仿真第四次备考试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.己知集合{|13}M y y =-<<,{|(27)0}N x x x =-…,则M N ⋃=( ) A .[0,3) B .70,2⎛⎤ ⎥⎝⎦C .71,2⎛⎤- ⎥⎝⎦D .∅【答案】C 【解析】 【分析】先化简7{|(27)0}|02N x x x x x ⎧⎫=-=⎨⎬⎩⎭剟?,再求M N ⋃. 【详解】因为7{|(27)0}|02N x x x x x ⎧⎫=-=⎨⎬⎩⎭剟?,又因为{|13}M y y =-<<, 所以71,2M N ⎛⎤⋃=- ⎥⎝⎦,故选:C. 【点睛】本题主要考查一元二次不等式的解法、集合的运算,还考查了运算求解能力,属于基础题.2.已知双曲线2222:1(0,0)x y C a b a b-=>>,点()00,P x y 是直线40bx ay a -+=上任意一点,若圆()()22001x x y y -+-=与双曲线C 的右支没有公共点,则双曲线的离心率取值范围是( ). A .(]1,2 B .(]1,4C .[)2,+∞D .[)4,+∞ 【答案】B 【解析】 【分析】先求出双曲线的渐近线方程,可得则直线bx ay 2a 0-+=与直线bx ay 0-=的距离d ,根据圆()()2200x x y y 1-+-=与双曲线C 的右支没有公共点,可得d 1≥,解得即可.【详解】由题意,双曲线2222x y C :1(a 0,b 0)a b-=>>的一条渐近线方程为b y x a =,即bx ay 0-=,∵()00P x ,y 是直线bx ay 4a 0-+=上任意一点, 则直线bx ay 4a 0-+=与直线bx ay 0-=的距离4a d c==, ∵圆()()2200x x y y 1-+-=与双曲线C 的右支没有公共点,则d 1≥, ∴41a c ≥,即4ce a=≤,又1e > 故e 的取值范围为(]1,4, 故选:B . 【点睛】本题主要考查了直线和双曲线的位置关系,以及两平行线间的距离公式,其中解答中根据圆与双曲线C 的右支没有公共点得出d 1≥是解答的关键,着重考查了推理与运算能力,属于基础题.3.在平面直角坐标系xOy 中,已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为(),0F c ,若F 到直线20bx ay -=,则E 的离心率为( ) AB .12C.2D.3【答案】A 【解析】 【分析】由已知可得到直线20bx ay -=的倾斜角为45o ,有21ba=,再利用222a b c =+即可解决. 【详解】由F 到直线20bx ay -=,得直线20bx ay -=的倾斜角为45o ,所以21ba=, 即()2224a c a -=,解得e =. 故选:A. 【点睛】本题考查椭圆离心率的问题,一般求椭圆离心率的问题时,通常是构造关于,,a b c 的方程或不等式,本题是一道容易题.4.已知,x y 满足001x y x y x -⎧⎪+⎨⎪⎩………,则32y x --的取值范围为( )A .3,42⎡⎤⎢⎥⎣⎦B .(1,2]C .(,0][2,)-∞+∞UD .(,1)[2,)-∞⋃+∞【答案】C 【解析】 【分析】 设32y k x -=-,则k 的几何意义为点(,)x y 到点(2,3)的斜率,利用数形结合即可得到结论. 【详解】 解:设32y k x -=-,则k 的几何意义为点(,)P x y 到点(2,3)D 的斜率, 作出不等式组对应的平面区域如图:由图可知当过点D 的直线平行于x 轴时,此时302y k x -==-成立; 32y k x -=-取所有负值都成立; 当过点A 时,32y k x -=-取正值中的最小值,1(1,1)0x A x y =⎧⇒⎨-=⎩,此时3132212y k x --===--; 故32y x --的取值范围为(,0][2,)-∞+∞U ; 故选:C. 【点睛】本题考查简单线性规划的非线性目标函数函数问题,解题时作出可行域,利用目标函数的几何意义求解是解题关键.对于直线斜率要注意斜率不存在的直线是否存在.5.数列{a n },满足对任意的n ∈N +,均有a n +a n+1+a n+2为定值.若a 7=2,a 9=3,a 98=4,则数列{a n }的前100项的和S 100=( ) A .132 B .299C .68D .99【答案】B【解析】 【分析】由12n n n a a a ++++为定值,可得3n n a a +=,则{}n a 是以3为周期的数列,求出123,,a a a ,即求100S . 【详解】对任意的n ∈+N ,均有12n n n a a a ++++为定值,()()123120n n n n n n a a a a a a +++++∴++-++=,故3n n a a +=,{}n a ∴是以3为周期的数列,故17298392,4,3a a a a a a ======,()()()100123979899100123133S a a a a a a a a a a a ∴=+++++++=+++L ()332432299=+++=.故选:B . 【点睛】本题考查周期数列求和,属于中档题.6.执行下面的程序框图,若输出的S 的值为63,则判断框中可以填入的关于i 的判断条件是( )A .5i ≤B .6i ≤C .7i ≤D .8i ≤【答案】B 【解析】 【分析】根据程序框图,逐步执行,直到S 的值为63,结束循环,即可得出判断条件. 【详解】执行框图如下: 初始值:0,1S i ==,第一步:011,112S i =+==+=,此时不能输出,继续循环; 第二步:123,213S i =+==+=,此时不能输出,继续循环; 第三步:347,314S i =+==+=,此时不能输出,继续循环; 第四步:7815,415S i =+==+=,此时不能输出,继续循环; 第五步:151631,516S i =+==+=,此时不能输出,继续循环; 第六步:313263,617S i =+==+=,此时要输出,结束循环; 故,判断条件为6i ≤. 故选B 【点睛】本题主要考查完善程序框图,只需逐步执行框图,结合输出结果,即可确定判断条件,属于常考题型. 7.设 2.71828...e ≈为自然对数的底数,函数()1xxf x e e-=--,若()1f a =,则()f a -=( )A .1-B .1C .3D .3-【答案】D 【解析】 【分析】利用()f a 与()f a -的关系,求得()f a -的值. 【详解】依题意()11,2aaa a f a e ee e --=--=-=,所以()()11213aa a a f a e e e e ---=--=---=--=-故选:D 【点睛】本小题主要考查函数值的计算,属于基础题. 8.直线经过椭圆的左焦点,交椭圆于两点,交轴于点,若,则该椭圆的离心率是()A .B .C .D .【答案】A 【解析】 【分析】 由直线过椭圆的左焦点,得到左焦点为,且,再由,求得,代入椭圆的方程,求得,进而利用椭圆的离心率的计算公式,即可求解. 【详解】 由题意,直线经过椭圆的左焦点,令,解得,所以,即椭圆的左焦点为,且① 直线交轴于,所以,,因为,所以,所以,又由点在椭圆上,得 ②由,可得,解得,所以,所以椭圆的离心率为.故选A. 【点睛】本题考查了椭圆的几何性质——离心率的求解,其中求椭圆的离心率(或范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程,即可得的值(范围).9.已知AB 是过抛物线24y x =焦点F 的弦,O 是原点,则OA OB ⋅=u u u r u u u r( ) A .-2 B .-4C .3D .-3【答案】D 【解析】 【分析】设211,4y A y ⎛⎫ ⎪⎝⎭,222,4y B y ⎛⎫⎪⎝⎭,设AB :1x my =+,联立方程得到124y y =-,计算 22121216y y OA OB y y ⋅=+u u u r u u u r 得到答案.【详解】设211,4y A y ⎛⎫⎪⎝⎭,222,4y B y ⎛⎫⎪⎝⎭,故22121216y y OA OB y y ⋅=+u u u r u u u r . 易知直线斜率不为0,设AB :1x my =+,联立方程214x my y x =+⎧⎨=⎩,得到2440y my --=,故124y y =-,故221212316y y OA OB y y ⋅=+=-u u u r u u u r .故选:D . 【点睛】本题考查了抛物线中的向量的数量积,设直线为1x my =+可以简化运算,是解题的关键 . 10.“是函数()()1f x ax x =-在区间内单调递增”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C 【解析】()()21f x ax x ax x =-=-,令20,ax x -=解得1210,x x a==当0a ≤,()f x 的图像如下图当0a >,()f x 的图像如下图由上两图可知,是充要条件【考点定位】考查充分条件和必要条件的概念,以及函数图像的画法. 11.在复平面内,复数2iiz -=(i 为虚数单位)对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】C 【解析】 【分析】化简复数为a bi +(a 、)b R ∈的形式,可以确定z 对应的点位于的象限. 【详解】 解:复数222(2)(2)12i i iz i i i i i--===--=-- 故复数z 对应的坐标为()1,2--位于第三象限 故选:C . 【点睛】本题考查复数代数形式的运算,复数和复平面内点的对应关系,属于基础题.12.在一个数列中,如果*n N ∀∈,都有12n n n a a a k ++=(k 为常数),那么这个数列叫做等积数列,k 叫做这个数列的公积.已知数列{}n a 是等积数列,且11a =,22a =,公积为8,则122020a a a ++⋅⋅⋅+=( )A .4711B .4712C .4713D .4715【答案】B 【解析】 【分析】计算出3a 的值,推导出()3n n a a n N *+=∈,再由202036731=⨯+,结合数列的周期性可求得数列{}na 的前2020项和. 【详解】由题意可知128n n n a a a ++=,则对任意的n *∈N ,0n a ≠,则1238a a a =,31284a a a ∴==,由128n n n a a a ++=,得1238n n n a a a +++=,12123n n n n n n a a a a a a +++++∴=,3n n a a +∴=,202036731=⨯+Q ,因此,()1220201231673673714712a a a a a a a ++⋅⋅⋅+=+++=⨯+=.故选:B. 【点睛】本题考查数列求和,考查了数列的新定义,推导出数列的周期性是解答的关键,考查推理能力与计算能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。