奔驰COMAND系统工作原理与维修方法

奔驰COMAND系统工作原理与维修方法
奔驰COMAND系统工作原理与维修方法

奔驰COMAND系统工作原理与维修方法

作者:候振芳, 李玉茂

作者单位:北京

刊名:

汽车维修与保养

英文刊名:For Repair& Maintenance

年,卷(期):2012(2)

本文链接:https://www.360docs.net/doc/0f17552537.html,/Periodical_qcwxyby201202031.aspx

发动机的连续可变气门正时齿轮传动机构

发动机的连续可变气门正时齿轮传动机构 Osama H. M. Ghazal1, Mohamad S. H. Dado2安曼大学机械工程系 摘要 连续可变气门(CVVA)技术为实现了高性能、高电位,低油耗和污染物减排提供了依据。为了更好实现(CVVT),各种类型的机制已经被提出并设计。这些机制在生产和提高发动机性能表现出显着的好处。在本次调查中新设计的齿轮传动机构,从控制进气阀开启(Ivo)和关闭(IVC)的角度进行研究。该控制方案是建立在任何转速下通过连续改变凸轮轴角度和曲轴转角之间的相来最大限度地发挥发动机制动功率(P)和燃油消耗(BSFC)的基础上的。单缸发动机是在一个给定的发动机转速模拟上由“莲花”软件来找出最大功率和最小油耗的最佳相位角。该机构是一个传动设计精确和连续控制的行星齿轮。这种机制有一个简单的设计和操作条件,可以改变相位角且没有限制。 关键词:机械设计;行星齿轮;可变气门正时;火花点火发动机;性能 1.引言 在内燃机中,可变气门正时(VVT),也被称为可变气门驱动(VVA),是一个广义的术语,用来描述在改变形状或时间内内燃机[ 1 - 6 ]气门升程事件的任何机制或方法。(VVT)系统允许解除持续时间或定时(各种组合)的进气或排气阀在发动机运行中的变化,这对发动机性能和排放有重要影响。装备有可变气门制动系统的发动机从该CON-straint中解脱出来,使性能在发动机运行范围[7-10]得到改善。 某些类型的可变气门控制系统,通过改变开阀时间和/或持续时间优化功率和扭矩。这些阀门控制系统的优化性能主要体现在低、中档转速。其他重点在提升高转速功率。其它系统通过控制气门正时和升程实现这两种优点。有许多方法可以实现,从机械装置到液压,气动和无凸轮系统[11-14]。液压系统有许多问题,包括温度变化引起的液压介质的粘度变化,液体倾向于像高速固体,液压系统必须仔细控制,需要使用功能强大的计算机和非常精确的传感器。气动系统因为其复杂性和压缩空气所需巨大能量,采用气动驱动发动机阀在所有可能下都是不可行的。无凸轮系统(或免费气门发动机)使用电磁,液压,或气动制动器以打开提升阀来代替。常见的问题包括高功耗,精度高,速度快,温度敏感性,重

奔驰空气悬挂故障维修案例

奔驰空气悬挂故障维修案例 北京博睿通达汽车维修有限公司整理 奔驰S300轿车空气悬挂故障检修 一辆行驶里程约万km的奔驰S300轿车。该车在其他修理厂更换了一个右前上支臂,更换以后发现车辆的右侧比左侧明显要低。用尺子测量右侧比左侧低4cm,对比左右上悬挂的位置也没有发现什么不同。重新拆装一次后也没有解决问题,把车开到了我们北京博睿通达请求解决。 ??? ?故障排除:接车后首先用诊断仪对车辆的空气悬挂系统进行了检查,进入系统后没有发现任何故障。进入车辆数据对数据进行比对,发现右边比左边的要高14mm,这不合理,现在车辆右边明显要比左边低,但数据却是右边比左边要高。是不是右侧的高度传感器有问题?但此车在没有更换支臂以前左右高度是一致的。于是我们用诊断仪测试功能单独对右侧的空气减振进行做动以抬高右侧的高度。我们对其进行做动时,发现右侧的高度传感器能进行相应的数据反应,这表明右侧的高度传感器及其线路应该是没有问题的。是不是因为没有对其进行高度标定,从而造成车辆的空气悬挂系统无法正确地对其高度进行识别。我们对其左边的高度传感器进行查看,对比之后我们发现右边的高度传感器好像真有一点问题,右边这个传感器的固定位置比左边的要偏了一点。对其右边的高度的传感器进行拆卸,终于发现了问题,原来右侧的高度传感器在拆装上支臂时,没有将其传感器的固定脚安装到支臂相应的孔上。 ????故障排除:重新将右侧的高度传感器安装到位,故障排除。 ????故障总结:现在看来此故障是因为维修工人在维修过程中,没有对其安装的部件进行仔细的检查,从而造成右侧的高度传感器没有安装到位,它比正常的安装位置要偏高一点,从而造成悬挂控制模块认为右侧的高度要比左侧要高,这样悬挂控制模块就会对右侧的单向电磁阀进行调节,以调整到左右相同的高度。但实际上由于右侧高度传感器安装错误,右侧的实际高度并没有达到传感器所表现出来的高度。这样一来就出现了右侧的高度明显比左侧低的情况。?

「路虎案例」揽胜L322 空气悬挂故障

「路虎案例」揽胜L322 空气悬挂故障 【车型】揽胜L322【发动机】4.4 V8【故障里程】87541KM【故障频次】一直【故障现象】客户反映上坡时仪表显示故障,车身升降开关灯不亮,底盘降到最低。【故障确认】与客户一同试车,悬挂升到越野高度在颠路行驶,车速大约50-60KM/H,悬挂自动降到标准高度,继续行驶约10 秒后仪表提示“SUSPENSION FAULT NORMAL HEIGHT ONLY”,悬挂升降开关指示灯熄灭。用SDD 检测故障码为C1A20-64。【故障诊断过程】1、查看本厂维修记录,更换过气泵、气泵继电器、前控制阀体、后控制阀体。 2、悬挂在标准高度,在颠路模仿客户的驾驶方法行驶,接SDD 查看悬挂数据流发现两个前角阀打开,而后角阀则没有打开。 3、根据故障码及数据流,初步判断前空气弹簧或管路有漏气或接错。 4、刷新RLM,试车故障依旧。 5、将悬挂升到越野高度断开电瓶线负极,第二天检查前面的两个空气弹簧高度没有明显的下降。举升车辆检查,发现右前高度传感器和原车的不一样。于是查看该车的全国维修历史,右前部发生过事故更换过右前空气弹簧、前阀体、右前气管等部件。维修过前阀体的线束,拆装过储气罐。在对维修过的部位检查时发现前阀体处到右前空气弹簧的气管(黄管)和从储气罐阀体来的主气管(篮管)接反。【故障原因

分析】气管接错后,走颠路快速颠簸,交叉阀打开时,左前空气弹簧的管路和主管路连通。左前空气弹簧颠簸,致使主管路压力产生波动。给储气罐充气时,一部分气体进入左前空气弹簧致使压力上升过慢。【维修方案】将空气悬挂前阀体主供气管和右前气管按正确的位置装配。【案例总结】1、维修前要查看故障车的维修历史(包括全国维修记录),重 点是故障首次出现前的记录。2、维修资料中没有介绍交叉阀、角阀的在什么工作情况下打开,可利用SDD 数据流功能和正常的车做对比,得出结论。【专用工具设备】SDD案例点评及建议:充分利用数据流和工作原理图分析故障原因。查找出其他维修过程中的隐藏故障。对于事故车维修的拆卸应做好标识的重要性,避免安装时发生的错误。附图:故 障码2 .正常车走颠路时前十字连接阀开启的数据流 3 .气路图4. 气管实物图

可变气门(连续)正时系统的原理

连续可变气门正时系统的原理 现代引擎多采用DOHC的缸盖设计,两根凸轮轴被设置在引擎顶部,通过齿形带轮或链条从曲轴端取力,并以2:1的速度驱动凸轮轴,此时凸轮轴商凸轮的旋转推动气门进行上下往复运动,从而控制气门的开启和闭合。而我们今天要关注的,其实就是气门开合的问题。 什么是“可变气门行程”? 活塞式四冲程引擎都由进气、压缩、做功、排气4个冲程完成,我们关注的是气门开启程度对引擎进气的问题。气缸进气的基本原理是“负压”,也就是气缸内外的气体压强差。在引擎低速运转时,气门的开启程度切不可过大,这样容易造成气缸内外压力均衡,负压减小,从而进气不够充分,对于气门的工作而言,这个“小程度开启”需要短行程的方式加以控制;而高速恰恰相反,转速动辄5000rpm,倘若气门依然羞羞答答不肯打开,引擎的进气必然受阻,所以,我们需要长行程的气门升程。往往,工程师们既要兼顾引擎在低速区的扭矩特性,又想榨取高速区的功率特性,只能采取一条“折中”的思路,到头来引擎高速没功率,低速缺 扭矩... 所以在这样的情况下,就需要一种对气门升程进行调节的装置,也就是我们要说的“可变气门正时技术”。该技术既能保证低速高扭矩,又能获得高速高功率,对引擎而言是一个极 大的突破。 80年代,诸多企业开始投入了可变气门正时的研究,1989年本田首次发布了“可变气门配气相位和气门升程电子控制系统”,英文全称“Variable Valve Timing and Valve Life Electronic Control System,也就是我们常见的VTEC。此后,各家企业不断发展该技术,到今天已经非常成熟,丰田也开发了VVT-i,保时捷开发了Variocam,现代开发了DVVT……几乎每家企业都有了自己的可变气门正时技术。一系列可变气门技术虽然商品名各异,但其 设计思想却极为相似。 可变气门正时技术之一:保时捷Variocam 保时捷911跑车引擎采用的可变气门正时技术Variocam. 当引擎在低转速工况时,气门座顶端的黄色的控制活塞落在气门座内。这样高速凸轮只能驱动气门座向下行程而不能带动整个气门动作,整个气门由低速凸轮驱动气门顶向下行程,这样获得的气门开度就较小。反之当发动机在高转速工况时,控制活塞在液压的驱动下从气门座推入到气门顶中,把气门座和气门刚性的连接,高速凸轮驱动气门座时就能带动气 门向下行程获得较大的气门开度。 可变气门正时技术之二:本田VTEC 凸轮轴上依然布置有高速凸轮与低速凸轮,但由于本田引擎的气门由摇臂驱动,所以不能像保时捷一样紧凑。控制高低速凸轮切换的是一组结构复杂的摇臂,通过传感器测出引擎转速,传送到ECU进行控制,并由ECU发出指令控制摇臂。简单地说,就是这套摇臂能够根据转速不同自动选取1进1排的2气门工作或者2进2排的4气门工作,从而让发动机在 高低速工况下都能顺畅自如。 通常,转速低于3500rpm时,各有一支进气、排气凸轮工作,此时发动机近似为一台2气门发动机,这样的好处是,能够增加负压,利于进气;转速超过3500rpm时,液压系伺服系统接到发动机中央控制器ECU指令,对摇臂内机油加压,压力机油推动定时柱塞移动,

梅赛德斯-奔驰S级轿车历代介绍

纵览车坛历史,星河浩瀚,铺泻如锦夜空。其中自有最耀眼的一颗,闪着三叉星辉的光影,穿越时空,从遥不可及到伸手可触,不断缔造不朽传奇,向我们演绎它的多重生命。这就是梅赛德斯-奔驰的旗舰轿车——S级。当客户选择梅赛德斯-奔驰S级轿车时,要么是因为她出众的豪华舒适性,要么是因为她卓越的安全特性,抑或是因为她开创性的高新技术。然而这只是其一,梅赛德斯-奔驰S级轿车展示给人们的却远远不止于此。 梅赛德斯-奔驰S级轿车的光辉历史可以追溯到半个多世纪前,从最初于1951年4月亮相发兰克福车展的220和300轿车到1998年上市的最近一代S级轿车,梅赛德斯-奔驰S级轿车始终占据着全球豪华车市场的王者地位。到目前为止,S级轿车在全球总计销售了270多万辆,占据全球豪华车市场份额高达36%。 1972年到1980年间,底盘编号为W116的梅赛德斯-奔驰轿车被正式冠以S级的名号,这不仅正式开启了S级轿车的传奇历史,更标志着一个不朽经典象征的诞生。从那刻起,梅赛德斯-奔驰S级轿车即被视为世界上最豪华、精湛轿车的典范,然而传奇的开始却要来的更加久远。 50年代 1951年,戴姆勒-奔驰(梅赛德斯-奔驰公司的前身)在第一届法兰克福车展上隆重推出了包括220和300在内的两款产品,这代表着

S级辉煌时代的开始。当时的220是在170 S的基础上研发的,其搭载了排量2.2升的全新6缸发动机,最大输出功率达到59千瓦/80马力。 1951年11月,德国的《ADAC摩托世界》(ADAC-Motorwelt)发表评论:―从总体上来看,不仅220车型的操纵性远远超过了平均水平,而且我们大胆地认为世界上只有极少数车型具有像220车型那样完美的操纵性。‖1952年,瑞士的《汽车评论》(Automobil Revue)也写道:―毫无疑问,220车型令人目不暇接。220车型的车主拥有了迅速、安全、舒适和经济的座驾。只有极少数的旅行车才能与220车型的总体品质相媲美,只有更加昂贵的车型才能超过220车型的总体品质。‖ 1954年3月,梅赛德斯-奔驰推出了全新220系列车型,其中装配6缸发动机的220a出自W 187底盘系列。梅赛德斯-奔驰对这款车型的6缸发动机进行了众多改进:压缩比更大;由于采用了敏锐的凸轮轴和更大的化油器,发动机输出功率提高到了85马力(63千瓦)。此外,为W 196 F1赛车开发的具有低枢轴点的单铰接点摆动桥也首次用于梅赛德斯-奔驰的量产轿车,提高了操控性。220a的制动系统也有了显著改进,四个轮胎都配备了带―涡轮增压冷却‖装置的鼓式刹车系统。 1956年3月,在220a上市两年后,第一次采用―浮筒式‖车身设计的219和220 S问世。这两款产品也搭载了梅赛德斯-奔驰的6缸发动

奔驰ML350 空气悬架系统常见故障

奔驰ML350 空气悬架系统常见故障 引言:一辆奔驰ML350,用户反映该车仪表板灯光系统报警,中央控制面板的悬架升高按键上的LED 灯不停闪烁。 故障1 悬架升高按键上的LED 灯不停闪烁 一辆奔驰ML350,用户反映该车仪表板灯光系统报警,中央控制面板的悬架升高按键上的LED 灯不停闪烁。 连接故障诊断仪对空气悬架系统进行检测,发现了故障含义为加注中央蓄压器的时间异常的故障码。利用故障诊断仪的驱动功能为中央蓄压器充气,发现控制单元的指令可以发出但充气泵不工作。根据驱动测试结果可以判定,既有可能是线路问题,也有可能是元件问题。先检查了充气泵的电源线,结果无电压。对照电路图进行线路检查发现,提供电源的40 A 熔丝已经熔断。但检查充气泵及线路无短路现象,于是更换熔断的熔丝试车。但进行试车后故障依旧。

中央分配阀 限压阀

充气泵 根据以上检查结果,可以确定充气泵损坏。在更换新的充气泵后悬架系统升降功能恢复,升降开关上的LED 灯在车辆悬架达到预定高度后LED 灯熄灭,故障排除。 故障2 空气悬架不能升降 一辆奔驰ML350 轿车,用户反映该车的空气悬架不能升降。 连接故障故障诊断仪对系统进行检测,发现了故障内容为充气时间异常、管路泄漏的故障码。我们先对充气泵的线路进行了检查,没有发现异常。既然线路没有问题,那么很有可能是空气悬架系统存在泄漏的问题。于是对管路及分配阀进行测漏,结果发现分配阀处有泄漏现象。那么会不会这就是故障点呢?因为一旦分配阀出现泄漏,将使得充气泵产生的高压空气从此处泄漏,这样进入空气悬架系统的高压空气量将减少,因此空气悬架在规定的时间内将无法达到设定的高度,此时按键上的LED灯便会持续闪烁。由于充气泵的工作时间超长,最终还会导致线路过载烧毁熔丝。 在更换中央分配阀后,故障排除。

可变气门正时系统

可变气门正时系统 VVT Variable Valve Timing 可变气门正时系统。当今都是N/A(自然吸气)引擎技术。该系统通过配备的控制及执行系统,对发动机凸轮的相位进行调节,从而 使得气门开启、关闭的时间随发动机转速的变化而变化,以提高充气效率,增加发动机功率。 发动机可变气门正时技术(VVT,Variable Valve Timing)原理是根据发动机的运行情况,调整进气(排气)的量,和气门开合时间,角度。是进入的空气量达到最佳,提高燃烧效率。优点是省油,公升比大。缺点是中段转速扭矩不足。 韩系车的VVT是根据日本中的丰田的VVT-I和本田的VTEC技术模仿而来,但是相比丰田的VVT-I可变正时气门技术,VVT仅仅是 可变气门技术,缺少正时技术,所以VVT发动机确实要比一般的发动机省油,但是赶不上日系车的丰田和本田车省油。 其实像德国大众的速腾1.6升2气门发动机也有可变气门相位技术,不过并不像日系车和韩系车宣传的那么多。但是就发动机技术而言,日系车的发动机并不比德系车的发动机先进。很多人以为日系车省油是因为日本车的发动机先进,其实这是一个误区。 BMW在之前的一代发动机中早已采用该技术,目前如本田的VTEC、i-VTEC、;丰田的VVT-i;日产的CVVT;三菱的MIVEC;铃 木的VVT;现代的VVT;起亚的CVVT等也逐渐开始使用。总的说来其实就是一种技术,名字不同。 VVT--i VVT中文意思是“可变气门正时”,由于采用电子控制单元(ECU)控制,因此丰田起了一个好听的中文名称叫“智慧型可变气门正时系统”。该系统主要控制进气门凸轮轴,又多了一个小尾巴“i”,就是英文“Intake”(进气)的代号。这些就是“VVT-i”的字面含义了。VVT—i.系统是丰田公司的智能可变气门正时系统的英文缩写,最新款的丰田轿车的发动机已普遍安装了VVT—i系统。丰田的VVT—i系统可连续调节气门正时,但不能调节气门升程。它的工作原理是:当发动机由低速向高速转换时,电子计算机就自动地将机油压向进气凸轮轴 驱动齿轮内的小涡轮,这样,在压力的作用下,小涡轮就相对于齿轮壳旋转一定的角度,从而使凸轮轴在60度的范围内向前或向后旋转,从而改变进气门开启的时刻,达到连续调节气门正时的目的。 VVT-i是一种控制进气凸轮轴气门正时的装置,它通过调整凸轮轴转角配气正时进行优化,从而提高发动机在所有转速范围内的动力性、燃油经济性,降低尾气的排放。 VVT-i系统由传感器、ECU和凸轮轴液压控制阀、控制器等部分组成。ECU储存了最佳气门正时参数值,曲轴位置传感器、进气歧管空气压力传感器、节气门位置传感器、水温传感器和凸轮轴位置传感器等反馈信息汇集到ECU并与预定参数值进行对比计算,计算出修正参数并发出指令到控制凸轮轴正时液压控制阀,控制阀根据ECU指令控制机油槽阀的位置,也就是改变液压流量,把提前、滞后、保持不变等信号指令选择输送至VVT-i控制器的不同油道上。 VVT-i系统视控制器的安装部位不同而分成两种,一种是安装在排气凸轮轴上的,称为叶片式VVT-i,丰田PREVIA(大霸王)安装此款。另一种是安装在进气凸轮轴上的,称为螺旋槽式VVT-i,丰田凌志400、430等高级轿车安装此款。两者构造有些不一样,但作用是相同的。 叶片式VVT-i控制器由驱动进气凸轮轴的管壳和与排气凸轮轴相耦合的叶轮组成,来自提前或滞后侧油道的油压传递到排气凸轮轴上,导致VVT-i控制器管壳旋转以带动进气凸轮轴,连续改变进气正时。当油压施加在提前侧油腔转动壳体时,沿提前方向转动进气凸轮轴;当油压施加在滞后侧油腔转动壳体时,沿滞后方向转动进气凸轮轴;当发动机停止时,凸轮轴液压控制阀则处于最大的滞后状态。螺旋槽式VVT-i控制器包括正时皮带驱动的齿轮、与进气凸轮轴刚性连接的内齿轮,以及一个位于内齿轮与外齿轮之间的可移动活塞,活塞表面有螺旋形花键,活塞沿轴向移动,会改变内、外齿轮的相位,从而产生气门配气相位的连续改变。当机油压力施加在活塞的左侧,迫使活塞右移,由于活塞上的螺旋形花键的作用,进气凸轮轴会相对于凸轮轴正时皮带轮提前某个角度。当机油压力施加在活塞的 石侧,迫使活塞左移,就会使进气凸轮轴延迟某个角度。当得到理想的配气正时,凸轮轴正时液压控制阀就会关闭油道使活塞两侧压力 平衡,活塞停止移动。 现在,先进的发动机都有“发动机控制模块”(ECM),统管点火、燃油喷射、排放控制、故障检测等。丰田VVT-i发动机的ECM在各种行驶工况下自动搜寻一个对应发动机转速、进气量、节气门位置和冷却水温度的最佳气门正时,并控制凸轮轴正时液压控制阀,并通过各个传感器的信号来感知实际气门正时,然后再执行反馈控制,补偿系统误差,达到最佳气门正时的位置,从而能有效地提高汽车的功率与性能,尽量减少耗油量和废气排放。

奔驰空气悬挂故障维修案例图文稿

奔驰空气悬挂故障维修 案例 Company number【1089WT-1898YT-1W8CB-9UUT-92108】

奔驰空气悬挂故障维修案例北京博睿通达汽车维修有限公司整理 奔驰S300轿车空气悬挂故障检修 一辆行驶里程约10.4万km的奔驰S300轿车。该车在其他修理厂更换了一个右前上支臂,更换以后发现车辆的右侧比左侧明显要低。用尺子测量右侧比左侧低4cm,对比左右上悬挂的位置也没有发现什么不同。重新拆装一次后也没有解决问题,把车开到了我们北京博睿通达请求解决。故障排除:接车后首先用诊断仪对车辆的空气悬挂系统进行了检查,进入系统后没有发现任何故障。进入车辆数据对数据进行比对,发现右边比左边的要高14mm,这不合理,现在车辆右边明显要比左边低,但数据却是右边比左边要高。是不是右侧的高度传感器有问题但此车在没有更换支臂以前左右高度是一致的。于是我们用诊断仪测试功能单独对右侧的空气减振进行做动以抬高右侧的高度。我们对其进行做动时,发现右侧的高度传感器能进行相应的数据反应,这表明右侧的高度传感器及其线路应该是没有问题的。是不是因为没有对其进行高度标定,从而造成车辆的空气悬挂系统无法正确地对其高度进行识别。我们对其左边的高度传感器进行查看,对比之后我们发现右边的高度传感器好像真有一点问题,右边这个传感器的固定位置比左边的要偏了一点。对其右边的高度的传感器进行拆卸,终于发现了问题,原来右侧的高度传感器在拆装上支臂时,没有将其传感器的固定脚安装到支臂相应的孔上。 故障排除:重新将右侧的高度传感器安装到位,故障排除。

故障总结:现在看来此故障是因为维修工人在维修过程中,没有对其安装的部件进行仔细的检查,从而造成右侧的高度传感器没有安装到位,它比正常的安装位置要偏高一点,从而造成悬挂控制模块认为右侧的高度要比左侧要高,这样悬挂控制模块就会对右侧的单向电磁阀进行调节,以调整到左右相同的高度。但实际上由于右侧高度传感器安装错误,右侧的实际高度并没有达到传感器所表现出来的高度。这样一来就出现了右侧的高度明显比左侧低的情况。

宝马VANOS可变气门正时系统

宝马V ANOS可变气门正时系统 来源:末知作者:佚名发布时间:2008-01-14 宝马的VANOS系统是一个由车辆发动机管理系统操纵的液压和机械相结合的凸轮轴控制设备。V ANOS系统基于一个能够调整进气凸轮轴与曲轴相对位置的调整机构。双 V ANOS则增加了对进排气凸轮轴的调整机构。 V ANOS系统根据发动机转速和加速踏板位置来操作进气凸轮轴。在发动机转速达到最低时,进气门将随后开启以改善怠速质量及平稳度。发动机处于中等转速时,进气门提前开启以增大扭矩并允许废气在燃烧室中进行再循环从而减少耗油量和废气的排放。最后,当发动机转速很高时,进气门开启将再次延迟,从而发挥出最大功率。 V ANOS系统极大增强了尾气排放管理能力,增加了输出和扭矩,提供了更好的怠速质量和燃油经济性。V ANOS系统的最新版是双V ANOS,被用于新M3车型上。该技术于1992年被首次应用于宝马5系车型的M50发动机上。

『双V ANOS系统即Double V ANOS』 在顶置凸轮轴发动机中,凸轮轴通过一根皮带或者链条和齿轮与曲轴相连。在宝马V ANOS 系统发动机内有一根链条和一些链轮。曲轴驱动排气凸轮上的链轮,排气凸轮链轮被螺栓固定于排气凸轮上,第二套齿轮驱动穿过进气凸轮的第二根链条,进气凸轮上的大链轮没有固定在凸轮上,因为其中间有个大孔,孔内有一套螺旋形的齿,在凸轮的一端有一个外侧也是螺旋形的齿轮,但它太小,无法与大链轮内侧的齿轮相连接。有一小块杯状带有螺旋形齿轮的金属,其内侧与凸轮相配合,外侧与链轮配合。V ANOS系统的可变性就是源于齿轮的螺旋形。杯状装置由作用于受DME(数字式电子发动机管理系统)控制依靠油压的液压机构驱动。 怠速时,凸轮正时延迟。在非怠速状态下,DME为电磁线圈通电控制油压推动杯状齿轮,在中等转速下推动凸轮提前12.5度,然后在5000转/分时,允许其回到初始位置。中速运

汽车发动机可变气门正时系统及其故障检测

汽车发动机可变气门正时系统及其故障检测 摘要发动机可变气门正时技术(VVT)是近年来被逐渐应用于现代轿车发动机的一种新技术。它的主要优点包括节省燃油、降低污染和噪音等。但是VVT 技术的引入也增加了汽车发动机系统的复杂性,对汽车的保养维护及故障检测提出了较高的要求。首先对汽车发动机VVT技术进行概述,然后结合一起发动机故障实例,介绍汽车发动机VVT相关故障诊断的方法。 关键词可变气门正时系统;VVT;故障检测 近几十年来,基于提高汽车发动机动力性、经济性和降低排污的广泛需求,许多国家和厂商、科研机构投入了大量的人力、物力进行新技术的研究与开发。发动机可变气门正时技术(VariableValve Timing, VVT)是近些年来被逐渐应用于现代轿车发动机的一种新技术。 VVT 技术的基本思想是调节发动机进气、排气系统的升程、重叠时间与正时(部分或者全部)。这样可以提高进气充量,使充量系数增加,发动机的扭矩和功率可以得到进一步的提高。以日本丰田汽车公司的智能正时可变气门控制系统VVT-i为例,该技术应用于3L6缸双凸轮轴发动机,可以节省燃油6%,减少CO2排出量40%,降低HC排放量10%,输出扭矩可增加10%。 但是,VVT系统的引入不可避免地增加了汽车发动机整体的复杂性。对汽车的保养维护和故障诊断提出了较高的要求。本文首先对汽车发动机VVT技术做概括性介绍,然后结合一起悦达起亚赛拉图轿车发动机故障实例,介绍VVT汽车发动机故障诊断和排除的一般流程。 1 VVT技术简介 VVT技术的雏形最早出现在19世纪的火车蒸汽机车上。20世纪80年代,许多汽车企业开始了内燃发动机VVT技术的研究。1989年本田首次发布了“可变气门配气相位和气门升程电子控制系统”。时至今日,许多汽车企业都开发了自己的VVT技术。 活塞式内燃发动机通常通过提升节流阀来进气与排气。提升阀直接或间接地被凸轮轴上的凸轮驱动。凸轮轴上凸轮的轮廓与位置通常是为特定的发动机转速而优化的,通常这会降低发动机在低转速情况下的扭矩和高转速情况下的功率。VVT技术能够使其根据发动机工况进行改变,提高了发动机的效率与动力。 常见汽车发动机的VVT系统由:VVT机油控制阀、VVT机油滤清器、VVT 执行器及其他传感器、ECM等组成。VVT机油滤清器通过缸盖油道向VVT机油控制阀供油;发动机控制模块ECM根据发动机的转速、负荷等参数控制滑阀式的VVT机油控制阀,向VVT执行器的气门正时提前油室或气门正时滞后油室供油;VVT执行器根据供给的油压直接改变排气凸轮轴的相位,通过链条传动,间接

可变气门正时技术

发动机可变气门正时技术 发动机可变气门正时:简称VVT(Variable Valve Timing);随着发动机转速的提高,短促的进排气时间往往会引起发动机进气不足,排气不净等现象,因此可变气门正时系统出现,它就是根据轿车的运行状况,随时改变配气相位,改变气门升程和气门开启的持续时间(气门升程就像门开启的角度,气门正时就像门开启的时间,进气歧管就像各个闸道的栏杆)。 发动机上的气门可变驱动机构可以通过两种形式实现,一种是通过凸轮轴或者凸轮的变换来改变配气相位和气门升程;另一种就是工作时凸轮轴和凸轮不变动,而气门挺杆(摇臂或拉杆)依靠机械力或者液压力的作用而改变,从而改变配气相位和气门升程。 发动机进排气过程中,会出现一个进气门和排气门同时开启的时刻,在配气相位上称为“重叠阶段或气门重叠角”。在高转速下,为了达到更好的进气量,提高发动机的功率,就要求气门重叠角更大(进气门提前打开、或者排气门晚关);但在低转速或者怠工时,过大的重叠角则会导致废气过多的进入进气歧管,使缸内气流混乱,从而导致低速扭矩较低,因此低速时需要减小重叠角(进气门延时打开),此时燃烧会更充分更稳定。因此孕育出可变气门正时技术。 从原理上可以看出,可变气门正时只是增加或减少了气门的开启时间,并没有改变单位时间的进气量,因此对于发动机的动力性的帮助并不显著,但是气门开启角度大小(气门升程)可以随时间改变的话,就可以显著提升发动机在各个转速的动力性能。 可变气门升程:可以使发动机在不同的转速提供不同的气门升程,低转速时使用较小的气门升程,有利于缸内气流的合理混合,增加发动机的低速输出扭矩;在

高速时使用较大的升程,可以提高发动机的进气量,从而提高功率输出。本田公司的i-VTEC是目前使用最广泛的可变气门升程系统(i-VTEC拥有连续可变气门正时、分段可调气门升程技术)。 本田 VTEC:分级可变气门升程+分级可变气门正时 i-VTEC:分级可变气门升程+连续可变气门正时(进、排气) 丰田 VVT-i:连续可变气门正时(进气门) Dual VVT-i:智能连续可变气门正时(进、排气门分别独立控制,有2个气门开启时刻)VVTL-i:分级可变气门升程+连续可变气门正时(进、排气门) 宝马 Valvetronic连续可变气门升程(省去“节气门”部件) Double V ANOS:连续可变气门正时(进、排气门分别独立控制) 现代 CVVT:连续可变气门正时(进气门) 日产 C-VTC:连续可变气门正时(日产的“VQ”发动机上使用,技术类似丰田) 标致 VTCS:可变涡流控制阀 1、VVT-i原理:当发动机由低速向高速转换时,电子计算机(ECU)通过分析就自动地将机油压向进气凸轮轴驱动齿轮内的小涡轮,在压力的作用下,小涡轮就相对于齿轮壳旋转一定的角度,从而使凸轮轴在60度的范围内向前或向后旋转,从而改变进气门开启的时刻,达到连续调节气门正时的目的。VVT-i系统是通过调整凸轮轴转角配气正时进行优化,从而提高发动机在所有转速范围内的动力性、燃油经济性,降低尾气的排放。VVT-i系统由传感器、ECU和凸轮轴液压控制阀、控制器等部分组成。

宝马发动机VANOS(双可变凸轮轴控制系统)详解

宝马Double-VANOS/Valvetronic 1992年,宝马推出了气门无级调节管理——Double-V ANOS双凸轮轴可变气门正时系统,是应用在BMW M3上的世界首创技术。V ANOS系统是一个由车辆发动机管理系统操纵的液压和机械相结合的凸轮轴控制设备。此控制系统的优点是可以根据发动机运行状态,通过凸轮轴精确的角度控制对进气门和排气门的气门正时进行无级调节,并且不受油门踏板位置和发动机转速的影响。V ANOS系统基于一个能够调整进气凸轮轴与曲轴相对位置的调整机构。在实际驾驶中,这意味着在发动机转速较低时可以提供充足的扭矩,而在高转速范围内则可达到最佳的功率。此外,Double-V ANOS增加了对进排气凸轮轴的调整机构,双凸 轮轴可变气门正时系统可极大地减少未燃烧的残余气 体,从而改进了发动机的怠速性能。 V ANOS系统根据发动机转速和加速踏板位置来操 作进气凸轮轴。Valvetronic电子气门是具有可变进气门 升程控制功能的气门驱动系统,发动机的进气完全由无 级可变进气门升程控制,不再需要以往对于内燃式汽油 发动机来讲必不可少的节气门。在发动机转速达到最低 时,进气门将随后开启以改善怠速质量及平稳度。发动 机处于中等转速时,进气门提前开启以增大扭矩并允许 废气在燃烧室中进行再循环从而减少耗油量和废气的排放。最后,当发动机转速很高时,进气门开启将再次延迟,从而发挥出最大功率。 电子气门技术的另一重要优点,是踩踏油门时发动机产生反应的时间加快。传统发动机以油门控制节气阀的方式,油门踩下节气阀打开,还要等待空气流入填满进气歧管之后,才会大量进入发动机气缸,产生所需要的动力。而电子气门发动机油门踩下时可直接控制加大进气阀门开启深度,大量空气立刻流入发动机气缸,产生所需要的动力。电子气门发动机进气阀门开启深度最浅0.25mm,最深可以到9.7mm,相差近40倍,然而从最浅变化到最深,电子气门整体机构所需要的反应时间大约只要0.3s。 V ANOS系统极大增强了尾气排放管理能力,增加了输出和扭矩,提供了更好的怠速质量和燃油经济性。V ANOS系统的最新版是双V ANOS,被用于新M3车型上。该技术于1992年被首次应用于宝马5系车型的M50发动机上。 在顶置凸轮轴发动机中,凸轮轴通过一根皮带或者链条和齿轮与曲轴相连。在宝马V ANOS系统发动机内有一根链条和一些链轮。曲轴驱动排气凸轮上的链轮,排气凸轮链轮被螺栓固定于排气凸轮上,第二套齿轮驱动穿过进气凸轮的第二根链条,进气凸轮上的大链轮没有固定在凸轮上,因为其中间有个大孔,孔内有一套螺旋形的齿,在凸轮的一端有一个外侧也是螺旋形的齿轮,但它太小,无法与大链轮内侧的齿轮相连接。有一小块杯状带有螺 旋形齿轮的金属,其内侧与凸轮相配合,外侧与链轮配合。 V ANOS系统的可变性就是源于齿轮的螺旋形。杯状装置由作 用于受DME(数字式电子发动机管理系统)控制依靠油压的 液压机构驱动。 怠速时,凸轮正时延迟。在非怠速状态下,DME为电磁 线圈通电控制油压推动杯状齿轮,在中等转速下推动凸轮提 前12.5度,然后在5000转/分时,允许其回到初始位置。中 速运转时推力越大气缸充气越好,扭矩也就越大。我们听到 的噪声是因公差而造成的杯状装置进出时链轮的轻微摆动声

汽车智能可变气门正时系统

汽车智能可变气门正时系统 一、智能可变气门正时系统(VTT-I系统) 1、概述 VTT-I系统用来控制进气凸轮轴在40度角范围内保持最佳的气门正时,以适应发动机善,从而实现在所有速度范围提高扭矩和燃油经济性,减少废气排放量。VTT-I系统结构图见下图。 VVT-I系统结构图 轮 轴 正 进 机 油 控 制 阀 2、部件结构 1)VTT-I控制器。

VTT-I控制器由与进气凸轮轴耦合的叶片和从动正时链的壳体组成。在进气凸轮轴上的提前或滞后油路传送机油压力,VTT-I控制器叶片沿圆周方向旋转,连续改变气门正时。VTT-I控制器结构如下图。 当发动机停机时,进气凸轮轴多处在滞后状态,以确保启动性能。液压没有传递至VTT-I控制器紧接着就启动发动机,锁销会锁止VTT-I控制器,以防止产生爆震声。 2)凸轮轴正时机油控制阀。 凸轮轴正时机油控制阀根据来自发动机ECU的负荷控制,控制滑阀的位置,从而分配液压控制VTT-I控制器至提前和至提前和滞后侧。当发动机停机时,凸轮轴正时机油控制阀多自在滞后位置。凸轮轴正时机油控制阀结构图见下图。

3)部件控制 根据来自发动机ECU的提前、滞后或保持信号,凸轮轴正时机油控制阀选择至VTT-I控制器的通路。 4)提前。 根据来自发动机ECU的提前、滞后或保持信号,凸轮轴正时机油控制阀选择至VTT-I控制器的通路。作用到正时提前叶片室,使凸轮轴向正时提前方向转动。 5)滞后。根据来自发动机ECU的滞后信号,凸轮轴正时机油控制阀自在如下图的位置,总油压作用到正时滞后侧叶片室,使凸轮轴向正时滞后方向转动。 6)保持。发动机ECU根据移动计算出预定的正时角,预定正时被设置后,使凸轮轴正时机油控制阀在空档位置,保持气门正时直到移动状况改变。调整气门正时在预期目标位置,防止发动机机油在不必要时流出。凸轮轴正时机油控制阀位置(保持状态)如下图。

《故障案例》:奥迪A8空气悬挂报警,无法调节车身高度!

故障案例》 :奥迪 A8 空气悬挂报警,无法调节车身高度! 故障现象 2008 年奥迪 A8 ,发动机和变速器型号: BVJ 4.2FSI 09E 行驶里程: 10 万公里空气悬挂黄灯报警,无法 调整车身高度。 故障诊断第一次到店,客户反映车辆停放一晚后,车身前部 会降得非常低,技师检查后发现左前空气悬挂漏气,于是更 换左前空气弹簧减震器,在店内观察两天,不存在车身高度 降低情况,交车。 客户使用不到 1 个月,发现空气悬挂有时报警,且无法调整 车身高度。再次到店,维修人员用诊断设备检测到系统泄漏 故障码,无法判定是空气悬挂,管路还是电磁阀体的问题, 此时笔者介入维修。 1、车身高度偏低,但不影响车辆行驶,仪表上黄色空气悬 挂故障灯常亮报警(如图 1),MMI 中空气悬挂“高位”选项变 灰(如图 2)。?? (空气悬挂黄色警告灯报警,图 “高位”选项变灰,图2) 2、用诊断仪读取故障,地址码 34 水平高度控制系统中检测 到故障码(如图 3):水平高度控制压力传感器 -G291 (不可 偶发) ;默认设置未学习到(无或错误的基本设置 / 匹配;静态);探测到系统泄漏( tbd ;静态);由于温度过高 而关闭(超出上限;偶发) ;控制切断( tbd ;静态) (地址码34中存储的故障码,图 3)首先了解A8' D3车型 空气悬挂工作原理: 空气悬挂部件安装位置一览,图 4) 空气悬挂部件组成,图 5 ) 备注: 9a 是左前减震支柱阀 1)? 信信号;

N148 ,9b 是右前减震支柱阀 N149 。图中虚线框圈起的灰色区域分别代表压缩机和分配阀体。 图4 和图5 展示的是空气悬挂部件安装位置和部件工作原理。 供气装置,图6)供气装置(图6),主要由压缩机和温度传感器G290 组成,温度传感器用于测量压缩机与气缸顶部温度,为了防止压缩机过热,在必要时切断空气供给。 电磁阀体,图7)电磁阀体(图7)主要由压力传感器和 控制阀组成,压力传感器测量前、后桥减震支柱的压力或蓄压器内的压力,它浇铸在阀体内,无法单独更换。 蓄压器,图8)蓄压器(图8)最大工作压力为16bar ,作用是尽可能的减少接通压缩机,若调节过程只由蓄压器来进行,蓄压器和空气弹簧间必须至少存在3bar 的压力差。? 压力建立过程,图9) 减震支柱阀(9a,9b,9c 及9d )是成对控制的(前桥或后桥),空气由压缩机1 经空气滤清器8 和辅助消音器7 吸入,压缩后的空气经空气干燥器2 ,单向阀3a 和阀9 进入空气弹簧。 如果空气弹簧由蓄压器充气,那么阀10 和相应车桥上的阀9 就会打开。 蓄压器12 由压缩机1 经打开的阀10 来充气。在车辆发生侧滑时,阀9a-9d 也可单独来调节。 泄压过程,图10)相应的阀9a 、9b 和9c 、9d 以及电控排气阀5 打开,气流流经排气阀5 并打开气动预控排气阀6,

VTEC可变气门正时和升程电子控制系统方案

VTEC全写为Variable valve Timing and lift Electronic Control . VTEC系统全称是可变气门正时和升程电子控制系统,是本田的专有技术,它能随发动机转速、负荷、水温等运行参数的变化,而适当地调整配气正时和气门升程,使发动机在高、低速下均能达到最高效率。+在VTEC系统中,其进气凸轮轴上分别有三个凸轮面,分别顶动摇臂轴上的三个摇臂,当发动机处于低转速或者低负荷时,三个摇臂之间无任何连接,左边和右边的摇臂分别顶动两个进气门,使两者具有不同的正时及升程,以形成挤气作用效果。此时中间的高速摇臂不顶动气门,只是在摇臂轴上做无效的运动。当转速在不断提高时,发动机的各传感器将监测到的负荷、转速、车速以及水温等参数送到电脑中,电脑对这些信息进行分析处理。当达到需要变换为高速模式时,电脑就发出一个信号打开VTEC电磁阀,使压力机油进入摇臂轴顶动活塞,使三只摇臂连接成一体,使两只气门都按高速模式工作。当发动机转速降低达到气门正时需要再次变换时,电脑再次发出信号,打开VTEC电磁阀压力开头,使压力机油泄出,气门再次回到低速工作模式。

燃机的作用是把燃料的化学能转化成机械动能,其基本原理是可燃混合气在汽缸燃烧,产生的高压推动活塞旋转曲轴,输出扭力。扭力与转速结合,就是发动机的功率。在发动机的工作过程中,大约只有30%的原始能量做了有用功,因此,最大限度地提高发动机的工作效率成为人们长期的奋斗目标。 按照物理学定律,要产生更强的动力,发动机就要消耗更多的燃料。显而易见,增加燃油燃烧的方法之一是加大发动机尺寸,因为大排量的汽缸相比小型发动机能燃烧更多的燃油;另一种方法是把可燃混合气进行预压缩,这样在固有的发动机也能填入更多的燃料。 与上述方法不同,本田在发动机技术上采用了另一条道路:即保留发动机尺寸不变,加快燃油的燃烧速度。也许用下面的例子更能说明问题:用杯子把爆米花从甲地运送到乙地,你可以加大杯子的尺寸,也可以压紧杯中之物以加大每次的运送量,或者也可以简单地加快运送的速度,最终的结果是一样的。 随着发动机转速的增加,其“吐呐”的混合气量相应增长,进排气门的开合需要更精密和更宽阔,否则的话,进气阻力将使发动机得不到足够的燃料。

奔驰空气悬架

GF32.22-P-0001FLX空气悬架, 功能14.1.13 车型212 截至2014年款 带代码488 (钢质/空气悬挂) 功能要求, 概述如果空气悬挂系统 (AIRMATIC) 控制单元在 v ≠ 0 公里/ 小时的情况下通过底盘控制器区域网络 (CAN) ? "电路 61 接通" 状态 接收到来自高级电控车辆稳定行驶系统 (ESP) 控制单元 (N30/7) 的左前和右前车轮转速信号, 则锁止位置会被自动取消. 系统概述 然后水平高度控制功能被重新激活. 空气悬挂系统是一个前轴钢悬挂和带连续减震调节的后轴空气悬挂的组 无论是否处于锁止位置, 都可以借助诊断辅助系统 (DAS) 合, 可根据路面状况和驾驶方式调节每个车轮上的减震. 由空气悬挂系统 (AIRMATIC) 控制单元促动输出级, 即总是可以促动. 当点火开关接通时, 激活最后设置的减震级. 减震调节, 功能 电子调节的连续减震系统以全自动的方式工作. 前轴钢悬挂包括车轮导向型钢悬挂支柱 (3 连杆轴), 相对于传统的钢悬挂, 它可以提供改善的驾驶舒适性和安全性. 可确保高水平的横向力补偿. 根据驾驶状况, 空气悬挂系统 (AIRMATIC) 控制单元的电子装置将减震设置到硬一些或软一些. 空气悬挂系统包括下列子功能: 如果传感装置检测到运动型驾驶方式, ?唤醒模式, 功能 则舒适型的基本减震会自动变得更硬一些. ?后轴空气悬挂, 功能 这项自动程序可由驾驶员通过 AMG 悬挂按钮 (S193/2) 预先设置. ?锁止位置, 功能 下列悬挂模式可用: ?减震调节, 功能 - 舒适型 [两个发光二极管 (LED) 都关闭] ?系统和警告信息, 功能 - 运动型 [一个发光二极管打开 (左)] 唤醒模式, 功能 - 运动增强型 (两个发光二极管都打开) 车辆解锁后, 空气悬挂系统 (AIRMATIC) 控制单元 (N51/3) 由主动底盘控制器区域网络 (CAN) [控制器区域网络总线 E 级 (CAN 对 AMG 悬挂按钮的促动由行驶程序控制单元 (N145) E)] 启用 (唤醒), 以检查并在必要时校正后轴的当前车辆水平高度. 通过直通线路读取, 然后经过评估并通过底盘控制器区域网络 (CAN) 唤醒空气悬挂系统 (AIRMATIC) 控制单元会启动一个初始化阶段, 传送至空气悬挂系统 (AIRMATIC) 控制单元. 用于校正后轴处的车辆水平高度. AMG 悬挂按钮的两个发光二极管按相反路径促动. 这样可以缩短执行水平高度校正之前所经历的时间, 从而提高车辆的可用性. 后轴的水平高度控制在唤醒模式下执行 (例如车辆装载和卸载时), 事先互相独立存储的悬挂设置和行驶程序设置可以通过 AMG 按钮 (S193/3) 启用, 并通过直通线路由行驶程序控制单元读入. 无需启用空气悬挂系统 (AIRMATIC) 压缩机 (A9/1), 但空气悬挂系统 为了存储所需的悬挂设置和行驶程序设置组合, 必须按住 AMG (AIRMATIC) 中央储气罐的充气量要足够. 按钮至少 2.5 秒. 即使一开始车载电气设备电压不足, 也要从临界水平高度升起车辆 在很宽范围的减震特性图之内, 电子装置持续工作. (例如行李舱过载). 根据当前的要求, 道路条件和行驶条件, 带保险丝和继电器模块的后侧信号采集及促动控制模组 (SAM) 每个车轮处的减震力可以单独自动改变. 控制单元 (N10/2) 连续评估车载电气系统的电压, 由此, 车辆甚至可以在崎岖路面上平稳行驶, 而不会减弱行驶稳定性. 然后通过车内控制器区域网络 (CAN) [控制器区域网络总线 B 级 (CAN B)] 空气悬挂系统 (AIRMATIC) 控制单元通过左前水平高度传感器 (B22/8), 发送一个信号至带保险丝和继电器模块的前侧信号采集及促动控制模组右前水平高度传感器 (B22/9), 左后水平高度传感器 (B22/7) (SAM) 控制单元 (N10/1). 然后, 后者将信号转发给空气悬挂系统和右后水平高度传感器 (B22/10) (AIRMATIC) 控制单元. 如有必要, 空气悬挂系统 (AIRMATIC) 确定当前车辆水平高度和减震器的速度. 控制单元接着中断或阻止升高操作. 空气悬挂系统 (AIRMATIC) 控制单元利用左前车身加速度传感器 大电流的用电设备按照固定顺序被关闭, 直至再次达到预定的最低电压.(B24/3), 右前车身加速度传感器 (B24/4) 和左后车身加速度传感器 (B24/5) 确定车身加速度和车身速度. 后轴空气悬挂, 功能空气悬挂系统 (AIRMATIC) 控制单元根据输入信号确定每个减震器最佳的减震级, 在正常工况下, 空气悬挂根据负载以不同的压力工作. 空气悬挂系统 并相应地直接促动左前轴减震阀装置 (Y51), 右前轴减震阀装置 (Y52), (AIRMATIC) 压缩机用于提供压力. 空气悬挂系统 (AIRMATIC) 压缩机由空气悬挂系统 (AIRMATIC) 控制单元通过空气悬挂系统 左后轴减震阀装置 (Y53) 和右后轴减震阀装置 (Y54). 可以为每个车轮调节减震级, 即可在每个单独的车轮上持续调节减震. (AIRMATIC) 继电器 (K67) 促动. 系统和警告信息, 功能 气压通过空气悬挂系统 (AIRMATIC) 阀装置 (Y36/6) 分配给后轴的各个气压弹簧套.需要驾驶员注意的安全性系统和警告信息以及系统相关说明显示在仪表 盘上. 空气悬挂系统配有一个空气悬挂系统 (AIRMATIC) 中央储气罐, 里面储存有压缩空气, 从而可以快速调节后轴处的车辆水平高度, 为了输出信息, 空气悬挂系统 (AIRMATIC) 而与压缩机工作与否无关.控制单元通过底盘控制器区域网络 (CAN) 将相应的信息传送至仪表盘. 空气悬挂系统 (AIRMATIC) 中央储气罐中的压力由集成在空气悬挂系统 根据故障的严重程度以及待采取操作请求的紧急程度, (AIRMATIC) 阀装置中的空气悬挂系统 (AIRMATIC) 压力传感器 存在不同故障优先级的多种系统和警告信息. (Y36/6b1) 监测. 空气悬挂系统 (AIRMATIC) 中央储气罐中的压力一旦降至阈值以下, 空气悬挂系统 (AIRMATIC) 如果同时存在多个故障, 则会相应地输出多条故障信息. 压缩机即会启用.

相关文档
最新文档