炔烃和二烯烃
第五章炔烃和二烯烃
(2)没有正负电荷分离的更稳定
H2C C H C H CH2 H2C C H C H CH2
(3)电负性大的原子带负电荷,电负性 电负性大的原子带负电荷, 小的带正电荷的稳定
H2C N N: H2C N N:
(4)共振极限式具有相同能量时,杂化体 共振极限式具有相同能量时, 非常稳定
H2 C
C H
C H
CH2
H Br
40℃ 40℃
20% %
H3 C
高温 40℃ 40℃
H C Br
2个没有参加杂化的p轨道 个没有参加杂化的p
H
C
C
H
乙炔是直线型分子
二、同分异构和命名 炔烃是直线型分子,不存在顺反异构。 炔烃是直线型分子,不存在顺反异构。
C4H6 HC CCH2CH3 CH3C CCH3
C5H8 HC CCH2CH2CH3 CH3C CCH2CH3 HC CCHCH3 CH3
CH2 CH CH 2 CH CH 2 C CH CH O N
CH C
p -π 共轭体系 与双键碳原子直接相连的原子上有 p 轨道, 轨道, 这个p 轨道与π 轨道平行, 这个p 轨道与π 键的 p 轨道平行,从侧面 共轭体系。 重叠构成 p -π 共轭体系。如:
C H 2 = CH Cl
H H
C
H H
烯丙基碳正离子,非常稳定。 烯丙基碳正离子,非常稳定。
H H + H3C C C CH2 + H3C C C CH2 H H
低温碳正离子稳定性: > 低温碳正离子稳定性: 双键稳定性: 双键稳定性: <
低温 -80℃ 80℃
H3 C
第六章炔烃和二烯烃
有时需标明构型
CH3 4
H6 5C
8 7 CC
CH3CH2
H
21 3 CH2CH3 C
CH3
(3E,5E)-3,4-二甲基-3,5-辛二烯
二)共轭二烯烃
分子中的四个双键碳均是sp2杂化,所有的σ键都在 一个平面上。两个π键靠得很近,在C-2和C-3间可发 生一定程度的重叠,这样使两个π键不是孤立存在, 而是相互结合成一个整体,称为π-π共轭体系 (conjugation system)。有时称之为大π键。
共轭双烯:CH2 CH CH CH2 H C
共轭)
H
isolated diene
隔离双烯:CH2 CH CH2 CH CH2
H
C
C
H
H CC
H
H CH
命名:选取含两个双键的最长碳链为主链,称作某 二烯。从靠近双键的一端开始编号。
CH2 CH CH CH2 1,3-丁二烯
CH2 CH CH2 C CH CH3 CH3
称动力学控制;较高温度下以1,4-加成产物为主,产物的比例
由产物的稳定性(双键碳上连的取代基较多)决定,称热力学控
133.7pm
H CC H
H
H
HH CC
H CC
H
H
H
137 pm
146 pm
共振论对1,3-丁二烯结构的描述:
一个分子(或离子或自由基)的结构不能用一个经典结构 式表述时,可用几个经典结构式(或称极限式、共振结构式) 来共同表述,分子的真实结构是这些极限式的共振杂化体。
[ CH2=CH CH=CH2
(丙)炔烃的鉴定
HC CH 2Ag(NH3)2NO3 AgC CAg 2NH4NO3
(化学)炔烃和二烯烃
sp2 平面三角形
1/3
610.9 263.6 0.1337 0.1086 2.75
1.911 1015
sp3 四面体形
1/4 远 347.3
0.1534 0.1102 2.48
大 2
410
二、炔烃异构体及命名
1.异构: 碳干异构, 三键位置异构. 2.命名:
(1)普通命名:乙炔为母体,其他炔烃作为乙炔的衍生物:
每个碳原子还有两个末参加杂化的P轨道,它们的轴互相垂直。 当两个碳原子的两P轨道分别平行时,两两侧面重叠,形成两个相互 垂直的Π键。
Bonding in Ethyne
C≡C 键: 1 s 键 ( sp2 – sp2) + 2 p 键 (p – p)
C — H 键: s 键 (1s – sp)
HCCH HC CH
由于即杂化碳原子的电负性较强,所以炔烃虽然有两个 π键,但不像烯烃那样容易给出电子,因此炔烃的亲电加成 反应一般要比烯烃慢些。
1.亲电加成
炔烃与烯烃一样,与卤素和氢卤酸起新电加成反,其亲 电加成是反式加成。
C CCH3 + Br2
Br
+
CC
Br- CH3
Br
CC
Br
CH3
C2H5C CC2H5 + HCl
C2H5
C Cl
H
C2H5
C
+
C
C2H5
Cl
C2H5 C
H
99%
1%
A、与HX:
炔烃虽然较烯烃多一π键,但与亲电试剂的加成却较烯烃 较难进行。例如,乙炔的氯化需要光照或在FeCl3催化下才能 进行。再如乙炔各氯化氢的加成在通常情况下难进行,若用 氯化汞盐酸溶液浸渍活性炭制成的催化剂时,则能顺利进行。
炔烃和二烯烃
H α –碳氢键越多, 超共轭作用越强, CH2=CH—C—H 共轭体系越稳定.
H
• σ – p 共轭: 碳正离子缺电子碳(sp2杂化)上的p轨道与α –
碳氢σ 键虽然不平行, 但仍可部分地重叠形成超共轭.
+
H
CH2—C—H
H
α –碳氢键越多, 超共轭作用越强, 共轭体系越稳定.
产物的比例由各产物的相对生成速率决定. 对上述反应 而言, 1,2–加成的碳正离子中间体较稳定, 反应所需的活 化能较低, 反应速率较快, 因此反应主要得到1,2–加成产 物.
• 常温下, 反应一般受平衡控制或热力学控制, 即产物的比
例由各产物的相对稳定性决定.
6.6 Diels – Alder 反应
• 与碳碳单键和碳碳双键相比, 碳碳叁键的键长较短, 键能
较大, 但并非倍数关系.
6.2 炔烃的同分异构和命名法
6.2.1 炔烃的同分异构
主要有 碳链异构 和 官能团的位置异构, 没有顺反异构.
6.2.2 炔烃的命名法
与烯烃的命名类似.
6.3 炔烃的物理性质 (了解)
与烯烃类似. 炔烃分子的极性比烯烃略强.
6.7 共振结构理论简介和共振式 (了解)
共价键理论之一, 见 第1章 绪论.
• 共轭 π 键 和 共轭体系
凡是涉及3个或3个以上原子的 π 键叫做共轭 π 键.
构成共轭的体系叫做共轭体系.
• 分子轨道理论认为, 在共轭体系中的电子运动不是局限
于两个相邻的原子之间, 而是扩展到组成共轭体系的所 有原子之间, 即共轭体系内电子运动不是定域的, 而是离 域的. (注: 离域电子一般指 π 电子和未共用电子对, σ 电 子的离域程度较小).
炔烃和二烯烃
第四章炔烃和二烯烃(I )炔烃一、定义、通式和同分异构体定义:分子中含有碳碳叁键的不饱和烃。
通式:C n H 2n-2同分异构体:与烯烃相同。
二、结构在乙炔分子中,两个碳原子采用SP 杂化方式,即一个 2S 轨道与一个2P 轨道杂化, 组成两个等同的 SP 杂化轨道,SP 杂化轨道的形状与 SP 2、SP 3杂化轨道相似,两个SP 杂化 轨道的对称轴在一条直线上。
两个以SP 杂化的碳原子,各以一个杂化轨道相互结合形成碳碳6键,另一个杂化轨道各与一个氢原子结合,形成碳氢 6键,三个6键的键轴在一条直线上,即乙炔分子为直线型分子。
每个碳原子还有两个末参加杂化的P 轨道,它们的轴互相垂直。
当两个碳原子的两P轨道分别平行时,两两侧面重叠,形成两个相互垂直的 n 键。
三、命名炔烃的命名原则与烯烃相同,即选择包含叁键的最长碳链作主链,碳原子的编号从 距叁键最近的一端开始。
若分子中即含有双键又含有叁键时,则应选择含有双键和叁键的最长碳链为主链, 并将其命名为烯炔(烯在前、炔在后)。
编号时,应使烯、炔所在位次的和为最小。
例如:CfCfCHCHDHC 三 CH3-甲基-4-庚烯-1-炔CH 3但是,当双键和叁键处在相同的位次时,即烯、炔两碳原子编号之和相等时,则从 靠近双键一端开始编号。
如:Cf 二C 比三CH1-丁烯-3-炔四、 物理性质与烯烃相似,乙炔、丙炔和丁炔为气体,戊炔以上的低级炔烃为液体,高级炔烃为 固体。
简单炔烃的沸点、熔点和相对密度比相应的烯烃要高。
炔烃难溶于水而易溶于有机溶剂。
五、 化学性质 (一)加成反应1、催化加氢炔烃的催化加氢分两步进行,第一步加一个氢分子,生成烯烃;第二步再与一个氢分加成,生成烷烃。
催化剂HC 三 CH + H 2 —CH2、加卤素炔烃与卤素的加成也是分两步进行的。
先加一分子氯或溴,生成二卤代烯,在过量 的氯或溴的存在下,再进一步与一分子卤素加成,生成四卤代烷。
HC 三CH + Br2 -------- Br=CHBrCHB 广2CHB 2虽然炔烃比烯烃更不饱和,但炔烃进行亲电加成却比烯烃难。
炔烃与二烯烃
(二)硼氢化-氧化反应 硼氢化 氧化反应
RC CH ① B 2H6 ② H2O2 OH RCH=CH OH
RCH=CH OH
R1C CR2
RCH2CHO
① B2H6 ②H2O2 OH
?
R1CH2CR2 + R1CCH2R2 O O
(三)氧化反应
RC CH KMnO4 RCOOH + CO2
(四)炔氢的反应
CH2CH=CHCH3
+
Cl
1,2加成与 ,4加成产物 , 加成与 加成与1, 加成产物
CH3CH=CHCH=CHCH3
HCl
CH3CH2CHCH=CHCH3 Cl CH3CH2CH=CHCHCH3 Cl
1,4加成 1,2加成
CH3 CH2=CCH=CH2 HBr
?
CH3 CH3CCH=CH2 Br
CCl3
?
CCl3
G X +
G X 邻位
G +
X
G 对位 X
+
特点: 特点: (1)共轭二烯烃中若两个双键为s)共轭二烯烃中若两个双键为s 反式构象,则不易发生狄—阿反应 阿反应。 反式构象,则不易发生狄 阿反应。 该反应为顺式加成, (2)该反应为顺式加成,产物保持 二烯烃和亲二烯体原来的构型。 二烯烃和亲二烯体原来的构型。 该反应为可逆反应, (3)该反应为可逆反应,加成产物 在较高的温度下加热又可恢复原来的 反应物,可用来提纯、 反应物,可用来提纯、鉴别共轭二烯 烃。
二、 二烯烃 1、孤立二烯烃 、 (一)分类 2、聚集二烯烃 、 3、共轭二烯烃 、 (二)命名
H2C=C=CH2
propadiene
H2C=C=CHCH3 1,2-butadiene ,
第五章 炔烃和二烯烃
超共轭
38
+
CH3CHCH3
6 (σ- p)
+
CH3CCH3
+
CH3
9 (σ- p)
39
碳正离子稳定性
H
HH C H
H
H C C+ > H C
H
H
C+ > H C
HH C H
HH C H
H
H
H
C+ > H C+
H
H
H
H
C-Hσ键:9
6
3
0
自由基稳定性
CH3
H
H
H
> H3C C
H3C C
> H3C C > H C
H
Br
Br Br2 H
Br Br
H
H
Br Br
分子中同时存在双键和三键时,加成首先在双键上进行。
CH3 C C CH CH2 Br2 (1mol)
CH3 C C CH CH2 Br Br
主要原因:炔烃的电子云是圆筒状,高度离域,更加稳定。
炔烃可使溴的四氯化碳溶液褪色,此反应也可作 为炔烃的鉴定试验,但褪色速率比烯烃慢。
与高锰酸钾反应 --- 不饱和键断裂
HC R1C
CH KMnO4
H+
CR2 KMnO4
H+
CO2 R1COOH
R2COOH
产物为二氧化碳和羧酸,无酮生成。该反应能 用于炔烃的鉴定。
17
(四)亲核加成( 烯烃不发生此反应 )
这类试剂的活性中心是带负电荷部分或电子云密度较大的部位,因此进 攻试剂具有亲核性,称亲核试剂。由亲核试剂引起的加成反应称亲核加 成反应。
第五章 炔烃和二烯烃
炔烃分子中叁键碳原子为sp杂化。乙炔是最简单的炔烃,
分子式为C2H2;结构式为 的结构:
Байду номын сангаас
;以乙炔为例介绍炔烃
sp杂化
2p 2s 基态
激发
2p 2s 激发态
sp杂化
2p 2s 激sp杂发化态
sp杂化轨道
z y
两个sp杂化轨道呈直线分布,夹角为180°。 剩下的未参与杂化的两个p轨道不仅垂直于两个sp杂化轨道 的键轴,而且互相垂直。
3. 与水的加成
炔烃与水加成需要汞盐催化,如乙炔与水加成是在10% 硫酸和5%硫酸汞的水溶液中进行。
乙烯醇
乙醛
不对称炔烃与水加成反应遵循马氏规则;
除乙炔加水得到乙醛外,其他炔烃都生成相应的酮。
3. 与水的加成
羟基直接连在双键碳原子上的化合物称为烯醇。
烯醇式
酮式
烯醇不稳定,一般平 衡倾向于形成醛或酮。
一、二烯烃的分类和命名 2. 孤立二烯烃 (隔离二烯烃 )
两个双键被两个或多个单键隔开(-C=C-CC=C- ),孤立二烯烃的结构和性质类似于普通烯 烃。
如:1,5-己二烯
一、二烯烃的分类和命名 3. 共轭二烯烃
两个双键被一个单键隔开( -CH=CH-CH=CH- ) 共轭二烯烃因两个双键之间相互影响表现出一些特殊 的理化性质,本节重点讨论共轭二烯烃。
炔钠与伯卤代烃反应可很差高级的炔,这是制备高级 炔烃的方法。
(五)炔氢反应
末端炔烃的鉴别: 乙炔和端基炔与硝酸银的氨溶液或卤化亚铜的氨溶液 反应,分别生成白色的炔化银或砖红色的炔化亚铜沉淀; 该反应灵敏,可用于末端炔烃。
白色沉淀
砖红色沉淀
(五)炔氢反应
炔氢的酸性很弱,既不能使石蕊试纸变红,又没有酸 味,只有很小的失去氢质子的倾向。
第四章炔烃和二烯烃全解
1
2
CH2
CH CH2 C CH
1-戊烯-4-炔
3
4
5
应命名为 3-戊烯-1-炔,而不命名为 2-戊烯-4-炔。
H3C C C CH2CHCH3
H3C C C C CH H H
5-乙基-1-庚烯-6-炔
not 3-乙基-6-庚烯-1-炔
(CH3)2CH C C H
H CH2C CH
(E)-6-甲基-4-庚烯-1-炔
CH3C CNa
HBr ROOR CH3CH2CH2Br
CH3C
CH
H2
Lindlar
CH3CH=CH2
CH3C
H2 Ni
CNa CH3C lig . NH3
CCH2CH2CH3
CH3CH2CH2CH2CH2CH3
3、与重金属盐的反应
♦ 1- 炔烃与银氨溶液反应,立即生成白色的炔化银沉 淀;与氯化亚铜氨溶液反应则生成砖红色的炔化亚 铜沉淀,只有端炔有此性质,是 区别端炔与非端炔 及烯烃的方法。
[Ag(NH3)2]
+
R C CH
R C CAg
炔化银
白色沉淀
HC
CH
[Cu(NH3)2]
+
CuC
CCu
砖红色沉淀
乙炔亚铜
区别乙烷、乙烯、乙炔
CH CH CH2=CH2 CH3CH3
Ag(NH3)2+
白色 ( ( ) )
(CH CH )
Br2/CCl4
褪色(CH2=CH2) ( -)
爆炸品——炔化银
炔烃的命名
炔烃的普通命名法是将其他炔烃看成乙炔 的衍生物命名。例如: (CH3)3C–C≡C–H 叔丁基乙炔 (CH3)3C–C≡C–C(CH3)3 二叔丁基乙炔 F3C–C≡C–H 三氟甲基乙炔 系统命名法与烯烃相似,只是将“烯”字 改为“炔”字。
炔烃和二烯烃
烷基化的应用:生成的炔化钠可与卤代烷反应生成碳链增长的 炔烃
液态氨
RC≡C-Na+CH3X RC≡C-CH3
叁键碳上氢原子的活泼性
(a) 叁键的碳氢键由sp杂化轨道与氢原子参加组成s 共价键,叁键的电负性比较强,使C-H s键的电子 云更靠近碳原子. 这种 ≡C-H键的极化使炔烃易离 解为质子和比较稳定的炔基负离子 (-C≡C-). (即: 有利于炔C-H异裂形成H+.)
C—H 中的H具有微酸性
二、炔烃的化学性质
不饱和,可加成(亲电、亲核和还原加氢)
C
C
H
末端氢有弱酸性
1. 亲电加成 (1).加卤素
p键可被氧化
炔烃和烯烃一样,与卤素加成,得到反式加成产物。
RC≡CR′ +X2(Cl,Br) R
C
C
X
X2
X
R′
RCX2CX2R′
可以控制条件使反应停留在第一步,得反式加成产物。
与氯化亚铜的液氨溶液作用-- 炔化亚铜
(红色沉淀)
CH≡CH +Cu2Cl2+2NH4OHCuC≡CCu+2NH4Cl+2H2O RC≡CH +Cu2Cl2+2NH4OHRC≡CCu+ NH4Cl+H2O
AgC≡CAg +2HCl CH≡CH+2AgCl CuC≡CCu +2HCl CH≡CH+Cu2Cl2
R C CH + H2O
HgSO4 H2SO4
H2C
CH R OH
重排
CH3 C
R
O 甲基酮
=
3.氧化
(HC≡被氧化成CO2,其余三键碳被氧化成-COOH)
第四章 炔烃和二烯烃
炔烃与HCl加成时,需用HgCl2催化,与HBr加成时, 也有过氧化物效应,生成反马氏规则的产物,烯炔加 卤化氢时,加成反应也是先在双键上进行。
③加水 将乙炔通入含HgSO4的稀H2SO4溶液中,可与一分子 水加成,生成乙醛。反应是先生成不稳定的乙烯醇, 再发生分子重排,生成乙醛的。这一反应称为库切洛 夫(Кучеров)反应。其他炔烃加水则生成酮。
林得勒催化剂,是沉淀在BaSO4或CaCO3上的Pd,并用 醋酸铅或喹啉降低其活性。 烯炔部分被氢化时,三键首先被氢化。烯烃和炔烃分别 加氢时,炔加氢的速度比烯慢,其他加成反应也是如此, 但烯烃和炔烃的混合物加氢时,炔烃更易吸附在催化剂 表面,所以三键先被氢化。
3 亲电加成
①加卤素 炔烃与卤素起加成反应时,先生成二卤化物,继续作用生 成四卤化物。烯炔加卤素时,首先加在双键上。原因:炔 烃的亲电加成反应要比烯烃的难些,是由于三键的π电子 比双键的难以极化,较难给出电子和亲电试剂作用。
H C≡ C H
180°
1.sp杂化轨道
2p 2s
激发
2p 2s
杂化 p
sp
杂化后形成两个sp杂化轨道(含1/2 S和1/2 P成分),
剩下两个杂化P的轨道。两个sp杂化轨道成1800分布,两个
未杂化的P(PY、PZ)轨道互相垂直,它们与中一碳的两个P轨 道两两互相侧面重叠形成两个互相垂直的键。
2-甲基-1,3-丁二烯
CH2 CHCH CHCH CH2
1,3,5-己三烯
多烯烃的顺反异构体的命名也和烯烃相似,碳原子编 号,从离双键最近的一端开始,若两端离双键等距时, 应从构型为Z的双键一端开始。
H
H
CC
H
CH3
CC
炔烃和二烯烃
农业化学品
除草剂
01
炔烃和二烯烃可用于合成除草剂,如草甘膦、百草枯等,这些
除草剂在农业生产中有广泛应用。
杀虫剂
02
炔烃和二烯烃可用于合成杀虫剂,如滴滴涕、马拉硫磷等,这
些杀虫剂在防治农业害虫方面有重要作用。
植物生长调节剂
03
炔烃和二烯烃可用于合成植物生长调节剂,如赤霉素、细胞分
裂素等,这些调节剂可调节植物生长和发育。
05 炔烃和二烯烃的未来发展
新材料的开发
高性能聚合物
利用炔烃和二烯烃的特殊化学性质,开发出具有优异力学 性能、热性能和化学稳定性的新型聚合物材料,用于航空 航天、汽车、电子等领域。
功能性材料
通过炔烃和二烯烃的聚合反应,制备具有光、电、磁等功 能的材料,应用于传感器、光电转换器件、磁存储等领域。
生物医用材料
03 炔烃和二烯烃的反应
加成反应
01
碳碳双键和碳碳三键的加成反应
炔烃和二烯烃中的碳碳双键和碳碳三键容易发生加成反应,可以与氢气、
卤素、卤化氢等发生加成反应,生成相应的烷烃或卤代烃。
02
加成反应的催化剂
某些金属催化剂如铂、钯、镍等可以促进炔烃和二烯烃的加成反应。
03
加成反应的立体化学特征
加成反应可以遵循不同的立体化学规则,如顺式加成、反式加成和协同药物合成Leabharlann 1 2 3激素类药物
炔烃和二烯烃可用于合成激素类药物,如雌二醇、 睾酮等,这些药物在调节人体生理功能和治疗某 些疾病方面有重要作用。
抗生素类药物
炔烃和二烯烃可用于合成抗生素类药物,如青霉 素、头孢菌素等,这些药物在抗菌、消炎等方面 有广泛应用。
其他药物
炔烃和二烯烃还可用于合成其他药物,如抗癌药 物、镇痛药等。
炔烃、二烯烃
乙炔通入高锰酸钾溶液中,可被氧化成CO2,同时KMnO4溶液 褪色并生成MnO2沉淀。因反应现象非常明显,常用于炔烃的 定性鉴别。
3HC≡CH+10KMnO4+2H2O→6CO2↑+10KOH+10 MnO2↓
25
炔烃结构的推测:因炔烃叁键碳上只能连有一个烃基,所以 炔烃结构的推测比烯烃更方便更容易。炔烃氧化后的产物只 有羧酸和CO2。
CH3 CH CHBr HBr 过氧化物
1,2-二溴丙烷
CH3 CH CH2 Br Br
19
③ 加H2O:常用汞盐作催化剂。乙炔在汞盐(5%HgSO4)催化下, 通入10%稀H2SO4中,可发生乙炔直接与水加成的反应,得 到乙醛,这是工业上合成乙醛的重要方法。
H2O , HgSO4 H2C
HC CH H2SO4 ,94~97℃
控制反应条件,可使反应停留在烯烃这一步。如在亚铜盐
或汞盐催化下:
HCl
HC CH
CH2 CH Cl
HgSO4 or Cu2Cl2
CH2 CHCH2C CH
HgCl2 HCl
CH2 CHCH2C CH2
Cl
18
与烯烃类似的是在加HBr时,如在光照或过氧化物 存在下,得反马氏加成产物。
HBr CH3 C CH 过氧化物
12
炔烃的化学性质
炔烃中的叁键虽与双键不同,却有共同之处, 它们都是不饱和键,都含有键和键,所以 烯、炔的性质有相同的地方,都易发生加成、 氧化和聚合反应。另外叁键碳上所连的氢也 有相当的活泼性,可以发生一些特殊的反应。
加成、氧化、聚合
H C CH
炔烃 二烯烃
HC CH + Cu2Cl2
↑ ↑
注意:
↑
鉴 别
↑
纯化炔烃的方法
R-CC Ag
-CN
HNO3 + H2O
R-CCH + AgNO3 R-CCH + Ag(CN)-2 + HO-
R-CCCu
HNO3
R-CCH + Cu2(NO3)2
HC CH + Na
HC
甲苯-四氢呋喃
HC CNa
CR
R'Br
Na/NH3(l)还原
n-C3H7C CC3H7-n
Na/NH3(l)
n-C3H7
(E)-4-辛烯 97%
C C H n-C3H7
反式
H
5、金属炔化物的生成
(1) 炔氢的酸性: H2O 15.7 HC CH 25 NH3 34 CH2 CH2 36.5 CH3CH3 42
pKa
乙醇pka =16
炔氢的酸性介于醇与氨之间。
酸性
R3C-H R3C- + H+
碳氢键的断裂也可以看作是一种酸性电离,所以将烃称为含碳酸
含碳酸的酸性强弱可用pka判别, pka越小,酸性越强。 酸性逐渐增强
其共轭碱的碱性逐渐减弱
为什么乙炔的氢原子比乙烯和乙烷的氢原子都活泼呢? sp3 sp2 sp
碳原子的电负性
C-
CH2=C=CH2
CH2=CHCH2CH2CH=CH2
CH2=CH-CH=CH2
丙二烯
1,5-己二烯
1,3-丁二烯
一、二烯烃的分类及命名
1、二烯烃的分类 根据分子中两个双键的相对位置,二烯烃可分为:
C
炔烃和二烯烃
乙烯分子的成键情况
大家好
9
4. 分子模型
Jiaying University
乙炔的π 键电子云
乙炔的比例模型
大家好
10
炔烃的命名
Jiaying University
一、基本原则与烯烃相同
炔烃的系统命名法和烯烃相似,只是将“烯” 字改为“炔”字。
C H 3 C H 2 CC C H C H 2 C H 3 5 -甲 基 -3 -庚 炔 C H 3
较 弱 的
O
氧 化 剂
双键和叁键同时存在时,氧化首先发生在双键上。
大家好
25
三、炔化物的生成
Jiaying University
碳氢化合物中H的酸性顺序: C H> C H> C H
sp
sp2
sp3
大家好
26
1.炔化银、炔化铜的生成
Jiaying University
↑
↑
H C + C 2 C H 3 ) 2 C uC ( lC N u + 2 C C - C H + 2 N 3 l u + 2 N + 4 H
21
4. 水化反应
Jiaying University
在炔烃加水的反应中,先生成一个很不稳 定的醇烯,烯醇很快转变为稳定的羰基化合物 (酮式结构)。
C=C
C=C
HO
HO
烯醇式(不稳定)
酮式(稳定)
这种异构现象称为酮醇互变异构。
此反应库切洛夫在1881年发现的,故称库切洛夫反应
。
大家好
22
其他炔烃水化时,则变成酮。
大家好
31
四、还原(加氢)反应
炔烃和二烯烃炔烃二烯烃共轭效应速度控制和平衡控制
01
炔烃和二烯烃是合成有机材料的重要原料,如合成橡胶、塑料
等。
合成药物
02
炔烃和二烯烃可用于合成多种药物,如抗生素、抗癌药物等。
合成功能性分子
03
通过炔烃和二烯烃的聚合反应,可以合成具有特殊功能的分子
,如荧光分子、离子载体等。
在材料科学中的应用
高分子材料
炔烃和二烯烃可用于合成高分子材料,如聚乙烯、聚丙烯等。
另外,取代基的性质也会影响共轭效 应的大小,例如,给电子取代基会增 强共轭效应,吸电子取代基会减弱共 轭效应。
共轭效应的大小还与参与共轭的原子 之间的距离有关,距离越近,共轭效 应越强。
共轭效应的实例
以乙炔为例,由于其两个π键可以发 生共轭效应,使得乙炔具有很高的反 应活性。
在二烯烃中,例如1,3-丁二烯,由于 其两个双键可以发生共轭效应,使得 1,3-丁二烯容易发生加成反应。
乙炔和乙烯的共轭效应
在乙炔和乙烯的共轭体系中,由于电子的离域作用,使得体系更加稳定,从而 影响了平衡常数。
烯丙基氯和烯丙基溴的平衡
在烯丙基氯和烯丙基溴的反应体系中,由于取代基的电子效应和空间位阻的影 响,使得反应平衡向不同的方向移动。
05
CATALOGUE
炔烃和二烯烃的应用
在合成化学中的应用
合成有机材料
03
CATALOGUE
炔烃和二烯烃的速度控制
反应速度的影响因素
温度
温度对反应速度的影响较大,一 般来说,温度越高,反应速度越
快。
压力
对于气体反应,压力对反应速度的 影响也较大,压力越大,反应速度 越快。
浓度
反应物的浓度也会影响反应速度, 一般来说,浓度越高,反应速度越 快。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有机化学习题(炔烃和二烯烃)
班级 学号 姓名
一、命名下列化合物或写出其结构
1、 2、
3、
4、反-4-庚烯-1-炔
5、(2E,4E)-3-叔丁基-2,4-己二烯
6、(Z,E, Z)- 2,4,6-辛三烯
7、丁苯橡胶
8、PVC
9、异戊二烯
二、完成下列反应
1、
CH 3CH=CH 2C=CHCH 2CH 3C C
C C CH 3CH 2CH 2CH 3+H 2Pd/CaCO 3
喹 啉2、
C C CH 3CH 2CH 2CH 3Na 液 氨
3、
CH 3CH=CHCH 2CH C +H Pd/CaCO 3喹 啉4、
CH 3CH=CHCH 2CH C +1mol ( )Br 25、 6、
CH 3
CH 3C
C 7、
8、
9、
10、
11、
CH 2=C(CH 3)CH=CH 2+HOOC C C 加 热
12、 +
CH 2=C(CH 3加 热
13、
CH 3CH=CH CH C +H 2H +2+(CH 3)2C=CHCH 2CH=CH 2+Br 2( )1mol CH 3CH=CHCH=CH 2+( )
Br 21mol CH 3CH 2C CH Ag(NH 3)2NO 3+CH 3CH(CH 3)C CH +NaNH 2
14、
15、
CH 2=CHCOOCH 3+
加 热
16、
CH 3C ≡CCH 3
17、C=C
3C
C=C
CH 3CH 2CH 2CH 3H H
H H
H 3C
CH 3CH 3
三、完成1,3-丁二烯与下列各化合物反应的方程式 1、1mol H 2 (Ni 作催化剂)
2、2mol H 2 (Ni 作催化剂)
3、1mol HBr
4、2mol HBr
5、1mol Br 2
6、2mol Br 2
C 6H 5C CH +H 2O
HgSO 4
H 2SO 4
CH 3C CH +HCN
7、O 3,然后Zn/H 2O
四、排出HC ≡CNa ,NaOH ,NaNH 2,H 2O 的碱性顺序,说出您的根据。
五、由指定原料合成下列各化合物 1、
2、
CH 3CH 2CH 2CH=CH 23CH 2CH 2C CH HC CH 2=CHCOCH 3
3、
4、
5、
6、由丙炔合成1-丁烯
7、由1-己炔合成1,4-壬二烯
HC CH Cl
HC CH CH 3CH=CH 2+CH 2Cl
HC CH CH 3CH=CH 2+OH
8、由丙烯,1-戊炔合成4-辛炔
9、由丙烯合成1-己烯-4-炔
C=C
CH 2CH 2CH 3
3C
H
H
C=C
CH 2CH 2CH 3H 3C
H H
CH 3CH=CH 210、
六、区别下列各组化合物
1、2-甲基丁烷,3-甲基-1-丁炔,3-甲基-1-丁烯
2、1-戊烯,1-戊炔,1,3-戊二烯
3、1-戊炔,2-戊炔,戊烷
七、结构推导
1、分子式为C7H10的某烃A,可发生下列反应,A经催化加氢可生成3-乙基戊烷,与硝酸银氨溶液反应可产生白色沉淀,在Lindlar 催化剂作用下可吸收1molH2生成化合物B,可与顺丁烯二酸酐生成化合物C,试推测A的结构。
2、有一烃A,相对分子量81±1,能使Br2/CCl4溶液褪色,但不与Ag(NH3)2+作用,经臭氧化还原水解生成甲醛及丁二酮,试推测A的结构。
八、历程题
1、当1-辛烯和NBS作用时,不仅得到3-溴-1-辛烯,也得到1-溴-2-辛烯,对此你如何解释。
2、带有13C标记的丙烯(CH3CH=C*H2),经自由基溴化反应转化为3-溴丙烯,推测产物中的标记原子13C的位置将在哪里?。