响应面优化实验方案设计

合集下载

box-behnken响应面法

box-behnken响应面法

box-behnken响应面法Box-Behnken响应面法是一种常用的响应面优化方法,它结合了中心组合设计和响应面分析的优点,在实验设计和优化中得到广泛应用。

下面我们将详细介绍Box-Behnken响应面法的原理和应用。

一、Box-Behnken 设计Box-Behnken设计是一种响应面实验设计方法,旨在用最少的实验次数,通过响应面分析找到最佳条件。

Box-Behnken设计由Box和Behnken于1960年提出,应用于多元响应表面优化设计,适用于多变量的响应函数模型。

Box-Behnken设计的特点是方便实现,易解释,可用于中等规模的设计,同时可以用于探究两个或三个因素的交互作用。

Box-Behnken设计通常使用正交设计来确定试验方案,设计中每个因素设3个水平,试验用到15个试验点,这是因为在15个点的设计下,Box-Behnken设备所有的变量之间可以实现二次模型。

在试验设计中,每个自变量有三个不同的水平,而因变量的响应由二次表面模型产生。

Box-Behnken响应面分析的原理是通过关注响应Surface上的关键点来确定最佳的参数配置。

通过测量响应Surface上的点,可以建立一个数学模型,以便为最佳操作条件提供数学解决方案。

在实践中,Box-Behnken响应面法广泛应用于化学、物理、工程等多个领域,主要应用于新产品开发、新工艺、新技术等领域。

Box-Behnken响应面法适用于形貌、结构等复杂的响应表面,还能够优化复杂的响应变量。

在制药业中,可以利用Box-Behnken响应面法设计和优化新的药品的制造过程。

在化学领域,Box-Behnken响应面法可以用于设计新的实验和优化新化学过程。

在食品和冶金工业等其他领域也有广泛的应用。

在实际应用中,Box-Behnken响应面法可以用于多种实验设计,包括中心组合设计、正交方阵等。

响应面分析帮助标识最适合的实验因素和最佳条件的组合,以及如何调整这些因素,以实现最大化响应变量。

响应面试验设计与分析

响应面试验设计与分析

响应面试验设计与分析响应面试验设计与分析是一种常用的实验设计方法,用于确定多个因素对其中一响应变量的影响程度和相互作用关系。

在工程、科学和医学等领域中,响应面试验设计与分析被广泛应用于优化工艺参数、确定最佳组合方案、优化配方等方面。

首先,确定试验因素和水平。

试验因素是指对响应变量有潜在影响的变量,水平是指试验因素的不同取值。

在确定试验因素和水平时,需要考虑相关信息,如前期试验结果、实际生产条件、实例经验等。

其次,确定试验设计。

常用的试验设计方法包括正交设计、Box-Behnken设计、中心组合设计等。

正交设计能够探索更多的因素和交互作用,但对样本量要求较高;Box-Behnken设计适用于三因素三水平的试验设计,样本量要求相对较低;中心组合设计是通过在试验设计中增加中心点来检查实验的误差,从而进行检验实验的可重复性和可靠性。

第三步是进行试验。

根据确定的试验设计方法,制定实际的试验方案,包括试验样本数量、试验条件、试验次数等。

对于每一组试验,记录相关数据。

第四步是分析数据及建立预测模型。

通过对试验数据的统计分析,建立影响因素与响应变量之间的关系模型。

常用的分析方法包括方差分析、回归分析等。

在建立预测模型时,可以使用多元多项式回归、径向基函数网络等方法。

最后一步是优化响应变量。

通过分析建立的预测模型,确定最优条件以达到最佳响应变量。

这可以通过对响应曲面图进行优化,找到使响应变量最大或最小的取值。

响应面试验设计与分析的优点是能够更全面地考虑多个因素对响应变量的影响,并建立预测模型进行优化。

但也存在一些限制,如样本量有限、模型的假设条件等。

因此,在进行响应面试验设计与分析时,需要仔细选择试验因素、合理确定试验设计,并对结果进行验证和优化。

响应面优化法实验流程

响应面优化法实验流程

响应面优化法实验流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!响应面优化法是一种用于优化实验条件的统计方法。

以下是响应面优化法的一般实验流程:1. 确定实验因素和响应变量:需要确定影响实验结果的因素(自变量)和需要优化的响应变量(因变量)。

响应面优化实验方案设计

响应面优化实验方案设计

响应面优化实验方案设计响应面优化是一种实验设计方法,用于优化多个相互关联的输入因素对输出响应的影响。

这种方法可以帮助寻找最优的输入组合,从而提高输出的性能。

在本文中,我将介绍响应面优化实验方案的设计过程,并提供一些建议和注意事项。

一、实验目标和问题定义在设计响应面优化实验方案之前,首先需要明确实验的目标和问题定义。

这包括确定需要优化的输出响应,以及影响该输出响应的输入因素。

同时,还需要确定实验的约束条件,例如实验时间、资源限制等。

二、确定因素的范围和水平对于每个影响输出响应的输入因素,需要确定其范围和水平。

范围是指该因素可能的取值范围,水平是指在实验中选取的几个具体取值。

范围和水平的确定需要考虑实际情况和实验的目标。

三、确定实验设计的类型四、确定实验设计的迭代次数五、确定实验点的选择方法实验点的选择方法是指如何选择实验中的输入因素组合。

常用的方法包括等距离设计、等噪声设计和最大似然设计。

选择合适的方法可以减少实验次数,并提高实验效率。

六、确定实验方案的分组和随机化方法在实际实验中,通常需要将实验样本分为不同的组,以便进行比较和分析。

为了减小分组之间的差异,可以采用随机化的方法,将样本在不同的组之间随机分配。

七、确定实验结果的分析方法实验结果的分析是确定最优解的关键。

常用的分析方法包括回归分析、方差分析和优化算法等。

选择合适的分析方法可以提高实验结果的准确性和可靠性。

八、确定实验的评估指标评估指标是评价实验结果的标准。

根据实验的目标和问题定义,选择合适的评估指标进行评估。

常用的评估指标包括均方误差、R方值和最优解的误差等。

九、实验验证和优化实验验证是为了验证最优解的可行性和有效性。

根据实验结果,进行进一步的优化和改进。

优化的方法包括参数调整、算法改进和资源分配等。

总结响应面优化实验方案的设计是一个复杂的过程,需要综合考虑实验的目标、问题定义、限制条件和可行性。

通过合理的实验设计和分析方法,可以寻找最优的输入组合,优化输出的性能。

响应面分析实验的设计案例分析

响应面分析实验的设计案例分析

学校食品科学研究中实验设计的案例分析—响应面法优化超声波辅助酶法制备燕麦ACE抑制肽的工艺研究摘要:选择对ACE抑制率有显著影响的四个因素:超声波处理时间(X1)、超声波功率(X2)、超声波水浴温度(X3)和酶解时间(X4),进行四因素三水平的响应面分析试验,经过Desig n-Expert优化得到最优条件为超声波处理时间28.42mi n、超声波功率190.04W、超声波水浴温度55.05C、酶解时间2.24h,在此条件下燕麦ACE抑制肽的抑制率87.36%。

与参考文献SAS软件处理的结果中比较差异很小。

关键字:Desig n-Expert响应面分析1. 比较分析表一响应面试验设计因素—水平-101超声波处理时间X1(min)203040超声波功率X(W)132176220超声波水浴温度X3(C )505560酶解时间X4(h)1232. Design-Expert响应面分析分析试验设计包括:方差分析、拟合二次回归方程、残差图等数据点分布图、二次项的等高线和响应面图。

优化四个因素(超声波处理时间、超声波功率、超声波水浴温度、酶解时间)使响应值最大,最终得到最大响应值和相应四个因素的值。

利用Design-Expert软件可以与文献SAS软件比较,结果可以得到最优,通过上述步骤分析可以判断分析结果的可靠性。

1 / 182.1数据的输入2.2 Box-Beh nke n 响应面试验设计与结果h>m*Mr*n1 a md IrlF "nijlill ■ h ■■逗■北帚科■ Jfti. ■ T R F -II hfn- flap-rit F. I. i- 七J i|7FiIStiF«r- 2 F*m« 「纽■就Mi 刨FUi n BBW •巧aww?He r PhK44Wtn\~ L ■^Kt'i—13iin tai mSS J D Zfl> S5J3L L aw«twiN»W43*" 啊期卜 riL i«3 ZEiQCisum S£DeKat ,L 丄m 2 231 DO遊44W L£ 1 KhjBOk'iM£■ 1 SM ■flJ» 弭喷1® f J9 * wc■HiDfr4«^>14»41 14 ?狗IM辺罚 迹 twit 1 \ 9 ZD L D E!inis W J C D如MJdt津厲iHiXhC40 Xi■nmS5B1 0D>ms■HWJB霭m*4M IJ坤QCWiTvan■詈w«x Mww nmTO O? zoo JM-jr n J »W ismU3W SUBHlVM»滸g种SMM IT2D SO mm*SU BZIDns 旳4W询IBWCD■MHit 能闊>«M3t XI400 "iHl MW ?0) *1» 刁WOT•Jim*H=Bi.v>■mgg •i M 弄»w ・W»<nW wa» TTiTJi Z3ED3O>»«- ww询闻珈 tfMS富KW再CD>»vr» «?>»图22 / 182.3选择模型A Fi HJ'i■« Sir lAR:iih."n.、Rlf h ・p«i|!ji」■山■.卄”・虽1!. ■!" D^n k«n> ■■p*it T. I. I -____ 豐怛通* I ir*曲时・Hioaiitl 屢ifeup -»+.^l t Ifl呂巧和•小.机b"L E! t M T內肌T 1 ・f l■!■ M M2.4方差分析F lAEH^iicnilAIH^ M*K^& JftT - D B«A IH-I HP*I I t. I. iPHpl 审“"I IM H 1_ AaatyrHF n皿也*fa Opr«wiI 阿iNuBSk'iM—I rm:心討呻F EE云/A J!・I■勺r-L GrKri-i^L^m显hl r p^ar«Bh*31 *M+& 77.1 1 1 1 I 1IMb-*v«aiE4円1»+・■电卑屮V4M IM J -1101 fa li? A F DOM H12fl 1 .■■4T d«.*,J11^ I ri ft弟硒■理IM flW-M■刪? ■MiM血関■ “诞,.4# I Mw* 4 mn4<■ >i扌X>*40 J RWM^ ? JWW-4¥? i町ismdC rm? A CM r HK»g衝*■fllOP i K^MT■JAM1D»1 ? Mi" MBC ・4SM,•t貿E Iff dittLir**>• M■时■ j —F—沖W M W S3 MSWiFPixriu ・IJD u am上時g 1 fcVI ■4 钿An £MV J! ■s购—g *1C]»JSftn g dvi flWiWUw 2 ■*<*-!]"■ T«»«d'0 ECI!=lLv ■ a.«PwiP^H-M QEPH一T O* HH II PAujf-M•PSF HM审—■few L VH«4PTC F4vf e?«r 1 4W—A-*=Hrf arr-i■as 1 ai2 •C.T3NN 1 £E在本例中,模型显著性检验p<0.05,表明该模型具有统计学意义。

响应面法优化实验条件

响应面法优化实验条件

科学的安排试验、处理试验结果,以最少的人力和物
力消费,在最短的时间内取得更多、更好的生产和科 研成果的最有效的技术方法。
实验设计的流程
1.提出问题 2.做出假设 3.设计实验 4.完成实验 5.数据分析 6.得出结论 7.交流讨论
拟定计划 确定分工 准备材料 设计对照
在设计实验 时要考虑用 到的数据分 析方法
29℃ 30℃
69.36 68.21
70.32 69.23
68.93 70.12
69.52 79.02
均值 70.36 69.698 70.98 71.512
均值是真实值的一 个无偏估计,但是直 接用均值去比较大小 是不科学的
4.完成实验:按照设计,在只有温度不同,其他条件都相 同的条件下完成实验。 5.数据分析:
Plackett-Burman
因子
常量 A:L-山梨糖 1.221
实验结果
系数
61.602 0.611
效应
T
65.80 0.65
P
<0.001** 0.526
B:玉米浆
C:KH2PO4 D:尿素 E:MgSO4
9.338
-6.186 -4.846 0.197
4.669
-3.093 -2.423 0.098
Box-Behnken
变异来源 模型 B C D BC 自由度 9 1 1 1 1 平方和 252.34 42.86 85.04 23.5 39.74 均方 28.04 42.86 85.04 23.5 39.74 F 13.63 20.83 41.33 11.42 19.31
p
0.0051** 0.006** 0.0014** 0.0197* 0.0071**

响应面优化实验范文

响应面优化实验范文

响应面优化实验范文响应面优化实验是一种常用的实验设计方法,用于寻找多个影响因素对实验结果的最佳组合。

通过对响应变量的系统性观测,结合统计学方法进行分析,可以得出最佳的实验参数组合,以达到所需的优化目标。

在这篇文章中,我将介绍响应面优化实验的原理、步骤和一些实际应用。

响应面优化实验的原理基于响应面法,该方法通过建立实验结果与多个影响因素之间的数学模型,来预测和优化实验结果。

响应面模型通常是一个多元回归方程,其中响应变量是主要的实验结果,而影响因素是自变量。

通过建立这个数学模型,我们可以了解不同因素对实验结果的影响程度及其相互作用,进而确定最佳的实验参数组合。

1.确定影响因素:在实验设计之前,我们需要确定可能对响应变量有影响的因素,这些因素可以是物质的浓度、温度、反应时间等。

通常,我们选择3~5个因素进行研究。

2.设计实验:根据所选的影响因素,设计一组实验来观测响应变量的不同取值。

实验设计可以采用正交实验设计、中心组合设计等方法,以保证实验结果的可靠性和准确性。

3.收集数据:进行实验并记录实验结果。

要保证实验数据的可靠性,通常需要进行多次实验,并取平均值作为最终结果。

4.建立数学模型:使用收集到的实验数据,建立响应面模型。

常见的方法包括线性回归、多项式回归、逐步回归等。

选择合适的数学模型是关键,它要能够准确描述实验结果和影响因素之间的关系。

5.分析模型:通过对建立的数学模型进行分析,可以了解各个因素对实验结果的主效应和相互作用效应。

主效应表示单个因素对实验结果的影响程度,而相互作用效应表示不同因素之间的影响关系。

6.优化实验参数:通过数学模型和分析结果,我们可以确定最佳的实验参数组合,以达到所需的优化目标。

这可以通过模型的预测和优化算法实现,例如数值优化算法、遗传算法等。

响应面优化实验在许多领域中都有广泛的应用。

在工程领域,它可以用于优化产品性能、工艺参数以及系统设计。

在制药行业,它可以用于优化药物配方、生产工艺和酶催化反应等。

响应面法优化实验条件

响应面法优化实验条件
对所拟合的模型进行检验, 确保其有效性,如通过残 差分析、AIC值等。
因素影响分析
通过模型分析,确定各因 素对目标响应的影响程度, 找出显著影响因素。
优化方案验证与实施
优化方案确定
根据模型分析结果,确定最优的实验因素水平组合。
优化方案验证
通过实验验证所确定的优化方案的可行性和有效性。
实施优化方案
在实际应用中,根据验证结果实施优化方案,并对实验结果进行评估 和反馈。
制药工业
寻找最佳的制药生产条件,提高药 物的产量和纯度。
03
02
生物技术
优化微生物培养、酶反应等生物过 程的条件。
环境科学
优化污水处理、废气处理等环保工 程的条件。
04
优势与局限性
优势
能够同时考虑多个变量对响应的影响,通过图形化方式直观地展示变量与响应之间的关系,有助于发 现非线性关系和交互作用。
案例二:材料制备实验条件优化
总结词
利用响应面法优化材料制备实验条件, 能够显著改善材料的性能指标,提高材 料的稳定性和可靠性。
VS
详细描述
在材料制备过程中,各种实验条件如温度 、压力、气氛和原料配比等都会影响材料 的结构和性能。通过响应面法,可以系统 地研究这些条件对材料性能的影响,并找 到最优的实验条件组合,从而制备出性能 优异、稳定可靠的新型材料。
响应面法优化实验条件
• 引言 • 响应面法概述 • 实验条件优化方法 • 响应面法在实验条件优化中的应用 • 案例分析 • 结论与展望
01
引言
主题简介
响应面法是一种数学建模和统 计分析方法,用于探索和优化
实验条件。
它通过构建一个或多个数学 模型来描述实验因素与响应 之间的函数关系,并利用这

高老师讲座实验设计与优化-响应面分析

高老师讲座实验设计与优化-响应面分析

第一部分 影响因素的筛选
PB试验的关键问题: 各因素的水平-1和 +1如何取?
各因素的水平取值不合理,则会对得到无价值甚至错误的结果 A:-1与+1变化正显著。B:-1与+1变化不显著性,不合理 C: -1与+1变化负显著,A绪论相反
第一部分 影响因素的筛选
➢ 每个因子取高、低两个水平(-1和+1),通常, 低水平为原始条件,高水平约取低水平的1.25~1.5 倍左右,一般不超过2倍。 ➢ 但对某些因子,高低水平的差值不能过大,以防 掩盖了其它因子的重要性,应依据实验条件而定。 ➢ 当缺乏可参考的数据时,对需结果进行研判,对 负显著和不显著的因素需考虑是否是因为设计不合 理造成,负显著则需减小水平值,不显著可能的原 因是取值过低或取值在B段。
“The Design of Optimum Multifactorial Experiments”, Biometrika 33 (4), pp. 305-25, June 1946 。
第一部分 影响因素的筛选
➢Plackett-Burman设计是二水平的部分试验设计, 通过对每个因子取两水平来进行分析(析因分析), 通过比较各个因子两水平之间的差异来确定因子的 显著性(显著性分析)。
第一部分 影响因素的筛选
案例:Plackett-burman设计法筛选超声波提取苹果多酚工艺 的主要影响因子
可能影响因素:超声波功率、处理时间、提取温度、溶
剂浓度、料液比。
每因素取:-1,+1,低水平与高水平; 响应值:多酚提取量(mg/100g)。
由DesignExpert软件自
动生成
第一部分 影响因素的筛选
进行实验设计:用Design-Expert软件辅助完成。 测定响应值。

5因素3水平响应面实验

5因素3水平响应面实验

5因素3水平响应面实验
5因素3水平响应面实验是一种设计实验的方法,它可以用于确定多个因素对响应变量的影响,以及找到最佳的因素组合以获得最佳的响应。

该实验设计中,有5个因素,每个因素有3个水平,因此总共有3的5次方个组合。

在该实验中,需要先确定响应变量,并根据实际情况选择合适的响应面模型。

然后,根据实验设计和所选模型,确定实验的运行顺序和每个因素在每个水平上的设置。

实验数据收集后,可以使用回归分析来确定每个因素对响应变量的影响及其交互作用。

最终,根据回归分析结果,可以确定最佳的因素组合以获得最佳的响应。

在实际应用中,该实验设计可以用于优化生产过程、改进产品设计等领域。

响应面设计步骤范文

响应面设计步骤范文

响应面设计步骤范文第一步:确定研究目标和问题在进行响应面设计之前,需要明确研究目标和问题。

研究目标可以是最大化或最小化一些响应变量,例如最大化生产效率或最小化成本。

问题可以是多个变量之间的关系以及它们对响应变量的影响。

第二步:选择响应表达式在响应面设计中,需要选择适当的响应表达式,该表达式描述了变量与响应的关系。

常见的线性和非线性响应表达式包括一次多项式、二次多项式、响应面方程等。

选择合适的响应表达式是研究中非常关键的一步。

第三步:确定实验设计实验设计是响应面设计的核心。

在这一步中,需要确定实验设计矩阵,即确定每个因素的水平和实验运行的次数。

常见的实验设计方法包括全因素实验设计、分数阶乘实验设计等。

根据实验目标和问题,选择适当的实验设计方法。

第四步:进行实验运行运行实验是响应面设计中的关键步骤。

根据实验设计矩阵,对每个条件进行实验运行,并记录实验结果。

根据实验结果,可以计算响应变量的平均值和方差,并进一步分析得出结论。

第五步:建立响应面模型根据实验结果,可以建立响应面模型,即将变量与响应的关系建模成数学函数。

建立模型的方法包括最小二乘法、多元回归分析等。

建立响应面模型是研究中非常重要的一步,它可以帮助预测响应变量的值,并优化实验条件。

第六步:模型检验和优化建立响应面模型后,需要对模型进行检验,以确定其精度和可靠性。

常用的模型检验方法包括拟合优度检验、分析方差等。

如果模型通过检验,则可以利用模型进行优化,通过改变变量的水平,预测和优化目标变量的响应。

第七步:结果分析和报告最后一步是分析实验结果并编写实验报告。

在结果分析中,可以对实验数据进行统计分析,比较不同条件下的响应变量值,并对结果进行解释。

在报告中,需要详细描述实验过程、实验结果和模型建立,并给出相应的结论和建议。

总结:响应面设计是一种重要的实验设计方法,通过建立数学模型,预测和优化目标变量的响应。

它可以帮助研究人员深入了解变量之间的关系,并进行优化实验。

响应面试验设计

响应面试验设计
这种设计失去了序贯性,前一次在立方点 上已经做过的试验结果,在后续的CCI设 计中不能继续使用。
对于α 值选取的另一个出发点也是有意义的, 就是取α =1,这意味着将轴向点设在立方体的表面 上,同时不改变原来立方体点的设置,这样的设计 称为中心复合表面设计 (central composite facecentered design,CCF)。
2001年 11
2000年 11
0
100 200 300
555 668
533 411
400 500 600 700 文章数量
787 800 900
2000年来CNKI数据库中以“主题=响应面设计”检索的文章数 量
20132012年 2011年 2010年 2009年 2008年 2007年 2006年 2005年 2004年 2003年
• 概述
– SAS系统全称为Statistical Analysis System。
– SAS系统最早由美国北卡罗来纳州立大学的两位生 物统计学研究生编制,并于1976年成立了SAS软件 研究所,正式推出SAS软件。
– SAS现在的最新版本为9.1版,根据不同的安装方式, 所占硬盘空间大约为1-2G。

– SAS中文论坛

SAS系统概述
• SAS系统简介 • 界面操作
SAS系统简介
• 概况
– SAS是美国SAS软件研究所研制的一套大型集成应用软件系 统,具有完备的数据存取、数据管理、数据分析和数据展 现功能。
0
1479 1162 969 791 720 687 608 562 486 457 402
200
400
600
800
1000

响应面优化实验

响应面优化实验

实验步骤1.输入三因素及其水平,设计响应面实验。

2、应变量3.输入实验数据4.试验方案形成5.实验数据分析利用系统软件SAS8、0对表5实验数据进行二次多项回归拟合,通过RESEG(响应面回归)过程进行数据分析,建立二次响应面回归模型,并寻求最优相应因子水平,得到回归方程:Y=2、136667+0、44625X1+0、045X2-0、01375X3-0、44583X12-0、13833X22-0、09083X32-0、1175X1X2+0、015X1X3-0、0725X2X3模型的F检验值在α=0、05时远大于F(9,5)=4、77,说明方程有很高的显著性。

R2=0、9973,表明方程模型与实验数据有99、73%的符合度,调整后的R2adj=0、9925,表明方程模型有很高的可信度。

6.正态分布图7.Residuals vs Predicted 图8.Predicted vs Actual 图9.实验实际值与方程预测值10.等高线图11.三维相应曲面图ABACBC在获得非线性回归模型与响应面之后,为了求得培养基最佳浓度,对所得的回归拟与方程分别对各自的变量求一阶偏导数,并令其为得到三元一次方程组,求解此方程组可以得到最大多糖量时的最佳条件:X1=0、5066(2、2533%) ,X2=-0、0488(0、9756%) , X3=0、0144(0、0993%) ,Y=2、2487g/L。

所以产多糖最高时的培养基组成为:葡萄糖2、2533%,鱼粉0、9756%,VB1 0、003%,NaCl0、8%,MgSO4·7H2O 0、1%,FeSO4·7H2O 0、04%,KH2PO4 0、0993%,初始pH值5、5。

12、用RSM预测最优值根据最优培养基配方对模型进行验证,香菇菌丝体产粗多糖为2、33g/L,实际值与预测值的误差为+3、61%。

初始培养基条件下总多糖产量为0、80g/L,优化后提高了1、91倍。

响应面法在优化和实验中的应用

响应面法在优化和实验中的应用

响应面法在优化和实验中的应用响应面法是一种多因素试验设计与数据分析方法,是分析多个变
量同时对某一特定输出变量影响的一种数学方法。

该方法广泛用于工程、制造、产品设计、药物研究等领域的优化和实验中。

响应面法的基本思想是根据一定的试验设计和统计学原理,通过
对多个自变量的不同水平组合进行实验,得到输出变量的响应值,进
而建立起这些因素与输出变量之间的数学模型。

接着,利用这个模型
进行优化或者预测,帮助实际应用工程人员在保证品质和效率的条件下,优化处理技术和过程,并找出最优的处理条件。

在实践应用中,响应面法的具体使用过程包括以下几个步骤:
第一步,确定待优化的输出变量和影响因素。

例如,药物研究领
域中,待优化的输出变量可以是药效,影响因素可以是药剂量、时间、温度等。

第二步,选择合适的试验设计方案。

常用的设计包括Box-Behnken 设计、中心组合设计、完全旋转设计等。

第三步,收集实验数据,得到不同因素水平下的输出变量响应值。

第四步,建立数学模型。

可以使用多元回归、Kriging插值、基于神经网络等方法建立模型。

第五步,优化设计和预测。

通过对建立的模型进行寻优和预测,
找到最优的处理条件,并对新的处理条件进行预测和验证。

响应面法的优点在于能够快速、经济地确定最优条件,并在改进质量的同时提高效率。

它通过深入分析试验数据和建立数学模型,让实际应用工程人员更好地了解多个自变量对输出变量的影响,并有理有据地进行处理技术和过程的优化。

随着响应面法在实践中的不断完善,它将成为为数不多的能够综合考虑多种因素影响和优化处理技术和过程的有效方法。

响应面分析实验的设计案例分析

响应面分析实验的设计案例分析

学校食品科学研究中实验设计的案例分析—响应面法优化超声波辅助酶法制备燕麦ACE抑制肽的工艺研究摘要:选择对ACE抑制率有显著影响的四个因素:超声波处理时间(X1)、超声波功率(X2)、超声波水浴温度(X3)和酶解时间(X4),进行四因素三水平的响应面分析试验,经过Desig n-Expert优化得到最优条件为超声波处理时间28.42mi n、超声波功率190.04W、超声波水浴温度55.05C、酶解时间2.24h,在此条件下燕麦ACE抑制肽的抑制率87.36%。

与参考文献SAS软件处理的结果中比较差异很小。

关键字:Desig n-Expert响应面分析1. 比较分析表一响应面试验设计因素—水平-101超声波处理时间X1(min)203040超声波功率X(W)132176220超声波水浴温度X3(C )505560酶解时间X4(h)1232. Design-Expert响应面分析分析试验设计包括:方差分析、拟合二次回归方程、残差图等数据点分布图、二次项的等高线和响应面图。

优化四个因素(超声波处理时间、超声波功率、超声波水浴温度、酶解时间)使响应值最大,最终得到最大响应值和相应四个因素的值。

利用Design-Expert软件可以与文献SAS软件比较,结果可以得到最优,通过上述步骤分析可以判断分析结果的可靠性。

1 / 182.1数据的输入2.2 Box-Beh nke n 响应面试验设计与结果h>m*Mr*n1 a md IrlF "nijlill ■ h ■■逗■北帚科■ Jfti. ■ T R F -II hfn- flap-rit F. I. i- 七J i|7FiIStiF«r- 2 F*m« 「纽■就Mi 刨FUi n BBW •巧aww?He r PhK44Wtn\~ L ■^Kt'i—13iin tai mSS J D Zfl> S5J3L L aw«twiN»W43*" 啊期卜 riL i«3 ZEiQCisum S£DeKat ,L 丄m 2 231 DO遊44W L£ 1 KhjBOk'iM£■ 1 SM ■flJ» 弭喷1® f J9 * wc■HiDfr4«^>14»41 14 ?狗IM辺罚 迹 twit 1 \ 9 ZD L D E!inis W J C D如MJdt津厲iHiXhC40 Xi■nmS5B1 0D>ms■HWJB霭m*4M IJ坤QCWiTvan■詈w«x Mww nmTO O? zoo JM-jr n J »W ismU3W SUBHlVM»滸g种SMM IT2D SO mm*SU BZIDns 旳4W询IBWCD■MHit 能闊>«M3t XI400 "iHl MW ?0) *1» 刁WOT•Jim*H=Bi.v>■mgg •i M 弄»w ・W»<nW wa» TTiTJi Z3ED3O>»«- ww询闻珈 tfMS富KW再CD>»vr» «?>»图22 / 182.3选择模型A Fi HJ'i■« Sir lAR:iih."n.、Rlf h ・p«i|!ji」■山■.卄”・虽1!. ■!" D^n k«n> ■■p*it T. I. I -____ 豐怛通* I ir*曲时・Hioaiitl 屢ifeup -»+.^l t Ifl呂巧和•小.机b"L E! t M T內肌T 1 ・f l■!■ M M2.4方差分析F lAEH^iicnilAIH^ M*K^& JftT - D B«A IH-I HP*I I t. I. iPHpl 审“"I IM H 1_ AaatyrHF n皿也*fa Opr«wiI 阿iNuBSk'iM—I rm:心討呻F EE云/A J!・I■勺r-L GrKri-i^L^m显hl r p^ar«Bh*31 *M+& 77.1 1 1 1 I 1IMb-*v«aiE4円1»+・■电卑屮V4M IM J -1101 fa li? A F DOM H12fl 1 .■■4T d«.*,J11^ I ri ft弟硒■理IM flW-M■刪? ■MiM血関■ “诞,.4# I Mw* 4 mn4<■ >i扌X>*40 J RWM^ ? JWW-4¥? i町ismdC rm? A CM r HK»g衝*■fllOP i K^MT■JAM1D»1 ? Mi" MBC ・4SM,•t貿E Iff dittLir**>• M■时■ j —F—沖W M W S3 MSWiFPixriu ・IJD u am上時g 1 fcVI ■4 钿An £MV J! ■s购—g *1C]»JSftn g dvi flWiWUw 2 ■*<*-!]"■ T«»«d'0 ECI!=lLv ■ a.«PwiP^H-M QEPH一T O* HH II PAujf-M•PSF HM审—■few L VH«4PTC F4vf e?«r 1 4W—A-*=Hrf arr-i■as 1 ai2 •C.T3NN 1 £E在本例中,模型显著性检验p<0.05,表明该模型具有统计学意义。

(整理)响应面优化实验方案设计

(整理)响应面优化实验方案设计

食品科学研究中实验设计的案例分析——响应面法优化超声辅助提取车前草中的熊果酸班级:学号:姓名:摘要:本文简要介绍了响应面曲线优化法的基本原理和使用步骤,并通过软件Design-Expert 7.0软件演示原文中响应面曲线优化法的操作步骤。

验证原文《响应面法优化超声辅助提取车前草中的熊果酸》各个数据的处理过程,通过数据对比,检验原文数据处理的正确与否。

关键词:响应面优化法数据处理 Design-Expert 7.0 车前草前言:响应曲面设计方法(Response SufaceMethodology,RSM)是利用合理的试验设计方法并通过实验得到一定数据,采用多元二次回归方程来拟合因素与响应值之间的函数关系,通过对回归方程的分析来寻求最优工艺参数,解决多变量问题的一种统计方法(又称回归设计)。

响应面曲线法的使用条件有:①确信或怀疑因素对指标存在非线性影响;②因素个数2-7个,一般不超过4个;③所有因素均为计量值数据;试验区域已接近最优区域;④基于2水平的全因子正交试验。

进行响应面分析的步骤为:①确定因素及水平,注意水平数为2,因素数一般不超过4个,因素均为计量值数据;②创建“中心复合”或“Box-Behnken”设计;③确定试验运行顺序(Display Design);④进行试验并收集数据;⑤分析试验数据;⑥优化因素的设置水平。

响应面优化法的优点:①考虑了试验随机误差②响应面法将复杂的未知的函数关系在小区域内用简单的一次或二次多项式模型来拟合,计算比较简便,是降低开发成本、优化加工条件、提高产品质量,解决生产过程中的实际问题的一种有效方法③与正交试验相比,其优势是在试验条件寻优过程中,可以连续的对试验的各个水平进行分析,而正交试验只能对一个个孤立的试验点进行分析。

响应面优化法的局限性: 在使用响应面优化法之前,应当确立合理的实验的各因素和水平。

因为响应面优化法的前提是设计的试验点应包括最佳的实验条件,如果试验点的选取不当,实验响应面优化法就不能得到很好的优化结果。

响应面实验设计

响应面实验设计

响应面实验设计
响应面实验设计是一种统计学方法,用于确定控制因素对响应变量的影响程度,以及找到最佳控制因素组合来优化响应变量。

在响应面实验设计中,首先确定响应变量和可能影响响应变量的因素。

然后,选择适当的实验设计方法,如Box-Behnken
设计或Central Composite设计,来建立实验矩阵。

实验矩阵包括一系列试验条件,每个试验条件都是不同因素水平的组合。

接下来,根据实验矩阵中的试验条件,进行一系列实验并记录响应变量的数值。

通过对实验数据进行统计分析,可以建立响应变量与因素水平之间的数学模型,通常为多项式模型。

这个数学模型可以用来预测响应变量在不同因素水平下的表现。

最后,通过使用响应面优化方法,找到达到最佳响应的控制因素组合。

这可以通过分析响应变量的最大值、最小值、稳定区域等得出。

响应面实验设计可应用于不同领域,如工程、科学和医药等,来优化产品设计、工艺参数等,以提高产品品质和性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

食品科学研究中实验设计的案例分析——响应面法优化超声辅助提取车前草中的熊果酸班级:学号:姓名:摘要:本文简要介绍了响应面曲线优化法的基本原理和使用步骤,并通过软件Design-Expert 软件演示原文中响应面曲线优化法的操作步骤。

验证原文《响应面法优化超声辅助提取车前草中的熊果酸》各个数据的处理过程,通过数据对比,检验原文数据处理的正确与否。

关键词:响应面优化法数据处理 Design-Expert 车前草前言:响应曲面设计方法(Response SufaceMethodology,RSM)是利用合理的试验设计方法并通过实验得到一定数据,采用多元二次回归方程来拟合因素与响应值之间的函数关系,通过对回归方程的分析来寻求最优工艺参数,解决多变量问题的一种统计方法(又称回归设计)。

响应面曲线法的使用条件有:①确信或怀疑因素对指标存在非线性影响;②因素个数2-7个,一般不超过4个;③所有因素均为计量值数据;试验区域已接近最优区域;④基于2水平的全因子正交试验。

进行响应面分析的步骤为:①确定因素及水平,注意水平数为2,因素数一般不超过4个,因素均为计量值数据;②创建“中心复合”或“Box-Behnken”设计;③确定试验运行顺序(Display Design);④进行试验并收集数据;⑤分析试验数据;⑥优化因素的设置水平。

响应面优化法的优点:①考虑了试验随机误差②响应面法将复杂的未知的函数关系在小区域内用简单的一次或二次多项式模型来拟合,计算比较简便,是降低开发成本、优化加工条件、提高产品质量,解决生产过程中的实际问题的一种有效方法③与正交试验相比,其优势是在试验条件寻优过程中,可以连续的对试验的各个水平进行分析,而正交试验只能对一个个孤立的试验点进行分析。

响应面优化法的局限性: 在使用响应面优化法之前,应当确立合理的实验的各因素和水平。

因为响应面优化法的前提是设计的试验点应包括最佳的实验条件,如果试验点的选取不当,实验响应面优化法就不能得到很好的优化结果。

原文《响应面法优化超声辅助提取车前草中的熊果酸》采用经典的三因素三水平Box-Behnken 试验设计,以熊果酸的提取率为响应值,通过回归分析各工艺参数与响应值之间的关系,并由此预测最佳的工艺条件。

本文利用软件验证原文中的数据处理过程,以检验原文数据是否处理正确。

1 确定实验因素原文利用超声波辅助提取车前草中的熊果酸,而影响熊果酸提取率的因素有很多,如超声波的功率、提取时间、溶剂温度、溶剂种类、液固比等。

原文参考文献《柿叶中总三萜的提取以及熊果酸分离, 纯化研究》中提取熊果酸的方法提取熊果酸,即将干燥的车前草粉碎后过筛,取20~40 目的车前粉,用石油醚在 55℃脱脂 3 次,干燥备用。

精密称取一定量的车前粉,加入一定量的乙醇,称量,在一定的超声波功率下提取一定时间后,擦干外壁,再称量,用乙醇补充缺失的质量,离心。

用注射器抽取一定量上清液,过μm 滤膜,进行检测。

每个实验进行 3 次平行实验。

取其平均值。

结果以提取率(E)的来表示。

C × VE/%= ———× 100M式中:C 为熊果酸的质量浓度 /(g/mL);V 为加入乙醇的体积 /mL;m 为车前草的质量 /g。

在一系列单因素实验的基础上,采用经典的三因素三水平 Box-Behnken 试验设计,选取提取温度(A)、乙醇体积分数(B)、超声功率(C)三个因素作为优化条件的因素对象。

2 确定因素水平范围确定因素水平范围就是通过做单因素初步试验或由样品的特性和工艺来确定BBD设计所研究的因素水平范围。

确定合适的因素水平范围对获得理想的优化结果非常重要,如果水平范围太窄得不到优化结果,太宽也会使结果精确度降低。

原文在单因素实验的基础上确定了因素水平范围是:提取温度的:60—80℃;乙醇体积分数:90—100%;提取功率:420—540W3 试验设计安排与结果根据Box-Behnken中心组合设计原理, 在单因素试验的基础上,以提取温度、乙醇体积分数和提取功率三个因素为自变量,熊果酸提取率%为响应值,作三因素三水平的响应面分析试验,共17个试验点。

其中12个为析因子,5个为中心试验用以估计误差。

试验因素和水平见表一。

表一响应面试验因素水平表Table1 Factors and levels in response sueface design水提取温度(℃)乙醇体积分数(%)提取功率(W)平-1 60 80 4200 70 90 4801 80 100 540表二响应面试验方案及结果Tabel 2 Scheme and experim ental results ofresponse surface design试验号 A B C 提取率(%)1 -1 -1 02 1 -1 03 -1 1 04 1 1 05 -1 0 -16 1 0 -17 -1 0 18 1 0 19 0 -1 -110 0 1 -111 0 -1 112 0 1 113 0 0 014 0 0 015 0 0 016 0 0 04 用软件(Design-Expert)对实验数据统计分析打开Design Expert 软件数据输入因素输入响应值输入试验方案形成默认试验序号及结果输入实验结果输入实验数据分析把优化设计表中因素水平由编码值转换成实际值实际值输入的时候要注意从大到小输入,例如:提取温度,先输入高值80,再输入低值60。

将实验方案切换到实际值界面点击Display Options Process Factors Actual方差分析由方差分析可知:模型的F=,P=<,表明实验所采用的二次模型是极显著的,在统计学上是有意义的。

失拟项用来表示所用模型与实验拟合的程度,即二者差异的程度。

本例P值为>,对模型是有利的,无失拟因素存在,因此可用该回归方程代替试验真实点对实验结果进行分析。

因素A提取温度的P值<,说明因素A提取温度对提取率%的影响是极显著的。

而A 的2次方,B的2次方,C的2次方的P值均小于,说明A2、B2、C2 对提取率均有显著影响。

而因素B的P值=,因素C的P值=,均大于,所以因素B、因素C,即乙醇体积分数和提取功率对提取率没有显著影响。

交互项AB、AC、BC的P值均大于分别为:、、,均大于,所以交互项对提取率没有显著性影响。

变异系数校正决定系数R2(Adj)=,变异系数.%为%,说明该模型有的变异不能由该模型解释,因此,多元二次响应面分析R2=,与原文中的拟合方程一致。

原文中的拟合方程:该多元二次方程为编码值的拟合方程,非实验值的多元二次方程,实验值的多元二次方程为:残差的正太分布图Residuals vs Predicted 图基本都在同一条直线上符合分布无规律Predicted vs Actual 图基本能在一条直线上实验实际值和方程预测值实验实际值和方程预测值基本都很接近,虽和原文相比,有一些差别,均在可接受的范围内。

原文数据如下:原文数据输入错误等高线图三维响应曲面图A提取温度、B乙醇体积分数、提取率三维曲面图A提取温度、C提取功率、提取率三维曲面图B乙醇体积分数、C提取功率、提取率三维曲面图用RSM预测最优值选提取率Goal 选maximize选项Upper选项选择远离最高点的值Rsm优化的结果为:A提取温度为℃B乙醇体积分数为%C提取功率为提取率%为%软件验证的结果和原文中的结果一致,原文中的结果如下:RSM得出的最佳方案5 用SAS软件进行岭脊分析打开SAS软件,在Editor-untitled1中输入语句和数据查看output,可得到一下结果:经过SAS岭脊分析,最有条件为A提取温度为:℃B乙醇体积分数为:%C提取功率为:提取率%为:%6 RSM分析和SAS分析与原文结果比较表二提取温度(℃)乙醇体积分数(%)提取功率(W)提取率% RSM分析SAS分析原文结果7、案例实验设计和原文数据分析比较及评价本文利用现今流行的Design Expert 软件和SAS软件中的岭脊分析验证文献《响应面法优化超声辅助提取车前草中的熊果酸》中的数据分析过程。

从实验方案的建立到实验结果的方差分析,再到二次多项式逐步回归拟合,到最后的最优值的计算,本文演示的结果和原文基本一致,仅有一些略微的差别,各项数据均能符合统计指标要求。

但通过RSM分析得出的最优值仍不可靠,所以还需用SAS软件进行岭脊分析,这样得出的最优提取条件才是可靠的。

经过验证,原文中的提取温度因素对提取率有显著性影响,而乙醇体积分数和提取功率两因素对提取率缺乏显著性影响。

因此,在本实验方案存在缺陷,需要进一步进行改进实验方案。

参考文献:[1]孔涛, 范杰平, 胡小芳等.响应面法优化超声辅助提取车前草中的熊果酸[J]. 食品科学, 2011, 32(06): 80-84[2] 范杰平, 何潮洪, 傅鹏飞. 柿叶中总三萜的提取以及熊果酸分离, 纯化研究[J]. 中国药学杂志, 2007, 42(16): 1258-1261.。

相关文档
最新文档