七年级数学下册第8单元二元一次方程组测习题(C卷)新人教版

合集下载

新人教版七年级数学下册第8章二元一次方程组检测题及答案

新人教版七年级数学下册第8章二元一次方程组检测题及答案

8.1 二元一次方程组练习题一、选择题:1.下列方程中,是二元一次方程的是()A.3x-2y=4z B.6xy+9=0 C.1x+4y=6 D.4x=24y-2.下列方程组中,是二元一次方程组的是()A.228 423119 (23754624)x yx y a b xB C Dx y b c y x x y+= +=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩3.二元一次方程5a-11b=21 ()A.有且只有一解B.有无数解C.无解D.有且只有两解4.方程y=1-x与3x+2y=5的公共解是()A.3333...2422 x x x xB C Dy y y y==-==-⎧⎧⎧⎧⎨⎨⎨⎨===-=-⎩⎩⎩⎩5.若│x-2│+(3y+2)2=0,则的值是()A.-1 B.-2 C.-3 D.3 26.方程组43235x y kx y-=⎧⎨+=⎩的解与x与y的值相等,则k等于()7.下列各式,属于二元一次方程的个数有()①xy+2x-y=7;②4x+1=x-y;③1x+y=5;④x=y;⑤x2-y2=2⑥6x-2y ⑦x+y+z=1 ⑧y(y-1)=2y2-y2+xA.1 B.2 C.3 D.48.某年级学生共有246人,其中男生人数y比女生人数x的2倍少2人,•则下面所列的方程组中符合题意的有()A.246246216246... 22222222 x y x y x y x yB C Dy x x y y x y x+=+=+=+=⎧⎧⎧⎧⎨⎨⎨⎨=-=+=+=+⎩⎩⎩⎩二、填空题9.已知方程2x+3y-4=0,用含x的代数式表示y为:y=_______;用含y的代数式表示x 为:x=________.10.在二元一次方程-12x+3y=2中,当x=4时,y=_______;当y=-1时,x=______.11.若x3m-3-2y n-1=5是二元一次方程,则m=_____,n=______.12.已知2,3xy=-⎧⎨=⎩是方程x-ky=1的解,那么k=_______.13.已知│x-1│+(2y+1)2=0,且2x-ky=4,则k=_____.14.二元一次方程x+y=5的正整数解有______________.15.以57xy=⎧⎨=⎩为解的一个二元一次方程是_________.16.已知2316x mx yy x ny=-=⎧⎧⎨⎨=--=⎩⎩是方程组的解,则m=_______,n=______.三、解答题17.当y=-3时,二元一次方程3x+5y=-3和3y-2ax=a+2(关于x,y的方程)•有相同的解,求a的值.18.如果(a-2)x+(b+1)y=13是关于x,y的二元一次方程,则a,b满足什么条件?19.二元一次方程组437(1)3x ykx k y+=⎧⎨+-=⎩的解x,y的值相等,求k.20.已知x,y是有理数,且(│x│-1)2+(2y+1)2=0,则x-y的值是多少?21.已知方程12x+3y=5,请你写出一个二元一次方程,•使它与已知方程所组成的方程组的解为41 xy=⎧⎨=⎩.22.根据题意列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,•问明明两种邮票各买了多少枚?(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;•若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?23.方程组2528x yx y+=⎧⎨-=⎩的解是否满足2x-y=8?满足2x-y=8的一对x,y的值是否是方程组2528x yx y+=⎧⎨-=⎩的解?24.(开放题)是否存在整数m,使关于x的方程2x+9=2-(m-2)x在整数范围内有解,你能找到几个m的值?你能求出相应的x的解吗?答案:一、选择题1.D 解析:掌握判断二元一次方程的三个必需条件:①含有两个未知数;②含有未知数的项的次数是1;③等式两边都是整式.2.A 解析:二元一次方程组的三个必需条件:①含有两个未知数,②每个含未知数的项次数为1;③每个方程都是整式方程.3.B 解析:不加限制条件时,一个二元一次方程有无数个解.4.C 解析:用排除法,逐个代入验证.5.C 解析:利用非负数的性质.6.B7.C 解析:根据二元一次方程的定义来判定,•含有两个未知数且未知数的次数不超过1次的整式方程叫二元一次方程,注意⑧整理后是二元一次方程.8.B二、填空题9.424332x y--10.43-1011.43,2 解析:令3m-3=1,n-1=1,∴m=43,n=2.12.-1 解析:把2,3xy=-⎧⎨=⎩代入方程x-ky=1中,得-2-3k=1,∴k=-1.13.4 解析:由已知得x-1=0,2y+1=0,∴x=1,y=-12,把112xy=⎧⎪⎨=-⎪⎩代入方程2x-ky=4中,2+12k=4,∴k=1.14.解:12344321 x x x xy y y y====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩解析:∵x+y=5,∴y=5-x,又∵x,y均为正整数,∴x为小于5的正整数.当x=1时,y=4;当x=2时,y=3;当x=3,y=2;当x=4时,y=1.∴x+y=5的正整数解为12344321 x x x xy y y y====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩15.x+y=12 解析:以x与y的数量关系组建方程,如2x+y=17,2x-y=3等,此题答案不唯一.16.1 4 解析:将2316x mx yy x ny=-=⎧⎧⎨⎨=--=⎩⎩代入方程组中进行求解.三、解答题17.解:∵y=-3时,3x+5y=-3,∴3x+5×(-3)=-3,∴x=4,∵方程3x+5y=•-•3•和3x-2ax=a+2有相同的解,∴3×(-3)-2a×4=a+2,∴a=-11 9.18.解:∵(a-2)x+(b+1)y=13是关于x,y的二元一次方程,∴a-2≠0,b+1≠0,•∴a≠2,b≠-1解析:此题中,若要满足含有两个未知数,需使未知数的系数不为0.(•若系数为0,则该项就是0)19.解:由题意可知x=y,∴4x+3y=7可化为4x+3x=7,∴x=1,y=1.将x=1,y=•1•代入kx+(k-1)y=3中得k+k-1=3,∴k=2 解析:由两个未知数的特殊关系,可将一个未知数用含另一个未知数的代数式代替,化“二元”为“一元”,从而求得两未知数的值.20.解:由(│x│-1)2+(2y+1)2=0,可得│x│-1=0且2y+1=0,∴x=±1,y=-12.当x=1,y=-12时,x-y=1+12=32;当x=-1,y=-12时,x-y=-1+12=-12.解析:任何有理数的平方都是非负数,且题中两非负数之和为0,则这两非负数(│x│-1)2与(2y+1)2都等于0,从而得到│x│-1=0,2y+1=0.21.解:经验算41xy=⎧⎨=⎩是方程12x+3y=5的解,再写一个方程,如x-y=3.22.(1)解:设0.8元的邮票买了x枚,2元的邮票买了y枚,根据题意得130.8220 x yx y+=⎧⎨+=⎩.(2)解:设有x只鸡,y个笼,根据题意得415(1)y xy x+=⎧⎨-=⎩.23.解:满足,不一定.解析:∵2528x yx y+=⎧⎨-=⎩的解既是方程x+y=25的解,也满足2x-y=8,•∴方程组的解一定满足其中的任一个方程,但方程2x-y=8的解有无数组,如x=10,y=12,不满足方程组25 28x yx y+=⎧⎨-=⎩.24.解:存在,四组.∵原方程可变形为-mx=7,∴当m=1时,x=-7;m=-1时,x=7;m=•7时,x=-1;m=-7时x=1.第八章二元一次方程组单元知识检测题一、选择题(每小题3分,共24分)1.方程2x-1y=0,3x+y=0,2x+xy=1,3x+y-2x=0,x2-x+1=0中,二元一次方程的个数是()A.1个B.2个C.3个D.4个2.二元一次方程组32325x yx y-=⎧⎨+=⎩的解是()A.3217...230122xx xxB C Dy yyy=⎧⎧===⎧⎧⎪⎪⎨⎨⎨⎨==-=⎩⎩⎪⎪=⎩⎩3.关于x,y的二元一次方程组59x y kx y k+=⎧⎨-=⎩的解也是二元一次方程2x+3y=6的解,则k的值是(•)A.k=-34B.k=34C.k=43D.k=-434.如果方程组1x yax by c+=⎧⎨+=⎩有唯一的一组解,那么a,b,c的值应当满足()A.a=1,c=1 B.a≠b C.a=b=1,c≠1 D.a=1,c≠1 5.方程3x+y=7的正整数解的个数是()A.1个B.2个C.3个D.4个6.已知x,y满足方程组45x my m+=⎧⎨-=⎩,则无论m取何值,x,y恒有关系式是()A.x+y=1 B.x+y=-1 C.x+y=9 D.x+y=97.如果│x+y-1│和2(2x+y-3)2互为相反数,那么x,y的值为()A.1122 ...2211 x x x xB C Dy y y y==-==-⎧⎧⎧⎧⎨⎨⎨⎨==-=-=-⎩⎩⎩⎩8.若2,117x ax byy bx by=-+=⎧⎧⎨⎨=+=⎩⎩是方程组的解,则(a+b)·(a-b)的值为()A.-353B.353C.-16 D.16二、填空题(每小题3分,共24分)9.若2x2a-5b+y a-3b=0是二元一次方程,则a=______,b=______.10.若12ab=⎧⎨=-⎩是关于a,b的二元一次方程ax+ay-b=7的一个解,则代数式x2+2xy+y2-1•的值是_________.11.写出一个解为12xy=-⎧⎨=⎩的二元一次方程组__________.12.a-b=2,a-c=12,则(b-c)3-3(b-c)+94=________.13.已知32111x x y y ==-⎧⎧⎨⎨==⎩⎩和都是ax+by=7的解,则a=_______,b=______. 14.若2x 5a y b+4与-x 1-2b y 2a 是同类项,则b=________. 15.方程mx -2y=x+5是二元一次方程时,则m________.16.方程组2332s t s t+-==4的解为________. 三、解答题17.解方程组(每小题4分,共8分)(1)257320x y x y -=⎧⎨-=⎩33(2)255(2)4x y x y +⎧=⎪⎨⎪-=-⎩ 18.已知y=3xy+x ,求代数式2322x xy yx xy y+---的值.(本小题6分)19.已知方程组256351648x y x y ax by bx ay +=--=⎧⎧⎨⎨-=-+=-⎩⎩与方程组的解相同.求(2a+b )2004的值.(本小题6分)20.已知x=1是关于x 的一元一次方程ax -1=2(x -b )的解,y=1是关于y •的一元一次方程b (y -3)=2(1-a )的解.在y=ax 2+bx -3中,求当x=-3时y 值.(本小题6分)21.甲、乙两人同解方程组542ax y x by +=⎧⎨=-⎩甲看错了方程①中的a ,解得31x y =-⎧⎨=-⎩,乙看错了②中的b ,200620075()410x ba y =⎧+-⎨=⎩试求的值.(本小题6分) 22.某商场按定价销售某种电器时,每台可获利48元,•按定价的九折销售该电器6台与将定价降低30元销售该电器9台所获得的利润相等.求该电器每台的进价、•定价各是多少元?(本小题7分)23.一张方桌由1个桌面,4条桌腿组成,如果1m 3木料可以做方桌的桌面50•个或做桌腿300条,现有10m 3木料,那么用多少立方米的木料做桌面,•多少立方米的木料做桌腿,做出的桌面与桌腿,恰好能配成方桌?能配成多少张方桌.(本小题7分) 24.甲、乙二人在上午8时,自A 、B 两地同时相向而行,上午10时相距36km ,•二人继续前行,到12时又相距36km ,已知甲每小时比乙多走2km ,求A ,B 两地的距离.(•本小题7分)第八章一、选择题1.B 解析:②④是2.C 解析:用加减法,直接相加即可消去y ,求得x 的值. 3.B 解析:解方程组可得x=7k ,y=-2k ,然后把x ,y 代入二元一次方程2x+3y=6,即2×7k+3×(-2k )=6,解得k=34,故选B.4.B5.B 解析:正整数解为:1241 x xy y==⎧⎧⎨⎨==⎩⎩6.C 解析:由方程组消去m,得到一个关于x,y的方程,化简这个方程即可.7.C 解析:根据两个非负数互为相反数,判断两个非负数必定都是0,所以有122 2301 x y xx y y+-==⎧⎧⎨⎨+-==-⎩⎩解得8.C 解析:把x=-2,y=1代入原方程组得213 275a b ab a b-+==-⎧⎧⎨⎨-+==-⎩⎩解得,∴(a+b)(a-b)=-16.二、填空题9.-2,-1 解析:根据二元一次方程的定义可得x,y的指数都是1,•由二元一次方程定义,得2512311 a b aa b b-==-⎧⎧⎨⎨-==-⎩⎩解得.10.24 解析:把a=1,b=-2代入原方程可得x+y的值,把a=1,b=-2代入ax+ay-b=•7得x+y=5,因为x2+2xy+y2-1=(x+y)2-1,所以原式=24.11.2024x yx y+=⎧⎨-=-⎩(答案不唯一).12.278解析:由a-b=2,a-c=12可得b-c=-32,再代入(b-c)3-3(b-c)+94=278.13.2 1 解析:本题既考查了二元一次方程的解的概念又考查了二元一次方程组的解法.分别将两组解法代入二元一次方程,可得372 21171a b aa b b+==⎧⎧⎨⎨-+==⎩⎩解这个方程组得.14.-2 解析:本题涉及同类项的概念:所含字母相同,相同字母的指数也相同,•由此可得5a=1-2b;b+4=2a,将两式联立组成方程组,解出a,b的值,分别为a=1,b=-2,•故b a=-2.15.≠116.24434342s tst s t+⎧=⎪=⎧⎪⎨⎨=-⎩⎪=⎪⎩解析:解方程组即可.三、解答题17.解:(1)257320x y x y -=⎧⎨-=⎩ ①×3得,6x -3y=15 ③②-③,得x=5.将x=5代入①,得y=5,所以原方程组的解为55x y =⎧⎨=⎩. (2)原方程组变为51565104x y x y +=⎧⎨-=-⎩①-②,得y=25.将y=25代入①,得5x+15×25=6,x=0,所以原方程组的解为025x y =⎧⎪⎨=⎪⎩.18.解:因为y=3xy+x ,所以x -y=-3xy . 当x -y=-3xy 时,2322()32(3)332()2325x xy y x y xy xy xy x xy y x y xy xy xy +--+-+===------.解析:首先根据已知条件得到x -y=-3xy ,再把要求的代数式化简成含有x -y 的式子,然后整体代入,使代数式中只含有xy ,约分后得解.19.解:因为两个方程组的解相同,所以解方程组25623562x y x x y y +=-=⎧⎧⎨⎨-==-⎩⎩解得 代入另两个方程得2143a b a a b b +=-=⎧⎧⎨⎨-+=-=-⎩⎩解得,∴原式=(2×1-3)2004=1. 20.解:将x=1,y=1分别代入方程得512(1)3(13)2(1)23a a b b a b ⎧=⎪-=-⎧⎪⎨⎨-=-⎩⎪=⎪⎩解方程组得所以原式=53x 2+23x -3.当x=-3时,•原式=53×(-3)2+23×(-3)-3=15-2-3=10.21.解:把31x y =-⎧⎨=-⎩代入方程②,得4×(-3)=b ·(-1)-2,解得b=10.把54x y =⎧⎨=⎩代入方程①,得5a+5×4=15,解得a=-1, 所以a 2006+20072006200710()(1)()1010b -=-+-=1+(-1)=0.22.解:设该电器每台的进价为x 元,定价为y 元. 由题意得48,162,6(0.9)9(30)210.y x x y x y x y -==⎧⎧⎨⎨-=--=⎩⎩解得. 答:•该电器每台的进价是162元,定价是210元.解析:打九折是按定价的90%销售,利润=售价-进价. 23.解:设用xm 3木料做桌面,ym 3木料做桌腿.由题意,得106,450300 4.x y x x y y +==⎧⎧⎨⎨⨯==⎩⎩解得 (2)6×50=300(张).答:用6m 3木料做桌面,4m 3木料做桌腿恰好能配成方桌,能配成300张方桌.解析:问题中有两个条件:①做桌面用的木料+做桌腿用的木料=10;②4×桌面个数=桌腿个数.24.解:设A 、B 两地相距xkm ,乙每小时走ykm ,则甲每小时走(y+2)km . 根据题意,•得2(2)361084(2)3617y y x x y y x y ++=-=⎧⎧⎨⎨++=+=⎩⎩解这个方程组得.答:略.七年级数学《二元一次方程组》单元测试卷(时间:60分钟,满分:100分)班级 座号 姓名 成绩一、细心选一选 —— 要认真考虑.(每题3分,共15分. 将你认为正确的选项填入下表.)1.下列方程组是二元一次方程组的是( ).A .21141120 (2231)30x y x y yx x B C D xxy y x y x x y ⎧-=-=-⎧-=--=⎧⎧⎪⎨⎨⎨⎨==+=+⎩⎩⎩⎪+=⎩ 2.方程x y x 252-=-覆盖处是被污染的x 的系数,则被污染的x 的系数的值( ). A .不可能是-1B .不可能是-2C .不可能是1D .不可能是23.买钢笔和铅笔共30支,其中钢笔的数量比铅笔数量的2倍少3支.若设买钢笔x 支,铅笔y 支,根据题意,可得方程组( ).A .⎩⎨⎧+==+3230x y y xB .⎩⎨⎧-==+3230x y y x C .⎩⎨⎧+==+3230y x y x D .⎩⎨⎧-==+3230y x y x 4. 下列结论正确的是( ). A .方程5=+y x 所有的解都是方程组⎩⎨⎧=+=+1835y x y x 的解B .方程5=+y x 所有的解都不是方程组⎩⎨⎧=+=+1835y x y x 的解C .方程组⎩⎨⎧=+=+1835y x y x 的解不是方程5=+y x 的一个解D .方程组⎩⎨⎧=+=+1835y x y x 的解是方程5=+y x 的一个解5.关于x 、y 的方程组⎩⎨⎧=-=+15x y ay x 有正整数解,则正整数a 为(A . 1、2B .2、5C .1、5D .1、2、5二、认真填一填 —— 要相信自己.(每空3分,共21分.) 6.已知二元一次方程231x y -=.当1y =时,x = .2 7.对于33=+y x ,用含x 的代数式表示y 得:_____.13+-=xy 8.已知⎩⎨⎧==53y x 是方程ax -2y =2的一个解,那么a 的值是 .4 9.某商品成本价为t 元,商品上架前定价为s 元,按定价的8折销售后获利45元。

最新人教版初中数学七年级下册第8章《二元一次方程组》单元测试题(含答案解析)(1)

最新人教版初中数学七年级下册第8章《二元一次方程组》单元测试题(含答案解析)(1)

人教版七年级数学下册第 8 章《二元一次方程组》单元检测题人教版七年级下册第八章二元一次方程组单元检测题考试时间: 100 分钟; 满分: 120 分班级:姓名:学号:分数:一、选择题(本题共 10 个小题,每题 3 分,共 30 分) 1.以下各式是二元一次方程的是()A .1b2 B . 2m3n5C . 2x+3=5D . xy3a2.若x2是方程 ax -3y=2 的一个解,则 a 为 ()y 7A .8B. 23C.-23D .-192223.解方程组 4x 3 y 7时,较为简单的方法是()4x3y 5A .代入法B.加减法 C .试值法 D .没法确立4.方程组2xy的解为x2,则被掩盖的两个数分别为()x y3yA .1,2 B.1,3C .5,1(D) 2,4 5.以下方程组,解为x1是()y2A . x y 1B . x y 1C . x y 3D .x y33x y53x y53xy 1 3x y56.买钢笔和铅笔共 30 支,此中钢笔的数目比铅笔数目的 2 倍少 3 支.若设买钢笔 x 支,铅笔 y 支,依据题意,可得方程组()A . x y 30B . x y 30C . x y 30D .x y 30 y 2x 3y 2x 3x 2 y 3x 2 y 37.已知 x 、y 知足方程组x 2y8,则 x +y 的值是( )2x y 7A .3B .5C .7D .98.已知 3x m n y m n 与- 9x 7-m y 1+n 的和是单项式,则 m ,n 的值分别是()5A .m=- 1, n=-7B .m=3,n=1C .m=29, n=6D.m=5,n=- 210 549.依据图中供给的信息,可知一个杯子的价钱是( )A .51 元B .35元C .8 元D .7.5 元10.已知二元一次方程 3x +y =0 的一个解是xa,此中 a ≠ 0,那么( )y bA.b>0B.b=0C.b< 0D. 以上都不对aaa二、填空题(本题共 6 个小题,每题 4 分,共 24 分)11.请你写出一个有一解为的二元一次方程:.12.已知方程 3x +5y - 3=0,用含 x 的代数式表示 y ,则 y=________..若 x a-b-2-2y a + b是二元一次方程,则 a=________ , b=________.13 =314.方程 4x +3y =20 的全部非负整数解为:.15.某商品成本价为 t 元,商品上架前订价为 s 元,按订价的 8 折销售后赢利 45元。

新人教版七年级下册《第8章二元一次方程组》测试(含答案)

新人教版七年级下册《第8章二元一次方程组》测试(含答案)

新人教版七年级下册《第8章二元一次方程组》一、选择题1.下列方程中不是二元一次方程的是()A.3x﹣5y=1 B.=y C.xy=7 D.2(m﹣n)=92.已知x=2m+1,y=2m﹣1,用含x的式子表示y的结果是()A.y=x+2 B.y=x﹣2 C.y=﹣x+2 D.y=﹣x﹣23.方程组:的解是()A.B.C.D.4.在等式y=x2+mx+n中,当x=2时,y=5;x=﹣3时,y=﹣5.则x=3时,y=()A.23 B.﹣13 C.﹣5 D.135.如果二元一次方程ax+by+2=0有两个解与,那么下列各组中仍是这个方程的解的是()A.B.C.D.6.已知|3x+2y﹣4|与9(5x+7y﹣3)2互为相反数,则x、y的值是()A.B.C.无法确定D.7.二元一次方程组的解满足方程x﹣2y=5,那么k的值为()A.B.C.﹣5 D.18.已知方程组和有相同的解,则a,b的值为()A.B.C.D.9.用“●”“■”“▲”分别表示三种不同的物体,如图所示,前两架天平保持平衡,若要使第三架天平也平衡,那么“?”处应放“■”的个数为()A.5个 B.4个 C.3个 D.2个10.已知方程组与方程组有相同的解,则a、b、c 的值为()A.B.C.D.二、填空题11.在3x+4y=10中,如果2y=6,那么x=.12.由方程3x﹣2y﹣6=0可得到用x表示y的式子是.13.已知是二元一次方程组的解,则a﹣b=.14.四川5•12大地震后,灾区急需帐篷.某企业急灾区所急,准备捐助甲、乙两种型号的帐篷共2000顶,其中甲种帐篷每顶安置6人,乙种帐篷每顶安置4人,共安置9000人.设该企业捐助甲种帐篷x顶、乙种帐篷y顶,可列方程组为.15.学生问老师:“您今年多大年龄?”老师风趣地说:“我像你这样大时,你才1岁,你到我这样大时,我已经37岁了.”那么老师的年龄是岁,学生的年龄是.16.甲、乙两人去商店买东西,他们所带的钱数之比为7:6,甲用掉50元,乙用掉60元,两人余下的钱之比是3:2,则甲余下的钱为元,乙余下的钱为元.17.在一本书上写着方程组的解是,其中y的值被墨渍盖住了,不过,我们可解得出p=.18.对于X、Y定义一种新运算“*”:X*Y=aX+bY,其中a、b为常数,等式右边是通常的加法和乘法的运算.已知:3*5=15,4*7=28,那么2*3=.19.把图折叠成一个正方体,如果相对面的值相等,则一组x,y的值是.20.三个同学对问题“若方程组的解是,求方程组的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应该是.三、解答题21.解下列方程组:(1);(2).22.李大叔今年五月份购买了一台彩电和一台洗衣机,根据“家电下乡”的补贴标准:农户每购买一件家电,国家将按每件家电售价的13%补贴给农户.因此,李大叔从乡政府领到了390元补贴款.若彩电的售价比洗衣机的售价高1000元,求彩电和洗衣机的售价各是多少元?23.八年级三班在召开期末总结表彰会前,班主任安排班长李小波去商店买奖品,下面是李小波与售货员的对话:李小波:阿姨,您好!售货员:同学,你好,想买点什么?李小波:我只有100元,请帮我安排买10支钢笔和15本笔记本.售货员:好,每支钢笔比每本笔记本贵2元,退你5元,请清点好,再见.根据这段对话,你能算出钢笔和笔记本的单价各是多少吗?24.如图所示,小强和小红一起搭积木,小强所搭的小塔高度为23cm,小红所搭的小树高度为22cm,设每块A型积木的高为x cm,每块B型积木高y cm,请求出x和y的值.25.在“五一”期间,小明和他的父亲坐游船从甲地到乙地观光,在售票大厅他们看到了表(一),在游船上,他又注意到了表(二).爸爸对小明说:“我来考考你,若船在静水中的速度保持不变,你能知道船在静水中的速度和水流速度吗?”小明很快得出了答案,你知道小明是如何算的吗?表(一)表(二)26.某人在电车路轨旁与路轨平行的路上骑车行走,他留意到每隔6分钟有一部电车从他后面驶向前面,每隔2分钟有一部电车从对面驶向后面.假设电车和此人行驶的速度都不变(分别为u1,u2表示),请你根据下面的示意图,求电车每隔几分钟(用t表示)从车站开出一部?新人教版七年级下册《第8章二元一次方程组》一、选择题1.C;2.B;3.D;4.D;5.A;6.B;7.B;8.A;9.A;10.D;二、填空题11.﹣;12.;13.﹣1;14.;15.25;13岁;16.90;60;17.3;18.2;19.x=2,y=3或x=3,y=2;20.;三、解答题21.解下列方程组:(1);(2).解:(1)设x+y=a,x﹣y=b,则原方程组化为:,①+②得:10a=120,解得:a=12,①﹣②得:6b=60,解得:b=10,即,解得:;(2)①+②×2得:8x+12z=28,即2x+3z=7④,②×3﹣③得:4x+8z=20,即x+2z=5⑤,由④和⑤组成方程组,解得:,把x=﹣1,z=3代入①得:﹣2+4y+6=6,解得:y=,即方程组的解是.22.李大叔今年五月份购买了一台彩电和一台洗衣机,根据“家电下乡”的补贴标准:农户每购买一件家电,国家将按每件家电售价的13%补贴给农户.因此,李大叔从乡政府领到了390元补贴款.若彩电的售价比洗衣机的售价高1000元,求彩电和洗衣机的售价各是多少元?解:设一台彩电的售价为x元,一台洗衣机的售价为y元.根据题意得:解得:(7分)答:彩电和洗衣机的售价各是2000,1000元.23.八年级三班在召开期末总结表彰会前,班主任安排班长李小波去商店买奖品,下面是李小波与售货员的对话:李小波:阿姨,您好!售货员:同学,你好,想买点什么?李小波:我只有100元,请帮我安排买10支钢笔和15本笔记本.售货员:好,每支钢笔比每本笔记本贵2元,退你5元,请清点好,再见.根据这段对话,你能算出钢笔和笔记本的单价各是多少吗?解:设钢笔每支为x元,笔记本每本y元,据题意得,解方程组得答:钢笔每支5元,笔记本每本3元.24.如图所示,小强和小红一起搭积木,小强所搭的小塔高度为23cm,小红所搭的小树高度为22cm,设每块A型积木的高为x cm,每块B型积木高y cm,请求出x和y的值.解:根据题意,得.解得.25.(在“五一”期间,小明和他的父亲坐游船从甲地到乙地观光,在售票大厅他们看到了表(一),在游船上,他又注意到了表(二).爸爸对小明说:“我来考考你,若船在静水中的速度保持不变,你能知道船在静水中的速度和水流速度吗?”小明很快得出了答案,你知道小明是如何算的吗?表(一)表(二)解:设船在静水中的速度是x千米/时,水流速度为y千米时,根据题意,得,解得:.答:船在静水中的速度为25千米/时和水流速度为5千米/时.26.某人在电车路轨旁与路轨平行的路上骑车行走,他留意到每隔6分钟有一部电车从他后面驶向前面,每隔2分钟有一部电车从对面驶向后面.假设电车和此人行驶的速度都不变(分别为u1,u2表示),请你根据下面的示意图,求电车每隔几分钟(用t表示)从车站开出一部?解:根据题意得:解得v1=2v2,∴t=3(分钟)答:电车每隔3分钟从车站开出一部.。

人教版七年级 下册第八章二元一次方程组单元测试题(含答案解析)

人教版七年级 下册第八章二元一次方程组单元测试题(含答案解析)
品打六折,则可赚50元,若甲商品打六折,乙商品打八折,则可赚30元,甲、乙两种
商品的定价分别为()
A.50元、150元B.50元、100元C.100元、50元D.150元、50元
6.把方程x=1变形为x=2,其依据是()
A.分数的基本性质
C.等式的性Biblioteka 27.用“加减法”将方程组
B.等式的性质1
D.解方程中的移项
A.B.C.D.
3.下列各方程的变形,正确的是()
A.由3+x=5,得x=5+3
C.由y=0,得y=2
B.由7x=,得x=49
D.由3=x-2,得x=2+3
4.如果x=y,那么下列等式不一定成立的是()
A.x+a=y+aB.x-a=y-aC.ax=ayD.=
5.已知甲、乙两种商品的进价和为100元,为了促销而打折销售,若甲商品打八折,乙商
人教版七年级下册第八章二元一次方程组单元测试题(含答案解析)
一、选择题(本大题共9小题,共27分)
1.方程2x-=0,x+y=0,x+xy=1,x+y-2x=0,2-x+1=0中,二元一次方程的个数是()
A.5个
B.4个C.3个D.2个
2.如果3xm+n+5ym-n-2=0是一个关于x、y的二元一次方程,那么()
中的x消去后得到的方程是()
A.3y=2
B.7y=8
C.-7y=2
D.-7y=8

人教版七年级数学下册第八章《二元一次方程组》单元检测卷 (附答案)

人教版七年级数学下册第八章《二元一次方程组》单元检测卷 (附答案)
12.(黄石中考)一食堂需要购买盒子存放食物,盒子有A,B两种型号,单个盒子的容量和价格如表所示,现有15升食物需要存放且要求每个盒子要装满,由于A型号盒子正做促销互动:购买三个及三个以上可一次性返现金4元,则购买盒子所需要最少费用为_______元.
型号
A
B
单个盒子容量(升)
2
3
单价(元)
5
6
三、解答题(共60分)
2.若 ,则ab=()
A.-10B.-40C.10D.40
【答案】A
【解析】
【分析】联立已知两方程求出a与b的值,即可求出ab的值.
【详解】解:联立得:
解得
∴ab=-10.
故选A.
3.若-2amb4与5an+2b2m+n可以合并成一项,则mn的值是( )
A.0B. C.1D.2
【答案】C
【解析】
【分析】根据-2amb4与5an+2b2m+n可以合并成一项,可得同类项,根据同类项的定义,可得m、n的值,根据乘方,可得答案.
18.阅读下列材料:
问题:某饭店工作人员第一次买了13只鸡、5只鸭、9只鹅共用了925元.第二次买了2只鸡、4只鸭、3只鹅共用了320元,试问第三次买了鸡、鸭、鹅各一只共需多少元?(假定三次购买鸡、鸭、鹅的单价不变)
解:设鸡、鸭、鹅的单价分别为x,y,z元.依题意,得

上述方程组可变形为 ,
设x+y+z=a,2x+z=b,上述方程组可化 : ,
13.解方程组:
(1)
(2)
14.已知 是关于x,y的二元一次方程3x=y+a的解,求a(a-1)的值.
15.已知关于x,y 方程组 与 有相同的解,求a,b的值.

新人教版初中数学七年级下册第8章《二元一次方程组》单元测试卷(含答案解析)

新人教版初中数学七年级下册第8章《二元一次方程组》单元测试卷(含答案解析)

人教版数学七年级下册同步单元复习卷: 第8章 二元一次方程组一、填空题(本大题共8小题,共32分)1.写出一个解为12x y =-⎧⎨=⎩的二元一次方程组__________.2.方程mx -2y=x+5是二元一次方程时,则m________.3.若2x 2a-5b +y a -3b =0是二元一次方程,则a=______,b=______. 4.若12a b =⎧⎨=-⎩是关于a ,b 的二元一次方程ax+ay -b=7的一个解,则代数式(x+y )2-1•的值是_________5.若2x 5a y b+4与-x 1-2b y 2a 是同类项,则b=________. 6.已知都是ax+by=7的解,则a=_______,b=______.7.甲队有x 人,乙队有y 人,若从甲队调出10人到乙队,则甲队人数是乙队人数的一半,可列方程为______________.8.在等式y =kx +b 中,当x =1时,y =1;当x =2时,y =4,则k =__________,b =__________.二、选择题(本大题共8小题,每小题4分,共32分。

)9.表示二元一次方程组的是( )A 、⎩⎨⎧=+=+;5,3x z y xB 、⎩⎨⎧==+;4,52y y xC 、⎩⎨⎧==+;2,3xy y xD 、⎩⎨⎧+=-+=222,11xy x x y x 10.已知2 x b +5y 3a 与-4 x 2a y 2-4b 是同类项,则b a 的值为( )A .2B .-2C .1D .-1 11.若关于x 、y 的方程组⎩⎨⎧=-=+k y x k y x 73的解满足方程2x +3y =6,那么k 的值为( ) A .-23 B .23 C .-32 D .-23 12.如图所示,宽为50 cm 的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为( ).A .400 cm 2B .500 cm 2C .600 cm 2D .4 000 cm 213.方程82=+y x 的正整数解的个数是( )A 、4B 、3C 、2D 、114.已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +2y =m ,x -y =4m 的解为3x +2y =14的一个解,那么m 的值为( ). A .1 B .-1 C .2 D .-215.六年前,A 的年龄是B 的年龄的3倍,现在A 的年龄是B 的年龄的2倍,A 现在的年龄是( ).A .12岁B .18岁C .24岁D .30岁16.已知下列方程组:(1)⎩⎨⎧-==23y y x ,(2)⎩⎨⎧=-=+423z y y x ,(3)⎪⎪⎩⎪⎪⎨⎧=-=+0131y x y x ,(4)⎪⎪⎩⎪⎪⎨⎧=-=+0131y x y x ,其中属于二元一次方程组的个数为( )A .1B .2C .3D .4三、解答题(本大题共6小题,共36分)17.(1)⎩⎨⎧=+=-5253y x y x (2) ⎩⎨⎧=--=523x y x y(3)⎩⎨⎧=+=-152y x y x (4)⎩⎨⎧+==-1302y x y x(5)⎩⎨⎧-=+=-14329m n n m (6)⎩⎨⎧=+-=-q p q p 45133218.若12x y =⎧⎨=⎩是关于x ,y 的二元一次方程3x -y +a=0的一个解,求a 的值.19.小华不小心将墨水溅在同桌小丽的作业本上,结果二元一次方程组31122x yx y+=⎧⎨+=-⎩中第一个方程y的系数和第二个方程x的系数看不到了,现在已知小丽的结果是12xy=⎧⎨=⎩,你能由此求出原来的方程组吗?20.某纸品加工厂为了制作甲、乙两种无盖的长方体小盒,利用边角余料裁出正方形和长方形两种硬纸片,长方形的宽和正方形的边长相等,现将150张正方形硬纸片和300张长方形硬纸片全部用来制作这两种小盒,可以制作甲、乙两种小盒各多少个人教版七年级下册第8章二元一次方程组综合素质检测卷(解析版)人教版七年级下册第八章二元一次方程组单元检测题综合素质检测卷姓名:__________班级:__________考号:__________一、选择题(本大题共10小题,每小题3分,共30分。

新人教版初中数学七年级下册第8章《二元一次方程组》检测试卷(含答案)

新人教版初中数学七年级下册第8章《二元一次方程组》检测试卷(含答案)

人教版数学七年级下册第八章《二元一次方程组》测试题一、选择题(每题只有一个正确答案)1.以下各方程组中,属于二元一次方程组的是()A. B . C . D .2.以下各组数中,方程2x -=3和3+ 4= 10 的公共解是 () y x yA. B .C. D .3.用代入法解方程组有以下步骤:①由 (1),得 y=(3) ;②由 (3)代入 (1) ,得 7x-2×= 3;③整理得3= 3;④∴ x 可取全部有理数,原方程组有无数个解以上解法,造成错误的一步是()A.①B.②C.③D.④4.一船顺流航行 45 千米需要 3 小时,逆水航行 65 千米需要 5 小时,若设船在静水中的速度为 x 千米/时,水流速度为 y 千米/时,则 x, y 的值为()A.B. C .D.5.|3 x-y-4| + |4x+ y-3|=0,那么x与y的值分别为 ()A.B.C.D.6. 从方程组中求 x 与 y 的关系是()A.x+y=- 1B. x+y=1 C . 2 x-y= 7 D .x+y= 97. 假如ax+ 2y= 1是对于 x,y 的二元一次方程,那么 a 的值应知足()A.a是有理数B. a≠0C. a=0 D. a 是正有理数8.已知甲数的 60%加乙数的 80%等于这两个数的和的 72%,若设甲数为x,乙数为y,则以下方程中切合题意的是 ()A. 60%+80%=+72%B. 60%+ 80%=60% +yx y xy x y xC. 60%+80%= 72%( +y )D. 60%+ 80%=+yx y x x y x 9. 以下各组数中,不是方程2+= 10的解是 ()x yA.B.C.D.10.以下图,宽为 50 cm的矩形图案由 10 个全等的小长方形拼成,此中一个小长方形的面积为().A.400 cm 2B. 500 cm 2C.600 cm 2D. 4 000 cm 211.有大小两种货车, 2 辆大车与 3 辆小车一次能够运货15.5 吨, 5 辆大车与 6 辆小车一次能够运货 35吨, 3 辆大车与 5 辆小车一次能够运货为( 单位:吨 )()A. 25.5 B. 24.5C. 26.5D. 27.512.一文具店的装订机的价钱比文具盒的价钱的 3 倍少 1 元,购置 2 把装订机和 6 个文具盒共需 70 元,问装订机与文具盒价钱各是多少元?设文具盒的价钱为x 元,装订机的价钱为y 元,依题意可列方程组为()A.B.C.D.二、填空题13.在括号内填写一个二元一次方程,使其与二元一次方程5x- 2y= 1构成方程组的解是你所填写的方程为 ______________ .14.已知方程3x-2y= 5 的一个解中,y的值比x的值大 1,则这个方程的这个解是________.15.已知方程组则 x-y=______, x+ y=______.16.哥哥与弟弟的年纪和是 18 岁,弟弟对哥哥说:“当我的年纪是你此刻年纪的时候,你就是 18 岁”.假如此刻弟弟的年纪是x 岁,哥哥的年纪是y 岁,所列方程组为______.17. 已知方程 2x2n-1-3y3m-n+ 1= 0 是二元一次方程,则m=______,n=______.三、解答题18、用代入消元法解方程组20.用加减消元法解方程组2x3y403x 4 y10,x y54x y9 0;19、用适合的方法解以下方程组2x y ( 1) x2 y 03( )5 3x 2 y 8y x33ax 5 y 15 ① 20.甲、乙两人共同解方程组,因为甲看错了方程①中的 a ,获得方程组4x by2②x 3 的解为y1人教版数学七年级下册同步单元复习卷:第 8 章 二元一次方程组 (1)一、选择题(每题3 分,共 42 分)请将正确答案的代号填涂在答题卡上1.以下各数中,既是分数又是负数的是()A .1B .﹣3C .0D .2.252.﹣ 2019 的相反数是()A .﹣ 2019B .2019C .﹣D .3.“2017 中国公司跨国投资商讨会” 于 11 月 17 日在长沙召开, 共同聚焦 “‘一带一路’跨国投资与服务新时代”,该商讨会表示,在 2016 年,中国公司对 7961 家境外公司累计实现投资约美元,用科学记数法可表示为()A .1.701×1011B .1.701×1010C . 17.01× 1010D . 170.1× 109 4.以下各组数中,互为倒数的是()A .2 与﹣ 2B .﹣与C .﹣ 1 与(﹣ 1) 2016D .﹣与﹣5.计算﹣ 100÷ 10×,结果正确的选项是()A .﹣ 100B .100C . 1D .﹣ 16.以下说法正确的选项是()A .整式就是多项式B.﹣的系数是C.π是单项式D. x4 +2x3是七次二项式7.以下各组单项式中,不是同类项的一组是()A .x2y 和 2xy2B.﹣32和3C.3xy 和﹣D. 5x2y 和﹣ 2yx28.以下计算正确的选项是()A .3a+2b=5ab B.3x2y﹣yx2=2x2 yC.5x+x=5x2D. 6x﹣x=69.以下运用等式的性质,变形正确的选项是()A .若 x2=6x,则 x=6B.若 2x= 2a﹣b,则 x=a﹣ bC.若 3x=2,则 x=D.若 a=b,则 a﹣ c= b﹣ c10.若 |a+3|+(b﹣2)2= 0,则 a b的值为()A.﹣ 6B.﹣9C. 9D. 611.多项式 2x3﹣8x2 +x﹣ 1与多项式 3x3+2mx2﹣5x+3 的和不含二次项,则m 为()A .2B.﹣2C. 4D.﹣ 412.某商品的原价是每件 x 元,在销售时每件涨价 20 元,再降价15%,则此刻每件的售价是()元.A .15%x+20B.( 1﹣ 15%)x+20C.15%(x+20)D.(1﹣15%)( x+20)13.有长为 l 的篱笆,利用他和房子的一面墙围成如图形状的长方形园子,园子的宽为 t,则所围成的园子面积为()A .( l﹣2t) t B.( l ﹣t) t C.(﹣t)t D.( l﹣)t 14.依照以下图的计算机程序计算,若开始输入的x 值为 2,第一次获得的结果 1,第二次获得的果4,⋯第 2018 次获得的果()A.1B.2C.3D.4二、填空(每小 3 分,共 15 分)15.沂某天的最高温度8℃,最大温差11℃,天最低温度是.16.在数上,点 A 表示的数是5,若点 B 与 A点之距离是8,点 B 表示的数是.17.若2a 3b2=5,2018 4a+6b2的是.18.对于 x 的方程 mx+4=3x 5 的解是 x=1, m=.19.如是一有律的案,第 1 个案由 4 个基形成,第 2 个案由7 个基形成,⋯,第n(n 是正整数)个案中由个基形成.三、解答(本共7 个小,共 63 分)20.( 12 分)算以下各:(1)( 5 )( 6 )+(+1 )(2) 12×(+ )(3) 1100( 1 0.5)××[3( 3)2]21.( 6 分)于有理数a、b,定一种新运算“⊙”,定: a⊙b=|a+b|+|a b|.(1)算 2⊙( 4)的;( 2)若 a,b 在数上的地点如所示,化a⊙ b.22.( 12 分)先化简,再求值.(1)﹣ x2 +5x+4﹣ 7x﹣4+2x2,此中 x=﹣ 2.(2) m﹣2(m﹣ n2) +(﹣ m+ n2),此中 m=﹣ 2,n=﹣23.( 7 分)2017 年 12 月,旗团委呼吁各校组织展开捐献衣物的“暖冬行动” .某校七年级六个班参加了此次捐献活动,若每班捐献衣物以100 件为基准,超过的件数用正数表示,不足的件数用负数表示,记录以下:班级一班二班三班四班五班六班人数404345444038件数+18﹣3+19+14+9﹣ 7(1)捐献衣物最多的班比最少的班多多少件?(2)该校七年级学生共捐献多少件衣物?该校七年级学生均匀每人捐献多少件衣物?24.(7 分)为了有效控制酒后驾车,交警队一辆汽车每日在一条东西方向的公路上巡视.某天清晨从 A 地出发,夜晚抵达 B 地,商定向东为正方向,当日行驶记录以下(单位: km): +18,﹣ 19,﹣ 13,+15, +10,﹣ 14,+19,﹣20.问:(1) B 地在 A 地哪个方向?距 A 地多少千米?(2)若该警车每千米耗油 0.2L,警车出发时,油箱中有油 20L,请问半途有没有给警车加油?如有,起码加多少升油?请说明原因.25.(7 分)以下图, 1925 年数学家莫伦发现的世界上第一个完满长方形,它恰能被切割成 10 个大小不一样的正方形,请你计算:( 1)假如标明 1、2 的正方形边长分别为1,2,第 3 个正方形的边长=;第 5 个正方形的边长=;( 2)假如标明1、2 的正方形边长分别为x,y,第 10 个正方形的边长=(.用含 x、y 的代数式表示)26.( 12 分)开学时期,为了打扫卫生,班主任派卫生委员小敏去轻工市场购买一些扫帚和抹布.选定一家店后,老板告诉小敏,扫帚每把25 元,抹布每块5 元,现为了搞促销,有两种优惠方案.方案一:买一把扫帚送一块抹布;方案二:扫帚和抹布都按订价的90%付款.小敏需要购置扫帚 6 把,抹布x 块( x>6).( 1)若小敏按方案一购置,需付款多少元(用含x 的式子表示);( 2)若小敏按方案二购置,需付款多少元(用含x 的式子表示);(3)当 x=10 时,经过计算说明此时按哪一种方案购置较为合算;(4)当 x=10 时,你能给小敏供给一种更加省钱的购置方案吗?试写出你的购置方法.2018-2019 学年山东省临沂市临沭县七年级(上)期中数学试卷参照答案与试题分析一、选择题(每题 3 分,共 42 分)请将正确答案的代号填涂在答题卡上1.以下各数中,既是分数又是负数的是()A.1B.﹣3C.0D.2.25【剖析】依占有理数的分类即可求出答案.【解答】解:既是分数又是负数的是应选: B.【评论】本题考察有理数的分类,解题的重点是正确理解有理数的分类,本题属于基础题型.2.﹣ 2019 的相反数是()A .﹣ 2019B.2019C.﹣D.【剖析】直接利用相反数的定义剖析得出答案.【解答】解:﹣ 2019 的相反数是: 2019.应选: B.【评论】本题主要考察了相反数,正确掌握定义是解题重点.3.“2017 中国公司跨国投资商讨会” 于 11 月 17 日在长沙召开,共同聚焦“‘一带一路’跨国投资与服务新时代”,该商讨会表示,在 2016 年,中国公司对 7961 家境外公司累计实现投资约美元,用科学记数法可表示为()A .1.701×1011B.1.701×1010C. 17.01× 1010D. 170.1× 109【剖析】科学记数法的表示形式为a×10n的形式,此中1≤ |a|<10,n 为整数.确定 n 的值时,要看把原数变为 a 时,小数点挪动了多少位, n 的绝对值与小数点挪动的位数同样.当原数绝对值> 10 时, n 是正数;当原数的绝对值< 1时, n 是负数.【解答】解:=1.701× 1011.应选: A.【评论】本题考察科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,此中 1≤|a|<10,n 为整数,表示时重点要正确确立a 的值以及 n 的值.4.以下各组数中,互为倒数的是()A.2 与﹣ 2B.﹣与C.﹣ 1 与(﹣ 1)2016D.﹣与﹣【剖析】依据倒数的定义,可得答案.【解答】解:﹣与﹣互为倒数,应选: D.【评论】本题考察了倒数,分子分母互换地点是求一个数的倒数的重点.5.计算﹣ 100÷ 10×,结果正确的选项是()A.﹣ 100B.100C.1D.﹣ 1【剖析】直接利用有理数的乘除运算法例计算得出答案.【解答】解:﹣ 100÷ 10×=﹣ 10×=﹣ 1.应选: D.【评论】本题主要考察了有理数的乘除运算,正确掌握运算法例是解题重点.6.以下说法正确的选项是()A .整式就是多项式B.﹣的系数是C.π是单项式D. x4 +2x3是七次二项式【剖析】依据整式的定义,单项式的系数,单项式的定义以及多项式观点对各选项剖析判断即可得解.【解答】解: A、整式就是多项式,错误,因为单项式和多项式统称为整式,故本选项错误;B、﹣的系数是﹣,故本选项错误;C、π是单项式,故本选项正确;D、 x4 +2x3是四次二项式,故本选项错误.应选: C.【评论】本题考察了多项式,单项式,娴熟掌握有关观点是解题的重点.7.以下各组单项式中,不是同类项的一组是()A .x2y 和2xy2B.﹣ 32和3C.3xy 和﹣D. 5x2y 和﹣ 2yx2【剖析】依据同类项的定义,所含字母同样且同样字母的指数也同样的项是同类项,可得答案.注意同类项与字母的次序没关,与系数没关.【解答】解: A、同样字母的指数不一样不是同类项,故A 错误;B、所含字母同样且同样字母的指数也同样,故C、所含字母同样且同样字母的指数也同样,故D、所含字母同样且同样字母的指数也同样,故应选: A.B 正确;C 正确;D 正确;【评论】本题考察同类项的定义,同类项定义中的两个“同样”:所含字母同样;同样字母的指数同样,是易混点,还有注意同类项定义中隐含的两个“没关”:① 与字母的次序没关;② 与系数没关.8.以下计算正确的选项是()A .3a+2b=5ab B.3x2y﹣yx2=2x2 yC.5x+x=5x2D. 6x﹣x=6【剖析】依据归并同类项的法例解答即可.【解答】解: A、3a 与 2b 不是同类项,错误;B、3x2y﹣yx2=2x2y,正确;C、 5x+x=6x,错误;D、 6x﹣x=5x,错误;应选: B.【评论】本题考察归并同类项,重点是依据归并同类项的法例,即系数相加作为系数,字母和字母的指数不变计算进行判断.9.以下运用等式的性质,变形正确的选项是()A .若x2=6x,则x=6B.若2x= 2a﹣b,则x=a﹣ bC.若3x=2,则x=D.若a=b,则a﹣ c= b﹣ c【剖析】依据等式的性质解答.【解答】解: A、当 x= 0 时,该等式的变形不建立,故本选项错误;B、若 2x= 2a﹣b,则 x= a﹣b,故本选项错误;C、在等式 3x=2 的两边同时除以2,等式仍建立,即x=,故本选项错误;D、在等式 a=b 的两边同时减去c,等式仍建立,即 a﹣c=b﹣c,故本选项正确.应选: D.【评论】考察的是等式的性质:性质 1、等式两边加同一个数(或式子)结果仍得等式;性质 2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.10.若 |a+3|+(b﹣2)2= 0,则 a b的值为()A.﹣ 6B.﹣9C. 9D. 6【剖析】依据非负数的性质列式求出ab 的值,而后再代入代数式进行计算.【解答】解:依据题意得, a+3=0,b﹣2=0,解得 a=﹣ 3,b=2,∴a b=(﹣ 3)2=9.应选: C.【评论】本题主要考察了非负数的性质,几个非负数相加等于0,则每一个算式都等于 0..多项式3﹣8x2﹣与多项式3x 32﹣ 5x+3 的和不含二次项,则 m 为112x+x 1+2mx()A .2B.﹣2C. 4D.﹣ 4【剖析】先把两多项式的二次项相加,令x 的二次项为0 即可求出 m 的值.【解答】解:∵多项式 2x3﹣8x2+x﹣1与多项式 3x3+2mx2﹣ 5x+3 相加后不含 x 的二次项,∴﹣ 8x2 +2mx2=( 2m﹣ 8)x2,∴2m﹣8=0,解得 m=4.故: C.【点】本考的是整式的加减,依据意把两多式的二次相加获得对于m的方程是解答此的关.12.某商品的原价是每件x 元,在售每件涨价20 元,再降价 15%,在每件的售价是()元.A .15%x+20B.( 1 15%)x+20C.15%(x+20)D.( 1 15%)( x+20)【剖析】先抬价的价钱是原价 +20,再降价的价钱是降价前的 1 15%,得出此价钱即可.【解答】解:依据意可得:( 1 15%)( x+20),故: D.【点】本考了列代数式,解答本的关是懂意,列出代数式.13.有 l 的笆,利用他和房子的一面成如形状的方形园子,园子的 t,所成的园子面()A .( l 2t) t B.( l t) t C.(t)t D.( l)t 【剖析】表示出,利用方形的面列出算式即可.【解答】解:园子的面t(l 2t).故: A.【点】此考列代数式,利用方形的面算方法是解决的关.14.依照如所示的算机程序算,若开始入的x2,第一次获得的果 1,第二次获得的果4,⋯第 2018 次获得的果()A.1B.2C.3D.4【剖析】将 x= 2 代入,而后依照程序行算,依照算果获得此中的律,而后依照律求解即可.【解答】解:当 x= 2 ,第一次出果=×2=1;第二次出果= 1+3=4;第三次出果= 4×=2,;第四次出果=×2=1,⋯2018÷3=672⋯ 2.因此第 2018 次获得的果 4.故: D.【点】本主要考的是求代数式的,熟掌握有关方法是解的关.二、填空(每小 3 分,共 15 分)15.沂某天的最高温度8℃,最大温差 11℃,天最低温度是3℃.【剖析】直接利用有理数的加减运算法算得出答案.【解答】解:∵ 沂某天的最高温度8℃,最大温差 11℃,∴ 天最低温度是: 8 11= 3(℃).故答案: 3℃【点】此主要考了有理数的加减,正确掌握运算法是解关.16.在数上,点 A 表示的数是 5,若点 B 与 A 点之距离是 8,点 B 表示的数是 3或13 .【剖析】分点 B 在点 A 的左与右两种状况求解.【解答】解:①当点 B 在点 A 的左, 5 8= 3,②当点 B 在点 A 的右, 5+8=13,因此点 B 表示的数是 3 或 13.故答案: 3 或 13.【点】本考了数,注意分点 B 在点 A 的左右两两种状况.17.若 2a 3b2=5, 2018 4a+6b2的是2008.【剖析】第一把 2018 4a+6b2化成 2018 2( 2a 3b2),而后把 2a3b2=5 代入化后的算式,求出算式的是多少即可.【解答】解:∵ 2a 3b2=5,∴2018 4a+6b2=2018 2( 2a 3b2)=2018 2× 5=2018 10=2008故答案: 2008.【点】此主要考了代数式求,要熟掌握,求代数式的能够直接代入、算.假如出的代数式能够化,要先化再求.型以下三种:① 已知条件不化,所代数式化;② 已知条件化,所代数式不化;③ 已知条件和所代数式都要化.18.对于 x 的方程 mx+4=3x 5 的解是 x=1, m=6.【剖析】把 x=1 代入方程 mx+4=3x 5,获得对于 m 的一元一次方程,解之即可.【解答】解:把 x= 1 代入方程 mx+4=3x 5 得:m+4=3 5,解得: m= 6,故答案: 6.【点】本考了一元一次方程的解,正确掌握代入法是解的关.19.如是一有律的案,第 1 个案由 4 个基形成,第 2 个案由7 个基形成,⋯,第n( n 是正整数)个案中由(3n+1)个基形成.【剖析】察形很简单看出每加一个案就增添三个基形,以此推,便可求出果.【解答】解:第一个案基形的个数:3+1= 4;第二个案基形的个数:3×2+1= 7;第三个案基形的个数:3×3+1= 10;⋯∴第 n 个案基形的个数就:(3n+1).故答案:( 3n+1).【点】本是一道找律的目,型在中考取常出.于找律的目第一找出哪些部分生了化,是依照什么律化的.三、解答(本共7 个小,共 63 分)20.( 12 分)算以下各:(1)( 5 )( 6 )+(+1 )(2) 12×(+ )(3) 1100( 1 0.5)××[3( 3)2]【剖析】(1)运用加减运算律和运算法算可得;(2)运用乘法分派律算可得;(3)依占有理数的混淆运算序和运算法算可得.【解答】解:( 1)原式=( 5 +1 ) +6= 4+6=2 ;( 2)原式=( 12)×(12)×+( 12)×= 4+36= 7;( 3)原式= 1××(39)= 1×(6)= 1+1=0.【评论】本题主要考察有理数的混淆运算,解题的重点是娴熟掌握有理数的混淆运算次序和运算法例及其运算律.21.( 6 分)对于有理数a、b,定义一种新运算“⊙”,规定: a⊙b=|a+b|+|a ﹣b|.(1)计算 2⊙(﹣ 4)的值;( 2)若 a,b 在数轴上的地点以下图,化简a⊙ b.【剖析】(1)依据新定义计算可得;(2)依据数轴得出 a<0<b 且|a|>|b|,从而得出 a+b< 0、 a﹣ b<0,再依据绝对值性质解答可得.【解答】解:( 1)2⊙(﹣ 4)= |2﹣ 4|+|2+4|=2+6=8;( 2)由数轴知 a<0<b,且 |a|>|b|,则 a+b<0、a﹣b<0,因此原式=﹣( a+b)﹣( a﹣b)=﹣ a﹣b﹣a+b=﹣ 2a.【评论】本题主要考察有理数的混淆运算,解题的重点是娴熟掌握有理数的混淆运算法例和运算次序及绝对值的性质.22.( 12 分)先化简,再求值.(1)﹣ x2 +5x+4﹣ 7x﹣4+2x2,此中 x=﹣ 2.(2) m﹣2(m﹣ n2) +(﹣ m+ n2),此中 m=﹣ 2,n=﹣【剖析】(1)直接归并同类项,从而计算得出答案;( 2)直接去括号从而归并同类项,再把已知代入求出答案.【解答】解:( 1)﹣ x2 +5x+4﹣7x﹣4+2x2=x2﹣2x,当 x=﹣ 2,原式= 8;(2)原式=﹣ 3m+n2,当 m=﹣ 2,n=﹣,原式=6+=.【评论】本题主要考察了整式的加减,正确归并同类项是解题重点.23.( 7 分)2017 年 12 月,旗团委呼吁各校组织展开捐献衣物的“暖冬行动” .某校七年级六个班参加了此次捐献活动,若每班捐献衣物以100 件为基准,超过的件数用正数表示,不足的件数用负数表示,记录以下:班级一班二班三班四班五班六班人数404345444038件数+18﹣3+19+14+9﹣ 7(1)捐献衣物最多的班比最少的班多多少件?(2)该校七年级学生共捐献多少件衣物?该校七年级学生均匀每人捐献多少件衣物?【剖析】(1)求出捐献衣物最多的班额,捐献衣物最少的班额,而后相减即可;(3)用标准捐献衣物数加上记录的各班捐献衣物数的和,计算即可得解.【解答】解:( 1)19﹣(﹣ 7)= 26,答:捐献衣物最多的班比最少的班多 26 件;(2) 18﹣3+19+14+9﹣ 7+6×100=50+600= 650,答:该校七年级学生共捐献650 件衣物,均匀每人捐献 2.6 件衣物.【评论】本题主要考察了正负数的意义,解题重点是理解“正”和“负”的相对性,明确什么是一对拥有相反意义的量.在一对拥有相反意义的量中,先规定此中一个为正,则另一个就用负表示.24.(7 分)为了有效控制酒后驾车,交警队一辆汽车每日在一条东西方向的公路上巡视.某天清晨从 A 地出发,夜晚抵达 B 地,商定向东为正方向,当日行驶记录以下(单位: km): +18,﹣ 19,﹣ 13,+15, +10,﹣ 14,+19,﹣20.问:( 1) B 地在 A 地哪个方向?距A 地多少千米?(2)若该警车每千米耗油 0.2L,警车出发时,油箱中有油 20L,请问半途有没有给警车加油?如有,起码加多少升油?请说明原因.【剖析】(1)把行驶记录乞降,若结果为正,则 B 地在出发地的正东,若结果为负,再 B 地再出发点的正西;( 2)计算各个记录的绝对值的和,计算出耗油量,依据邮箱里的油量判断能否需要加油,计算起码需要加多少升油.【解答】解:( 1)18﹣19﹣ 13+15+10﹣14+19﹣20=( 18+15+10)﹣( 13+14+20)+(19﹣ 19)=43﹣47=﹣ 4即 B地在 A地的西方,距 A地 4千米.(2)因为( 18+19+13+15+10+14+19+20)× 0.2=128×0.2=25.6(L)因为 25.6>20,因此途中起码加油 5.6L答:途中警车需加油,起码需加油 5.6L.【评论】本题考察了正负数的意义和有理数的混淆运算,解决本题的重点是依据题意列出代数式,并能依据计算结果作答.25.(7 分)以下图, 1925 年数学家莫伦发现的世界上第一个完满长方形,它恰能被切割成 10 个大小不一样的正方形,请你计算:( 1)假如标明1、2的正方形边长分别为1,2,第 3 个正方形的边长=3;第 5 个正方形的边长=7;( 2)假如标明1、2 的正方形边长分别为x,y,第10 个正方形的边长=3y﹣3x.(用含x、y 的代数式表示)【剖析】(1)依据正方形的性质即可解决问题;( 2)依据各个正方形的边的和差关系分别表示出第(3)(4)(5)(6)(7),第 10 个正方形的边长=第 7 个正方形的边长﹣第一个正方形的边长﹣第 3 个正方形的边长;【解答】解:(1)察看图象可知第 3 个正方形的边长= 3;第 5 个正方形的边长=7;故答案为 3,7;(2):( 1)第( 3)个正方形的边长是: x+y,则第( 4)个正方形的边长是: x+2y;第( 5)个正方形的边长是: x+2y+y= x+3y;第(6)个正方形的边长是:(x+3y)+(y﹣x)=4y;第( 7)个正方形的边长是: 4y﹣x;第( 10)个正方形的边长是:( 4y﹣x)﹣ x﹣( x+y)= 3y﹣ 3x;故答案为 3y﹣3x.【评论】本题考察了列代数式,正确理解各个正方形的边之间的和差关系是重点.26.( 12 分)开学时期,为了打扫卫生,班主任派卫生委员小敏去轻工市场购买一些扫帚和抹布.选定一家店后,老板告诉小敏,扫帚每把 25 元,抹布每块5 元,现为了搞促销,有两种优惠方案.方案一:买一把扫帚送一块抹布;方案二:扫帚和抹布都按订价的90%付款.小敏需要购置扫帚 6 把,抹布 x 块( x>6).( 1)若小敏按方案一购置,需付款多少元(用含x 的式子表示);( 2)若小敏按方案二购置,需付款多少元(用含x 的式子表示);( 3)当 x =10 时,经过计算说明此时按哪一种方案购置较为合算;( 4)当 x =10 时,你能给小敏供给一种更加省钱的购置方案吗?试写出你的购置方法.【剖析】 (1)依据题意列出算式即可;( 2)依据题意列出算式即可;( 3)把 x =10 分别代入求出结果,即可得出答案;( 4)先在方案一买 6 把扫帚,再在方案二买 4 块抹布即可.【解答】 解:( 1)∵方案一:买一把扫帚送一块抹布,∴小敏需要购置扫帚 6 把,抹布 x 块( x >6),若小敏按方案一购置,需付款 25× 6+5(x ﹣6)=( 5x+120)元;( 2)∵方案二:扫帚和抹布都按订价的 90%付款,∴小敏需要购置扫帚 6 把,抹布 x 块( x >6),若小敏按方案二购置,需付款25× 6× 0.9+5x?0.9=( 4.5x+135)元;( 3)方案一需: 5×10+120=170 元,方案二需 4.5×10+135=180 元,故方案一划算;( 4)此中 6 把扫帚 6 块抹布按方案一买,剩下 4 块抹布按方案二买,共需 168元.【评论】本题考察了求代数式的值, 列代数式的应用的应用, 能正确依据题意列出算式是解本题的重点.人教版七年级下册 第八章二元一次方程组单元试题一、选择题 ( 共 10 小题,每题 3 分,共 30 分)1.二元一次方程组 x + y = 7,)x -y =的解是 (3 5x = , x = , x = ,x =- ,4B .532A.C .D .y = 3 y =2 y =4y = 92x + y = 4, 2.已知方程组则 x +y 的值为 ( )x +2y = 5,A .-1B .0 C.2D .33.以下各方程中,是二元一次方程的是 ()x 2A. 3-y =y +5xB .3x +1=2xy12.x + y =C .5 x = y +1 1D 4.已知 x 2m -1+3y 4-2n =- 7 是对于 x ,y 的二元一次方程,则 m ,n 的值是 ( )m = , m = 1,m =1,m = 1,2B .3C .5D .3A.n = 1n =- 2n =2n = 2x = ,kx + y =25.方程 5 有一组解是则 k 的值是()3y = ,1 A .1 B .-1 C .0 D .26.二元一次方程x + y=10 的全部正整数解有()2A .1个B .2个C .3个D .4个7.“爱惜生命,拒绝毒品”,学校举行的 2017 年禁毒知识比赛共有 60 道题,曾浩同学答对了 x 道题,答错了 y 道题 ( 不答视为答错 ) ,且答对题数比答错题数的 7 倍还多 4 道,那么下边列出的方程组中正确的选项是( )x + y = ,x + y = , A.x - 60 B . y - 60 y =4x = 4 77 x = 60 -y ,y = -x ,C .x =D .y = 60y -4x -477x + py = ,x = ,.对于 x ,y 的方程组 0的解是1此中 y 的值被盖8x + y = 3y =■,住了,可是还能求出 p ,则 p 的值是 ()1 1 11A .- 2B .2C .-4D .49.若 | x +y -5| 与( x -y -1) 2 互为相反数,则 x 2- y 2 的值为 ( )A .-5B .5C.13D .1510.《九章算术》是中国古代的数学专著,下边这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一同去购置某物件,假如每人出 8 钱,则多了 3 钱;假如每人出 7 钱,则少了 4 钱.问有多少人,物件的价钱是多少?”设有x 人,物件价钱为 y 钱,可列方程组为 ()x - =y ,8 x + = y ,A. 8 33x + =yB . x - = y7 4 7 4y - x = ,8 x - y = ,8 3x - y =3C .y - x = 4D . 477 二、填空题 ( 共 5 小题,每题 4 分,共 20 分) 11.方程组x +y =1,.的解是3x - y = 312.“六一”前夜, 市关工委准备为希望小学购进图书和文具若干套,已知1 套文具和 3 套图书需 104 元, 3 套文具和2 套图书需 116 元,则 1 套文具和 1套图书需元.2x +y =k ,13.已知对于 x ,y 的二元一次方程组的解互为相反x +2y =- 1。

最新人教版初中数学七年级下册第8章《二元一次方程组》测试题(含答案)

最新人教版初中数学七年级下册第8章《二元一次方程组》测试题(含答案)

人教版七年级数学下册第八章 二元一次方程组单元检测试题(有答案)一、选择题1 . 下列各方程组中,属于二元一次方程组的是( )A .B .C .D .2 .将方程 2 x + y =3 写成用含 x 的式子表示 y 的形式,正确的是 ( ) A . y = 2 x - 3 B . y = 3 - 2 x C . x = 2y-3D . x =3-2y3 .若方程组 的解为 ,则被 “☆” 、 “ K ” 遮住的两个数分别是 ( )A . 10 , 3B . 3 , 10C . 4 , 10D . 10 , 44 .已知 x , y 满足方程组 则 x + y 的值为 ( )A . 9B . 7C . 5D . 35 .已知甲、乙两数的和是 7 ,甲数是乙数的 2 倍,设甲数为 x ,乙数为 y ,根据题意,列方程组正确的是 ( )A. B. C. D.6 .按如图所示的运算程序,能使输出结果为 5 的 x , y 的值是 ( )A . x = 5 , y =- 5B . x =- 1 , y = 1C . x = 2 , y = 1D . x = 3 , y = 27.若2310x y z ++=,43215x y z ++=,则x y z ++的值为( ) A .5 B .4 C .3 D .28.若方程组431(1)3x yax a y+=⎧⎨+-=⎩的解x与y相等,则a的值等于()A.4 B.10 C.11 D.129. 两个水池共储水40吨,如果甲池注进水4吨,乙池注进水8吨,甲池水的吨数就与乙池水的吨数相等.甲、乙水池原来各储水的吨数是()A.甲池21吨,乙池19吨B.甲池22吨,乙池18吨C. 甲池23吨,乙池17吨D.甲池24吨,乙池16吨10.某校七年级(2)班40表格中捐款2元和32元的有x名同学,捐款3元的有y名同学,根据题意,可列方程组( )A.272366x yx y+=⎧⎨+=⎩B.2723100x yx y+=⎧⎨+=⎩C.273266x yx y+=⎧⎨+=⎩D.2732100x yx y+=⎧⎨+=⎩二、填空题1.方程组的解是________ .2.已知关于x ,y 的二元一次方程2 x +■ y =7 中,y 的系数已经模糊不清,但已知是这个方程的一个解,那么原方程是________ .3.某旅行社组织甲、乙两个旅游团分别到庐山、婺源旅游,已知这两个旅游团共有55 人,甲旅游团的人数比乙旅游团的人数的2 倍少5 人,问甲、乙两个旅游团各有多少人?设甲、乙两个旅游团分别有x 人、y 人,根据题意可列方程组为__________ .4.已知+( x +2 y -5) 2 =0 ,则x +y =________ .5.“六一”儿童节,某动物园的成人门票每张8元,儿童门票半价(即每张4元),全天共售出门票3000张,共收入15600元,则这一天售出了成人票________张,儿童票___ _ 张.三、计算题1.解方程组:(1) (2)2.已知与都是方程kx -b =y 的解,求k 和b 的值.3.已知方程组小马由于看错了方程① 中的m ,得到方程组的解为小虎由于看错了方程② 中的n ,得到方程组的解为请你根据上述条件求原方程组的解.4.请你根据王老师所给的内容,完成下列各小题.(1) 若x =-5 ,2 ◎ 4 =-18 ,求y 的值;(2) 若1 ◎ 1 =8 ,4 ◎ 2 =20 ,求x ,y 的值.5. “ 六一” 儿童节有一投球入盆的游戏,深受同学们的喜爱,游戏规则如下:如图,在一大盆里放一小茶盅( 叫幸运区) 和小茶盅外大盆内( 环形区) 分别得不同的分数,投到大盆外不得分;每人各投 6 个球,总得分不低于30 分得奖券一张.现统计小刚、小明、小红三人的得分情况如下图.(1) 每投中“ 幸运区” 和“ 环形区” 一次,分别得多少分?(2) 根据这种得分规则,小红能否得到一张奖券?请说明理由.6.数学方法:解方程组若设x +y =A ,x -y =B ,则原方程组可变形为解方程组得所以解方程组得我们把某个式子看成一个整体,用一个字母去代替它,这种解方程组的方法叫作换元法.(1) 请用这种方法解方程组(2) 已知关于x ,y 的二元一次方程组的解为那么关于m ,n 的二元一次方程组的解为________ ;(3) 已知关于x ,y 的二元一次方程组的解为则关于x ,y 的方程组的解为________ .答案与解析一、选择题。

新初中数学七年级下册第8章《二元一次方程组》单元测试(含答案解析)

新初中数学七年级下册第8章《二元一次方程组》单元测试(含答案解析)

人教版七年级数学下册第八章 二元一次方程组复习检测试题一、选择题1.下列各式,属于二元一次方程的个数有( ) ①xy+2x -y=7; ②4x+1=x -y ; ③1x+y=5; ④x=y ; ⑤x 2-y 2=2 ⑥6x -2y ⑦x+y+z=1 ⑧y (y -1)=2y 2-y 2+x A .1 B .2 C .3 D .42.如果方程组⎩⎪⎨⎪⎧x +y =★,2x +y =16的解为⎩⎪⎨⎪⎧x =6,y =■,那么被“★”“■”遮住的两个数分别是( ) A .10,4 B .4,10 C .3,10 D .10,33.已知二元一次方程30x y +=的一个解是x ay b=⎧⎨=⎩,其中0a ≠,那么( )A.0ba> B.0ba= C.0ba< D.以上都不对4.若满足方程组的x 与y 互为相反数,则m 的值为( ) A .1B .﹣1C .﹣11D .115今年学校举行足球联赛,共赛17轮(即每队均需参赛17场),记分办法是:胜1场得3分,平1场得1分,负1场得0分.在这次足球比赛中,小虎足球队得16分,且踢平场数是踢负场数的整数倍,则小虎足球队踢负场数的情况有( ) A .2种 B .3种C .4种D .5 种6.已知方程组5354x y ax y +=⎧⎨+=⎩和2551x y x by -=⎧⎨+=⎩有相同的解,则a ,b 的值为 ( )A.12a b =⎧⎨=⎩B.46a b =-⎧⎨=-⎩ C.62a b =-⎧⎨=⎩D.142a b =⎧⎨=⎩7.某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x 元,水笔每支为y 元,那么根据题意,下列方程组中,正确的是( )A.⎩⎪⎨⎪⎧x -y =320x +10y =36B.⎩⎪⎨⎪⎧x +y =320x +10y =36 C.⎩⎪⎨⎪⎧y -x =320x +10y =36 D.⎩⎪⎨⎪⎧x +y =310x +20y =368.某年级学生共有246人,其中男生人数y比女生人数x的2倍少2人,•则下面所列的方程组中符合题意的有()A.246246216246... 22222222 x y x y x y x yB C Dy x x y y x y x+=+=+=+=⎧⎧⎧⎧⎨⎨⎨⎨=-=+=+=+⎩⎩⎩⎩9.某商店有两进价不同的耳机都卖64元,其中一个盈利60%,另一个亏本20%,在这次买卖中,这家商店()A、赔8元B、赚32元C、不赔不赚D、赚8元10.如图,宽为50cm的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为()A.400cm2B.500cm2C.600cm2D.300cm2二、填空题1.将方程3y﹣x=2变形成用含y的代数式表示x,则x=.2.为了开展“阳光体育”活动,某班计划购买甲、乙两种体育用品(每种体育用品都购买),其中甲种体育用品每件20元,乙种体育用品每件30元,共用去150元,请你设计一下,共有____种购买方案.3.已知│x-1│+(2y+1)2=0,且2x-ky=4,则k=_____.4.《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文.甲、乙两人原来各有多少钱?设甲原有x文钱,乙原有y文钱,可列方程组是.三、解答题1.解方程组:2.定义一个非零常数的运算,规定:a*b=ax+by,例如:2*3=2x+3y,若1*1=8,4*3=27,求x、y的值.3.甲、乙两位同学在解方程组时,甲把字母a看错了得到方程组的解为;乙把字母b看错了得到方程组的解为.(1)求a,b的正确值;(2)求原方程组的解.4.某工厂第一季度生产甲、乙两种机器共550台,经市场调查决定调整两种机器的产量,计划第二季度生产这两种机器共536台,其中甲种机器产量要比第一季度增产12%,乙种机器产量要比第一季度减产20%.该厂第一季度生产甲、乙两种机器各多少台?5.某校准备去楠溪江某景点春游,旅行社面向学生推出的收费标准如下:已知该校七年级参加春游学生人数多于100人,八年级参加春游学生人数少于100人.经核算,若两个年级分别组团共需花费17700元,若两个年级联合组团只需花费14700元.(1)两个年级参加春游学生人数之和超过200人吗?为什么?(2)两个年级参加春游学生各有多少人?6.某超市第一次用4600元购进甲、乙两种商品,其中甲商品件数的2倍比乙商品件数的3倍少40件,甲、乙两种商品的进价和售价如下表(利润=售价﹣进价):(1)该超市第一次购进甲、乙两种商品的件数分别是多少?(2)该超市将第一次购进的甲、乙两种商品全部卖出后一共可获得多少利润?(3)该超市第二次以同样的进价又购进甲、乙两种商品.其中甲商品件数是第一次的2倍,乙商品的件数不变.甲商品按原价销售,乙商品打折销售.第二次甲、乙两种商品销售完以后获得的利润比第一次获得的利润多280元,则第二次乙商品是按原价打几折销售的?参考答案一.选择题1.B. 2.A.3.B.4.D.5.B.6.B.7.B.8.B.9.C.10.A.二.填空题1.3y﹣2 2.两 3. k=1.4..三.解答题1.解:原方程组可整理得:,②﹣①得:2x=4,解得:x=2,把x=2代入①得:2﹣2y=﹣3,解得:y=,即原方程组的解为:.2.解:∵a*b=ax+by∴1*1=8,即为x+y=8,4*3=27 即为4x+3y=27;解方程组①×3﹣②,得﹣x=﹣3,解得x=3,将x=3代入①,得y=5.3.解:(1)根据题意得:,解得:a=2,b=﹣3,(2)方程组为,解得.4.解:设某工厂第一季度人教版七年级数学下册第八章二元一次方程组单元测试题一、选择题。

七年级数学下册第八章二元一次方程组达标测试卷(新版)新人教版

七年级数学下册第八章二元一次方程组达标测试卷(新版)新人教版

第八章达标测试卷一、选择题(每题3分,共30分)1.将方程2x +y =3写成用含x 的式子表示y 的形式,正确的是( )A .y =2x -3B .y =3-2xC .x =y 2-32D .x =32-y 22.给出下列方程:① 2x -1y=0;② 3x +y =0;③ 2x +xy =1;④ 3x +y -2x =0;⑤ x2-x +1=0.其中二元一次方程的个数是( ) A .1个B .2个C .3个D .4个3.用加减法解方程组⎩⎪⎨⎪⎧2x -3y =4,①3x +2y =-2,② 下列解法正确的是( )A .①×3+②×2,消去yB .①×2-②×3,消去yC .①×(-3)+②×2,消去xD .①×2-②×3,消去x4.已知⎩⎪⎨⎪⎧x =1,y =4是方程kx +y =3的一个解,那么k 的值是( )A .7B .1C .-1D .-75.已知二元一次方程2x +3y -2=0,当x ,y 互为相反数时,x ,y 的值分别为( )A .2,-2B .-2,2C .3,-3D .-3,36.若⎩⎪⎨⎪⎧x =1,y =1和⎩⎪⎨⎪⎧x =2,y =-1是二元一次方程mx +ny =6的两个解,则m ,n 的值分别为( ) A .4,2 B .2,4 C .-4,-2 D .-2,-47.已知-47y 2m -5x n +1与35x m +2y n -2是同类项,则m -n 等于( )A .-1B .1C .-7D .78.若二元一次方程3x -y =7,2x +3y =1,y =kx -9有公共解,则k 的值为( )A .3B .-3C .-4D .49.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金质量相同),乙袋中装有白银11枚(每枚白银质量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子质量忽略不计),问黄金、白银每枚各重多少两?设每枚黄金重x 两,每枚白银重y 两,根据题意可列方程组为( )A.⎩⎪⎨⎪⎧11x =9y (10y +x )-(8x +y )=13B.⎩⎪⎨⎪⎧10y +x =8x +y 9x +13=11y C.⎩⎪⎨⎪⎧9x =11y (8x +y )-(10y +x )=13 D.⎩⎪⎨⎪⎧9x =11y (10y +x )-(8x +y )=13 10.小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.(第10题)由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为( ) A .19元 B .18元 C .16元D .15元二、填空题(每题3分,共24分) 11.已知(m -2)x|m |-1+3y =0是关于x ,y 的二元一次方程,则m =________.12.关于x ,y 的方程组⎩⎪⎨⎪⎧2x -y =m ,x +my =n 的解是⎩⎪⎨⎪⎧x =1,y =3,则|m +n |的值是________. 13.试写出一个关于x ,y 的二元一次方程组,使它的解是⎩⎪⎨⎪⎧x =-3,y =4,这个方程组可以是________________.14.当a =________时,方程组⎩⎪⎨⎪⎧2x +y =3,ax +2y =4-a 的解也是x +y =1的一个解.15.以二元一次方程组⎩⎪⎨⎪⎧x +3y =7,y -x =1 的解为坐标的点(x ,y )在平面直角坐标系的第________象限.16.已知⎩⎪⎨⎪⎧2a -b =5,a -2b =4,则a -b 的值为________.17.为奖励消防演练活动中表现优异的同学,某校决定用1 200元购买篮球和排球(各至少买1个),其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有________种.18.一千官兵一千布,一官四尺无零数,四兵才得布一尺,请问官兵多少数?这首诗的意思是:一千名官兵分一千尺布,一名军官分四尺,四名士兵分一尺,正好分完,则军官有________名,士兵有________名.三、解答题(19题16分,20~23题每题9分,24题14分,共66分) 19.用适当的方法解下列方程组:(1)⎩⎪⎨⎪⎧x +y =10,2x +y =16; (2)⎩⎪⎨⎪⎧x =2y ,x 2-y 3=1;(3)⎩⎪⎨⎪⎧x +y 2+x -y 3=6,4(x +y )-5(x -y )=2;(4)⎩⎪⎨⎪⎧x +3y =5,y -2z =5,x +z =5.20.解关于x ,y 的方程组⎩⎪⎨⎪⎧ax +by =9,3x -cy =-2时,甲正确地解出⎩⎪⎨⎪⎧x =2,y =4;乙因为把c 抄错了,误解为⎩⎪⎨⎪⎧x =4,y =-1. 求a ,b ,c 的值.21.在端午节来临之际,某商店订购了A型和B型两种粽子,A型粽子28元/kg,B型粽子24元/kg.若B型粽子的质量比A型粽子的2倍少20 kg,购进两种粽子共用了2 560元,求两种型号粽子各多少千克.22.甲、乙二人从同一地点出发,同向而行,甲乘车,乙步行.如果乙先走20 km,那么甲用1 h就能追上乙;如果乙先走1 h,那么甲只用15 min就能追上乙.求甲、乙二人的速度.23.某校规划在一块长AD为18 m、宽AB为13 m的长方形场地ABCD上,设计分别与AD,AB平行的横向通道和纵向通道,其余部分铺上草皮,如图所示,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM∶AN=8∶9,问通道的宽是多少?(第23题)24.某中学库存一批旧桌凳,准备修理后捐助贫困山区学校.现有甲、乙两个木工小组都想承揽这项业务,经协商得知:甲小组单独修理这批桌凳比乙小组多用20天,乙小组每天比甲小组多修8套,甲小组每天修16套桌凳;学校每天需付甲小组修理费80元,付乙小组120元.(1)求甲、乙两个木工小组单独修理这批桌凳各需多少天.(2)在修理桌凳的过程中,学校要委派一名维修工进行质量监督,并由学校负担他每天10元的生活补助.现有下面三种修理方案供选择:①由甲小组单独修理;②由乙小组单独修理;③由甲、乙两小组合作修理.你认为哪种方案既省时又省钱?试比较说明.答案10.B 点拨:设每个笑脸气球的价格为x 元,每个爱心气球的价格为y 元.由题意得⎩⎪⎨⎪⎧3x +y =16,①x +3y =20,② ①+②,得4x +4y =36,∴2x +2y =18. 13.⎩⎪⎨⎪⎧x +y =1x +2y =518.200;800 点拨:设军官有x 名,士兵有y 名.由题意得⎩⎪⎨⎪⎧x +y =1 000,4x +14y =1 000, 解得⎩⎪⎨⎪⎧x =200,y =800.三、19.解:(1)⎩⎪⎨⎪⎧x +y =10,①2x +y =16.②②-①,得x =6. 将x =6代入①,得y =4.所以这个方程组的解是⎩⎪⎨⎪⎧x =6,y =4.(2)⎩⎪⎨⎪⎧x =2y ,①x 2-y 3=1.②化简②,得3x -2y =6.③ 将①代入③,得6y -2y =6, 解得y =32.将y =32代入①,得x =3.所以这个方程组的解是⎩⎪⎨⎪⎧x =3,y =32.(3)设x +y =a ,x -y =b ,则原方程组变为⎩⎪⎨⎪⎧a 2+b 3=6,①4a -5b =2.②由①,得3a +2b =36.③ 解由②③组成的方程组,得⎩⎪⎨⎪⎧a =8,b =6.所以⎩⎪⎨⎪⎧x +y =8,x -y =6.解得⎩⎪⎨⎪⎧x =7,y =1.所以原方程组的解是⎩⎪⎨⎪⎧x =7,y =1.(4)⎩⎪⎨⎪⎧x +3y =5,①y -2z =5,②x +z =5.③①-③,得3y -z =0,即z =3y .④ 将④代入②,得y -6y =5, 解得y =-1.将y =-1代入①,得x =8. 将x =8代入③,得z =-3.所以这个方程组的解为⎩⎪⎨⎪⎧x =8,y =-1,z =-3.20.解:把⎩⎪⎨⎪⎧x =2,y =4代入方程组,得⎩⎪⎨⎪⎧2a +4b =9,①6-4c =-2.② 由②,得c =2.把⎩⎪⎨⎪⎧x =4,y =-1代入ax +by =9, 得4a -b =9.③联立①③,得⎩⎪⎨⎪⎧2a +4b =9,4a -b =9,解得⎩⎪⎨⎪⎧a =2.5,b =1.即a =2.5,b =1,c =2.21.解:设A ,B 型粽子的质量分别为x kg ,y kg.依题意列方程组,得⎩⎪⎨⎪⎧y =2x -20,28x +24y =2 560. 解这个方程组,得⎩⎪⎨⎪⎧x =40,y =60.答:A ,B 型粽子的质量分别为40 kg ,60 kg. 22.解:设甲、乙二人的速度分别为x km/h ,y km/h.依题意得⎩⎪⎨⎪⎧x -y =20,14(x -y )=y ,解得⎩⎪⎨⎪⎧x =25,y =5.答:甲的速度为25 km/h ,乙的速度为5 km/h. 23.解:设通道的宽是x m ,AM =8y m.因为AM ∶AN =8∶9,所以AN =9y m.所以⎩⎪⎨⎪⎧2x +24y =18,x +18y =13,解得⎩⎪⎨⎪⎧x =1,y =23.答:通道的宽是1 m.24.解:(1)设甲小组单独修理这批桌凳需要x 天,乙小组单独修理这批桌凳需要y 天.根据题意,得⎩⎪⎨⎪⎧16x =(16+8)y ,x -y =20,解得⎩⎪⎨⎪⎧x =60,y =40.答:甲、乙两个木工小组单独修理这批桌凳各需60天、40天. (2)这批旧桌凳的数目为60×16=960(套).方案①:学校需付费用为60×(80+10)=5 400(元); 方案②:学校需付费用为40×(120+10)=5 200(元);方案③:学校需付费用为96016+(16+8)×(120+80+10)=5 040(元).比较可知,方案③既省时又省钱.。

人教版七年级下第八章二元一次方程组测试题(附答案)

人教版七年级下第八章二元一次方程组测试题(附答案)

七年级下第八章二元一次方程组测试题一、选择题(每小题5分,共20分)1.下列不是二元一次方程组的是( ) A. ⎪⎩⎪⎨⎧=-=+141y x y x B.⎩⎨⎧=+=+42634y x y x C. ⎩⎨⎧=-=+14y x y x D. ⎩⎨⎧=+=+25102553y x y x 2.由123=-y x ,可以得到用x 表示y 的式子( ) A. 322-=x y B. 3132-=x y C. 232-=x y D. 322x y -= 3.方程组⎩⎨⎧=-=+134723y x y x 的解是( ) A. ⎩⎨⎧=-=31y x B. ⎩⎨⎧-==13y x C. ⎩⎨⎧-=-=13y x D. ⎩⎨⎧-=-=31y x 二、填空题(每小题6分,共24分):4.方程组⎩⎨⎧=+=-521y x y x 的解是( )A. ⎩⎨⎧=-=21y xB. ⎩⎨⎧-==12y xC. ⎩⎨⎧==21y xD. ⎩⎨⎧==12y x 5.在3x +4y =9中,如果2y =6,那么x = .6.已知⎩⎨⎧-==81y x 是方程3m x -y =-1的解,则m = .7.若方程m x +n y =6的两个解是⎩⎨⎧==,1,1y x ⎩⎨⎧-==12y x ,则m = ,n = . 8.如果512-+=+-y x y x =0,那么x = ,y = .三、解下列方程组(每小题8分,共16分): 9. ⎪⎪⎩⎪⎪⎨⎧=-=+3431332n m n m10. ⎪⎩⎪⎨⎧=-++=--+1624)(4)(3y x y x y x y x四、综合运用(每小题10分,共40分):11.用16元买了60分、80分两种邮票共22枚. 60分与80分的邮票各买了多少枚?12.已知梯形的面积是422cm ,高是6㎝,它的下底比上底的2倍少1㎝.求梯形的上下底.13.《一千零一夜》中有这样一段文字:有一群鸽子,其中有一部分在树上欢歌,另一部分在地上觅食,树上的一只鸽子对地上觅食的鸽子说:“若从你们中飞上来一只,则树下的鸽子就是整个鸽群的31;若从树上飞下去一只,则树上、树下的鸽子就一样多了.”你知道树上、树下各有多少只鸽子吗?14.如图,8块相同的长方形地砖拼成一个长方形,每块长方形地砖的长和宽分别是多少?测试题答案:1.A ;2.C ;3,B ;4.D ;5.-1,6.-3;7.4,2;8.3,2;9. ⎩⎨⎧==1218n m ;10. ⎪⎪⎩⎪⎪⎨⎧==15111517y x 11.60分买了8枚,80分买了14枚.12.上底5㎝,下底是9㎝.13.树上有7只,树下有5只.14.长是45㎝,宽是15㎝.60cm。

新初中数学七年级下册第8章《二元一次方程组》单元测试题(含答案解析)(1)

新初中数学七年级下册第8章《二元一次方程组》单元测试题(含答案解析)(1)

人教版七年级下册第八章二元一次方程组检测题一、填空题(每题3分,共24分)1、解一次方程组的基本思想是 ,基本方法是 和 。

2、二元一次方程52=+x y 在正整数范围内的解是 。

3、5+=x y 中,若3-=x 则=y _______。

4、由==--y y x y x 得表示用,,06911_______,=x x y 得表示,_______。

5、如果方程组⎩⎨⎧-=-=+1242a by x b y ax 的解是⎩⎨⎧-==11y x ,则=a ,=b 。

6、7、甲、乙两人在200米的环形跑道上练习径走,当他们从某处同时出发背向行走时,每30秒相遇一次;同向行走时,每隔4分钟相遇一次,设甲、乙的速度分别为每分钟X 米,每分钟Y 米,则可列方程组 {___________________.8、已知:10=+b a ,20=-b a ,则2b a -的值是 。

二、选择题:(每题3分,共21分)9、下列方程组中,属于二元一次方程组的是 [ ] A 、⎩⎨⎧==+725xy y x B 、⎪⎩⎪⎨⎧=-=+043112y x y xC 、⎪⎩⎪⎨⎧=+=343453y x y xD 、⎩⎨⎧=+=-12382y x y x 10、若3243y x b a +与b a yx -634是同类项,则=+b a[ ]A 、-3B 、0C 、3D 、6 11A 、 是这方程的唯一解B 、不是这方程的一个解C 、是这方程的一个解D 、以上结论都不对12、在方程4x-3y=12中,若x=0,那么对应的y值应为: [ ]A 、4B 、-4C 、3D 、-313、甲、乙两数之和是42,甲数的3倍等于乙数的4倍,求甲、乙两数.若设甲数为x ,乙数为y ,列方程组 [ ]正确的个数为:A.1个B.2个C.3个D.4个14、下列说法正确的 [ ]A.二元一次方程2x+3y=17的正整数解有2组人教版七年级下册数学第八章二元一次方程组复习题(含答案)一、选择题1.下列方程组中是二元一次方程组的是()A. B. C.D.2.如果一个两位数的十位数字与个位数字之和为6,那么这样的两位数的个数是()A. 3B. 6C. 5D. 43.满足方程组的,的值的和等于,则的值为().A. B. C. D.4.用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒。

新初中数学七年级下册第8章《二元一次方程组》单元测试卷(含答案解析)(1)

新初中数学七年级下册第8章《二元一次方程组》单元测试卷(含答案解析)(1)

人教版数学七年级下册第八章 二元一次方程组 能力提升检测卷一.选择题(共10小题)1.下列方程是二元一次方程的是( )A .2x-4=xB .x-2y=6C .x+ 2y =3D .xy=52.以方程组 ⎩⎨⎧x +y =102x +y =6的解为坐标的点(x,y)在( )A .第一象限B .第二象限C .第三象限D .第四象限3.在方程组 = =中,代入消元可得( ) A .3y-1-y=7 B .y-1-y=7 C .3y-3=7 D .3y-3-y=74.若2x |k|+(k-1)y=3是关于x ,y 的二元一次方程,则k 的值为( )A .-1B .1C .1或-1D .05.若关于x ,y 的二元一次方程组 = = 的解为 = =,则a+4b 的值为( ) A .17 B .197 C .1 D .36.如果方程x-y=3与下面的方程组成的方程组的解为 = =,那么这一个方程可以是( ) A .2(x-y)=6y B .3x-4y=16 C .14x+2y =5D .12x+3y =8 7.某加工厂有工人50名,生产某种一个螺栓套两个螺母的配套产品,每人每天平均生产螺栓14个或螺母20个,应分配多少人生产螺栓,多少人生产螺母,能使生产出的螺栓和螺母刚好配套?设应安排x 人生产螺栓,y 人生产螺母,则所列方程组为( )A . = =B . = =C . = =D .= =8.关于x ,y 的方程组 = = 的解是 = = ,其中y 的值被盖住了,不过仍能求出p ,则p 的值是( )A.- 12B.12C.-14D.149.A、B两地相距900km,一列快车以200km/h的速度从A地匀速驶往B地,到达B地后立刻原路返回A地,一列慢车以75km/h的速度从B地匀速驶往A地.两车同时出发,截止到它们都到达终点时,两车恰好相距200km的次数是()A.5 B.4 C.3 D.210.如图所示是最近微信朋友圈常被用来“醒醒盹,动动脑”的图片,请你一定认真观察,动动脑子想一想,图中的?表示什么数()A.25 B.15 C.12 D.14二.填空题(共5小题)11.把方程5x+y=3改写为用含x的式子表示y的形式是.12.已知==是方程ax+by=3的一组解(a≠0,b≠0),任写出一组符合题意的a、b值,则a= ,b= .13.已知方程组==和==的解相同,则2m-n= .14.小明,小丽,小刚到同一个文具店买文具,小明买了2支钢笔,2本作业本,3个文件袋共花了20元;小丽买了1支钢笔,2个文件袋共花了10元;那么小刚买了5支钢笔,4本作业本,8个文件袋共花了元.15.甲乙二人分别从相距20km的A,B两地出发,相向而行.如图是小华绘制的甲乙二人运动两次的情形,设甲的速度是xkm/h,乙的速度是ykm/h,根据题意所列的方程组是.三.解答题(共10小题)16.解下列方程(组)(1)==(2)==(3)===17.已知==,==都是关于x,y的二元一次方程y=x+b的解,且m-n=b2+2b-4,求b的值.18.甲、乙两人同求方程ax-by=7的整数解,甲求出一组解为==,而乙把ax-by=7中的7错看成1,求得一组解为==,试求a、b的值.19.阅读下列解方程组的部分过程,回答下列问题解方程组=,①=,②现有两位同学的解法如下:解法一;由①,得x=2y+5,③把③代入②,得3(2y+5)-2y=3.……解法二:①-②,得-2x=2.……(1)解法一使用的具体方法是,解法二使用的具体方法是,以上两种方法的共同点是.(2)请你任选一种解法,把完整的解题过程写出来20.某人沿着相同的路径上山、下山共用了2h.如果上山速度为3km/h,下山速度为5km/h,那么这条山路长是多少?21.我校准备从体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元.购买1个足球和1个篮球共需130元.求购买足球、篮球的单价各是多少元?22.【方法体验】已知方程组=①=②求4037x+y的值.小明同学发现解此方程组代入求值很麻烦!后来他将两个方程直接相加便迅速解决了问题.请你体验一下这种快捷思路,写出具体解题过程:【方法迁移】根据上面的体验,填空:已知方程组==则3x+y-z=.【探究升级】已知方程组==求-2x+y+4z的值.小明凑出"-2x+y+4z=2﹒(x+2y+3z)+(-1)﹒(4x+3y+2z)=20-15=5“,虽然问题获得解决,但他觉得凑数字很辛苦!他问数学老师丁老师有没有不用凑数字的方法,丁老师提示道:假设-2x+y+4z=m﹒(x+2y+3z)+n﹒(4x+3y+2z),对照方程两边各项的系数可列出方程组===,它的解就是你凑的数!根据丁老师的提示,填空:2x+5y+8z=(x+2y+3z)+(4x+3y+2z)【巩固运用】已知2a-b+kc=4,且a+3b+2c=-2,当k为时,8a+3b-2c为定值,此定值是.(直接写出结果)23.《孙子算经》是中国古代重要的数学著作,其中记载:“今有甲、乙二人,持钱各不知数.甲得乙中半,可满四十八.乙得甲太半,亦满四十八,问甲、乙二人原持钱各几何?”译文:“甲,乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文,如果乙得到甲所有钱的23,那么乙也共有钱48文,问甲,乙二人原来各有多少钱?”24.【阅读材料】南京市地铁公司规定:自2019年3月31日起,普通成人持储值卡乘坐地铁出行,每个自然月内,达到规定消费累计金额后的乘次,享受相应的折扣优惠(见图).地铁出行消费累计金额月底清零,次月重新累计.比如:李老师二月份无储值卡消费260元,若采用新规持储值卡消费,则需付费150×0.95+50×0.9+60×0.8=235.5元.【解决问题】甲、乙两个成人二月份无储值卡乘坐地铁消费金额合计300元(甲消费金额超过150元,但不超过200元).若两人采用新规持储值卡消费,则共需付费283.5元.求甲、乙二月份乘坐地铁的消费金额各是多少元?答案:1.B2.B3.D4.A5.D6.A7.B8.A9.B10.B11. y=-5x+312.1,113.514.5015.16.解:(1) = ①= ② ,①+②×5,得:13x=26,x=2,将x=2代入②,得:4-y=3,y=1,所以方程组的解为 == ;(2)将方程组整理成一般式为 = ①= ②,①+②,得:6x=14,x=73,将x=73代入①,得:7-2y=8,y=- 12,所以方程组的解为(3)= ①= ② = ③, ①+②,得:3x+4y=24 ④,③+②,得:6x-3y=人教版 七年级下册-第八章 二元一次方程组 专题练习一、单选题1.一个两位数,十位数字与个位数字和为6,这样的两位数中,是正整数的有( )A. 6个B. 5个C. 3个D. 无数个2.下列各组数中① ; ② ;③ ;④ 是方程 的解的有( )A. 1个B. 2个C. 3个D. 4个3.下列方程中,是二元一次方程的是( )A. -y=6B. +=1C. 3x-y 2=0D. 4xy=34.二元一次方程组 的解为( )A. B. C. D.5.已知方程组, 则x ﹣y 的值为( )A. -1B. 0C. 2D. 36.购买铅笔7支,作业本3本,圆珠笔1支共需3元;购买铅笔10支,作业本4本,圆珠笔1支共需4元,则购买铅笔11支,作业本5本,圆珠笔2支共需( )A. 4.5元B. 5元C. 6元D. 6.5元7.下列方程组中,是二元一次方程组的是( )A. B. C. D.8.笼中有x 只鸡y 只兔,共有36只脚,能表示题中数量关系的方程是( )A. x+y=18B. x+y=36C. 4x+2y=36D. 2x+4y=369.二元一次方程x+2y=5在实数范围内的解()A. 只有1个B. 只有2个C. 只有3个D. 有无数个二、填空题10.请写出一个你所喜欢的二元一次方程组________11.若+(2a+3b﹣13)2=0,则a+b= ________.12.已知,则a+b等于________.13.若关于x、y的二元一次方程组的解满足x+y=1,则a的值为 ________.14.请构造一个二元一次方程组,使它的解为.这个方程组是 ________.15.已知|x﹣y+2|+(2x+y+4)2=0.则x y=________.16.将方程5x﹣y=1变形成用含x的代数式表示y,则y=________.17.方程组的解是________.三、计算题18.解方程组:.19.解下列二元一次方程组:(1)(2)20.解下列方程组:(1)(2)四、综合题21.已知y=kx+b,当x=1时,y=﹣2;当x=﹣1时,y=4.(1)求k、b的值;(2)当x取何值时,y的值小于10?答案一、单选题1.【答案】A【解析】【解答】解:设两位数的个位数为x,十位为y,根据题意得:x+y=6,∵xy都是整数,∴当x=0时,y=6,两位数为60;当x=1时,y=5,两位数为51;当x=2时,y=4,两位数为42;当x=3时,y=3,两位数为33;当x=4时,y=2,两位数为24;当x=5时,y=1,两位数为15;则此两位数可以为:60、51、42、33、24、15,共6个,故选:A.【分析】可以设两位数的个位数为x,十位为y,根据两数之和为6,且xy为整数,分别讨论两未知数的取值即可.注意不要漏解.2.【答案】B【解析】【解答】解:把① 代入得左边=10=右边;把② 代入得左边=9≠10;把③ 代入得左边=6≠10;把④ 代入得左边=10=右边;所以方程的解有①④2个.故答案为:B【分析】能使二元一次方程的左边和右边相等的未知数的值就是二元一次方程的解,二元一次方程有无数个解,根据定义将每一对x,y的值分别代入方程的左边算出答案再与右边的10比较,若果相等,x,y的值就是该方程的解,反之就不是该方程的解。

新初中数学七年级下册第8章《二元一次方程组》单元测试题(含答案)

新初中数学七年级下册第8章《二元一次方程组》单元测试题(含答案)

人教版七年级下册 第八章二元一次方程组单元试题一、选择题一、选择题((共10小题,每小题3分,共30分) 1.二元一次方程组îíì x +y =7,3x -y =5的解是的解是( ( ( )A.îíìx =4,y =3B .îíì x =5,y =2C .îíìx =3,y =4D .îíìx =-=-22,y =92.已知方程组îíì2x +y =4,x +2y =5,则x +y 的值为的值为( ( ( )A .-.-1 1 1B B .0C .2 2D D .3 3.下列各方程中,是二元一次方程的是.下列各方程中,是二元一次方程的是( ( ( ) A.x 3-2y=y +5x B .3x +1=2xy C .15x =y 2+1 1D .x +y =14.已知x 2m m-1+3y 4-2n n=-=-77是关于x ,y 的二元一次方程,则m ,n 的值是的值是( ( ( )A.îíìm =2,n =1B .îíì m =1,n =-32 C .îíì m =1,n =52D .îíìm =1,n =325.方程kx +3y =5有一组解是îíìx =2,y =1,则k 的值是的值是( ( ( )A .1B .-.-1C 1 C .0 0D D.2 6.二元一次方程x +2y =10的所有正整数解有的所有正整数解有( ( ( ) A .1个 B .2个 C .3个 D .4个7.“珍爱生命,拒绝毒品”,学校举行的2017年禁毒知识竞赛共有60道题,曾浩同学答对了x 道题,道题,答错了答错了y 道题道题((不答视为答错不答视为答错)),且答对题数比答错题数的7倍还多4道,那么下面列出的方程组中正确的是道,那么下面列出的方程组中正确的是( ( ( )A.îíìx +y =6060,,x -7y =4 B .îíì x +y =6060,,y -7x =4C .îíìx =6060--y ,x =7y -4D .îíìy =6060--x ,y =7x -48.关于x ,y 的方程组îíìx +py =0,x +y =3的解是îíìx =1,y =■,其中y 的值被盖住了,不过仍能求出p ,则p 的值是的值是( ( ( )A .-.-112 B.12 C .-.-114 D .149.若.若||x +y -5|5|与与(x -y -1)2互为相反数,则x 2-y 2的值为的值为( ( ( ) A .-.-5 5 5 B B .5 C .13 13D .15 1010..《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为钱,可列方程组为( ( ( )A.îíì 8x -3=y ,7x +4=yB .îíì 8x +3=y ,7x -4=yC .îíìy -8x =3,y -7x =4D .îíì8x -y =3,7x -y =4二、填空题二、填空题((共5小题,每小题4分,共20分) 1111.方程组.方程组îíìx +y =1,3x -y =3的解是的解是. 1212..“六一”前夕,“六一”前夕,市关工委准备为希望小学购进图书和文具若干套,市关工委准备为希望小学购进图书和文具若干套,市关工委准备为希望小学购进图书和文具若干套,已知已知1套文具和3套图书需104元,元,33套文具和2套图书需116元,则1套文具和1套图书需套图书需 元.元.13.已知关于x ,y 的二元一次方程组îíì2x +y =k ,x +2y =-1的解互为相反的解互为相反 人教版七年级下第八章 二元一次方程组 单元测试题(含答案)一、选择题(每题4分,共32分)分)1. 下列方程中,是二元一次方程的是(下列方程中,是二元一次方程的是() A . x xy 212=+ B . 222=-y x C . 31=+yxD . y y x =+23 2. 以îíì-==11y x 为解的二元一次方程组是(为解的二元一次方程组是( ) A .îíì=-=+10y x y x B .îíì-=-=+10y x y x C .îíì=-=+20y x y x D .îíì-=-=+20y x y x 3.程1523=+y x 在自然数范围内的解共有(在自然数范围内的解共有() A .1对 B .2对 C .3对 D .无数对.无数对4.已知单项式b a n m +3与单项式n m b a -32是同类项,那么m 、n 的值分别是(的值分别是( ) A .îíì-==12n m B .îíì-=-=12n m C .îíì==12n m D .îíì=-=12n m5.5.关于关于x 、y 的二元一次方程îíì=-=+ky x k y x 95的解也是二元一次方程632=+y x 的解,则k 的值是(的值是() A .43- B .43 C .34 D .34- 6.6.若二元一次方程若二元一次方程73=-y x ,132=+y x ,9-=kx y 有公共解,则k 的取值范围为( )A .3B .—.—3C 3 C .—.—4D 4 D .4 7.若îíì==21y x 与îíì==32y x 都是3=-ay bx 的解,则下列各组数值中也是3=-ay bx 的解的是(的是() A .îíì-==43y x B .îíì==34y x C .îíì-=-=43y x D .îíì==43y x8.为了研究吸烟是否对肺癌有影响,为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地调查了10000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这10000人中,吸烟者患肺癌的人数为x ,不吸烟者患肺癌的人数为y ,根据题意,下面列出的方程组正确的是(,根据题意,下面列出的方程组正确的是() A .îíì=´+´=-10000%5.0%5.222y x y xB .îïíì=+=-10000%5.0%5.222y x y x C .îíì=´-´=+22%5.0%5.210000y x y xD .ïîïíì=-=+22%5.0%5.210000yx y x 二、填空题(每题4分,共32分)分)9. 在方程5413=-y x 中,用含x 的代数式表示为:y = ,当3=x 时,y = .10.10.已知方程组已知方程组îíì=+=-②①.123,432y x y x 用加减法消去x 的方法是的方法是,用加减法消去y 的方法是法是. 11.11.以方程组以方程组îíì=-=+2233y x y x 的解为坐标的点(x ,y )在平面直角坐标系中的第)在平面直角坐标系中的第象限.12.已知îíì==12y x 是二元一次方程组îíì=-=+18my nx ny mx 的解,则n m -2的算术平方根是的算术平方根是 . 13. 若方程组îíì=-+=-3)1(334y k kx y x 的解x 和y 的值相等,则k = . 14.已知方程组îíì=+=-241121254y x y x ,则2)(y x +的值为的值为. 15.15.“今有共买犬,人出五,不足九十;人出五十,适足.问人数、犬价各几何?”题目大意是:现在大家共一条狗,若每人出五元,还差九十元;若每人出五十元,刚好够.可知一共有知一共有 人,狗价为人,狗价为 元.元. 16.甲、乙两人去商店买东西,他们所带的钱数之比为7:6,甲用掉50元,乙用掉60元,两人余下的钱数之比是3:2,则甲余下的钱数为,则甲余下的钱数为 元,乙余下的钱数为元,乙余下的钱数为元. 三、解答题(共56分)分) 17.17.(每题(每题5分,共10分)解下列方程组:分)解下列方程组:(1)îíì=+=+64302y x y x ;(2)îíì=+=-3241123b a b a .18.18.((8分)在b y ax =+2中,已知x 当1-=x 时,2=y ;当2=x 时,21=y .求代数式))((22b ab a b a +-+的值的值. .19(9分)如图,在东北大秧歌的踩高跷表演中,已知演员身高是高跷长度的2倍,高跷与腿重合部分的长度为28cm ,演员踩在高跷上时,头顶距离地面的高度为224cm .设演员的高度为x cm ,高跷的长度为y cm ,求x ,y 的值.的值.xcmcm28ycmcm224第19题图题图20.(9分)已知方程组îíì-=--=+4652by ax y x 与方程组îíì-=+=-81653ay bx y x 的解相同,求2015)2(b a +的值的值. .21.21.((10分)已知:用2辆A 型车和1辆B 型车装满货物一次可运货10吨;用1辆A 型车和2辆B 型车装满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A 型车a人教版数学七年级下册第八章 二元一次方程组 能力提升检测卷一.选择题(共10小题)小题)1.下列方程是二元一次方程的是(.下列方程是二元一次方程的是( ) A .2x-4=xB .x-2y=6C .x+ 2y =3D .xy=5 2.以方程组.以方程组 îíìx +y =102x +y =6的解为坐标的点(x,y)在(在() A .第一象限.第一象限 B .第二象限.第二象限 C .第三象限.第三象限 D .第四象限.第四象限3.在方程组.在方程组== 中,代入消元可得(中,代入消元可得( ) A .3y-1-y=7B .y-1-y=7C .3y-3=7D .3y-3-y=7 4.若2x |k|+(k-1)y=3是关于x ,y 的二元一次方程,则k 的值为(的值为( ) A .-1B .1C .1或-1D .0 5.若关于x ,y 的二元一次方程组的二元一次方程组= = 的解为的解为= = ,则a+4b 的值为(的值为( ) A .17B .197C .1D .3 6.如果方程x-y=3与下面的方程组成的方程组的解为与下面的方程组成的方程组的解为== ,那么这一个方程可以是( )A .2(x-y)=6yB .3x-4y=16C .14x+2y =5D .12x+3y =87.某加工厂有工人50名,生产某种一个螺栓套两个螺母的配套产品,生产某种一个螺栓套两个螺母的配套产品,每人每天平均生产螺每人每天平均生产螺栓14个或螺母20个,应分配多少人生产螺栓,应分配多少人生产螺栓,多少人生产螺母,多少人生产螺母,能使生产出的螺栓和螺母刚好配套?设应安排x 人生产螺栓,y 人生产螺母,则所列方程组为(人生产螺母,则所列方程组为( )A .= =B .= =C .= = D .==8.关于x ,y 的方程组的方程组= = 的解是的解是== ,其中y 的值被盖住了,不过仍能求出p ,则p 的值是(的值是( ) A .- 12B .12C .- 14D .14 9.A 、B 两地相距900km,一列快车以200km/h 的速度从A 地匀速驶往B 地,到达B 地后立刻原路返回A 地,一列慢车以75km/h 的速度从B 地匀速驶往A 地.两车同时出发,截止到它们都到达终点时,两车恰好相距200km 的次数是(的次数是( ) A .5B .4C .3D .2 10.如图所示是最近微信朋友圈常被用来“醒醒盹,动动脑”的图片,请你一定认真观察,动动脑子想一想,图中的?表示什么数(动动脑子想一想,图中的?表示什么数( ) A .25B .15C .12D .14二.填空题(共5小题)小题)11.把方程5x+y=3改写为用含x 的式子表示y 的形式是的形式是. 12.已知已知= 是方程ax+by=3的一组解(a ≠0,b ≠0),任写出一组符合题意的a 、b 值,则a= ,b= .13.已知方程组.已知方程组= = 和== 的解相同,则2m-n= . 14.小明,小丽,小刚到同一个文具店买文具,小明买了2支钢笔,2本作业本,3个文件袋共花了20元;小丽买了1支钢笔,2个文件袋共花了10元;那么小刚买了5支钢笔,4本作业本,8个文件袋共花了个文件袋共花了 元.元.15.甲乙二人分别从相距20km 的A ,B 两地出发,相向而行.如图是小华绘制的甲乙二人运动两次的情形,设甲的速度是xkm/h,乙的速度是ykm/h,根据题意所列的方程组是 .三.解答题(共10小题)小题) 16.解下列方程(组).解下列方程(组) (1) = =(2)==(3) == =17.已知.已知== , = = 都是关于x ,y 的二元一次方程y=x+b 的解,且m-n=b 2+2b-4,求b 的值.的值.18.甲、乙两人同求方程ax-by=7的整数解,甲求出一组解为的整数解,甲求出一组解为== ,而乙把ax-by=7中的7错看成1,求得一组解为,求得一组解为== ,试求a 、b 的值.的值.19.阅读下列解方程组的部分过程,回答下列问题.阅读下列解方程组的部分过程,回答下列问题解方程组解方程组 =,① = ,②现有两位同学的解法如下:现有两位同学的解法如下: 解法一;由①,得x=2y+5,③ 把③代入②,得3(2y+5)-2y=3.…….…… 解法二:①-②,得-2x=2.…….……(1)解法一使用的具体方法是,解法二使用的具体方法是,以上两种方法的共同点是.以上两种方法的共同点是. (2)请你任选一种解法,把完整的解题过程写出来)请你任选一种解法,把完整的解题过程写出来20.某人沿着相同的路径上山、下山共用了2h .如果上山速度为3km/h,下山速度为5km/h,那么这条山路长是多少?那么这条山路长是多少?21.我校准备从体育用品商店一次性购买若干个足球和篮球我校准备从体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,(每个足球的价格相同,(每个足球的价格相同,每个篮每个篮球的价格相同),若购买3个足球和2个篮球共需310元.购买1个足球和1个篮球共需130元.求购买足球、篮球的单价各是多少元?元.求购买足球、篮球的单价各是多少元?22.【方法体验】已知方程组【方法体验】已知方程组= ①= ②求4037x+y 的值.小明同学发现解此方程组代入求值很麻烦!后来他将两个方程直接相加便迅速解决了问题.请你体验一下这种快捷思路,写出具体解题过程:这种快捷思路,写出具体解题过程: 【方法迁移】根据上面的体验,填空:【方法迁移】根据上面的体验,填空: 已知方程组已知方程组==则3x+y-z=. 【探究升级】已知方程组【探究升级】已知方程组 = =求-2x+y+4z 的值.小明凑出的值.小明凑出 "-2x+y+4z=2﹒(x+2y+3z)+(-1)﹒(4x+3y+2z)=20-15=5“,虽然问题获得解决,但他觉得凑数字很辛苦!他问数学老师丁老师有没有不用凑数字的方法,丁老师提示道:假设-2x+y+4z=m ﹒(x+2y+3z)+n ﹒(4x+3y+2z),对照方程两边各项的系数可列出方程组对照方程两边各项的系数可列出方程组===,它的解就是你凑的数!根据丁老师的提示,填空:根据丁老师的提示,填空: 2x+5y+8z=(x+2y+3z)+(4x+3y+2z)【巩固运用】已知2a-b+kc=4,且a+3b+2c=-2,当k 为时,8a+3b-2c 为定值,此定值是.(直接写出结果)接写出结果)23.《孙子算经》是中国古代重要的数学著作,其中记载:.《孙子算经》是中国古代重要的数学著作,其中记载:“今有甲、乙二人,持钱各不知“今有甲、乙二人,持钱各不知数.甲得乙中半,可满四十八.乙得甲太半,亦满四十八,问甲、乙二人原持钱各几何?”译文:“甲,乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文,如果乙得到甲所有钱的23,那么乙也共有钱48文,问甲,乙二人原来各有多少钱?”文,问甲,乙二人原来各有多少钱?”24.【阅读材料】.【阅读材料】南京市地铁公司规定:自2019年3月31日起,普通成人持储值卡乘坐地铁出行,普通成人持储值卡乘坐地铁出行,每个自然每个自然月内,达到规定消费累计金额后的乘次,享受相应的折扣优惠(见图).地铁出行消费累计金额月底清零,次月重新累计.金额月底清零,次月重新累计.比如:李老师二月份无储值卡消费260元,若采用新规持储值卡消费,则需付费150×0.95+50×0.9+60×0.8=235.5元.元.【解决问题】【解决问题】甲、乙两个成人二月份无储值卡乘坐地铁消费金额合计300元(甲消费金额超过150元,但不超过200元).若两人采用新规持储值卡消费,则共需付费283.5元.求甲、乙二月份乘坐地铁的消费金额各是多少元?坐地铁的消费金额各是多少元?答案:答案:1.B2.B3.D4.A5.D6.A7.B 8.A9.B10.B11. y=-5x+312.1,113.514.50 15. 16.解:(1)= ① = ② ,①+②×5,得:13x=26,x=2, 将x=2代入②,得:4-y=3,y=1, 所以方程组的解为所以方程组的解为 == ;(2)将方程组整理成一般式为)将方程组整理成一般式为= ① = ② , ①+②,得:6x=14,x=73,将x=73代入①,得:7-2y=8,y=- 12, 所以方程组的解为(3)= ① = ②= ③, ①+②,得:3x+4y=24 ④,④, ③+②,得:6x-3y=。

七年级数学下册《第八章 二元一次方程组》单元测试卷附答案解析-人教版

七年级数学下册《第八章 二元一次方程组》单元测试卷附答案解析-人教版

七年级数学下册《第八章 二元一次方程组》单元测试卷附答案解析-人教版一、单选题1.已知x 2y 1=⎧⎨=-⎩是二元一次方程2x 3ky 1-=的一组解,则k 的值为( )A .1B .-1C .53D .53-2.方程组: 5210x y x y +=⎧⎨+=⎩①② ,由②-①得到的方程是( )A .3x =10B .x =-5C .3 x =-5D .x =53.七年级学生在会议室开会,每排座位坐12人,则有11人没有座位;每排座位坐14人,则余1人独坐一排,则这间会议室的座位排数是( ) A .14B .13C .12D .154.将方程3x+y=9写成用含y 的式子表示x 的形式,正确的是( )A .y=3x-9B .y=9-3xC .x=3y-3 D .x=3-3y 5.已知{x =2ky =−3k 是二元一次方程x-y=10的解,则k 的值是( )A .-10B .-2C .2D .106.若4326x y x y +=⎧⎨-=⎩,则x y +的值为( )A .3B .4C .5D .67.已知方程组272a b a b +=⎧⎨-=⎩①②下列消元过程错误的是( )A .代人法消去a ,由②得2a b =+代入①B .代入法消去b ,由①得72b a =-代入②C .加减法消去b ,①-②D .加减法消去a ,①-②×28.三元一次方程组32522x y x y z z -=⎧⎪++=⎨⎪=⎩,,的解是( )A .112x y z =⎧⎪=⎨⎪=⎩B .112x y z =⎧⎪=-⎨⎪=⎩C .112x y z =-⎧⎪=⎨⎪=⎩D .112x y z =-⎧⎪=-⎨⎪=⎩9.把一根长17m 的钢管截成2m 和3m 长两种不同规格的钢管,且不造成浪费,你有几种不同的截法( ) A .1种B .2 种C .3种D .4种10.在学习完“垃圾分类”的相关知识后,小明和小丽一起收集了一些废电池,小明说:“我比你多收集了7节废电池啊!”小丽说:“如果你给我8节废电池,我的废电池数量就是你的2倍”.如果他们说的都是真的,设小明收集了x 节废电池,小丽收集了y 节废电池,则可列方程组为( ).A .()7828x y x y -=⎧⎨-=+⎩B .()7828y x x y -=⎧⎨+=-⎩C .()728x y x y -=⎧⎨-=⎩D .()7288x y x y -=⎧⎨-=+⎩二、填空题11.已知方程2x ﹣y =8,用含x 的代数式表示y ,则y = . 12.若二元一次方程组ax by 3bx ay 2+=⎧⎨+=⎩的解为x 3y 2=⎧⎨=⎩,则a b +的值 .13.已知关于x ,y 的二元一次方程()()a 1x a 2y 52a 0-+++-=,当a 每取一个值时就有一方程,而这些方程有一个公共解,则这个公共解是 .14.某中学为积极开展校园足球运动,计划购买A 和B 两种品牌的足球,已知一个A 品牌足球价格为120元,一个B 品牌足球价格为150元.学校准备用3000元购买这两种足球(两种足球都买),并且3000元全部用完,请写出一种购买方案:买 个A 品牌足球,买 个B 品牌足球.三、计算题15.解方程 212311x y x y -=-⎧⎨+=⎩16.解方程组: 3472395978x z x y z x y z +=⎧⎪++=⎨⎪-+=⎩①②③四、解答题17.已知关于x ,y 的二元一次方程组2632x y x y k -=⎧⎨-=⎩的解满足x ﹣y =2,求k 的值.18.下面是王斌同学解方程组1022x y x y +=⎧⎨-=-⎩的过程,请认真阅读并完成相应任务.解:1022x y x y +=⎧⎨-=-⎩①②由①得10y x =-③,……第一步把③代入②,得2(10)2x x --=-,……第二步 整理得2022x x --=-,……第三步 解得18x -=,即18x =-.……第四步 把18x =-代入③,得28y =则方程组的解为1828x y =-⎧⎨=⎩.……第五步(1)任务一:填空:①以上求解过程中,王斌用了 消元法;(填“代入”或“加减”)②第 步开始出现错误,这一步错误的原因是 ;(2)任务二:直接写出该方程组求解后的正确结果.19.为了鼓励市民节约用电,某市对居民用电实行阶梯收费(总电费=第一阶梯电费+第二阶梯电费),规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分按第二阶梯电价收费.以下是张磊家2014年3月和4月所交电费的收据,问该市规定的第一阶梯电价和第二阶梯电价分别为每度多少元? 代收电费收据 电表号 1205 电表号 1205 户名 张磊 户名 张磊 月份 3月 月份 4月 用电量 220度 用电量 265度 金额112元金额139元20.已知31x y =⎧⎨=⎩是方程2x-ay=9的一个解,解决下列问题:(1)求a 的值;(2)化简并求值:()()()()211213a a a a a -+--+-21.阅读下列方程组的解法,然后解答相关问题:解方程组272625252423x y x y +=⎧⎨+=⎩①②时若直接利用消元法解,那么运算比较繁杂,采用下列解法则轻而易举解:①-②,得222x y +=,即1x y +=.③ ②-③×24,得1x =-.把1x =-代入③,解得2y =.故原方程组的解是12x y =-⎧⎨=⎩.(1)请利用上述方法解方程组192123111315x y x y +=⎧⎨+=⎩.(2)猜想并写出关于x ,y 的方程组()2()2ax a m y a mbx b m y b m +-=-⎧⎨+-=-⎩的解,并加以检验.22.一批机器零件共558个,甲先做3天后,乙再加入,两人共同再做6天刚好完成.设甲每天做x个,乙每天做y 个.(1)列出关于x ,y 的二元一次方程.(2)用含x 的代数式表示y ,并求当32x =时y 的值是多少? (3)若乙每天做48个,则甲每天做多少个?参考答案与解析1.【答案】B【解析】【解答】解:∵x 2y 1=⎧⎨=-⎩是二元一次方程2x-3ky=1的一组解∴4+3k=1 解得k=-1. 故答案为:B.【分析】根据二元一次方程根的概念,将x=2、y=-1代入原方程,可得关于字母k 的一元一次方程,解该方程可求出k 的值.2.【答案】D【解析】【解答】解:由②-①得:x=5.故答案为:D.【分析】由方程②-方程①,即左边减左边,右边减右边,可得x=5,即可得出正确答案.3.【答案】C【解析】【解答】解:设这间会议室的座位排数是x 排,人数是y 人.根据题意,得()12111411x y x y+=⎧⎨-+=⎩解得12155x y =⎧⎨=⎩. 故答案为:C .【分析】本题中有两个等量关系:1、每排坐12人,则有11人没有座位;2、每排坐14 人,则余1人独坐一排. 这样设每排的座位数为x ,总人数为y ,列出二元一次方程组即可.4.【答案】D【解析】【解答】解:3x+y=93x=9-y 解之:33yx =-. 故答案为:D【分析】先移项,将含y 的项移到方程的右边,再在方程的两边同时除以3,可求出x.5.【答案】C【解析】【解答】解:∵{x=2ky=−3k是二元一次方程x-y=10的解∴2k+3k=10解之:k=2.故答案为:C【分析】将x,y的值代入方程,可得到关于k的方程,解方程求出k的值. 6.【答案】A【解析】【解答】解:43 26 x yx y+=⎧⎨-=⎩①②①+②得3x+3y=9两边同时除以3得x+y=3.故答案为:A.【分析】直接将方程组中的两个方程相加后再在两边同时除以3即可得出答案. 7.【答案】C【解析】【解答】解:方程组272a ba b+=⎧⎨-=⎩①②A、代入法消去a,由②得a=b+2代入①可消去a,不符合题意;B、代入法消去b.由①得b=7−2a代入②可消去b,不符合题意;C、加减法消去b,①+②,符合题意;D、加减法消去a,①−②×2,不符合题意.故答案为:C.【分析】利用加减消元法和代入消元的方法求解二元一次方程组即可。

新人教版初中数学七年级下册第8章《二元一次方程组》检测试卷及答案(1)

新人教版初中数学七年级下册第8章《二元一次方程组》检测试卷及答案(1)

人教版七年级数学下册第八章 二元一次方程组 单元复习测试题(含答案)一、选择题(每小题3分,共24分)1. 方程2130,21,328,20,10x y x xy x y x x x x y+=+=+-=-=-+=中,二元一次方程的个数是( )A .1个B .2个C .3个D .4个 2. 方程x +2y =5的非负整数解有( )A.1个B.2个C.3个D.无数个3.方程组224x y x y -=+=⎧⎨⎩,的解是( )A.12x y ==⎧⎨⎩ B.31x y ==⎧⎨⎩ C.02x y ==-⎧⎨⎩ D.20x y ==⎧⎨⎩4.买钢笔和铅笔共30支,其中钢笔的数量比铅笔数量的2倍少3支.若设买钢笔x 支,铅笔y 支,根据题意,可得方程组( ). A .⎩⎨⎧-==+3230x y y xB .⎩⎨⎧+==+3230x y y x C .⎩⎨⎧+==+3230y x y x D . ⎩⎨⎧-==+3230y x y x 5.下列结论正确的是( ).A .方程5=+y x 所有的解都是方程组⎩⎨⎧=+=+1835y x y x 的解B .方程5=+y x 所有的解都不是方程组⎩⎨⎧=+=+1835y x y x 的解C .方程组⎩⎨⎧=+=+1835y x y x 的解不是方程5=+y x 的一个解D .方程组⎩⎨⎧=+=+1835y x y x 的解是方程5=+y x 的一个解6.某商店有两进价不同的耳机都卖64元,其中一个盈利60%,另一个亏本20%,在这次买卖中,这家商店( )A .赚8元B .赚32元C .不赔不赚D .赔8元 7.解方程组⎩⎨⎧=-=+534734y x y x 时,较为简单的方法是( )A .代入法B .加减法C .试值法D .无法确定 8.关于x 、y 的方程组⎩⎨⎧=-=+15x y ay x 有正整数解,则正整数a 为( ).A . 1、2B .2、5C .1、5D .1、2、5 二、填空(每小题3分,共24分) 9. 如果⎩⎨⎧-==13y x 是方程3x -ay =8的一个解,那么a =_________.10. 由方程3x -2y -6=0可得到用x 表示y 的式子是_________.11. 请你写出一个二元一次方程组,使它的解为⎩⎨⎧==21y x ,这个方程组是_________.12. 用加减消元法解方程组31,421,x y x y +=-=⎨+⎧⎩①②由①×2-②得__________.13. 方程mx -2y =x +5是关于x 、y 的二元一次方程,则m ________. 14.若2x 7a y b -2与-x 1+2b y a 是同类项,则b =________. 15.如图,宽为50cm 的长方形图案由10个相同的小长方形拼成,求每个小长方形的长为x cm ,宽长为y cm 。

七年级数学下册 第8单元 二元一次方程组测试题(C卷) 新人教版

七年级数学下册 第8单元 二元一次方程组测试题(C卷) 新人教版

第八章 二元一次方程组一、选择题1.下列方程组中,是二元一次方程组的是( )A .22621211 (2631321)xy x y x y x B C D x y y z x y x y =-=+=⎧=⎧⎧⎧⎨⎨⎨⎨-==+-=+=⎩⎩⎩⎩ 2.方程x+2y=7在自然数范围内的解( ).A .有无数个B .只有4个C .只有3个D .以上都不对3.有一个两位正整数,它的十位上的数字与个位上的数字的和为6,•则这样的两位正整数有( ).A .无数个B .6个C .5个D .3个4.方程组250250x y x y +-=⎧⎨-+=⎩的解是( )A .5103 0301x x x x B C D y y y y ==-==⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩ 5.如果255411x y x y -=⎧⎨-=⎩,则x :y 的值为( ). A .12B .13C .2D .3 6.如果3122x ax cy y cx by =-+=⎧⎧⎨⎨=--=⎩⎩是的解,那么a ,b 之间的关系是( ). A .4b+9a=1 B .9a+4b=0 C .3a+2b=1 D .4b-9a+1=07.若│3x+2y -4│与6(5x+7y-3)2互为相反数,则x 与y 的值是( ). A .12.11x x B y y ==⎧⎧⎨⎨=-=-⎩⎩C .不存在D .无法求出 8.如果x :y=3:2,并且x+3y=27,则x 与y 中较小的是( ).A .3B .6C .9D .129.已知⎩⎨⎧==n y m x 满足方程组2527x y x y +=⎧⎨+=⎩,则m-n 的值为( ). A .2 B .1 C .0 D .-110.把100分为两个数,使一个数减去20的差,等于另一个数加上30的和,则这两个数的差是().A、 10B、 20C、30D、50二、填空题11.已知方程3x+5y=13,当y=2时,x=_______;当x=-2时,y=______.12.已知二元一次方程-3x+4y=-1,用含x的代数式表示y,则_____ .13.方程x m+1+y2n+m=5是二元一次方程,则m=______,n=_______.14.若│x-2│+(y-3x+1)2=0,则x=_______,y=_______.15.在非负整数范围内,方程5x+2y=12的解是________.16.若甲数为x,乙数为y,则“甲数的12与乙数的23的差是6”可列方程为_______.17.若121421x ax y by x by a=+=⎧⎧⎨⎨=--=-⎩⎩是方程组的解,则a+b=________.18.若22x y ax y a-=⎧⎨+=⎩,则x:y=________.19.若方程组7336029510x yx y+-=⎧⎨+-=⎩的解也是方程mx+2y=1的解,则m=_______.20.甲、乙两人同解方程212,,3216ax by x xcx y y y +===-=-=-=-⎧⎧⎧⎨⎨⎨⎩⎩⎩甲正确解得乙因抄错了c,解得,•则a=•______,•b=________,c=_______.三、解答题21.用代入法解下列方程组(1)23953x yx y+=-⎧⎨-=⎩453(2)321x yx y-=⎧⎨-=⎩22.用加减法解下列方程组(1)43522x y x y -=⎧⎨-=⎩ 3(1)5(2)5(1)3(5)x y y x -=+⎧⎨-=+⎩23.用适当的方法解下列方程组341603(2)4(2)87(1)(2)563302(3)3()82x y x y x y x y x y x y +-=-+-=⎧⎧⎨⎨--=---=⎩⎩24.硫酸1.2升和水1.8升混合成稀溶液,硫酸0.9升和水0.3•升混合成浓溶液,现在要混合成硫酸和水各半的溶液1.4升,问两种溶液各要多少?25.有一批零件共420个,如果甲先做2天后乙加入工作,那么再做2天完成;如果乙先做2天后甲加入合作,那么再做3天完成,则甲,乙每天各做多少个?26.一个两位数,个位上的数字与十位上的数字之和是11,如果把十位上的数字与个位上的数字对调,那么所得的两位数比原两位数大9,求原来两位数.27.甲乙两人从相距36千米的两地相向而行,若甲先出发2小时,•则乙动身2.5小时后两人相遇;若乙先出发2小时,则甲动身3小时后相遇,求甲,乙两人的速度.28.一船在A 、B 两码头间航行,从A 到B 顺水航行要2小时,从B 到A•逆水航行要3小时,那么一只救生圈从A 顺水漂到B 要几小时?29.已知某铁路桥长800米,现有一列火车从桥上通过,•测得火车从开始上桥到完全过桥共用45秒,整列火车完全在桥上的时间是35秒,求火车的速度和长度.答案一、1.C 2.B 3.B 4.B 5.D 6.A 7.B 8.B 9.A 10.D二、11.12,0 1931112.13.014.2515.16 542x xxyy y==⎧⎧-=⎨⎨==⎩⎩16.12x-23y=6 17.4 18.3 19.-3 20.2.5 1.5 -5三、21.(1)11057(2)22.(1)(2)235717xx xxy yyy⎧=-⎧⎪===⎧⎧⎪⎪⎨⎨⎨⎨=-=⎩⎩⎪⎪=-=-⎩⎪⎩23.(1)62342450(2)(3)(4)1132350 2xx x xy y yy=⎧===⎧⎧⎧⎪⎨⎨⎨⎨=== =-⎩⎩⎩⎪⎩24.需稀溶液1升,浓溶液0.4升25.甲:90个,乙:30•个26.5627.甲速度6千米/时,乙速度3.6千米/时.。

七年级数学下第八章二元一次方程组水平测试题(C)新人教版

七年级数学下第八章二元一次方程组水平测试题(C)新人教版

第八章二元一次方程组水平测试题(C )一、选择题1、若23815m n x y -+-=是关于x y 、的二元一次方程,则m n +=( ) A.1- B.2 C 。

1 D.2-2、以11x y =⎧⎨=-⎩为解的二元一次方程组是( )A .01x y x y +=⎧⎨-=⎩ B .01x y x y +=⎧⎨-=-⎩ C .02x y x y +=⎧⎨-=⎩ D .02x y x y +=⎧⎨-=-⎩3、为紧急安置100名地震灾民,需要同时搭建可容纳6人和4人的两种帐篷,则搭建方案共有( ) A .8种B .9种C .16种D .17种4、同时满足方程21132x y +=与325x y +=的解是( ) A .23x y ==, B .34x y =-=, C .32x y ==-, D .32x y =-=-,5、已知代数式1312a x y -与23b a b x y -+-是同类项,那么a 、b 的值分别是( ) A.21a b =⎧⎨=-⎩B.21a b =⎧⎨=⎩C 。

21a b =-⎧⎨=-⎩D.21a b =-⎧⎨=⎩6、2(5)23100x y x y +-+--=若,则代数式xy 的值是( ) A 。

6 B.-6 C.0 D 。

5 7、若方程组⎩⎨⎧=+=-81my nx ny mx 的解是⎩⎨⎧==12y x ,则m 、n 的值分别是( )A. m=2,n=1B. m=2,n=3C. m=1,n=8D 。

无法确定8、如图,点O 在直线AB 上,OC 为射线,1∠比2∠的3倍少︒10,设1∠,2∠的度数分别为x ,y ,那么下列求出这两个角的度数的方程是( ) A 。

⎩⎨⎧-==+10180y x y x B.⎩⎨⎧-==+103180y x y xC 。

⎩⎨⎧+==+10180y x y x D.⎩⎨⎧-==1031803y x y9、某校七年级(2)班40名同学为“希望工程”捐款,共捐款100元.捐款情况如表:CAB1 2 O捐款(元)12人数6表格中捐款2元和3元的人数不小心被墨水污染已看不清楚。

【3套试卷】人教版七年级数学下册第八章二元一次方程组单元测试题(有答案)

【3套试卷】人教版七年级数学下册第八章二元一次方程组单元测试题(有答案)

人教版七年级数学下册第八章二元一次方程组单元测试题(有答案)一.选择题1.下列方程中,是二元一次方程的是( )A .3x -2y =4zB .6xy +9=0C.1x +4y =6 D .4x =y -24 2.下列方程组中,是二元一次方程组的是( )A.⎩⎪⎨⎪⎧x +y =42x +3y =7B.⎩⎪⎨⎪⎧2a -3b =115b -4c =6C.⎩⎪⎨⎪⎧x 2=9y =2xD.⎩⎪⎨⎪⎧x +y =8x 2-y =43.方程组的解为( )A .B .C .D .4.夏季来临,某超市试销A 、B 两种型号的风扇,两周内共销售30台,销售收入5300元,A 型风扇每台200元,B 型风扇每台150元,问A 、B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( )A .B .C .D .5.小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为( )A .19B .18C .16D .156.某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x 元,水笔每支为y 元,那么根据题意,下列方程组中,正确的是( )A.B.C.D.7.《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为()A.B.C.D.8.某次知识竞赛共有20道题,规定:每答对一道题得+5分,每答错一道题得﹣2分,不答的题得0分,已知圆圆这次竞赛得了60分,设圆圆答对了x道题,答错了y道题,则()A.x﹣y=20 B.x+y=20 C.5x﹣2y=60 D.5x+2y=609.阅读理解:a,b,c,d是实数,我们把符号称为2×2阶行列式,并且规定: =a×d﹣b×c,例如: =3×(﹣2)﹣2×(﹣1)=﹣6+2=﹣4.二元一次方程组的解可以利用2×2阶行列式表示为:;其中D=,D x=,D y=.问题:对于用上面的方法解二元一次方程组时,下面说法错误的是()A.D==﹣7 B.D x=﹣14C.D y=27 D.方程组的解为10.若二元一次联立方程式的解为x=a,y=b,则a+b之值为何?()A.24 B.0 C.﹣4 D.﹣811.为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有()A.4种B.3种C.2种D.1种12.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个.下列方程正确的是()A. B. C.D.二.填空题1.若关于x、y的二元一次方程3x﹣ay=1有一个解是,则a= .2.六一儿童节,某幼儿园用100元钱给小朋友买了甲、乙两种不同的玩具共30个,单价分别为2元和4元,则该幼儿园购买了甲、乙两种玩具分别为、个.3.对于实数a,b,定义运算“◆”:a◆b=,例如4◆3,因为4>3.所以4◆3==5.若x,y满足方程组,则x◆y=.4.已知x,y满足方程组,则x2﹣4y2的值为.5.我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,译文为:“现有几个人共同购买一个物品,每人出8元,则多3元;每人出7元,则差4元.问这个物品的价格是多少元?”该物品的价格是元.6.我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为尺,竿子长为尺.7.若二元一次方程组的解为,则a﹣b= .8.已知是关于x,y的二元一次方程组的一组解,则a+b= .9.小强同学生日的月数减去日数为2,月数的两倍和日数相加为31,则小强同学生日的月数和日数的和为.三.解答题1.解方程组:.2.用消元法解方程组3.《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.4.某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果的进价上调为:甲种水果10元千克,乙种水果20元/千克.(1)若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克?(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?5.在端午节来临之际,某商店订购了A型和B型两种粽子,A型粽子28元/千克,B型粽子24元/千克,若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克.6.为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?7.为拓宽学生视野,引导学生主动适应社会,促进书本知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.现有甲、乙两种大客车,它们的载客量和租金如表所示.学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.(1)参加此次研学旅行活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,可知租用客车总数为8 辆;(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.参考答案:一、选择题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章 二元一次方程组
一、选择题
1.下列方程组中,是二元一次方程组的是( )
A .22621211...2631321xy x y x y x
B
C
D x y y z x y x y =-=+=⎧=⎧⎧⎧⎨⎨⎨⎨-==+-=+=⎩⎩⎩⎩
2.方程x+2y=7在自然数范围内的解( ).
A .有无数个
B .只有4个
C .只有3个
D .以上都不对
3.有一个两位正整数,它的十位上的数字与个位上的数字的和为6,•则这样的两位正整数有( ).
A .无数个
B .6个
C .5个
D .3个
4.方程组250250
x y x y +-=⎧⎨-+=⎩的解是( )
A .5103 0
301x x x x B C D y y y y ==-==⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩ 5.如果255411x y x y -=⎧⎨
-=⎩,则x :y 的值为( ). A .12 B .13
C .2
D .3 6.如果3122
x ax cy y cx by =-+=⎧⎧⎨⎨=--=⎩⎩是的解,那么a ,b 之间的关系是( ). A .4b+9a=1 B .9a+4b=0 C .3a+2b=1 D .4b-9a+1=0
7.若│3x+2y -4│与6(5x+7y-3)2
互为相反数,则x 与y 的值是( ). A .12.11x x B y y ==⎧⎧⎨⎨=-=-⎩⎩
C .不存在
D .无法求出 8.如果x :y=3:2,并且x+3y=27,则x 与y 中较小的是( ).
A .3
B .6
C .9
D .12
9.已知⎩
⎨⎧==n y m x 满足方程组2527x y x y +=⎧⎨+=⎩,则m-n 的值为( ). A .2 B .1 C .0 D .-1
10.把100分为两个数,使一个数减去20的差,等于另一个数加上30的和,则这两个
数的差是().
A、 10
B、 20
C、30
D、50
二、填空题
11.已知方程3x+5y=13,当y=2时,x=_______;当x=-2时,y=______.12.已知二元一次方程-3x+4y=-1,用含x的代数式表示y,则_____ .13.方程x m+1+y2n+m=5是二元一次方程,则m=______,n=_______.
14.若│x-2│+(y-3x+1)2=0,则x=_______,y=_______.
15.在非负整数范围内,方程5x+2y=12的解是________.
16.若甲数为x,乙数为y,则“甲数的1
2
与乙数的
2
3
的差是6”可列方程为____
___.
17.若
12
1421
x ax y b
y x by a
=+=
⎧⎧
⎨⎨
=--=-
⎩⎩
是方程组的解,则a+b=________.
18.若
2
2
x y a
x y a
-=


+=

,则x:y=________.
19.若方程组
73360
29510
x y
x y
+-=


+-=

的解也是方程mx+2y=1的解,则m=_______.
20.甲、乙两人同解方程
212
,,
3216
ax by x x
cx y y y +===
-=-=-=-
⎧⎧⎧
⎨⎨⎨
⎩⎩⎩
甲正确解得乙因抄错了c,解得,•
则a=•______,•b=________,c=_______.
三、解答题
21.用代入法解下列方程组
(1)
239
53
x y
x y
+=-


-=

453
(2)
321
x y
x y
-=


-=

22.用加减法解下列方程组
(1)43522x y x y -=⎧⎨
-=⎩ 3(1)5(2)5(1)3(5)
x y y x -=+⎧⎨-=+⎩
23.用适当的方法解下列方程组
341603(2)4(2)87(1)(2)56330
2(3)3()82x y x y x y x y x y x y +-=-+-=⎧⎧⎨⎨--=---=⎩⎩
24.硫酸1.2升和水1.8升混合成稀溶液,硫酸0.9升和水0.3•升混合成浓溶液,现在要混合成硫酸和水各半的溶液1.4升,问两种溶液各要多少?
25.有一批零件共420个,如果甲先做2天后乙加入工作,那么再做2天完成;如果乙先做2天后甲加入合作,那么再做3天完成,则甲,乙每天各做多少个?
26.一个两位数,个位上的数字与十位上的数字之和是11,如果把十位上的数字与个位上的数字对调,那么所得的两位数比原两位数大9,求原来两位数.
27.甲乙两人从相距36千米的两地相向而行,若甲先出发2小时,•则乙动身2.5小时后两人相遇;若乙先出发2小时,则甲动身3小时后相遇,求甲,乙两人的速度.
28.一船在A 、B 两码头间航行,从A 到B 顺水航行要2小时,从B 到A•逆水航行要3小时,那么一只救生圈从A 顺水漂到B 要几小时?
29.已知某铁路桥长800米,现有一列火车从桥上通过,•测得火车从开始上桥到完全过桥共用45秒,整列火车完全在桥上的时间是35秒,求火车的速度和长度.
答案
一、1.C 2.B 3.B 4.B 5.D 6.A 7.B 8.B 9.A 10.D
二、11.1
2,0 19311
12.13.014.2515.
16 542
x x
x
y
y y
==
⎧⎧
-
=⎨⎨
==
⎩⎩
16.1
2
x-
2
3
y=6 17.4 18.3 19.-3 20.2.5 1.5 -5
三、21.(1)
1
1
05
7
(2)22.(1)(2)
2
357
1
7
x
x x
x
y y
y
y

=-⎧

==
=
⎧⎧
⎪⎪
⎨⎨⎨⎨=-=⎩⎩
⎪⎪=-
=-⎩
⎪⎩
23.(1)
6
2342450
(2)(3)(4)
1
132350 2
x
x x x
y y y
y
=
⎧===
⎧⎧⎧

⎨⎨⎨⎨
=== =-⎩⎩⎩
⎪⎩
24.需稀溶液1升,浓溶液0.4升
25.甲:90个,乙:30•个
26.56
27.甲速度6千米/时,乙速度3.6千米/时.。

相关文档
最新文档