浙教版八下数学特殊平行四边形
新浙教版数学八年级下册特殊平行四边形精讲
课题特殊平行四边形精讲知识点一:矩形的性质和判定考点1:直角对边平行且相等对角线相等考点2:一个角是直角的平行四边形三个角是直角对角线相互平分且相等考点3:勾股定理(主要与折叠相关) 一定要用起来对应边相等,对应角相等经典例题分析,提高综合能力例题1:如图,折叠矩形纸片ABCD,使点B落在边AD上,折痕EF的两端分别在AB、BC上(含端点),且AB=6cm,BC=10cm.则折痕EF的最大值是cm.例题2:如图,在矩形ABCD中,AB=8,BC=10,E是AB上一点,将矩形ABCD沿CE折叠后,点B落在AD 边的F点上,则DF的长为.例题3:、如图,四边形ABCD是矩形,点E在线段CB的延长线上,连接DE交AB于点F,∠AED=2∠CED,点G是DF的中点,若BE=1,AG=4,则AB的长为 .例题4:如图,在矩形ABCD中,由8个面积均为1的小正方形组成的L型模板如图放置,则矩形ABCD的周长为 .例题5:如图所示,在矩形中,,两条对角线相交于点.以、为邻边作第1个平行四边形;对角线相交于点;再以、为邻边作第2个平行四边形,对角线相交于点;再以、为邻边作第3个平行四边形……依次类推.(1)求矩形的面积;(2)求第1个平行四边形、第2个平行四边形 和第6个平行四边形的面积.例题6:如图,已知直线与直线相交于点分别交轴于两点.矩形的顶点分别在直线上,顶点都在轴上,且点与点重合.(1)求的面积;(2)求矩形的边与的长;知识点二:菱形的性质和判定 考点1:四边相等对角相等且被对角线平分对角线互相垂直考点2:一组邻边相等的平行四边形 对角线互相垂直 平分对角 考点3:对称性勾股定理例题1:在菱形中,对角线与相交于点,.过点作交的延长线于点.(1)求的周长;(2)点为线段上的点,连接并延长交于点.求证:.ABCD 1220AB AC ==,O OB OC 1OBB C 1A 11A B 1A C 111A B C C 1O 11O B 11O C 1121O B B C ABCD 11OBB C 111A B C C 128:33l y x =+2:216l y x =-+C l l 12,、x A B 、DEFG D E 、12l l 、F G 、x G B ABC △DEFG DE EF ABCD AC BD O 56AB AC ==,D DE AC ∥BC E BDE △P BC PO AD Q BP DQ = AQ DEBP COA 1A 2B 2C 2C 1 B 1O 1 DABCOA DB EOCF x yy(G )例题2:如图,△ABC 中,AD 是边BC 上的中线,过点A 作AE//BC ,过点D 作DE//AB ,DE 与AC 、AE 分别交于点O 、点E ,连接EC . (1)求证:AD =EC ;(2)当∠BAC =Rt ∠时,求证:四边形ADCE 是菱形.例题3:如图,△ABC 中,AD 是边BC 上的中线,过点A 作AE//BC ,过点D 作DE//AB ,DE 与AC 、AE 分别交于点O 、点E ,连接EC . (1)求证:AD =EC ;(2)当∠BAC =Rt ∠时,求证:四边形ADCE 是菱形.例题4:如图,菱形ABCD 中,AB=2,∠BAD=60°,E 是AB 的中点,P 是对角线AC 上的一个动点,则PE+PB 的最小值是 .例题5:如图,菱形OABC 的顶点O 在坐标原点,顶点A 在x 轴上,∠B =120°,OA =2,将菱形OABC 绕原点顺时针旋转105°至OA ′B ′C ′的位置,则点B ′的坐标为( )A 、(2,2-)B 、(2,2-)C 、(3,3-)D 、(2,2--) 知识点3:正方形考点1: 直角 平行 四边相等 45°特殊角度对角线互相垂直辅助线考点2:勾股定理 综合应用例题1:如图,ABCD 是正方形,点G 是BC 上的任意一点,于E ,,交AG 于F .求证:. DE AG ⊥BF DE ∥AF BF EF =+ DC BA EF G例题2:正方形ABCD ,正方形BEFG 和正方形RKPF 的位置如图所示,点G 在线段DK 上,且G 为BC 的三等分点,R 为EF 中点,正方形BEFG 的边长为4,则△DEK 的面积为( ) A .10 B .12C .14D .16例题3:如图,在正方形ABCD 内有一折线段,其中AE ⊥EF ,EF ⊥FC ,并且AE =6,EF =8,FC =10,则正方形的边长为 .例题4:如图(22),直线的解析式为,它与轴、轴分别相交于两点.平行于直线的直线从原点出发,沿轴的正方形以每秒1个单位长度的速度运动,它与轴、轴分别相交于两点,设运动时间为秒(). (1)求两点的坐标;(2)用含的代数式表示的面积;(3)以为对角线作矩形,记和重合部分的面积为, ①当时,试探究与之间的函数关系式;②在直线的运动过程中,当为何值时,为面积的? l 4y x =-+x y A B 、l m O x x y M N 、t 04t <≤A B 、t MON △1S MN OMPN MPN △OAB △2S 2t <≤42S t m t 2S OAB △516OMAP N y l mxBOMAP N y l mxB E P F 图22。
浙教版初中数学八年级下册第五单元《特殊平行四边形》(标准难度)(含答案解析)(含答案解析)
浙教版初中数学八年级下册第五单元《特殊平行四边形》(标准难度)(含答案解析)考试范围:第五单元; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1. 如图,E,F,G,H分别是四边形ABCD四条边的中点,要使四边形EFGH为矩形,四边形ABCD应具备的条件是( )A. AD//BCB. AC=BDC. AC⊥BDD. AD=AB2. 如图,在矩形ABCD中,AB=6,AD=8,P是AD上一动点,PE⊥AC于E,PF⊥BD于F,则PE+PF的值为( )A. 4B. 4.4C. 4.8D. 53. 平行四边形的四个内角平分线相交所构成的四边形一定是( )A. 一般平行四边形B. 一般四边形C. 对角线垂直的四边形D. 矩形4. 如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则OM+OB的长为( )A. 7B. 8C. 9D. 105. 如图:已知菱形ABCD的顶点B(−2,0),且∠ABC=60∘,点A在y轴的正半轴上.按以下步骤作图: ①以点B为圆心,适当长度为半径作弧,分别交边AB、BC于点M、N; ②分别以点M(N为圆心,大于12MN的长为半径作弧,两弧在∠ABC内交于点P; ③作射线BP,交菱形的对角线AC于点E,则点E的坐标为( )A. (1,√3)B. (1,2)C. (12,1) D. (12,√3)6. 如图,已知点E、F、G、H分别是菱形ABCD各边的中点,则四边形EFGH是( )A. 正方形B. 矩形C. 菱形D. 平行四边形7. 如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是( )A. 12B. 1C. √2D. 28. 如图,菱形ABCD的两条对角线AC,BD相交于点O,E是AB的中点,若AC=6,菱形ABCD 的面积为24,则OE长为( )A. 2.5B. 3.5C. 3D. 49. 如图,正方形ABCD的面积为12,△ABE为正三角形,点E在正方形ABCD内,在对角线AC 上取一点P,使PD+PE最小,则这个最小值为( )A. √3B. 2√3C. 2√6D. 3√210. 如图,在四边形ABCD中,AB=AD,BC=DC,AC,BD交于点O.添加一个条件使这个四边形成为一种特殊的平行四边形,则以下说法错误的是( )A. 添加“AB//CD”,则四边形ABCD是菱形B. 添加“∠BAD=90°”,则四边形ABCD是矩形C. 添加“OA=OC”,则四边形ABCD是菱形D. 添加“∠ABC=∠BCD=90°”,则四边形ABCD是正方形11. 如图,点E、F、G、H分别是四边形ABCD边AB、BC、CD、DA的中点.则下列说法:①若AC=BD,则四边形EFGH为矩形;②若AC⊥BD,则四边形EFGH为菱形;③若四边形EFGH是平行四边形,则AC与BD互相平分;④若四边形EFGH是正方形,则AC与BD互相垂直且相等.其中正确的个数是( )A. 1B. 2C. 3D. 412. 如图,正方形ABCD的边长为4,点E是AB的中点,点P从点E出发,沿E→A→D→C移动至终点C.设P点经过的路径长为x,△CPE的面积为y,则下列图象能大致反映y与x函数关系的是( )A. B.C. D.第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 矩形的三个顶点坐标分别是(−2,−3),(1,−3),(−2,−4),那么第四个顶点坐标是____________.14. 如图,菱形ABCD和菱形BEFG的边长分别是5和2,∠A=60∘,连结DF,则DF的长为.15. 如图,在菱形ABCD中,对角线AC、BD相交于点O,点E在线段BO上,连接AE,若CD= 2BE,∠DAE=∠DEA,EO=1,则线段AE的长为______.16. 如图,定义:若菱形AECF与正方形ABCD的两个顶点A,C重合,另外两个顶点E,F在正方形ABCD的内部,则称菱形AECF为正方形ABCD的内含菱形.若正方形的周长为16,其内含菱形的边长是整数,则内含菱形的周长为________;若正方形的面积为18,其内含菱形的面积为6,则内含菱形的边长为________.三、解答题(本大题共9小题,共72.0分。
浙教版数学八年级下册第5章 特殊平行四边形.docx
第5章特殊平行四边形5.1 矩形(一)1.在矩形ABCD中,其中三个顶点的坐标分别是(0,0),(5,0),(5,3),则第四个顶点的坐标是(A)A. (0,3)B. (3,0)C. (0,5)D. (5,0)2.如图,在矩形纸片ABCD中,E是AD的中点,且AE=1,BE的垂直平分线MN恰好过点C,则AB的长为(C)A.1 B. 2C. 3 D.2【解】提示:连结EC,则EC=BC=AD=2AE=2.(第2题)(第3题)3.如图,四边形ABCD和四边形AEFC是两个矩形,点B在EF边上.若矩形ABCD和矩形AEFC的面积分别是S1,S2,则S1,S2的大小关系是(B)A.S1>S2 B.S1=S2C.S1<S2 D.3S1=2S2(第4题)4.如图,四边形ABCD为矩形纸片,把纸片折叠,使点B恰好落在CD边上的中点F处,折痕为AE.若CD=6,则AE等于(A)A.4 3 B.3 3C.4 2 D.8(第5题)5.如图,矩形ABCD 的周长为20 cm ,AC 交BD 于点O ,过点O 作AC 的垂线EF ,分别交AD ,BC 于点E ,F ,连结CE ,则△CDE 的周长为(D )A .5 cmB .8 cmC .9 cmD .10 cm6.如图,E 是矩形ABCD 的边AD 的延长线上一点,且AD =DE ,连结BE 交CD 于点O ,连结AO ,则下列结论不正确的是(A )(第6题)A. △AOB ≌△BOCB. △BOC ≌△EODC. △AOD ≌△EODD. △AOD ≌△BOC(第7题)7.如图,已知矩形纸片ABCD 的长为8,宽为6,把纸片对折,使点A 与点C 重合,求折痕EF 的长. 【解】 连结AC ,AE ,CF ,设AC 与EF 交于点O ,由题意可得EF 是AC 的中垂线, ∴AE =EC .设AE =EC =x ,则BE =8-x . ∵四边形ABCD 是矩形, ∴∠B =90°,AO =OC =12AC .在Rt △ABE 中,AB 2+BE 2=AE 2, 即62+(8-x )2=x 2, 解得x =254.∵∠B =90°,AB =6,BC =8, ∴AC =AB 2+BC 2=62+82=10. ∴AO =12AC =5.在Rt △AOE 中,AO 2+OE 2=AE 2, 即OE 2=AE 2-AO 2, ∴OE =⎝ ⎛⎭⎪⎫2542-52=154. 易证△AOF ≌△COE (ASA ),∴EF =2OE =152.(第8题)8.如图,在矩形ABCD 中,对角线AC ,BD 交于点O ,点E ,F 分别在边AD ,BC 上,且DE =CF ,连结OE ,OF .求证:OE =OF .【解】 ∵四边形ABCD 是矩形, ∴∠ADC =∠BCD =90°,AC =BD ,OD =12BD ,OC =12AC ,∴OD =OC , ∴∠ODC =∠OCD ,∴∠ADC -∠ODC =∠BCD -∠OCD , 即∠EDO =∠FCO . 在△ODE 与△OCF 中,∵⎩⎪⎨⎪⎧DE =CF ,∠EDO =∠FCO ,OD =OC ,∴△ODE ≌△OCF (SAS ). ∴OE =OF .(第9题)9.如图,在矩形ABCD 中,F 是BC 上一点,连结AF ,AF =BC ,DE ⊥AF ,垂足为E ,连结DF .求证: (1)△ABF ≌△DEA . (2)DF 是∠EDC 的平分线.【解】 (1)∵四边形ABCD 是矩形, ∴∠B =90°,AD =BC ,AD ∥BC , ∴∠DAE =∠AFB . ∵DE ⊥AF ,∴∠DEA =∠B =90°.∴AF =AD ,∴△ABF ≌△DEA (AAS ). (2)由(1)知△ABF ≌△DEA , ∴AB =DE .∵四边形ABCD 是矩形, ∴∠C =90°,DC =AB . ∴DC =DE . ∵DF =DF ,∴Rt △DEF ≌Rt △DCF (HL ), ∴∠EDF =∠CDF , 即DF 是∠EDC 的平分线.10.如图,矩形OABC 的顶点A ,C 在坐标轴上,顶点B 的坐标是(4,2),若直线y =mx -1恰好将矩形分成面积相等的两部分,则m 的值为(A )A. 1B. 0.5C. 0.75D. 2【解】 ∵直线y =mx -1恰好将矩形分成面积相等的两部分, ∴直线y =mx -1经过矩形的对角线交点(2,1). 把点(2,1)代入y =mx -1,得m =1.(第10题) (第11题)11.如图,在矩形ABCD 中,AB =3,AD =4,P 是AD 上一点,PE ⊥AC 于点E ,PF ⊥BD 于点F ,则PE +PF 等于(B )A.75B.125C.135 D.145【解】 提示:连结PO ,过点A 作AG ⊥BD 于点G ,求得AG =125,利用面积公式(等积法)可求得,PE+PF =AG =125.(第12题)12.如图,在矩形ABCD 中,AB BC =35,以点B 为圆心,BC 长为半径画弧,交边AD 于点E .若AE ·ED =43,则矩形ABCD 的面积为__5__.【解】 连结BE ,则BE =BC ,设AB =3x ,则由AB BE =35,得BE =BC =5x .∵四边形ABCD 是矩形, ∴AD =BC =5x ,∠A =90°.在Rt △ABE 中,由勾股定理,得AE =4x , 则ED =5x -4x =x . ∵AE ·ED =43,∴4x ·x =43,解得x =33(负值舍去), 则AB =3x =3,BC =5x =533,∴矩形ABCD 的面积=AB ·BC =3×533=5. 13.一次数学课上,老师请同学们在一张长为18 cm ,宽为16 cm 的矩形纸板上,剪下一个腰长为10 cm 的等腰三角形,且要求等腰三角形的一个顶点与矩形的一个顶点重合,其他两个顶点在矩形的边上,求剪下的等腰三角形的面积.【解】 分三种情况:①如解图①,在△AEF 中,AE =AF =10 cm , ∴S △AEF =12AE ·AF =12×10×10=50(cm 2).(第13题解)②如解图②,在△AGH 中,AG =GH =10 cm ,∴BG =AB -AG =16-10=6(cm). 根据勾股定理,得BH =8 cm.∴S △AGH =12AG ·BH =12×10×8=40(cm 2).③如解图③,在△AMN 中,AM =MN =10 cm , ∴MD =AD -AM =18-10=8(cm). 根据勾股定理,得DN =6 cm.∴S △AMN =12AM ·DN =12×10×6=30(cm 2).综上所述,剪下的等腰三角形的面积为50 cm 2或40 cm 2或30 cm 2.(第14题)14.如图,将一个长和宽分别为8和4的矩形纸片ABCD 折叠,使点C 与点A 重合,求折痕EF 的长. 【解】 由折叠知∠AEF =∠FEC ,AE =CE . 设BE =x ,则AE =CE =8-x . 在Rt △ABE 中,BE 2+AB 2=AE 2, 即x 2+42=(8-x )2, 解得x =3. ∴BE =3,AE =5. 过点F 作FH ⊥BC 于点H .∵四边形ABCD 为矩形,∴AD ∥BC , ∴∠AFE =∠FEC , ∴∠AEF =∠AFE ,∴AF =AE =5,∴BH =AF =5, ∴EH =5-3=2.在Rt △EFH 中,EF =22+42=20=2 5.15.已知矩形的对角线长为10,而它的两邻边a ,b 的长满足m 2+a 2m -12a =0,m 2+b 2m -12b =0(m ≠0),求矩形的周长.【解】 根据m 2+a 2m -12a =0,m 2+b 2m -12b =0(m ≠0)可得a ,b 恰为方程mx 2-12x +m 2=0的两个根, ∴a +b =12m,ab =m .∵a 2+b 2=(10)2,即(a +b )2-2ab =10,∴⎝ ⎛⎭⎪⎫12m 2-2m =10, ∴m 3+5m 2-72=0, ∴(m -3)(m 2+8m +24)=0, ∴m -3=0或m 2+8m +24=0. ∵m 2+8m +24=(m +4)2+8>0, ∴m 2+8m +24≠0. ∴m =3.∴矩形的周长为2(a +b )=24m=8.16.阅读以下材料,然后解决问题:如果一个三角形和一个矩形满足条件:三角形的一边与矩形的一边重合,且三角形这条边所对的顶点在矩形这条边的对边上,那么称这样的矩形为三角形的友好矩形.如图①所示,矩形ABEF 即为△ABC 的友好矩形.显然,当△ABC 是钝角三角形时,其友好矩形只有一个.(1)仿照以上叙述,说明什么是一个三角形的友好平行四边形.(2)如图②,若△ABC 为直角三角形,且∠C =90°,在图②中画出△ABC 的所有友好矩形,并比较这些矩形面积的大小.(3)若△ABC 是锐角三角形,且BC >AC >AB ,在图③中画出△BAC 的所有友好矩形,指出其中周长最小的矩形并加以证明.(第16题)【解】 (1)如果一个三角形和一个平行四边形满足条件:三角形的一边与平行四边形的一边重合,且三角形这条边所对的顶点在平行四边形这条边的对边上,那么称这样的平行四边形为三角形的友好平行四边形.(第16题解①)(2)此时共有2个友好矩形,如解图①中的矩形BCAD ,矩形ABEF .易知矩形BCAD ,矩形ABEF 的面积都等于△ABC 的面积的2倍,∴△ABC 的友好矩形的面积相等. (3)此时共有3个友好矩形,如解图②中的矩形BCDE ,矩形CAFG 及矩形ABHK ,其中的矩形ABHK 的周长最小.证明如下:(第16题解②)易知这三个矩形的面积相等,令其为S ,设矩形BCDE ,矩形CAFG 及矩形ABHK 的周长分别为L 1,L 2,L 3,△ABC 的边长BC =a ,CA =b ,AB =c ,则L 1=2S a +2a ,L 2=2S b +2b ,L 3=2Sc+2c ,∴L 1-L 2=⎝ ⎛⎭⎪⎫2S a+2a -⎝ ⎛⎭⎪⎫2S b+2b=2(a -b )·ab -Sab. ∵ab >S ,a >b , ∴L 1-L 2>0,即L 1>L 2. 同理,L 2>L 3,∴L 3最小,即矩形ABHK 的周长最小.初中数学试卷。
浙教版八年级下册 4.2 平行四边形性质 课件(共20张PPT)
∴ AB∥CD,AD∥BC (平行四边形的定义)
∴ ∠A+∠B=180° ∠C+∠B=180°
∠A+∠D=180° ∠C+∠D=180°
(两直线平行,同旁内角互补)
推论: 平行四边形邻角互补.
做一做 1.已知在□ABCD中,∠A=55°.求其余内角的度
数.
2.已知平行四边形相邻两条边的长度之比为3:2, 周长为20cm,求平行四边形各条边长.
新课讲解
验证 平行四边形的对角相等.
平行四边形的对边相等.
D
已知:如图,四边形ABCD是平行四边形,
C
求证:∠A=∠C,∠ABC=∠CDA.
AB=CD, AD=BC.
A
B
新课讲解
D
C
∵ 四边形ABCD是平行四边形
∴ ∠A=∠C,∠B=∠D.
A
B
(平行四边形的对角相等)
AB=CD,AD=BC.
(平行四边形的对边相等)
∴AD-AE=CB-CF 即 DE=BF
∵∠BAD=∠DCB,∠EAF=∠FCE (平行四边形对角相等)
∴∠BAD-∠EAF=∠DCB-∠FCE 即∠BAF=∠DCE
做一做
已知:如图,在□ABCD中,E是CD上一点,BE=BC.
求证:AD=BE,∠A=∠ABE.
DE
C
A
B
新课讲解 与三角形的稳定性相反,四边形具有不稳定性.
BE⊥AC,DF⊥AC,垂足分别为点E,F.
求证:BE=DF.
A
D
E
F
B
C
拓展提高
1.学校买了四棵树,准备栽在花园里,已经 栽了三棵(如图),现在学校希望这四棵树 能组成一个平行四边形,你觉得第四棵树应 该栽在哪里?
浙教版八年级下册数学第五章 特殊平行四边形含答案(完整版)
浙教版八年级下册数学第五章特殊平行四边形含答案一、单选题(共15题,共计45分)1、如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,4),顶点C在x 轴的负半轴上,函数y=(x<0)的图象经过顶点B,则k的值为()A.﹣12B.-27C.-32D.-362、在如图所示的网格中,已知线段AB,现要在该网格内再确定格点C和格点D,某数学探究小组在探究时发现以下结论:以下结论错误的是()A.将线段平移得到线段,使四边形为正方形的有2种; B.将线段平移得到线段,使四边形为菱形的(正方形除外)有3种; C.将线段平移得到线段,使四边形为矩形的(正方形除外)有两种; D.不存在以为对角线的四边形是菱形.3、已知下列命题:①若a>b,则c﹣a<c﹣b;②若a>0,则;③对角线互相平分且相等的四边形是菱形;④如果两条弧相等,那么它们所对的圆心角相等.其中原命题与逆命题均为真命题的个数是( )A.4个B.3个C.2个D.1个4、如图,一次函数的图象与两坐标轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长是()A.5B.7.5C.10D.255、如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为()A.17B.18C.19D.206、在▱ABCD中,AB=5,BC=7,E,F分别为边BC,AD上的点,若四边形AECF为正方形,则AE的长为()A.5B.4或5C.3或4D.5或77、下列命题中,正确的是()A.菱形的对角线相等B.平行四边形既是轴对称图形,又是中心对称图形C.正方形的对角线相等且互相垂直D.矩形的对角线不能相等8、下列命题中,正确的是()A.对角线垂直的四边形是菱形B.矩形的对角线垂直且相等C.对角线相等的矩形是正方形D.位似图形一定是相似图形9、如图所示,E.F分别是正方形ABCD的边CD,AD上的点,且CE=DF,AE,BF相交于点O,下列结论①AE=BF;②AE⊥B F;③AO=OE;④S△AOB =S四边形DEOF中,错误的有()A.1个B.2个C.3个D.4个10、如图1,正方形纸片ABCD边长为2,折叠∠B和∠D,使两个直角的顶点重合于对角线BD上的一点P,EF、GH分别是折痕(图2),设AE=x(0<x<2),给出下列判断:①x= 时,EF+AB>AC;②六边形AEFCHG周长的值为定值;③六边形AEFCHG面积为定值,其中正确的是()A.①②B.①③C.②D.②③11、如图,在中,,,,为边上一动点,于点,于点为的中点,则的最小值为()A. B. C. D.12、正方形具有而矩形不一定具有的性质是()A.对角线相等B.对角线互相平分C.对边平行且相等D.对角线互相垂直平分13、如图,在矩形ABCD 中,AB=4,AD=a,点P在AD上,且AP=2,点E是边AB上的动点,以PE为边作直角∠EPF,射线PF交BC于点F,连接EF,给出下列结论:①tan∠PFE= ;②a的最小值为10.则下列说法正确的是( )A.①②都对B.①②都错C.①对②错D.①错②对14、如图,在Rt△ABC中,∠ACB=90°,CD是∠ACB的平分线,交AB于点D,过点D分别作AC、BC的平行线DE、DF,则下列结论不正确是()A. B. C. D.四边形DECF是正方形15、如图,ABCD、AEFC都是矩形,而且点B在EF上,这两个矩形的面积分别是S1, S2,则S1, S2的关系是()A.S1>S2B.S1<S2C.S1=S2D.3S1=2S2二、填空题(共10题,共计30分)16、如图,已知∠MON=120°,点A,B分别在OM,ON上,且OA=OB= ,将射线OM绕点O逆时针旋转得到OM′,旋转角为α(且),作点A关于直线OM′的对称点C,画直线BC交于OM′与点D,连接AC,AD.有下列结论:有下列结论:①∠BDO + ∠ACD = 90°;②∠ACB 的大小不会随着的变化而变化;③当时,四边形OADC为正方形;④ 面积的最大值为.其中正确的是________.(把你认为正确结论的序号都填上)17、在菱形ABCD中,DE⊥AB,cosA= ,BE=2,则tan∠DBE的值是________.18、如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边的正方形EFGH的周长为________.19、已知菱形的两条对角线长分别是6和8,则这个菱形的面积为________.20、在平面直角坐标系中,四边形是菱形,,反比例函数的图象经过点C,若将菱形向下平移2个单位,点B恰好落在反比例函数的图象上,则反比例函数的表达式为________.21、如图,正方形AFCE中,D是边CE上一点,B是CF延长线上一点,且AB=AD,若四边形ABCD的面积是24cm2.则AC长是________cm.22、已知正方形ABCD的对角线AC= ,则正方形ABCD的周长为________.23、如图,正方形ABCD的面积为3cm2, E为BC边上一点,∠BAE=30°,F为AE的中点,过点F作直线分别与AB,DC相交于点M,N.若MN=AE,则AM的长等于________ cm.24、如图,两个长宽分别为7cm、3cm的矩形如图叠放在一起,则图中阴影部分的面积是________.25、如图,矩形中,,,点是边上一点,连接,把沿折叠,使点落在点处.当为直角三角形时,则的长为________.三、解答题(共5题,共计25分)26、四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.若BC=8,DE=3,求△AEF的面积.27、如图,在宽为20m,长为30m的矩形地面上修建两条同样宽的道路,余下部分作为耕地.根据图中数据,请计算耕地的面积.28、如图,四边形ABCD中,AB//CD,AC平分∠BAD,CE//AD交AB于E.求证:四边形AECD是菱形.29、如图,△ABC中,AB=AC,∠BAC=40°,将△ABC绕点A按逆时针方向旋转100°.得到△ADE,连接BD,CE交于点F.(1)求证:△ABD≌△ACE;(2)求证:四边形ABFE是菱形.30、如图,已知菱形ABCD,延长AD到点F,使,延长CD到点E,使DE=CD,顺次连接点A,C,F,E,A.求证:四边形ACFE是矩形.参考答案一、单选题(共15题,共计45分)2、C3、D4、C5、B6、C7、C8、D9、A10、C11、D12、D13、C14、A15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、25、三、解答题(共5题,共计25分)26、27、28、。
(word版)浙教版数学八年级下《第章特殊平行四边形》精品教案
第6章特殊平行四边形与梯形教案一、矩形1、有一角是直角的平行四边形是矩形2、矩形的四个角都是直角;3、矩形的对角线相等。
4、矩形判定定理1:有三个角是直角的四边形是矩形5、矩形判定定理2:对角线相等的平行四边形是矩形6、直角三角形斜边上的中线等于斜边的一半二、菱形1、把一组邻边相等的平行四边形叫做菱形.2、定理1:菱形的四条边都相等3、菱形的对角线互相垂直,并且每条对角线平分一组对角.4、菱形的面积等于菱形的对角线相乘除以25、菱形判定定理1:四边都相等的四边形是菱形6、菱形判定定理2:对角线互相垂直的平行四边形是菱形。
三、正方形1、有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形2、性质:(1)四个角都是直角,四条边相等(2)对角线相等,并且互相垂直平分,每条对角线平分一组对角3、判定:(1)一组邻边相等的矩形是正方形(2)有一个角是直角的菱形是正方形四、梯形1、一组对边平行而另一组对边不平行的四边形叫做梯形。
2、等腰梯形:两腰相等的梯形叫做等腰梯形。
3、直角梯形:一腰和底垂直的梯形叫做直角梯形。
4、①等腰梯形是轴对称图形,对称轴是连接两底中点的直线。
②等腰梯形同一底上的两个内角相等,两条对角线相等。
5、在同一底上的两个角相等的梯形是等腰梯形。
6、作出下列梯形常用的辅助线五、综合1、下列判定正确的是()A、对角线互相垂直的四边形是菱形B、两角相等的四边形是等腰梯形C、四边相等且有一个角是直角的四边形是正方形D、对角线相等且互相垂直的四边形是正方形2、平行四边形的各个内角平分线若能围成一个四边形,则这个四边形一定是()A、正方形B、矩形C、菱形D、平行四边形顺次连接矩形各边中点所得的四边形是_______________;顺次连接对角线互相垂直的四边形各边中点所得的四边形是____________________.下列图形不符合“既是中心对称图形,又是轴对称图形”的是()A、线段B、半圆C、矩形D、菱形3、下列说法中错误..的是()A、四个角相等的四边形是矩形B、四条边相等的四边形是正方形C、对角线相等的菱形是正方形D、对角线互相垂直的矩形是正方形下列性质,矩形没有而菱形有的是()A、对角线互相垂直B、对角线互相平分C、对角线相等D、以上都不对4、下列判断错误的是()A、对角线相等的平行四边形是矩形B、对角线互相垂直平分且相等的四边形是菱形C、对角线垂直且相等的四边形是正方形D、对角线平分一个内角的平行四边形是菱形1、在线段、角、等边三角形、平行四边形、矩形、菱形、正方形中,是轴对称图形的是。
A4版打印浙教版八年级下册数学第五章 特殊平行四边形含答案
浙教版八年级下册数学第五章特殊平行四边形含答案一、单选题(共15题,共计45分)1、如图,矩形的顶点在反比例函数的图象上,且点坐标为,点坐标为,则的值为()A.3B.7C.12D.212、如图,△ABC中,AB=6,AC=4,以BC为对角线作正方形BDCF,连接AD,则AD长不可能是()A.2B.4C.6D.83、如图,正方形ABCD的边长为5,点A的坐标为(﹣4,0),点B在y轴上,若反比例函数y=(k≠0)的图象过点C,则该反比例函数的表达式为()A.y=B.y=C.y=D.y=4、如图,在正方形ABCD中,取AD的中点E,连接EB,延长DA至F,使EF=EB,以线段AF为边作正方形AFGH,交AB于点H,则的值是( )A. B. C. D.5、菱形、矩形、正方形都具有的性质是()A.对角线相等B.对角线互相垂直C.对角线互相平分D.对角线平分一组对角6、下列各命题正确的是()A.各角都相等的多边形是正多边形.B.有一组对边平行的四边形是梯形. C.对角线互相垂直的四边形是菱形. D.有一边上的中线等于这边一半的三角形是直角三角形.7、如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y= (k≠0,x>0)的图象同时经过顶点C,D.若点C的横坐标为5,BE=3DE,则k的值为()A. B. C.3 D.58、矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.对角线互相平分且相等9、如图,在中,作以为内角,四个顶点都在边上的菱形时,如下的作图步骤是打乱的.①分别以点,为圆心,大于的长为半径在的两侧作弧,两弧相交于点,;②作直线分别交,于点,,连接,;③分别以点,为圆心,大于的长为半径作弧,两弧相交于内一点,连接并延长交边于点;④以点为圆心,小于长为半径作弧,分别交,于点,.则正确的作图步骤是()A.②④①③B.④③②①C.②④③①D.④③①②10、如图,延长矩形ABCD的边BC至点E,使CE=BD,连结AE,如果∠ADB=30°,则∠E的度数是()A.45°B.30°C.20°D.15°11、如图所示,∠DAB=∠DCB=90°.CB=CD,且AD=3,AB=4,则AC的长为()A. B.5 C. D.712、在周长为的正方形中,点是边的中点,点为对角线上的一个动点,则的最小值为()A.2B.C.D.13、正方形具有而菱形不一定具有的性质是()A.对角线相等B.对角线互相垂直C.对角线互相平分D.对角线平分一组对角14、如图,面积为S的菱形ABCD中,点O为对角线的交点,点E是线段BC的中点,过点E作EFLBD于F,EG⊥AC于G ,则四边形EFOG的面积为().A. SB. SC. SD. S15、如图,把一张长方形纸片沿对角线折叠,点的对应点为,与相交于点,则下列结论不一定成立的是()A. 是等腰三角形B.C. 平分D.折叠后的图形是轴对称图形二、填空题(共10题,共计30分)16、如图,在矩形ABCD中,AB=4,AD=5,连接AC,O是AC的中点,M是AD 上一点,且MD=1,P是BC上一动点,则PM﹣PO的最大值为________.17、如图,△ABC中,∠B=90°,AB=4, BC=3,点D是AC上的任意一点,过点D作DE⊥AB于点E,DF⊥BC于点F,连接EF,则EF的最小值是________。
浙教版八年级下册第五章特殊平行四边形 第1讲(矩形与菱形)培优讲义(含解析)
特殊平行四边形第1讲(矩形与菱形)命题点一:利用性质解决相关问题例1如图,矩形OBCD的顶点C的坐标为(2,3),则BD=13.例2如图,在菱形ABCD中,AB=8,点E,F分别在AB,AD上,且AE=AF,过点E作EG∥AD 交CD于点G,过点F作FH∥AB交BC于点H,EG与FH交于点O.当四边形AEOF与四边形CGOH 的周长之差为12时,AE的值为( C )A.6.5 B.6 C.5.5 D.5命题点二:根据相应的判定方法解题例3下列条件中,不能判定四边形ABCD为矩形的是( C )A.AB∥CD,AB=CD,AC=BD B.∠A=∠B=∠D=90°C.AB=BC,AD=CD,且∠C=90° D.AB=CD,AD=BC,∠A=90°例4四边形ABCD的对角线AC,BD互相垂直,则下列条件能判定四边形ABCD为菱形的是( B ) A.BA=BC B.AC,BD互相平分 C.AC=BD D.AB∥CD例5如图,在菱形ABCD中,AB=2,∠DAB=60°,E是AD的中点,M是边AB上一动点(不与点A重合),延长ME交射线CD于点N,连结MD,AN.(1)求证:四边形AMDN是平行四边形.(2)填空:①当AM 的值为 1 时,四边形AMDN 是矩形; ②当AM 的值为 2 时,四边形AMDN 是菱形. 解:(1)∵四边形ABCD 是菱形,∴ND ∥AM .∴∠NDE =∠MAE ,∠DNE =∠AME . ∵E 是AD 的中点,∴DE =AE .在△NDE 和△MAE 中,∵⎩⎨⎧∠NDE =∠MAE ,∠DNE =∠AME ,DE =AE ,∴△NDE ≌△MAE (AAS ).∴ND =M A . ∴四边形AMDN 是平行四边形.命题点三:利用图形的轴对称性解题例6如图,四边形ABCD 是菱形,△AEF 是正三角形,点E ,F 分别在BC ,CD 边上,且AB =AE ,则∠B 的大小为( B )A .60°B .80°C .100°D .120°例7如图,四边形ABCD 与四边形AECF 都是菱形,点E ,F 在BD 上,已知∠BAD =120°,∠EAF =30°,则ABAE =6+22. 命题点四:利用图形的中心对称性解题例8如图,在菱形ABCD 中,∠A =110°,E ,F 分别是AB 和BC 的中点,EP ⊥CD 于点P ,则∠FPC 的大小为( D )A.35° B.45° C.50° D.55°例9如图,在▱ABCD中,对角线AC,BD相交于点O,若E,F是AC上两动点,分别从A,C两点以相同的速度向C,A运动,其速度为1 cm/s,运动时间为t(s).当AC=16 cm,BD=12 cm,且以D,E,B,F为顶点的四边形是矩形时,t= 2或14 .命题点五:用旋转的方法解决问题例10如图,在平面直角坐标系中,矩形OABC的顶点A(-6,0),C(0,23),将矩形OABC绕点O顺时针旋转,使点A恰好落在OB上的点A1处,则点B的对应点B1的坐标为(-23,6) .例11如图,在边长为2的菱形ABCD中,BD=2,E,F分别是AD,CD上的动点(包含端点),且AE+CF=2,则线段EF的长的取值范围是3≤EF≤2 .命题点六:巧用公式解决面积有关的问题例12如图,四边形ABCD的四边相等,且面积为120 cm2,对角线AC=24 cm,则四边形ABCD 的周长为( A )A.52 cm B.40 cm C.39 cm D.26 cm例13如图,在矩形ABCD中,M为边BC上一点,连结AM,过点D作DE⊥AM,垂足为E,若DE=DC=1,AE=2EM,则BM的长为255.命题点七:在矩形、菱形中的拼接问题例14如图,四张大小不一样的正方形纸片分别放置于矩形的四个角落,其中,①和②纸片既不重叠也无空隙,在矩形的周长已知的情况下,知道下列哪个正方形的边长,就可以求得涂色部分的周长( B)A.① B.② C.③ D.④例15如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无空隙,其中两张等腰三角形纸片的面积都为S1,且AE=AH,CF=CG,另外两张三角形纸片的面积都为S2,中间一张菱形纸片的面积为S3,则这个平行四边形的面积一定可以表示为( A )A.4S1 B.4S2 C.4S2+S3 D.3S1+4S3课后练习1.如图,矩形ABCD的周长是16,DE=2,△EFC是等腰直角三角形,∠FEC=90°,则AE的长是( A )A .3B .4C .5D .62.如图,在矩形ABCD 中,AD =2AB ,点M ,N 分别在边AD ,BC 上,连结BM ,DN .若四边形MBND 是菱形,则AMMD等于( C )A .38B .23C .35D .453.如图,在菱形ABCD 中,边BC 的长为5,高DE 的长为3(垂足E 落在BC 边上),则AC 的长为( A )A .310B .4 5C .8D .104.如图,在菱形ABCD 中,AB =3,DF =1,∠DAB =60°,∠EFG =15°,FG ⊥BC ,则AE 等于( D )A .1+ 2B . 6C .23-1D .1+ 35.如图,大矩形分割成五个小矩形,④号、⑤号均为正方形,其中⑤号正方形边长为1.若②号矩形的长与宽的差为2,则知道哪个小矩形的周长,就一定能算出这个大矩形的面积( A )A.①或③ B.② C.④ D.以上选项都可以6.如图,在矩形中ABCD中,AD=2AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连结BH并延长交CD于点F,连结DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH =HF;④BC-CF=2HE;⑤AB=HF.其中正确的有( C )A.2个 B.3个 C.4个 D.5个7.如图,在长方形ABCD中,M是AD边的中点,N是DC边的中点,AN与MC交于点P.若∠MCB =∠NBC+33°,则∠MPA的度数为 33°.8.如图,四边形ABCD是矩形,AB=6,BC=8,P为BC上一点,PF⊥AC,PE⊥BD,则PF+PE 的值为 4.8 .9.如图,在Rt△ABC中,∠B=90°,BC=53,∠C=30°,点D从点C出发沿CA方向以每秒2个单位的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t秒 (t>0),过点D作DF⊥BC于点F,连结EF,当四边形AEFD为菱形时,t的值为103.10.如图,点D,F把线段BH分成三条线段BD,DF,FH,分别以这三条线段为一条对角线作菱形ABCD,菱形DEFG,菱形FMHN,连结CE,EM,MG,GC组成四边形CEMG.若菱形ABCD的边长为7,菱形DEFG的边长为13,菱形FMHN的边长为6,BH=40,DF=24,则四边形CEMG的面积为 160 .11.如图,在矩形ABCD中,AB=2,BC=4,点E,F分别在BC,CD上,若AE=5,∠EAF=45°,则AF的长为4103.12.将矩形ABCD绕点A按顺时针旋转α(0°<α<360°),得到矩形AEFG.(1)如图,当点E在BD上时,求证:FD=C D.(2)当α为何值时,GC=GB?画出图形,并说明理由.13.(2018·江西)在菱形ABCD中,∠ABC=60°,P是射线BD上一动点,以AP为边向右侧作等边三角形APE.点E的位置随着点P位置的变化而变化.(1)如图①,当点E在菱形ABCD内部或边上时,连结CE,BP与CE的数量关系是BP=CE,CE与AD的位置关系是CE⊥AD.(2)当点E在菱形ABCD外部时,题(1)中的结论是否成立?若成立,请予以证明;若不成立,请说明理由 (选择图②,图③中的一种情况予以证明或说理).(3)如图④,当点P在线段BD的延长线上时,连结BE,若AB=23,BE=219.求四边形ADPE的面积.解:(2)仍然成立.选图②,证明如下:连结AC交BD于点O.设CE交AD于点H.在菱形ABCD中,∠ABC=60°,∵BA=BC,∴△ABC为等边三角形.∴BA=C A.∵△APE为等边三角形,∴AP=AE,∠PAE=∠BAC=60°.∴∠BAP=∠CAE.∴△BAP≌△CAE(SAS).∴BP=CE,∠ACE=∠ABP=30°.∵AC和BD为菱形的对角线,∴∠CAD=60°.∴∠AHC=90°,即CE⊥A D.选图③,证明如下:连结AC交BD于点O.设CE交AD于点H.同理可得△BAP≌△CAE(SAS),BP=CE,CE⊥A D.(3)连结AC交BD于点O,连结CE交AD于点H.由题(2)可知,BP=CE,CE⊥A D.在菱形ABCD中,AD∥BC,∴EC⊥B C.∵BC=AB=23,BE=219,∴在Rt△BCE中,CE=2192-232=8. ∴BP=CE=8.∵AC与BD是菱形的对角线,∴∠ABD=12∠ABC=30°,AC⊥BD,BD=2BO=2AB·32=6.∴OA=12AB=3,DP=BP-BD=2. ∴OP=5,AP=AO2+OP2=27.S四边形ADPE =S△ADP+S△AEP=12×2×3+12×27×27×32=3+73=8 3.14.(自主招生模拟题)如图,AB=CD,BC=2AD,∠ABC=90°,∠BCD= 30°.则∠BAD的大小为( B )A.25° B.30° C.35° D.45°15.(自主招生模拟题)如图,在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(5,0),点B(0,3).以点A为中心,顺时针旋转矩形AOBC得到矩形ADEF,O,B,C的对应点分别为D,E,F.记K为矩形AOBC对角线的交点,则△KDE的最大面积为30+3344.16.一张矩形纸片,剪下一个正方形,剩下一个矩形,称为第一次操作;在剩下的矩形纸片中再剪下一个正方形,剩下一个矩形,称为第二次操作;若在第n次操作后,剩下的矩形为正方形,则称原矩形为n阶奇异矩形.如图①,在矩形ABCD中,若AB=2,BC=6,则称矩形ABCD为2阶奇异矩形.(1)判断与操作如图②,矩形ABCD长为5,宽为2,它是奇异矩形吗?如果是,请写出它是几阶奇异矩形,并在图中画出裁剪线;如果不是,请说明理由.(2)探究与计算已知矩形ABCD的一边长为20,另一边长为a(a<20),且它是3阶奇异矩形,请画出矩形ABCD及裁剪线的示意图,并在图的下方写出a的值.(3)归纳与拓展已知矩形ABCD两邻边的长分别为b,c(b<c),且它是4阶奇异矩形,求b∶c(直接写出结果).解:(1)矩形ABCD是3阶奇异矩形,裁剪线的示意图如下.(2)裁剪线的示意图如下.(3)b∶c的值为15,45,27,37,47,57,38,58.。
浙教版八年级数学下册第5章专题十二 特殊四边形中的动点问题
专题
∴△ADE≌△CDG. ∴AE=CG. ∴AC=AE+CE=CG+CE. ∵AC= 2AB, ∴CE+CG= 2AB.
专题
∵EM⊥BC,EN⊥CD,∴∠EMC=∠ENC=90°, ∴∠NEC=45°,∴NE=NC, ∴四边形EMCN是正方形. ∴EM=EN,∠NEM=90°. ∴∠MEF+∠FEN=90°. ∵四边形DEFG是矩形,∴∠DEF=90°. ∴∠DEN+∠NEF=90°,∴∠DEN=∠MEF.
专题
在△DEN 和△FEM 中, ∠ END=NEEM=,∠FME, ∠DEN=∠FEM, ∴△DEN≌△FEM. ∴ED=EF, ∴矩形 DEFG 是正方形.
专题
又∵EF⊥AC, ∴四边形AFCE为菱形. ∴AF=CF. 设AF=CF=x cm,则BF=(8-x)cm. 在Rt△ABF中,由勾股定理,得AB2+BF2 =AF2,即42+(8-x)2=x2,解得x=5. ∴AF=5 cm.
专题
(2)动点P,Q分别从A,C两点同时出发 ,沿△AFB和 △CDE各边匀速运动一周,即点P自A→F→B→A停止, 点Q自C→D→E→C停止.在运动过程中,已知点P的 速度为5 cm/s,点Q的速度为4 cm/s,运动时间为t s, 当以A,C,P,Q四点为顶点的四边形是平行四边形 时,求t的值.
专题
若以A,C,P,Q四点为顶点的四边形是平行四边形, 则PC=QA. ∵四边形ABCD为矩形, ∴AB=CD=4 cm,AD=BC=8 cm. ∵AF=CF=5 cm,点P的速度为5 cm/s,点Q的速度 为4 cm/s,运动时间为t s,
专题
∴PC=PF+FC=PF+FA=5t cm,QA =(AD+CD)-(QD+CD)=(12-4t)cm. ∴5t=12-4t,解得 t=43. 故当以 A,C,P,Q 四点为顶点的四边 形是平行四边形时,t 的值为43.
浙教版数学八年级下册4.2《平行四边形》(平行四边形及其性质)教案1
浙教版数学八年级下册4.2《平行四边形》(平行四边形及其性质)教案1一. 教材分析《平行四边形》是浙教版数学八年级下册第4章的内容,本节课主要介绍了平行四边形的定义、性质及其判定。
教材通过生活中的实例引入平行四边形的概念,接着引导学生探究平行四边形的性质,最后通过练习巩固所学知识。
本节课的内容是学生进一步学习几何知识的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
二. 学情分析学生在学习本节课之前,已经掌握了四边形的性质,具备了一定的观察、操作和推理能力。
但部分学生对平行四边形的概念和性质理解不深,容易与其它四边形混淆。
因此,在教学过程中,教师需要关注学生的认知基础,通过实例和操作活动,帮助学生建立清晰的概念,加深对平行四边形性质的理解。
三. 教学目标1.知识与技能:让学生掌握平行四边形的定义、性质及其判定方法。
2.过程与方法:通过观察、操作、推理等过程,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学学习的兴趣,培养学生的团队合作意识。
四. 教学重难点1.重点:平行四边形的定义、性质及其判定。
2.难点:平行四边形性质的推理和应用。
五. 教学方法1.情境教学法:通过生活中的实例,引导学生认识平行四边形,激发学生的学习兴趣。
2.动手操作法:让学生通过实际操作,观察和总结平行四边形的性质。
3.小组讨论法:引导学生分组讨论,培养学生的团队合作意识和沟通能力。
4.启发式教学法:教师提问,学生思考,引导学生主动探究平行四边形的性质。
六. 教学准备1.教学课件:制作课件,展示平行四边形的图片和实例。
2.学生活动材料:准备一些平行四边形的图形,供学生观察和操作。
3.教学视频:准备一些关于平行四边形的视频资料,帮助学生更好地理解平行四边形的概念和性质。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中的平行四边形图片,如电梯、窗户等,引导学生关注平行四边形。
提问:你们知道这些图形是什么吗?它们有什么特点?从而引出平行四边形的概念。
2023八年级数学下册第5章特殊平行四边形5.2菱形(1)教案(新版)浙教版
1.理论介绍:首先,我们要了解菱形的基本概念。菱形是四条边相等的平行四边形,对角线互相垂直平分。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了菱形在实际中的应用,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调菱形的性质和判定这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
答案:
1.菱形的定义是四条边相等的平行四边形,对角线互相垂直平分。实例:以一个边长为4的正方形为例,我们可以通过连接对角线来证明。假设对角线交于点O,则O为对角线的交点。根据三角形全等性质,△AOB≅△AOD(SAS),因此AB=AD=4。同理,BC=CD=4。因此,这个正方形是一个菱形。
2.菱形的性质之一是四条边相等,对角线互相垂直平分。实例:以一个边长为4的正方形为例,我们可以通过连接对角线来证明。假设对角线交于点O,则O为对角线的交点。根据三角形全等性质,△AOB≅△AOD(SAS),因此AB=AD=4。同理,BC=CD=4。因此,这个正方形是一个菱形。
2.请解释菱形的性质,并给出一个实例来证明菱形的对角线互相垂直平分。
3.请给出一个菱形的判定方法,并说明如何运用这个方法来判断一个四边形是否为菱形。
4.请解释菱形的性质在实际问题中的应用,并给出一个实例来说明菱形性质在几何作图中的应用。
5.请解释菱形的性质的证明过程,并给出一个实例来说明菱形的四条边相等的证明。
-判定方法2:观察四边形的图形特征,判断是否符合菱形的性质
板书设计要求简洁明了,突出重点,同时具有一定的艺术性和趣味性,以激发学生的学习兴趣和主动性。通过板书的清晰展示,学生能够更好地理解和记忆菱形的定义、性质、判定方法和实际应用。
课后作业
浙教版初中数学八年级下册《特殊平行四边形》全章复习与巩固(提高)知识讲解
《特殊平行四边形》全章复习与巩固(提高)【学习目标】1. 理解矩形、菱形的概念,探索并证明矩形、菱形的性质定理,以及它们的判定定理.2. 理解正方形的概念,探索并掌握正方形的对称性及其他有关性质,以及一个四边形是正方形的条件.3.会初步综合应用特殊平行四边形的知识,解决一些简单的实际问题.【知识网络】【要点梳理】要点一、矩形1.定义:有一个角是直角的平行四边形叫做矩形.2.性质:(1)具有平行四边形的所有性质;(2)四个角都是直角;(3)对角线互相平分且相等;(4)中心对称图形,轴对称图形.3.面积:宽=长矩形 S4.判定:(1) 有一个角是直角的平行四边形是矩形.(2)对角线相等的平行四边形是矩形.(3)有三个角是直角的四边形是矩形.要点诠释:由矩形得直角三角形的性质:(1)直角三角形斜边上的中线等于斜边的一半;(2)直角三角形中,30度角所对应的直角边等于斜边的一半.要点二、菱形1. 定义:有一组邻边相等的平行四边形叫做菱形.2.性质:(1)具有平行四边形的一切性质;(2)四条边相等;(3)两条对角线互相平分且垂直,并且每一条对角线平分一组对角;(4)中心对称图形,轴对称图形.3.面积:2对角线对角线高==底菱形⨯⨯S4.判定:(1)一组邻边相等的平行四边形是菱形;(2)对角线互相垂直的平行四边形是菱形;(3)四边相等的四边形是菱形.要点三、正方形1. 定义:四条边都相等,四个角都是直角的四边形叫做正方形.2.性质:(1)对边平行;(2)四个角都是直角;(3)四条边都相等;(4)对角线互相垂直平分且相等,对角线平分对角;(5) 两条对角线把正方形分成四个全等的等腰直角三角形;(6)中心对称图形,轴对称图形.3.面积:=S 正方形边长×边长=12×对角线×对角线4.判定:(1)有一个角是直角的菱形是正方形;(2)一组邻边相等的矩形是正方形;(3)对角线相等的菱形是正方形;(4)对角线互相垂直的矩形是正方形;(5)对角线互相垂直平分且相等的四边形是正方形;(6)四条边都相等,四个角都是直角的四边形是正方形.【典型例题】类型一、矩形1、(2015春•青山区期中)如图1,已知AB∥CD,AB=CD ,∠A=∠D.(1)求证:四边形ABCD 为矩形;(2)E 是AB 边的中点,F 为AD 边上一点,∠DFC=2∠BCE.①如图2,若F 为AD 中点,DF=1.6,求CF 的长度:②如图2,若CE=4,CF=5,则AF+BC= ,AF= .【答案与解析】(1)证明:∵AB∥CD,AB=CD ,∴四边形ABCD 为平行四边形,∵∠A=∠D,∠A+∠D=180°,∴∠A=90°,∴四边形ABCD 为矩形;(2)解:①延长DA,CE交于点G,∵四边形ABCD是矩形,∴∠DAB=∠B=90°,AD∥BC,∴∠GAE=90°,∠G=∠ECB,∵E是AB边的中点,∴AE=BE,在△AGE和△BCE中,,∴△AGE≌△BCE(AAS),∴AG=BC,∵DF=1.6,F为AD中点,∴BC=3.2,∴AG=BC=3.2,∴FG=3.2+1.6=4.8,∵AD∥BC,∴∠DFC=∠BCF,∵∠DFC=2∠BCE,∴∠BCE=∠FCE,∵AD∥BC,∴∠BCE=∠G,∴CF=FG=4.8;②若CE=4,CF=5,由①得:AG=BC,CF=FG,GE=CE=4,AG=AD,∴CG=8,AF+BC=AF+AG=FG=CF=5;故答案为:5;设DF=x,根据勾股定理得:CD2=CF2﹣DF2=CG2﹣DG2,即52﹣x2=82﹣(5+x)2,解得:x=,∴DG=5+=,∴AD=DG=,∴AF=AD﹣DF=;故答案为:..【总结升华】本题考查了矩形的判定与性质、全等三角形的判定与性质、等腰三角形的判定、勾股定理的运用;本题有一定难度.举一反三:【变式】如图,O为△ABC内一点,把AB、OB、OC、AC的中点D、E、F、G依次连接形成四边形DEFG.(1)四边形DEFG是什么四边形,请说明理由;(2)若四边形DEFG是矩形,点0所在位置应满足什么条件?说明理由.【答案】解:(1)四边形DEFG是平行四边形.理由如下:∵D、G分别是AB、AC的中点,∴DG是△ABC的中位线;∴DG∥BC,且DG=12 BC;同理可证:EF∥BC,且EF=12 BC;∴DG∥EF,且DG=EF;故四边形DEFG是平行四边形;(2)O在BC边的高上且A和垂足除外.理由如下:连接OA;同(1)可证:DE∥OA∥FG;∵四边形DEFG是矩形,∴DG⊥DE;∴OA⊥BC;即O点在BC边的高上且A和垂足除外.2、在Rt△ABC中,∠ACB=90°,BC=4.过点A作AE⊥AB且AB=AE,过点E分别作EF⊥AC,ED⊥BC,分别交AC和BC的延长线与点F,D.若FC=5,求四边形ABDE的周长.【思路点拨】首先证明△ABC≌△EAF,即可得出BC=AF,AC=EF,再利用勾股定理得出AB 的长,进而得出四边形EFCD是矩形,求出四边形ABDE的周长即可.【答案与解析】解:∵∠ACB=90°,AE⊥AB,∴∠1+∠B=∠1+∠2=90°.∴∠B=∠2.∵EF⊥AC,∴∠4=∠5=90°.∴∠3=∠4.在△ABC和△EAF中,∵342BAB AE∠=∠⎧⎪∠=∠⎨⎪=⎩,,∴△ABC≌△EAF(AAS).∴BC=AF,AC=EF.∵BC=4,∴AF=4.∵FC=5,∴AC=EF=9.在Rt△ABC中,AB=.∵ED⊥BC,∴∠7=∠6=∠5=90°.∴四边形EFCD是矩形.∴CD=EF=9,ED=FC=5.∴四边形ABDE的周长=AB+BD+DE+EA+4+9+5=18+.【总结升华】此题主要考查了全等三角形的判定以及矩形的判定与性质和勾股定理等知识,根据已知得出AC=EF=9是解题关键.举一反三:【变式】(2015•杭州模拟)如图,平行四边形ABCD中,AC=6,BD=8,点P从点A出发以每秒1cm的速度沿射线AC移动,点Q从点C出发以每秒1cm的速度沿射线CA移动.(1)经过几秒,以P,Q,B,D为顶点的四边形为矩形?(2)若BC⊥AC垂足为C,求(1)中矩形边BQ的长.【答案】解:(1)当时间t=7秒时,四边形BPDQ为矩形.理由如下:当t=7秒时,PA=QC=7,∵AC=6,∴CP=AQ=1∴PQ=BD=8∵四边形ABCD为平行四边形,BD=8∴AO=CO=3∴BO=DO=4∴OQ=OP=4∴四边形BPDQ为平形四边形,∵PQ=BD=8∴四边形BPDQ为矩形;(2)由(1)得BO=4,CQ=7,∵BC⊥AC∴∠BCA=90°BC2+CQ2=BQ2∴BQ=.类型二、菱形3、如图,平行四边形ABCD中,AB⊥AC,AB=1,BC AC,BD 相交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F.(1)证明:当旋转角为90°时,四边形ABEF是平行四边形;(2)试说明在旋转过程中,线段AF与EC总保持相等;(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC绕点O顺时针旋转的度数.【思路点拨】(1)当旋转角为90°时,∠AOF=90°,由AB⊥AC,可得AB∥EF,即可证明四边形ABEF为平行四边形;(2)证明△AOF≌△COE即可;(3)当EF⊥BD时,四边形BEDF为菱形,又由AB⊥AC,AB=1,BC OA=AB,即可得∠AOB=45°,求得∠AOF=45°,则可得此时AC绕点O顺时针旋转的最小度数为45°.【答案与解析】(1)证明:当∠AOF=90°时,AB∥EF,又AF∥BE,∴四边形ABEF为平行四边形.(2)证明:四边形ABCD为平行四边形,∴AO=CO,∠FAO=∠ECO,∠AOF=∠COE.∴△AOF≌△COE∴AF=CE(3)四边形BEDF可以是菱形.理由:如图,连接BF,DE,由(2)知△AOF≌△COE,得OE=OF,∴EF与BD互相平分.∴当EF⊥BD时,四边形BEDF为菱形.AC==,在Rt△ABC中,2∴OA=1=AB,又AB⊥AC,∴∠AOB=45°,∴∠AOF=45°,∴AC绕点O顺时针旋转45°时,四边形BEDF为菱形.【总结升华】要证明四边形是菱形,先证明这个四边形是平行四边形,再利用对角线互相垂直的特征证明该平行四边形是菱形.举一反三:【变式】已知:如图所示,BD是△ABC的角平分线,EF是BD的垂直平分线,且交AB于E,交BC于点F.求证:四边形BFDE是菱形.【答案】证明:∵EF是BD的垂直平分线,∴EB=ED,∠EBD=∠EDB.又∵∠EBD=∠FBD,∴∠FBD=∠EDB,ED∥BF. 同理,DF∥BE,∴四边形BFDE是平行四边形.又∵EB=ED,∴四边形BFDE是菱形.4、在口ABCD中,对角线AC、BD相交于点O,BD=2AB,点E、F分别是OA、BC的中点.连接BE、EF.(1)求证:EF=BF;(2)在上述条件下,若AC=BD,G是BD上一点,且BG:GD=3:1,连接EG、FG,试判断四边形EBFG的形状,并证明你的结论.【思路点拨】(1)根据平行四边形性质推出BD=2BO,推出AB=BO,根据三线合一定理得出BE⊥AC,在△BEC中,根据直角三角形斜边上中线性质求出EF=BF=CF即可;(2)根据矩形性质和已知求出G为OD中点,根据三角形中位线求出EG∥AD,EG=12 BC,求出EG∥BC,EG=12BC,求出BF=EG,BF∥EG,EG=GF,得出平行四边形,根据菱形的判定推出即可.【答案与解析】(1)证明:∵四边形ABCD是平行四边形,∴BD=2BO,∵BD=2AB,∴AB=BO,∵E为OA中点,∴BE⊥AC,∴∠BEC=90°,∵F为BC中点,∴EF=BF=CF,即EF=BF;(2)四边形EBFG是菱形,证明:连接CG,∵四边形ABCD是平行四边形,AC=BD,∴四边形ABCD是矩形,∴AD=BC,AB=CD,AD∥BC,BD=2BO=2OD,∴BD=2AB=2CD,∴OC=CD,∵BG:GD=3:1,OB=OD,∴G为OD中点,∴CG⊥OD(三线合一定理),即∠CGB=90°,∵F为BC中点,∴GF=12BC=12AD,∵E为OA中点,G为OD中点,∴EG∥AD,EG=12 AD,∴EG∥BC,EG=12 BC,∵F为BC中点,∴BF=12BC,EG=GF,即EG∥BF,EG=BF,∴四边形EBFG是平行四边形,∵EG=GF,∴平行四边形EBFG是菱形(有一组邻边相等的平行四边形是菱形).【总结升华】本题考查了平行四边形的性质和判定,矩形性质,菱形性质,三角形的中位线,直角三角形斜边上中线性质,等腰三角形的性质等知识点,主要考查学生综合运用定理进行推理的能力,注意:直角三角形斜边上中线等于斜边的一半.类型三、正方形5、(2016•日照)如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45°,将△ADF绕点A顺时针旋转90°后,得到△ABQ,连接EQ,求证:(1)EA是∠QED的平分线;(2)EF2=BE2+DF2.【思路点拨】(1)直接利用旋转的性质得出△AQE≌△AFE(SAS),进而得出∠AEQ=∠AEF,即可得出答案;(2)利用(1)中所求,再结合勾股定理得出答案.【答案与解析】证明:(1)∵将△ADF绕点A顺时针旋转90°后,得到△ABQ,∴QB=DF,AQ=AF,∠BAQ=∠DAF,∵∠EAF=45°,∴∠DAF+∠BAE=45°,∴∠QAE=45°,∴∠QAE=∠FAE,在△AQE和△AFE中,∴△AQE≌△AFE(SAS),∴∠AEQ=∠AEF,∴EA是∠QED的平分线;(2)由(1)得△AQE≌△AFE,∴QE=EF,在Rt△QBE中,QB2+BE2=QE2,则EF2=BE2+DF2.【总结升华】此题主要考查了旋转的性质以及全等三角形的判定与性质和勾股定理等知识,正确得出△AQE≌△AFE(SAS)是解题关键.举一反三:【变式】如图(1),正方形ABCD和正方形CEFG有一公共顶点C,且B、C、E在一直线上,连接BG、DE.(1)请你猜测BG、DE的位置关系和数量关系?并说明理由.(2)若正方形CEFG绕C点向顺时针方向旋转一个角度后,如图(2),BG和DE是否还存在上述关系?若存在,试说明理由;若不存在,也请你给出理由.【答案】解:(1)BG=DE,BG⊥DE;理由是:延长BG交DE于点H,因为BC=DC,CG =CE,∠BCG=∠DCE所以△BCG ≌△DCE ,所以BG =DE ,∠GBC =∠CDE .由于∠CDE +∠CED =90°,所以∠GBC +∠DEC =90°, 得∠BHE =90°.所以BG ⊥DE.(2)上述结论也存在.理由:设BG 交DE 于H ,BG 交DC 于K ,同理可证△BCG ≌△DCE ,得BG =ED ,∠KBC =∠KDH .又因为∠KBC +∠BKC =90°,可得∠DKH +∠KDH =90°,从而得∠KHD =90°.所以BG ⊥DE.6、探究:如图①,在四边形ABCD 中,∠BAD=∠BCD=90°,AB =AD ,AE⊥CD 于点E .若AE =10,求四边形ABCD 的面积.应用:如图②,在四边形ABCD 中,∠ABC+∠ADC=180°,AB =AD ,AE⊥BC 于点E .若AE =19,BC =10,CD =6,则四边形ABCD 的面积为_______.【思路点拨】探究:过点A 作AF⊥CB,交CB 的延长线于点F ,先判定四边形AFCE 为矩形,根据矩形的四个角都是直角可得∠FAE=90°,然后利用同角的余角相等求出∠FAB=∠EAD,再利用“角角边”证明△AFB 和△AED 全等,根据全等三角形对应边相等可得AE =AF ,从而得到四边形AFCE 是正方形,然后根据正方形的面积公式列计算即可得解;应用:过点A 作AF⊥CD 交CD 的延长线于F ,连接AC ,根据同角的补角相等可得∠ABC=∠ADF,然后利用“角角边”证明△ABE 和△ADF 全等,根据全等三角形对应边相等可得AF =AE ,再根据ABC ACD ABCD S S S =+V V 四边形列式计算即可得解.【答案与解析】解:探究:如图①,过点A 作AF⊥CB,交CB 的延长线于点F ,∵AE⊥CD,∠BCD=90°,∴四边形AFCE 为矩形,∴∠FAE=90°,∴∠FAB+∠BAE=90°,∵∠EAD+∠BAE=90°,∴∠FAB=∠EAD,∵在△AFB 和△AED 中,90FAB EAD F AED AB AD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△AFB≌△AED(AAS ),∴AF=AE ,∴四边形AFCE 为正方形,∴AFCE ABCD S S =正方形四边形=2210AE ==100;应用:如图,过点A 作AF⊥CD 交CD 的延长线于F ,连接AC ,则∠ADF+∠ADC=180°,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADF,∵在△ABE 和△ADF 中,90ABC ADF AEB F AB AD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABE≌△ADF(AAS ),∴AF=AE =19,∴ABC ACD ABCD S S S =+V V 四边形 =12BC•AE+12CD•AF =12×10×19+12×6×19 =95+57=152.故答案为:152.【总结升华】本题考查了全等三角形的判定与性质,正方形的判定与性质,(1)作辅助线构造出全等三角形是解题的关键;(2)作辅助线构造出全等三角形并把四边形分成两个三角形是解题的关键.。
八年级数学特殊的平行四边形浙江版知识精讲
初二数学特殊的平行四边形某某版【本讲教育信息】一. 教学内容:特殊的平行四边形二、重、难点:1、定义:有一个角是直角的平行四边形叫做矩形。
(长方形和正方形都是矩形) 一组邻边相等的平行四边形叫做菱形。
一组邻边相等,并且有一个角是直角的平行四边形叫做正方形。
2、判定:①矩形:有三个角是直角的四边形。
对角线相等的平行四边形②菱形:四条边相等的四边形。
对角线互相垂直的平行四边形。
③正方形:按照定义。
3、性质:①矩形:四个角都是直角,对角线相等。
②菱形:四条边都相等,对角线互相垂直并且每条对角线平分一组对角。
③正方形:四个角都是直角,四条边相等,对角线相等,互相垂直平分并且每条对角线平分一组对角。
【典型例题】例1、如图,平行四边形ABCD 中,以AC 为斜边作Rt △ACE ,BE ⊥DE 于E 。
求证:四边形ABCD 是矩形。
略证:∵平行四边形ABCD ∴对角线AC 、BD 互相平分 又已知△AEC 为Rt △AEC ∴取AC 中点O ,连接OE ∴AC 21OE =同理,对于Rt △BED ,BD 21OE =,∴AC=BD 。
∴四边形ABCD 是矩形(对角线相等的四边形是矩形)例2、△ABC 中,∠BAC=90°,AB=AC ,D 是BC 中点,P 在BC 的延长线上。
过点P 分别作两腰AB 、AC 的垂线PE ,PF 。
垂足分别为E 、F 。
求证:DE=DF 并且DE ⊥DF 。
略证:∵D 为等腰△ABC 的底边BC 上的中点 ∴连接AD∵∠EAF=∠AFP=∠AEP 为Rt ∠∴四边形AEPF 是矩形(三个角是直角的四边形是矩形) ∴AE=FP=FC ∴BE=AF又可证明)SAS (ADF BDE ∆≅∆∴DE=DF ,∠BDE=∠ADF ∴∠ADE=∠FDP∵∠ADE+∠EDP=90° ∴∠FDP+∠EDP=90° ∴DE ⊥DF例3、如图,AB//CD ,∠ACB=90°,E 为AB 中点,CE=CD ,DE 和AC 相交于点F 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙教版 八下数学 特殊平行四边形
1、矩形的性质以及判定
性质:1)矩形具有平行四边形所具有的一切性质. 2)矩形的四个角都是直角. 3)矩形的对角线相等.
判定方法:1)定义:有一个角是直角的平行四边形是矩形. 2)有三个角是直角的四边形是矩形. 3)对角线相等的平行四边形是矩形.
注意:其他还有一些判定矩形的方法,但都不能作为定理使用.
已知:如图,平行四边形ABCD 各角的平分线分别相交于点E ,F ,G ,•H ,•求证:•四边形EFGH 是矩形.
2、菱形的性质以及判定
性质:1)菱形具有平行四边形所具有的一切性质. 2)菱形的四条边都相等.
3)菱形的对角线互相垂直并且每条对角线平分一组对角.
4)菱形的面积等于对角线乘积的一半.(如果一个四边形的对角线互相垂直,那么这个四边形的面积等于对角线乘积的一半)
判定方法:1)定义:有一组邻边相等的平行四边形是菱形 2)四条边都相等的四边形是菱形.
3)对角线互相垂直的平行四边形是菱形. 4)对角线互相垂直平分的平行四边形是菱形.
注意:其他还有一些判定菱形的方法,但都不能作为定理使用.
如图,在ABCD 中,O 是对角线AC 的中点,过点O 作AC 的垂线与边AD 、BC 分别交于E 、F,求证:四边形AFCE 是菱形.
C
B
E
D
A
O
F
3、正方形的性质以及判定
性质:1)正方形具有平行四边形、矩形、菱形所具有的一切性质.
判定方法;1)定义:有一个角是直角且有一组邻边相等的平行四边形是正方形. 2)矩形+有一组邻边相等 3)菱形+有一个角是直角
注意:其他还有一些判定正方形的方法,但都不能作为定理使用.
例1:如图,在△ABC 中,AB=AC,D 是BC 的中点,DE ⊥AB,DF ⊥AC,垂足分别是E,F.
求证:(1)△BDE ≌△CDF; (2)∠A=90°时,四边形AEDF 是正方形.
M N O
D C
B A C
B
E D
A F
例2:如图,等腰梯形ABCD 中,AD ∥BC,M 、N 分别为AD 、BC 的中点,E 、F 分别是BM 、CM 的中点.
(1)求证:四边形MENF 是菱形;
(2)若MENF 是正方形,那么梯形的高与底边BC 有何关系?
M
F
E
N D C
B
A
专项练习:
1. 在下列命题中,真命题是( ) A.两条对角线相等的四边形是矩形 B.两条对角线互相垂直的四边形是菱形 C.两条对角线互相平分的四边形是平行四边形 D.两条对角线互相垂直且相等的四边形是正方形
2. 已知菱形的两条对角线长为10cm 和24cm, 那么这个菱形的周长为______________, 面
积为_______________.
3. 将两张长10cm 宽3cm 的长方形纸条叠放在一起, 使之成60度角, 那么重叠部
分的面积的最大值为________________.
4. 一个菱形面积为80, 周长为40, 那么两条对角线长度之和为
__________. 5. 顺次连接一个特殊四边形的中点, 得到一个菱形. 那么这个特殊四边形是
___________. 6. 如图,矩形ABCD 的对角线相交于点O ,OF ⊥BC ,CE ⊥BD ,OE :BE=1:3,OF=4,求∠ADB
的度数和BD 的长。
7. 如图所示,矩形ABCD 中,M 是BC 的中点,且MA ⊥MD ,若矩形的周长为36cm ,求此矩
O
F
E
D
C
B
A
形的面积。
8. 折叠矩形纸片ABCD ,先折出折痕BD ,再折叠使AD 边与对角线BD 重合,得折痕DG ,如
图,若AB=2,BC=1,求AG 。
9. 如图,在矩形ABCD 中,E 是AD 上一点,F 是AB 上一点,EF CE =,且
,2EF CE DE cm ⊥=,矩形ABCD 的周长为16cm ,求AE 与CF 的长.
10. 如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,(1),画出△AOB 平移后的三角形,
其平移的方向为射线AD 的方向,平移的距离为线段AD 的长。
(2)观察平移后的图形,除了矩形ABCD 外还有哪一种特殊的平行四边形?并给出证明。
11. 如图所示,已知菱形ABCD 中,E 、F 分别在BC 和CD 上,且∠B=∠EAF=60°,∠BAE=15°,
求∠CEF 的度数。
12. 已知:如图,在菱形ABCD 中,E 、F 分别是BC 、CD 上的点,且CE=CF 。
过点C 作CG ∥
EA 交AF 于H ,交AD 于G ,若∠BAE=25°,∠BCD=130°,求∠AHC 的度数。
G
E
D
C
B
A
A
13.已知:如图,在矩形ABCD中,E、F分别是边BC、AB上的点,且EF=ED,EF⊥ED.求证:AE平分∠BAD.
14.如图,在△ABC中,AB=BC,D、E、F分别是BC、AC、AB上的中点,(1)求证四边形
BDEF是菱形。
(2)若AB=12cm,求菱形BDEF的周长?
15.已知:如图,△ABC中,∠BAC的平分线交BC于点D,E是AB上一点,且AE=AC,EF∥
BC交AD于点F,求证:四边形CDEF是菱形。
16.如图,平行四边形ABCD的对角线AC的垂直平分线与AD、BC、AC分别交于点E、F、O,
求证:四边形AFCE是菱形。
17. 已知:如图,C 是线段BD 上一点,△ABC 和△ECD 都是等边三角形,R 、F 、G 、H 分别是
四边形ABDE 各边的中点,求证:四边形RFGH 是菱形。
18. 如图,已知在△ABC 中,AB=AC ,∠B ,∠C 的平分线BD 、CE 相交于点M ,DF ∥CE ,EG ∥
BD ,DF 与EG 交于N ,求证:四边形MDNE 是菱形。
19. 已知:如图所示,ABCD 为菱形,通过它的对角线的交点O 作AB 、BC 的垂线,与AB 、BC ,
CD ,DA 分别相交于点E 、F 、G 、H ,求证:四边形EFGH 为矩形。
20. 如图,□ABCD 中,AB ⊥AC ,AB =1,BC =5.对角线AC ,BD 相交于点O ,将直线AC 绕点O 顺时针旋转,分别交BC ,AD 于点E ,F .
(1) 证明:当旋转角为90°时,四边形ABEF 是平行四边形; (2) 试说明在旋转过程中,线段AF 与EC 总保持相等;
(3) 在旋转过程中,四边形BEDF 可能是菱形吗?如果不能,请说明理由;如果能,画出图形
并写出此时AC 绕点O 顺时针旋转的度数.
R
H
G
F
E D
C
B
A。