2018-2019学年鲁教版(五四制)七年级下数学期末检测试题含答案.docx

合集下载

2018-2019学年鲁教版(五四制)数学七年级下册期末复习测试题卷附答案

2018-2019学年鲁教版(五四制)数学七年级下册期末复习测试题卷附答案
2 a
)
8.如图,△ABC 为等边三角形,D 是 BC 边上一点,在 AC 边上取一点 F,使 CF=BD,在 AB 边上取一点 E,使 BE=DC,则∠EDF 的度数为( )
(A)30°
(B)45°
(C)60°
(D)70°
9.(2018 台州)学校八年级师生共 466 人准备参加社会实践活动.现已预备了 49 座和 37 座两种客车共 10 辆, 刚好坐满.设 49 座客车 x 辆,37 座客车 y 辆,根据题意可列出方程组( (A) x + y = 10 49x + 37y = 466 (B) x + y = 10 x + y = 466 (C) 37x + 49y = 466 49x + 37y = 10 ) (D) x + y = 466 37x + 49y = 10
x=1 y = -2
2.(2018 烟台)下列说法正确的是( (A)367 人中至少有 2 人生日相同
(B)任意掷一枚均匀的骰子,掷出的点数是偶数的概率是
1 3
(C)天气预报说明天的降水概率为 90%,则明天一定会下雨 (D)某种彩票中奖的概率是 1%,则买 100 张彩票一定有 1 张中奖 3.(2018 日照)如图,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,则∠1 等于( )
17.(2018 滨州)若关于 x,y 的二元一次方程组 3(a + b)-m(a-b) = 5, 的解是 2(a + b) + n(a-b) = 6
3x-my = 5, x = 1, 的解是 则关于 a,b 的二元一次方程组 y = 2, 2x + ny = 6 .
3

鲁教版(五四制)2019学年度七年级数学第二学期期末综合复习自主测评试题(含答案详解)

鲁教版(五四制)2019学年度七年级数学第二学期期末综合复习自主测评试题(含答案详解)

鲁教版(五四制)2018-2019学年度七年级数学下册期末复习综合训练题1(含答案)1.若关于x的一元一次不等式组无解,则a的取值范围是()A.a≥1B.a>1 C.a≤-1 D.a<-12.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=4,则AE的长为()A.B.2C.3D.43.如图,△ABC中,AC=BC,∠C=90°,AD平分∠CAB交BC于D,DE⊥AB于点E,且AC=7cm,则DE+BD等于()A.7cm B.6cm C.5cm D.4cm4.如图,已知直线AB//CD,BE平分∠ABC,交CD于D,∠CDE=150°,则∠C的度数为( ).A.120°B.130°C.150°D.100°5.已知不等式4x-a≤0的正整数解是1,2,则a的取值范围是()A.8<a<12 B.8≤a<12 C.8<a≤12 D.8≤a≤126.若方程mx+ny=6的两个解是1{1xy==,2{1xy==-,则m,n的值为()A.4{2mn==B.2{4mn==C.2{4mn=-=-D.4{2mn=-=-7.已知是方程2mx﹣y=10的解,则m的值为A.2B.4C.6D.108.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=()A.90°B.135°C.150°D.180°9.下列说法中,正确的个数是( )①不可能事件发生的概率为0.②在相同条件下,只要试验的次数足够多,频率就可以作为概率的估计值.③收集数据过程中的“记录结果”这一步,就是记录每个对象出现的频率.A.0 B.1 C.2 D.310.如图,△ABC中,DE垂直平分AC交AB于E,BC=AE,∠ACB= 84°, ∠A则=_____°. 11.如图,在ΔABC中,AB=AC,∠BAC=36°,BD平分∠ABC,则∠1的度数是_______.12.把两个含有45°角的直角三角板如图放置,点D 在BC 点上,连接BE 、AD ,AD 的延长线交BE 于点F ,则∠AFB=______°.13.已知方程240x y +-=,用含x 的代数式表示y 为: y =___________. 14.如图,△ABC 中,AB +AC =6cm ,BC 的垂直平分线l 与AC 相交于点D ,则△ABD 的周长为___cm .15.如图,已知∠BAC 的平分线与BC 的垂直平分线相交于点D ,DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F ,AB =9,AC =5,则BE =_______.16.如图,∠MON =30°,点A 1、A 2、A 3…在射线ON 上,点B 1、B 2、B 3…在射线OM 上,△A 1B 1A 2、△A 2B 2A 3、△A 3B 3A 4…均为等边三角形,从左起第1个等边三角形的边长记为a 1,第2个等边三角形的边长记为a 2,以此类推.若OA 1=1,则a 2017= ______ .17.一枚骰子六个面上分别写有1—6这六个数,投掷这枚骰子则朝上一面的数字是偶数的数概率是______.18.用不等式表示:x 与3的和不大于1,则这个不等式是:____________19.已知△ABC 的三边长分别是9、12、15,则△ABC 是______三角形.20.如图,在4×9的方格图中,□ABCD 的顶点均在格点上,按下列要求作图:(1)在CD 边上找一格点E ,使得AE 平分∠DAB .(2)在CD 边上找一格点F ,使得BF ⊥AE .21.如图,△ABC中,∠ABC=36°, ∠C=64°,AD平分∠BAC交BC于D,BE⊥AC,交AD、AC分别于H、E,求∠AHB的度数.22.如图:线段AB、CD相交于点O,连接AD、CB,我们把这个图形称为“8字型”.根据三角形内角和容易得到:∠A+∠D=∠C+∠B.⑴利用“8字型”如图(1):∠A+∠B+∠C+∠D+∠E+∠F=_________.⑵构造“8字型”如图(2):∠A+∠B+∠C+∠D+∠E+∠F+∠G=_________.⑶发现“8字型”如图(3):BE、CD相交于点A,CF为∠BCD的平分线,EF为∠BED的平分线.①图中共有________个“8字型”;②若∠B:∠D:∠F=4:6:x,求x的值.23.如图所示,在▱ABCD中,对角线AC与BD相交于点O,过点O任作一条直线分别交AB,CD于点E,F.求证:OE=OF.24.先阅读理解下面的例题,再按要求解答下列问题:例题:解一元二次不等式x 2﹣4>0解:∵x 2﹣4=(x+2)(x ﹣2)∴x 2﹣4>0可化为(x+2)(x ﹣2)>0由有理数的乘法法则“两数相乘,同号得正”,得 ① ②解不等式组①,得x >2,解不等式组②,得x <﹣2,∴(x+2)(x ﹣2)>0的解集为x >2或x <﹣2,即一元二次不等式x 2﹣4>0的解集为x >2或x <﹣2.解答下列问题:(1)一元二次不等式x 2﹣25>0的解集为 ;(2)分式不等式的解集为 ;(3)解一元二次不等式2x 2﹣3x <0.25.解不等式组()11{ 3321x x x x +≥+-≥+ 并在数轴上表示解集。

20182019学年鲁教版本五四制初中七年级的下数学期末检测试卷试题有包括答案.docx

20182019学年鲁教版本五四制初中七年级的下数学期末检测试卷试题有包括答案.docx

期末(:120 分分:150分)一、 ( 每小 4 分, 共 48 分)1.(2018 北京 ) 方程的解( D )(A)(B)(C)(D)解析 : 法一将4解分代入原方程, 只有 D同足两个方程 , 故 D.法二由①得 x=y+3, ③把③代入②得 ,3(y+3)-8y=14,解得 y=-1,将y=-1 代入③得 x=2.所以方程的解故 D.2.(2018 烟台 ) 下列法正确的是 ( A )(A)367 人中至少有 2 人生日相同(B)任意一枚均匀的骰子 , 出的点数是偶数的概率是(C)天气明天的降水概率 90%,明天一定会下雨(D)某种彩票中的概率是 1%,100 彩票一定有 1 中解析 : 一年最多 366 天, 所以 367 人中至少有 2 人生日相同 , A 正确 ;任意一枚均匀的骰子 , 出的点数是偶数的概率是,B;天气明天的降水概率90%,只是降雨的可能性大, 但不能明天一定会下雨,C ;某种彩票中的概率是1%,并不是 100 彩票一定有 1 中 ,D. 故 A.3.(2018 日照 ) 如 , 将一副直角三角板按中所示位置放, 保持两条斜互相平行 , ∠ 1 等于( D )(A)30 °(B)25 °(C)20 °(D)15 °解析 : 因一副直角三角板的两条斜互相平行,所以∠ 3=∠2=45°,因∠ 4=30°, 所以∠ 1=∠3- ∠4=15°. 故 D.4.(2018 江 ) 小明将如所示的分成 n(n 是正整数 ) 个扇形 , 并使得各个扇形的面都相等 , 然后他在些扇形区域内分偶数数字 2,4,6, ⋯,2n( 每个区域内注 1 个数字 , 且各区域内标注的数字互不相同 ), 转动转盘 1 次, 当转盘停止转动时 , 若事件“指针所落区域标注的数字大于 8”的概率是, 则 n 的取值为 ( C )(A)36 (B)30 (C)24 (D)18解析 : 因为事件“指针所落区域标注的数字大于8”的概率是,所以= . 解得 n=24. 故选 C.5.如图 , 已知点 P到 AE,AD,BC的距离相等 , 则下列说法 : ①点 P在∠ BAC的平分线上 ; ②点 P在∠ CBE的平分线上 ; ③点 P在∠ BCD的平分线上 ; ④点 P是∠ BAC,∠CBE,∠BCD的平分线的交点 , 其中正确的是 ( A )(A)①②③④ (B) ①②③(C) ②③(D)④解析 : 因为点 P 到 AE,AD,BC的距离相等 ,所以点 P在∠ BAC的平分线上 , 故①正确 ; 点 P 在∠ CBE的平分线上 , 故②正确 ; 点 P 在∠ BCD 的平分线上 , 故③正确 ; 点 P 是∠ BAC,∠CBE,∠BCD的平分线的交点 , 故④正确 , 综上所述 , 正确的是①②③④ . 故选 A.6.如图 ,AB,CD 交于 O点, 且互相平分 , 则图中全等三角形有 ( C )(A)2 对(B)3 对(C)4 对(D)5 对解析 : 题图中的全等三角形有△AOC≌△ BOD,△BOC≌△ AOD,△ABC≌△ BAD,△ACD≌△ BDC,共 4 对.故选 C.7. 已知点 P(a+1,- +1) 关于原点的对称点在第四象限 , 则 a 的取值范围在数轴上表示正确的是( C )解析 : 因为点 P(a+1,- +1) 关于原点的对称点在第四象限 , 所以点 P在第二象限 ,所以解不等式组得a<-1. 故选 C.8.如图 , △ABC为等边三角形 ,D 是 BC边上一点 , 在 AC边上取一点 F, 使 CF=BD,在 AB边上取一点E, 使 BE=DC,则∠ EDF的度数为 ( C )(A)30 °(B)45 °(C)60 °(D)70 °解析 : 易证△ BED≌△ CDF(SAS),得∠ BED=∠CDF,又因为∠ EDF+∠CDF=∠B+∠BED,所以∠ EDF=∠B=60°.故选 C.9.(2018 台州 ) 学校八年级师生共 466 人准备参加社会实践活动 . 现已预备了 49 座和 37 座两种客车共 10 辆, 刚好坐满 . 设 49 座客车 x 辆,37 座客车 y 辆, 根据题意可列出方程组 ( A )(A)(B)(C)(D)解析 : 根据题意 49 座客车 x 辆,37 座客车 y 辆, 可知 x+y=10, 根据对应车辆载人数可知49x+37y=466,故选 A.10.如图 , 一条公路修到湖边时 , 需拐弯绕湖而过 , 如果第一次拐的∠ A是 120°, 第二次拐的∠ B是150°, 第三次拐的角是∠ C,这时恰好和第一次拐弯之前的道路平行 , 则∠ C的度数为 ( C )(A)100 °(B)120°(C)150 °(D)160 °解析 : 法一延长 AB,EC交于点 D,根据题意∠ D=∠A=120°;在△ BCD中, ∠ BCD=∠ABC-∠D=150°-120 °=30°,所以∠ BCE=180°- ∠BCD=180°-30 °=150°,故选 C.法二过点 B 作 BD∥AE,因为 AE∥CF,所以 AE∥BD∥ CF,所以∠ ABD=∠A=120°, 因为∠ ABC=150°,所以∠ CBD=∠CBA-∠ABD=150°-120 °=30°,因为已证得 CF∥BD,所以∠ CBD+∠C=180°,所以∠ C=180°- ∠CBD=180°-30 °=150°.故 C.11. 关于 x 的不等式的解集中至少有 5 个整数解 , 正数 a 的最小是 ( B )(A)3 (B)2 (C)1(D)解析 :解不等式①得x≤a, 解不等式②得 x>- a.不等式的解集是 - a<x≤a.因不等式至少有 5 个整数解 ,所以 a-(- a) ≥5, 解得 a≥2.所以正数 a 的最小是 2. 故 B.12.如 , 在第 1 个△ A1BC中, ∠B=30°,A 1B=CB;在 A1 B上任取一点 D,延 CA1到 A2, 使 A1A2=A1D, 得到第 2 个△ A1A2D;在 A2D上任取一点 E, 延 A1A2到 A3, 使 A2A3=A2E, 得到第 3 个△ A2A3E, ⋯按此做法下去 , 第 n 个三角形中以 A n点的内角度数是 ( C )(A)( ) n·75°(B)() n-1·65°(C)( ) n-1·75°(D)() n·85°解析 : 因 A B=CB,∠B=30°,1所以∠ C=∠BA1C=75°.又因 A1A2=A1D,所以∠ A1A2D=∠ A1DA2=∠ DA1C= ×75° =( ) 2-1×75°; 同理 , ∠ A2A3E= ∠ A2EA3= ∠ DA2A1 = × ×75°=() 3-1×75°; ∠ A3A4 F=( ) 4-1×75°; ⋯第 n 个三角形中以A n点的内角度数是( ) n-1×75°.故 C.二、填空 ( 每小 4 分, 共 24 分)13.(2018 化 ) 如 , 一游板由大小相等的小正方形格子构成. 向游板随机投一枚, 中黑色区域的概率是.解析 : 设小正方形的边长为1,所以击中黑色区域的概率是= .14.(2018菏泽 ) 不等式组的最小整数解是0 .解析 : 解不等式组 , 得-1<x ≤2,所以其最小整数解是 0.∥l , △ABC的顶点 B,C 在直线 l上, 已知∠ A=40°, ∠1=60°, 则∠ 2 15.(2018镇江一模 ) 如图 ,l122的度数为100° .解析 : 因为 l 1∥l 2,所以∠ 3=∠1=60°,因为∠ A=40°,所以∠ 2=∠A+∠3=100°.16.如图 , 在△ ABC中,AB=AC,∠BAC=36°,DE 是线段 AC的垂直平分线 , 若 BE=a,AE=b,则用含 a,b 的代数式表示△ ABC的周长为 2a+3b .解析 : 由题意 , 得 AC=AB=a+b,∠B=∠ACB=(180°-36 °)÷2=72°, 因为 DE垂直平分线段 AC,所以 EA=EC,所以∠ ECA=∠A=36°,所以∠ ECB=36°, ∠BEC=72°,所以 CB=CE=b,故△ABC的周长为 2a+3b.17.(2018 滨州 ) 若关于 x,y 的二元一次方程组的解是则关于a,b的二元一次方程组的解是.解析 : 观察两个方程组的结构特点,a+b 相当于 x,a-b 相当于 y,故可直接得出解得从而得出二元一次方程组的解是18. 若不等式组无解,则m的取值范围是m< .解析 : 解不等式 2x-3 ≥0, 得 x≥ ,要使不等式组无解 , 则 m< .三、解答题 ( 共 78 分)19.(10 分) 解方程组与不等式组 :(1)(2018武汉)(2)(2018宁夏)解:(1) ②- ①, 得 x=6,把 x=6 代入① , 得 y=4.所以原方程组的解为(2)解不等式①得 ,x ≤-1,解不等式②得 ,x>-7,所以 , 原不等式组的解集为 -7<x ≤-1.20.(8 分) 如图所示 , 已知 DF⊥AB于点 F, ∠A=40°, ∠D=50°, 求∠ ACB的度数 .解:在 Rt△AFG中, ∠AGF=90°- ∠A=90°-40 °=50°, 所以∠CGD=∠AGF=50°. 所以∠ ACB=∠CGD+∠D=50°+50°=100°.21.(8 分) 如图 , ∠ACB=90°,BD 平分∠ ABE,CD∥AB交 BD于 D,∠1=20°, 求∠ 2 的度数.解:因为 BD平分∠ ABE,∠1=20°,所以∠ ABC=2∠1=40°.因为 CD∥AB,所以∠ DCE=∠ABC=40°.因为∠ ACB=90°,所以∠ 2=90°-40 °=50°.22.(8 分)(2018 高青期末 ) 如图 , 在△ ACB中,AC=BC,AD为△ ACB的高线 ,CE 为△ ACB的中线 , 求证 :∠DAB=∠ACE.证明 : 因为 AC=BC,CE为△ ACB的中线 ,所以∠ CAB=∠B,CE⊥AB,所以∠ CAB+∠ACE=90°.因为 AD为△ ACB的高线 , 所以∠ D=90°.所以∠ DAB+∠B=90°,所以∠ DAB=∠ACE.23.(10 分) 为了解学生的体能情况 , 随机选取了 1 000 名学生进行调查 , 并记录了他们对长跑、短跑、跳绳、跳远四个项目的喜欢情况 , 整理成以下统计表 , 其中“√”表示喜欢 , “×”表示不喜欢.项目长跑短跑跳绳跳远学生数200√×√√300×√×√150√√√×200√×√×150√×××(1)估计学生同时喜欢短跑和跳绳的概率 ;(2)估计学生在长跑、短跑、跳绳、跳远中同时喜欢三个项目的概率;(3)如果学生喜欢长跑 , 则该同学同时喜欢短跑、跳绳、跳远中哪项的可能性大 ?解:(1) 同时喜欢短跑和跳绳的概率为= .(2) 同时喜欢三个项目的概率为= .(3)喜欢长跑的 700 人中 , 有 150 人选择了短跑 ,550 人选择了跳绳 ,200 人选择了跳远 , 于是喜欢长跑的学生又同时喜欢跳绳的可能性大 .24.(10 分) 在数学学习中 , 及时对知识进行归纳和整理是完善知识结构的重要方法 . 善于学习的小明在学习了一次方程 ( 组) 、一元一次不等式和一次函数后 , 把相关知识归纳整理如下 :(1) 请你根据以上方框中的内容在下面数字序号后写出相应的结论:①; ②; ③;④.(2)如果点 C的坐标为 (1,3), 求不等式 kx+b≤k1x+b1的解集 .解:(1) ①kx+b=0;②③kx+b>0;④kx+b<0.(2)由图象可知 , 不等式 kx+b≤k1x+b1的解集是 x≥1.25.(12 分) 蔬菜经营户老王 , 近两天经营的是白菜和西兰花.(1) 昨天的白菜和西兰花的进价和售价如表, 老王用 600 元批发白菜和西兰花共200 市斤 , 当天售完后老王一共能赚多少元钱?(2)今天因进价不变 , 老王仍用 600 元批发白菜和西兰花共 200 市斤 . 但在运输中白菜损坏了 10%, 而西兰花没有损坏仍按昨天的售价销售 , 要想当天售完后所赚的钱不少于昨天所赚的钱 , 请你帮老王计算 , 应怎样给白菜定售价 ?( 精确到 0.1 元)白菜西兰花进价 ( 元/ 市斤 ) 2.8 3.2售价 ( 元/ 市斤 )4 4.5解:(1)设老王批发了白菜 x 市斤和西兰花 y 市斤 , 根据题意得 ,解得(4-2.8)×100+(4.5-3.2)×100=250(元).答:当天售完后老王一共能赚 250 元钱 .(2) 设白菜的售价为 t 元.100×(1-10%)t+100 ×4.5-600 ≥250,t ≥≈4.44.答: 白菜的售价不低于 4.5 元/ 市斤 .26.(12 分)(2018 高青期末 ) 已知△ ABD与△ GDF都是等腰直角三角形 ,BD 与 DF均为斜边 (BD<DF).如图 ,B,D,F 在同一直线上 , 过 F 作 MF⊥GF于点 F, 取 MF=AB,连接 AM交 BF于点 H, 连接 GA,GM.(1)求证 :AH=HM;(2)请判断△ GAM的形状 , 并给予证明 ;(3)请用等式表示线段 AM,BD,DF的数量关系 , 不必说明理由 .(1)证明 : 因为 MF⊥GF,所以∠ GFM=90°,因为△ ABD与△ GDF都是等腰直角三角形 ,所以∠ DFG=∠ABD=45°,所以∠ HFM=90°-45 °=45°,所以∠ ABD=∠HFM,因为 AB=MF,∠ AHB=∠MHF,所以△ AHB≌△ MHF,所以 AH=HM.(2)解: △GAM是等腰直角三角形 , 理由是 : 因为△ ABD与△ GDF都是等腰直角三角形 , 所以 AB=AD,DG=FG,∠ADB=∠GDF=45°,所以∠ ADG=∠GFM=90°,因为 AB=FM,所以 AD=FM,又DG=FG,所以△ GAD≌△ GMF,所以 AG=MG,∠ AGD=∠MGF,所以∠ AGD+∠DGM=∠MGF+∠DGM=90°,所以△ GAM是等腰直角三角形 .222(3) 解:AM=BD+DF.。

鲁教版(五四制)七年级下册数学期末检测试题有答案

鲁教版(五四制)七年级下册数学期末检测试题有答案

鲁教版七年级第二学期期末检测数学试题(时间:120分钟满分:150分)一、选择题(每小题4分,共48分)1.(2018北京)方程组的解为( D )(A) (B)(C) (D)解析:法一将4组解分别代入原方程组,只有D选项同时满足两个方程,故选D.法二由①得x=y+3,③把③代入②得,3(y+3)-8y=14,解得y=-1,将y=-1代入③得x=2.所以方程组的解为故选D.2.(2018烟台)下列说法正确的是( A )(A)367人中至少有2人生日相同(B)任意掷一枚均匀的骰子,掷出的点数是偶数的概率是(C)天气预报说明天的降水概率为90%,则明天一定会下雨(D)某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖解析:一年最多366天,所以367人中至少有2人生日相同,选项A正确;任意掷一枚均匀的骰子,掷出的点数是偶数的概率应是,选项B错误;天气预报说明天的降水概率为90%,只是说降雨的可能性较大,但不能说明天一定会下雨,选项C错误;某种彩票中奖的概率是1%,并不是说买100张彩票一定有1张中奖,选项D错误.故选A.3.(2018日照)如图,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,则∠1等于( D )(A)30°(B)25°(C)20°(D)15°解析:因为一副直角三角板的两条斜边互相平行,所以∠3=∠2=45°,因为∠4=30°,所以∠1=∠3-∠4=15°.故选D.4.(2018镇江)小明将如图所示的转盘分成n(n是正整数)个扇形,并使得各个扇形的面积都相等,然后他在这些扇形区域内分别标连续偶数数字2,4,6,…,2n(每个区域内标注1个数字,且各区域内标注的数字互不相同),转动转盘1次,当转盘停止转动时,若事件“指针所落区域标注的数字大于8”的概率是,则n的取值为( C )(A)36 (B)30 (C)24 (D)18解析:因为事件“指针所落区域标注的数字大于8”的概率是,所以=.解得n=24.故选C.5. 如图,已知点P到AE,AD,BC的距离相等,则下列说法:①点P在∠BAC的平分线上;②点P在∠CBE的平分线上;③点P在∠BCD的平分线上;④点P是∠BAC,∠CBE,∠BCD的平分线的交点,其中正确的是( A )(A)①②③④ (B)①②③(C)②③ (D)④解析:因为点P到AE,AD,BC的距离相等,所以点P在∠BAC的平分线上,故①正确;点P在∠CBE的平分线上,故②正确;点P在∠BCD的平分线上,故③正确;点P是∠BAC,∠CBE,∠BCD的平分线的交点,故④正确,综上所述,正确的是①②③④.故选A.6.如图,AB,CD交于O点,且互相平分,则图中全等三角形有( C )(A)2对(B)3对(C)4对(D)5对解析:题图中的全等三角形有△AOC≌△BOD,△BOC≌△AOD,△ABC≌△BAD,△ACD≌△BDC,共4对.故选C.7.已知点P(a+1,-+1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是( C )解析:因为点P(a+1,-+1)关于原点的对称点在第四象限,所以点P在第二象限,所以解不等式组得a<-1.故选C.8.如图,△ABC为等边三角形,D是BC边上一点,在AC边上取一点F,使CF=BD,在AB边上取一点E,使BE=DC,则∠EDF的度数为( C )(A)30°(B)45°(C)60°(D)70°解析:易证△BED≌△CDF(SAS),得∠BED=∠CDF,又因为∠EDF+∠CDF=∠B+∠BED,所以∠EDF=∠B=60°.故选C.9.(2018台州)学校八年级师生共466人准备参加社会实践活动.现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x辆,37座客车y辆,根据题意可列出方程组( A )(A) (B)(C) (D)解析:根据题意49座客车x辆,37座客车y辆,可知x+y=10,根据对应车辆载人数可知49x+37y=466,故选A.10.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的∠A是120°,第二次拐的∠B是150°,第三次拐的角是∠C,这时恰好和第一次拐弯之前的道路平行,则∠C的度数为( C )(A)100° (B)120° (C)150° (D)160°解析:法一延长AB,EC交于点D,根据题意∠D=∠A=120°;在△BCD中,∠BCD=∠ABC-∠D=150°-120°=30°,所以∠BCE=180°-∠BCD=180°-30°=150°,故选C.法二过点B作BD∥AE,因为AE∥CF,所以AE∥BD∥CF,所以∠ABD=∠A=120°,因为∠ABC=150°,所以∠CBD=∠CBA-∠ABD=150°-120°=30°,因为已证得CF∥BD,所以∠CBD+∠C=180°,所以∠C=180°-∠CBD=180°-30°=150°.故选C.11.关于x的不等式组的解集中至少有5个整数解,则正数a的最小值是( B )(A)3 (B)2 (C)1 (D)解析:解不等式①得x≤a,解不等式②得x>- a.则不等式组的解集是-a<x≤a.因为不等式组至少有5个整数解,所以a-(-a)≥5,解得a≥2.所以正数a的最小值是2.故选B.12.如图,在第1个△A 1BC 中,∠B=30°,A 1B=CB;在边A 1B 上任取一点D,延长CA 1到A 2,使A 1A 2=A 1D,得到第2个△A 1A 2D;在边A 2D 上任取一点E,延长A 1A 2到A 3,使A 2A 3=A 2E,得到第3个△A 2A 3E,…按此做法继续下去,则第n 个三角形中以A n 为顶点的内角度数是( C )(A)()n·75° (B)()n-1·65° (C)()n-1·75° (D)()n ·85° 解析:因为A 1B=CB,∠B=30°, 所以∠C=∠BA 1C=75°. 又因为A 1A 2=A 1D,所以∠A 1A 2D=∠A 1DA 2=∠DA 1C=×75°=()2-1×75°;同理,∠A 2A 3E=∠A 2EA 3=∠DA 2A 1 =××75°=()3-1×75°;∠A 3A 4F=()4-1×75°;…第n 个三角形中以A n 为顶点的内角度数是()n-1×75°. 故选C.二、填空题(每小题4分,共24分)13.(2018绥化)如图,一块飞镖游戏板由大小相等的小正方形格子构成.向游戏板随机投掷一枚飞镖,击中黑色区域的概率是.解析:设小正方形的边长为1, 所以击中黑色区域的概率是=.14.(2018菏泽)不等式组的最小整数解是 0 .解析:解不等式组,得-1<x ≤2, 所以其最小整数解是0.15.(2018镇江一模)如图,l1∥l2,△ABC的顶点B,C在直线l2上,已知∠A=40°,∠1=60°,则∠2的度数为100°.解析:因为l1∥l2,所以∠3=∠1=60°,因为∠A=40°,所以∠2=∠A+∠3=100°.16.如图,在△ABC中,AB=AC,∠BAC=36°,DE是线段AC的垂直平分线,若BE=a,AE=b,则用含a,b的代数式表示△ABC的周长为2a+3b .解析:由题意,得AC=AB=a+b,∠B=∠ACB=(180°-36°)÷2=72°,因为DE垂直平分线段AC,所以EA=EC,所以∠ECA=∠A=36°,所以∠ECB=36°,∠BEC=72°,所以CB=CE=b,故△ABC的周长为2a+3b.17.(2018滨州)若关于x,y的二元一次方程组的解是则关于a,b的二元一次方程组的解是.解析:观察两个方程组的结构特点,a+b相当于x,a-b相当于y,故可直接得出解得从而得出二元一次方程组的解是18.若不等式组无解,则m的取值范围是m<.解析:解不等式2x-3≥0,得x≥,要使不等式组无解,则m<.三、解答题(共78分)19.(10分)解方程组与不等式组:(1)(2018武汉)(2)(2018宁夏)解:(1)②-①,得x=6,把x=6代入①,得y=4.所以原方程组的解为(2)解不等式①得,x≤-1,解不等式②得,x>-7,所以,原不等式组的解集为-7<x≤-1.20.(8分)如图所示,已知DF⊥AB于点F,∠A=40°,∠D=50°,求∠ACB的度数.解:在Rt△AFG中,∠AGF=90°-∠A=90°-40°=50°,所以∠CGD=∠AGF=50°.所以∠ACB=∠CGD+∠D=50°+50°=100°.21.(8分)如图,∠ACB=90°,BD平分∠ABE,CD∥AB交BD于D,∠1=20°,求∠2的度数. 解:因为BD平分∠ABE,∠1=20°,所以∠ABC=2∠1=40°.因为CD∥AB,所以∠DCE=∠ABC=40°.因为∠ACB=90°,所以∠2=90°-40°=50°.22.(8分)(2018高青期末)如图,在△ACB中,AC=BC,AD为△ACB的高线,CE为△ACB的中线,求证:∠DAB=∠ACE.证明:因为AC=BC,CE为△ACB的中线,所以∠CAB=∠B,CE⊥AB,所以∠CAB+∠ACE=90°.因为AD为△ACB的高线,所以∠D=90°.所以∠DAB+∠B=90°,所以∠DAB=∠ACE.23.(10分)为了解学生的体能情况,随机选取了1 000名学生进行调查,并记录了他们对长跑、短跑、跳绳、跳远四个项目的喜欢情况,整理成以下统计表,其中“√”表示喜欢,“×”表示不喜欢.项目长跑短跑跳绳跳远学生数200 √×√√300 ×√×√150 √√√×200 √×√×150 √×××(1)估计学生同时喜欢短跑和跳绳的概率;(2)估计学生在长跑、短跑、跳绳、跳远中同时喜欢三个项目的概率;(3)如果学生喜欢长跑,则该同学同时喜欢短跑、跳绳、跳远中哪项的可能性大?解:(1)同时喜欢短跑和跳绳的概率为=.(2)同时喜欢三个项目的概率为=.(3)喜欢长跑的700人中,有150人选择了短跑,550人选择了跳绳,200人选择了跳远,于是喜欢长跑的学生又同时喜欢跳绳的可能性大.24.(10分)在数学学习中,及时对知识进行归纳和整理是完善知识结构的重要方法.善于学习的小明在学习了一次方程(组)、一元一次不等式和一次函数后,把相关知识归纳整理如下:(1)请你根据以上方框中的内容在下面数字序号后写出相应的结论:①;②;③; ④.(2)如果点C的坐标为(1,3),求不等式kx+b≤k1x+b1的解集.解:(1)①kx+b=0;②③kx+b>0;④kx+b<0.(2)由图象可知,不等式kx+b≤k1x+b1的解集是x≥1.25.(12分)蔬菜经营户老王,近两天经营的是白菜和西兰花.(1)昨天的白菜和西兰花的进价和售价如表,老王用600元批发白菜和西兰花共200市斤,当天售完后老王一共能赚多少元钱?(2)今天因进价不变,老王仍用600元批发白菜和西兰花共200市斤.但在运输中白菜损坏了10%,而西兰花没有损坏仍按昨天的售价销售,要想当天售完后所赚的钱不少于昨天所赚的钱,请你帮老王计算,应怎样给白菜定售价?(精确到0.1元)白菜西兰花进价(元/市斤) 2.8 3.2售价(元/市斤) 4 4.5解:(1)设老王批发了白菜x市斤和西兰花y市斤,根据题意得,解得(4-2.8)×100+(4.5-3.2)×100=250(元).答:当天售完后老王一共能赚250元钱.(2)设白菜的售价为t元.100×(1-10%)t+100×4.5-600≥250,t≥≈4.44.答:白菜的售价不低于4.5元/市斤.26.(12分)(2018高青期末)已知△ABD与△GDF都是等腰直角三角形,BD与DF均为斜边(BD<DF).如图,B,D,F在同一直线上,过F作MF⊥GF于点F,取MF=AB,连接AM交BF于点H,连接GA,GM.(1)求证:AH=HM;(2)请判断△GAM的形状,并给予证明;(3)请用等式表示线段AM,BD,DF的数量关系,不必说明理由.(1)证明:因为MF⊥GF,所以∠GFM=90°,因为△ABD与△GDF都是等腰直角三角形,所以∠DFG=∠ABD=45°,所以∠HFM=90°-45°=45°,所以∠ABD=∠HFM,因为AB=MF,∠AHB=∠MHF,所以△AHB≌△MHF,所以AH=HM.(2)解:△GAM是等腰直角三角形,理由是:因为△ABD与△GDF都是等腰直角三角形,所以AB=AD,DG=FG,∠ADB=∠GDF=45°,所以∠ADG=∠GFM=90°,因为AB=FM,所以AD=FM,又DG=FG,所以△GAD≌△GMF,. 所以AG=MG,∠AGD=∠MGF,所以∠AGD+∠DGM=∠MGF+∠DGM=90°,所以△GAM是等腰直角三角形.(3)解:AM2=BD2+DF2..。

精选鲁教版(五四制)七年级下册数学期末检测试题有答案

精选鲁教版(五四制)七年级下册数学期末检测试题有答案

鲁教版七年级第二学期期末检测数学试题(时间:120分钟满分:150分)一、选择题(每小题4分,共48分)1.(2018北京)方程组的解为( D )(A) (B)(C) (D)解析:法一将4组解分别代入原方程组,只有D选项同时满足两个方程,故选D.法二由①得x=y+3,③把③代入②得,3(y+3)-8y=14,解得y=-1,将y=-1代入③得x=2.所以方程组的解为故选D.2.(2018烟台)下列说法正确的是( A )(A)367人中至少有2人生日相同(B)任意掷一枚均匀的骰子,掷出的点数是偶数的概率是(C)天气预报说明天的降水概率为90%,则明天一定会下雨(D)某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖解析:一年最多366天,所以367人中至少有2人生日相同,选项A正确;任意掷一枚均匀的骰子,掷出的点数是偶数的概率应是,选项B错误;天气预报说明天的降水概率为90%,只是说降雨的可能性较大,但不能说明天一定会下雨,选项C错误;某种彩票中奖的概率是1%,并不是说买100张彩票一定有1张中奖,选项D错误.故选A.3.(2018日照)如图,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,则∠1等于( D )(A)30°(B)25°(C)20°(D)15°解析:因为一副直角三角板的两条斜边互相平行,所以∠3=∠2=45°,因为∠4=30°,所以∠1=∠3-∠4=15°.故选D.4.(2018镇江)小明将如图所示的转盘分成n(n是正整数)个扇形,并使得各个扇形的面积都相等,然后他在这些扇形区域内分别标连续偶数数字2,4,6,…,2n(每个区域内标注1个数字,且各区域内标注的数字互不相同),转动转盘1次,当转盘停止转动时,若事件“指针所落区域标注的数字大于8”的概率是,则n的取值为( C )(A)36 (B)30 (C)24 (D)18解析:因为事件“指针所落区域标注的数字大于8”的概率是,所以=.解得n=24.故选C.5. 如图,已知点P到AE,AD,BC的距离相等,则下列说法:①点P在∠BAC的平分线上;②点P在∠CBE的平分线上;③点P在∠BCD的平分线上;④点P是∠BAC,∠CBE,∠BCD的平分线的交点,其中正确的是( A )(A)①②③④ (B)①②③(C)②③ (D)④解析:因为点P到AE,AD,BC的距离相等,所以点P在∠BAC的平分线上,故①正确;点P在∠CBE的平分线上,故②正确;点P在∠BCD的平分线上,故③正确;点P是∠BAC,∠CBE,∠BCD的平分线的交点,故④正确,综上所述,正确的是①②③④.故选A.6.如图,AB,CD交于O点,且互相平分,则图中全等三角形有( C )(A)2对(B)3对(C)4对(D)5对解析:题图中的全等三角形有△AOC≌△BOD,△BOC≌△AOD,△ABC≌△BAD,△ACD≌△BDC,共4对.故选C.7.已知点P(a+1,-+1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是( C )解析:因为点P(a+1,-+1)关于原点的对称点在第四象限,所以点P在第二象限,所以解不等式组得a<-1.故选C.8.如图,△ABC为等边三角形,D是BC边上一点,在AC边上取一点F,使CF=BD,在AB边上取一点E,使BE=DC,则∠EDF的度数为( C )(A)30°(B)45°(C)60°(D)70°解析:易证△BED≌△CDF(SAS),得∠BED=∠CDF,又因为∠EDF+∠CDF=∠B+∠BED,所以∠EDF=∠B=60°.故选C.9.(2018台州)学校八年级师生共466人准备参加社会实践活动.现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x辆,37座客车y辆,根据题意可列出方程组( A )(A) (B)(C) (D)解析:根据题意49座客车x辆,37座客车y辆,可知x+y=10,根据对应车辆载人数可知49x+37y=466,故选A.10.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的∠A是120°,第二次拐的∠B是150°,第三次拐的角是∠C,这时恰好和第一次拐弯之前的道路平行,则∠C的度数为( C )(A)100° (B)120° (C)150° (D)160°解析:法一延长AB,EC交于点D,根据题意∠D=∠A=120°;在△BCD中,∠BCD=∠ABC-∠D=150°-120°=30°,所以∠BCE=180°-∠BCD=180°-30°=150°,故选C.法二过点B作BD∥AE,因为AE∥CF,所以AE∥BD∥CF,所以∠ABD=∠A=120°,因为∠ABC=150°,所以∠CBD=∠CBA-∠ABD=150°-120°=30°,因为已证得CF∥BD,所以∠CBD+∠C=180°,所以∠C=180°-∠CBD=180°-30°=150°.故选C.11.关于x的不等式组的解集中至少有5个整数解,则正数a的最小值是( B )(A)3 (B)2 (C)1 (D)解析:解不等式①得x≤a,解不等式②得x>- a.则不等式组的解集是-a<x≤a.因为不等式组至少有5个整数解,所以a-(-a)≥5,解得a≥2.所以正数a的最小值是2.故选B.12.如图,在第1个△A 1BC 中,∠B=30°,A 1B=CB;在边A 1B 上任取一点D,延长CA 1到A 2,使A 1A 2=A 1D,得到第2个△A 1A 2D;在边A 2D 上任取一点E,延长A 1A 2到A 3,使A 2A 3=A 2E,得到第3个△A 2A 3E,…按此做法继续下去,则第n 个三角形中以A n 为顶点的内角度数是( C )(A)()n·75° (B)()n-1·65° (C)()n-1·75° (D)()n ·85° 解析:因为A 1B=CB,∠B=30°, 所以∠C=∠BA 1C=75°. 又因为A 1A 2=A 1D,所以∠A 1A 2D=∠A 1DA 2=∠DA 1C=×75°=()2-1×75°;同理,∠A 2A 3E=∠A 2EA 3=∠DA 2A 1 =××75°=()3-1×75°;∠A 3A 4F=()4-1×75°;…第n 个三角形中以A n 为顶点的内角度数是()n-1×75°. 故选C.二、填空题(每小题4分,共24分)13.(2018绥化)如图,一块飞镖游戏板由大小相等的小正方形格子构成.向游戏板随机投掷一枚飞镖,击中黑色区域的概率是.解析:设小正方形的边长为1, 所以击中黑色区域的概率是=.14.(2018菏泽)不等式组的最小整数解是 0 .解析:解不等式组,得-1<x ≤2, 所以其最小整数解是0.15.(2018镇江一模)如图,l1∥l2,△ABC的顶点B,C在直线l2上,已知∠A=40°,∠1=60°,则∠2的度数为100°.解析:因为l1∥l2,所以∠3=∠1=60°,因为∠A=40°,所以∠2=∠A+∠3=100°.16.如图,在△ABC中,AB=AC,∠BAC=36°,DE是线段AC的垂直平分线,若BE=a,AE=b,则用含a,b的代数式表示△ABC的周长为2a+3b .解析:由题意,得AC=AB=a+b,∠B=∠ACB=(180°-36°)÷2=72°,因为DE垂直平分线段AC,所以EA=EC,所以∠ECA=∠A=36°,所以∠ECB=36°,∠BEC=72°,所以CB=CE=b,故△ABC的周长为2a+3b.17.(2018滨州)若关于x,y的二元一次方程组的解是则关于a,b的二元一次方程组的解是.解析:观察两个方程组的结构特点,a+b相当于x,a-b相当于y,故可直接得出解得从而得出二元一次方程组的解是18.若不等式组无解,则m的取值范围是m<.解析:解不等式2x-3≥0,得x≥,要使不等式组无解,则m<.三、解答题(共78分)19.(10分)解方程组与不等式组:(1)(2018武汉)(2)(2018宁夏)解:(1)②-①,得x=6,把x=6代入①,得y=4.所以原方程组的解为(2)解不等式①得,x≤-1,解不等式②得,x>-7,所以,原不等式组的解集为-7<x≤-1.20.(8分)如图所示,已知DF⊥AB于点F,∠A=40°,∠D=50°,求∠ACB的度数.解:在Rt△AFG中,∠AGF=90°-∠A=90°-40°=50°,所以∠CGD=∠AGF=50°.所以∠ACB=∠CGD+∠D=50°+50°=100°.21.(8分)如图,∠ACB=90°,BD平分∠ABE,CD∥AB交BD于D,∠1=20°,求∠2的度数.解:因为BD平分∠ABE,∠1=20°,所以∠ABC=2∠1=40°.因为CD∥AB,所以∠DCE=∠ABC=40°.因为∠ACB=90°,所以∠2=90°-40°=50°.22.(8分)(2018高青期末)如图,在△ACB中,AC=BC,AD为△ACB的高线,CE为△ACB的中线,求证:∠DAB=∠ACE.证明:因为AC=BC,CE为△ACB的中线,所以∠CAB=∠B,CE⊥AB,所以∠CAB+∠ACE=90°.因为AD为△ACB的高线,所以∠D=90°.所以∠DAB+∠B=90°,所以∠DAB=∠ACE.23.(10分)为了解学生的体能情况,随机选取了1 000名学生进行调查,并记录了他们对长跑、短跑、跳绳、跳远四个项目的喜欢情况,整理成以下统计表,其中“√”表示喜欢,“×”表示不喜欢.项目长跑短跑跳绳跳远学生数200 √×√√300 ×√×√150 √√√×200 √×√×150 √×××(2)估计学生在长跑、短跑、跳绳、跳远中同时喜欢三个项目的概率;(3)如果学生喜欢长跑,则该同学同时喜欢短跑、跳绳、跳远中哪项的可能性大?解:(1)同时喜欢短跑和跳绳的概率为=.(2)同时喜欢三个项目的概率为=.(3)喜欢长跑的700人中,有150人选择了短跑,550人选择了跳绳,200人选择了跳远,于是喜欢长跑的学生又同时喜欢跳绳的可能性大.24.(10分)在数学学习中,及时对知识进行归纳和整理是完善知识结构的重要方法.善于学习的小明在学习了一次方程(组)、一元一次不等式和一次函数后,把相关知识归纳整理如下:(1)请你根据以上方框中的内容在下面数字序号后写出相应的结论:①;②;③; ④.(2)如果点C的坐标为(1,3),求不等式kx+b≤k1x+b1的解集.解:(1)①kx+b=0;②③kx+b>0;④kx+b<0.(2)由图象可知,不等式kx+b≤k1x+b1的解集是x≥1.25.(12分)蔬菜经营户老王,近两天经营的是白菜和西兰花.(1)昨天的白菜和西兰花的进价和售价如表,老王用600元批发白菜和西兰花共200市斤,当天售完后老王一共能赚多少元钱?(2)今天因进价不变,老王仍用600元批发白菜和西兰花共200市斤.但在运输中白菜损坏了10%,而西兰花没有损坏仍按昨天的售价销售,要想当天售完后所赚的钱不少于昨天所赚的钱,请你帮老王计算,应怎样给白菜定售价?(精确到0.1元)白菜西兰花进价(元/市斤) 2.8 3.2售价(元/市斤) 4 4.5解:(1)设老王批发了白菜x市斤和西兰花y市斤,根据题意得,解得(4-2.8)×100+(4.5-3.2)×100=250(元).答:当天售完后老王一共能赚250元钱.(2)设白菜的售价为t元.100×(1-10%)t+100×4.5-600≥250,t≥≈4.44.答:白菜的售价不低于4.5元/市斤.26.(12分)(2018高青期末)已知△ABD与△GDF都是等腰直角三角形,BD与DF均为斜边(BD<DF).如图,B,D,F在同一直线上,过F作MF⊥GF于点F,取MF=AB,连接AM交BF于点H,连接GA,GM.(1)求证:AH=HM;(2)请判断△GAM的形状,并给予证明;(3)请用等式表示线段AM,BD,DF的数量关系,不必说明理由.(1)证明:因为MF⊥GF,所以∠GFM=90°,因为△ABD与△GDF都是等腰直角三角形,所以∠DFG=∠ABD=45°,所以∠HFM=90°-45°=45°,所以∠ABD=∠HFM,因为AB=MF,∠AHB=∠MHF,所以△AHB≌△MHF,所以AH=HM.(2)解:△GAM是等腰直角三角形,理由是:因为△ABD与△GDF都是等腰直角三角形,所以AB=AD,DG=FG,∠ADB=∠GDF=45°,所以∠ADG=∠GFM=90°,因为AB=FM,所以AD=FM,又DG=FG,所以△GAD≌△GMF,... 所以AG=MG,∠AGD=∠MGF,所以∠AGD+∠DGM=∠MGF+∠DGM=90°,所以△GAM是等腰直角三角形.(3)解:AM2=BD2+DF2....。

鲁教版(五四制)2018--2019学年度第二学期七年级期末复习数学试卷

鲁教版(五四制)2018--2019学年度第二学期七年级期末复习数学试卷

绝密★启用前鲁教版(五四制)2018--2019学年度第二学期七年级期末复习数学试卷注意事项:1.做卷时间100分钟,满分120分 2.做题要仔细,不要漏做 一、单选题(计30分)1.(本题3分)下列方程是二元一次方程的是( ) A .2x-y=3B .x+1=2C .D .2.(本题3分)某校九年级(1)班为了筹备演讲比赛,准备用200元钱购买日记本和钢笔两种奖品(两种都要买),其中日记本10元/本,钢笔l5元/支,在钱全部用完的条件下,购买的方案共有( ) A .4种B .5种C .6种D .7种 3.(本题3分)已知则等于( ) A .38B .19C .14D .224.(本题3分)如图所示,将含有角的三角板的直角顶点放在相互平行的两条直线其中一条上,∠1=35°,则∠2的度数A .55°B .25°C .30°D .50° 5.(本题3分)如图,下列条件中:(1);(2);(3);(4);能判定的条件个数有( ).A .1个B .2个C .3个D .4个6.(本题3分)中,若,则的形状是( ).A .直角三角形B .等腰三角形C .锐角三角形D .钝角三角形7.(本题3分)下列事件:①东边日出西边雨;②抛出的篮球会下落;③没有水分,水稻种子发芽;④367 人中至少有 2 人的生日相同.其中确定事件有( ) A .1个B .2个C .3个D .4个8.(本题3分)如图,在△ABC 中, AB =AC ,AB 的垂直平分线DE 交AC 于E .若∠A =40°,则∠EBC 的度数是( )A .30°B .35°C .40°D .45°9.(本题3分)如图,∠C=∠B ,能用ASA 来判断△ABD ≌△ACE ,需要添加的条件是( )A .AE=ADB .AB=AC C .CE=BD D .∠ADB=∠ABC10.(本题3分)已知不等式组的解集是2<x <3,则关于x 的方程ax+b =0的解为( ) A .x =34 B .x =-34 C .x =21 D .x =-21 二、填空题(计30分)11.(本题4分)二元一次方程的一组解是则______.12.(本题4分)如图所示,已知FD ∥BE ,那么∠1+∠2﹣∠3=_____.13.(本题4分)一枚质地均匀的骰子的6个面上分别刻有1~6的点数,抛掷这枚骰子1次,向上一面的点数大于4的概率是_________. 14.(本题4分)如图,在中,,,平分,交于点,若,则________.15.(本题4分)不等式组的非负整数解的个数为______16.(本题4分)某中学有若干间学生宿舍,若每间宿舍住4人,则有20人没有宿舍住;若每间住8人,则有一间宿舍住不满也不空,则住宿舍的学生人数___________17.(本题4分)如图,在△ABC 中,∠B=90°,∠A=30°,DE 是斜边AC 的垂直平分线,分别交AB ,AC 于点D ,E ,若BC=2,则DE=___.18.(本题4分)《孙子算经》中有这样一道题:今有木,不知长短.引绳度之,余绳四尺五,屈绳量之,不足一尺.问木长几何?大意是:用一根绳子去量一根木条,绳子剩余尺;将绳子对折再量木条,木条长度多一尺,则木条长_____尺.三、解答题(计32分)19.(本题7分)解方程组 (1); (2).20.(本题7分)解不等式组:(1) (2)21.(本题7分)某公司在甲、乙仓库共存放某种原料450吨,如果运出甲仓库所存放原料的60%,运出乙仓库所存原料的40%,那么乙仓库剩余的原料比甲仓库剩余的原料多30吨,求甲、乙两仓库各存放原料多少吨?22.(本题7分)如图,的顶点分别落在直线上,平分交于点H ,,.(1)求的度数;(2)与平行吗?请说明理由.23.(本题7分)一个不透明的袋子里装有8个红球,4个黄球,3个白球,他们除了颜色外都相同,两人做游戏,游戏规则如下:一个人抓住袋子,一个人摸球,若摸出红球,摸球者胜,否则拿袋子的人获胜.(1)如果你参加游戏,为了尽可能的获胜,你是做摸球的人还是做拿袋子的人?为什么? (2)你说这个游戏公平吗?如果公平,说明理由:如果不公平,请给出修改建议,使它对双方都是公平的.24.(本题7分)一个不透明袋中装有红、黄、绿三种颜色的球共36个,它们除颜色外都相同,其中黄球个数是绿球个数的2倍,已知从袋中摸出一个球是红球的概率为31. (1)分别求红球和绿球的个数.(2)求从袋中随机摸出一球是绿球的概率.(3)从袋中拿出4个黄球,将剩余的球搅拌均匀,求从袋中剩余的球中随机摸出一个球是红球的概率.25.(本题8分)如图,D 、E 分别为等边△ABC 中BC 和AC 上的点,且CD =AE ,连接AD 、BE ,求证:AD =BE .26.(本题8分)如图,在ΔABC 中,AB=AC,BC=12,∠BAC=120°,AB 的垂直平分线交BC 边于点E ,AC 的垂直平分线交BC 边于点N.(1)求△AEN 的周长;(2)判断ΔAEN 的形状并说明理由.参考答案1.A【解析】【分析】根据二元一次方程的定义对各选项进行逐一分析即可.【详解】解:A.符合二元一次方程的定义,故是二元一次方程,故本选项正确;B.含有一个未知数,是一元一次方程,故本选项错误;C.是分式方程,故本选项错误;D.是三元一次方程,故本选项错误.故选:A.【点睛】本题考查了二元一次方程的定义,即含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程.2.C【解析】【分析】设购买日记本x本,钢笔y支,根据总价格为200可得二元一次方程,根据整数解即可得答案.【详解】设购买日记本x本,钢笔y支,∴10x+15y=200,即2x+3y=40,∵x、y均为整数,∴x=2时,y=12,x=5时,y=10,x=8时,y=8,x=11时,y=6,x=14时,y=4,x=17时,y=2,∴共有6种购买方案,故选C.【点睛】本题考查二元一次方程的应用,根据已知条件找出等量关系并根据整数值来确定购买方案是解题关键.3.B【解析】【分析】把三个方程相加得到2a+2b+2c=38,然后两边除以2即可得到a+b+c的值.【详解】解:将三个方程相加可得:2a+2b+2c=38,所以a+b+c=19.故选B.【点睛】本题考查了等式的性质和解三元一次方程组,可利用加减消元或代入消元把解三元一次方程组的问题转化为解二元一次方程组.4.B【解析】【分析】首先过A作AE∥NM,然后判定AE∥GH,根据平行线的性质可得∠3=∠1=35°,再计算出∠4的度数,再根据平行线的性质可得答案.【详解】过A作AE∥NM,∵NM∥GH,∴AE∥GH,∴∠3=∠1=35°,∵∠BAC=60°,∴∠4=60°−35°=25°,∵NM∥AE,∴∠2=∠4=25°,故选:B.【点睛】考查平行线的性质以及平行公理,掌握平行线的性质是解题的关键.5.B【解析】【分析】根据平行线的判定定理,(3)(4)能判定AB∥CD.【详解】解:(1)∠B+∠BAD=180°,∠B,∠BAD不是截AB、CD所得的同旁内角,所以不能判定AB∥CD;(2)∠1=∠2,但∠1,∠2不是截AB、CD所得的内错角,所以不能判定AB∥CD;(3)∠3=∠4,内错角相等,两直线平行,则能判定AB∥CD;(4)∠B=∠5,同位角相等,两直线平行,则能判定AB∥CD.满足条件的有(3),(4).故选:B.【点睛】本题考查两直线平行的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行,并要分清给出的角所截的是哪两条直线.6.A【解析】【分析】由∠A:∠B:∠C=1:2:3,设∠A、∠B、∠C的度数分别为x、2x、3x,根据三角形的内角和为180°列方程解答即可.【详解】解:设∠A、∠B、∠C的度数分别为x、2x、3x,由题意得x+2x+3x=180解得x=30则2x=60,3x=90∠C=90°则△ABC一定是直角三角形.故选:A.【点睛】本题考查三角形的内角和定理,利用三角之间的关系列方程解决问题是解题的关键.7.C【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:①东边日出西边雨是随机事件,不合题意;②抛出的篮球会下落,是必然事件,属于确定事件;③某没有水分,水稻种子发芽是不可能事件,属于确定事件;④367人中至少有2人的生日相同是必然事件,属于确定事件.故选:C.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.A【解析】【分析】根据等腰三角形顶角的度数,可以计算出等腰三角形底角的度数;又根据线段垂直平分线的性质,知∠A=∠ABE,则计算∠EBC的度数.【详解】∵AB=AC,∠A=40°,∴∠ABC=∠C=(180°-∠A)=70°,∵AB的垂直平分线DE,∴AE=BE,∴∠ABE=∠A=40°,∴∠EBC=∠ABC-∠ABE=70°-40°=30°.故选A.【点睛】此题考查线段垂直平分线的性质、三角形内角和定理、等腰三角形的性质.熟练掌握线段垂直平分线的性质是解答本题的关键.9.B【解析】【分析】已知公共角∠A,根据三角形全等的判定方法,可知用ASA来判断△ACD≌△ABE,需要添加的条件应该是另一组对应角和一组对应边.【详解】∵已具备∠C=∠B,∠A=∠A,∴要用ASA来判断△ABD≌△ACE,需要添加的条件是AB=AC.故选B.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.D【解析】【分析】分别求得两个不等式的解集,根据不等式组的解集为2<x<3,可得2a﹣1=3、b+1=2,解之求得a、b的值,代入方程计算可得.【详解】由x+1<2a,得:x<2a﹣1,由x﹣b>1,得:x>b+1,∵解集是2<x<3,∴2a﹣1=3,b+1=2,解得:a=2,b=1,所以方程为2x+1=0,解得x=﹣,故选D.【点睛】本题考查了解一元一次不等式(组),能正确求出不等式(或组)的解集是解决问题的关键.11.4【解析】【分析】知道了方程的解,可以把这对数值代入方程,得到一个含有未知数k的一元一次方程,从而可以求出k的值.【详解】把代入kx-3y=2,得-k-3×(-2)=2,解得k=4.故答案为:4.【点睛】解题关键是把方程的解代入原方程,把关于x和y的方程转换为k的一元一次方程,求解即可.12.180°【解析】【分析】求出∠AGC=180°-∠2,求出∠1-∠3=∠AGC,代入求出即可.【详解】解:∵DF∥BE,∴∠2+∠FGB=180°,∵∠AGC=∠FGB,∴∠2+∠AGC=180°,∴∠AGC=180°﹣∠2,∵∠1=∠3+∠AGC,∴∠1﹣∠3=∠AGC,∴∠1+∠2﹣∠3=∠AGC+180°﹣∠AGC=180°,故答案为:180°.【点睛】本题考查了三角形外角性质和平行线性质的应用,注意:两直线平行,同旁内角互补.13.【解析】【分析】先求出点数大于4的数,再根据概率公式求解即可.【详解】解:∵点数大于4的数为:5,6,∴向上一面的点数大于4的概率.【点睛】本题考查的是概率公式,熟记随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数的商是解答此题的关键.14.12【解析】【分析】根据角平分线性质求出∠BAD的度数,根据含30度角的直角三角形性质求出AD即可得BD.【详解】∵∠C=90°,∠B=30°,∴∠CAB=60°,AD平分∠CAB,∴∠BAD=30°,∴BD=AD=2CD=12.故答案是:12.【点睛】考查了对含30度角的直角三角形的性质和角平分线性质的应用,求出AD的长是解此题的关键.15.2【解析】【分析】根据不等式的性质解不等式,再进一步考虑其非负整数.【详解】解:由①,得x<;由②,得x≥-7.则它的解集是-7≤x<.其非负整数有0,1.故答案为2.【点睛】本题考查了不等式组的解法,要能够熟练运用不等式的性质.注意:非负整数即正整数和0.16.44【解析】【分析】可设共有x间宿舍,则学生数有(4x+20)人,列出不等式组为0<4x+20-8(x-1)<8解出即可.【详解】设共有x间宿舍,则学生数有(4x+20)人,则解得5<x<7,∵x为整数,∴x=6,即学生有4x+20=44.故答案为:44【点睛】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.准确的解不等式组是需要掌握的基本能力.17.2【解析】【分析】连接DC,由垂直平分线的性质可得DC=DA,易得∠ACD=∠A=30°,∠BCD=30°,利用锐角三角函数定义可得CD的长,利用“在直角三角形中,30°角所对的直角边等于斜边的一半.”可得DE的长.【详解】解:连接DC,∵∠B=90°,∠A=30°,DE是斜边AC的垂直平分线,∴DC=DA,∴∠ACD=∠A=30°,∠BCD=30°,,∵∠BCD=30°,,∴DE=2,故答案为:2.【点睛】本题主要考查了直角三角形的性质和垂直平分线的性质,做出恰当的辅助线是解答此题的关键.18.6.5【解析】【分析】本题的等量关系是:绳长-木长=4.5;木长-×绳长=1,据此列方程组即可求解.【详解】解:设绳子长x尺,木条长y尺,依题意有解得:故答案是:6.5.【点睛】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的二元一次方程组.19.(1);(2);【解析】【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【详解】(1),①代入②得:3x-2x=2,解得:x=2,把x=2代入①得:y=4,则方程组的解为;(2)①-②得:2x=8,即x=4,把x=4代入①得:y=-2,则方程组的解为.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.(1) 1<x<4;(2) x≤-3.【解析】【分析】分别求出各不等式的解集,再求出其公共解集即可.【详解】(1),由①的:x>1,由②得:x<4,∴不等式组的解集为:1<x<4;(2) ,由①的:x≤-3,由②得:x<3,∴不等式组的解集为:x≤-3;【点睛】本题考查了解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解题的关键.21.甲仓库存放原料240吨,,乙仓库存放原料210吨【解析】【分析】要求甲,乙仓库原来存粮分别为多少,就要先设出未知数,找出题中的等量关系列方程求解.题中的等量关系为:从甲仓库运出存粮的60%,从乙仓库运出存粮的40%.结果乙仓库所余的粮食比甲仓库所余的粮食多30吨,甲仓库、乙仓库共存粮450吨.【详解】解:设甲仓库原来存粮x吨,乙仓库原来存粮y吨.根据题意得:解得:答:甲仓库存放原料240吨,,乙仓库存放原料210吨.【点睛】考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题干找出合适的等量关系.22.(1);(2)理由见解析;【解析】【分析】(1)结合的度数,计算的度数,利用三角形三角和为,计算结果,即可.(2)结合三角形三角和的度数为,计算的度数,结合HG平分角,利用内错角相等,两直线平行,判定AB平行CD,即可.【详解】(1)因为,所以因为,所以在中,(2)理由是:因为,所以在中,因为平分,所以因为,所以所以【点睛】本题考查了平行直线判定定理,利用三角形内角和为是解题的关键.23.(1)摸球人;(2)不公平;取出一个红球.【解析】【分析】(1)分别求出摸球的人和拿袋子的人获胜的概率即可进行比较求解;(2)根据题意使两者的概率相同即可做到公平.【详解】(1)P(摸球人获胜)=P(拿袋子的人获胜)=故摸球人获胜的几率大;(2)游戏不公平,应该取出一个红球,使双方获胜的概率一样大.【点睛】此题主要考查概率的计算,解题的关键是根据题意及概率公式进行求解.24.(1)红球有12个,绿球有8个.(2);(3)【解析】【分析】(1)根据红、黄、白三种颜色球共有的个数乘以红球的概率即可求得红球的个数,设绿球有x个,则黄球有2x个,根据球的总个数列出方程求出x的值即可得;(2)用绿球的个数除以总的球数即可;(3)先求出从袋中拿出4个黄球还剩的球数,再根据红球的个数,除以还剩的球数即可.【详解】解:(1)红球个数:36×=12(个),设绿球有x个,则黄球有2x个,根据题意,得:x+2x+12=36,解得:x=8,所以红球有12个,绿球有8个.(2)从袋中随机摸出一球,共有36种等可能的结果,其中摸出绿球的结果有8种,所以从袋中随机摸出一球是绿球的概率为=;(3)拿出4个黄球以后,从袋中随机摸出一球,共有32种等可能的结果,其中摸出红球的结果有12种,所以从袋中剩余的球中随机摸出一个球是红球的概率.【点睛】此题主要考查了概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.25.见解析.【解析】【分析】根据等边三角形的性质可得,AB=AC,∠BAE=∠C,然后利用SAS即可证得;【详解】∵△ABC是等边三角形,∴AB=BC=AC,∠BAC=∠ACB=∠ABC=60°.∵AB=AC,∠BAC=∠ACB,CD=AE∴△ABE≌△CAD(SAS),∴AD=BE.【点睛】本题考查了全等三角形的判定与性质,等边三角形的性质,熟练运用全等三角形的判定是本题的关键.26.(1)△AEN周长为12;(2)△AEN为等边三角形.【解析】【分析】(1)根据垂直平分线的性质,结合已知条件可得AE与BE,AN与NC之间的关系,至此不难得到△AEN的周长;(2)根据已知条件AB=AC,∠BAC=120°,先求出∠ABC和∠ACB的度数;由AE=BE,AN=CN,可求出∠BAE=∠CAN=30°,利用三角形外角定理,即可判断出△AEN的形状.本卷由系统自动生成,请仔细校对后使用,答案仅供【详解】(1)∵AB的垂直平分线交BC边于点E,AC的垂直平分线交BC边于点N,∴AE=BE,AN=CN,∵BC=12,∴△AEN周长=AE+EN+AN=BE+EN+NC=BC=12;(2)∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵AE=BE,AN=CN,∴∠BAE=∠CAN=30°,∴∠EAN=∠BAC-∠BAE-∠CAN=60°;∵∠AEN=∠B+∠BAE=60°,∠ANE=∠C+∠CAN=60°,∴△AEN为等边三角形.【点睛】本题主要考查的是等腰三角形的性质,线段垂直平分线的性质,三角形外角的性质,以及等边三角形的判定.利用这些性质可进行等线段和等角的转化,从而可将已知和待求充分的联系起来.答案第15页,总15页。

2018-2019学年鲁教版(五四制)七年级下数学期末检测试题(有解析)

2018-2019学年鲁教版(五四制)七年级下数学期末检测试题(有解析)

期末检测试题(时间:120分钟满分:150分)一、选择题(每小题4分,共48分)1.(2018北京)方程组的解为( D )(A)(B)(C)(D)解析:法一将4组解分别代入原方程组,只有D选项同时满足两个方程,故选D.法二由①得x=y+3,③把③代入②得,3(y+3)-8y=14,解得y=-1,将y=-1代入③得x=2.所以方程组的解为故选D.2.(2018烟台)下列说法正确的是( A )(A)367人中至少有2人生日相同(B)任意掷一枚均匀的骰子,掷出的点数是偶数的概率是(C)天气预报说明天的降水概率为90%,则明天一定会下雨(D)某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖解析:一年最多366天,所以367人中至少有2人生日相同,选项A正确;任意掷一枚均匀的骰子,掷出的点数是偶数的概率应是,选项B错误;天气预报说明天的降水概率为90%,只是说降雨的可能性较大,但不能说明天一定会下雨,选项C错误;某种彩票中奖的概率是1%,并不是说买100张彩票一定有1张中奖,选项D错误.故选A.3.(2018日照)如图,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,则∠1等于( D )(A)30°(B)25°(C)20°(D)15°解析:因为一副直角三角板的两条斜边互相平行,所以∠3=∠2=45°,因为∠4=30°,所以∠1=∠3-∠4=15°.故选D.4.(2018镇江)小明将如图所示的转盘分成n(n是正整数)个扇形,并使得各个扇形的面积都相等,然后他在这些扇形区域内分别标连续偶数数字2,4,6,…,2n(每个区域内标注1个数字,且各区域内标注的数字互不相同),转动转盘1次,当转盘停止转动时,若事件“指针所落区域标注的数字大于8”的概率是,则n的取值为( C )(A)36 (B)30 (C)24 (D)18解析:因为事件“指针所落区域标注的数字大于8”的概率是,所以=.解得n=24.故选C.5. 如图,已知点P到AE,AD,BC的距离相等,则下列说法:①点P在∠BAC的平分线上;②点P在∠CBE 的平分线上;③点P在∠BCD的平分线上;④点P是∠BAC,∠CBE,∠BCD的平分线的交点,其中正确的是( A )(A)①②③④ (B)①②③(C)②③ (D)④解析:因为点P到AE,AD,BC的距离相等,所以点P在∠BAC的平分线上,故①正确;点P在∠CBE的平分线上,故②正确;点P在∠BCD的平分线上,故③正确;点P是∠BAC,∠CBE,∠BCD的平分线的交点,故④正确,综上所述,正确的是①②③④.故选A.6.如图,AB,CD交于O点,且互相平分,则图中全等三角形有( C )(A)2对(B)3对(C)4对(D)5对解析:题图中的全等三角形有△AOC≌△BOD,△BOC≌△AOD,△ABC≌△BAD,△ACD≌△BDC,共4对.故选C.7.已知点P(a+1,-+1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是( C )解析:因为点P(a+1,-+1)关于原点的对称点在第四象限,所以点P在第二象限,所以解不等式组得a<-1.故选C.8.如图,△ABC为等边三角形,D是BC边上一点,在AC边上取一点F,使CF=BD,在AB边上取一点E,使BE=DC,则∠EDF的度数为( C )(A)30°(B)45°(C)60°(D)70°解析:易证△BED≌△CDF(SAS),得∠BED=∠CDF,又因为∠EDF+∠CDF=∠B+∠BED,所以∠EDF=∠B=60°.故选C.9.(2018台州)学校八年级师生共466人准备参加社会实践活动.现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x辆,37座客车y辆,根据题意可列出方程组( A )(A) (B)(C) (D)解析:根据题意49座客车x辆,37座客车y辆,可知x+y=10,根据对应车辆载人数可知49x+37y=466,故选A.10.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的∠A是120°,第二次拐的∠B是150°,第三次拐的角是∠C,这时恰好和第一次拐弯之前的道路平行,则∠C的度数为( C )(A)100° (B)120° (C)150° (D)160°解析:法一延长AB,EC交于点D,根据题意∠D=∠A=120°;在△BCD中,∠BCD=∠ABC-∠D=150°-120°=30°,所以∠BCE=180°-∠BCD=180°-30°=150°,故选C.法二过点B作BD∥AE,因为AE∥CF,所以AE∥BD∥CF,所以∠ABD=∠A=120°,因为∠ABC=150°,所以∠CBD=∠CBA-∠ABD=150°-120°=30°,因为已证得CF∥BD,所以∠CBD+∠C=180°,所以∠C=180°-∠CBD=180°-30°=150°.故选C.11.关于x的不等式组的解集中至少有5个整数解,则正数a的最小值是( B )(A)3 (B)2 (C)1 (D)解析:解不等式①得x≤a,解不等式②得x>-a.则不等式组的解集是-a<x≤a.因为不等式组至少有5个整数解,所以a-(-a)≥5,解得a≥2.所以正数a的最小值是2.故选B.12.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是( C )(A)()n·75° (B)()n-1·65°(C)()n-1·75° (D)()n·85°解析:因为A1B=CB,∠B=30°,所以∠C=∠BA1C=75°.又因为A1A2=A1D,所以∠A1A2D=∠A1DA2=∠DA1C=×75°=()2-1×75°;同理,∠A2A3E=∠A2EA3=∠DA2A1=××75°=()3-1×75°;∠A3A4F=()4-1×75°;…第n个三角形中以A n为顶点的内角度数是()n-1×75°.故选C.二、填空题(每小题4分,共24分)13.(2018绥化)如图,一块飞镖游戏板由大小相等的小正方形格子构成.向游戏板随机投掷一枚飞镖,击中黑色区域的概率是.解析:设小正方形的边长为1,所以击中黑色区域的概率是=.14.(2018菏泽)不等式组的最小整数解是0 .解析:解不等式组,得-1<x≤2,所以其最小整数解是0.15.(2018镇江一模)如图,l1∥l2,△ABC的顶点B,C在直线l2上,已知∠A=40°,∠1=60°,则∠2的度数为100°.解析:因为l1∥l2,所以∠3=∠1=60°,因为∠A=40°,所以∠2=∠A+∠3=100°.16.如图,在△ABC中,AB=AC,∠BAC=36°,DE是线段AC的垂直平分线,若BE=a,AE=b,则用含a,b的代数式表示△ABC的周长为2a+3b .解析:由题意,得AC=AB=a+b,∠B=∠ACB=(180°-36°)÷2=72°,因为DE垂直平分线段AC,所以EA=EC,所以∠ECA=∠A=36°,所以∠ECB=36°,∠BEC=72°,所以CB=CE=b,故△ABC的周长为2a+3b.17.(2018滨州)若关于x,y的二元一次方程组的解是则关于a,b的二元一次方程组的解是.解析:观察两个方程组的结构特点,a+b相当于x,a-b相当于y,故可直接得出解得从而得出二元一次方程组的解是18.若不等式组无解,则m的取值范围是m<.解析:解不等式2x-3≥0,得x≥,要使不等式组无解,则m<.三、解答题(共78分)19.(10分)解方程组与不等式组:(1)(2018武汉)(2)(2018宁夏)解:(1)②-①,得x=6,把x=6代入①,得y=4.所以原方程组的解为(2)解不等式①得,x≤-1,解不等式②得,x>-7,所以,原不等式组的解集为-7<x≤-1.20.(8分)如图所示,已知DF⊥AB于点F,∠A=40°,∠D=50°,求∠ACB的度数.解:在Rt△AFG中,∠AGF=90°-∠A=90°-40°=50°,所以∠CGD=∠AGF=50°.所以∠ACB=∠CGD+∠D=50°+50°=100°.21.(8分)如图,∠ACB=90°,BD平分∠ABE,CD∥AB交BD于D,∠1=20°,求∠2的度数.解:因为BD平分∠ABE,∠1=20°,所以∠ABC=2∠1=40°.因为CD∥AB,所以∠DCE=∠ABC=40°.因为∠ACB=90°,所以∠2=90°-40°=50°.22.(8分)(2018高青期末)如图,在△ACB中,AC=BC,AD为△ACB的高线,CE为△ACB的中线,求证:∠DAB=∠ACE.证明:因为AC=BC,CE为△ACB的中线,所以∠CAB=∠B,CE⊥AB,所以∠CAB+∠ACE=90°.因为AD为△ACB的高线,所以∠D=90°.所以∠DAB+∠B=90°,所以∠DAB=∠ACE.23.(10分)为了解学生的体能情况,随机选取了1 000名学生进行调查,并记录了他们对长跑、短跑、跳绳、跳远四个项目的喜欢情况,整理成以下统计表,其中“√”表示喜欢,“×”表示不喜欢.(1)估计学生同时喜欢短跑和跳绳的概率;(2)估计学生在长跑、短跑、跳绳、跳远中同时喜欢三个项目的概率;(3)如果学生喜欢长跑,则该同学同时喜欢短跑、跳绳、跳远中哪项的可能性大?解:(1)同时喜欢短跑和跳绳的概率为=.(2)同时喜欢三个项目的概率为=.(3)喜欢长跑的700人中,有150人选择了短跑,550人选择了跳绳,200人选择了跳远,于是喜欢长跑的学生又同时喜欢跳绳的可能性大.24.(10分)在数学学习中,及时对知识进行归纳和整理是完善知识结构的重要方法.善于学习的小明在学习了一次方程(组)、一元一次不等式和一次函数后,把相关知识归纳整理如下:(1)请你根据以上方框中的内容在下面数字序号后写出相应的结论:①;②;③; ④.(2)如果点C的坐标为(1,3),求不等式kx+b≤k1x+b1的解集.解:(1)①kx+b=0;②③kx+b>0;④kx+b<0.(2)由图象可知,不等式kx+b≤k1x+b1的解集是x≥1.25.(12分)蔬菜经营户老王,近两天经营的是白菜和西兰花.(1)昨天的白菜和西兰花的进价和售价如表,老王用600元批发白菜和西兰花共200市斤,当天售完后老王一共能赚多少元钱?(2)今天因进价不变,老王仍用600元批发白菜和西兰花共200市斤.但在运输中白菜损坏了10%,而西兰花没有损坏仍按昨天的售价销售,要想当天售完后所赚的钱不少于昨天所赚的钱,请你帮老王计算,应怎样给白菜定售价?(精确到0.1元)解:(1)设老王批发了白菜x市斤和西兰花y市斤,根据题意得,解得(4-2.8)×100+(4.5-3.2)×100=250(元).答:当天售完后老王一共能赚250元钱.(2)设白菜的售价为t元.100×(1-10%)t+100×4.5-600≥250,t≥≈4.44.答:白菜的售价不低于4.5元/市斤.26.(12分)(2018高青期末)已知△ABD与△GDF都是等腰直角三角形,BD与DF均为斜边(BD<DF).如图,B,D,F在同一直线上,过F作MF⊥GF于点F,取MF=AB,连接AM交BF于点H,连接GA,GM.(1)求证:AH=HM;(2)请判断△GAM的形状,并给予证明;(3)请用等式表示线段AM,BD,DF的数量关系,不必说明理由.(1)证明:因为MF⊥GF,所以∠GFM=90°,因为△ABD与△GDF都是等腰直角三角形,所以∠DFG=∠ABD=45°,所以∠HFM=90°-45°=45°,所以∠ABD=∠HFM,因为AB=MF,∠AHB=∠MHF,所以△AHB≌△MHF,所以AH=HM.(2)解:△GAM是等腰直角三角形,理由是:因为△ABD与△GDF都是等腰直角三角形,所以AB=AD,DG=FG,∠ADB=∠GDF=45°,所以∠ADG=∠GFM=90°,因为AB=FM,所以AD=FM,又DG=FG,所以△GAD≌△GMF,所以AG=MG,∠AGD=∠MGF,所以∠AGD+∠DGM=∠MGF+∠DGM=90°, 所以△GAM是等腰直角三角形.(3)解:AM2=BD2+DF2.。

精编鲁教版(五四制)七年级下册数学期末检测试题有答案

精编鲁教版(五四制)七年级下册数学期末检测试题有答案

鲁教版七年级第二学期期末检测数学试题(时间:120分钟满分:150分)一、选择题(每小题4分,共48分)1.(2018北京)方程组的解为( D )(A) (B)(C) (D)解析:法一将4组解分别代入原方程组,只有D选项同时满足两个方程,故选D.法二由①得x=y+3,③把③代入②得,3(y+3)-8y=14,解得y=-1,将y=-1代入③得x=2.所以方程组的解为故选D.2.(2018烟台)下列说法正确的是( A )(A)367人中至少有2人生日相同(B)任意掷一枚均匀的骰子,掷出的点数是偶数的概率是(C)天气预报说明天的降水概率为90%,则明天一定会下雨(D)某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖解析:一年最多366天,所以367人中至少有2人生日相同,选项A正确;任意掷一枚均匀的骰子,掷出的点数是偶数的概率应是,选项B错误;天气预报说明天的降水概率为90%,只是说降雨的可能性较大,但不能说明天一定会下雨,选项C错误;某种彩票中奖的概率是1%,并不是说买100张彩票一定有1张中奖,选项D错误.故选A.3.(2018日照)如图,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,则∠1等于( D )(A)30°(B)25°(C)20°(D)15°解析:因为一副直角三角板的两条斜边互相平行,所以∠3=∠2=45°,因为∠4=30°,所以∠1=∠3-∠4=15°.故选D.4.(2018镇江)小明将如图所示的转盘分成n(n是正整数)个扇形,并使得各个扇形的面积都相等,然后他在这些扇形区域内分别标连续偶数数字2,4,6,…,2n(每个区域内标注1个数字,且各区域内标注的数字互不相同),转动转盘1次,当转盘停止转动时,若事件“指针所落区域标注的数字大于8”的概率是,则n的取值为( C )(A)36 (B)30 (C)24 (D)18解析:因为事件“指针所落区域标注的数字大于8”的概率是,所以=.解得n=24.故选C.5. 如图,已知点P到AE,AD,BC的距离相等,则下列说法:①点P在∠BAC的平分线上;②点P在∠CBE的平分线上;③点P在∠BCD的平分线上;④点P是∠BAC,∠CBE,∠BCD的平分线的交点,其中正确的是( A )(A)①②③④ (B)①②③(C)②③ (D)④解析:因为点P到AE,AD,BC的距离相等,所以点P在∠BAC的平分线上,故①正确;点P在∠CBE的平分线上,故②正确;点P在∠BCD的平分线上,故③正确;点P是∠BAC,∠CBE,∠BCD的平分线的交点,故④正确,综上所述,正确的是①②③④.故选A.6.如图,AB,CD交于O点,且互相平分,则图中全等三角形有( C )(A)2对(B)3对(C)4对(D)5对解析:题图中的全等三角形有△AOC≌△BOD,△BOC≌△AOD,△ABC≌△BAD,△ACD≌△BDC,共4对.故选C.7.已知点P(a+1,-+1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是( C )解析:因为点P(a+1,-+1)关于原点的对称点在第四象限,所以点P在第二象限,所以解不等式组得a<-1.故选C.8.如图,△ABC为等边三角形,D是BC边上一点,在AC边上取一点F,使CF=BD,在AB边上取一点E,使BE=DC,则∠EDF的度数为( C )(A)30°(B)45°(C)60°(D)70°解析:易证△BED≌△CDF(SAS),得∠BED=∠CDF,又因为∠EDF+∠CDF=∠B+∠BED,所以∠EDF=∠B=60°.故选C.9.(2018台州)学校八年级师生共466人准备参加社会实践活动.现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x辆,37座客车y辆,根据题意可列出方程组( A )(A) (B)(C) (D)解析:根据题意49座客车x辆,37座客车y辆,可知x+y=10,根据对应车辆载人数可知49x+37y=466,故选A.10.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的∠A是120°,第二次拐的∠B是150°,第三次拐的角是∠C,这时恰好和第一次拐弯之前的道路平行,则∠C的度数为( C )(A)100° (B)120° (C)150° (D)160°解析:法一延长AB,EC交于点D,根据题意∠D=∠A=120°;在△BCD中,∠BCD=∠ABC-∠D=150°-120°=30°,所以∠BCE=180°-∠BCD=180°-30°=150°,故选C.法二过点B作BD∥AE,因为AE∥CF,所以AE∥BD∥CF,所以∠ABD=∠A=120°,因为∠ABC=150°,所以∠CBD=∠CBA-∠ABD=150°-120°=30°,因为已证得CF∥BD,所以∠CBD+∠C=180°,所以∠C=180°-∠CBD=180°-30°=150°.故选C.11.关于x的不等式组的解集中至少有5个整数解,则正数a的最小值是( B )(A)3 (B)2 (C)1 (D)解析:解不等式①得x≤a,解不等式②得x>- a.则不等式组的解集是-a<x≤a.因为不等式组至少有5个整数解,所以a-(-a)≥5,解得a≥2.所以正数a的最小值是2.故选B.12.如图,在第1个△A 1BC 中,∠B=30°,A 1B=CB;在边A 1B 上任取一点D,延长CA 1到A 2,使A 1A 2=A 1D,得到第2个△A 1A 2D;在边A 2D 上任取一点E,延长A 1A 2到A 3,使A 2A 3=A 2E,得到第3个△A 2A 3E,…按此做法继续下去,则第n 个三角形中以A n 为顶点的内角度数是( C )(A)()n·75° (B)()n-1·65° (C)()n-1·75° (D)()n ·85° 解析:因为A 1B=CB,∠B=30°, 所以∠C=∠BA 1C=75°. 又因为A 1A 2=A 1D,所以∠A 1A 2D=∠A 1DA 2=∠DA 1C=×75°=()2-1×75°;同理,∠A 2A 3E=∠A 2EA 3=∠DA 2A 1 =××75°=()3-1×75°;∠A 3A 4F=()4-1×75°;…第n 个三角形中以A n 为顶点的内角度数是()n-1×75°. 故选C.二、填空题(每小题4分,共24分)13.(2018绥化)如图,一块飞镖游戏板由大小相等的小正方形格子构成.向游戏板随机投掷一枚飞镖,击中黑色区域的概率是.解析:设小正方形的边长为1, 所以击中黑色区域的概率是=.14.(2018菏泽)不等式组的最小整数解是 0 .解析:解不等式组,得-1<x ≤2, 所以其最小整数解是0.15.(2018镇江一模)如图,l1∥l2,△ABC的顶点B,C在直线l2上,已知∠A=40°,∠1=60°,则∠2的度数为100°.解析:因为l1∥l2,所以∠3=∠1=60°,因为∠A=40°,所以∠2=∠A+∠3=100°.16.如图,在△ABC中,AB=AC,∠BAC=36°,DE是线段AC的垂直平分线,若BE=a,AE=b,则用含a,b的代数式表示△ABC的周长为2a+3b .解析:由题意,得AC=AB=a+b,∠B=∠ACB=(180°-36°)÷2=72°,因为DE垂直平分线段AC,所以EA=EC,所以∠ECA=∠A=36°,所以∠ECB=36°,∠BEC=72°,所以CB=CE=b,故△ABC的周长为2a+3b.17.(2018滨州)若关于x,y的二元一次方程组的解是则关于a,b的二元一次方程组的解是.解析:观察两个方程组的结构特点,a+b相当于x,a-b相当于y,故可直接得出解得从而得出二元一次方程组的解是18.若不等式组无解,则m的取值范围是m<.解析:解不等式2x-3≥0,得x≥,要使不等式组无解,则m<.三、解答题(共78分)19.(10分)解方程组与不等式组:(1)(2018武汉)(2)(2018宁夏)解:(1)②-①,得x=6,把x=6代入①,得y=4.所以原方程组的解为(2)解不等式①得,x≤-1,解不等式②得,x>-7,所以,原不等式组的解集为-7<x≤-1.20.(8分)如图所示,已知DF⊥AB于点F,∠A=40°,∠D=50°,求∠ACB的度数.解:在Rt△AFG中,∠AGF=90°-∠A=90°-40°=50°,所以∠CGD=∠AGF=50°.所以∠ACB=∠CGD+∠D=50°+50°=100°.21.(8分)如图,∠ACB=90°,BD平分∠ABE,CD∥AB交BD于D,∠1=20°,求∠2的度数.解:因为BD平分∠ABE,∠1=20°,所以∠ABC=2∠1=40°.因为CD∥AB,所以∠DCE=∠ABC=40°.因为∠ACB=90°,所以∠2=90°-40°=50°.22.(8分)(2018高青期末)如图,在△ACB中,AC=BC,AD为△ACB的高线,CE为△ACB的中线,求证:∠DAB=∠ACE.证明:因为AC=BC,CE为△ACB的中线,所以∠CAB=∠B,CE⊥AB,所以∠CAB+∠ACE=90°.因为AD为△ACB的高线,所以∠D=90°.所以∠DAB+∠B=90°,所以∠DAB=∠ACE.23.(10分)为了解学生的体能情况,随机选取了1 000名学生进行调查,并记录了他们对长跑、短跑、跳绳、跳远四个项目的喜欢情况,整理成以下统计表,其中“√”表示喜欢,“×”表示不喜欢.项目长跑短跑跳绳跳远学生数200 √×√√300 ×√×√150 √√√×200 √×√×150 √×××(2)估计学生在长跑、短跑、跳绳、跳远中同时喜欢三个项目的概率;(3)如果学生喜欢长跑,则该同学同时喜欢短跑、跳绳、跳远中哪项的可能性大?解:(1)同时喜欢短跑和跳绳的概率为=.(2)同时喜欢三个项目的概率为=.(3)喜欢长跑的700人中,有150人选择了短跑,550人选择了跳绳,200人选择了跳远,于是喜欢长跑的学生又同时喜欢跳绳的可能性大.24.(10分)在数学学习中,及时对知识进行归纳和整理是完善知识结构的重要方法.善于学习的小明在学习了一次方程(组)、一元一次不等式和一次函数后,把相关知识归纳整理如下:(1)请你根据以上方框中的内容在下面数字序号后写出相应的结论:①;②;③; ④.(2)如果点C的坐标为(1,3),求不等式kx+b≤k1x+b1的解集.解:(1)①kx+b=0;②③kx+b>0;④kx+b<0.(2)由图象可知,不等式kx+b≤k1x+b1的解集是x≥1.25.(12分)蔬菜经营户老王,近两天经营的是白菜和西兰花.(1)昨天的白菜和西兰花的进价和售价如表,老王用600元批发白菜和西兰花共200市斤,当天售完后老王一共能赚多少元钱?(2)今天因进价不变,老王仍用600元批发白菜和西兰花共200市斤.但在运输中白菜损坏了10%,而西兰花没有损坏仍按昨天的售价销售,要想当天售完后所赚的钱不少于昨天所赚的钱,请你帮老王计算,应怎样给白菜定售价?(精确到0.1元)白菜西兰花进价(元/市斤) 2.8 3.2售价(元/市斤) 4 4.5解:(1)设老王批发了白菜x市斤和西兰花y市斤,根据题意得,解得(4-2.8)×100+(4.5-3.2)×100=250(元).答:当天售完后老王一共能赚250元钱.(2)设白菜的售价为t元.100×(1-10%)t+100×4.5-600≥250,t≥≈4.44.答:白菜的售价不低于4.5元/市斤.26.(12分)(2018高青期末)已知△ABD与△GDF都是等腰直角三角形,BD与DF均为斜边(BD<DF).如图,B,D,F在同一直线上,过F作MF⊥GF于点F,取MF=AB,连接AM交BF于点H,连接GA,GM.(1)求证:AH=HM;(2)请判断△GAM的形状,并给予证明;(3)请用等式表示线段AM,BD,DF的数量关系,不必说明理由.(1)证明:因为MF⊥GF,所以∠GFM=90°,因为△ABD与△GDF都是等腰直角三角形,所以∠DFG=∠ABD=45°,所以∠HFM=90°-45°=45°,所以∠ABD=∠HFM,因为AB=MF,∠AHB=∠MHF,所以△AHB≌△MHF,所以AH=HM.(2)解:△GAM是等腰直角三角形,理由是:因为△ABD与△GDF都是等腰直角三角形,所以AB=AD,DG=FG,∠ADB=∠GDF=45°,所以∠ADG=∠GFM=90°,因为AB=FM,所以AD=FM,又DG=FG,所以△GAD≌△GMF,..... 所以AG=MG,∠AGD=∠MGF,所以∠AGD+∠DGM=∠MGF+∠DGM=90°,所以△GAM是等腰直角三角形.(3)解:AM2=BD2+DF2......。

最新鲁教版(五四制)七年级下册数学期末检测试题有答案

最新鲁教版(五四制)七年级下册数学期末检测试题有答案

鲁教版七年级第二学期期末检测数学试题(时间:120分钟满分:150分)一、选择题(每小题4分,共48分)1.(2018北京)方程组的解为( D )(A) (B)(C) (D)解析:法一将4组解分别代入原方程组,只有D选项同时满足两个方程,故选D.法二由①得x=y+3,③把③代入②得,3(y+3)-8y=14,解得y=-1,将y=-1代入③得x=2.所以方程组的解为故选D.2.(2018烟台)下列说法正确的是( A )(A)367人中至少有2人生日相同(B)任意掷一枚均匀的骰子,掷出的点数是偶数的概率是(C)天气预报说明天的降水概率为90%,则明天一定会下雨(D)某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖解析:一年最多366天,所以367人中至少有2人生日相同,选项A正确;任意掷一枚均匀的骰子,掷出的点数是偶数的概率应是,选项B错误;天气预报说明天的降水概率为90%,只是说降雨的可能性较大,但不能说明天一定会下雨,选项C错误;某种彩票中奖的概率是1%,并不是说买100张彩票一定有1张中奖,选项D错误.故选A.3.(2018日照)如图,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,则∠1等于( D )(A)30°(B)25°(C)20°(D)15°解析:因为一副直角三角板的两条斜边互相平行,所以∠3=∠2=45°,因为∠4=30°,所以∠1=∠3-∠4=15°.故选D.4.(2018镇江)小明将如图所示的转盘分成n(n是正整数)个扇形,并使得各个扇形的面积都相等,然后他在这些扇形区域内分别标连续偶数数字2,4,6,…,2n(每个区域内标注1个数字,且各区域内标注的数字互不相同),转动转盘1次,当转盘停止转动时,若事件“指针所落区域标注的数字大于8”的概率是,则n的取值为( C )(A)36 (B)30 (C)24 (D)18解析:因为事件“指针所落区域标注的数字大于8”的概率是,所以=.解得n=24.故选C.5. 如图,已知点P到AE,AD,BC的距离相等,则下列说法:①点P在∠BAC的平分线上;②点P在∠CBE的平分线上;③点P在∠BCD的平分线上;④点P是∠BAC,∠CBE,∠BCD的平分线的交点,其中正确的是( A )(A)①②③④ (B)①②③(C)②③ (D)④解析:因为点P到AE,AD,BC的距离相等,所以点P在∠BAC的平分线上,故①正确;点P在∠CBE的平分线上,故②正确;点P在∠BCD的平分线上,故③正确;点P是∠BAC,∠CBE,∠BCD的平分线的交点,故④正确,综上所述,正确的是①②③④.故选A.6.如图,AB,CD交于O点,且互相平分,则图中全等三角形有( C )(A)2对(B)3对(C)4对(D)5对解析:题图中的全等三角形有△AOC≌△BOD,△BOC≌△AOD,△ABC≌△BAD,△ACD≌△BDC,共4对.故选C.7.已知点P(a+1,-+1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是( C )解析:因为点P(a+1,-+1)关于原点的对称点在第四象限,所以点P在第二象限,所以解不等式组得a<-1.故选C.8.如图,△ABC为等边三角形,D是BC边上一点,在AC边上取一点F,使CF=BD,在AB边上取一点E,使BE=DC,则∠EDF的度数为( C )(A)30°(B)45°(C)60°(D)70°解析:易证△BED≌△CDF(SAS),得∠BED=∠CDF,又因为∠EDF+∠CDF=∠B+∠BED,所以∠EDF=∠B=60°.故选C.9.(2018台州)学校八年级师生共466人准备参加社会实践活动.现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x辆,37座客车y辆,根据题意可列出方程组( A )(A) (B)(C) (D)解析:根据题意49座客车x辆,37座客车y辆,可知x+y=10,根据对应车辆载人数可知49x+37y=466,故选A.10.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的∠A是120°,第二次拐的∠B是150°,第三次拐的角是∠C,这时恰好和第一次拐弯之前的道路平行,则∠C的度数为( C )(A)100° (B)120° (C)150° (D)160°解析:法一延长AB,EC交于点D,根据题意∠D=∠A=120°;在△BCD中,∠BCD=∠ABC-∠D=150°-120°=30°,所以∠BCE=180°-∠BCD=180°-30°=150°,故选C.法二过点B作BD∥AE,因为AE∥CF,所以AE∥BD∥CF,所以∠ABD=∠A=120°,因为∠ABC=150°,所以∠CBD=∠CBA-∠ABD=150°-120°=30°,因为已证得CF∥BD,所以∠CBD+∠C=180°,所以∠C=180°-∠CBD=180°-30°=150°.故选C.11.关于x的不等式组的解集中至少有5个整数解,则正数a的最小值是( B )(A)3 (B)2 (C)1 (D)解析:解不等式①得x≤a,解不等式②得x>- a.则不等式组的解集是-a<x≤a.因为不等式组至少有5个整数解,所以a-(-a)≥5,解得a≥2.所以正数a的最小值是2.故选B.12.如图,在第1个△A 1BC 中,∠B=30°,A 1B=CB;在边A 1B 上任取一点D,延长CA 1到A 2,使A 1A 2=A 1D,得到第2个△A 1A 2D;在边A 2D 上任取一点E,延长A 1A 2到A 3,使A 2A 3=A 2E,得到第3个△A 2A 3E,…按此做法继续下去,则第n 个三角形中以A n 为顶点的内角度数是( C )(A)()n·75° (B)()n-1·65° (C)()n-1·75° (D)()n ·85° 解析:因为A 1B=CB,∠B=30°, 所以∠C=∠BA 1C=75°. 又因为A 1A 2=A 1D,所以∠A 1A 2D=∠A 1DA 2=∠DA 1C=×75°=()2-1×75°;同理,∠A 2A 3E=∠A 2EA 3=∠DA 2A 1 =××75°=()3-1×75°;∠A 3A 4F=()4-1×75°;…第n 个三角形中以A n 为顶点的内角度数是()n-1×75°. 故选C.二、填空题(每小题4分,共24分)13.(2018绥化)如图,一块飞镖游戏板由大小相等的小正方形格子构成.向游戏板随机投掷一枚飞镖,击中黑色区域的概率是.解析:设小正方形的边长为1, 所以击中黑色区域的概率是=.14.(2018菏泽)不等式组的最小整数解是 0 .解析:解不等式组,得-1<x ≤2, 所以其最小整数解是0.15.(2018镇江一模)如图,l1∥l2,△ABC的顶点B,C在直线l2上,已知∠A=40°,∠1=60°,则∠2的度数为100°.解析:因为l1∥l2,所以∠3=∠1=60°,因为∠A=40°,所以∠2=∠A+∠3=100°.16.如图,在△ABC中,AB=AC,∠BAC=36°,DE是线段AC的垂直平分线,若BE=a,AE=b,则用含a,b的代数式表示△ABC的周长为2a+3b .解析:由题意,得AC=AB=a+b,∠B=∠ACB=(180°-36°)÷2=72°,因为DE垂直平分线段AC,所以EA=EC,所以∠ECA=∠A=36°,所以∠ECB=36°,∠BEC=72°,所以CB=CE=b,故△ABC的周长为2a+3b.17.(2018滨州)若关于x,y的二元一次方程组的解是则关于a,b的二元一次方程组的解是.解析:观察两个方程组的结构特点,a+b相当于x,a-b相当于y,故可直接得出解得从而得出二元一次方程组的解是18.若不等式组无解,则m的取值范围是m<.解析:解不等式2x-3≥0,得x≥,要使不等式组无解,则m<.三、解答题(共78分)19.(10分)解方程组与不等式组:(1)(2018武汉)(2)(2018宁夏)解:(1)②-①,得x=6,把x=6代入①,得y=4.所以原方程组的解为(2)解不等式①得,x≤-1,解不等式②得,x>-7,所以,原不等式组的解集为-7<x≤-1.20.(8分)如图所示,已知DF⊥AB于点F,∠A=40°,∠D=50°,求∠ACB的度数.解:在Rt△AFG中,∠AGF=90°-∠A=90°-40°=50°,所以∠CGD=∠AGF=50°.所以∠ACB=∠CGD+∠D=50°+50°=100°.21.(8分)如图,∠ACB=90°,BD平分∠ABE,CD∥AB交BD于D,∠1=20°,求∠2的度数. 解:因为BD平分∠ABE,∠1=20°,所以∠ABC=2∠1=40°.因为CD∥AB,所以∠DCE=∠ABC=40°.因为∠ACB=90°,所以∠2=90°-40°=50°.22.(8分)(2018高青期末)如图,在△ACB中,AC=BC,AD为△ACB的高线,CE为△ACB的中线,求证:∠DAB=∠ACE.证明:因为AC=BC,CE为△ACB的中线,所以∠CAB=∠B,CE⊥AB,所以∠CAB+∠ACE=90°.因为AD为△ACB的高线,所以∠D=90°.所以∠DAB+∠B=90°,所以∠DAB=∠ACE.23.(10分)为了解学生的体能情况,随机选取了1 000名学生进行调查,并记录了他们对长跑、短跑、跳绳、跳远四个项目的喜欢情况,整理成以下统计表,其中“√”表示喜欢,“×”表示不喜欢.项目长跑短跑跳绳跳远学生数200 √×√√300 ×√×√150 √√√×200 √×√×150 √×××(1)估计学生同时喜欢短跑和跳绳的概率;(2)估计学生在长跑、短跑、跳绳、跳远中同时喜欢三个项目的概率;(3)如果学生喜欢长跑,则该同学同时喜欢短跑、跳绳、跳远中哪项的可能性大?解:(1)同时喜欢短跑和跳绳的概率为=.(2)同时喜欢三个项目的概率为=.(3)喜欢长跑的700人中,有150人选择了短跑,550人选择了跳绳,200人选择了跳远,于是喜欢长跑的学生又同时喜欢跳绳的可能性大.24.(10分)在数学学习中,及时对知识进行归纳和整理是完善知识结构的重要方法.善于学习的小明在学习了一次方程(组)、一元一次不等式和一次函数后,把相关知识归纳整理如下:(1)请你根据以上方框中的内容在下面数字序号后写出相应的结论:①;②;③; ④.(2)如果点C的坐标为(1,3),求不等式kx+b≤k1x+b1的解集.解:(1)①kx+b=0;②③kx+b>0;④kx+b<0.(2)由图象可知,不等式kx+b≤k1x+b1的解集是x≥1.25.(12分)蔬菜经营户老王,近两天经营的是白菜和西兰花.(1)昨天的白菜和西兰花的进价和售价如表,老王用600元批发白菜和西兰花共200市斤,当天售完后老王一共能赚多少元钱?(2)今天因进价不变,老王仍用600元批发白菜和西兰花共200市斤.但在运输中白菜损坏了10%,而西兰花没有损坏仍按昨天的售价销售,要想当天售完后所赚的钱不少于昨天所赚的钱,请你帮老王计算,应怎样给白菜定售价?(精确到0.1元)白菜西兰花进价(元/市斤) 2.8 3.2售价(元/市斤) 4 4.5解:(1)设老王批发了白菜x市斤和西兰花y市斤,根据题意得,解得(4-2.8)×100+(4.5-3.2)×100=250(元).答:当天售完后老王一共能赚250元钱.(2)设白菜的售价为t元.100×(1-10%)t+100×4.5-600≥250,t≥≈4.44.答:白菜的售价不低于4.5元/市斤.26.(12分)(2018高青期末)已知△ABD与△GDF都是等腰直角三角形,BD与DF均为斜边(BD<DF).如图,B,D,F在同一直线上,过F作MF⊥GF于点F,取MF=AB,连接AM交BF于点H,连接GA,GM.(1)求证:AH=HM;(2)请判断△GAM的形状,并给予证明;(3)请用等式表示线段AM,BD,DF的数量关系,不必说明理由.(1)证明:因为MF⊥GF,所以∠GFM=90°,因为△ABD与△GDF都是等腰直角三角形,所以∠DFG=∠ABD=45°,所以∠HFM=90°-45°=45°,所以∠ABD=∠HFM,因为AB=MF,∠AHB=∠MHF,所以△AHB≌△MHF,所以AH=HM.(2)解:△GAM是等腰直角三角形,理由是:因为△ABD与△GDF都是等腰直角三角形,所以AB=AD,DG=FG,∠ADB=∠GDF=45°,所以∠ADG=∠GFM=90°,因为AB=FM,所以AD=FM,又DG=FG,所以△GAD≌△GMF,.. 所以AG=MG,∠AGD=∠MGF,所以∠AGD+∠DGM=∠MGF+∠DGM=90°,所以△GAM是等腰直角三角形.(3)解:AM2=BD2+DF2...。

2018-2019学年鲁教版(五四制)七年级下数学期末检测试题精品解析

2018-2019学年鲁教版(五四制)七年级下数学期末检测试题精品解析

期末检测试题(时间:120分钟满分:150分)一、选择题(每小题4分,共48分)1.(2018北京)方程组的解为( D )(A)(B)(C)(D)解析:法一将4组解分别代入原方程组,只有D选项同时满足两个方程,故选D.法二由①得x=y+3,③把③代入②得,3(y+3)-8y=14,解得y=-1,将y=-1代入③得x=2.所以方程组的解为故选D.2.(2018烟台)下列说法正确的是( A )(A)367人中至少有2人生日相同(B)任意掷一枚均匀的骰子,掷出的点数是偶数的概率是(C)天气预报说明天的降水概率为90%,则明天一定会下雨(D)某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖解析:一年最多366天,所以367人中至少有2人生日相同,选项A正确;任意掷一枚均匀的骰子,掷出的点数是偶数的概率应是,选项B错误;天气预报说明天的降水概率为90%,只是说降雨的可能性较大,但不能说明天一定会下雨,选项C错误;某种彩票中奖的概率是1%,并不是说买100张彩票一定有1张中奖,选项D错误.故选A.3.(2018日照)如图,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,则∠1等于( D )(A)30°(B)25°(C)20°(D)15°解析:因为一副直角三角板的两条斜边互相平行,所以∠3=∠2=45°,因为∠4=30°,所以∠1=∠3-∠4=15°.故选D.4.(2018镇江)小明将如图所示的转盘分成n(n是正整数)个扇形,并使得各个扇形的面积都相等,然后他在这些扇形区域内分别标连续偶数数字2,4,6,…,2n(每个区域内标注1个数字,且各区域内标注的数字互不相同),转动转盘1次,当转盘停止转动时,若事件“指针所落区域标注的数字大于8”的概率是,则n的取值为( C )(A)36 (B)30 (C)24 (D)18解析:因为事件“指针所落区域标注的数字大于8”的概率是,所以=.解得n=24.故选C.5. 如图,已知点P到AE,AD,BC的距离相等,则下列说法:①点P在∠BAC的平分线上;②点P在∠CBE的平分线上;③点P在∠BCD的平分线上;④点P是∠BAC,∠CBE,∠BCD的平分线的交点,其中正确的是( A )(A)①②③④ (B)①②③(C)②③ (D)④解析:因为点P到AE,AD,BC的距离相等,所以点P在∠BAC的平分线上,故①正确;点P在∠CBE的平分线上,故②正确;点P 在∠BCD的平分线上,故③正确;点P是∠BAC,∠CBE,∠BCD的平分线的交点,故④正确,综上所述,正确的是①②③④.故选A.6.如图,AB,CD交于O点,且互相平分,则图中全等三角形有( C )(A)2对(B)3对(C)4对(D)5对解析:题图中的全等三角形有△AOC≌△BOD,△BOC≌△AOD,△ABC≌△BAD,△ACD≌△BDC,共4对.故选C.7.已知点P(a+1,-+1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是( C )解析:因为点P(a+1,-+1)关于原点的对称点在第四象限,所以点P在第二象限,所以解不等式组得a<-1.故选C.8.如图,△ABC为等边三角形,D是BC边上一点,在AC边上取一点F,使CF=BD,在AB 边上取一点E,使BE=DC,则∠EDF的度数为( C )(A)30°(B)45°(C)60°(D)70°解析:易证△BED≌△CDF(SAS),得∠BED=∠CDF,又因为∠EDF+∠CDF=∠B+∠BED,所以∠EDF=∠B=60°.故选C.9.(2018台州)学校八年级师生共466人准备参加社会实践活动.现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x辆,37座客车y辆,根据题意可列出方程组( A )(A) (B)(C) (D)解析:根据题意49座客车x辆,37座客车y辆,可知x+y=10,根据对应车辆载人数可知49x+37y=466,故选A.10.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的∠A是120°,第二次拐的∠B是150°,第三次拐的角是∠C,这时恰好和第一次拐弯之前的道路平行,则∠C的度数为( C )(A)100° (B)120° (C)150° (D)160°解析:法一延长AB,EC交于点D,根据题意∠D=∠A=120°;在△BCD中,∠BCD=∠ABC-∠D=150°-120°=30°,所以∠BCE=180°-∠BCD=180°-30°=150°,故选C.法二过点B作BD∥AE,因为AE∥CF,所以AE∥BD∥CF,所以∠ABD=∠A=120°,因为∠ABC=150°,所以∠CBD=∠CBA-∠ABD=150°-120°=30°,因为已证得CF∥BD,所以∠CBD+∠C=180°,所以∠C=180°-∠CBD=180°-30°=150°.故选C.11.关于x的不等式组的解集中至少有5个整数解,则正数a的最小值是( B )(A)3 (B)2 (C)1 (D)解析:解不等式①得x≤a,解不等式②得x>-a.则不等式组的解集是-a<x≤a.因为不等式组至少有5个整数解,所以a-(-a)≥5,解得a≥2.所以正数a的最小值是2.故选B.12.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是( C )(A)()n·75° (B)()n-1·65°(C)()n-1·75° (D)()n·85°解析:因为A1B=CB,∠B=30°,所以∠C=∠BA1C=75°.又因为A1A2=A1D,所以∠A1A2D=∠A1DA2=∠DA1C=×75°=()2-1×75°;同理,∠A2A3E=∠A2EA3=∠DA2A1 =××75°=()3-1×75°;∠A3A4F=()4-1×75°;…第n个三角形中以A n为顶点的内角度数是()n-1×75°.故选C.二、填空题(每小题4分,共24分)13.(2018绥化)如图,一块飞镖游戏板由大小相等的小正方形格子构成.向游戏板随机投掷一枚飞镖,击中黑色区域的概率是.解析:设小正方形的边长为1,所以击中黑色区域的概率是=.14.(2018菏泽)不等式组的最小整数解是0 .解析:解不等式组,得-1<x≤2,所以其最小整数解是0.15.(2018镇江一模)如图,l1∥l2,△ABC的顶点B,C在直线l2上,已知∠A=40°,∠1=60°,则∠2的度数为100°.解析:因为l1∥l2,所以∠3=∠1=60°,因为∠A=40°,所以∠2=∠A+∠3=100°.16.如图,在△ABC中,AB=AC,∠BAC=36°,DE是线段AC的垂直平分线,若BE=a,AE=b,则用含a,b的代数式表示△ABC的周长为2a+3b .解析:由题意,得AC=AB=a+b,∠B=∠ACB=(180°-36°)÷2=72°,因为DE垂直平分线段AC,所以EA=EC,所以∠ECA=∠A=36°,所以∠ECB=36°,∠BEC=72°,所以CB=CE=b,故△ABC的周长为2a+3b.17.(2018滨州)若关于x,y的二元一次方程组的解是则关于a,b的二元一次方程组的解是.解析:观察两个方程组的结构特点,a+b相当于x,a-b相当于y,故可直接得出解得从而得出二元一次方程组的解是18.若不等式组无解,则m的取值范围是m<.解析:解不等式2x-3≥0,得x≥,要使不等式组无解,则m<.三、解答题(共78分)19.(10分)解方程组与不等式组:(1)(2018武汉)(2)(2018宁夏)解:(1)②-①,得x=6,把x=6代入①,得y=4.所以原方程组的解为(2)解不等式①得,x≤-1,解不等式②得,x>-7,所以,原不等式组的解集为-7<x≤-1.20.(8分)如图所示,已知DF⊥AB于点F,∠A=40°,∠D=50°,求∠ACB的度数.解:在Rt△AFG中,∠AGF=90°-∠A=90°-40°=50°,所以∠CGD=∠AGF=50°.所以∠ACB=∠CGD+∠D=50°+50°=100°.21.(8分)如图,∠ACB=90°,BD平分∠ABE,CD∥AB交BD于D,∠1=20°,求∠2的度数.解:因为BD平分∠ABE,∠1=20°,所以∠ABC=2∠1=40°.因为CD∥AB,所以∠DCE=∠ABC=40°.因为∠ACB=90°,所以∠2=90°-40°=50°.22.(8分)(2018高青期末)如图,在△ACB中,AC=BC,AD为△ACB的高线,CE为△ACB 的中线,求证:∠DAB=∠ACE.证明:因为AC=BC,CE为△ACB的中线,所以∠CAB=∠B,CE⊥AB,所以∠CAB+∠ACE=90°.因为AD为△ACB的高线,所以∠D=90°.所以∠DAB+∠B=90°,所以∠DAB=∠ACE.23.(10分)为了解学生的体能情况,随机选取了1 000名学生进行调查,并记录了他们对长跑、短跑、跳绳、跳远四个项目的喜欢情况,整理成以下统计表,其中“√”表示喜欢,“×”表示不喜欢.(1)估计学生同时喜欢短跑和跳绳的概率;(2)估计学生在长跑、短跑、跳绳、跳远中同时喜欢三个项目的概率;(3)如果学生喜欢长跑,则该同学同时喜欢短跑、跳绳、跳远中哪项的可能性大? 解:(1)同时喜欢短跑和跳绳的概率为=.(2)同时喜欢三个项目的概率为=.(3)喜欢长跑的700人中,有150人选择了短跑,550人选择了跳绳,200人选择了跳远,于是喜欢长跑的学生又同时喜欢跳绳的可能性大.24.(10分)在数学学习中,及时对知识进行归纳和整理是完善知识结构的重要方法.善于学习的小明在学习了一次方程(组)、一元一次不等式和一次函数后,把相关知识归纳整理如下:(1)请你根据以上方框中的内容在下面数字序号后写出相应的结论:①;②;③; ④.(2)如果点C的坐标为(1,3),求不等式kx+b≤k1x+b1的解集.解:(1)①kx+b=0;②③kx+b>0;④kx+b<0.(2)由图象可知,不等式kx+b≤k1x+b1的解集是x≥1.25.(12分)蔬菜经营户老王,近两天经营的是白菜和西兰花.(1)昨天的白菜和西兰花的进价和售价如表,老王用600元批发白菜和西兰花共200市斤,当天售完后老王一共能赚多少元钱?(2)今天因进价不变,老王仍用600元批发白菜和西兰花共200市斤.但在运输中白菜损坏了10%,而西兰花没有损坏仍按昨天的售价销售,要想当天售完后所赚的钱不少于昨天所赚的钱,请你帮老王计算,应怎样给白菜定售价?(精确到0.1元)解:(1)设老王批发了白菜x市斤和西兰花y市斤,根据题意得,解得(4-2.8)×100+(4.5-3.2)×100=250(元).答:当天售完后老王一共能赚250元钱.(2)设白菜的售价为t元.100×(1-10%)t+100×4.5-600≥250,t≥≈4.44.答:白菜的售价不低于4.5元/市斤.26.(12分)(2018高青期末)已知△ABD与△GDF都是等腰直角三角形,BD与DF均为斜边(BD<DF).如图,B,D,F在同一直线上,过F作MF⊥GF于点F,取MF=AB,连接AM 交BF于点H,连接GA,GM.(1)求证:AH=HM;(2)请判断△GAM的形状,并给予证明;(3)请用等式表示线段AM,BD,DF的数量关系,不必说明理由.(1)证明:因为MF⊥GF,所以∠GFM=90°,因为△ABD与△GDF都是等腰直角三角形,所以∠DFG=∠ABD=45°,所以∠HFM=90°-45°=45°,所以∠ABD=∠HFM,因为AB=MF,∠AHB=∠MHF,所以△AHB≌△MHF,所以AH=HM.(2)解:△GAM是等腰直角三角形,理由是: 因为△ABD与△GDF都是等腰直角三角形, 所以AB=AD,DG=FG,∠ADB=∠GDF=45°,所以∠ADG=∠GFM=90°,因为AB=FM,所以AD=FM,又DG=FG,所以△GAD≌△GMF,所以AG=MG,∠AGD=∠MGF,所以∠AGD+∠DGM=∠MGF+∠DGM=90°,所以△GAM是等腰直角三角形.(3)解:AM2=BD2+DF2.。

鲁教版(五四制)2018--2019学年度第二学期七年级期末考试数学试

鲁教版(五四制)2018--2019学年度第二学期七年级期末考试数学试

绝密★启用前 鲁教版(五四制)2018--2019学年度第二学期七年级期末考试数学试卷 注意事项: 1.做卷时间100分钟,满分120分 2.做题要仔细,不要漏做一、单选题(计30分) 1.(本题3分)1∠和2∠是两条直线1l , 2l 被第三条直线3l 所截的同旁内角,如果12//l l ,那么必有( ) A .∠1=∠2 B .∠1+∠2=90° C .11129022∠+∠=︒ D .∠1是钝角,∠2是锐角 2.(本题3分)等腰三角形一腰上的高与另一腰的夹角为25°,则顶角的度数为( ) A .65° B .65°或115° C .50° D .50°或115° 3.(本题3分)下列各式中,属于一元一次不等式的是( ) A .3x -2>0 B .2>-5 C .3x -2>y +1 D .3y +5<1y 4.(本题3分)若不等式组的解集为0<x <1,则a 、b 的值分别为( ) A .a=2,b=1 B .a=2,b=3 C .a=﹣2,b=3 D .a=﹣2,b=1 5.(本题3分)等腰三角形一腰上的高与另一腰的夹角为20°,则这个等腰三角形的底角度数是 A .70° B .55° C .35° D .55°或35° 6.(本题3分)如果不等式组恰有3个整数解,则a 的取值范围是( ) A .a≤﹣1 B .a <﹣1 C .﹣2≤a <﹣1 D .﹣2<a≤﹣1 7.(本题3分)如图,能判定的条件是( )A .B .C .D . 8.(本题3分)下列说法正确的是( ). A .抛掷一枚硬币5次,5次都出现正面,所以投掷一枚硬币出现正面的概率为1B .“从我们班上查找一名未完成作业的学生的概率为0”表示我们班上所有的学生都完成了作业C .一个口袋里装有99个白球和一个红球,从中任取一个球,得到红球的概率为1%,所以从袋中取至少100次后必定可以取到红球(每次取后放回,并搅匀)D .抛一枚硬币,出现正面向上的概率为50%,所以投掷硬币两次,那么一次出现正面,一次出现反面9.(本题3分)一个三角形的两个内角和小于第三个内角,这个三角形是( )三角形.A .锐角B .钝角C .直角D .等腰10.(本题3分)一个口袋中共有50个球,其中白球20个,红球20个,蓝球10个,则摸到白球的概率是( )A .B .C .D .二、填空题(计32分)11.(本题4分)如果方程3x 3m -2n -2y m +n +16=0是关于x ,y 的二元一次方程,那么m -n =____12.(本题4分)不等式的正整数解是________________.13.(本题4分)如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于点D ,若AB =10,CD =3,则S △ABD =______.14.(本题4分)已知|2x+y+1|+(x+2y ﹣7)2=0,则(x+y )2=________. 15.(本题4分)如图,中,DE 是AC 的垂直平分线,,的周长为16cm ,则的周长为______.16.(本题4分)如图,一艘船在A 处遇险后向相距50海里位于B 处的救生船报警.用方向和距离描述遇险船相对于救生船的位置___________. 17.(本题4分)用直尺和圆规作一个角等于已知角的示意图如下,则利用三角形全等能说明∠A ′O′B′=∠AOB 的依据是_________. 18.(本题4分)抽屉里有尺码相同的2双黑袜子和1双白袜子,混放在一起,•在夜晚不开灯的情况下,随意拿出2只,它们恰好是颜色相同的1双的概率是_________. 三、解答题(计58分) 19.(本题7分)解方程组: (1); (2).20.(本题7分)如图,在△ABC 中,BD 平分∠ABC ,DE ⊥AB 于E ,AB=3cm ,BC=2.5cm ,△ABD 的面积为 2cm 2,求△ABC 的面积.21.(本题7分)如图,已知AF 分别与BD 、CE 交于点G 、H ,∠1=50°,∠2=130°.(1)BD 与CE 平行吗?为什么?(2)若∠A=∠F ,探索∠C 与∠D 的数量关系,并说明理由.22.(本题7分)有一群猴子,一天结伴去偷桃子.分桃子时,如果每只猴子分3个,那么还剩下59个,如果每只猴子分5个,有一只猴子分得的桃子不足5个.你能求出有几只猴子,几个桃子吗?23.(本题7分)如图:E 是的平分线上一点,,,垂足为C ,求证:;≌. 24.(本题7分)如图,AB ∥DE ,∠B =70°,∠D =135°.求∠C 的度数.25.(本题8分)如图,在△ABC 中,AD 是BC 边上的高,BE 平分∠ABC 交AC 边于E ,∠BAC=60°,∠ABE=25°.求∠DAC 的度数.26.(本题8分)小明利用课余时间回收废品,将卖得的钱去购买5本大小不同的两种笔记本,要求共花钱不超过28元,且购买的笔记本的总页数不低于340页,两种笔记本的价格和页数如下表.为了节约资金,小明应选择哪一种购买方案?请说明理由.大笔记本 小笔记本价格(元/本)6 5页数(页/本)100 60参考答案1.C【解析】∵12//l l ,∴∠1+∠2=180°(两直线平行,同旁内角互补), ∴11129022∠+∠=︒, 故选C.2.B【解析】如图①所示,当等腰三角形一腰上的高在三角形外部时,已知∠DBA =25°∵AD 是三角形ABC 的高,∴∠BDA =90°. ∵∠BAC =∠DBA +∠BDA ∠DBA =25°∠BDA =90°,∴∠BAC =115° 当等腰三角形一腰上的高在三角形内部时,如图②所示,则有∠BDC =90°,∠ABD =25°∵∠BDC =∠BAC +∠ABD ∠BDC =90°∠ABD =25°,∴∠BAC =65° 所以顶角的度数为65°或者115°,故答案选B.3.A【解析】根据一元一次不等式的概念,由含有一个未知数的,且未知数的次数为1的整式构成的不等式,因此可知A是一元一次不等式,B没有未知数,C含有两个未知数,D含有分式.故选:A点睛:此题主要考查了一元一次不等式的概念,解题时,明确概念内容:一元一次不等式:含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式,然后据此判断即可. 4.A【解析】解①得,x>2-a;解②得,12bx+ <;∵不等式组的解集为0<x<1,∴20{112ab-=+=,解之得,2{1ab==;故选A.5.D【解析】试题解析:①如图1,∵AB=AC,∠ABD=20°,BD⊥AC,∴∠A=70°,∴∠ABC=∠C=(180°-70°)÷2=55°.②如图2,∵AB=AC,∠ABD=20°,BD⊥AC,∴∠BAC=20°+90°=110°∴∠ABC=∠C=(180°-110°)÷2=35°.故选D.6.C【解析】【分析】首先根据不等式组得出不等式组的解集为a<x<2,再由恰好有3个整数解可得a的取值范围.【详解】由图象可知:不等式组恰有3个整数解,需要满足条件:﹣2≤a<﹣1.故选C.【点睛】本题主要考查了解不等式组,关键是正确理解求解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.7.D【解析】试题分析:同位角相等、内错角相等、同旁内角互补都可以判定两条直线平行A和B中的角不是三线八角中的角;C中的角在同一个三角形中,故不能判定两直线平行.D中内错角∠A=∠ABE,则EB∥AC.故选D.考点:平行线的判定8.B【解析】选项A,抛掷一次硬币,都有2种情况,即正、反,所以每次掷出硬币时出现正面朝上的概率为0.5,选项A错误;选项B,“从我们班上查找一名未完成作业的学生的概率为0”表示我们班上所有的学生都完成了作业,选项B正确;选项C,一个口袋里装有99个白球和一个红球,从中任取一个球,得到红球的概率为1%,所以从袋中取至少100次后不一定可以取到红球(每次取后放回,并搅匀),选项C 错误;选项D ,抛一枚硬币,出现正面向上的概率为50%,所以投掷硬币两次,不一定一次出现正面,一次出现反面,选项D 错误.故选B.9.B【解析】解:三角形的三角内角和等于180度,如果其中两个内角之和小于第三个内角,说明第三个内角大于90度,因此这个三角形是钝角三角形;故选B .10.C【解析】试题解析: 根据题意,摸到白球的概率是故选C .11.15【解析】试题解析:有题意可得:321{ 1,m n m n -=+=解得: 35{ 2.5m n == 1.5m n ∴-= 故答案为: 1.512.1,2,3【解析】分析:先把这个不等式的解集求出,再把这个范围内的正整数写出即可. 详解:∵∴不等式的正整数解是1,2,3.点睛:解一元一次不等式的依据是不等式的性质,所以熟练掌握不等式的性质是解题的关键. 13.15【解析】【分析】根据角平分线上的点到角的两边距离相等求出点D到AB的距离,然后根据三角形的面积公式列式计算即可得解.【详解】作DE⊥AB于E,∵∠C=90°,∴DC⊥AC,∵AD平分∠BAC,DC⊥AC,DE⊥A,∴DE=CD,∵AB=10,CD=3,∴S△ABD=.故答案为:15.【点睛】本题考查角平分线的性质.14.4【解析】∵|2x+y+1|+(x+2y﹣7)2=0,∴,∴3x+3y=6,即x+y=2,∴(x+y)2=22=4.点睛:(1)一个代数式的绝对值和平方都是非负数;(2)两个非负数的和为0,则这两个非负数都为0.15.24cm【解析】【分析】由线段垂直平分线的性质可得,,结合条件可求得,代入可求得答案.【详解】解:是AC的垂直平分线,,,的周长为16cm,,,即的周长为24cm,故答案为:24cm.【点睛】考查线段垂直平分线的性质,利用线段垂直平分线上的点到线段两端点的距离相等把的周长转化成的周长与2AE的和是解题的关键.16.南偏西15°,50海里【解析】如下图,内错角相等,所以A位于B,南偏西15°,50海里.17.SSS【解析】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD≌△C'O'D',则∠COD≌∠C'O'D',即∠A'O'B'=∠AOB(全等三角形的对应角相等).故答案为:SSS.点睛:本题考查了全等三角形的判定与性质;由全等得到角相等是用的全等三角形的性质,熟练掌握三角形全等的性质是正确解答本题的关键.18.【解析】可以画树状图或列举出所有情况,看从盒子里拿出的2只袜子恰好是1双的比例,即可求出答案.19.(1);(2).【解析】【分析】根据加减消元法,可得方程组的解.【详解】(1)②-①,得x=3,解得x=.将x=代入①得-=6,解得y=-9.所以原方程组的解为(2)②×6,得3(x+y)-(x-y)=6,③①-③,得-3(x-y)=0,即x=y.将x=y代入③,得3(x+x)-0=6,即x=1.所以y=1. 所以原方程组的解为【点睛】掌握解答方程组的方法是解答本题的关键.20..【解析】【分析】根据角平分线性质作出辅助线,求出高长,即可求解. 【详解】在△ABD 中,∵△ =⋅,AB=3cm,S△ABD=2cm2,∴ =过D 作DF⊥BC 于F.∵BD 平分∠ABC,DE⊥AB,DF⊥BC,∴DE=DF,∴ =在△BCD 中,BC=2.5cm, =∴△ =⋅ =()2∵S△ABC=S△ABD+S△BCD,∴△ = 2 +=()2【点睛】本题考查了角平分线的性质,利于角平分线的性质正确地作出辅助线是解题的关键.21.(1)BD∥CE;(2)∠C=∠D【解析】【分析】(1)根据对顶角相等得出∠DGH的度数,再由平行线的判定定理即可得出结论;(2)先根据BD∥CE得出∠D=∠CEF,再由∠A=∠F得出AC∥DF,据此可得出结论.【详解】(1)解:BD∥CE,∵∠1=∠DGF=50°,∠2=130°,∴∠2+∠DGF=130°+50°=180°,∴BD∥CE;(2)解:∠C=∠D,理由是:∵∠A=∠F,∴AC∥DF,∴∠D+∠DBC=180°.又∵BD∥CE,∴∠C+∠DBC=180°,∴∠C=∠D.【点睛】本题考查的是平行线的判定与性质,熟知平行线的判定定理与性质是解答此题的关键.22.30只猴,149个桃;31只猴,152个桃【解析】试题分析:设有x只猴子,则有(3x+59)个桃子,由题意即可列出不等式组:,解此不等式组并求出其正整数解即可求得本题要求的答案.试题解析:设有x只猴子,则有(3x+59)个桃子,由题意得:,解得:,∵只能取整数,∴或31,当时,;当时,;答:猴子的只数为30或31,对应的桃子的数量为149或152个.23.(1)见解析;(2)见解析.【解析】【分析】首先根据角平分线的性质可得,,然后证明≌可得;根据全等三角形的判定方法,证明≌即可.【详解】证明:是的平分线上一点,,,,,在和中,,≌,;≌,,,在与中,≌【点睛】此题主要考查了角平分线的性质,以及全等三角形的判定与性质,关键是掌握角平分线的性质:角的平分线上的点到角的两边的距离相等.24.∠BCD=25°.【解析】【分析】根据两直线平行,同旁内角互补,内错角相等,即可解答.【详解】过点C向右作CH∥DE.∵CH∥DE,∴∠DCH+∠D=180°.∵∠D=135°,∴∠DCH=180°-∠D=180°-135°=45°.又∵AB∥DE,CH∥DE,∴AB∥CH,∴∠B=∠BCH.∵∠B=70°,∴∠BCH=70°,∴∠BCD=∠BCH-∠DCH=70°-45°=25°.【点睛】本题考查了平行线的性质.解题的关键是正确作出辅助线.25.∠DAC=20°.【解析】【分析】根据角平分线的定义可得∠ABC=2∠ABE,再根据直角三角形两锐角互余求出∠BAD,然后根据∠DAC=∠BAC﹣∠BAD计算即可得解.【详解】∵BE平分∠ABC,∴∠ABC=2∠ABE=2×25°=50°.∵AD是BC边上的高,∴∠BAD=90°﹣∠ABC=90°﹣50°=40°,∴∠DAC=∠BAC﹣∠BAD=60°﹣40°=20°.【点睛】本题考查了三角形的内角和定理,角平分线的定义,准确识图理清图中各角度之间的关系是解题的关键.26.购买1本大笔记本和4本小笔记本;理由见详解.【解析】【分析】设买大笔记x本,根据共花钱不超过28元,且购买的笔记本的总页数不低于340页,列不等式组;解不等式组,根据x取正整数即可得到满足题意的x值,进而可得不同的方案,再结合表格中的单价进行计算,得到不同方案所对应的花费,然后比较即可求出节约资金的一种方案.【详解】解:设小明购买大笔记本x本,则购买小笔记本(5-x)本.根据题意,得解不等式组,得1≤x≤3,故整数解有1,2,3,∴小明的购买方案共有三种:第一种:大笔本1本,小笔记本4本,需花费资金1×6+4×5=26(元);第二种:大笔记本2本,小笔记本3本,需花费资金2×6+3×5=27(元); 第三种:大笔记本3本,小笔记本2本,需花费资金3×6+2×5=28(元). ∵26<27<28,∴小明应选择第一种购买方案,即购买1本大笔记本和4本小笔记本. 故答案为:购买1本大笔记本和4本小笔记本;理由见详解.【点睛】本题考查一元一次不等式组的应用.答案第13页,总13页。

2018-2019学年鲁教版(五四制)七年级数学下册期末测试卷含答案

2018-2019学年鲁教版(五四制)七年级数学下册期末测试卷含答案

2018-2019学年七年级数学下册期末检测试题(时间:120分钟满分:150分)一、选择题(每小题4分,共48分)1.下列说法正确的是( )(A)367人中至少有2人生日相同(B)任意掷一枚均匀的骰子,掷出的点数是偶数的概率是(C)天气预报说明天的降水概率为90%,则明天一定会下雨(D)某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖1.方程组的解为( )(A)(B)(C)(D)3.如图,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,则∠1等于( )(A)30°(B)25°(C)20°(D)15°4.小明将如图所示的转盘分成n(n是正整数)个扇形,并使得各个扇形的面积都相等,然后他在这些扇形区域内分别标连续偶数数字2,4,6,…,2n(每个区域内标注1个数字,且各区域内标注的数字互不相同),转动转盘1次,当转盘停止转动时,若事件“指针所落区域标注的数字大于8”的概率是,则n的取值为( )(A)36 (B)30 (C)24 (D)185. 如图,已知点P到AE,AD,BC的距离相等,则下列说法:①点P在∠BAC的平分线上;②点P在∠CBE的平分线上;③点P在∠BCD的平分线上;④点P是∠BAC,∠CBE,∠BCD的平分线的交点,其中正确的是( )(A)①②③④ (B)①②③(C)②③ (D)④6.如图,AB,CD交于O点,且互相平分,则图中全等三角形有( )(A)2对(B)3对(C)4对(D)5对7.已知点P(a+1,-+1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是( )8.如图,△ABC为等边三角形,D是BC边上一点,在AC边上取一点F,使CF=BD,在AB 边上取一点E,使BE=DC,则∠EDF的度数为( )(A)30°(B)45°(C)60°(D)70°9.学校八年级师生共466人准备参加社会实践活动.现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x辆,37座客车y辆,根据题意可列出方程组( )(A) (B)(C) (D)10.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的∠A是120°,第二次拐的∠B是150°,第三次拐的角是∠C,这时恰好和第一次拐弯之前的道路平行,则∠C的度数为( )(A)100° (B)120° (C)150° (D)160°11.关于x的不等式组的解集中至少有5个整数解,则正数a的最小值是( )(A)3 (B)2 (C)1 (D)12.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是( )(A)()n·75° (B)()n-1·65°(C)()n-1·75° (D)()n·85°二、填空题(每小题4分,共24分)13.如图,一块飞镖游戏板由大小相等的小正方形格子构成.向游戏板随机投掷一枚飞镖,击中黑色区域的概率是.14.不等式组的最小整数解是.15.如图,l1∥l2,△ABC的顶点B,C在直线l2上,已知∠A=40°,∠1=60°,则∠2的度数为.16.如图,在△ABC中,AB=AC,∠BAC=36°,DE是线段AC的垂直平分线,若BE=a,AE=b,则用含a,b的代数式表示△ABC的周长为.17.若关于x,y的二元一次方程组的解是则关于a,b的二元一次方程组的解是.18.若不等式组无解,则m的取值范围是.三、解答题(共78分)19.(10分)解方程组与不等式组:(1)(2)20.(8分)如图所示,已知DF⊥AB于点F,∠A=40°,∠D=50°,求∠ACB的度数.21.(8分)如图,∠ACB=90°,BD平分∠ABE,CD∥AB交BD于D,∠1=20°,求∠2的度数.22.(8分)如图,在△ACB中,AC=BC,AD为△ACB的高线,CE为△ACB的中线,求证:∠DAB=∠ACE.23.(10分)为了解学生的体能情况,随机选取了1 000名学生进行调查,并记录了他们对长跑、短跑、跳绳、跳远四个项目的喜欢情况,整理成以下统计表,其中“√”表示喜欢,“×”表示不喜欢.(1)估计学生同时喜欢短跑和跳绳的概率;(2)估计学生在长跑、短跑、跳绳、跳远中同时喜欢三个项目的概率;(3)如果学生喜欢长跑,则该同学同时喜欢短跑、跳绳、跳远中哪项的可能性大?24.(10分)在数学学习中,及时对知识进行归纳和整理是完善知识结构的重要方法.善于学习的小明在学习了一次方程(组)、一元一次不等式和一次函数后,把相关知识归纳整理如下:(1)请你根据以上方框中的内容在下面数字序号后写出相应的结论:①;②;③; ④.(2)如果点C的坐标为(1,3),求不等式kx+b≤k1x+b1的解集.25.(12分)蔬菜经营户老王,近两天经营的是白菜和西兰花.(1)昨天的白菜和西兰花的进价和售价如表,老王用600元批发白菜和西兰花共200市斤,当天售完后老王一共能赚多少元钱?(2)今天因进价不变,老王仍用600元批发白菜和西兰花共200市斤.但在运输中白菜损坏了10%,而西兰花没有损坏仍按昨天的售价销售,要想当天售完后所赚的钱不少于昨天所赚的钱,请你帮老王计算,应怎样给白菜定售价?(精确到0.1元)26.(12分)已知△ABD与△GDF都是等腰直角三角形,BD与DF均为斜边(BD<DF).如图,B,D,F在同一直线上,过F作MF⊥GF于点F,取MF=AB,连接AM交BF于点H,连接GA,GM.(1)求证:AH=HM;(2)请判断△GAM的形状,并给予证明;(3)请用等式表示线段AM,BD,DF的数量关系,不必说明理由.2018-2019学年七年级数学下册期末检测试题(时间:120分钟满分:150分)一、选择题(每小题4分,共48分)1.下列说法正确的是( A )(A)367人中至少有2人生日相同(B)任意掷一枚均匀的骰子,掷出的点数是偶数的概率是(C)天气预报说明天的降水概率为90%,则明天一定会下雨(D)某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖解析:一年最多366天,所以367人中至少有2人生日相同,选项A正确;任意掷一枚均匀的骰子,掷出的点数是偶数的概率应是,选项B错误;天气预报说明天的降水概率为90%,只是说降雨的可能性较大,但不能说明天一定会下雨,选项C错误;某种彩票中奖的概率是1%,并不是说买100张彩票一定有1张中奖,选项D错误.故选A.1.方程组的解为( D )(A)(B)(C)(D)解析:法一将4组解分别代入原方程组,只有D选项同时满足两个方程,故选D.法二由①得x=y+3,③把③代入②得,3(y+3)-8y=14,解得y=-1,将y=-1代入③得x=2.所以方程组的解为故选D.3.如图,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,则∠1等于( D )(A)30°(B)25°(C)20°(D)15°解析:因为一副直角三角板的两条斜边互相平行,所以∠3=∠2=45°,因为∠4=30°,所以∠1=∠3-∠4=15°.故选D.4.小明将如图所示的转盘分成n(n是正整数)个扇形,并使得各个扇形的面积都相等,然后他在这些扇形区域内分别标连续偶数数字2,4,6,…,2n(每个区域内标注1个数字,且各区域内标注的数字互不相同),转动转盘1次,当转盘停止转动时,若事件“指针所落区域标注的数字大于8”的概率是,则n的取值为( C )(A)36 (B)30 (C)24 (D)18解析:因为事件“指针所落区域标注的数字大于8”的概率是,所以=.解得n=24.故选C.5. 如图,已知点P到AE,AD,BC的距离相等,则下列说法:①点P在∠BAC的平分线上;②点P在∠CBE的平分线上;③点P在∠BCD的平分线上;④点P是∠BAC,∠CBE,∠BCD的平分线的交点,其中正确的是( A )(A)①②③④ (B)①②③(C)②③ (D)④解析:因为点P到AE,AD,BC的距离相等,所以点P在∠BAC的平分线上,故①正确;点P在∠CBE的平分线上,故②正确;点P 在∠BCD的平分线上,故③正确;点P是∠BAC,∠CBE,∠BCD的平分线的交点,故④正确,综上所述,正确的是①②③④.故选A.6.如图,AB,CD交于O点,且互相平分,则图中全等三角形有( C )(A)2对(B)3对(C)4对(D)5对解析:题图中的全等三角形有△AOC≌△BOD,△BOC≌△AOD,△ABC≌△BAD,△ACD≌△BDC,共4对.故选C.7.已知点P(a+1,-+1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是( C )解析:因为点P(a+1,-+1)关于原点的对称点在第四象限,所以点P在第二象限,所以解不等式组得a<-1.故选C.8.如图,△ABC为等边三角形,D是BC边上一点,在AC边上取一点F,使CF=BD,在AB 边上取一点E,使BE=DC,则∠EDF的度数为( C )(A)30°(B)45°(C)60°(D)70°解析:易证△BED≌△CDF(SAS),得∠BED=∠CDF,又因为∠EDF+∠CDF=∠B+∠BED,所以∠EDF=∠B=60°.故选C.9.学校八年级师生共466人准备参加社会实践活动.现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x辆,37座客车y辆,根据题意可列出方程组( A )(A) (B)(C) (D)解析:根据题意49座客车x辆,37座客车y辆,可知x+y=10,根据对应车辆载人数可知49x+37y=466,故选A.10.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的∠A是120°,第二次拐的∠B是150°,第三次拐的角是∠C,这时恰好和第一次拐弯之前的道路平行,则∠C的度数为( C )(A)100° (B)120° (C)150° (D)160°解析:法一延长AB,EC交于点D,根据题意∠D=∠A=120°;在△BCD中,∠BCD=∠ABC-∠D=150°-120°=30°,所以∠BCE=180°-∠BCD=180°-30°=150°,故选C.法二过点B作BD∥AE,因为AE∥CF,所以AE∥BD∥CF,所以∠ABD=∠A=120°,因为∠ABC=150°,所以∠CBD=∠CBA-∠ABD=150°-120°=30°,因为已证得CF∥BD,所以∠CBD+∠C=180°,所以∠C=180°-∠CBD=180°-30°=150°.故选C.11.关于x的不等式组的解集中至少有5个整数解,则正数a的最小值是( B )(A)3 (B)2 (C)1 (D)解析:解不等式①得x≤a,解不等式②得x>-a.则不等式组的解集是-a<x≤a.因为不等式组至少有5个整数解,所以a-(-a)≥5,解得a≥2.所以正数a的最小值是2.故选B.12.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是( C )(A)()n·75° (B)()n-1·65°(C)()n-1·75° (D)()n·85°解析:因为A1B=CB,∠B=30°,所以∠C=∠BA1C=75°.又因为A1A2=A1D,所以∠A1A2D=∠A1DA2=∠DA1C=×75°=()2-1×75°;同理,∠A2A3E=∠A2EA3=∠DA2A1 =××75°=()3-1×75°;∠A3A4F=()4-1×75°;…第n个三角形中以A n为顶点的内角度数是()n-1×75°.故选C.二、填空题(每小题4分,共24分)13.如图,一块飞镖游戏板由大小相等的小正方形格子构成.向游戏板随机投掷一枚飞镖,击中黑色区域的概率是.解析:设小正方形的边长为1,所以击中黑色区域的概率是=.14.不等式组的最小整数解是0 .解析:解不等式组,得-1<x≤2,所以其最小整数解是0.15.如图,l1∥l2,△ABC的顶点B,C在直线l2上,已知∠A=40°,∠1=60°,则∠2的度数为100°.解析:因为l1∥l2,所以∠3=∠1=60°,因为∠A=40°,所以∠2=∠A+∠3=100°.16.如图,在△ABC中,AB=AC,∠BAC=36°,DE是线段AC的垂直平分线,若BE=a,AE=b,则用含a,b的代数式表示△ABC的周长为2a+3b .解析:由题意,得AC=AB=a+b,∠B=∠ACB=(180°-36°)÷2=72°,因为DE垂直平分线段AC,所以EA=EC,所以∠ECA=∠A=36°,所以∠ECB=36°,∠BEC=72°,所以CB=CE=b,故△ABC的周长为2a+3b.17.(2018滨州)若关于x,y的二元一次方程组的解是则关于a,b的二元一次方程组的解是.解析:观察两个方程组的结构特点,a+b相当于x,a-b相当于y,故可直接得出解得从而得出二元一次方程组的解是18.若不等式组无解,则m的取值范围是m<.解析:解不等式2x-3≥0,得x≥,要使不等式组无解,则m<.三、解答题(共78分)19.(10分)解方程组与不等式组:(1)(2)解:(1)②-①,得x=6,把x=6代入①,得y=4.所以原方程组的解为(2)解不等式①得,x≤-1,解不等式②得,x>-7,所以,原不等式组的解集为-7<x≤-1.20.(8分)如图所示,已知DF⊥AB于点F,∠A=40°,∠D=50°,求∠ACB的度数.解:在Rt△AFG中,∠AGF=90°-∠A=90°-40°=50°,所以∠CGD=∠AGF=50°.所以∠ACB=∠CGD+∠D=50°+50°=100°.21.(8分)如图,∠ACB=90°,BD平分∠ABE,CD∥AB交BD于D,∠1=20°,求∠2的度数.解:因为BD平分∠ABE,∠1=20°,所以∠ABC=2∠1=40°.因为CD∥AB,所以∠DCE=∠ABC=40°.因为∠ACB=90°,所以∠2=90°-40°=50°.22.(8分)如图,在△ACB中,AC=BC,AD为△ACB的高线,CE为△ACB的中线,求证:∠DAB=∠ACE.证明:因为AC=BC,CE为△ACB的中线,所以∠CAB=∠B,CE⊥AB,所以∠CAB+∠ACE=90°.因为AD为△ACB的高线,所以∠D=90°.所以∠DAB+∠B=90°,所以∠DAB=∠ACE.23.(10分)为了解学生的体能情况,随机选取了1 000名学生进行调查,并记录了他们对长跑、短跑、跳绳、跳远四个项目的喜欢情况,整理成以下统计表,其中“√”表示喜欢,“×”表示不喜欢.(1)估计学生同时喜欢短跑和跳绳的概率;(2)估计学生在长跑、短跑、跳绳、跳远中同时喜欢三个项目的概率;(3)如果学生喜欢长跑,则该同学同时喜欢短跑、跳绳、跳远中哪项的可能性大? 解:(1)同时喜欢短跑和跳绳的概率为=.(2)同时喜欢三个项目的概率为=.(3)喜欢长跑的700人中,有150人选择了短跑,550人选择了跳绳,200人选择了跳远,于是喜欢长跑的学生又同时喜欢跳绳的可能性大.24.(10分)在数学学习中,及时对知识进行归纳和整理是完善知识结构的重要方法.善于学习的小明在学习了一次方程(组)、一元一次不等式和一次函数后,把相关知识归纳整理如下:(1)请你根据以上方框中的内容在下面数字序号后写出相应的结论:①;②;③; ④.(2)如果点C的坐标为(1,3),求不等式kx+b≤k1x+b1的解集.解:(1)①kx+b=0;②③kx+b>0;④kx+b<0.(2)由图象可知,不等式kx+b≤k1x+b1的解集是x≥1.25.(12分)蔬菜经营户老王,近两天经营的是白菜和西兰花.(1)昨天的白菜和西兰花的进价和售价如表,老王用600元批发白菜和西兰花共200市斤,当天售完后老王一共能赚多少元钱?(2)今天因进价不变,老王仍用600元批发白菜和西兰花共200市斤.但在运输中白菜损坏了10%,而西兰花没有损坏仍按昨天的售价销售,要想当天售完后所赚的钱不少于昨天所赚的钱,请你帮老王计算,应怎样给白菜定售价?(精确到0.1元)解:(1)设老王批发了白菜x市斤和西兰花y市斤,根据题意得,解得(4-2.8)×100+(4.5-3.2)×100=250(元).答:当天售完后老王一共能赚250元钱.(2)设白菜的售价为t元.100×(1-10%)t+100×4.5-600≥250,t≥≈4.44.答:白菜的售价不低于4.5元/市斤.26.(12分)已知△ABD与△GDF都是等腰直角三角形,BD与DF均为斜边(BD<DF).如图,B,D,F在同一直线上,过F作MF⊥GF于点F,取MF=AB,连接AM交BF于点H,连接GA,GM.(1)求证:AH=HM;(2)请判断△GAM的形状,并给予证明;(3)请用等式表示线段AM,BD,DF的数量关系,不必说明理由.(1)证明:因为MF⊥GF,所以∠GFM=90°,因为△ABD与△GDF都是等腰直角三角形,所以∠DFG=∠ABD=45°,所以∠HFM=90°-45°=45°,所以∠ABD=∠HFM,因为AB=MF,∠AHB=∠MHF,所以△AHB≌△MHF,所以AH=HM.(2)解:△GAM是等腰直角三角形,理由是:因为△ABD与△GDF都是等腰直角三角形,所以AB=AD,DG=FG,∠ADB=∠GDF=45°,所以∠ADG=∠GFM=90°,因为AB=FM,所以AD=FM,又DG=FG,所以△GAD≌△GMF,所以AG=MG,∠AGD=∠MGF,所以∠AGD+∠DGM=∠MGF+∠DGM=90°,所以△GAM是等腰直角三角形.(3)解:AM2=BD2+DF2.。

鲁教版(五四制)2018学年度七年级数学第二学期期末测试题(含答案详解)

鲁教版(五四制)2018学年度七年级数学第二学期期末测试题(含答案详解)

鲁教版(五四制)2018学年度七年级数学第二学期期末测试题(含答案详解)1.已知不等式组无解,则a的取值范围是()A.a>1B.a<1C.a≤1 D.a≥12.如图,在长方形纸片ABCD中,AD= 4cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,若OC=5cm,则CD的长为()A.6cm B.7cm C.8cm D.10cm3.下列判断不正确的是( )。

A.等腰三角形的两底角相等B.等腰三角形的两腰相等C.等边三角形的三个内角都是60°D.两个内角分别为120°、40°的三角形是等腰三角形4.已知△ABC(AB<AC<BC),用尺规作图的方法在BC上取一点P,使PA+PC=BC,下列选项正确的是()A. B.C.D.5.边长为4的等边三角形的面积是()A.4 B.4C.4D.6.如图是一个边长为6的等边三角形电子跳蚤游戏盘.如果跳蚤开始时在AB边的P0处,且BP0=1,跳蚤第一步从P0跳到BC边的P1(第1次落点)处,且BP1=BP0;第二步从P1跳到AC边的P2(第2次落点)处,且CP2=CP1;第三步从P2跳到AB边的P3(第3次落点)处,且AP3=AP2;…;跳蚤按上述规则一直跳下去,第n次落点为P n (n为正整数),则点P2017与P2018之间的距离为()A.1 B.2 C.3 D.57.满足下列条件的三角形不一定是直角三角形的是()A.三条边的比为5:12:13 B.三个角的度数比为2:3:5C.有一边等于另一条边的一半D.三角形的三边长分别是24、25和78.如图,已知AB∥CD、AE平分∠CAB,且交CD于点D.∠C=110°,则∠EAB为()A.110°B.55°C.40°D.35°9.已知:在Rt△ABC中,∠C=90°,BC=1,AC=,点D是斜边AB的中点,点E是边AC上一点,则DE+BE的最小值为()A.2 B.C.D.10.在△ABC中,AB=BC,将△ABC绕点B顺时针旋转α度,得到△A1BC1,A1B交AC于E,A1C1分别交AC、BC于点D、F,下列结论:①∠CDF=α,②A1E=CF,③DF=FC,④AD=CE,⑤A1F=CE.其中一定正确的有A.①②④B.②③④C.①②⑤D.③④⑤11.若△ABC是直角三角形,两直角边都是6,在三角形斜边上有一点P,到两直角边的距离相等,则这个距离等于________.12.已知m为不等式组的所有整数解,则关于x的方程有增根的概率为______.13.如图,△ABC中,∠ACB=90°,CD平分∠ACB,E点在BC上,CE=CA,若∠A=55°,则∠BDE=_____.14.如图,已知l1∥l2∥l3,相邻两条平行直线间的距离为1cm,若等腰直角三角形ABC 的直角顶点C 在l1上,另两个顶点A、B 分别在l1、l2上,则AB 的长是______________.∠=∠,请补充一个条件,使15.如图,AC、BD相交于点O,A DAOB≌DOC,你补充的条件是__________.(填出一个即可)16.如图,BD是△ABC的角平分线,DE⊥AB于点E;BD=13,BE=12,BC=14,则△BCD的面积是_____.17.如图,OC 是∠BOA 的平分线,PE⊥OB,PD⊥OA,若PE=4,则PD=________.18.如图,AB∥CD,∠B=160°,∠D=120°,则∠E=_________.19.不等式组的解集是____________;20.在Rt△ABC中,∠C=90°,∠A=70°,则∠B=_________.21.解不等式组()3145{513x xxx-≥--->,并写出它的所有整数解.22.解方程组:(1)(2)23.如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个点C,从点C 不经过池塘可以直接到达点A 和B. 连接AC并延长到点D,使CD =CA. 连接BC 并延长到点E,使CE =CB. 连接DE,那么量出DE的长就是A,B的距离.为什么?24.如图,点E,F分别在菱形ABCD的边DC,DA上,且CE=AF.求证:∠ABF=∠CBE.25.25.已知:如图,∠1=120°,∠C=60°,判断AB与CD是否平行?为什么?26.如图,AF,AD分别是△ABC的高和角平分线,且∠B=40°,∠C=70°,求∠DAF 的度数。

2018-2019学年鲁教版(五四制)七年级数学下册期末测试题含答案

2018-2019学年鲁教版(五四制)七年级数学下册期末测试题含答案

2018-2019学年七年级数学下册期末检测试题(时间:120分钟满分:150分)一、选择题(每小题4分,共48分)1.如图,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,则∠1等于( )(A)30°(B)25°(C)20°(D)15°2.小明将如图所示的转盘分成n(n是正整数)个扇形,并使得各个扇形的面积都相等,然后他在这些扇形区域内分别标连续偶数数字2,4,6,…,2n(每个区域内标注1个数字,且各区域内标注的数字互不相同),转动转盘1次,当转盘停止转动时,若事件“指针所落区域标注的数字大于8”的概率是,则n的取值为( )(A)36 (B)30 (C)24 (D)183.下列说法正确的是( )(A)367人中至少有2人生日相同(B)任意掷一枚均匀的骰子,掷出的点数是偶数的概率是(C)天气预报说明天的降水概率为90%,则明天一定会下雨(D)某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖4.方程组的解为( )(A)(B)(C)(D)5. 如图,已知点P到AE,AD,BC的距离相等,则下列说法:①点P在∠BAC的平分线上;②点P在∠CBE的平分线上;③点P在∠BCD的平分线上;④点P是∠BAC,∠CBE,∠BCD的平分线的交点,其中正确的是( )(A)①②③④ (B)①②③(C)②③ (D)④6.如图,AB,CD交于O点,且互相平分,则图中全等三角形有( )(A)2对(B)3对(C)4对(D)5对7.已知点P(a+1,-+1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是( )8.如图,△ABC为等边三角形,D是BC边上一点,在AC边上取一点F,使CF=BD,在AB 边上取一点E,使BE=DC,则∠EDF的度数为( )(A)30°(B)45°(C)60°(D)70°9.学校八年级师生共466人准备参加社会实践活动.现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x辆,37座客车y辆,根据题意可列出方程组( )(A) (B)(C) (D)10.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的∠A是120°,第二次拐的∠B是150°,第三次拐的角是∠C,这时恰好和第一次拐弯之前的道路平行,则∠C的度数为( )(A)100° (B)120° (C)150° (D)160°11.关于x的不等式组的解集中至少有5个整数解,则正数a的最小值是( )(A)3 (B)2 (C)1 (D)12.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是( )(A)()n·75° (B)()n-1·65°(C)()n-1·75° (D)()n·85°二、填空题(每小题4分,共24分)13.如图,一块飞镖游戏板由大小相等的小正方形格子构成.向游戏板随机投掷一枚飞镖,击中黑色区域的概率是.14.不等式组的最小整数解是.15.如图,l1∥l2,△ABC的顶点B,C在直线l2上,已知∠A=40°,∠1=60°,则∠2的度数为.16.如图,在△ABC中,AB=AC,∠BAC=36°,DE是线段AC的垂直平分线,若BE=a,AE=b,则用含a,b的代数式表示△ABC的周长为.17.若关于x,y的二元一次方程组的解是则关于a,b的二元一次方程组的解是.18.若不等式组无解,则m的取值范围是.三、解答题(共78分)19.(10分)解方程组与不等式组:(1)(2)20.(8分)如图所示,已知DF⊥AB于点F,∠A=40°,∠D=50°,求∠ACB的度数.21.(8分)如图,∠ACB=90°,BD平分∠ABE,CD∥AB交BD于D,∠1=20°,求∠2的度数.22.(8分)如图,在△ACB中,AC=BC,AD为△ACB的高线,CE为△ACB的中线,求证:∠DAB=∠ACE.23.(10分)为了解学生的体能情况,随机选取了1 000名学生进行调查,并记录了他们对长跑、短跑、跳绳、跳远四个项目的喜欢情况,整理成以下统计表,其中“√”表示喜欢,“×”表示不喜欢.(1)估计学生同时喜欢短跑和跳绳的概率;(2)估计学生在长跑、短跑、跳绳、跳远中同时喜欢三个项目的概率;(3)如果学生喜欢长跑,则该同学同时喜欢短跑、跳绳、跳远中哪项的可能性大?24.(10分)在数学学习中,及时对知识进行归纳和整理是完善知识结构的重要方法.善于学习的小明在学习了一次方程(组)、一元一次不等式和一次函数后,把相关知识归纳整理如下:(1)请你根据以上方框中的内容在下面数字序号后写出相应的结论:①;②;③; ④.(2)如果点C的坐标为(1,3),求不等式kx+b≤k1x+b1的解集.25.(12分)蔬菜经营户老王,近两天经营的是白菜和西兰花.(1)昨天的白菜和西兰花的进价和售价如表,老王用600元批发白菜和西兰花共200市斤,当天售完后老王一共能赚多少元钱?(2)今天因进价不变,老王仍用600元批发白菜和西兰花共200市斤.但在运输中白菜损坏了10%,而西兰花没有损坏仍按昨天的售价销售,要想当天售完后所赚的钱不少于昨天所赚的钱,请你帮老王计算,应怎样给白菜定售价?(精确到0.1元)26.(12分)已知△ABD与△GDF都是等腰直角三角形,BD与DF均为斜边(BD<DF).如图,B,D,F在同一直线上,过F作MF⊥GF于点F,取MF=AB,连接AM交BF于点H,连接GA,GM.(1)求证:AH=HM;(2)请判断△GAM的形状,并给予证明;(3)请用等式表示线段AM,BD,DF的数量关系,不必说明理由.2018-2019学年七年级数学下册期末检测试题(时间:120分钟满分:150分)一、选择题(每小题4分,共48分)1.如图,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,则∠1等于( D )(A)30°(B)25°(C)20°(D)15°解析:因为一副直角三角板的两条斜边互相平行,所以∠3=∠2=45°,因为∠4=30°,所以∠1=∠3-∠4=15°.故选D.2.小明将如图所示的转盘分成n(n是正整数)个扇形,并使得各个扇形的面积都相等,然后他在这些扇形区域内分别标连续偶数数字2,4,6,…,2n(每个区域内标注1个数字,且各区域内标注的数字互不相同),转动转盘1次,当转盘停止转动时,若事件“指针所落区域标注的数字大于8”的概率是,则n的取值为( C )(A)36 (B)30 (C)24 (D)18解析:因为事件“指针所落区域标注的数字大于8”的概率是,所以=.解得n=24.故选C.3.下列说法正确的是( A )(A)367人中至少有2人生日相同(B)任意掷一枚均匀的骰子,掷出的点数是偶数的概率是(C)天气预报说明天的降水概率为90%,则明天一定会下雨(D)某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖解析:一年最多366天,所以367人中至少有2人生日相同,选项A正确;任意掷一枚均匀的骰子,掷出的点数是偶数的概率应是,选项B错误;天气预报说明天的降水概率为90%,只是说降雨的可能性较大,但不能说明天一定会下雨,选项C错误;某种彩票中奖的概率是1%,并不是说买100张彩票一定有1张中奖,选项D错误.故选A.4.方程组的解为( D )(A)(B)(C)(D)解析:法一将4组解分别代入原方程组,只有D选项同时满足两个方程,故选D.法二由①得x=y+3,③把③代入②得,3(y+3)-8y=14,解得y=-1,将y=-1代入③得x=2.所以方程组的解为故选D.5. 如图,已知点P到AE,AD,BC的距离相等,则下列说法:①点P在∠BAC的平分线上;②点P在∠CBE的平分线上;③点P在∠BCD的平分线上;④点P是∠BAC,∠CBE,∠BCD的平分线的交点,其中正确的是( A )(A)①②③④ (B)①②③(C)②③ (D)④解析:因为点P到AE,AD,BC的距离相等,所以点P在∠BAC的平分线上,故①正确;点P在∠CBE的平分线上,故②正确;点P 在∠BCD的平分线上,故③正确;点P是∠BAC,∠CBE,∠BCD的平分线的交点,故④正确,综上所述,正确的是①②③④.故选A.6.如图,AB,CD交于O点,且互相平分,则图中全等三角形有( C )(A)2对(B)3对(C)4对(D)5对解析:题图中的全等三角形有△AOC≌△BOD,△BOC≌△AOD,△ABC≌△BAD,△ACD≌△BDC,共4对.故选C.7.已知点P(a+1,-+1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是( C )解析:因为点P(a+1,-+1)关于原点的对称点在第四象限,所以点P在第二象限,所以解不等式组得a<-1.故选C.8.如图,△ABC为等边三角形,D是BC边上一点,在AC边上取一点F,使CF=BD,在AB 边上取一点E,使BE=DC,则∠EDF的度数为( C )(A)30°(B)45°(C)60°(D)70°解析:易证△BED≌△CDF(SAS),得∠BED=∠CDF,又因为∠EDF+∠CDF=∠B+∠BED,所以∠EDF=∠B=60°.故选C.9.学校八年级师生共466人准备参加社会实践活动.现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x辆,37座客车y辆,根据题意可列出方程组( A )(A) (B)(C) (D)解析:根据题意49座客车x辆,37座客车y辆,可知x+y=10,根据对应车辆载人数可知49x+37y=466,故选A.10.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的∠A是120°,第二次拐的∠B是150°,第三次拐的角是∠C,这时恰好和第一次拐弯之前的道路平行,则∠C的度数为( C )(A)100° (B)120° (C)150° (D)160°解析:法一延长AB,EC交于点D,根据题意∠D=∠A=120°;在△BCD中,∠BCD=∠ABC-∠D=150°-120°=30°,所以∠BCE=180°-∠BCD=180°-30°=150°,故选C.法二过点B作BD∥AE,因为AE∥CF,所以AE∥BD∥CF,所以∠ABD=∠A=120°,因为∠ABC=150°,所以∠CBD=∠CBA-∠ABD=150°-120°=30°,因为已证得CF∥BD,所以∠CBD+∠C=180°,所以∠C=180°-∠CBD=180°-30°=150°.故选C.11.关于x的不等式组的解集中至少有5个整数解,则正数a的最小值是( B )(A)3 (B)2 (C)1 (D)解析:解不等式①得x≤a,解不等式②得x>-a.则不等式组的解集是-a<x≤a.因为不等式组至少有5个整数解,所以a-(-a)≥5,解得a≥2.所以正数a的最小值是2.故选B.12.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是( C )(A)()n·75° (B)()n-1·65°(C)()n-1·75° (D)()n·85°解析:因为A1B=CB,∠B=30°,所以∠C=∠BA1C=75°.又因为A1A2=A1D,所以∠A1A2D=∠A1DA2=∠DA1C=×75°=()2-1×75°;同理,∠A2A3E=∠A2EA3=∠DA2A1 =××75°=()3-1×75°;∠A3A4F=()4-1×75°;…第n个三角形中以A n为顶点的内角度数是()n-1×75°.故选C.二、填空题(每小题4分,共24分)13.如图,一块飞镖游戏板由大小相等的小正方形格子构成.向游戏板随机投掷一枚飞镖,击中黑色区域的概率是.解析:设小正方形的边长为1,所以击中黑色区域的概率是=.14.不等式组的最小整数解是0 .解析:解不等式组,得-1<x≤2,所以其最小整数解是0.15.如图,l1∥l2,△ABC的顶点B,C在直线l2上,已知∠A=40°,∠1=60°,则∠2的度数为100°.解析:因为l1∥l2,所以∠3=∠1=60°,因为∠A=40°,所以∠2=∠A+∠3=100°.16.如图,在△ABC中,AB=AC,∠BAC=36°,DE是线段AC的垂直平分线,若BE=a,AE=b,则用含a,b的代数式表示△ABC的周长为2a+3b .解析:由题意,得AC=AB=a+b,∠B=∠ACB=(180°-36°)÷2=72°,因为DE垂直平分线段AC,所以EA=EC,所以∠ECA=∠A=36°,所以∠ECB=36°,∠BEC=72°,所以CB=CE=b,故△ABC的周长为2a+3b.17.(2018滨州)若关于x,y的二元一次方程组的解是则关于a,b的二元一次方程组的解是.解析:观察两个方程组的结构特点,a+b相当于x,a-b相当于y,故可直接得出解得从而得出二元一次方程组的解是18.若不等式组无解,则m的取值范围是m<.解析:解不等式2x-3≥0,得x≥,要使不等式组无解,则m<.三、解答题(共78分)19.(10分)解方程组与不等式组:(1)(2)解:(1)②-①,得x=6,把x=6代入①,得y=4.所以原方程组的解为(2)解不等式①得,x≤-1,解不等式②得,x>-7,所以,原不等式组的解集为-7<x≤-1.20.(8分)如图所示,已知DF⊥AB于点F,∠A=40°,∠D=50°,求∠ACB的度数.解:在Rt△AFG中,∠AGF=90°-∠A=90°-40°=50°,所以∠CGD=∠AGF=50°.所以∠ACB=∠CGD+∠D=50°+50°=100°.21.(8分)如图,∠ACB=90°,BD平分∠ABE,CD∥AB交BD于D,∠1=20°,求∠2的度数.解:因为BD平分∠ABE,∠1=20°,所以∠ABC=2∠1=40°.因为CD∥AB,所以∠DCE=∠ABC=40°.因为∠ACB=90°,所以∠2=90°-40°=50°.22.(8分)如图,在△ACB中,AC=BC,AD为△ACB的高线,CE为△ACB的中线,求证:∠DAB=∠ACE.证明:因为AC=BC,CE为△ACB的中线,所以∠CAB=∠B,CE⊥AB,所以∠CAB+∠ACE=90°.因为AD为△ACB的高线,所以∠D=90°.所以∠DAB+∠B=90°,所以∠DAB=∠ACE.23.(10分)为了解学生的体能情况,随机选取了1 000名学生进行调查,并记录了他们对长跑、短跑、跳绳、跳远四个项目的喜欢情况,整理成以下统计表,其中“√”表示喜欢,“×”表示不喜欢.(1)估计学生同时喜欢短跑和跳绳的概率;(2)估计学生在长跑、短跑、跳绳、跳远中同时喜欢三个项目的概率;(3)如果学生喜欢长跑,则该同学同时喜欢短跑、跳绳、跳远中哪项的可能性大? 解:(1)同时喜欢短跑和跳绳的概率为=.(2)同时喜欢三个项目的概率为=.(3)喜欢长跑的700人中,有150人选择了短跑,550人选择了跳绳,200人选择了跳远,于是喜欢长跑的学生又同时喜欢跳绳的可能性大.24.(10分)在数学学习中,及时对知识进行归纳和整理是完善知识结构的重要方法.善于学习的小明在学习了一次方程(组)、一元一次不等式和一次函数后,把相关知识归纳整理如下:(1)请你根据以上方框中的内容在下面数字序号后写出相应的结论:①;②;③; ④.(2)如果点C的坐标为(1,3),求不等式kx+b≤k1x+b1的解集.解:(1)①kx+b=0;②③kx+b>0;④kx+b<0.(2)由图象可知,不等式kx+b≤k1x+b1的解集是x≥1.25.(12分)蔬菜经营户老王,近两天经营的是白菜和西兰花.(1)昨天的白菜和西兰花的进价和售价如表,老王用600元批发白菜和西兰花共200市斤,当天售完后老王一共能赚多少元钱?(2)今天因进价不变,老王仍用600元批发白菜和西兰花共200市斤.但在运输中白菜损坏了10%,而西兰花没有损坏仍按昨天的售价销售,要想当天售完后所赚的钱不少于昨天所赚的钱,请你帮老王计算,应怎样给白菜定售价?(精确到0.1元)解:(1)设老王批发了白菜x市斤和西兰花y市斤,根据题意得,解得(4-2.8)×100+(4.5-3.2)×100=250(元).答:当天售完后老王一共能赚250元钱.(2)设白菜的售价为t元.100×(1-10%)t+100×4.5-600≥250,t≥≈4.44.答:白菜的售价不低于4.5元/市斤.26.(12分)已知△ABD与△GDF都是等腰直角三角形,BD与DF均为斜边(BD<DF).如图,B,D,F在同一直线上,过F作MF⊥GF于点F,取MF=AB,连接AM交BF于点H,连接GA,GM.(1)求证:AH=HM;(2)请判断△GAM的形状,并给予证明;(3)请用等式表示线段AM,BD,DF的数量关系,不必说明理由.(1)证明:因为MF⊥GF,所以∠GFM=90°,因为△ABD与△GDF都是等腰直角三角形,所以∠DFG=∠ABD=45°,所以∠HFM=90°-45°=45°,所以∠ABD=∠HFM,因为AB=MF,∠AHB=∠MHF,所以△AHB≌△MHF,所以AH=HM.(2)解:△GAM是等腰直角三角形,理由是:因为△ABD与△GDF都是等腰直角三角形,所以AB=AD,DG=FG,∠ADB=∠GDF=45°,所以∠ADG=∠GFM=90°,因为AB=FM,所以AD=FM,又DG=FG,所以△GAD≌△GMF,所以AG=MG,∠AGD=∠MGF,所以∠AGD+∠DGM=∠MGF+∠DGM=90°,所以△GAM是等腰直角三角形.(3)解:AM2=BD2+DF2.。

新编鲁教版(五四制)七年级下册数学期末检测试题有答案

新编鲁教版(五四制)七年级下册数学期末检测试题有答案

鲁教版七年级第二学期期末检测数学试题(时间:120分钟满分:150分)一、选择题(每小题4分,共48分)1.(2018北京)方程组的解为( D )(A) (B)(C) (D)解析:法一将4组解分别代入原方程组,只有D选项同时满足两个方程,故选D.法二由①得x=y+3,③把③代入②得,3(y+3)-8y=14,解得y=-1,将y=-1代入③得x=2.所以方程组的解为故选D.2.(2018烟台)下列说法正确的是( A )(A)367人中至少有2人生日相同(B)任意掷一枚均匀的骰子,掷出的点数是偶数的概率是(C)天气预报说明天的降水概率为90%,则明天一定会下雨(D)某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖解析:一年最多366天,所以367人中至少有2人生日相同,选项A正确;任意掷一枚均匀的骰子,掷出的点数是偶数的概率应是,选项B错误;天气预报说明天的降水概率为90%,只是说降雨的可能性较大,但不能说明天一定会下雨,选项C错误;某种彩票中奖的概率是1%,并不是说买100张彩票一定有1张中奖,选项D错误.故选A.3.(2018日照)如图,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,则∠1等于( D )(A)30°(B)25°(C)20°(D)15°解析:因为一副直角三角板的两条斜边互相平行,所以∠3=∠2=45°,因为∠4=30°,所以∠1=∠3-∠4=15°.故选D.4.(2018镇江)小明将如图所示的转盘分成n(n是正整数)个扇形,并使得各个扇形的面积都相等,然后他在这些扇形区域内分别标连续偶数数字2,4,6,…,2n(每个区域内标注1个数字,且各区域内标注的数字互不相同),转动转盘1次,当转盘停止转动时,若事件“指针所落区域标注的数字大于8”的概率是,则n的取值为( C )(A)36 (B)30 (C)24 (D)18解析:因为事件“指针所落区域标注的数字大于8”的概率是,所以=.解得n=24.故选C.5. 如图,已知点P到AE,AD,BC的距离相等,则下列说法:①点P在∠BAC的平分线上;②点P在∠CBE的平分线上;③点P在∠BCD的平分线上;④点P是∠BAC,∠CBE,∠BCD的平分线的交点,其中正确的是( A )(A)①②③④ (B)①②③(C)②③ (D)④解析:因为点P到AE,AD,BC的距离相等,所以点P在∠BAC的平分线上,故①正确;点P在∠CBE的平分线上,故②正确;点P在∠BCD的平分线上,故③正确;点P是∠BAC,∠CBE,∠BCD的平分线的交点,故④正确,综上所述,正确的是①②③④.故选A.6.如图,AB,CD交于O点,且互相平分,则图中全等三角形有( C )(A)2对(B)3对(C)4对(D)5对解析:题图中的全等三角形有△AOC≌△BOD,△BOC≌△AOD,△ABC≌△BAD,△ACD≌△BDC,共4对.故选C.7.已知点P(a+1,-+1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是( C )解析:因为点P(a+1,-+1)关于原点的对称点在第四象限,所以点P在第二象限,所以解不等式组得a<-1.故选C.8.如图,△ABC为等边三角形,D是BC边上一点,在AC边上取一点F,使CF=BD,在AB边上取一点E,使BE=DC,则∠EDF的度数为( C )(A)30°(B)45°(C)60°(D)70°解析:易证△BED≌△CDF(SAS),得∠BED=∠CDF,又因为∠EDF+∠CDF=∠B+∠BED,所以∠EDF=∠B=60°.故选C.9.(2018台州)学校八年级师生共466人准备参加社会实践活动.现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x辆,37座客车y辆,根据题意可列出方程组( A )(A) (B)(C) (D)解析:根据题意49座客车x辆,37座客车y辆,可知x+y=10,根据对应车辆载人数可知49x+37y=466,故选A.10.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的∠A是120°,第二次拐的∠B是150°,第三次拐的角是∠C,这时恰好和第一次拐弯之前的道路平行,则∠C的度数为( C )(A)100° (B)120° (C)150° (D)160°解析:法一延长AB,EC交于点D,根据题意∠D=∠A=120°;在△BCD中,∠BCD=∠ABC-∠D=150°-120°=30°,所以∠BCE=180°-∠BCD=180°-30°=150°,故选C.法二过点B作BD∥AE,因为AE∥CF,所以AE∥BD∥CF,所以∠ABD=∠A=120°,因为∠ABC=150°,所以∠CBD=∠CBA-∠ABD=150°-120°=30°,因为已证得CF∥BD,所以∠CBD+∠C=180°,所以∠C=180°-∠CBD=180°-30°=150°.故选C.11.关于x的不等式组的解集中至少有5个整数解,则正数a的最小值是( B )(A)3 (B)2 (C)1 (D)解析:解不等式①得x≤a,解不等式②得x>- a.则不等式组的解集是-a<x≤a.因为不等式组至少有5个整数解,所以a-(-a)≥5,解得a≥2.所以正数a的最小值是2.故选B.12.如图,在第1个△A 1BC 中,∠B=30°,A 1B=CB;在边A 1B 上任取一点D,延长CA 1到A 2,使A 1A 2=A 1D,得到第2个△A 1A 2D;在边A 2D 上任取一点E,延长A 1A 2到A 3,使A 2A 3=A 2E,得到第3个△A 2A 3E,…按此做法继续下去,则第n 个三角形中以A n 为顶点的内角度数是( C )(A)()n·75° (B)()n-1·65° (C)()n-1·75° (D)()n ·85° 解析:因为A 1B=CB,∠B=30°, 所以∠C=∠BA 1C=75°. 又因为A 1A 2=A 1D,所以∠A 1A 2D=∠A 1DA 2=∠DA 1C=×75°=()2-1×75°;同理,∠A 2A 3E=∠A 2EA 3=∠DA 2A 1 =××75°=()3-1×75°;∠A 3A 4F=()4-1×75°;…第n 个三角形中以A n 为顶点的内角度数是()n-1×75°. 故选C.二、填空题(每小题4分,共24分)13.(2018绥化)如图,一块飞镖游戏板由大小相等的小正方形格子构成.向游戏板随机投掷一枚飞镖,击中黑色区域的概率是.解析:设小正方形的边长为1, 所以击中黑色区域的概率是=.14.(2018菏泽)不等式组的最小整数解是 0 .解析:解不等式组,得-1<x ≤2, 所以其最小整数解是0.15.(2018镇江一模)如图,l1∥l2,△ABC的顶点B,C在直线l2上,已知∠A=40°,∠1=60°,则∠2的度数为100°.解析:因为l1∥l2,所以∠3=∠1=60°,因为∠A=40°,所以∠2=∠A+∠3=100°.16.如图,在△ABC中,AB=AC,∠BAC=36°,DE是线段AC的垂直平分线,若BE=a,AE=b,则用含a,b的代数式表示△ABC的周长为2a+3b .解析:由题意,得AC=AB=a+b,∠B=∠ACB=(180°-36°)÷2=72°,因为DE垂直平分线段AC,所以EA=EC,所以∠ECA=∠A=36°,所以∠ECB=36°,∠BEC=72°,所以CB=CE=b,故△ABC的周长为2a+3b.17.(2018滨州)若关于x,y的二元一次方程组的解是则关于a,b的二元一次方程组的解是.解析:观察两个方程组的结构特点,a+b相当于x,a-b相当于y,故可直接得出解得从而得出二元一次方程组的解是18.若不等式组无解,则m的取值范围是m<.解析:解不等式2x-3≥0,得x≥,要使不等式组无解,则m<.三、解答题(共78分)19.(10分)解方程组与不等式组:(1)(2018武汉)(2)(2018宁夏)解:(1)②-①,得x=6,把x=6代入①,得y=4.所以原方程组的解为(2)解不等式①得,x≤-1,解不等式②得,x>-7,所以,原不等式组的解集为-7<x≤-1.20.(8分)如图所示,已知DF⊥AB于点F,∠A=40°,∠D=50°,求∠ACB的度数.解:在Rt△AFG中,∠AGF=90°-∠A=90°-40°=50°,所以∠CGD=∠AGF=50°.所以∠ACB=∠CGD+∠D=50°+50°=100°.21.(8分)如图,∠ACB=90°,BD平分∠ABE,CD∥AB交BD于D,∠1=20°,求∠2的度数.解:因为BD平分∠ABE,∠1=20°,所以∠ABC=2∠1=40°.因为CD∥AB,所以∠DCE=∠ABC=40°.因为∠ACB=90°,所以∠2=90°-40°=50°.22.(8分)(2018高青期末)如图,在△ACB中,AC=BC,AD为△ACB的高线,CE为△ACB的中线,求证:∠DAB=∠ACE.证明:因为AC=BC,CE为△ACB的中线,所以∠CAB=∠B,CE⊥AB,所以∠CAB+∠ACE=90°.因为AD为△ACB的高线,所以∠D=90°.所以∠DAB+∠B=90°,所以∠DAB=∠ACE.23.(10分)为了解学生的体能情况,随机选取了1 000名学生进行调查,并记录了他们对长跑、短跑、跳绳、跳远四个项目的喜欢情况,整理成以下统计表,其中“√”表示喜欢,“×”表示不喜欢.项目长跑短跑跳绳跳远学生数200 √×√√300 ×√×√150 √√√×200 √×√×150 √×××(2)估计学生在长跑、短跑、跳绳、跳远中同时喜欢三个项目的概率;(3)如果学生喜欢长跑,则该同学同时喜欢短跑、跳绳、跳远中哪项的可能性大?解:(1)同时喜欢短跑和跳绳的概率为=.(2)同时喜欢三个项目的概率为=.(3)喜欢长跑的700人中,有150人选择了短跑,550人选择了跳绳,200人选择了跳远,于是喜欢长跑的学生又同时喜欢跳绳的可能性大.24.(10分)在数学学习中,及时对知识进行归纳和整理是完善知识结构的重要方法.善于学习的小明在学习了一次方程(组)、一元一次不等式和一次函数后,把相关知识归纳整理如下:(1)请你根据以上方框中的内容在下面数字序号后写出相应的结论:①;②;③; ④.(2)如果点C的坐标为(1,3),求不等式kx+b≤k1x+b1的解集.解:(1)①kx+b=0;②③kx+b>0;④kx+b<0.(2)由图象可知,不等式kx+b≤k1x+b1的解集是x≥1.25.(12分)蔬菜经营户老王,近两天经营的是白菜和西兰花.(1)昨天的白菜和西兰花的进价和售价如表,老王用600元批发白菜和西兰花共200市斤,当天售完后老王一共能赚多少元钱?(2)今天因进价不变,老王仍用600元批发白菜和西兰花共200市斤.但在运输中白菜损坏了10%,而西兰花没有损坏仍按昨天的售价销售,要想当天售完后所赚的钱不少于昨天所赚的钱,请你帮老王计算,应怎样给白菜定售价?(精确到0.1元)白菜西兰花进价(元/市斤) 2.8 3.2售价(元/市斤) 4 4.5解:(1)设老王批发了白菜x市斤和西兰花y市斤,根据题意得,解得(4-2.8)×100+(4.5-3.2)×100=250(元).答:当天售完后老王一共能赚250元钱.(2)设白菜的售价为t元.100×(1-10%)t+100×4.5-600≥250,t≥≈4.44.答:白菜的售价不低于4.5元/市斤.26.(12分)(2018高青期末)已知△ABD与△GDF都是等腰直角三角形,BD与DF均为斜边(BD<DF).如图,B,D,F在同一直线上,过F作MF⊥GF于点F,取MF=AB,连接AM交BF于点H,连接GA,GM.(1)求证:AH=HM;(2)请判断△GAM的形状,并给予证明;(3)请用等式表示线段AM,BD,DF的数量关系,不必说明理由.(1)证明:因为MF⊥GF,所以∠GFM=90°,因为△ABD与△GDF都是等腰直角三角形,所以∠DFG=∠ABD=45°,所以∠HFM=90°-45°=45°,所以∠ABD=∠HFM,因为AB=MF,∠AHB=∠MHF,所以△AHB≌△MHF,所以AH=HM.(2)解:△GAM是等腰直角三角形,理由是:因为△ABD与△GDF都是等腰直角三角形,所以AB=AD,DG=FG,∠ADB=∠GDF=45°,所以∠ADG=∠GFM=90°,因为AB=FM,所以AD=FM,又DG=FG,所以△GAD≌△GMF,.... 所以AG=MG,∠AGD=∠MGF,所以∠AGD+∠DGM=∠MGF+∠DGM=90°,所以△GAM是等腰直角三角形.(3)解:AM2=BD2+DF2.....。

鲁教版2018-2019学年(五四制)七年级(下)数学期末检测试题(含答案)

鲁教版2018-2019学年(五四制)七年级(下)数学期末检测试题(含答案)

期末检测试题(时间:120分钟满分:150分)一、选择题(每小题4分,共48分)1.(2018北京)方程组的解为(D)(A)(B)(C)(D)解析:法一将4组解分别代入原方程组,只有D选项同时满足两个方程,故选D.法二由①得x=y+3,③把③代入②得,3(y+3)-8y=14,解得y=-1,将y=-1代入③得x=2.所以方程组的解为故选D.2.(2018烟台)下列说法正确的是(A)(A)367人中至少有2人生日相同(B)任意掷一枚均匀的骰子,掷出的点数是偶数的概率是(C)天气预报说明天的降水概率为90%,则明天一定会下雨(D)某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖解析:一年最多366天,所以367人中至少有2人生日相同,选项A正确;任意掷一枚均匀的骰子,掷出的点数是偶数的概率应是,选项B错误;天气预报说明天的降水概率为90%,只是说降雨的可能性较大,但不能说明天一定会下雨,选项C错误; 某种彩票中奖的概率是1%,并不是说买100张彩票一定有1张中奖,选项D错误.故选A.3.(2018日照)如图,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,则∠1等于(D)(A)30°(B)25°(C)20°(D)15°解析:因为一副直角三角板的两条斜边互相平行,所以∠3=∠2=45°,因为∠4=30°,所以∠1=∠3-∠4=15°.故选D.4.(2018镇江)小明将如图所示的转盘分成n(n是正整数)个扇形,并使得各个扇形的面积都相等,然后他在这些扇形区域内分别标连续偶数数字2,4,6,…,2n(每个区域内标注1个数字,且各区域内标注的数字互不相同),转动转盘1次,当转盘停止转动时,若事件“指针所落区域标注的数字大于8”的概率是,则n的取值为(C)(A)36 (B)30 (C)24 (D)18解析:因为事件“指针所落区域标注的数字大于8”的概率是,所以=.解得n=24.故选C.5. 如图,已知点P到AE,AD,BC的距离相等,则下列说法:①点P在∠BAC的平分线上;②点P在∠CBE的平分线上;③点P在∠BCD的平分线上;④点P是∠BAC,∠CBE,∠BCD的平分线的交点,其中正确的是(A)(A)①②③④(B)①②③(C)②③(D)④解析:因为点P到AE,AD,BC的距离相等,所以点P在∠BAC的平分线上,故①正确;点P在∠CBE的平分线上,故②正确;点P在∠BCD的平分线上,故③正确;点P是∠BAC,∠CBE,∠BCD的平分线的交点,故④正确,综上所述,正确的是①②③④.故选A.6.如图,AB,CD交于O点,且互相平分,则图中全等三角形有(C)(A)2对(B)3对(C)4对(D)5对解析:题图中的全等三角形有△AOC≌△BOD,△BOC≌△AOD,△ABC≌△BAD,△ACD≌△BDC,共4对.故选C.7.已知点P(a+1,-+1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是(C)解析:因为点P(a+1,-+1)关于原点的对称点在第四象限,所以点P在第二象限,所以解不等式组得a<-1.故选C.8.如图,△ABC为等边三角形,D是BC边上一点,在AC边上取一点F,使CF=BD,在AB边上取一点E,使BE=DC,则∠EDF的度数为(C)(A)30°(B)45°(C)60°(D)70°解析:易证△BED≌△CDF(SAS),得∠BED=∠CDF,又因为∠EDF+∠CDF=∠B+∠BED,所以∠EDF=∠B=60°.故选C.9.(2018台州)学校八年级师生共466人准备参加社会实践活动.现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x辆,37座客车y辆,根据题意可列出方程组(A)(A)(B)(C)(D)解析:根据题意49座客车x辆,37座客车y辆,可知x+y=10,根据对应车辆载人数可知49x+37y=466,故选A. 10.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的∠A是120°,第二次拐的∠B是150°,第三次拐的角是∠C,这时恰好和第一次拐弯之前的道路平行,则∠C的度数为(C)(A)100°(B)120°(C)150°(D)160°解析:法一延长AB,EC交于点D,根据题意∠D=∠A=120°;在△BCD中,∠BCD=∠ABC-∠D=150°-120°=30°,所以∠BCE=180°-∠BCD=180°-30°=150°,故选C.法二过点B作BD∥AE,因为AE∥CF,所以AE∥BD∥CF,所以∠ABD=∠A=120°,因为∠ABC=150°,所以∠CBD=∠CBA-∠ABD=150°-120°=30°,因为已证得CF∥BD,所以∠CBD+∠C=180°,所以∠C=180°-∠CBD=180°-30°=150°.故选C.11.关于x的不等式组的解集中至少有5个整数解,则正数a的最小值是(B)(A)3 (B)2 (C)1 (D)解析:解不等式①得x≤a,解不等式②得x>- a.则不等式组的解集是-a<x≤a.因为不等式组至少有5个整数解,所以a-(-a)≥5,解得a≥2.所以正数a的最小值是2.故选B.12.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是(C)(A)()n·75°(B)()n-1·65°(C)()n-1·75°(D)()n·85°解析:因为A1B=CB,∠B=30°,所以∠C=∠BA1C=75°.又因为A1A2=A1D,所以∠A1A2D=∠A1DA2=∠DA1C=×75°=()2-1×75°;同理,∠A2A3E=∠A2EA3=∠DA2A1 =××75°=()3-1×75°;∠A3A4F=()4-1×75°;…第n个三角形中以A n为顶点的内角度数是()n-1×75°.故选C.二、填空题(每小题4分,共24分)13.(2018绥化)如图,一块飞镖游戏板由大小相等的小正方形格子构成.向游戏板随机投掷一枚飞镖,击中黑色区域的概率是.解析:设小正方形的边长为1,所以击中黑色区域的概率是=.14.(2018菏泽)不等式组的最小整数解是0.解析:解不等式组,得-1<x≤2,所以其最小整数解是0.15.(2018镇江一模)如图,l1∥l2,△ABC的顶点B,C在直线l2上,已知∠A=40°,∠1=60°,则∠2的度数为100°.解析:因为l1∥l2,所以∠3=∠1=60°,因为∠A=40°,所以∠2=∠A+∠3=100°.16.如图,在△ABC中,AB=AC,∠BAC=36°,DE是线段AC的垂直平分线,若BE=a,AE=b,则用含a,b的代数式表示△ABC的周长为2a+3b.解析:由题意,得AC=AB=a+b,∠B=∠ACB=(180°-36°)÷2=72°,因为DE垂直平分线段AC,所以EA=EC,所以∠ECA=∠A=36°,所以∠ECB=36°,∠BEC=72°,所以CB=CE=b,故△ABC的周长为2a+3b.17.(2018滨州)若关于x,y的二元一次方程组的解是则关于a,b的二元一次方程组的解是.解析:观察两个方程组的结构特点,a+b相当于x,a-b相当于y,故可直接得出解得从而得出二元一次方程组的解是18.若不等式组无解,则m的取值范围是m<.解析:解不等式2x-3≥0,得x≥,要使不等式组无解,则m<.三、解答题(共78分)19.(10分)解方程组与不等式组:(1)(2018武汉)(2)(2018宁夏)解:(1)②-①,得x=6,把x=6代入①,得y=4.所以原方程组的解为(2)解不等式①得,x≤-1,解不等式②得,x>-7,所以,原不等式组的解集为-7<x≤-1.20.(8分)如图所示,已知DF⊥AB于点F,∠A=40°,∠D=50°,求∠ACB的度数.解:在Rt△AFG中,∠AGF=90°-∠A=90°-40°=50°,所以∠CGD=∠AGF=50°.所以∠ACB=∠CGD+∠D=50°+50°=100°.21.(8分)如图,∠ACB=90°,BD平分∠ABE,CD∥AB交BD于D,∠1=20°,求∠2的度数.解:因为BD平分∠ABE,∠1=20°,所以∠ABC=2∠1=40°.因为CD∥AB,所以∠DCE=∠ABC=40°.因为∠ACB=90°,所以∠2=90°-40°=50°.22.(8分)(2018高青期末)如图,在△ACB中,AC=BC,AD为△ACB的高线,CE为△ACB的中线,求证:∠DAB=∠ACE.证明:因为AC=BC,CE为△ACB的中线,所以∠CAB=∠B,CE⊥AB,所以∠CAB+∠ACE=90°.因为AD为△ACB的高线,所以∠D=90°.所以∠DAB+∠B=90°,所以∠DAB=∠ACE.23.(10分)为了解学生的体能情况,随机选取了1 000名学生进行调查,并记录了他们对长跑、短跑、跳绳、跳远四个项目的喜欢情况,整理成以下统计表,其中“√”表示喜欢,“×”表示不喜欢.项目长跑短跑跳绳跳远学生数200 √×√√300 ×√×√150 √√√×200 √×√×150 √×××(1)估计学生同时喜欢短跑和跳绳的概率;(2)估计学生在长跑、短跑、跳绳、跳远中同时喜欢三个项目的概率;(3)如果学生喜欢长跑,则该同学同时喜欢短跑、跳绳、跳远中哪项的可能性大?解:(1)同时喜欢短跑和跳绳的概率为=.(2)同时喜欢三个项目的概率为=.(3)喜欢长跑的700人中,有150人选择了短跑,550人选择了跳绳,200人选择了跳远,于是喜欢长跑的学生又同时喜欢跳绳的可能性大.24.(10分)在数学学习中,及时对知识进行归纳和整理是完善知识结构的重要方法.善于学习的小明在学习了一次方程(组)、一元一次不等式和一次函数后,把相关知识归纳整理如下:(1)请你根据以上方框中的内容在下面数字序号后写出相应的结论:①;②;③; ④.(2)如果点C的坐标为(1,3),求不等式kx+b≤k1x+b1的解集.解:(1)①kx+b=0;②③kx+b>0;④kx+b<0.(2)由图象可知,不等式kx+b≤k1x+b1的解集是x≥1.25.(12分)蔬菜经营户老王,近两天经营的是白菜和西兰花.(1)昨天的白菜和西兰花的进价和售价如表,老王用600元批发白菜和西兰花共200市斤,当天售完后老王一共能赚多少元钱?(2)今天因进价不变,老王仍用600元批发白菜和西兰花共200市斤.但在运输中白菜损坏了10%,而西兰花没有损坏仍按昨天的售价销售,要想当天售完后所赚的钱不少于昨天所赚的钱,请你帮老王计算,应怎样给白菜定售价?(精确到0.1元)白菜西兰花进价(元/市斤) 2.8 3.2售价(元/市斤) 4 4.5解:(1)设老王批发了白菜x市斤和西兰花y市斤,根据题意得,解得(4-2.8)×100+(4.5-3.2)×100=250(元).答:当天售完后老王一共能赚250元钱.(2)设白菜的售价为t元.100×(1-10%)t+100×4.5-600≥250,t≥≈4.44.答:白菜的售价不低于4.5元/市斤.26.(12分)(2018高青期末)已知△ABD与△GDF都是等腰直角三角形,BD与DF均为斜边(BD<DF).如图,B,D,F 在同一直线上,过F作MF⊥GF于点F,取MF=AB,连接AM交BF于点H,连接GA,GM.(1)求证:AH=HM;(2)请判断△GAM的形状,并给予证明;(3)请用等式表示线段AM,BD,DF的数量关系,不必说明理由.(1)证明:因为MF⊥GF,所以∠GFM=90°,因为△ABD与△GDF都是等腰直角三角形,所以∠DFG=∠ABD=45°,所以∠HFM=90°-45°=45°,所以∠ABD=∠HFM,因为AB=MF,∠AHB=∠MHF,所以△AHB≌△MHF,所以AH=HM.(2)解:△GAM是等腰直角三角形,理由是:因为△ABD与△GDF都是等腰直角三角形,所以AB=AD,DG=FG,∠ADB=∠GDF=45°,所以∠ADG=∠GFM=90°,因为AB=FM, 所以AD=FM,又DG=FG,所以△GAD≌△GMF,所以AG=MG,∠AGD=∠MGF,所以∠AGD+∠DGM=∠MGF+∠DGM=90°,所以△GAM是等腰直角三角形.(3)解:AM2=BD2+DF2.。

鲁教版(五四制)2018--2019学年度第二学期七年级期末考试数学试

鲁教版(五四制)2018--2019学年度第二学期七年级期末考试数学试

绝密★启用前鲁教版(五四制)2018--2019学年度第二学期七年级期末考试数学试卷注意事项:1.做卷时间100分钟,满分120分 2.做题要仔细,不要漏做 一、单选题(计30分)1.(本题3分)1∠和2∠是两条直线1l , 2l 被第三条直线3l 所截的同旁内角,如果12//l l ,那么必有( )A .∠1=∠2B .∠1+∠2=90°C .11129022∠+∠=︒ D .∠1是钝角,∠2是锐角2.(本题3分)等腰三角形一腰上的高与另一腰的夹角为25°,则顶角的度数为( ) A .65° B .65°或115° C .50° D .50°或115° 3.(本题3分)下列各式中,属于一元一次不等式的是( ) A .3x -2>0 B .2>-5 C .3x -2>y +1 D .3y +5<1y4.(本题3分)若不等式组的解集为0<x <1,则a 、b 的值分别为( )A .a=2,b=1B .a=2,b=3C .a=﹣2,b=3D .a=﹣2,b=1 5.(本题3分)等腰三角形一腰上的高与另一腰的夹角为20°,则这个等腰三角形的底角度数是A .70°B .55°C .35°D .55°或35° 6.(本题3分)如果不等式组恰有3个整数解,则a 的取值范围是( )A .a≤﹣1B .a <﹣1C .﹣2≤a <﹣1D .﹣2<a≤﹣1 7.(本题3分)如图,能判定的条件是( )A .B .C .D .8.(本题3分)下列说法正确的是( ).A .抛掷一枚硬币5次,5次都出现正面,所以投掷一枚硬币出现正面的概率为1B .“从我们班上查找一名未完成作业的学生的概率为0”表示我们班上所有的学生都完成了作业C .一个口袋里装有99个白球和一个红球,从中任取一个球,得到红球的概率为1%,所以从袋中取至少100次后必定可以取到红球(每次取后放回,并搅匀)D .抛一枚硬币,出现正面向上的概率为50%,所以投掷硬币两次,那么一次出现正面,一次出现反面9.(本题3分)一个三角形的两个内角和小于第三个内角,这个三角形是( )三角形.A .锐角B .钝角C .直角D .等腰10.(本题3分)一个口袋中共有50个球,其中白球20个,红球20个,蓝球10个,则摸到白球的概率是( )A .B .C .D . 二、填空题(计32分)11.(本题4分)如果方程3x 3m -2n -2y m +n+16=0是关于x ,y 的二元一次方程,那么m -n =____12.(本题4分)不等式的正整数解是________________.13.(本题4分)如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于点D ,若AB =10,CD =3,则S △ABD =______.14.(本题4分)已知|2x+y+1|+(x+2y ﹣7)2=0,则(x+y )2=________.15.(本题4分)如图,中,DE 是AC 的垂直平分线,,的周长为16cm ,则的周长为______.16.(本题4分)如图,一艘船在A 处遇险后向相距50海里位于B 处的救生船报警.用方向和距离描述遇险船相对于救生船的位置___________.17.(本题4分)用直尺和圆规作一个角等于已知角的示意图如下,则利用三角形全等能说明∠A ′O′B′=∠AOB 的依据是_________.18.(本题4分)抽屉里有尺码相同的2双黑袜子和1双白袜子,混放在一起,•在夜晚不开灯的情况下,随意拿出2只,它们恰好是颜色相同的1双的概率是_________. 三、解答题(计58分)19.(本题7分)解方程组:(1); (2).20.(本题7分)如图,在△ABC 中,BD 平分∠ABC ,DE ⊥AB 于E ,AB=3cm ,BC=2.5cm ,△ABD 的面积为 2cm 2,求△ABC 的面积.21.(本题7分)如图,已知AF 分别与BD 、CE 交于点G 、H ,∠1=50°,∠2=130°. (1)BD 与CE 平行吗?为什么?(2)若∠A=∠F ,探索∠C 与∠D 的数量关系,并说明理由.22.(本题7分)有一群猴子,一天结伴去偷桃子.分桃子时,如果每只猴子分3个,那么还剩下59个,如果每只猴子分5个,有一只猴子分得的桃子不足5个.你能求出有几只猴子,几个桃子吗?23.(本题7分)如图:E是的平分线上一点,,,垂足为C,求证:;≌.24.(本题7分)如图,AB∥DE,∠B=70°,∠D=135°.求∠C的度数.25.(本题8分)如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°.求∠DAC的度数.26.(本题8分)小明利用课余时间回收废品,将卖得的钱去购买5本大小不同的两种笔记本,要求共花钱不超过28元,且购买的笔记本的总页数不低于340页,两种笔记本的价格和页数如下表.为了节约资金,小明应选择哪一种购买方案?请说明理由.参考答案1.C【解析】∵12//l l ,∴∠1+∠2=180°(两直线平行,同旁内角互补), ∴11129022∠+∠=︒, 故选C. 2.B【解析】如图①所示,当等腰三角形一腰上的高在三角形外部时,已知∠DBA =25°∵AD 是三角形ABC 的高,∴∠BDA =90°. ∵∠BAC =∠DBA +∠BDA ∠DBA =25°∠BDA =90°,∴∠BAC =115° 当等腰三角形一腰上的高在三角形内部时,如图②所示,则有∠BDC =90°,∠ABD =25°∵∠BDC =∠BAC +∠ABD ∠BDC =90° ∠ABD =25°,∴∠BAC =65° 所以顶角的度数为65°或者115°,故答案选B. 3.A【解析】根据一元一次不等式的概念,由含有一个未知数的,且未知数的次数为1的整式构成的不等式,因此可知A是一元一次不等式,B没有未知数,C含有两个未知数,D含有分式.故选:A点睛:此题主要考查了一元一次不等式的概念,解题时,明确概念内容:一元一次不等式:含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式,然后据此判断即可. 4.A【解析】解①得,x>2-a;解②得,12bx+ <;∵不等式组的解集为0<x<1,∴20{112ab-=+=,解之得,2{1ab==;故选A.5.D【解析】试题解析:①如图1,∵AB=AC,∠ABD=20°,BD⊥AC,∴∠A=70°,∴∠ABC=∠C=(180°-70°)÷2=55°.②如图2,∵AB=AC,∠ABD=20°,BD⊥AC,∴∠BAC=20°+90°=110°∴∠ABC=∠C=(180°-110°)÷2=35°.故选D.6.C【解析】【分析】首先根据不等式组得出不等式组的解集为a<x<2,再由恰好有3个整数解可得a的取值范围.【详解】由图象可知:不等式组恰有3个整数解,需要满足条件:﹣2≤a<﹣1.故选C.【点睛】本题主要考查了解不等式组,关键是正确理解求解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.7.D【解析】试题分析:同位角相等、内错角相等、同旁内角互补都可以判定两条直线平行A和B中的角不是三线八角中的角;C中的角在同一个三角形中,故不能判定两直线平行.D中内错角∠A=∠ABE,则EB∥AC.故选D.考点:平行线的判定8.B【解析】选项A,抛掷一次硬币,都有2种情况,即正、反,所以每次掷出硬币时出现正面朝上的概率为0.5,选项A错误;选项B,“从我们班上查找一名未完成作业的学生的概率为0”表示我们班上所有的学生都完成了作业,选项B正确;选项C,一个口袋里装有99个白球和一个红球,从中任取一个球,得到红球的概率为1%,所以从袋中取至少100次后不一定可以取到红球(每次取后放回,并搅匀),选项C 错误;选项D ,抛一枚硬币,出现正面向上的概率为50%,所以投掷硬币两次,不一定一次出现正面,一次出现反面,选项D 错误.故选B. 9.B【解析】解:三角形的三角内角和等于180度,如果其中两个内角之和小于第三个内角,说明第三个内角大于90度,因此这个三角形是钝角三角形;故选B . 10.C 【解析】 试题解析:根据题意,摸到白球的概率是故选C . 11.15【解析】试题解析:有题意可得:321{1,m n m n -=+=解得: 35{ 2.5m n ==1.5m n ∴-=故答案为: 1.512.1,2,3【解析】分析:先把这个不等式的解集求出,再把这个范围内的正整数写出即可.详解:∵∴不等式的正整数解是1,2,3.点睛:解一元一次不等式的依据是不等式的性质,所以熟练掌握不等式的性质是解题的关键. 13.15【解析】【分析】根据角平分线上的点到角的两边距离相等求出点D到AB的距离,然后根据三角形的面积公式列式计算即可得解.【详解】作DE⊥AB于E,∵∠C=90°,∴DC⊥AC,∵AD平分∠BAC,DC⊥AC,DE⊥A,∴DE=CD,∵AB=10,CD=3,∴S△ABD=.故答案为:15.【点睛】本题考查角平分线的性质.14.4【解析】∵|2x+y+1|+(x+2y﹣7)2=0,∴,∴3x+3y=6,即x+y=2,∴(x+y)2=22=4.点睛:(1)一个代数式的绝对值和平方都是非负数;(2)两个非负数的和为0,则这两个非负数都为0.15.24cm【解析】【分析】由线段垂直平分线的性质可得,,结合条件可求得,代入可求得答案.【详解】解:是AC的垂直平分线,,,的周长为16cm,,,即的周长为24cm,故答案为:24cm.【点睛】考查线段垂直平分线的性质,利用线段垂直平分线上的点到线段两端点的距离相等把的周长转化成的周长与2AE的和是解题的关键.16.南偏西15°,50海里【解析】如下图,内错角相等,所以A位于B,南偏西15°,50海里.17.SSS【解析】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD≌△C'O'D',则∠COD≌∠C'O'D',即∠A'O'B'=∠AOB(全等三角形的对应角相等).故答案为:SSS.点睛:本题考查了全等三角形的判定与性质;由全等得到角相等是用的全等三角形的性质,熟练掌握三角形全等的性质是正确解答本题的关键.18.【解析】可以画树状图或列举出所有情况,看从盒子里拿出的2只袜子恰好是1双的比例,即可求出答案.19.(1);(2).【解析】【分析】根据加减消元法,可得方程组的解.【详解】(1)②-①,得x=3,解得x=.将x=代入①得-=6,解得y=-9.所以原方程组的解为(2)②×6,得3(x+y)-(x-y)=6,③①-③,得-3(x-y)=0,即x=y.将x=y代入③,得3(x+x)-0=6,即x=1.所以y=1. 所以原方程组的解为【点睛】掌握解答方程组的方法是解答本题的关键.20..【解析】【分析】根据角平分线性质作出辅助线,求出高长,即可求解. 【详解】在△ABD 中,∵△ =⋅,AB=3cm,S△ABD=2cm2,∴ =过D 作DF⊥BC 于F.∵BD 平分∠ABC,DE⊥AB,DF⊥BC,∴DE=DF,∴ =在△BCD 中,BC=2.5cm, =∴△ =⋅ =()2∵S△ABC=S△ABD+S△BCD,∴△ = 2 +=()2【点睛】本题考查了角平分线的性质,利于角平分线的性质正确地作出辅助线是解题的关键.21.(1)BD∥CE;(2)∠C=∠D【解析】【分析】(1)根据对顶角相等得出∠DGH的度数,再由平行线的判定定理即可得出结论;(2)先根据BD∥CE得出∠D=∠CEF,再由∠A=∠F得出AC∥DF,据此可得出结论.【详解】(1)解:BD∥CE,∵∠1=∠DGF=50°,∠2=130°,∴∠2+∠DGF=130°+50°=180°,∴BD∥CE;(2)解:∠C=∠D,理由是:∵∠A=∠F,∴AC∥DF,∴∠D+∠DBC=180°.又∵BD∥CE,∴∠C+∠DBC=180°,∴∠C=∠D.【点睛】本题考查的是平行线的判定与性质,熟知平行线的判定定理与性质是解答此题的关键.22.30只猴,149个桃;31只猴,152个桃【解析】试题分析:设有x只猴子,则有(3x+59)个桃子,由题意即可列出不等式组:,解此不等式组并求出其正整数解即可求得本题要求的答案.试题解析:设有x只猴子,则有(3x+59)个桃子,由题意得:,解得:,∵只能取整数,∴或31,当时,;当时,;答:猴子的只数为30或31,对应的桃子的数量为149或152个.23.(1)见解析;(2)见解析.【解析】【分析】首先根据角平分线的性质可得,,然后证明≌可得;根据全等三角形的判定方法,证明≌即可.【详解】证明:是的平分线上一点,,,,,在和中,,≌,;≌,,,在与中,≌【点睛】此题主要考查了角平分线的性质,以及全等三角形的判定与性质,关键是掌握角平分线的性质:角的平分线上的点到角的两边的距离相等.24.∠BCD=25°.【解析】【分析】根据两直线平行,同旁内角互补,内错角相等,即可解答.【详解】过点C向右作CH∥DE.∵CH∥DE,∴∠DCH+∠D=180°.∵∠D=135°,∴∠DCH=180°-∠D=180°-135°=45°.又∵AB∥DE,CH∥DE,∴AB∥CH,∴∠B=∠BCH.∵∠B=70°,∴∠BCH=70°,∴∠BCD=∠BCH-∠DCH=70°-45°=25°.【点睛】本题考查了平行线的性质.解题的关键是正确作出辅助线.25.∠DAC=20°.【解析】【分析】根据角平分线的定义可得∠ABC=2∠ABE,再根据直角三角形两锐角互余求出∠BAD,然后根据∠DAC=∠BAC﹣∠BAD计算即可得解.【详解】∵BE平分∠ABC,∴∠ABC=2∠ABE=2×25°=50°.∵AD是BC边上的高,∴∠BAD=90°﹣∠ABC=90°﹣50°=40°,∴∠DAC=∠BAC﹣∠BAD=60°﹣40°=20°.【点睛】本题考查了三角形的内角和定理,角平分线的定义,准确识图理清图中各角度之间的关系是解题的关键.26.购买1本大笔记本和4本小笔记本;理由见详解.【解析】【分析】设买大笔记x本,根据共花钱不超过28元,且购买的笔记本的总页数不低于340页,列不等式组;解不等式组,根据x取正整数即可得到满足题意的x值,进而可得不同的方案,再结合表格中的单价进行计算,得到不同方案所对应的花费,然后比较即可求出节约资金的一种方案.【详解】解:设小明购买大笔记本x本,则购买小笔记本(5-x)本.根据题意,得解不等式组,得1≤x≤3,故整数解有1,2,3,∴小明的购买方案共有三种:第一种:大笔本1本,小笔记本4本,需花费资金1×6+4×5=26(元);第二种:大笔记本2本,小笔记本3本,需花费资金2×6+3×5=27(元); 第三种:大笔记本3本,小笔记本2本,需花费资金3×6+2×5=28(元). ∵26<27<28,∴小明应选择第一种购买方案,即购买1本大笔记本和4本小笔记本. 故答案为:购买1本大笔记本和4本小笔记本;理由见详解.【点睛】本题考查一元一次不等式组的应用.。

鲁教版(五四制)七年级下数学期末检测试题有答案【名师版】

鲁教版(五四制)七年级下数学期末检测试题有答案【名师版】

期末检测试题(时间120分钟满分150分)一、选择题(每小题4分,共48分)1.(2018北京)方程组的解为( D )(A)(B)(C)(D)解析法一将4组解分别代入原方程组,只有D选项同时满足两个方程,故选D.法二由①得x=y+3,③把③代入②得,3(y+3)-8y=14,解得y=-1,将y=-1代入③得x=2.所以方程组的解为故选D.2.(2018烟台)下列说法正确的是( A )(A)367人中至少有2人生日相同(B)任意掷一枚均匀的骰子,掷出的点数是偶数的概率是(C)天气预报说明天的降水概率为90%,则明天一定会下雨(D)某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖解析一年最多366天,所以367人中至少有2人生日相同,选项A正确;任意掷一枚均匀的骰子,掷出的点数是偶数的概率应是,选项B错误;天气预报说明天的降水概率为90%,只是说降雨的可能性较大,但不能说明天一定会下雨,选项C错误;某种彩票中奖的概率是1%,并不是说买100张彩票一定有1张中奖,选项D错误.故选A.3.(2018日照)如图,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,则∠1等于( D )(A)30°(B)25°(C)20°(D)15°解析因为一副直角三角板的两条斜边互相平行,所以∠3=∠2=45°,因为∠4=30°,所以∠1=∠3-∠4=15°.故选D.4.(2018镇江)小明将如图所示的转盘分成n(n是正整数)个扇形,并使得各个扇形的面积都相等,然后他在这些扇形区域内分别标连续偶数数字2,4,6,…,2n(每个区域内标注1个数字,且各区域内标注的数字互不相同),转动转盘1次,当转盘停止转动时,若事件“指针所落区域标注的数字大于8”的概率是,则n的取值为( C )(A)36 (B)30 (C)24 (D)18解析因为事件“指针所落区域标注的数字大于8”的概率是,所以=.解得n=24.故选C.5. 如图,已知点P到AE,AD,BC的距离相等,则下列说法①点P在∠BAC的平分线上;②点P 在∠CBE的平分线上;③点P在∠BCD的平分线上;④点P是∠BAC,∠CBE,∠BCD的平分线的交点,其中正确的是( A )(A)①②③④ (B)①②③(C)②③ (D)④解析因为点P到AE,AD,BC的距离相等,所以点P在∠BAC的平分线上,故①正确;点P在∠CBE的平分线上,故②正确;点P在∠BCD 的平分线上,故③正确;点P是∠BAC,∠CBE,∠BCD的平分线的交点,故④正确,综上所述,正确的是①②③④.故选A.6.如图,AB,CD交于O点,且互相平分,则图中全等三角形有( C )(A)2对(B)3对(C)4对(D)5对解析题图中的全等三角形有△AOC≌△BOD,△BOC≌△AOD,△ABC≌△BAD,△ACD≌△BDC,共4对.故选C.7.已知点P(a+1,-+1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是( C )解析因为点P(a+1,-+1)关于原点的对称点在第四象限,所以点P在第二象限,所以解不等式组得a<-1.故选C.8.如图,△ABC为等边三角形,D是BC边上一点,在AC边上取一点F,使CF=BD,在AB边上取一点E,使BE=DC,则∠EDF的度数为( C )(A)30°(B)45°(C)60°(D)70°解析易证△BED≌△CDF(SAS),得∠BED=∠CDF,又因为∠EDF+∠CDF=∠B+∠BED,所以∠EDF=∠B=60°.故选C.9.(2018台州)学校八年级师生共466人准备参加社会实践活动.现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x辆,37座客车y辆,根据题意可列出方程组( A )(A) (B)(C) (D)解析根据题意49座客车x辆,37座客车y辆,可知x+y=10,根据对应车辆载人数可知49x+37y=466,故选A.10.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的∠A是120°,第二次拐的∠B是150°,第三次拐的角是∠C,这时恰好和第一次拐弯之前的道路平行,则∠C的度数为( C )(A)100° (B)120° (C)150° (D)160°解析法一延长AB,EC交于点D,根据题意∠D=∠A=120°;在△BCD中,∠BCD=∠ABC-∠D=150°-120°=30°,所以∠BCE=180°-∠BCD=180°-30°=150°,故选C.法二过点B作BD∥AE,因为AE∥CF,所以AE∥BD∥CF,所以∠ABD=∠A=120°,因为∠ABC=150°,所以∠CBD=∠CBA-∠ABD=150°-120°=30°,因为已证得CF∥BD,所以∠CBD+∠C=180°,所以∠C=180°-∠CBD=180°-30°=150°.故选C.11.关于x的不等式组的解集中至少有5个整数解,则正数a的最小值是( B )(A)3 (B)2 (C)1 (D)解析解不等式①得x≤a,解不等式②得x>-a.则不等式组的解集是-a<x≤a.因为不等式组至少有5个整数解,所以a-(-a)≥5,解得a≥2.所以正数a的最小值是2.故选B.12.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是( C )(A)()n·75° (B)()n-1·65°(C)()n-1·75° (D)()n·85°解析因为A1B=CB,∠B=30°,所以∠C=∠BA1C=75°.又因为A1A2=A1D,所以∠A1A2D=∠A1DA2=∠DA1C=×75°=()2-1×75°;同理,∠A2A3E=∠A2EA3=∠DA2A1 =××75°=()3-1×75°;∠A3A4F=()4-1×75°;…第n个三角形中以A n为顶点的内角度数是()n-1×75°.故选C.二、填空题(每小题4分,共24分)13.(2018绥化)如图,一块飞镖游戏板由大小相等的小正方形格子构成.向游戏板随机投掷一枚飞镖,击中黑色区域的概率是.解析设小正方形的边长为1,所以击中黑色区域的概率是=.14.(2018菏泽)不等式组的最小整数解是0 .解析解不等式组,得-1<x≤2,所以其最小整数解是0.15.(2018镇江一模)如图,l1∥l2,△ABC的顶点B,C在直线l2上,已知∠A=40°,∠1=60°,则∠2的度数为100°.解析因为l1∥l2,所以∠3=∠1=60°,因为∠A=40°,所以∠2=∠A+∠3=100°.16.如图,在△ABC中,AB=AC,∠BAC=36°,DE是线段AC的垂直平分线,若BE=a,AE=b,则用含a,b的代数式表示△ABC的周长为2a+3b .解析由题意,得AC=AB=a+b,∠B=∠ACB=(180°-36°)÷2=72°,因为DE垂直平分线段AC,所以EA=EC,所以∠ECA=∠A=36°,所以∠ECB=36°,∠BEC=72°,所以CB=CE=b,故△ABC的周长为2a+3b.17.(2018滨州)若关于x,y的二元一次方程组的解是则关于a,b的二元一次方程组的解是.解析观察两个方程组的结构特点,a+b相当于x,a-b相当于y,故可直接得出解得从而得出二元一次方程组的解是18.若不等式组无解,则m的取值范围是m<.解析解不等式2x-3≥0,得x≥,要使不等式组无解,则m<.三、解答题(共78分)19.(10分)解方程组与不等式组(1)(2018武汉)(2)(2018宁夏)解(1)②-①,得x=6,把x=6代入①,得y=4.所以原方程组的解为(2)解不等式①得,x≤-1,解不等式②得,x>-7,所以,原不等式组的解集为-7<x≤-1.20.(8分)如图所示,已知DF⊥AB于点F,∠A=40°,∠D=50°,求∠ACB的度数.解在Rt△AFG中,∠AGF=90°-∠A=90°-40°=50°,所以∠CGD=∠AGF=50°.所以∠ACB=∠CGD+∠D=50°+50°=100°.21.(8分)如图,∠ACB=90°,BD平分∠ABE,CD∥AB交BD于D,∠1=20°,求∠2的度数.解因为BD平分∠ABE,∠1=20°,所以∠ABC=2∠1=40°.因为CD∥AB,所以∠DCE=∠ABC=40°.因为∠ACB=90°,所以∠2=90°-40°=50°.22.(8分)(2018高青期末)如图,在△ACB中,AC=BC,AD为△ACB的高线,CE为△ACB的中线,求证∠DAB=∠ACE.证明因为AC=BC,CE为△ACB的中线,所以∠CAB=∠B,CE⊥AB,所以∠CAB+∠ACE=90°.因为AD为△ACB的高线,所以∠D=90°.所以∠DAB+∠B=90°,所以∠DAB=∠ACE.23.(10分)为了解学生的体能情况,随机选取了1 000名学生进行调查,并记录了他们对长跑、短跑、跳绳、跳远四个项目的喜欢情况,整理成以下统计表,其中“√”表示喜欢,“×”表示不喜欢.项目长跑短跑跳绳跳远学生数200 √×√√300 ×√×√150 √√√×200 √×√×150 √×××(1)估计学生同时喜欢短跑和跳绳的概率;(2)估计学生在长跑、短跑、跳绳、跳远中同时喜欢三个项目的概率;(3)如果学生喜欢长跑,则该同学同时喜欢短跑、跳绳、跳远中哪项的可能性大?解(1)同时喜欢短跑和跳绳的概率为=.(2)同时喜欢三个项目的概率为=.(3)喜欢长跑的700人中,有150人选择了短跑,550人选择了跳绳,200人选择了跳远,于是喜欢长跑的学生又同时喜欢跳绳的可能性大.24.(10分)在数学学习中,及时对知识进行归纳和整理是完善知识结构的重要方法.善于学习的小明在学习了一次方程(组)、一元一次不等式和一次函数后,把相关知识归纳整理如下(1)请你根据以上方框中的内容在下面数字序号后写出相应的结论①;②;③; ④.(2)如果点C的坐标为(1,3),求不等式kx+b≤k1x+b1的解集.解(1)①kx+b=0;②③kx+b>0;④kx+b<0.(2)由图象可知,不等式kx+b≤k1x+b1的解集是x≥1.25.(12分)蔬菜经营户老王,近两天经营的是白菜和西兰花.(1)昨天的白菜和西兰花的进价和售价如表,老王用600元批发白菜和西兰花共200市斤,当天售完后老王一共能赚多少元钱?(2)今天因进价不变,老王仍用600元批发白菜和西兰花共200市斤.但在运输中白菜损坏了10%,而西兰花没有损坏仍按昨天的售价销售,要想当天售完后所赚的钱不少于昨天所赚的钱,请你帮老王计算,应怎样给白菜定售价?(精确到0.1元)白菜西兰花进价(元/市斤) 2.8 3.2售价(元/市斤) 4 4.5解(1)设老王批发了白菜x市斤和西兰花y市斤,根据题意得,解得(4-2.8)×100+(4.5-3.2)×100=250(元).答当天售完后老王一共能赚250元钱.(2)设白菜的售价为t元.100×(1-10%)t+100×4.5-600≥250,t≥≈4.44.答白菜的售价不低于4.5元/市斤.26.(12分)(2018高青期末)已知△ABD与△GDF都是等腰直角三角形,BD与DF均为斜边(BD<DF).如图,B,D,F在同一直线上,过F作MF⊥GF于点F,取MF=AB,连接AM交BF于点H,连接GA,GM.(1)求证AH=HM;(2)请判断△GAM的形状,并给予证明;(3)请用等式表示线段AM,BD,DF的数量关系,不必说明理由.(1)证明因为MF⊥GF,所以∠GFM=90°,因为△ABD与△GDF都是等腰直角三角形,所以∠DFG=∠ABD=45°,所以∠HFM=90°-45°=45°,所以∠ABD=∠HFM,因为AB=MF,∠AHB=∠MHF,所以△AHB≌△MHF,所以AH=HM.(2)解△GAM是等腰直角三角形,理由是因为△ABD与△GDF都是等腰直角三角形,所以AB=AD,DG=FG,∠ADB=∠GDF=45°,所以∠ADG=∠GFM=90°,因为AB=FM,所以AD=FM,又DG=FG,所以△GAD≌△GMF,所以AG=MG,∠AGD=∠MGF,所以∠AGD+∠DGM=∠MGF+∠DGM=90°, 所以△GAM是等腰直角三角形.(3)解AM2=BD2+DF2.。

鲁教版(五四制)七年级下数学期末检测试题有答案-精编

鲁教版(五四制)七年级下数学期末检测试题有答案-精编

期末检测试题(时间120分钟满分150分)一、选择题(每小题4分,共48分)1.(2018北京)方程组的解为( D )(A)(B)(C)(D)解析法一将4组解分别代入原方程组,只有D选项同时满足两个方程,故选D.法二由①得x=y+3,③把③代入②得,3(y+3)-8y=14,解得y=-1,将y=-1代入③得x=2.所以方程组的解为故选D.2.(2018烟台)下列说法正确的是( A )(A)367人中至少有2人生日相同(B)任意掷一枚均匀的骰子,掷出的点数是偶数的概率是(C)天气预报说明天的降水概率为90%,则明天一定会下雨(D)某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖解析一年最多366天,所以367人中至少有2人生日相同,选项A正确;任意掷一枚均匀的骰子,掷出的点数是偶数的概率应是,选项B错误;天气预报说明天的降水概率为90%,只是说降雨的可能性较大,但不能说明天一定会下雨,选项C错误;某种彩票中奖的概率是1%,并不是说买100张彩票一定有1张中奖,选项D错误.故选A.3.(2018日照)如图,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,则∠1等于( D )(A)30°(B)25°(C)20°(D)15°解析因为一副直角三角板的两条斜边互相平行,所以∠3=∠2=45°,因为∠4=30°,所以∠1=∠3-∠4=15°.故选D.4.(2018镇江)小明将如图所示的转盘分成n(n是正整数)个扇形,并使得各个扇形的面积都相等,然后他在这些扇形区域内分别标连续偶数数字2,4,6,…,2n(每个区域内标注1个数字,且各区域内标注的数字互不相同),转动转盘1次,当转盘停止转动时,若事件“指针所落区域标注的数字大于8”的概率是,则n的取值为( C )(A)36 (B)30 (C)24 (D)18解析因为事件“指针所落区域标注的数字大于8”的概率是,所以=.解得n=24.故选C.5. 如图,已知点P到AE,AD,BC的距离相等,则下列说法①点P在∠BAC的平分线上;②点P 在∠CBE的平分线上;③点P在∠BCD的平分线上;④点P是∠BAC,∠CBE,∠BCD的平分线的交点,其中正确的是( A )(A)①②③④ (B)①②③(C)②③ (D)④解析因为点P到AE,AD,BC的距离相等,所以点P在∠BAC的平分线上,故①正确;点P在∠CBE的平分线上,故②正确;点P在∠BCD 的平分线上,故③正确;点P是∠BAC,∠CBE,∠BCD的平分线的交点,故④正确,综上所述,正确的是①②③④.故选A.6.如图,AB,CD交于O点,且互相平分,则图中全等三角形有( C )(A)2对(B)3对(C)4对(D)5对解析题图中的全等三角形有△AOC≌△BOD,△BOC≌△AOD,△ABC≌△BAD,△ACD≌△BDC,共4对.故选C.7.已知点P(a+1,-+1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是( C )解析因为点P(a+1,-+1)关于原点的对称点在第四象限,所以点P在第二象限,所以解不等式组得a<-1.故选C.8.如图,△ABC为等边三角形,D是BC边上一点,在AC边上取一点F,使CF=BD,在AB边上取一点E,使BE=DC,则∠EDF的度数为( C )(A)30°(B)45°(C)60°(D)70°解析易证△BED≌△CDF(SAS),得∠BED=∠CDF,又因为∠EDF+∠CDF=∠B+∠BED,所以∠EDF=∠B=60°.故选C.9.(2018台州)学校八年级师生共466人准备参加社会实践活动.现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x辆,37座客车y辆,根据题意可列出方程组( A )(A) (B)(C) (D)解析根据题意49座客车x辆,37座客车y辆,可知x+y=10,根据对应车辆载人数可知49x+37y=466,故选A.10.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的∠A是120°,第二次拐的∠B是150°,第三次拐的角是∠C,这时恰好和第一次拐弯之前的道路平行,则∠C的度数为( C )(A)100° (B)120° (C)150° (D)160°解析法一延长AB,EC交于点D,根据题意∠D=∠A=120°;在△BCD中,∠BCD=∠ABC-∠D=150°-120°=30°,所以∠BCE=180°-∠BCD=180°-30°=150°,故选C.法二过点B作BD∥AE,因为AE∥CF,所以AE∥BD∥CF,所以∠ABD=∠A=120°,因为∠ABC=150°,所以∠CBD=∠CBA-∠ABD=150°-120°=30°,因为已证得CF∥BD,所以∠CBD+∠C=180°,所以∠C=180°-∠CBD=180°-30°=150°.故选C.11.关于x的不等式组的解集中至少有5个整数解,则正数a的最小值是( B )(A)3 (B)2 (C)1 (D)解析解不等式①得x≤a,解不等式②得x>-a.则不等式组的解集是-a<x≤a.因为不等式组至少有5个整数解,所以a-(-a)≥5,解得a≥2.所以正数a的最小值是2.故选B.12.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是( C )(A)()n·75° (B)()n-1·65°(C)()n-1·75° (D)()n·85°解析因为A1B=CB,∠B=30°,所以∠C=∠BA1C=75°.又因为A1A2=A1D,所以∠A1A2D=∠A1DA2=∠DA1C=×75°=()2-1×75°;同理,∠A2A3E=∠A2EA3=∠DA2A1 =××75°=()3-1×75°;∠A3A4F=()4-1×75°;…第n个三角形中以A n为顶点的内角度数是()n-1×75°.故选C.二、填空题(每小题4分,共24分)13.(2018绥化)如图,一块飞镖游戏板由大小相等的小正方形格子构成.向游戏板随机投掷一枚飞镖,击中黑色区域的概率是.解析设小正方形的边长为1,所以击中黑色区域的概率是=.14.(2018菏泽)不等式组的最小整数解是0 .解析解不等式组,得-1<x≤2,所以其最小整数解是0.15.(2018镇江一模)如图,l1∥l2,△ABC的顶点B,C在直线l2上,已知∠A=40°,∠1=60°,则∠2的度数为100°.解析因为l1∥l2,所以∠3=∠1=60°,因为∠A=40°,所以∠2=∠A+∠3=100°.16.如图,在△ABC中,AB=AC,∠BAC=36°,DE是线段AC的垂直平分线,若BE=a,AE=b,则用含a,b的代数式表示△ABC的周长为2a+3b .解析由题意,得AC=AB=a+b,∠B=∠ACB=(180°-36°)÷2=72°,因为DE垂直平分线段AC,所以EA=EC,所以∠ECA=∠A=36°,所以∠ECB=36°,∠BEC=72°,所以CB=CE=b,故△ABC的周长为2a+3b.17.(2018滨州)若关于x,y的二元一次方程组的解是则关于a,b的二元一次方程组的解是.解析观察两个方程组的结构特点,a+b相当于x,a-b相当于y,故可直接得出解得从而得出二元一次方程组的解是18.若不等式组无解,则m的取值范围是m<.解析解不等式2x-3≥0,得x≥,要使不等式组无解,则m<.三、解答题(共78分)19.(10分)解方程组与不等式组(1)(2018武汉)(2)(2018宁夏)解(1)②-①,得x=6,把x=6代入①,得y=4.所以原方程组的解为(2)解不等式①得,x≤-1,解不等式②得,x>-7,所以,原不等式组的解集为-7<x≤-1.20.(8分)如图所示,已知DF⊥AB于点F,∠A=40°,∠D=50°,求∠ACB的度数.解在Rt△AFG中,∠AGF=90°-∠A=90°-40°=50°,所以∠CGD=∠AGF=50°.所以∠ACB=∠CGD+∠D=50°+50°=100°.21.(8分)如图,∠ACB=90°,BD平分∠ABE,CD∥AB交BD于D,∠1=20°,求∠2的度数.解因为BD平分∠ABE,∠1=20°,所以∠ABC=2∠1=40°.因为CD∥AB,所以∠DCE=∠ABC=40°.因为∠ACB=90°,所以∠2=90°-40°=50°.22.(8分)(2018高青期末)如图,在△ACB中,AC=BC,AD为△ACB的高线,CE为△ACB的中线,求证∠DAB=∠ACE.证明因为AC=BC,CE为△ACB的中线,所以∠CAB=∠B,CE⊥AB,所以∠CAB+∠ACE=90°.因为AD为△ACB的高线,所以∠D=90°.所以∠DAB+∠B=90°,所以∠DAB=∠ACE.23.(10分)为了解学生的体能情况,随机选取了1 000名学生进行调查,并记录了他们对长跑、短跑、跳绳、跳远四个项目的喜欢情况,整理成以下统计表,其中“√”表示喜欢,“×”表示不喜欢.项目长跑短跑跳绳跳远学生数200 √×√√300 ×√×√150 √√√×200 √×√×150 √×××(1)估计学生同时喜欢短跑和跳绳的概率;(2)估计学生在长跑、短跑、跳绳、跳远中同时喜欢三个项目的概率;(3)如果学生喜欢长跑,则该同学同时喜欢短跑、跳绳、跳远中哪项的可能性大?解(1)同时喜欢短跑和跳绳的概率为=.(2)同时喜欢三个项目的概率为=.(3)喜欢长跑的700人中,有150人选择了短跑,550人选择了跳绳,200人选择了跳远,于是喜欢长跑的学生又同时喜欢跳绳的可能性大.24.(10分)在数学学习中,及时对知识进行归纳和整理是完善知识结构的重要方法.善于学习的小明在学习了一次方程(组)、一元一次不等式和一次函数后,把相关知识归纳整理如下(1)请你根据以上方框中的内容在下面数字序号后写出相应的结论①;②;③; ④.(2)如果点C的坐标为(1,3),求不等式kx+b≤k1x+b1的解集.解(1)①kx+b=0;②③kx+b>0;④kx+b<0.(2)由图象可知,不等式kx+b≤k1x+b1的解集是x≥1.25.(12分)蔬菜经营户老王,近两天经营的是白菜和西兰花.(1)昨天的白菜和西兰花的进价和售价如表,老王用600元批发白菜和西兰花共200市斤,当天售完后老王一共能赚多少元钱?(2)今天因进价不变,老王仍用600元批发白菜和西兰花共200市斤.但在运输中白菜损坏了10%,而西兰花没有损坏仍按昨天的售价销售,要想当天售完后所赚的钱不少于昨天所赚的钱,请你帮老王计算,应怎样给白菜定售价?(精确到0.1元)白菜西兰花进价(元/市斤) 2.8 3.2售价(元/市斤) 4 4.5解(1)设老王批发了白菜x市斤和西兰花y市斤,根据题意得,解得(4-2.8)×100+(4.5-3.2)×100=250(元).答当天售完后老王一共能赚250元钱.(2)设白菜的售价为t元.100×(1-10%)t+100×4.5-600≥250,t≥≈4.44.答白菜的售价不低于4.5元/市斤.26.(12分)(2018高青期末)已知△ABD与△GDF都是等腰直角三角形,BD与DF均为斜边(BD<DF).如图,B,D,F在同一直线上,过F作MF⊥GF于点F,取MF=AB,连接AM交BF于点H,连接GA,GM.(1)求证AH=HM;(2)请判断△GAM的形状,并给予证明;(3)请用等式表示线段AM,BD,DF的数量关系,不必说明理由.(1)证明因为MF⊥GF,所以∠GFM=90°,因为△ABD与△GDF都是等腰直角三角形,所以∠DFG=∠ABD=45°,所以∠HFM=90°-45°=45°,所以∠ABD=∠HFM,因为AB=MF,∠AHB=∠MHF,所以△AHB≌△MHF,所以AH=HM.(2)解△GAM是等腰直角三角形,理由是因为△ABD与△GDF都是等腰直角三角形,所以AB=AD,DG=FG,∠ADB=∠GDF=45°,所以∠ADG=∠GFM=90°,因为AB=FM,所以AD=FM,又DG=FG,所以△GAD≌△GMF,所以AG=MG,∠AGD=∠MGF,所以∠AGD+∠DGM=∠MGF+∠DGM=90°, 所以△GAM是等腰直角三角形.(3)解AM2=BD2+DF2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

期末检测试题( 时间 :120 分钟满分:150分)一、选择题 ( 每小题 4 分, 共 48 分)1.(2018 北京 ) 方程组的解为( D )(A)(B)(C)(D)解析 : 法一将4组解分别代入原方程组,只有D选项同时满足两个方程,故选D.法二由①得 x=y+3, ③把③代入②得 ,3(y+3)-8y=14,解得 y=-1,将y=-1 代入③得 x=2.所以方程组的解为故选 D.2.(2018 烟台 ) 下列说法正确的是 ( A )(A)367 人中至少有 2 人生日相同(B)任意掷一枚均匀的骰子 , 掷出的点数是偶数的概率是(C)天气预报说明天的降水概率为 90%,则明天一定会下雨(D)某种彩票中奖的概率是 1%,则买 100 张彩票一定有 1 张中奖解析 : 一年最多 366 天, 所以 367 人中至少有 2 人生日相同 , 选项 A正确 ;任意掷一枚均匀的骰子, 掷出的点数是偶数的概率应是, 选项 B 错误 ;天气预报说明天的降水概率为 90%,只是说降雨的可能性较大 , 但不能说明天一定会下雨 , 选项 C 错误 ;某种彩票中的概率是1%,并不是 100 彩票一定有 1 中 ,D. 故 A.3.(2018 日照 ) 如 , 将一副直角三角板按中所示位置放, 保持两条斜互相平行 , ∠ 1 等于( D )(A)30 °(B)25 °(C)20 °(D)15 °解析 : 因一副直角三角板的两条斜互相平行,所以∠ 3=∠2=45°,因∠ 4=30°, 所以∠ 1=∠3- ∠4=15°. 故 D.4.(2018 江 ) 小明将如所示的分成 n(n 是正整数 ) 个扇形 , 并使得各个扇形的面都相等 , 然后他在些扇形区域内分偶数数字 2,4,6, ⋯,2n( 每个区域内注 1 个数字 , 且各区域内注的数字互不相同 ), 1 次, 当停止 , 若事件“指所落区域注的数字大于 8”的概率是,n 的取 ( C )(A)36 (B)30 (C)24 (D)18解析 : 因事件“指所落区域注的数字大于8”的概率是,所以= . 解得 n=24. 故 C.5.如 , 已知点 P到 AE,AD,BC的距离相等 , 下列法 : ①点 P 在∠ BAC的平分上 ; ②点 P在∠CBE的平分上 ; ③点 P 在∠ BCD的平分上 ; ④点 P是∠ BAC,∠CBE,∠BCD的平分的交点 , 其中正确的是 ( A )(A)①②③④ (B) ①②③(C) ②③(D)④解析 : 因为点 P 到 AE,AD,BC的距离相等 ,所以点 P在∠ BAC的平分线上 , 故①正确 ; 点 P在∠ CBE的平分线上 , 故②正确 ; 点 P在∠ BCD的平分线上 , 故③正确 ; 点 P 是∠ BAC,∠CBE,∠BCD的平分线的交点 , 故④正确 , 综上所述 , 正确的是①②③④ . 故选 A.6.如图,AB,CD 交于 O点, 且互相平分 , 则图中全等三角形有 ( C )(A)2 对(B)3 对(C)4 对(D)5 对解析 : 题图中的全等三角形有△AOC≌△ BOD,△BOC≌△ AOD,△ABC≌△ BAD,△ACD≌△ BDC,共 4 对.故选 C.7. 已知点 P(a+1,- +1)关于原点的对称点在第四象限, 则 a 的取值范围在数轴上表示正确的是( C )解析 : 因为点 P(a+1,- +1) 关于原点的对称点在第四象限,所以点 P 在第二象限 ,所以解不等式组得a<-1. 故选 C.8.如图, △ABC为等边三角形 ,D 是 BC边上一点 , 在 AC边上取一点 F, 使 CF=BD,在 AB边上取一点 E, 使BE=DC,则∠ EDF的度数为 ( C )(A)30 °(B)45 °(C)60 °(D)70 °解析 : 易证△ BED≌△CDF(SAS),得∠ BED=∠CDF,又因为∠ EDF+∠CDF=∠B+∠BED,所以∠ EDF=∠B=60°.故选 C.9.(2018 台州 ) 学校八年级师生共466 人准备参加社会实践活动. 现已预备了 49 座和 37 座两种客车共 10 辆, 刚好坐满 . 设 49 座客车 x 辆,37 座客车 y 辆, 根据题意可列出方程组 ( A )(A)(B)(C)(D)解析 : 根据题意 49座客车 x 辆,37 座客车 y 辆, 可知 x+y=10, 根据对应车辆载人数可知49x+37y=466,故选 A.10.如图 , 一条公路修到湖边时 , 需拐弯绕湖而过 , 如果第一次拐的∠ A 是 120°, 第二次拐的∠ B 是150°, 第三次拐的角是∠ C, 这时恰好和第一次拐弯之前的道路平行, 则∠ C的度数为 ( C )(A)100 °(B)120°(C)150 °(D)160 °解析 : 法一延长AB,EC交于点D,根据题意∠ D=∠A=120°;在△ BCD中, ∠BCD=∠ABC-∠D=150°-120 °=30°,所以∠ BCE=180°- ∠BCD=180°-30 °=150°,故选 C.法二过点 B 作 BD∥AE,因为 AE∥CF,所以 AE∥BD∥CF,所以∠ ABD=∠A=120°, 因为∠ ABC=150°,所以∠ CBD=∠CBA-∠ABD=150°-120 °=30°,因为已证得 CF∥BD,所以∠ CBD+∠C=180°,所以∠ C=180°- ∠CBD=180°-30 °=150°.故选 C.11. 关于 x 的不等式组的解集中至少有 5 个整数解 , 则正数 a 的最小值是 ( B )(A)3 (B)2 (C)1(D)解析 :解不等式①得x≤a, 解不等式②得 x>- a.则不等式组的解集是 - a<x≤a.因为不等式组至少有 5 个整数解 ,所以 a-(- a) ≥5, 解得 a≥2.所以正数 a 的最小是 2. 故 B.12. 如 , 在第 1 个△A1BC中, ∠B=30°,A 1B=CB;在 A1B 上任取一点 D,延 CA1到 A2, 使 A1A2=A1D, 得到第 2 个△A1A2D;在 A2D上任取一点 E, 延 A1A2到 A3, 使 A2A3=A2E, 得到第 3 个△ A2A3E, ⋯按此做法下去 , 第 n 个三角形中以 A n点的内角度数是 ( C )(A)( ) n·75°(B)( ) n-1·65°(C)( ) n-1·75°(D)( ) n·85°解析 : 因 A1B=CB,∠B=30°,所以∠ C=∠BA1C=75°.又因 A1 A2=A1D,1 2121× 75°=( )2-1 2 323 2 1所以∠ A A D=∠ A DA=∠ DAC=×75°; 同理 , ∠ A A E= ∠ A EA=∠ DAA = × ×75°=( ) 3-1×75°; ∠A3A4F=( ) 4-1×75°; ⋯第n 个三角形中以A n点的内角度数是n-1( )×75°.二、填空 ( 每小 4 分, 共 24 分)13.(2018 化 ) 如 , 一游板由大小相等的小正方形格子构成. 向游板随机投一枚, 中黑色区域的概率是.解析 : 设小正方形的边长为1,所以击中黑色区域的概率是= .14.(2018 菏泽 ) 不等式组的最小整数解是0 .解析 : 解不等式组 , 得-1<x ≤2,所以其最小整数解是0.15.(2018 镇江一模 ) 如图 ,l 1∥l 2, △ABC的顶点 B,C 在直线 l 2上, 已知∠ A=40°, ∠1=60°, 则∠ 2的度数为100°.解析 : 因为 l 1∥l 2,所以∠ 3=∠1=60°,因为∠ A=40°,所以∠ 2=∠A+∠3=100°.16. 如图 , 在△ABC中,AB=AC,∠BAC=36°,DE 是线段 AC的垂直平分线 , 若 BE=a,AE=b,则用含a,b 的代数式表示△ ABC的周长为 2a+3b .解析 : 由题意 , 得 AC=AB=a+b,∠B=∠ACB=(180°-36 °) ÷2=72°,因为 DE垂直平分线段 AC,所以 EA=EC,所以∠ ECA=∠A=36°,所以∠ ECB=36°, ∠BEC=72°,所以 CB=CE=b,故△ ABC的周长为 2a+3b.17.(2018 滨州 ) 若关于 x,y 的二元一次方程组的解是则关于a,b的二元一次方程组的解是.解析 : 观察两个方程组的结构特点,a+b 相当于 x,a-b 相当于 y,故可直接得出解得从而得出二元一次方程组的解是18. 若不等式组无解,则m的取值范围是m< .解析 : 解不等式 2x-3 ≥0, 得 x≥ ,要使不等式组无解 , 则 m< .三、解答题 ( 共 78 分)(1)(2018武汉)(2)(2018宁夏)解:(1) ②- ①, 得 x=6,把x=6 代入① , 得 y=4.所以原方程组的解为(2)解不等式①得 ,x ≤-1,解不等式②得 ,x>-7,所以 , 原不等式组的解集为 -7<x ≤-1.20.(8 分) 如图所示 , 已知 DF⊥AB于点 F, ∠A=40°, ∠D=50°, 求∠ ACB的度数 .解: 在 Rt△AFG中, ∠AGF=90°- ∠A=90°-40 °=50°, 所以∠ CGD=∠AGF=50°.所以∠ ACB=∠CGD+∠D=50°+50°=100°.21.(8 分) 如图 , ∠ACB=90°,BD 平分∠ ABE,CD∥AB交 BD于 D,∠1=20°, 求∠ 2 的度数.解: 因为 BD平分∠ ABE,∠1=20°,所以∠ ABC=2∠1=40°.因为 CD∥AB,所以∠ DCE=∠ABC=40°.因为∠ ACB=90°,所以∠ 2=90°-40 °=50°.22.(8分)(2018高青期末)如图,在△ ACB中,AC=BC,AD为△ACB的高线,CE为△ ACB的中线,求证:∠DAB=∠ACE.证明 : 因为 AC=BC,CE为△ ACB的中线 ,所以∠ CAB=∠B,CE⊥AB,所以∠ CAB+∠ACE=90°.因为 AD为△ ACB的高线 , 所以∠ D=90°.所以∠ DAB+∠B=90°,所以∠ DAB=∠ACE.23.(10 分) 为了解学生的体能情况 , 随机选取了 1 000 名学生进行调查 , 并记录了他们对长跑、短跑、跳绳、跳远四个项目的喜欢情况 , 整理成以下统计表 , 其中“√”表示喜欢 , “×”表示不喜欢.项目长跑短跑跳绳跳远学生数200√×√√300×√×√150√√√×200√×√×150√×××(1)估计学生同时喜欢短跑和跳绳的概率 ;(2)估计学生在长跑、短跑、跳绳、跳远中同时喜欢三个项目的概率;(3)如果学生喜欢长跑 , 则该同学同时喜欢短跑、跳绳、跳远中哪项的可能性大 ?解 :(1) 同时喜欢短跑和跳绳的概率为= .(2) 同时喜欢三个项目的概率为= .(3)喜欢长跑的 700 人中 , 有 150 人选择了短跑 ,550 人选择了跳绳 ,200 人选择了跳远 , 于是喜欢长跑的学生又同时喜欢跳绳的可能性大 .24.(10 分) 在数学学习中 , 及时对知识进行归纳和整理是完善知识结构的重要方法 . 善于学习的小明在学习了一次方程 ( 组) 、一元一次不等式和一次函数后 , 把相关知识归纳整理如下 :(1)请你根据以上方框中的内容在下面数字序号后写出相应的结论:①; ②; ③; ④.(2)如果点 C的坐标为 (1,3),求不等式 kx+b≤k1x+b1的解集 .解:(1) ①kx+b=0;②③kx+b>0;④kx+b<0.(2)由图象可知 , 不等式 kx+b≤k1x+b1的解集是 x≥1.25.(12 分) 蔬菜经营户老王 , 近两天经营的是白菜和西兰花.(1)昨天的白菜和西兰花的进价和售价如表 , 老王用 600 元批发白菜和西兰花共 200 市斤 , 当天售完后老王一共能赚多少元钱 ?(2)今天因进价不变 , 老王仍用 600 元批发白菜和西兰花共 200 市斤 . 但在运输中白菜损坏了 10%,而西兰花没有损坏仍按昨天的售价销售 , 要想当天售完后所赚的钱不少于昨天所赚的钱 , 请你帮老王计算 , 应怎样给白菜定售价 ?( 精确到 0.1 元)白菜西兰花进价 ( 元/ 市斤 ) 2.8 3.2售价 ( 元/ 市斤 )4 4.5解 :(1)设老王批发了白菜 x 市斤和西兰花 y 市斤 , 根据题意得 ,解得(4-2.8)×100+(4.5-3.2)×100=250(元).答: 当天售完后老王一共能赚 250 元钱 .(2) 设白菜的售价为 t 元.100×(1-10%)t+100 ×4.5-600 ≥250,t ≥≈4.44.答 : 白菜的售价不低于 4.5 元/ 市斤 .26.(12 分)(2018 高青期末 ) 已知△ ABD与△ GDF都是等腰直角三角形 ,BD 与 DF均为斜边 (BD<DF).如图 ,B,D,F 在同一直线上 , 过 F 作 MF⊥GF于点 F, 取 MF=AB,连接 AM交 BF 于点 H,连接 GA,GM.(1)求证 :AH=HM;(2)请判断△ GAM的形状 , 并给予证明 ;(3)请用等式表示线段 AM,BD,DF的数量关系 , 不必说明理由 .(1)证明 : 因为 MF⊥GF,所以∠ GFM=90°,因为△ ABD与△ GDF都是等腰直角三角形 ,所以∠ DFG=∠ABD=45°,所以∠ HFM=90°-45 °=45°,所以∠ ABD=∠HFM,因为 AB=MF,∠AHB=∠MHF,所以△ AHB≌△ MHF,所以 AH=HM.(2)解: △GAM是等腰直角三角形 , 理由是 : 因为△ ABD与△ GDF都是等腰直角三角形 ,所以 AB=AD,DG=FG,∠ADB=∠GDF=45°,所以∠ ADG=∠GFM=90°,因为 AB=FM,所以 AD=FM,又DG=FG,所以△ GAD≌△ GMF,所以 AG=MG,∠AGD=∠MGF,所以∠ AGD+∠DGM=∠MGF+∠DGM=90°,所以△ GAM是等腰直角三角形 .222(3) 解:AM =BD+DF.。

相关文档
最新文档